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ARTICLE

Closing yield gaps for rice self-sufficiency in China
Nanyan Deng 1, Patricio Grassini 2, Haishun Yang2, Jianliang Huang 1, Kenneth G. Cassman 2 &

Shaobing Peng 1

China produces 28% of global rice supply and is currently self-sufficient despite a massive

rural-to-urban demographic transition that drives intense competition for land and water

resources. At issue is whether it will remain self-sufficient, which depends on the potential to

raise yields on existing rice land. Here we report a detailed spatial analysis of rice production

potential in China and evaluate scenarios to 2030. We find that China is likely to remain self-

sufficient in rice assuming current yield and consumption trajectories and no reduction in

production area. A focus on increasing yields of double-rice systems on general, and in three

single-rice provinces where yield gaps are relatively large, would provide greatest return on

investments in research and development to remain self-sufficient. Discrepancies between

results from our detailed bottom-up yield-gap analysis and those derived following a top-

down methodology show that the two approaches would result in very different research and

development priorities.
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China must make strategic decisions about how to ensure
food security for 1.4 billion people, and those decisions
will have a large impact on global agriculture and land use.

Currently self-sufficient in rice production, China’s most
important food crop, the annual production of about 206 million
metric tons (MMT) represents 28% of global rice supply1,2. At
issue is whether agricultural policy should target continued self-
sufficiency in rice or accept becoming a major rice importer.
Resolution of this issue will markedly influence global rice mar-
kets because reliance on imports for just 10% of China’s rice
consumption represents more than 35% of all internationally
traded rice based on 2013–2015 global export statistics3.

Current self-sufficiency has been achieved by raising rice yields
more than 50% since 1980 despite an 11% reduction in harvested
rice area1. But the rate of rice yield growth has slowed markedly
in recent years4, and prime farmland and water for irrigation are
becoming increasingly scarce as the rural-to-urban demographic
shift drives fierce competition for both land and water5,6. Given
the prognosis for little increase, or even a reduction, in rice
production area, making an informed decision about whether to
pursue continued self-sufficiency depends on the potential for
increasing yields on existing rice area. Yield-gap analysis provides
the means for estimating this untapped production potential by
estimating the difference (i.e., gap) between current farm yields
and the potential yield that can be achieved when yield losses
from nutrient deficiencies, pests, and diseases are minimized7.

Robust estimation of rice yield gaps in China is complicated by
the large variation in production systems and climates in which
rice is grown, from warm sub-tropics at 18° N latitude to cool
temperate climates at 50° N. Potential yield is a location-specific
property because it depends on the local weather and crop growth
duration. In the irrigated systems that dominate rice production
in China, location-specific factors governing potential yield
include the length of growing season, determined by temperature
regime, and the amount of light intercepted by the leaf canopy
during the crop growth period, determined by incident solar
radiation, leaf area development, and persistence8. Hence, accu-
rate yield gap estimation requires good quality, long-term weather
records, and data on current crop yields and management prac-
tices with adequate spatial resolution to support simulation of
potential yield across the large environmental variation that
characterizes Chinese rice production9. To date, it has not been
possible to perform such a detailed analysis due to lack of both a
spatially explicit dataset on rice production systems across this
wide range of environments, and a suitable upscaling technique
for aggregating results to a national scale.

To fill this void, we report a spatially explicit yield-gap analysis
of Chinese rice production using primary data and bottom-up
scaling methods recently developed for the Global Yield Gap
Atlas (GYGA) (www.yieldgap.org)9,10. In this yield-gap analysis,
we evaluate future scenario options based on estimated rice
production capacity on current Chinese rice area, identifying
specific regions and rice production systems that deserve highest
priority for research and development investments to achieve
greatest rice production on a limited supply of prime farmland.
We find that a focus on increasing yields of double-rice systems in
general (i.e., two rice crops per year planted and harvested in the
same field), and on three provinces where yield gaps are relatively
large and single-rice systems predominate (i.e., one rice crop per
year on a given field), would provide greatest return on invest-
ments in research and development. Discrepancies between
results from our detailed yield-gap analysis and those derived
following a top-down methodology indicate that the two
approaches would result in very different research and develop-
ment priorities.

Results
Recent trends in rice cropping systems. The geography of
Chinese rice production has undergone enormous changes over
the past 35 years. Whereas double-rice systems that dominate in
the warm climates of central-south and south coastal regions
accounted for 66% of national total harvested rice area in the
1980s, they currently represent less than 40% (Fig. 1). In contrast,
area given to single-rice systems in cooler climates of central and
northern regions has increased steadily although this expansion
did not overcome the reduction in double-rice area. Hence, total
harvested rice area has decreased by about 3.6 million hectares
(Mha) since 1980. The main reasons for decrease in double-rice
were (i) rapid urbanization in south coastal and central-south
regions and associated conversion of rice land to housing,
industry, and supporting infrastructure, and (ii) decreased rural
labor availability and rising labor costs leading to lower net
income than for single-rice systems, which require less labor11.
Taken together, trends in production area and yields have
resulted in the dominance of single-rice systems, which now
account for more than 65% of national rice production (Fig. 1).

Current potential yield and yield gaps. To achieve the required
level of spatial resolution for robust estimation of irrigated rice
yield gaps requires primary data for at least 10 years of daily
weather records, digital maps of current rice production area and
associated rice yields, and the dominant rice cropping systems
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Fig. 1 Rice production trends in China. Trends in harvested rice area (a), rice yield (b), and total production (c) for single- and double-rice cropping systems
during the past 35 years (1980–2014) in China. Note that the yield for double-rice is on a per-harvested area basis so that total annual yield is twice the
values shown. Data were obtained from ref. 1. Mha million hectares, MMT million metric tons. Source data are provided as a Source Data file
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and management practices9,10. Fifty locations representing 16
climate zones were selected for the reference weather stations
(RWS). Because both single- and double-rice systems are pre-
valent at some of these locations, a total of 847 simulations of rice
potential yield were required using a well-validated ORYZA rice
simulation model12 (details on calibration and validation pro-
vided in Supplementary Information). These location-specific
estimates were then scaled up, based on the proportion of
national rice area represented by each location and rice cropping
system, to give national estimates of potential yield and current
farm yield of 9.8 and 6.8 metric tons per hectare (t ha−1) per crop
in single- and double- rice systems, respectively, and a national
average yield gap of 3.0 t ha−1. Hence, current national average
rice yield represents 69% of potential yield, which is approaching
the 75–80% of the potential yield threshold at which farm yields
typically stagnate at regional to national scales due to diminishing
returns from further investment in yield-enhancing technologies
and inputs13.

Evaluating yields by climate zone identifies large differences in
potential yield among regions and rice cropping systems. For
example, estimated potential yields ranged from 8.6 to 10.8 t ha−1

across climate zones and rice systems, while current farm yields
varied from 5.2 to 8.8 t ha−1 (Fig. 2). Farm yields were highest in
central regions for both single- and double-rice systems. Year-to-
year variability in potential yield was small for both systems as
indicated by a temporal coefficient of variation (CV) of 8%, which
is typical of the high yield stability found in grain production
systems with a reliable supply of irrigation water14. In double-rice
systems, potential yields of early- and late-season rice crops were
similar, with a national average of 9.0 t ha−1 for both crops.
Although national potential yield of single-rice was 14% greater
than that of double-rice per season (10.3 versus 9.0 t ha−1), total
annual potential yield from double-rice was 18 t ha−1 because two
crops are produced each year from the same field.

Larger spatial variation in average current farm yields
(CV= 14%) than in potential yields (CV= 8%) resulted in a
wide range of yield gaps, from 18% to 41% of potential yield
across the 16 climate zones evaluated. Current national farm
yields for single-rice (7.4 t ha−1) and double-rice per season (5.9 t

ha−1) were 72% and 66% of the potential yields estimated for
each system, respectively. Hence, yield gaps of single-rice systems
are very close to the 75–80% potential yield threshold at which
farm yields tend to stagnate, whereas yield gaps in double-rice
systems are considerably below this threshold.

Potential to increase rice production and be sufficient.
Assuming the exploitable yield gap is estimated by the difference
between current farm yield and 80% of potential yield (hereafter
called the exploitable yield ceiling), exploitable yield gaps for each
of the two crops in double-rice systems are 44% greater than for
single-rice (1.3 versus 0.9 t ha−1 per season, Table 1). Annual per
hectare increase in rice production from closing exploitable yield
gaps would be three-fold greater for double-rice than for single-
rice (2.6 versus 0.9 t ha−1). Correcting for the larger current
production area of single-rice gives a total potential increase in
rice production of about 16 MMT from double-rice and 15 MMT
from single-rice with the closure of exploitable yield gaps on all
current rice area (Fig. 3a). Taken together, a scenario of closing
exploitable yield gaps on existing rice area would increase
national rice production by 15% (+31 MMT, Table 1) compared
to current rice production of 206 MMT (average of 2013–2015)1.

But achieving yields that are 80% of potential yield requires
large inputs of fertilizer nutrients and aggressive use of pest
control measures to minimize yield losses caused by diseases,
insects, and weeds in these continuous rice systems. Precise
timing of these inputs with regard to stage of crop development is
also required, which means greater investment in labor and
expertise to monitor crop status and make tactical modifications
to field management during the growing season in response to
weather and expected yield levels. Such intensive management
may not be economically justifiable if marginal costs of the
additional inputs, labor, equipment, and decision-support tools
do not cover expected returns, which appears to be the case in
California where irrigated rice yields have stagnated at 76% of
potential yield15. Hence, if the exploitable yield ceiling for
profitable rice production is only 75% of potential yield, increased
production capacity would be 8% of current production (+16
MMT, Fig. 3a).
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similar current farm yield, and thus having the same color in these figures. Source data are provided as a Source Data file
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To evaluate plausible future scenarios of rice self-sufficiency,
we use a projected total rice demand of 217 MMT in 2030 based
on the average estimates of three studies16–18. In the four
scenarios evaluated, we assume that total rice production area
remains constant to 2030, which is consistent with recent trends
for double-rice systems (Fig. 1), and also for central and northern
provinces where single-rice systems prevail (justification for this
assumption in Supplementary Materials and associated Supple-
mentary Figs. 2, 7). Scenario 1 assumes farm yields remain at
current levels to 2030. Scenarios 2 and 3 assume that current
modest growth rates in rice yields (0.03 and 0.05 t ha−1 per year
in double- and single-rice, respectively, Supplementary Fig. 6)
continue to 2030 and impose an exploitable yield ceiling of either
80% (scenario 2) or 75% (scenario 3) of potential yield (Table 1).
By assuming the continuation of current rates of yield gain, we
are assuming that improvements in rice cultivars, production
practices, and changes in climate and atmospheric CO2

trajectories of the past 30 years will persist. Scenario 4 is the

same as scenario 3 but with higher growth rate in yield of double-
rice to be equivalent to the yield growth of single-rice, which is
modest compared to much faster growth rates experienced during
the 1970s and 1980s. Although the higher rate of gain in yield of
double-rice in scenario 4 represents a 60% increase compared to
the rate of gain in recent decades, we believe such an increase is
possible given the fact that double-rice systems have a larger
exploitable yield gap than for single-rice systems and would
benefit from greater research investment focused on closing this
larger yield gap.

Import of 11 MMT would be required to meet projected 2030
rice demand under scenario 1, whereas scenario 2 with an
exploitable yield ceiling 80% of potential yield results in a 7 MMT
surplus (Table 1), which is equivalent to 11% of current global
rice trade. But given concerns about the substantial environ-
mental pollution associated with current intensive crop produc-
tion practices19, a scenario with a 75% exploitable yield ceiling is
perhaps more appropriate because it would require less fertilizer

Table 1 Yields and production of single- and double-rice systems in China and total national production under four scenarios
projected to 2030

Scenarios Rice system Yield (t ha−1

season−1)
Production (MMT) Total production

(MMT)
Total production compared with
demand of 217 MMT in 2030 (MMT)

S1 Single-rice 7.4 135.4 206 −11
Double-rice 5.9 71.0

S2, 80% Yp ceiling Single-rice 8.3 150.5 224 7
Double-rice 6.1 73.6

S3, 75% Yp ceiling Single-rice 7.8 141.2 215 −2
Double-rice 6.1 73.6

S4, 75% Yp ceiling Single-rice 7.8 141.2 219 2
Double-rice 6.5 77.9

S1: Farm yields stagnate at current levels to 2030. S2 and S3: Rates of yield gain follow current trajectories based on regression of national rice yields versus year since 1985 to present for single- and
double-rice to 2030 (Supplementary Fig. 6) and an exploitable yield ceiling that is 80% (S2) or 75% (S3) of potential yield (Yp). S4: Rates of yield gain in double-rice increase to the current yield growth
rate of single-rice (an increase from 0.03 to 0.05 t ha−1 per year per season) and an exploitable yield ceiling that is 75% of Yp. In all four scenarios, there is no change in rice production area for each rice
system, which is consistent with recent land use trends as explained in the text. Source data are provided as a Source Data file
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Fig. 3 Rice production in different cropping systems and provinces. a Additional rice production resulting from yield gap closure (expressed as % of
potential yield) in single- and double-rice systems assuming no change in harvested area for each system and a maximum exploitable yield ceiling that is
80% of potential yield. b Current annual rice production and exploitable potential production for each major rice-growing province as estimated using
protocols developed by the Global Yield Gap Atlas (GYGA) or by the Global Agro-Ecological Zones Model version 3.0 (GAEZ v3.0). Capital letters at
bottom of each province production bar designate provinces in which double- (D) or single-rice (S) dominate. Exploitable potential production for each
province is calculated as the product of provincial average rice planting area of 2013–2015 and the exploitable yield whereby all rice farmers achieve yields
that are 80% of potential yield. The current production for each province is based on 2013–2015 average. MMT million metric tons. Source data are
provided as a Source Data file
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input and less aggressive pest control measures. Under this less
intensive production scenario, China would be nearly self-
sufficient with a modest annual import requirement of 2 MMT.
Strategic investment in provinces and rice systems with greatest
yield gaps, however, could produce a small surplus even with the
more conservative exploitable yield ceiling. For example, the
greatest yield gaps are found in double-rice systems in general
(Fig. 2), and in some provinces where single-rice dominates.
Indeed, seven of the 17 provinces in which rice is a major crop
account for 78% of the potential increase in rice supply if all rice
farmers achieved yields that reach the exploitable yield ceiling
(Fig. 3b). Disaggregation of exploitable production per region
shows that the prioritization of crop management improvement
interventions and sustainability measures in double-rice systems
in general and single-rice systems in three provinces (Heilong-
jiang, Anhui, and Yunnan provinces) where yield gaps are
relatively large, would provide greatest potential to ensure rice
self-sufficiency in China.

Taken together, the larger yield gap and slower yield growth
rate suggests greater potential to accelerate yield growth of
double-rice, assuming targeted investment in that goal. Raising
the rate of yield growth of double-rice to that of single-rice would
lead to a rice production surplus of 2 MMT by 2030 with a
conservative exploitable yield ceiling of 75% of potential yield.
Reducing labor requirements and associated costs in double-rice
also would be an important objective of the research and
development portfolio focused on these systems.

Bottom-up versus top-down approaches to estimate yield gaps.
Previous studies have used a top-down spatial framework based
on meso-scale grids (roughly 100 km2) into which weather and
current crop yield data, obtained from databases at much coarser
spatial scales, are interpolated to fit the smaller grid size20–23.
Likewise, these previous studies do not provide estimates of
potential yield as distinguished by different rice cropping systems.
In these top-down studies, potential yield is estimated by either
the 90th percentile of current farm yields20, or by a generic crop
model not specific for rice20–23 and therefore not validated for the
ability to estimate rice potential yield across the wide variation of
rice-growing environments in China.

Comparison of estimates using our bottom-up approach with
those using the top-down framework of Global Agro-Ecological
Zone (GAEZ) protocols23 shows a modest difference in national
potential production of 17 MMT by 2030, which represents 8% of
current national production, and a relatively large fraction (27%)
of current global rice trade (documentation of comparison
provided in Supplemental Materials and Supplementary Table 8).
And while estimates of national potential yield by the two
approaches are also in relatively close agreement (10.5 t ha−1 for
GAEZ versus 9.8 t ha−1 as reported here), potential production
estimates at the provincial level (Fig. 3b) and the estimates of
potential yield and yield gap at climate zone scale (Supplementary
Fig. 8) differ markedly. For example, in two of the provinces
GAEZ potential production estimates are well below current rice
production (2013–2015 average). Moreover, in five climate zones
in central and southern China, representing 43% of total Chinese
rice production, GAEZ estimates a potential yield 18% greater
than reported here, and in the two northernmost rice-growing
climate zones the GAEZ estimate is 22% less than our estimate
(based on data shown in Supplementary Fig. 8). Hence, the
relatively close agreement in potential yield estimates at national
scale occurs by chance and masks large differences in estimates at
finer spatial scales. Such large differences at provincial and
climate zone scales between the two approaches would result in
very different research and development priorities that seek to

focus investments on regions and cropping systems with greatest
opportunities for increasing rice production.

Discussion
That small changes in projected Chinese rice production would
have a large impact on global rice trade highlights the need for
accurate estimates of potential production on existing rice area.
Hence, the spatial resolution of our yield-gap analysis by climate
zone, province, and cropping system is essential to adequately
inform policies and strategic plans for food security and land use.
For this reason our analysis (i) distinguishes between the two
major rice cropping systems, (ii) utilizes a rice simulation model
that has been rigorously validated for the ability to estimate
potential yield across the major rice-growing regions in China
(Supplementary Materials, Supplementary Figs. 3–5), (iii) relies
on at least 10 years of measured weather data (Supplementary
Materials, Supplementary Fig. 1), and (iv) employs a bottom-up
scaling protocol validated for capacity to reproduce crop perfor-
mance across large variation in climate9,10.

Our scenario analysis about rice self-sufficiency is based on the
assumption that rice yield growth rate was the same across the
whole country for each single- and double-rice systems. While
our scenario assessment does not account for expected climate
change, a number of studies have shown that the magnitude of
climate change and associated impact on rice yields is highly
uncertain24–28. Given the relatively small change in climate for
the first half of the century27,28, together with the short timeframe
of our assessment (15 years, from 2016 to 2030), as well as the
associated uncertainty about the magnitude of change in climate
factors influencing potential yield24–27, we believe the assessments
of rice potential yield provided in our study are both robust and
policy-relevant. Likewise, our assessment of future rice produc-
tion is optimistic as it assumes that future conversion of prime
rice land for residential, industrial, and recreational purposes will
be compensated by the addition of new rice land area with a
similar level of productivity5. If our assumptions on climate
change and rice land fall short of reality, this will put additional
pressure to accelerate the rate of rice yield gain on existing rice
land.

Crop price supports and other types of subsidies to promote
self-sufficiency in food production are not considered sound
agricultural policies due to high costs, market distortions, and
reduced incentives for innovation and efficiencies29. In contrast,
Clapp30 argues that populous countries like China may benefit
from maintaining self-sufficiency or near self-sufficiency, in
production of their primary staple food crops. Hence, for a
country like China, reliance on imports for even a small portion
of total rice demand represents such a large fraction of global rice
trade that pressure from Chinese rice purchases can influence
global rice prices in ways that might lead to higher food prices
and reduced access, not only for China but also for other coun-
tries that import rice. Such pressures are of particular concern in
years when global rice supply falls short due to major drought or
flooding in rice exporting countries. The good news is that the
scenarios evaluated in this study indicate that China has sub-
stantial flexibility to maintain self-sufficiency in rice without
increasing cropland area devoted to rice production. Indeed, by
strategic targeting of investments in research and development, it
may be possible to maintain self-sufficiency with a net reduction
in rice cropland area, especially if the rate of yield gain can be
accelerated in double-rice systems.

Methods
Protocols for yield-gap assessment and spatial upscaling. For irrigated crops
such as rice in China, the yield gap represents the difference between current farm
yields and the potential yield when the crop is grown without limitations from
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nutrient deficiencies, insect pests, or diseases7. To estimate yield gaps we followed
protocols developed by the GYGA, which utilize primary, location-specific data to
the extent possible9 and a robust upscaling framework to estimate yield gap at
larger levels of spatial aggregation such as climate zones (CZ), regions, and national
scales10. These protocols have been rigorously evaluated for their ability to estimate
yield gaps using Australian rainfed wheat as a test case31. All underpinning data
and protocols are available on the GYGA website (http://www.yieldgap.org/). The
GYGA protocols are based on the climate zonation scheme developed by Van Wart
et al.32 that is delineated by three variables: (i) growing degree days, which
determine the potential length of the crop growing season, (ii) annual aridity index,
which provides an estimate of water supply as the ratio between rainfall and
potential evapotranspiration, and (iii) temperature seasonality, which distinguishes
between temperate and tropical climates. One hundred and thirty-nine CZ are
delineated in China using this climate zonation scheme.

Briefly, a digital map of rice crop area distribution (SPAMmap, with 10 × 10 km
grid-cell resolution)33 was superimposed on the CZ map to identify weather
stations located in areas with greatest density of rice production area
(Supplementary Fig. 1). Buffer zones of 100-km radius surrounding each weather
station, were clipped following van Bussel et al.10, so that their borders fall within
the same CZ. Weather stations were selected in sequence starting with the station
and associated buffer zone with largest rice area and continuing until ca. 50% of
national rice area was covered by the selected weather station buffer zones. Earlier
work has shown that the inclusion of additional weather stations to achieve greater
coverage of rice area does not improve national estimates of yield gap34. Selected
weather stations are hereafter referred to as RWS. Following this approach, 50
RWS were selected containing 48% of national harvested rice area within their
associated buffer zones. The 50 RWS are located in 16 CZ, which together contain
85% of national rice area (Supplementary Fig. 1). Details about selected RWS
locations and the dominant rice cropping system within each RWS buffer zone are
provided in Supplementary Table 1.

Simulating rice potential yield. The ORYZA rice model has been used to simulate
rice growth and development of different rice cultivars across a wide range of
climatic conditions in Asia, Africa, and USA15,34–36. Briefly, ORYZA rice model is
a daily-step model that simulates rice phenology, canopy leaf area growth, dry
matter accumulation and partitioning, and grain yield formation. Simulation of
crop phenology requires calibration of four parameters: development rates for
juvenile (DVRJ), photoperiod-sensitive (DVRI), panicle development (DVRP), and
reproductive phases (DVRR). Photoperiod sensitivity is assumed negligible, which
is consistent with evidence for modern high-yield rice cultivars used in China.
Daily rate of canopy CO2 assimilation is calculated from daily incoming radiation,
temperature, and leaf area index. Dry matter production is simulated based on the
balance between daily CO2 assimilation and respiration. Total biomass is parti-
tioned into various organs depending on allocation rates calibrated for different
developmental stages. Potential yield in this model is performed by setting the
subroutine of PRODENV= “POTENTIAL” and NITROENV= “POTENTIAL”,
which basically assumes that the crop grows without water and nutrient limitations
and without incidence of pathogens, insect pests, and weeds. In this study, we used
the most recent version of this model (ORYZA v312). Although the model still has
limitations in simulating rice growth under stress environment, e.g., low tem-
perature, drought, and nitrogen-deficient, etc., it performs well in simulating
potential yield under non-stress environment12,15. A detailed description of model
structure and parameterization can be found in Bouman et al.36. Because potential
yield is location-specific, the model requires specification of long-term daily
weather records and crop management practices for each RWS.

Simulation of annual potential yield and temporal variability in potential yield
due to year-to-year variation in weather using the ORYZA rice model requires
daily weather records, including maximum and minimum temperature, wind
speed, relative humidity, precipitation, and solar radiation. For irrigated cropping
systems, 10 years of weather data are sufficient for robust estimation of weather-
related temporal variation in potential yield34. We obtained daily weather data for
11 years (2004–2014) for all weather variables (except solar radiation) from the
National Meteorological Information Center of the China Meteorological
Administration. We obtained solar radiation data from the NASA-POWER
database (https://power.larc.nasa.gov/). Previous studies have shown that crop yield
simulations based on NASA-POWER solar radiation are in close agreement with
simulations based on ground-measured radiation across a wide range of
environments and regions37. Erroneous and/or missing information in weather
data were screened following the quality control methods described in van Wart
et al.34 and Grassini et al.9.

Crop management data required for simulation of potential yield include
sowing date, plant density (i.e., number of plants per hill and number of hills per
m2), and phenological duration of dominant cultivars. For each RWS and
associated buffer zone, we obtained information about the predominant rice
cultivars and current yield from local experimental data, and publications reporting
agronomic field research conducted at those sites. The selected RWS were grouped
into six regions according to CZ and dominant cultivar characteristics following
Duan et al.38,39, and management practices within the same region were assumed
to be similar (Supplementary Fig. 2). For example, single-rice systems dominate in
the northeast, north, central and southwest regions, while double-rice systems

dominate in the central and south regions. In each region, one widely planted rice
cultivar was used for single-crop systems, while two cultivars were used for double-
rice systems, one for the early and the other for the late cropping season. A large
number of new rice cultivars are released every year and immediately planted by
farmers; parameterizing and simulating all of them would have been unfeasible. In
this study, we selected the dominant high-yield modern cultivars with broad
adaptation and good tolerance to pathogens and insect pests within each region.
These cultivars were selected based on the rice variety database (http://www.
ricedata.cn/variety/), published research papers, and recommendations from
regional rice experts in China.

Since ORYZA rice model was developed for tropical areas, the model was
calibrated in the present study to account for the climate conditions and dominant
cultivars grown in China. The crop model parameters for an elite rice cultivar in
China named Huanghuazhan was carefully calibrated as a standard crop file using
experimental data from a 2-year (2012–2013) experiment performed in Huaqiao
township (30°06′ N, 115°45′ E), Wuxue county, Hubei province, China.
Huanghuazhan is the most common inbred rice cultivar planted in central and
south China and is been widely grown across 7 major rice-producing provinces
(http://www.ricedata.cn/variety/) with high and stable yield, good quality, and wide
adaptability. Although Huanghuazhan is an inbred cultivar, the yield is comparable
with hybrid cultivars40. Sowing date in the experiment was May 10th, which is
typical in central China, and the seedlings were transplanted 26–31 days after
sowing. Plant density was 28 hills per m2 with 2–3 plants per hill. Fertilizers were
applied at rates of 195 kg N ha−1, 33 kg P ha−1, and 125 kg K ha−1. Fertilizer-N was
split into several applications: 36% as basal, 23% at tillering, 23% at panicle
initiation, and 18% 1 week after panicle initiation. Fertilizer-P was applied in one
single basal application while fertilizer-K was applied 30% before sowing, 40% at
tillering, and 40% 1 week after panicle initiation. Insects, diseases, and weeds were
periodically controlled using pesticides to avoid biomass and grain yield losses. Leaf
area index, and dry matter of leaves, stems, and panicles were measured at different
phenological stages.

For the other cultivars, model coefficients were calibrated using phenology,
yield and biomass data from studies published in recent years (after 2005) in which
crops received near-optimal management, that is, with non-limiting water and
nutrient supplied and crops kept free of pathogens, insect pests, and weeds. In
those studies involving multiple treatments, we used the highest yield measured
across treatments or average yield among treatments if the treatment effect was not
significant. Despite our efforts to derive the same set of genetic coefficients for the
same rice cultivar irrespective of site or season, it was not possible to portray
differences in yield and phenology between late and early season for one of them in
one region (Teyou 582 in south region in double-rice systems). Hence, separate
coefficients were derived for the early and late season for this cultivar. A similar
approach has been followed in calibrating ORYZA in previous studies to portray
differences between contrasting environments41.

Cultivar-specific parameters were derived following standard procedures for the
ORYZA rice model, and related information is provided in Supplementary Table 2.
Parameterization of crop characteristics was obtained by two utility programs in
ORYZA rice model called drate(v2).exe and param(v2).exe. The drate(v2).exe is a
program to determine the phenology develop rate of a given variety, and the param
(v2).exe is a program to estimate crop parameters such as assimilate partitioning,
specific leaf area, and non-structure C&N translocation, etc.12,36. In our study,
program drate(v2).exe was used to determine the phenology development rate by
using the phenological stages and growth duration of local dominant cultivars.
Program param(v2).exe was used to estimate the fraction of dry matter partitioned
to shoot, the shoot dry matter partitioned to leaves, stems, and panicles at different
phenological stages, and the fraction of carbohydrates allocated to stems that is
stored as reserves by using the measured dry matter of organs at different
phenological stages of local dominant cultivars. See details of calibrated parameters
in Supplementary Tables 3–4.

We calibrated and validated the model using independent datasets. We used
experimental data from one site-year in each experiment for calibration, and used
the other site-year(s) for validation (hereafter referred to as validation 1). We
performed an additional validation (hereafter referred to as validation 2) using
published yield, biomass and growth duration data for the cultivars included in
the calibration to supplement validation 1. These data were not used for model
calibration because of the lack of detailed information required for model
calibration or because there was not enough information to ensure that the crops
were managed to reach potential yield; hence, it was expected that a number of the
observed yields reported in these studies would fall below the simulated potential
yield. Details about experimental data for model calibration and validation can be
found in Supplementary Tables 2–4 and Supplementary Fig. 3.

Degree of association and agreement between simulated and observed variables
was assessed by the coefficient of determination (r2), root mean square error
(RMSE), and RMSE expressed as percentage of the observed mean (RMSEn), which
were calculated as follows:

r2 ¼ nðPxyÞ � ðPxÞðPyÞ
n
P

x2 � ðPxÞ2� �
n
P

y2�ðPyÞ2� �
 !2

ð1Þ
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RMSE ¼ ð
X

ðx � yÞ2=nÞ
h i0:5 ð2Þ

RMSEn ¼
X

ðx � yÞ2=n
� �h i0:5

=Mmean ´ 100% ð3Þ

where x and y represent the simulated and observed values, and n represents the
number of paired values. r2 close to 1 and RMSE and RMSEn close to 0 indicate a
good agreement between simulated and observed values.

Observed grain yields across experiments ranged from 8.4 to 14.4 t ha−1 and
were in close agreement with simulated values after model calibration as indicated
by relatively low RMSE 0.89 t ha−1 (validation 1), which represented 9% of the
mean observed yield (Supplementary Fig. 5). Likewise, validation 1 indicated close
agreement between simulated and observed aboveground dry matter and growth
duration, with low RMSE for shoot biomass (0.80 t ha−1) and growth duration
(5 days). In the validation 2 database, yield, total biomass, and growth duration
ranged from 6.5–11.6 t ha−1, 10.8–20.7 t ha−1, and 106–185 days, respectively.
Results in validation 2 also showed reasonable agreement between simulated yield
and observed yield, with RMSE representing 15% and 16% of the mean observed
yield and biomass, respectively. As expected, a number of observed yields were
above the 1 to 1 line (Supplementary Fig. 5c). Growth duration was in close
agreement as indicated by the low RMSE of 5%. To summarize, reasonable
agreement between simulated and observed yields using two different datasets gives
confidence that the calibrated ORYZA rice model is robust at reproducing potential
yield across the wide range of climates and rice cropping systems in China.

We performed a review of previous efforts in calibrating and/or validating rice
simulation models in studies aiming to estimate rice potential yield at regional and
national levels (Supplementary Table 5). In most of those studies, model
coefficients were neither calibrated nor validated using local experimental data;
instead, potential yield was simulated using default coefficients derived somewhere
else or published in the literature. In some studies, the model was calibrated and/or
evaluated only for one or few varieties and/or using data from few site-years. An
exception was two studies using the database from the Agrometeorological
Experimental Stations of the Chinese Meteorological Administration (CMA)26,42.
The CMA database has advantages given its large number of sites and information
on rice crop phenology and yield. However, the data are collected from farmer
fields that do not receive management conducive to expression of potential yield.
Likewise, the database only has data on rice phenology and yield at harvest time,
which are insufficient for a robust model calibration and/or evaluation. Hence, the
detailed model calibration and evaluation performed for a large number of cultivars
across a wide range of environments in China is a clear strength of our study
compared with previous efforts aiming to estimate potential yield at regional and
national levels.

All data sources and uncertainties, and associated quality control measures to
mitigate possible biases, are listed in Supplementary Table 6. In all cases, data
sources fall in the so-called tier 1 of data availability/quality for crop yield gap
analysis described in Grassini et al.9.

Current farm yield and yield gaps. Available yield data from the 5 most recent
years (2010–2014) were retrieved for each of the counties that overlap with the
selected RWS from national and provincial statistical bureaus. However, county-
level farm yield data are not accurate for a number of reasons, and the magnitude
of inaccuracy varies across counties and is difficult to predict43,44. In contrast,
provincial level farm yield data are more reliable and accurate because a combi-
nation of different methods are used, including remote sensing and ground
truthing45. Hence, using county-level data without adjustment to be consistent with
the provincial-level yield data gives inaccurate yield gap estimates when results are
aggregated to larger spatial scales. To adjust county-level yield data in a province,
we increased or decreased farm yields by an equivalent percentage so that the
weighted average farm yields across all RWS within that province equaled the
provincial official average yield of 2010–2014. However, we did not adjust farm
yield of counties in provinces for which there was little difference (within ±5%)
between the official provincial farm yield and the upscaled provincial farm yields
following GYGA protocols. Average current yield was calculated as the average
year over the 5-year (2010–2014) time period to represent yield in the current
season.

The dominant cropping system (single- or double-rice) was identified for each
RWS buffer zone and used as the basis for simulating potential yields and for
estimating yield gaps. In some parts of central China and in northern provinces,
only a single-rice crop is grown each year because the growing season is too short
for double-rice. Hence, the yield gap for each RWS where a single-rice crop is
grown was calculated as the difference between the single-rice potential yield and
the current farm yield. In south and some parts of central China, farmers practice a
double-rice cropping system. However, county-level data provide only the average
yield for the two crops. But the area of early- and late-season rice crops is almost
identical at 19% and 20% of total rice area, respectively, based on the estimates
from ref. 1. We therefore simulated yields of early- and late-rice crops separately,
and used the average potential yield of the two crops to calculate yield gaps for each
RWS where double-rice systems dominate.

To upscale potential yield, current farm yield, and yield gap estimates from
RWS to larger spatial scales, weighted averages for each variable were calculated by

the proportional contribution of rice area within each spatial unit contributing to
the spatially aggregated value at the CZ or national scale10.

Estimating rice production potential. Current farm yields tend to stagnate when
they reach 75–80% of potential yield (called the exploitable yield ceiling) due to
diminishing returns from investment in additional production inputs and effort as
yields approach the potential yield ceiling13,15,34. Hence, prospects for increasing
rice production at any spatial scale are best indicated by the exploitable portion of
the yield gap, which is the difference between current farm yields and 75% or 80%
of potential yields estimated at the CZ and national scales. All else equal, achieving
yields that are 80% of potential yield requires greater input of nutrients and more
aggressive pest control measures than production at 75% of potential yield. Given
concerns about the substantial environmental pollution associated with current
intensive crop production practices19, scenarios with either an 80% or 75%
exploitable yield ceiling were evaluated. Additional exploitable production potential
of single- versus double-rice systems was estimated by the difference between 75%
or 80% of potential yield and current farm yields for each rice cropping system over
the total national production area.

Future scenarios. Rice production scenarios to 2030 were evaluated based on the
following assumptions:

(i) Yield would stagnate at current levels to 2030 or follow current trajectories
based on regression of national rice yields versus year for single- and double-
rice (Supplementary Fig. 6).

(ii) Amount of cropland devoted to rice production remains unchanged at the
level of 2011–2014 average, which is consistent with current trajectories
based on the fitted trends of observed harvested area (Supplementary Fig. 6).
We plotted harvested area and yield against year (1985–2014) for different
rice cropping systems by linear function or by a linear-segment piecewise
function using SigmaPlot 10.0 (Systat. Software, Inc., San Jose, CA, USA), as
shown in Supplementary Fig. 6.

Linear function:

y ¼ at þ b ð4Þ
where t is year, y is single-rice harvested area or single-, double-rice yield.

Two-linear-segments piecewise function:

t1 ¼ min ðtÞ; which is the year 1985 ð5Þ

t2 ¼ max ðtÞ; which is the year 2014 ð6Þ

y ¼
aðT1�tÞþbðt�t1Þ

T1�t1
; t1 � t � T1

bðt2�tÞþcðt�T1Þ
t2�T1

; T1 � t � t2

8<
: ð7Þ

where t is year, y is total- or double-rice harvested area, and T1 is the
breakpoint year. The r2 for the linear regressions of total-, single-, and
double-rice harvested area are 0.73, 0.88, and 0.93, and the r2 for the linear
regressions of single- and double-rice yield are 0.78 and 0.71. All estimated
parameters were statistically significant (Student’s t-test, P < 0.0001).

The linear regression for single-rice yield:

y ¼ 0:0488 t � 90:788 ð8Þ

The linear regression for double-rice yield:

y ¼ 0:0263 t � 47:255 ð9Þ
(iii) While a similar regression for single-rice area shows a continued linear

increase through 2015, disaggregation of these data by province shows that
most of the recent increase occurred in Heilongjiang province, and to a
lesser extent in Jilin province while rice production area in remaining single-
rice provinces has remained constant or even decreased in recent years
(Supplementary Fig. 7). Moreover, recent government policies have
advocated for reduced rice area in Heilongjiang due to limited water
resources.

(iv) Total rice demand in 2030 is 217 MMT from the average of three recent
studies16–18, which is 5.3% higher compared with current rice production of
206 MMT (average of 2013–2015 from NBSC1 to represent current rice
production).

(v) An exploitable yield ceiling of either 80% or 75% of potential rice yield.

Comparison of studies assessing rice production scenarios. We cross-validated
our scenario assessment results by comparing them with results from recent studies
assessing future rice for China at country level (Supplementary Table 7). The goal
of some of the studies was not to estimate rice self-sufficiency per se but they
reported data that allowed us to assess it. These studies followed diverse approaches
as basis for their assessments. We found that the results from our scenario
assessment focusing on rice systems and regions fall within the range of projected
self-sufficiency ratios with scenarios considering other factors e.g., socio economic,
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technology development, and climate change etc., which adds confidence on the
results reported here.

Comparison of yield differences by GAEZ and GYGA methods. Global Agro-
Ecological Zones Model version 3.0 (GAEZ v3.0)23 was used for comparison of
yield-gap analyses. Compared to the GYGA up-scaling method, a down-scaling
method is used in GAEZ v3.0 such that both weather and agricultural crop pro-
duction data (e.g., current yields and crop production area) from much coarser
spatial scales are interpolated into 5 arc-min grid cells (roughly 100 km2). National
estimates are then estimated by aggregation of data from all grids in which there is
rice production area. In contrast to our GYGA approach, which utilized provincial-
level data on proportion of rice area under either single- or double-rice systems to
estimate area of each system within RWS station buffer zones, GAEZ assigned one
rice cropping system to each 5 arc-min grid cell by matching growth cycle and
temperature requirements of rice with length of time available for crop growth23.

In GAEZ the “Agro-climatic exploitable yields with high input level” data layer
is defined as potential climatic yield with optimal management practices (Yp_GAEZ),
which is a proxy for potential yield as estimated using GYGA methodology
(Yp_GYGA). The map of Agro-climatic exploitable yields with high input level for
irrigated rice (map) was downloaded on May 26, 2018 from GAEZ website: http://
gaez.fao.org/.

We calculated Yp_GAEZ at CZ, province and country levels and compared them
with Yp_GYGA at those same levels of spatial upscaling using the following
approach. First, each GAEZ grid cell (5 arc-min) in Yp_GYGA map was
superimposed with the irrigated rice harvested area from the SPAM map33 to
assign a harvested rice area to each grid cell. Second, each grid cell was assigned to
a GYGA CZ based on the CZ map. The two processes were performed in ArcGIS
10.2. Weighted Yp values based on harvested area were then estimated at the CZ,
province and country level. Potential yield in GAEZ was calculated:

Yp ¼
Pn

i¼1 Ypi ´AiPn
i¼1 Ai

ð10Þ

where Yp is potential yield, and A is harvested area. For Yp at CZ level, i is a grid cell
and n is the number of grid cells within a CZ. For Yp at province level, i is a grid cell
and n is the number of grid cells within a province. For single-rice Yp, i is a CZ and
n is the number of CZ within single-rice system. For double-rice Yp, i is a CZ and n
is the number of CZ within double-rice system. For Yp at country level, i is a
cropping system and n is the number of cropping systems within a country. Yg in
GAEZ (Ya as a percent of Yp) was calculated:

Yg GAEZð%Þ ¼ Ya GYGA

Yp GAEZ
´ 100% ð11Þ

where Ya in GYGA was used to calculate Yg for GAEZ because the Ya in GAEZ is
outdated (from the year 2000).

Data availability
All data generated or analyzed during this study are available within this paper and its
Supplementary Information files. The source data underlying Table 1, Figs. 1–3,
Supplementary Figs. 1–8, and Supplementary Table 8 are provided as a Source Data file.
A reporting summary for this article is available as a Supplementary Information file.
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