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Background and Objective: +e emergence of the nonnutritive suck (NNS) pattern in preterm infants reflects the integrity of the
brain and is used by clinicians in the neonatal intensive care unit (NICU) to assess feeding readiness and oromotor development. A
critical need exists for an integrated software platform that provides NNS signal preprocessing, adaptive waveform discrimination,
feature detection, and batch processing of big data sets across multiple NICU sites.+us, the goal was to develop and describe a cross-
platform graphical user interface (GUI) and terminal application known as NeoNNS for single and batch file time series and
frequency-domain analyses of NNS compression pressure waveforms using analysis parameters derived from previous research on
NNS dynamics.Methods. NeoNNSwas implemented with Python and the Tkinter GUI package.+eNNS signal-processing pipeline
included a low-pass filter, asymmetric regression baseline correction, NNS peak detection, and NNS burst classification. Data
visualizations and parametric analyses included time- and frequency-domain view, NNS spatiotemporal index view, and feature
cluster analysis to model oral feeding readiness. Results. 568 suck assessment files sampled from 30 extremely preterm infants were
processed in the batch mode (<50minutes) to generate time- and frequency-domain analyses of infant NNS pressure waveform data.
NNS cycle discrimination and NNS burst classification yield quantification of NNS waveform features as a function of postmenstrual
age. Hierarchical cluster analysis (based on the Tsfresh python package and NeoNNS) revealed the capability to label NNS records for
feeding readiness.Conclusions. NeoNNS provides a versatile software platform to rapidly quantify the dynamics of NNS development
in time and frequency domains at cribside over repeated sessions for an individual baby or among large numbers of preterm infants at
multiple hospital sites to support big data analytics. +e hierarchical cluster feature analysis facilitates modeling of feeding readiness
based on quantitative features of the NNS compression pressure waveform.

1. Introduction

Human neonates demonstrate two distinct types of sucking
in a developmental progression: the first is nonnutritive
sucking (NNS)—a repetitive bursting pattern characterized
by mouthing and the tongue/jaw compressions on a pacifier
or nipple in the absence of a liquid stimulus [1], and followed
by nutritive sucking (NS)—when a nutrient is obtained from
the bottle or breast. +e NNS compression pressure pattern

is an accessible motor behavior which can be digitized in real
time and subsequently used by the medical care team to
make inferences about brain development and prefeeding
skills in preterm and term infants [2]. NNS is observable in
utero as early as 12–18 weeks gestational age (GA) [3] with
frequency-modulated bursts consisting of 2–13 suck cycles,
separated by pause periods of 2–5 seconds to accommodate
respiration [1, 4–7]. +e modal frequency of NNS cycles is
approximately 2Hz [4]. Brainstem circuits involved in
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orofacial rhythmogenesis are modulated by sensory inputs,
including cutaneous [8–17], olfactory [18–20], and auditory
[21]. Initially, the NNS is not dependent on the respiratory
phase, but an infant’s continued experience with NNS fa-
cilitates the timing of swallows at “safe” points in the re-
spiratory cycle which may be beneficial for nutritive feeding
and safe swallows (e.g., end of inspiration or expiration) [22].

In the neonatal intensive care unit (NICU), the temporal
organization of the NNS burst structure provides clinicians
with diagnostic information on the infant’s health status,
including various forms of lung disease, infection, and neu-
rological function during a critical period of brain develop-
ment as the infant transitions from the tube to oral feeding.
Prematurity itself can significantly alter developmental pro-
cesses, as interruption of these critical periods of brain de-
velopment can “impair fragile syntheses of central neural
representations” of sensory and motor systems [23].

Physiological recordings of the nonnutritive and nu-
tritive sucking pressure signals are becoming more common
in the NICU with the advent of recording devices (analog
and/or digital) to monitor and characterize basic patterning
of ororhythmic activity associated with sucking and feeding
in preterm infants [24–28]. Over the past 50 years, the
literature is abound with descriptions of the general features
of sucking behavior in preterm and term infants [1, 26, 29].
Recent innovations in feeding devices (modified bottles and/
or nipples) also provide insights into suck patterning. For
example, the Neonur nutritive sucking device is an advanced
mobile nutritive sucking device that employs a feeding bottle
unit with data acquisition of suck data acquired at 200Hz
and downloaded for offline processing using MATLAB
software [25]. Analysis includes select temporal features,
including the total number of sucks per 5-minute session,
sucking duration, number of nutritive suck bursts, mean
burst duration, within-burst suck frequency, and mean
sucking pressure. Pressure amplitude pressure threshold
criteria were used to discriminate suck and nonsucking
movements. Another approach involved sampling intraoral
pressure (suction) and expression (force associated with
compression of the feeding nipple) during nutritive sucking
[26, 27]. A small diameter polyethylene catheter with a
closed-system silicone tube pressure sensor surface was
positioned on the palatal surface of the nipple along with a
second polyethylene fluted catheter tip placed proximal to
the tip of the feeding nipple to sample “suction” during
feeding by a neonate. +e Mizuno laboratory has recorded
intraoral pressure during nutritive sucking associated
with the breast or bottle feeds using a commercially avail-
able 16-bit data acquisition module and bridge amplifier
(ADInstruments, Inc., Colorado Springs, Colorado, USA) to
condition the output signal from a disposable pressure
transducer (Nihon Kohden, Tokyo, Japan). Simple de-
scriptive measures of the suck waveform included hold and
peak intraoral pressures, counts of suck cycles per burst, and
duration of suck burst events [28].

Improvements in device designs and increased acces-
sibility and testing of feeding readiness and feeding
performance in newborns in the NICU translate to a pro-
liferation of suck data to be analyzed for clinical and/or

research purposes [26, 30, 31]. +us, a need exists for an
efficient software processing and analysis platform for au-
tomated extraction of salient NNS features in the time and
frequency domains across treatment sessions, including
advanced data analytics to support randomized multicenter
clinical trials involving large numbers of preterm infants and
repeated-measures acquisition of ororhythmic activity [32].

2. Materials and Methods

2.1. Software Design. We have developed NeoNNS to pro-
vide clinicians and developmental scientists with a powerful
software platform tool for automatic NNS waveform dis-
crimination and feature extraction in preterm infants during
their hospitalization in the NICU. NeoNNS has been
implemented Object Oriented Programming using Python
language and the Tkinter package and supports Microsoft
Windows 10 and Microsoft Access database.

2.2. Input and Output Data. For NeoNNS, source NNS
assessment data files described in the present report were
sampled from extremely preterm infants at three neonatal
intensive care units (Boston, MA; Lincoln, NE; San Jose, CA)
using the NTrainer System® (Innara Health, Inc., Olathe,
Kansas USA), which is an FDA-approved medical device to
promote NNS and facilitate the transition to oral feeds in
preterm infants in the NICU. As new NNS source file
formats are defined (i.e., binary, ASCII, etc.) and become
available for other NNS recording systems, it will certainly
be possible to import these suck waveform files to NeoNNS
for NNS signal analysis.

+e NTrainer System is currently used by more than 30
NICUs in the United States with one or two NTrainers
operating at each NICU. Adoption of the NTrainer is ex-
pected to double in 2019 to include new NICUs in the US
and international settings. +e NTrainer has been and is
currently used in randomized controlled trials (RCTs) to
study the neurobiology of feeding [9, 10, 30, 33].

Neonatal practitioners record NNS assessment files to
document a neonate’s developmental progression for
sucking in relation to the attainment of independent oral
feeds. +ese NNS waveforms are digitized at 3 kHz (16-bits
ADC resolution). Both the binary NNS assessment files
(.assess) from the NTrainer System and a Microsoft Access
database are needed to start the program. +e length of each
NNS assessment file is typically 540,000 samples (3mins),
although longer NNS assessment files can be processed
easily. +e GUI contains two modes, including single and
batch file processing. For the single run mode, the in-
termediate files are redirected to a “single_intermediate”
directory by selecting the desired signal processing opera-
tions, which in turn generates human readable text files that
are converted from binary assessment files to peaks co-
ordinate, bursts coordinates, power spectrum data, and
features results. For the batch processing mode, the “in-
termediate” directory stores all the human readable text
assessment files and the “result” directory is used tomaintain
other intermediate files for further analysis.
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2.3. 6e Graphic User Interface. NeoNNS can complete all
phases of data preprocessing, suck pressure analysis, view
intermediate results, and file saving. As shown in Figure 1,
NeoNNS is implemented as five independent pages, in-
cluding (1) NNS view, (2) Pan view, (3) Results view, (4)
Power Spectrum view, and (5) STI view. Page descriptions
are included in the following sections.

2.4. NNS View. After NNS assessment input file selection,
the “NNS view” button is triggered to display the raw suck
pressure signal in the top panel. +e pressure baseline can
been seen to vary over time due to the thermal drift induced
by the infant’s warm mouth on the instrumented pacifier
which is connected to a closed-volume pneumatic sensing
system. Clicking the “baseline correction” button generates a
baseline-corrected plot in the middle panel. Next, the “peak
identifier” function is used to discriminate NNS peaks from
non-NNS peaks (i.e., chewing and tongue thrusts). +e red
index markers indicate non-NNS peaks, and the green index
markers indicate NNS peaks detected by NeoNNS. In this
step, two criteria need to be either selected or modified by
the user to identify NNS pressure peaks. One is “NNS
threshold,” which defines valid NNS pressure peaks with
amplitudes greater than the default value of 1.6 cm·H2O
(default threshold). +e other is “half-height cycle width
(ms),” which is the cycle width of pressure cycles at half height
less than the default value of 400milliseconds. Four parameter
settings are included in NNS burst calculations, including
minutes, seconds, DiscrimStepSize, and BurstCriterion. +e
combination of minutes and seconds define the length of the
most active period of NNS production by the infant. Dis-
crimStepSize defines the size of a sliding window when
searching the most active period from all the data samples. An
NNS burst is defined as two or more NNS peak pressure
events occurring within BurstCriterion distance with a default
value equal to 1200 milliseconds. NNS bursts are highlighted
as pink-colored blocks on the processed data plot panel.
Detailed waveform characteristics using the zoom function in
the third panel are realized by dragging the mouse over the
desired pressure waveform segment on the second panel.
Each panel has its own cursor with x- and y-coordinate in-
dexes on the NNS waveform and can be referenced to canvas
or data space.+e icons on the tool bar contain picture editing
and save functions, which can be used to format and create
customized publication-quality graphics.

2.5. Pan View, Results View, and Power Spectrum View.
+e Pan view page (Labeled 2 in Figure 1) provides con-
tinuous full-screen zoom for users to find waveform targets
of interest. +e X-axis is scalable based on the range pa-
rameter and features a scroll bar to adjust waveform view.
+e bursts and indexes of each burst are automatically la-
beled. +e Results view page (Labeled 3 in Figure 1) includes
a summary of NNS feature results and an NNS burst cycle
histogram for a given neonate at a specific PMA (days). NNS
waveforms can be studied in the frequency domain on the
Power Spectrum view page (Labeled 4 in Figure 1), which
shows the results of 4 computational spectral methods,

including the fast Fourier transformation (FFT) [34],
periodogram [35], Welch’s [36], and Yule–Walker methods
[37], respectively. In the periodogram method, the signifi-
cance of any possible periodic signals’ frequencies has been
calculated with a flattop window. In Welch’s method, the
power spectral density estimate is computed by dividing the
best 2 minutes of the NNS signal into 90% of overlapped
segments and applying a 50% length flattop window to
prevent the leakage effect. +e estimate of power spectrum
density is calculated by averaging all the periodograms from
each modified periodogram. +e Yule–Walker method es-
timates the power spectral density by fitting the autore-
gressive model to the windowed (nominally at 50% of overall
length) time-series data with the estimation order of 8. A
high pass filter (fc � 0.4Hz) is applied before spectrum
calculation to remove the DC offset.

2.6. STI View. +ree panels are used to present the NNS
spatiotemporal index (STI) visualization (Labeled 5 in
Figure 1). After the first N bursts of M successive cycles are
chosen, individual N bursts are aligned at the same origin as
shown in the upper panel of STI view. +e middle panel
shows an overlay of five NNS bursts (x- and y-axis nor-
malized) assigned to a 10,000 data sample window. +e
bottom plot panel shows the standard deviation of the N
normalized burst segments from the second panel and
displays the resulting STI value. All the intermediate results,
including NNS peaks, STI, power spectrum, and related
features, are saved in the .csv format.

2.7. Computational Methods. +is section briefly describes
the computational methods and analysis parameters imple-
mented in NeoNNS.+e algorithms, notations, and parameter
specifications for time- and frequency-domain analysis rou-
tines described herein are based on previous research in
preterm suck development [1, 4, 5, 8, 10, 15, 30, 32, 36, 37].

Default program settings defining the boundaries of
NNS cycle geometry, NNS spatiotemporal index calcula-
tions, and Fourier transform of the NNS compression
waveform were informed by these research works in the
premature infant. A summary of parameters and their de-
scription is given in Table 1. Details of different parameters
usage are as follows.

2.8. Calibration and Filter. NeoNNS automatically converts
NNS assessment data files from voltage to cm·H2O-based on a
2-point calibration algorithm developed in our laboratory. +e
suck pressure signal is low-pass filtered (4-pole, digital But-
terworth LP@ 50Hz) to remove transients and high-frequency
noise. NNS pressure waveform data are subsequently down-
sampled to 100 samples/second to improve memory resource
management and computational throughput while preserving
the fidelity of NNS waveform features for discrimination
consistency.

2.9. Baseline Correction Pipeline. As described, NNS pres-
sure signals are susceptible to thermal drift because of the
infant’s oral heat transfer on the silicone pacifier, which if
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left uncorrected, could impact the accuracy of NNS burst
discrimination. Baseline variation is an important issue in
many signal processing applications and can be addressed
using baseline estimation or correction methods. Our
NeoNNS application benefits from an asymmetric least-
squares smoothing correction algorithm (ALSS) [40] iter-
ated 10 times to automatically correct the nipple pressure
signal baseline. Generally, a linear or nonlinear increase is
added to the original signal, which causes data baseline

drifting from zero to positive values. +e ALSS algorithm
effectively pulls all the lower points of every nipple pressure
waveform back to the zero baseline while maintaining the
structure of the suck compression waveform shape.

2.10. Suck Compression Peak Identification Methods. An
automatic peak picker was designed to index and sort true-
NNS pressure peaks from non-NNS events according to

Figure 1: +e graphical user interface of NeoNNS includes five pages: (1) NNS view; (2) Pan view; (3) Results view; (4) Power Spectrum
view; (5) STI view.

Table 1: Summary of parameters used by the NeoNNS application.

Units Description Reference
NNS threshold (cm·H2O) NNS peaks with amplitude greater than this value used as feature extraction [10]
Half-height cycle width (ms) NNS cycle width at half-height less than this criterion used as feature extraction [38]
Minutes/seconds (min/s) +e time epoch of the most active NNS period [10]
DiscrimStepSize (samples) Sliding window size to localize the most active period of sucking
BurstCriterion (ms) Two or more NNS events occurring within this value [10]
Number of compare Number of NNS bursts [39]
Number of cycles Number of successive NNS cycles [39]
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these rules: pressure peaks must exceed a user-defined
pressure threshold (e.g., 1.6 cm·H2O) and meet a specified
half-height pulse width criterion. Discriminated NNS cycles
are labeled at their peaks with a green cross, and the non-NNS
cycles are labeled with a red cross. +e most active period of
theNNS output (e.g., 2mins) for any given data file is selected,
and NNS bursts are automatically extracted and indexed
according to their time order. An NNS burst is defined as 2 or
more suck cycles satisfying user-defined cycle periods
(e.g., <1200ms). Individual NNS bursts are labeled by a pink-
colored block, and the resultant burst distribution is calcu-
lated according to the number of NNS cycles per burst.

2.11. Feature Discrimination of NNS Waveforms. Eleven
features based on the same parameter as introduced in the
previous computation methods section are used to char-
acterize ororhythmic motor activity in preterm infants,
including the NNS burst structure and suck cycle dynamics
during the most active 2 minutes (user-defined) within a 3-
minute NNS assessment data file sampled cribside in the
neonatal intensive care unit. +ese features include the
following: (1) the number of NNS cycles is a tally of the
number of discriminated NNS cycles during the most active
2 minutes, (2) NNS cycles per minute, and (3) the number of
non-NNS events (the tongue and jaw posturing on the
pacifier nipple) within the same analysis window. Tongue
and jaw posturings on the pacifier nipple produce apparent
changes in pressure signal amplitude but are considerably
slower (lower spectral content), variable in morphology
often with compression holds (biting) with relatively long-
waveform half-heights intervals, and thus are readily distin-
guishable from an NNS cycle event, (4) total nipple com-
pression events per minute, (5) ratio of NNS events compared
to the total compression events expressed as a percentage, (6)
number of NNS bursts during the most active 2 minutes
(user-defined), (7) NNS bursts per minute, (8) NNS cycles per
burst, (9) Max NNS cycles per burst, (10) Mean NNS cycle
amplitude (cm·H2O), and (11) NNS spatiotemporal index
(NNS STI). +e default STI calculation is based on automatic
selection of 5 NNS bursts each with 5 or more NNS cycles
(default setting can be user-modified).

2.12. NNS Spatiotemporal Index (NNS STI). NNS STI is a
quantitative measure of nonnutritive suck burst pattern
formation [15]. +e first M cycles from N successive bursts
segments from the most active 2 minutes are interpolated
into a 10,000 point length record and waveform amplitude is
normalized to a z-score.+e parametersN andM are defined
by the user according to the NNS burst distribution profile.
+e sum of standard deviations is calculated at discrete 100
sample intervals [39] and can be plotted as a function of
PMA days to visualize an infant’s ororhythmic motor de-
velopment in the NICU. For example, a relatively low STI
value indicates good coregistration of suck cycle alignments
during the burst production, whereas a higher STI value
indicates poor coregistration of suck cycles and suggests the
brainstem suck circuits are either underdeveloped or neu-
rologic status is compromised. As shown for an extremely

preterm infant (TMC09; Figure 2(a)), the coregistration
of normalized NNS cycles among the 5 bursts is relatively
poor with a resultant NNS STI of 72.13 at 231 days PMA.
At 249 days PMA (Figure 2(b)), this same infant shows
dramatic improvement in the NNS burst structure with an
STI� 27.80. +e spectral analyses shown in the bottom
panels in Figure 2 reinforce this finding. +e spectral peak
for NNS activity sampled at 249 days PMA is significantly
higher and 4 times larger in amplitude than NNS activity at
231 days PMA, and the entropy is lower. +us, the com-
bination of NNS STI and spectral analyses provide clinicians
with lucid information on an infant’s oromotor status in the
NICU.

3. Results

3.1. Results Analysis of One Subject. As previously described,
NeoNNS features two modes of operation: single file mode
and the batch file-processing mode. +e following example
illustrates batch processing for a single infant over 18 re-
peated NNS assessment data files. +e developmental tra-
jectories for 6 NNS features which manifest significant
trends as a function of PMA (days) are shown in Figure 3.
Significant increases in the total number of compression
cycles, NNS cycles/min, and NNS amplitude are evident, as
well as a reduction in the NNS STI as this infant approached
249 days PMA.

3.2. Label Extraction. Label information, logged by the
nursing staff into the NICU database, allows us to map the
correspondence between feeding mode and associated NNS
waveform files for any given infant. Preterm infants are fed
by the tube or orally (bottle, breast) 8 times a day (3 hr feed
cycles). +e NICU database contains detailed information
about feeding times, nutrient volumes, and feeding intake
mode, which may involve oral (per os (this is from Latin,
“per os,” means by the mouth) or PO (means by the mouth
or orally)), nasogastric (NG), orogastric (OG), or combi-
nations thereof. Individual NNS files were associated with
time with the feeding information label. For example, if an
infant’s same day feeding type is PO, we assign the label
“ready” for oral feeds to the corresponding NNS file (1
indicates “ready,” 0 indicates “not ready” for oral feeds, and 2
indicates “unknown”).

3.3. Association of Tsfresh Features with Clinical Data.
Tsfresh is a Python package, which is used to automatically
calculate a large number of time series characteristics or
features. To evaluate the significance of Tsfresh features to
characterize infant feeding readiness in the NICU, we
conducted a comprehensive analysis assessing prediction
performance and association with the clinical status at each
repeatedmeasurement of NNS activity. Tsfresh features were
extracted from 568 NNS assessment files sampled from 30
preterm babies enrolled at 3 hospitals (Tufts Medical Center,
Boston (MA), CHI St. Elizabeth’s Health, Lincoln (NE), and
Santa Clara Valley Medical Center, San Jose (CA)). +e
human subjects committees at each hospital approved the
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research protocol for this study. Written informed consent
was obtained at each NICU prior to the participants’ en-
rollment into the study.

Hierarchical clustering illustrates the samples with
similar NNS patterns (Figure 4) mapped according to the
feeding mode. We calculated 789 Tsfresh features, which
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Figure 2: A comparison of NNS STI and spectral results for an extremely preterm infant (TMC09) at 231 days PMA (a) and 249 days
PMA (b), respectively.
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defined the characteristics for each NNS time-series data file.
Readiness to feed was the major label for all the files. Here,
we use the “readiness to feed” label to select Tsfresh features.
+e p value was used to quantify the prediction power of each
Tsfresh feature, and the Benjamini and Yekutieli procedure is
used to decide which Tsfresh features to keep [41]. After
feature elimination, 310 Tsfresh features remained. +e
linkage between rows was computed with the Python Sci-
py.cluster.hierarychy library ward function [42], and a cluster
heat map was generated with the Python Seaborn library
clustermap function [43] with standard_scale� 0.

Labels were calculated by mapping the date between
feeding and NNS records. After we obtain the labels, hi-
erarchical clusters are built using the selected 310 Tsfresh
features. Resultant classification accuracy is approximately
63%, and the false-positive ratio is 48%. +e χ2 test is

performed based on H0, with clusters and readiness to
feed as two independent variables. +e significant associa-
tion between assessment patterns with readiness to feed
was demonstrated by a highly significant χ2 test result, which
was 95.68 and p< 1.35e− 22 for 2 clusters (ready to feed vs.
not ready).

In the heat map shown in Figure 4(a), the x-axis rep-
resents Tsfresh feature indexes and y-axis represents NNS
file indexes. +e span marker between index 290 to 289
consists of 113 different statistical Tsfresh features, primarily
peak and change quantiles information. +e span marker
between indexes 109 to 6 consists of an additional 96 Tsfresh
features, which are mainly continuous wavelet transform
coefficients and linear least-squares regression, and the last
Tsfresh feature cluster is predominantly FFT coefficients. A
comprehensive lookup table to map Tsfresh feature indexes
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Figure 3: +e correlation of six NNS features with PMA (days). Half-height cycle width� 500ms; number of NNS bursts compare� 4;
number of NNS cycles� 4.
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to Tsfresh feature names andNNS file indexes to file names is
available at https://github.com/cliao2/NNS-data.

3.4. Association of NeoNNS Features with Clinical Data.
In our NeoNNS application, we generated 11 features which
have medical significance to discriminate the feeding readiness
among preterm infants. To demonstrate how our NeoNNS
features performance in readiness to feed labels classification,
all 9/11NeoNNS features (because two features are dependent)
are used to build the heat map with the same preprocessing
parameters with the Tsfresh heat map generation process. As
shown in Figure 4(b), the two feeding mode classes can be
largely separated by NeoNNS features with classification ac-
curacy greater than 67% and false-positive ratio is 28%. +e
highly significant χ2 test result is 99.78 and p< 1.70e− 23 for 2
clusters. Both NeoNNS features and Tsfresh features dem-
onstrate our prediction power using clinical data sampled from
preterm infants. As shown in Figures 4(a) and 4(b), the
comparison of the two-cluster analyses demonstrates that the
NeoNNS application is robust in implementing data pre-
processing and NeoNNS feature generation algorithms. Sec-
ondly, the 9/11 features from NeoNNS application achieved
better classification accuracy than the 310 Tsfresh features.+is
comparison illustrates NeoNNS’s effectiveness in discrimi-
nation and detection of oral feeding readiness based on our
algorithms for analysis of NNS waveform features among a
cohort of extremely premature infants.

3.5. Single NeoNNS Feature Distribution and Pairwise
NeoNNS Features Distribution between Positive and Negative
Data. To explore how each NeoNNS feature discriminates

between two classes of feeding readiness (positive and
negative), single feature density and counts distribution
plots are included in Figure 5(a). Among 11 features,
two features are dependent with other features, so only
9 out of 11 features are used to perform the experiment.
All features have been normalized to a range from 0
to 1. +e y-axis indicates counts of each feature value.
Figure 5(a) also includes both counts distribution of each
discrete feature value and continuous density distribution
profile for all 568 NNS records. A GLM ANOVA, com-
pleted using Feature_value as the response variable, found
highly significant main effects for the factors Featur-
e_Type (F(8,4742) � 1491.50, p< 0.0001) and feeding
mode (F(1,4742) � 251.94, p< 0.0001) (Tables 2 and 3). All
9 features have a significant effect on the prediction of
readiness to feed. Figure 5(b) shows the pairwise corre-
lation plots between every two features. +ree colors are
used to label different data: blue is “ready;” green is “not
ready;” and red is “unknown.”

3.6. Parallel Coordinates Visualization. To visualize all the
NeoNNS feature patterns in all dimensions without in-
formation loss, parallel coordinates was used to plot all the
NeoNNS features. As shown in Figure 5(c), the positive and
negative records generally have the same trend for each
feature. However, the value of most of positive features is
greater than the negative features. +e positive features are
well organized compared to the negative features. A likely
reason is the blue color contains both known “not ready”
and unknown records.
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Figure 4: (a) Tsfresh cluster heat map of all 568 NNS files after feature elimination. p< 1.35e− 22. Red is positive, green is negative, and blue
is unknown. +e x-axis represents Tsfresh features, and the y-axis represents NNS assessment file records. +e corresponding indexes
mapping Tsfresh features (x-axis) and NNS files (y-axis) are saved in these complementary files: “mapping_heatmap_features.xlsx” and
“mapping_heatmap_nns.xlsx.” (b) NeoNNS cluster heat map of all NNS files based on 11 NeoNNS features. p< 1.70e− 23. All the pa-
rameters are the same as used in the Tsfresh cluster heat map.
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3.7. PCAAnalysis. Principal component analysis (PCA) was
performed for advanced exploration of the NNS data in
relation to feeding readiness. It is apparent from Figure 5(d)
that a hyperplane separates two point clouds, but not our
class labels. All the positive points are in one cluster with
some negative, and the other cluster is purely negative. +is
means our label mapping causes the false-negative issue,
since the NICU nurses tend to only feed using the PO mode
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Figure 5: Results analysis. (a) NeoNNS features distribution between positive (labeled as “1” means ready for oral feed or “0” not ready for
oral feed); (b) the pairwise distribution between every two NNS NeoNNS features; (c) a parallel coordinate feature view of our 9 NeoNNS
features. +e number inside parentheses represents the feature indexes. Green signifies positive (ready to feed) records, and blue is negative
(not ready). (d) PCA plot of 3 components (infant feed modes), where red dots are negative (not ready to orally feed), blue signifies positive
(ready to orally feed), and yellow is unknown oral feeding readiness.

Table 2: GLM analysis of variance.

Source DF Adj. SS Adj. MS F value p value
Feature_type 8 12192433 1524054 1491.50 0.000
OralFeed 1 257443 257443 251.94 0.000
Error 4742 4845517 1022
Lack of fit 8 506013 63252 69.00 0.000
Pure error 4734 4339504 917
Total 4751 17295392
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when the neonate is very ready. During other times, the
neonate probably was ready for PO but was tube-fed instead,
resulting in a false negative.+is analysis reinforces the main
purpose of our research, that is, to label the NNS data for
feeding readiness.

4. Discussion and Conclusions

NeoNNS software is not instrument dependent; rather, it has
the potential to analyze nonnutritive suck pressure signals
from devices other than the NTrainer System as long as the
source data files are digitally formatted as a time series of
nipple pressure indexes with a specified sampling rate and
calibration factor. In our current database, the feeding mode
for any given infant is decided by NICU nurse’s observa-
tion and prediction, which is subject to false-negative la-
belling.+is limitation not only causes the NeoNNS software
computational result difficult to justify but also decreases the
accuracy of the batch data cluster classification. Future work
with much larger data sets from our participating NICU
network will focus on improving the labelling of NNS data
for oral feeding readiness. When we can accurately label all
data, it will be possible to create a prediction model of oral
feeding readiness from virtually any unknown NNS record.
+e default analysis parameters implemented for this soft-
ware are derived from peer-reviewed publications on NNS
dynamics in preterm infants. As a research tool, NeoNNS
provides clinical investigators with the added flexibility of
modifying the default settings to explore new hypotheses
and questions as they relate to differences in NNS burst
structure as a function of the disease state, postmenstrual
age, and experimental interventions.

+is NeoNNS software application makes big data
analysis possible and efficient for NICU practitioners and
scientists. Our Python-based NNS waveform discrimination
and feature extraction software offers rapid and compre-
hensive measurements in the time and frequency domains
and modeling of NNS pressure dynamics in preterm infants
as a function of PMA across repeated sessions, among large
cohorts, and across multiple neonatal intensive care units.
Our experiments from Tsfresh and NeoNNS features cluster
processing both illustrate the significant prediction capa-
bility for oral feeding readiness that is possible from our data

analytics pipeline using a neonate’s NNS compression
pressure waveform as the input.

Data Availability

+e binary nonnutritive suck waveform data used to support
the findings of this study are restricted by the University of
Nebraska Human Subjects Committee in order to protect
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going randomized clinical trial sponsored by the National
Institutes of Health (R01 HD086088). Data from this NIH trial
are registered at ClinicalTrials.gov (RCT # NCT02696343).
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files has been included as supplementary information files.
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