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ABSTRACT

Among the mammalian fossils discovered in were crania and mandibles of rare carnivorans,
1930 by the Central Asiatic Expedition of the including the first complete skulls of several Asian
American Museum of Natural History (New York) mid-Miocene lineages. Most of these fossils came
in the Tung Gur Formation of Inner Mongolia from a single locality termed Wolf Camp Quarry
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that produced, among other striking finds, a small
fox-sized cranium referred to a new genus and
species Tungurictis spocki Colbert 1939. Today
this remains the only known cranium of Tunguric-
tis yet discovered.

Preparation and reinterpretation of the auditory
region demonstrate that Tungurictis belongs to an
early lineage of Hyaenidae, although it has long
been regarded as a viverrid. The Wolf Camp Quar-
ry cranium of Tungurictis combines a hyaenid au-
ditory bulla structure with incipient hyaenid spe-
cializations of the cheek teeth, indicating that the
typical bulla pattern evolved prior to the robust,
bone-crushing dentitions that characterize living
species of Crocuta and Hyaena. Previously un-
described remains of left and right hindfeet found
in Wolf Camp Quarry near the skull are attributed
to the same species, if not the same individual,
and indicate that a digitigrade paraxonic stance
characterized this small Asian carnivore.

Tungurictis has been identified only in the Tung
Gur Formation of Mongolia, with the exception
of a doubtfully referred upper jaw fragment from
north Africa. However, a survey of dentitions of
small mid-Miocene European hyaenids indicates
that the cheek teeth of Tungurictis spocki are com-
parable to the holotype dentition of Protictitheri-
um gaillardi (Forsyth-Major, 1903) from the mid-
Miocene of La Grive, France. So similar is the
dental morphology that hyaenid basicranial struc-
ture can be reasonably inferred for P. gaillardi,
and for Protictitherium for which no basicranium
was known. Thus, at least three lineages of small
hyaenids with plesiomorphic dentitions (lacking
durophagous specializations of the premolars and
carnassials) lived in Eurasia during the Miocene:
(1) a Protictitherium (Tungurictis) lineage, with
hypercarnivorous dentition and hyaenid auditory
region; (2) a Protictitherium (Protictitherium) lin-
eage, known chiefly from dentitions in which the
m1 entoconid is emphasized—an intact auditory
region is not yet identified; (3) a Plioviverrops lin-
eage, with hypocarnivorous dentition and hyaenid
auditory region.

Two additional early hyaenid lineages (Miohy-
aena, Percrocuta) of the mid-Miocene cannot be
confused with Protictitherium or Plioviverrops be-
cause they show a precocious development of du-
rophagous dental specializations, heralding the
large bone-crushing species of the later Cenozoic
of Eurasia.

Old World Miocene hyaenids parallel New
World Miocene canids in body size, skull form,
dental specialization, and diversity. Small, inter-
mediate, and large-sized digitigrade canid and
hyaenid ecomorphs are known during the Neo-
gene, some with plesiomorphic skull form and
dentition, others with derived ‘“hyaenoid” crani-
um and teeth, including durophagous animals of
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large body size within both Hyaenidae (Dinocro-
cuta, Pachycrocuta, Adcrocuta) and Canidae (Ep-
icyon, Borophagus, Osteoborus).

INTRODUCTION

In 1930 the Central Asiatic Expedition of
the American Museum of Natural History
discovered important fossil remains of pre-
viously unrecognized mid-Miocene carnivo-
rans in the Tung Gur Formation of Inner
Mongolia. In particular, a single locality
known as Wolf Camp Quarry produced su-
perb skulls of the ursid Hemicyon teilhardi
and the hyaenid Percrocuta tungurensis, up-
per and lower jaws of the rare amphicyonid
Gobicyon macrognathus, and a small, fox-
sized cranium attributed to a new genus and
species, Tungurictis spocki. This well-pre-
served cranium (AMNH 26600), and the oth-
er Tung Gur Formation Carnivora, were de-
scribed by E. H. Colbert in 1939.

Tungurictis was initially classified as a true
viverrid, based upon (1) the arrangement of
basicranial foramina; (2) a resemblance in
general appearance and structure of the skull
to the living Viverra zibetha; (3) the damaged
auditory bulla said to resemble that of the
paradoxurine civets. Only two additional fos-
sils were subsequently assigned to the genus:
a partial lower jaw with premolars, also found
in 1930 by the Central Asiatic Expedition
along the Tung Gur escarpment about 30 mi
(48 km) northeast of Wolf Camp Quarry, and
a partial maxilla with P3-M2 (UCM 43627)
discovered in April 1968 in the lower Beglia
Formation of Tunisia (Locality 18, Bled
Douarah), and assigned to the Viverridae
(Tungurictis punica, Kurten, 1978).

Recent cleaning and careful preparation of
the Wolf Camp Quarry cranium of Tunguric-
tis (AMNH 26600) allowed us to reinterpret
its auditory region in the light of new insights
into the morphology and ontogenetic devel-
opment of the aeluroid basicranium (Hunt,
1987, 1989). The structure of the remnant
auditory bulla was critical to our reassess-
ment, providing compelling evidence that es-
tablishes the hyaenid affinities of this small
mid-Miocene carnivoran (Tunggurian, late
middle Miocene, zone MNS, Li et al., 1984;
Qiu et al., 1988a). Although the teeth display
incipient derived hyaenid traits (such as the
form and elongation of the upper carnassial,
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reduction of the posterior molars, and prom-
inent P2-3 relative to small P1), they are nev-
ertheless broadly plesiomorphic within
Hyaenidae by virtue of their small size, pres-
ence of relatively narrow premolars not yet
specialized for crushing, and retention of M2.
We also believe that the long, slender skull,
gracile rostrum, and narrow palate are ple-
siomorphic hyaenid traits retained by Tun-
gurictis spocki, possibly reflecting skull pro-
portions of the ancestral hyaenid stock.
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ABBREVIATIONS

Anatomical

A alisphenoid

AC posterior opening of alisphenoid canal
BO basioccipital

BS basisphenoid

E caudal entotympanic
EC caudal entotympanic (posterior) chamber
of bulla

EO paroccipital process of exoccipital
FO foramen ovale

FM  foramen magnum

GF  glenoid fossa of squamosal

L middle lacerate foramen
M mastoid

P petrosal promontorium
PLF posterior lacerate foramen
R rostral entotympanic

S hyaenid intrabullar septum

SB septum bullae

SE sediment filling posterior chamber of bulla
stylomastoid foramen

SQ squamosal

T ectotympanic
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v ventral process of petrosal
VF vestigial postglenoid foramen

Institutional

AMNH Vertebrate Paleontology, American
Museum of Natural History, New

York

FAM Vertebrate Paleontology, American
Museum of Natural History (Frick
Collection)

IVPP Institute of Vertebrate Paleontology
and Paleoanthropology, Beijing

MGL Musée Guimet d’Histoire Natu-
relle, Lyon

UCM University of Colorado Museum,
Boulder

UNSM-ZM University of Nebraska State Mu-

seum (Zoology), Lincoln

DISCOVERY OF THE CRANIUM
OF TUNGURICTIS

The fossil remains of Tungurictis spocki
described by Colbert (1939) include the ho-
lotype cranium (AMNH 26600) and a re-
ferred lower jaw fragment (AMNH 26610)
designated as paratype. Colbert attributed the
skull to Wolf Camp Quarry, a locality also
designated as Quarry 2 by Osborn and
Granger (1932), who described fossils of the
proboscidean Platybelodon from the same site
(fig. 1). Insofar as we can determine, no de-
tailed account of the collection of the holo-
type (and only known) skull of Tungurictis
exists. Here we present our attempt to recon-
struct the discovery.

The Tung Gur Formation of Inner Mon-
golia was initially discovered by L. E. Spock
and R. C. Andrews during the 1928 Central
Asiatic Expedition of the American Museum
of Natural History. The first fossils from the
Tung Gur beds were found on June 19, 1928,
on a reconnaissance of the region, and later
in the summer more extensive explorations
resulted in discovery of the first remains of
the shovel-tusked Platybelodon grangeri on
both north and south escarpments of the vast
Tung Gur tableland (Spock, 1929). Discov-
ery of these platybelodont mastodonts stim-
ulated a return visit to the tableland by the
American Museum expedition two years lat-
er in June 1930.

Established on June 8, 1930, the initial base
camp on the tableland was the North Camp
of Osborn and Granger (1932: fig. 1), or
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Fig. 1.
Granger (1932) and Qiu et al. (1988a). Tungurictis is known from two sites along the escarpment of the
Tung Gur tableland: Wolf Camp Quarry and IVPP Loc. 86026. Wolf Camp Quarry produced a complete
cranium (AMNH 26600) and postcranial remains (AMNH 99146), primarily bones of the hind feet.
IVPP Loc. 86026 has yielded undescribed Tungurictis fossils to Chinese paleontologists in 1986, and

may also be at or near the source of the American

Mastodon Camp of Andrews (1932: 429-430).
The following day (June 9), a small party
comprising R. C. Andrews, P. Teilhard, C.
C. Young, and W. Granger reconnoitered the
western escarpment and discovered a prom-
ising area rich in bones and bone fragments
(at the same time also locating the lower jaw
of a rare zygolophodont proboscidean, ‘Ser-
ridentinus™ gobiensis, AMNH 26461, re-
cently placed in Zygolophodon by Tobien et
al., 1988). On June 10, the expedition moved
to this area, making camp on the rim of the
western escarpment where Andrews shot a
large wolf, hence the name Wolf Camp (fig.
1).

The discovery site of Tungurictis can be
deduced from Andrew’s (1932) narrative of
the work in the vicinity of Wolf Camp. On
June 13, 1930, Andrews reported that
“Granger started all the Chinese collectors at
work on the bone-bearing hillocks just below
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American
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Miocene fossil localities of the Tung Gur escarpment, Inner Mongolia, based on Osborn and

Museum paratype dentary fragment (AMNH 26610).

the tents,” where they discovered “skulls of
small carnivores and artiodactyls. The bones
were mixed in a heterogeneous mass. . ..”
This locality became Wolf Camp Quarry,
eventually designated Quarry No. 2 by Os-
born and Granger (1932).

Collecting at Wolf Camp Quarry was de-
layed by the discovery of the great Platybelo-
don Quarry (Quarry No. 1 of Osborn and
Granger), found by Teilhard on or about June
18. On June 21, intensive excavation of the
numerous shovel-tusked proboscideans in
this quarry began and continued for six weeks,
producing as many as twenty individuals. By
mid-July, however, work at the Platybelodon
Quarry was reaching a conclusion and, ac-
cording to Andrew’s (1932: 444) account,
“work had been resumed at the quarry just
below [Wolf] camp where baby mastodons
[=Platybelodon], deer, foxes [probably Tun-
gurictis], and other small mammals had been
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entombed.” On July 15, Thomson discov-
ered a female Platybelodon below Wolf Camp
with a fetal young in the pelvic cavity, a re-
markable find. Andrews believed this was a
bog deposit, and in writing about the preg-
nant female, commented that “Except for the
pregnant female mastodon, most of the an-
imals that had been trapped in this ancient
bog were small.” Many of the rare carnivo-
rans described by Colbert in 1939 came from
these beds below Wolf Camp, including the
cranium of Tungurictis spocki.

On August 2, Andrews, in his last entry
mentioning Wolf Camp Quarry, wrote: “The
big mastodon quarry [Quarry No. 1]had been
exhausted and efforts concentrated upon the
deposit just below the tents [Quarry No. 2].
This has yielded a really good fauna of the
region: giraffe, four genera of carnivores, bo-
vids, rodents, rhino, deer, and several skulls
of baby shovel-tusked mastodons. ...”
Shortly thereafter, the work at Wolf Camp
ended for the season, and the expedition
moved westward.

In April 1989, while examining unpub-
lished carnivoran material in the American
Museum collected “below Wolf Camp” by
the 1930 expedition, a small, nearly complete
left hindfoot and associated right metatarsus
(AMNH 99146) were found embedded in
fine-grained gray sandy matrix like that still
adhering to the holotype cranium of Tun-
gurictis spocki. Preparation revealed a num-
ber of striking features that suggest these feet
belong to Tungurictis. The presence of parts
of both hindfeet, the distal tibia and fibula,
and what appears to be the proximal humerus
indicate that much of the skeleton may have
been present at the site, but was not collected.
We do not know if the postcranial bones were
found in proximity to the cranium, but they
must have been found in the vicinity, because
all fossils collected by the 1930 party from
“below Wolf Camp” or “Wolf Camp Quar-
ry” are from the same general locality.

The paratype dentary fragment (AMNH
26610) was not collected at Wolf Camp Quar-
ry but was found along the same escarpment
about 30 mi (48 km) northeast of Wolf Camp.
It may have been collected from a site at or
near newly reported localities (fig. 1, IVPP
Locs. 86021, 86026) on the north escarpment
of the tableland recently worked by the In-
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stitute of Vertebrate Paleontology and Paleo-
anthropology, Beijing (Qiu et al., 1988a). The
paratype dentary fragment and its two pre-
molar teeth correspond in size to the upper
teeth of the holotype cranium, but caution
should be exercised in attributing the para-
type to Tungurictis spocki until associated
upper and lower jaws are found. Qiu et al.
(1988a) recently reported the presence of
Tungurictis from locality 86026; these fossils
will be of much interest when eventually de-
scribed.

AUDITORY REGION OF
TUNGURICTIS SPOCKI

The only known cranium (AMNH 26600)
of Tungurictis is the size of a swift fox (Vulpes
velox) cranium, with a basilar length, as pre-
served, of about 107 mm. On the basis of its
cranioskeletal dimensions, the animal must
have been similar in body size to the smaller
foxes, thus under 5 kg in weight. Its hyper-
carnivorous dentition and small size com-
bine to suggest a diet of small vertebrates and
insects. The three-dimensional form of the
cranium (fig. 2) is largely intact, although when
seen in dorsal view evidently somewhat
skewed to the right by crushing. Crushing has
produced a mosaic of small polygonal bone
fragments still in contact with each other, yet
slightly to moderately displaced. The cracks
between the fragments are filled with either
very fine sediment or calcite. Unfortunately,
the fragmentation of the cranium obscures
the sutures between bones in most areas.

Postorbital length of the cranium (mea-
sured from the lacrimal foramen on the an-
terior orbital rim to the occipital condyle) is
nearly twice the preorbital length, a primitive
carnivoran trait. Pronounced constriction of
the cranium behind the postorbital processes,
noted by Colbert, and the prominent lamb-
doidal and sagittal crests are the result of small
brain volume relative to skull size. In more
advanced carnivorans a larger brain often fills
out the cranial cavity, thereby minimizing
the expression of these bony crests and the
amount of postorbital constriction. The
marked development of the postorbital pro-
cess is reminiscent of living hyaenids and the
small Turolian hyaenid Plioviverrops orbig-
nyi (Dietrich, 1927; Beaumont, 1969). Only



Fig.2. Theholotype and only known cranium of the early hyaenid Tungurictis spocki Colbert, AMNH
26600, from Wolf Camp Quarry, mid-Miocene (MN8), Tung Gur Formation, Inner Mongolia, collected
by the Central Asiatic Expedition, American Museum of Natural History, 1930, A, lateral; B, ventral,
C, dorsal views. Natural size. White scale bar in this figure and all subsequent photographs is 1 cm in
length.
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Fig. 3. Basicranium of the hyaenid Tungurictis spocki, AMNH 26600, Wolf Camp Quarry, Tung
Gur Formation, Inner Mongolia, ventral view, X 1. Although both auditory bullae are broken open, a
bony plate representing a remnant of the hyaenid intrabullar septum is still present on both right and
left sides (for detail, compare figs. 4 and 5, S). For all abbreviations not defined in figure captions, see

p. 3. Stereopair.

minimal anatomical detail can be discerned
within the orbits because the interorbital re-
gion has been badly damaged and little but
matrix remains. The palatal region is not wid-
ened as in large durophagous hyaenids; the
rostrum is slender and gracile, much like the
snout of the living swift fox. In its skull pro-
portions, there is no evidence of the dimen-
sional idiosyncrasies that characterize the ro-
bust, wide-skulled, bone-crushing hyaenids
often considered typical of the family.

The basicranium of AMNH 26600 is il-
lustrated at natural size in figure 3: the crush-
ing mentioned by Colbert in his original de-
scription is evident, particularly the bones
surrounding the posterior choanal opening.
However, the basicranium itself shows little
distortion. Unfortunately, both auditory bul-
lae have been broken open, and so the ex-
ternal form of the bulla must be reconstruct-
ed. Closer inspection reveals that the left
auditory region (fig. 4) lacks nearly the entire
bony bulla, yet retains an intact petrosal
promontorium. In the right auditory region
(fig. 5), the anterior part of the bulla is largely
intact; some bone belonging to the posterior
bulla also remains, but the petrosal promon-
torium that lies between these two bulla rem-
nants has been damaged. By combining fea-

tures of both right and left sides, the
architecture of the auditory region can be re-
stored.

Left auditory region (fig. 4): A mosaic of
small bone fragments occupies the roof of the
anterior part of the auditory region; they are
unidentifiable but appear to be pieces of the
bulla and sphenoid bones. Posterior to this
mosaic, and partly covered by a few bone
fragments, is the petrosal, intact except for
the loss of the tip of its ventral promontorial
process (fig. 4, V). The base of the promon-
torial process is robust and thick, about 5 mm
in anteroposterior length, indicating that the
process in Tungurictis was well developed. It
was strongly applied to the lateral margin of
the basioccipital, as in aeluroid carnivorans
in general (Hunt, 1989).

The ventral surface of the intact petrosal
promontorium is marked by a transverse
ridge. Against the posterior face of this ridge
abuts the anterior edge of a slightly concave
bony plate (fig. 4, S) that curves ventrad to
meet the paroccipital process (fig. 4, EO: the
process is broken, hence has a roughened
edge). At first glance, this concave plate ap-
pears to be the roof of the posterior chamber
of the bulla but, on closer inspection, fine
sediment (fig. 4, SE) can be seen to fill the
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true posterior chamber of the bulla dorsal to
the concave plate. The plate in fact is a bony
intrabullar septum of the type found only in
hyaenids. This relationship is confirmed by
examination of the right auditory region,
where a remnant of the septum is also present
(fig. 5, S), and has collapsed dorsad to contact
the actual bony roof of the posterior chamber
(formed by the caudal entotympanic).

In fossil and living hyaenids (fig. 6), the
intrabullar bony septum lies posteroventral
to the promontorium, its anterior edge either
in contact with the promontorium, or situ-
ated immediately below its ventral eminence
(fig. 6B, also Hunt, 1974: figs. 36, 38-42).
However, the true dorsal roof of the posterior
chamber (fig. 6A, E), formed by caudal en-
totympanic, lies deep within the posterior au-
ditory region where its anterior margin cov-
ers the posterior part of the petrosal, mantling
the base and posterior face of the promon-
torium. The presence and configuration of
this intrabullar bony septum and its relation-
ship to the posterior chamber of the bulla
formed by caudal entotympanic are impor-
tant diagnostic features that identify Tun-
gurictis spocki as an early hyaenid.

Right auditory region (fig. 5): The anterior
part of the auditory bulla is fortuitously pre-
served on the right side, permitting recon-
struction of the geometry of the anterior
chamber of the bulla. The anterior chamber
was formed by a well-inflated ectotympanic
element, configured as in hyaenids or canids
in which ectotympanic is strongly cham-
bered, subhemispherical, and firmly attached
to the surrounding basicranial bones. There
is no evidence of the smaller, less-inflated,
loosely attached ectotympanic crescent of true
viverrids. For comparison, figure 7 illustrates
the nature of the ectotympanic in a fossil vi-
verrid (AMNH 18725, Pleistocene, Szechuan
province, China) referred to Viverra zibetha,
the species believed by Colbert (1939) to be
most like Tungurictis spocki. Note that the
ectotympanic of Viverra (AMNH 18725) is
not as inflated as the ectotympanic of Tun-
gurictis, nor does it contact the bones (basi-
sphenoid, basioccipital) of the basicranial
axis. In the viverrid, the ectotympanic is a
small discrete crescentic element separated
from the basicranial axis by a space for the
rostral entotympanic (fig. 7, R). Rostral en-
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totympanic is ventrally exposed in Viverra
zibetha, but is covered by (and probably fused
to) the ectotympanic in Tungurictis spocki,
just as it is in all hyaenids.

In addition, in Viverra zibetha the ectotym-
panic (T) and caudal entotympanic (E) persist
as discrete structural elements from early on-
togeny into adult life (fig. 7): they remain sep-
arate bony elements during the anterior mi-
gration of caudal entotympanic over
ectotympanic, an ontogenetic growth process
demonstrated by the observed change in rel-
ative position of these two elements from ne-
onate through juvenile to adult. The two bul-
la elements are only in contact where they
join to form the septum bullae (fig. 7, SB),
and the two do not unite to form a single
subhemispherical chamber. Rather, in all
viverrids, they maintain an imbricated or
overlapping relationship that reflects the an-
teriorly directed growth trajectory of the cau-
dal entotympanic element. In contrast, when
we examine the anterior bulla remnant (fig.
5, T) of Tungurictis spocki, the broken pos-
terior edge of the ectotympanic is directed
posteroventrad, suggesting that the bone con-
tinued as the smoothly confluent floor of a
subhemispherical bulla: there is no sugges-
tion of the indentation (where ectotympanic
and caudal entotympanic join) that would be
expected in a viverrid bulla, nor is there ad-
equate space to accommodate the enlarged
anterior end of the viverrid caudal entotym-
panic. Thus the anterior remnant of the au-
ditory bulla in Tungurictis spocki is not con-
figured as in true viverrids.

In the Tungurictis cranium, an alisphenoid
canal is preserved on the right side. The canal
itself was only 3—4 mm in length. Its posterior
opening (fig. 5, AC) was very close to and
nearly confluent with the foramen ovale. Five
mm posterior to the alisphenoid canal is a
prominent middle lacerate foramen (fig. 5,
L), 1.7 mm in length by about 1.5 mm in
width, nearly entirely surrounded by the basi-
sphenoid. The foramen was not covered by
the bulla as it is in living hyaenids. Whether
it transmitted an internal carotid artery equal
in diameter to the foramen is uncertain: the
foramen is large relative to the size of the
skull, and a groove in the anterior bulla wall
adjacent to the foramen closely corresponds
to its diameter, suggesting that a large internal
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Fig. 4. Basicarnium and left auditory region of the hyaenid Tungurictis spocki AMNH 26600), Wolf
Camp Quarry, Inner Mongolia, ventral view. Most of the auditory bulla has been destroyed, revealing
the petrosal and the posterodorsal chamber of the bulla floored by an intact hyaenid intrabullar septum
(S). The limits of this septum are indicated by black triangles. Note that the bulla abutted the paroccipital
process of the exoccipital (EO) as in living hyaenids. The largely intact posterodorsal chamber is still
filled with sediment (SE) that supported the intrabullar septum, thereby preventing its collapse (the
sediment has been removed from the posterodorsal chamber in fig. 5, revealing an open cavity constructed
as in living hyaenids). A large ventral petrosal process (V) was present in this primitive hyaenid, but
the tip has been broken off. Petrosal form and the relationship of the intrabullar septum to the petrosal

in Tungurictis is comparable to those of Pleistocene and living hyaenids (fig. 6). Stereopair.

carotid artery could have been present. How-
ever, the portion of the bulla wall through
which the artery must pass (via the posterior
carotid foramen) to enter the middle ear is
not preserved on either the right or left side
and, therefore, the full extent of the internal
carotid pathway in this small hyaenid re-
mains to be determined.

Posterior to the anterior bulla remnant, the
right petrosal promontorium of Tungurictis
has been destroyed. A low transverse ridge
running somewhat obliquely across the roof
of the auditory region is all that remains of
its posterior face. Behind this ridge the bony
roof of the posterior bulla chamber is formed
by caudal entotympanic (fig. 5, EC and as-
terisks); the anterior edge of this roof contacts
the transverse ridge and, in so doing, covers
the posterior margin of the petrosal.

The posterior chamber of the bulla invades
and thereby creates a bony pocket within the
mastoid region (fig. 5, EC) as in living hyae-
nids, so that the roof of the chamber lies at
two levels: (a) a dorsally deep, laterally placed
mastoid pocket, and (b) a more shallow, flat-
ter, bony roof (fig. 5, asterisks) internal (me-
dial) to the pocket. This lateral pocketing of
the roof formed by caudal entotympanic is
typical of the posterior bulla chamber of
hyaenids: it is exaggerated in the living aard-
wolf Proteles cristatus (Hunt, 1974: fig. 39),
and is also present in late Miocene (Ictitheri-
um, FAM 117490, China) to Pleistocene fos-
sil hyaenids (fig. 6A). In figure 6A, the char-
acteristic dual levels of the roof of the
chamber, indicated by the letters E and M,
are particularly evident.

Ventral to the bony roof of the posterior



10 AMERICAN MUSEUM NOVITATES NO. 3030

Fig. 5. Basicranium and right auditory region of the hyaenid Tungurictis spocki (AMNH 26600),
Wolf Camp Quarry, Inner Mongolia, ventral view. The anterior part of the auditory bulla formed by
ectotympanic (T) is intact; the posterior bulla was crushed and broken open, fortuitously exposing the
posterodorsal chamber (EC) formed by caudal entotympanic. The medial extent of this chamber is
indicated by two black asterisks; the lateral and deepest part of the chamber (EC) invades the mastoid
bone (M) and is visible posterior to the stylomastoid foramen (SMF). Pleistocene and living hyaenids
display the same configuration of the roof of the posterodorsal chamber (compare fig. 6). A part of the
hyaenid intrabullar septum (S) still remains in place in the posterior auditory region where it forms the
floor to the posterodorsal chamber (EC) of the bulla. A vestigial postglenoid foramen (VF) demonstrates
that the postglenoid venous drainage is already reduced in this early hyaenid, yet the large diameter of
the middle lacerate foramen (L) suggests that the internal carotid artery may be functional, and not

reduced as in living hyaenids. Stereopair.

chamber of the T. spocki bulla is a slightly
concave, nearly rectangular plate of bone (fig.
5, S). This plate is a remnant of the intrabullar
bony septum, which is more completely pre-
served and in its normal life orientation in
the left auditory region of figure 4. This bony
septum in figure 5 at first appears to be in
direct continuity with a thin lamina of the
exoccipital bone medial to it. Because the
internal bony septum of hyaenids is not part
of the exoccipital, this observation at first
seems to contradict its identification as the
hyaenid septum. However, when examined
under a microscope, a line of separation can
be traced around the periphery of the plate
of bone, indicating it is not part of the ex-
occipital, but in fact has nearly fused with it

as the skull plastically deformed and frac-
tured during postburial diagenesis. As a re-
sult, sutures in this part of the skull are ex-
tremely difficult to identify.

In summary, the auditory region of Tun-
gurictis spocki possesses a group of basicra-
nial features that, when considered together,
identify the animal as an early hyaenid: (1)
the subhemispherical anterior bulla chamber
and its relationship to surrounding bones; (2)
structure and relationships of the petrosal; (3)
form and position of the intrabullar bony sep-
tum; (4) configuration of the posterior bulla
chamber. To these points of evidence derived
from the auditory region, we next add rele-
vant observations on the hyaenid features of
its teeth.
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Fig. 6. Basicranium of the hyaenid Crocuta demonstrating the internal architecture of the auditory
bulla: A, Left auditory region of Pleistocene Crocuta (AMNH 18730), China, ventral view. The ventral
bony floor of the bulla has been removed (including the hyaenid intrabullar septum) to reveal the
configuration of the roof of the posterodorsal bulla chamber formed by caudal entotympanic. Note that
the roof lies at two levels: a dorsally deep mastoid pocket (M), and a medial platform (E). In life, both
levels are veneered by caudal entotympanic but in this individual the entotympanic covers only the
medial platform and has been removed from the mastoid pocket to reveal the petrosal-mastoid suture.
B, Left auditory region of living Crocuta crocuta (UNSM-ZM 5012), Africa, ventral view. Ventral bony
floor of bulla removed, showing relation of hyaenid intrabullar septum (S) to petrosal promontorium
(P) and ventral petrosal process (V). An opening has been cut in the hyaenid septum to reveal the
posterodorsal chamber of the bulla (equivalent to EC in fig. 5) dorsal to the septum. Stereopairs.
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Fig. 7. Basicranium of the viverrid Viverra zibetha (AMNH 18725), Pleistocene, Szechuan, China,
collected by W. Granger, 1923. The left auditory region is largely intact, showing the small crescentic
ectotympanic (T) forming the anterior chamber of the bulla, and the caudal entotympanic (E) forming
the posterior chamber. The anteriorly directed overgrowth of ectotympanic by the inflated caudal en-
totympanic is a hallmark of true viverrids and does not occur in hyaenids. Most of caudal entotympanic
has been removed from the right auditory region, revealing the lack of an intrabullar septum of hyaenid
type in this and all true viverrids. Note the rostral entotympanic (R) in the anterointernal corner of the
auditory region, the transversely ridged petrosal (P) dividing the middle ear into anterior and posterior
chambers, and the ventral petrosal process (V) characteristic of aeluroid carnivorans. Stereopair.

DENTITION OF
TUNGURICTIS SPOCKI

Measurements of the dentition and crani-
um of Tungurictis spocki are presented in ta-
ble 1.

Incisors: Only the left I11-3 are preserved,
arranged in a transverse row (fig. 2). Although
slightly damaged, I1 and I2 are nearly the
same size, 12 being slightly larger. I3, how-
ever, is significantly larger than 12, as in living
hyaenids. There are no evident accessory
cusps (Nebenzacken) on the incisor teeth, but
these teeth are broken and worn.

Canines: Only the alveoli for the two ca-
nines are preserved (fig. 2). Their shape sug-
gests that the canines were slender, laterally
compressed teeth. The best preserved (right)
canine alveolus measures 7.3 mm in length
by 3 mm in width.

Premolars: The left P1 is a single-rooted,
peglike tooth (fig. 2). The right P1 is broken
off at the level of the alveolus. P2 is a double-
rooted, laterally compressed tooth (fig. 8),
much larger than P1: on the right, only roots
broken at the alveolar margin remain, but on

the left, the posterior part of the tooth is pres-
ent and is wider than the anterior part, but
otherwise without distinguishing traits. P3 is
broken on both right and left sides; only the
heel of the tooth with a posterior basal ac-
cessory cusp is present. P3 shows a slight in-
ternal expansion of its posterior lingual mar-
gin, as is present in living viverrids and
hyaenids.

The upper carnassial (P4) is a specialized
cutting tooth, with an elongate planar shear
surface formed by the confluent internal faces
of the paracone and metastylar blade (fig. 8).
Anterior to the paracone is a strong parastylar
cusp, which anteriorly extends the shearing
surface. The considerable length of the car-
nassial tooth is best demonstrated by the right
P4, in which the thin delicate metastylar
blade, paracone, and parastyle remain largely
intact (the left P4 is slightly damaged). Lin-
gual to the parastylar cusp is a prominent
cuspid protocone (deuterocone), separated
from the shearing face of the tooth by a shal-
low depression. In hyaenids, the prominent
P4 protocone occludes with an enlarged heel
of p4 in the lower jaw, forming a mortar-and-
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TABLE 1
Cranial and Dental Measurements (in mm) of the mid-Miocene Hyaenids Tungurictis spocki Colbert,
Wolf Camp Quarry, Tung Gur Formation, Inner Mongolia, and Protictitherium gaillardi (Forsyth-Major),
La Grive, France

T. spocki P. gaillardi

AMNH 26600 MGL 1352
Basilar length 107.0
Basioccipital-basisphenoid length (34)
Preorbital length 43.1
Postorbital length 75.0
Palatal length 58.5
Palatal width across M1 parastyles 36.0
Width across mastoid processes 379
Toothrow length, I3 to M2 59.4
Toothrow length, C to M2 52.6 *56
Toothrow length, P1 to M2 42.9
Width, left I11-3 5.6
Length and width, right canine (7.3 x 3.0) *6.0 x 4.5
Length, right P14 37.0 *39
Greatest length and width, left P1 1.8 x 1.6
Greatest length and width, left P2 7.8 x —
Greatest length and width, left P3 9.4 x 4.5
Greatest length and width, left P4 (14.1) x 7.4
Greatest length and width, left M1 5.7 x 10.7 5.7 x (10.6)
Greatest length and width, left M2 (2.6 x 5.2) 3.3 x (5.0)
Greatest length and width, right P1 (1.8) x — *3
Greatest length and width, right P2 8) x — 7.6 x 3.1
Greatest length and width, right P3 9.4 x 4.5 9.5 x 4.7
Greatest length and width, right P4 147 x 7.4 13.9 x 7.9
Greatest length and width, right M1 5.1 x (10.5)
Greatest length and width, right M2 3.0 x5.2

() = estimated or alveolar measurement.
* = from Gaillard, 1899.

pestle crushing mechanism that is especially
developed in bone-crushing species.

The most striking aspect of P4 is its elon-
gate, bladelike character, quite different from
the short P4 in the small (<5 kg) late Miocene
hyaenid Plioviverrops orbignyi, yet reminis-
cent of the upper carnassial in the much larger
hyaenid Thalassictis wongii (fig. 9, for com-
parison of skulls of Tungurictis and Thalas-
sictis).

Molars: Both right and left M1-2 are pres-
ent (fig. 8). M1-2 are both anteroposteriorly
narrow teeth, a trait that distinguishes them
from the wider M1-2 seen in Plioviverrops
orbignyi (Beaumont, 1969). In addition, M1-2
are triangular in occlusal view, with promi-
nent parastyle lobes. M1 is simple in form,
lacking a prominent cingulum, but has a small
paraconule and weak pre- and postcingula.
The left M2 is intact and indicates a tooth
anteroposteriorly narrower than in any other

small Miocene hyaenid, but not greatly dif-
ferent from the M2 of the holotype of Pro-
tictitherium gaillardi from La Grive.
Comparison of dental proportions with
those of the swift fox (Vulpes velox) shows
that Tungurictis spocki has relatively larger
carnassials and smaller molars. Despite its
small body size, premolars (P2-3) of the
Mongolian hyaenid are more robust, longer,
and thicker than those of the fox. The canines
of the hyaenid are larger and somewhat more
laterally compressed, judged by alveolar di-
mensions. The dentition of Tungurictis spocki
is distinguished by the shearing carnassials,
incipiently enlarged premolars, and promi-
nent canines as its primary features, and in-
deed this is the direction taken by later hyae-
nid dental evolution in many lineages, here
foreshadowed in a small fox-sized progenitor.
These same dental traits are found in the
Turolian hyaenid Thalassictis (fig. 9). In fact,
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Fig. 8. Upper dentition of the hyaenid Tungurictis spocki (AMNH 26600), Wolf Camp Quarry, Tung
Gur Formation, Inner Mongolia. Premolars are laterally compressed yet robust, the elongate upper
carnassial is specialized for shearing, with developed parastylar cusp and prominent protocone. Molars
are triangular with prominent parastylar lobe; M2 is much reduced and M3 is lost. The teeth are very
similar in morphology and proportion to those of the larger late Miocene hyaenid Thalassictis and the
contemporaneous mid-Miocene hyaenid Protictitherium gaillardi. Stereopair.

there is a particularly striking correspondence
in skull proportions, morphology, and dental
features between the late Miocene Thalassic-
tis and mid-Miocene Tungurictis, suggesting
that the Mongolian species is a plausible an-
cestor for the Thalassictis lineage. Tunguric-
tis spocki from Wolf Camp Quarry (zone
MNS) and Thalassictis wongi from Quarry 4
at Samos (zone MN12) are separated by about
5 million years.

Among small contemporaneous European
hyaenids, the upper dentition of T. spocki is
most similar to the upper dentition of the
holotype of Protictitherium gaillardi (For-
syth-Major, 1903) from La Grive (Gaillard,
1899; Viret, 1951).

ANTIQUITY OF THE HYAENID
AUDITORY PATTERN

The cranium of Tungurictis spocki dem-
onstrates that the typical hyaenid auditory
pattern was already well developed in small
fox-sized hyaenids of the Eurasian mid-Mio-
cene. True hyaenids of very small body size
(5 kg or less) are restricted to Miocene sites
in the Old World, and occur primarily as den-

tal remains. Some of these small Miocene
fossil species, such as Tungurictis spocki,
probably reflect the body size, general skull
form, and basicranial structure of the ances-
tral hyaenid stock. Later multiple radiations
of large, bone-crushing hyaenids of the late
Miocene, Pliocene, and Pleistocene are plau-
sibly derived from lineages of these small
hyaenids.

Prior to 1988, the hyaenid auditory pattern
had been identified and traced from the pres-
ent to the late Miocene (Hunt, 1987). No
skulls of mid-Miocene age that certainly pos-
sessed the hyaenid auditory region had been
described. In 1988 it became apparent to us
that Tungurictis spocki was, in fact, a small
hyaenid based on reinterpretation of its au-
ditory anatomy. Also, in the same year, Qiu
et al. (1988b) published photographs of a
small skull of mid-Miocene age from the
Tongxin Basin of China that preserves a
hyaenid bulla. These two skulls represent
widely divergent lineages within the Hyaen-
idae, and conclusively demonstrate the ex-
istence of the hyaenid bulla pattern in the
mid-Miocene.

At present, the oldest hyaenid auditory re-
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Fig. 9. Comparison of the crania of the hyaenids Tungurictis and Thalassictis, ventral view. Left,
Tungurictis spocki (AMNH 26600), Tung Gur Formation, Inner Mongolia; Right, Thalassictis wongii
(AMNH 20555), Quarry 4, Samos, collected by Barnum Brown, 1924. The close correspondence in
many features of skull, basicranium, and teeth suggests the possibility that Tungurictis is ancestral to

Thalassictis.

gion definitely attributable to the family be-
longs to the small cranium (about 15 cm bas-
ilar length) recently discovered in the Tongxin
Basin, described as Percrocuta primordialis
(Qiu et al., 1988b). Qiu and his colleagues
believe that Yinziling, the locality that pro-
duced the cranium, can be correlated with
European Neogene mammal zone MN6. Al-
though hyaenid dentitions are known in Eur-
asia from faunas as old as zone MN4b (Gins-

burg and Bulot, 1982), there are no known
skulls with intact basicrania that can be at-
tributed to Hyaenidae prior to zone MNG6.
We anticipate that once intact crania are dis-
covered from zones MN4 and MNS5, they will
possess the typical hyaenid auditory pattern.

Based upon the similarity in auditory
structure of the Percrocuta and Tungurictis
lineages, we conclude that the hyaenid au-
ditory pattern must have been present in their
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common ancestor. It is improbable that the
broad-skulled Percrocuta primordialis (MNG6)
is ancestral to Tungurictis spocki (MN8), be-
cause we regard the small Mongolian hyaenid
as more plesiomorphic in skull form and den-
tition. Therefore, the common ancestry of
these two lineages must exist prior to Euro-
pean mammal zone MN6 in the early Mio-
cene or earliest mid-Miocene of the Old
World.

Once Tungurictis is identified as a true
hyaenid, it is evident from Colbert’s (1939)
work that the mid-Miocene Tung Gur For-
mation (MN8) of central Asia has produced
two contemporaneous hyaenid lineages
widely divergent in adaptive type: the small
foxlike hyaenid Tungurictis spocki, and the
large bone-crushing Percrocuta tungurensis.
These two hyaenid species from Tung Gur
have achieved differences in body size, skull
form, and dentition approaching the maxi-
mal divergence documented in the family
during its Cenozoic history. Coexistence of a
small primitive carnivorous species along-
side a large highly derived bone-crushing form
indicates that hyaenid diversification was well
underway 13-14 million years ago in the mid-
Miocene of east Asia, and we can extend this
inference to Eurasia based upon the diversity
of hyaenid dentitions (Protictitherium, Mio-
hyaena, Percrocuta) known from the mid-
Miocene of Europe and Turkey.

TUNGURICTIS AND OTHER
EARLY HYAENIDS

Hyaenids first occur in Europe as rare den-
tal remains from European Neogene mam-
mal zone MN4b (Bézian: Ginsburg and Bu-
lot, 1982; Vieux Collonges: Mein, 1958) and
MNS (Pontlevoy: Stehlin, 1925). The earliest
appearance of hyaenids in Africa occurs at
Fort Ternan in Kenya where both Protictithe-
rium and Percrocuta are dated at about 14
Ma (MN6 or MN7, Schmidt-Kittler, 1987).
In Asia, the earliest record is a partial maxilla
referred to Protictitherium from the locality
of Songlinzhuang in eastern China, probably
MN4 or MNS (Li et al., 1983). None of these
first occurrences includes basicranial mate-
rial. Together, these records indicate that ear-
ly hyaenids were small carnivorans and were
widely distributed in Eurasia and Africa by

NO. 3030

14-15 Ma in the mid-Miocene (MNG6). By
the later mid-Miocene (MN8), Eurasian
hyaenids had achieved a remarkable diver-
sity, evidenced by the association of small
fox-sized and large bone-crushing species at
Wolf Camp Quarry in the Tung Gur For-
mation, and in deposits of equivalent age
elsewhere in Eurasia.

Three hyaenid genera are currently recog-
nized in the MN4-MNS8 interval in Eurasia:
Protictitherium, Percrocuta, and Miohyaena,
all named by Kretzoi in 1938. Protictitherium
is recognized by its plesiomorphic dentition,
the least specialized among mid-Miocene
hyaenids, in which the premolars are not en-
larged for crushing, the second upper and
lower molars are present, and the small lower
carnassial (Iess than 15 mm in length) retains
the metaconid and a developed talonid. In
contrast, Percrocuta is characterized by the
earliest development of a durophagous den-
tition among Hyaenidae: enlarged robust pre-
molars; reduction of the molars (M1 is small;
M2 and m2 are lost); the lower carnassial is
without its metaconid and the talonid is ru-
dimentary; the dp4 has a strong metaconid
and a small, narrow talonid fused to the tri-
gonid (Schmidt-Kittler, 1976: 48). Miohyae-
na has also developed similar specializations
of premolars and molars that herald a crush-
ing hyaenid dental pattern, but these features
are not as advanced as in contemporary Per-
crocuta.

Because Tungurictis spocki retains a ple-
siomorphic dentition and skull form, and does
not show the enlarged premolars or reduced
molars found in Percrocuta and Miohyaena,
it is comparable only to Protictitherium. At
present, Protictitherium includes four spe-
cies: P. intermedium Schmidt-Kittler 1976;
P. cingulatum Schmidt-Kittler, 1976; P. gail-
lardi (Forsyth-Major, 1903); P. crassum (De-
peret, 1892). These species are chiefly differ-
entiated on dental features and size (they are
listed in order of increasing size). Referred
fossils are entirely dental or postcranial re-
mains: a skull of Protictitherium has not been
recognized.

Most fossils of Protictitherium are geo-
graphically distributed from western Europe
eastward to Asia Minor, the majority coming
from Spain (Crusafont-Pairo and Petter, 1969;
Petter, 1976), France (Ginsburg and Bulot,
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1982; Mein, 1958; Viret, 1951; Gaillard,
1899), and Turkey (Schmidt-Kittler, 1976;
Ozansoy, 1965). No more than a handful of
specimens are currently reported from east
Asia and Africa.

Recent studies of the European and Turk-
ish material demonstrate a number of fea-
tures of the teeth that characterize Protictithe-
rium: The lower carnassial from its earliest
(MN4b) occurrence has a form characteristic
of primitive hyaenids. The plesiomorphic
hyaenid (protictithere) m1 retains both tal-
onid and metaconid, in contrast to their re-
duction or loss in more dentally derived
hyaenids. A tricuspid trigonid is dominated
by a tall protoconid, the paraconid is robust,
and a prominent metaconid is situated di-
rectly internal to the protoconid. The talonid
is commonly well developed, and has ento-
conid, hypoconid, and hypoconulid cusps that
together form a raised posterior margin di-
agnostic of plesiomorphic hyaenid carnassi-
als. In most species the entoconid is taller
and more developed than the hypoconid: in
the genoholotypic species, P. crassum (MGL
1344), the large m1 entoconid is just a some-
what smaller replica of the metaconid. A bas-
al cingulum is developed on the external face
of m1 trigonid, and it is particularly promi-
nent at the base of the paraconid. Two upper
and two lower molars are always present. In
species where M2 is known, it is nearly oval
in occlusal outline, anteroposteriorly broad,
not narrow as in Tungurictis. The upper car-
nassial is a well-developed shearing tooth with
anteriorly placed robust protocone that oc-
cludes with the heel of p4. The premolars are
not converted to widened crushing teeth, re-
maining relatively laterally compressed.

As various hyaenid lineages (Percrocuta,
Miohyaena, Adcrocuta, Dinocrocuta, Pachy-
crocuta) developed durophagous dentitions
in the mid- and later Cenozoic, the plesio-
morphic protictithere tooth pattern under-
went modification: the talonid and metaco-
nid of m1 were gradually lost, the protoconid
and paraconid become aligned to form a
shearing blade, and the premolars became
enlarged robust crushing teeth. M2 and m2
are lost from the dentition, and M1 becomes
much reduced.

The species of Protictitherium, from the
earliest to the most recent, are noted for con-
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spicuous emphasis of the m1 entoconid rel-
ative to the hypoconid (Ginsburg and Bulot,
1982; Schmidt-Kittler, 1976). Commonly,
both entoconid and metaconid are strongly
developed in tandem in most species of Pro-
tictitherium. However, Schmidt-Kittler
(1976) remarked on the lack of development
of the m1 entoconid in one particular species,
P. gaillardi (Forsyth-Major, 1903). Through
the courtesy of M. Phillipe, the senior author
has been able to examine the holotype palate
(MGL 1352) and lower jaws (MGL 1353) of
this species in the Lyon Museum, and con-
firms that the entoconid is not developed,
and is, in fact, about the same height as the
hypoconid. In addition the m1 trigonid is
emphasized, and the talonid is quite small.
Very little is known about the amount of vari-
ation in the La Grive population from which
the type was drawn (Viret, 1951). However,
because the developed entoconid and talonid
are so widespread among other species of the
genus, including forms of the same body size
(Pontlevoy: Stehlin, 1925: fig. 13, #141) as
the holotype of P. gaillardi, there is reason
to suggest that P. gaillardi may represent a
separate lineage of small hypercarnivorous
hyaenids distinct from those lineages of Pro-
tictitherium with developed m1l entoconid
(including the holotype species of Protictithe-
rium, P. crassum [Deperet, 1892], based upon
MGL 1344, 1346, 1347).

Direct comparison of the holotype palate
(MGL 1352) of Protictitherium gaillardi with
the palate of Tungurictis spocki demonstrates
a degree of similarity between these two rel-
atively hypercarnivorous early hyaenids—
more so than previously believed. Schmidt-
Kittler (1976) has briefly discussed a com-
parison of the P4 and M1 of these two species,
apparently based upon Colbert’s (1939: fig.
14) illustration of these teeth in Tungurictis.
The M1 in Colbert’s figure appears to have
a backwardly directed parastylar lobe which
was viewed by Schmidt-Kittler as a peculiari-
ty of the genus. In fact, this area of the tooth
is broken, and if the M1 of the opposite side
is examined, its parastylar region is normally
developed and identical to the M1 of P. gail-
lardi from La Grive. However, although the
upper carnassials are very similar in size and
general form, the P4 of Tungurictis is thinner
and more bladelike than the P4 of P. gail-
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lardi. Also, the M2 of the La Grive carnivore
is anteroposteriorly wider than the same tooth
in the Mongolian animal. Despite these dif-
ferences, the remaining correspondences in
the upper dentition indicate that there is a
definite relationship between these two small
hyaenids that can be expressed by inclusion
in a single genus.

Thus we believe that (1) Tungurictis Col-
bert 1939 is a junior synonym of Protictitheri-
um Kretzoi 1938; we conserve Tungurictis as
a subgenus of Protictitherium for hypercar-
nivorous species of small Asian protictith-
eres; (2) the Mongolian skull of Tungurictis
provides us with our first glimpse of the skull
form and basicranial anatomy of the early
hyaenid Protictitherium; (3) the Mongolian
T. spocki is placed in the subgenus, Protic-
titherium (Tungurictis), distinguished by a
more hypercarnivorous dentition in which
the upper carnassial is extremely thin and
bladelike, and the M2 is anteroposteriorly
narrow and reduced in size relative to P. (Pro-
tictitherium);, although the lower carnassial is
unknown, we predict that the entoconid is
not emphasized over the hypoconid, and the
talonid is reduced in size relative to the tri-
gonid; (4) the subgenus Protictitherium (Pro-
tictitherium) is created for those more typical
early hyaenids, including the type species P.
crassum (Deperet), with a more hypocarniv-
orous dentition in which the m1 entoconid
is emphasized over the hypoconid, and the
m1 talonid is not reduced in size relative to
the trigonid. Species in this subgenus include
crassum (Deperet), intermedium Schmidt-
Kittler, and cingulatum Schmidt-Kittler.
Many specimens classified as P. gaillardi (e.g.,
P. aff. gaillardi Schmidt-Kittler, 1976; gail-
lardi form A, Crusafont-Pairo and Petter,
1969) in fact have well developed m1 ento-
conids, hence belong in this group, and differ
from the holotype of P. gaillardi from La
Grive. The placement of the holotype of P.
gaillardi remains problematic; some workers
have argued that P. gaillardi and P. crassum
are synonymous (Ginsburgetal., 1981), how-
ever, the morphological differences between
the holotype lower dentitions of these two
species from La Grive aré hard to reconcile
with such a conclusion. Even if one disre-
gards size, the small m1 talonid with weak
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entoconid, and low p4 of P. gaillardi and the
developed m1 talonid with strong entoconid
and robust taller p4 of P. crassum exceed the
degree of morphological variation permitted
in a single contemporaneous species.

Several predictions follow from the fore-
going conclusions: the skull and basicranial
structure of European or African Protictithe-
rium, when eventually discovered, will be
similar if not identical to the skull and basi-
cranium of Tungurictis; a similar digitigrade
postcranial anatomy also will probably be
shared by the small mid-Miocene proticti-
theres of the Old World, based upon the ev-
ident correspondence among presently known
European Miocene hyaenid postcranials and
the hindfeet of Tungurictis spocki described
here for the first time.

DIGITIGRADE STANCE IN
MIOCENE HYAENIDS

Postcranial bones of Miocene hyaenids
were reported as early as 1861 by Albert
Gaudry from his excavations at Pikermi
where they were associated with, or could be
attributed to, hyaenid dentitions and skulls
in the deposits. He was able to distinguish
postcranial bones belonging to three separate
lineages of late Miocene hyaenids, ranging
from the tiny foxlike Plioviverrops orbignyi,
the mid-sized Ictitherium viverrinum, to the
large durophagous Adcrocuta eximia. These
Pikermi hyaenid skeletons were illustrated
and described by Gaudry in 1862-63. The
insight into hyaenid postcranial traits pro-
vided by Gaudry’s discoveries at Pikermi,
published only a few years after Darwin’s Or-
igin, was remarkable for its time, particularly
in its demonstration of the digitigrade stance
of all three late Miocene hyaenid lineages,
despite their pronounced dental and cranial
diversity.

A humerus and five articulated hindfeet of
Ictitherium viverrinum from Pikermi indi-
cated a cursorial, digitigrade animal with par-
axonic foot and only limited ability to pro-
nate/supinate the forelimb, paralleling the
living canids. A narrow distal humerus
showed little development of attachment ar-
eas for extensor/flexor muscles of the carpus;
the paraxonic hindfoot contained long, slen-
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der metatarsals 3—4, flanked by slightly short-
er but slender metatarsals 2 and 5—the first
metatarsal and its digit were reduced.

The large Pikermi Adcrocuta, the size of
the living spotted hyaena, also possessed a
cursorially adapted forelimb in which pro-
nation/supination was greatly restricted. Its
feet were also paraxonic and digitigrade, with
reduction of the first digit in both fore- and
hindfoot (the first metacarpal and metatarsal
are reduced to small bony elements). In many
carnivorans, including Ictitherium and Plio-
viverrops, the metacarpals are shorter than
the metatarsals, indicating a short forefoot
and longer hindfoot, but in Adcrocuta eximia
the metacarpals are equal in length to the
metatarsals as in living hyaenids.

Limb and hindfoot bones of Plioviverrops
orbignyi show proportions like those of Ic-
titherium viverrinum in which the forelimb is
somewhat shorter than the hindlimb. Pliovi-
verrops from Pikermi is long-footed, digiti-
grade, with elongate tibia, hence a lengthened
hindlimb. Subsequent to the Pikermi discov-
eries, Gaudry (1873) reported a small car-
nivoran metatarsus from the late Miocene of
Mont Léberon, France, which he attributed
to Plioviverrops, but it was not until Pilgrim’s
(1931) summary of the Pontian Carnivora of
Europe that associated cranial and postcra-
nial remains of this genus were made known.

In 1931, Guy Pilgrim reviewed Pikermi
carnivorans, including hyaenids, in the col-
lections of the British Museum (N.H.). Among
this material was an associated partial skel-
eton of Plioviverrops orbignyi that included a
skull, mandible, radius, four metacarpals, and
the greater part of the left hindlimb with tar-
sals and metatarsals. Pilgrim was able to
compare the length ratio of metacarpal
4/metatarsal 4 in this associated skeleton with
this same ratio in a number of living and
extinct carnivorans. These ratios confirmed
Gaudry’s observation that the forefoot of
Plioviverrops is short relative to the hindfoot.
Among these postcranials was a digitigrade
hindfoot and three forefeet, none of them
showing a first digit, hence Pilgrim (1931: 89)
presumed it was absent in both the fore- and
hindfeet of Plioviverrops.

Until 1969, the postcranials of Protictithe-
rium in association with teeth were poorly
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known, however Crusafont-Pairo and Petter
(1969) reported upper jaws in association with
a partial postcranial skeleton of P. crassum
from Can Llobateres II (early late Miocene)
in Spain. These postcranials indicate that the
holotype species of Protictitherium was dig-
itigrade, having long, slender metapodials,
with five digits on the forefoot (digit 1 re-
duced), and only four on the hindfoot. Their
description makes clear that a digitigrade
stance was common to not only the late Mio-
cene lineages from Pikermi but also this Pro-
tictitherium from Spain.

Additional postcranial material of mid-
Miocene Protictitherium has been found in
Turkey (Schmidt-Kittler, 1976). The locality
of Candir (MN6) produced postcranials of
two sizes: the smaller bones were attributed
to P. intermedium (its distal humerus sug-
gests a small cursorial carnivoran); the larger
postcranials were assigned to P. aff. gaillardi,
including a partial left hindfoot. These post-
cranials are not directly associated with teeth:
they are referred to these species of Protic-
titherium on the basis of size correspondence.
Although not fully described, the bones that
are illustrated indicate small carnivorans with
a cursorial digitigrade stance as in P. crassum.

Thus mid- and late Miocene hyaenid post-
cranials belonging to four genera indicate that
digitigrady and a cursorial habitus were com-
mon attributes of hyaenids in the Miocene,
and therefore a digitigrade limb skeleton must
have been achieved early in the evolution of
the group. Whether this occurred once in a
common ancestor, or whether it was inde-
pendently attained in multiple lineages, re-
mains to be explored.

THE HINDFOOT OF
TUNGURICTIS SPOCKI

A nearly complete articulated left hindfoot
and a right metatarsus with two accompa-
nying digits (AMNH 99146) collected in 1930
from Wolf Camp Quarry can be assigned to
Tungurictis spocki on the basis of size and
anatomical structure (fig. 10, table 2). These
hindfeet indicate a digitigrade stance and very
likely belong to a single individual (they cor-
respond in size and structure), having been
found about 1 cm apart in the quarry.
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Fig. 10. Digitigrade paraxonic hindfoot
(AMNH 99146) of Tungurictis spocki, Wolf Camp
Quarry, Tung Gur Formation, Inner Mongolia. A,
plantar view of left tarsus and proximal metatar-
sals 3, 4, and 5 in same block of matrix with prox-
imal (pp) and intermediate (ip) phalanges of the
right hindfoot (s, sesamoid); B, dorsal view of left
tarsus, metatarsus, and digits 2, 3, and 4. Digit 2
includes proximal, asymmetric intermediate, and
ungual phalanges (up). Note also asymmetric in-
termediate phalanx of digit 3. ¢, calcaneum; as,
astragalus; na, navicular; cu, cuboid; ec, ectocu-
neiform; ef, facet on navicular for entocuneiform.

Nearly the entire left hindfoot is preserved
in articulation, and includes the calcaneum,
astragalus, navicular, cuboid, ectocuneiform,
metatarsals 2, 3, 4, 5 (metatarsal 3 is missing
a short section of its diaphysis, and the distal
part of metatarsal 5 is lost), proximal pha-
langes of digits 2, 3, 4, intermediate phalan-
ges of digits 2-3, and the ungual phalanx of
digit 2. The left tarsus is lacking only the
meso- and entocuneiform bones.

Reduction of digit 1 of the hindfoot was
already initiated in Tungurictis, although it
may not have progressed as far as in modern
hyaenids. Despite the articulation of meta-
tarsals 2-5 in both right and left hindfeet,
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TABLE 2
Measurements (in mm) of the Hindfoot (AMNH
99146) of the mid-Miocene Hyaenid Tungurictis
spocki Colbert, Wolf Camp Quarry, Tung Gur For-
mation, Inner Mongolia

Length, calcaneum 25.0
Length, astragalus 13.7
Width, astragalar trochlea 10.1
Length, cuboid 9.8
Length, navicular, dorsal 4.4
Length, navicular, plantar 6.5
Width, navicular 6.1
Length, ectocuneiform 5.8
Length, metatarsal 2 (left) (37.9)
Length, metatarsal 4 (left) 43.6
Length, proximal phalanx, digit 4 15.0
Length, proximal phalanx, digit 3 15.0
Length, intermediate phalanx, digit 3 11.4
Length, proximal phalanx, digit 2 12.9
Length, intermediate phalanx, digit 2 8.9
Length, ungual phalanx, digit 2 9.5
Length, isolated ungual phalanx 9.3
Length, metatarsal 2 (right) 37.0
Length, metatarsal 3 (right) 43.3
Length, metatarsal 4 (right) 44.2
Length, metatarsal S (right) 37.8

() = estimated.

there are no first metatarsals preserved with
this material, and the proximal metatarsal 2
presents a flattened surface for application of
the entocuneiform and reduced first meta-
tarsal. In the same block of matrix that con-
tains the articulated left hindfoot is an iso-
lated ungual phalanx, situated 6 mm from
the diaphysis of metatarsal 4. This is certainly
an ungual phalanx of this same individual,
although it is not possible to decide to which
foot it belongs. Also, two associated digits
occur in this same block only 1 cm from the
articulated left tarsus: each of these two digits
is made up of the proximal and intermediate
phalanges, but ungual phalanges are missing
(a single sesamoid is in place at the proximal
end of the longer digit). Because the inter-
mediate phalanges are asymmetric, they
demonstrate that these two digits belong to
a right foot.

A right metatarsus occurs separately from
the articulated left hindfoot but has been
placed under the same catalog number
(AMNH 99146). Metatarsals 2 through 5 are
articulated as in life and must have been unit-
ed by connective tissue at the time of burial.
At the distal end of these metatarsals is a
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jumble of sesamoids. Significantly, this meta-
tarsus can be manually articulated with the
proximal phalanges of the two digits lying in
matrix next to the articulated left hindfoot.
The best registration of these digits is with
metatarsals 4 and 5. Thus the right and left
hindfeet probably occurred in matrix within
1 cm of each other in Wolf Camp Quarry,
and almost certainly belong to the same small
carnivoran.

Tarsus: The tarsal bones are intermediate
in size between those of the swift fox (Vulpes
velox) and the North American red fox (Vulpes
vulpes). The calcaneum has three features that
indicate an early phase of cursorial adapta-
tion: (1) in plantar view the bone is long and
its distal portion remains as narrow as the
proximal part; (2) the plantar surface of the
sustentaculum is deeply grooved for the flex-
or hallucis longus tendon which ran parallel
and close to the long axis of the bone; (3) the
distal calcaneum below the sustentaculum is
somewhat elongated. In living cursorial ca-
nids, these three features are pronounced, and
the articulation between the calcaneum and
cuboid is nearly a flat plane oriented at nearly
aright angle to the long axis of the calcaneum.
Tungurictis has not yet developed the degree
of cursorial specialization in hindfoot struc-
ture seen in canine canids, and consequently
retains a slightly tilted articular surface be-
tween calcaneum and cuboid as found in most
aeluroid carnivorans.

The astragalus is more generalized in struc-
ture than the astragali of living canids and
felids. In these latter two groups the distal
neck of the bone is drawn underneath the
proximal trochlear head, contributing to a
more restricted fore-aft motion of the hind-
foot. In canids the two trochlear ridges are
nearly equally developed to produce a sym-
metrical pulley that constitutes a further spe-
cialization for such cursorial function. In liv-
ing felids the two trochlear ridges are
unequally developed as is the case in all ae-
luroids examined. Tungurictis spocki shows
unequal development of the trochlear ridges,
the medial ridge being only slightly elevated,
and in addition the distal neck of the bone is
not drawn in under the trochlea, and in this
respect is developed exactly as in living
hyaenids.

In cursorial canids the cuboid and navic-
ular are somewhat distally elongated, and the
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proximal surface of the cuboid that articu-
lates with the calcaneum is nearly planar.
Tungurictis lacks these cursorial specializa-
tions and has a more generalized cuboid and
navicular, which are very similar in form to
those of the domestic cat. In Tungurictis the
proximal surface of the cuboid is flat on its
lateral side, but mesially the surface is warped,
with an elevated posterointernal corner. It is
this elevated corner that produces a raised
internal margin on the distal articular surface
of the calcaneum, thus creating the inclined
or tilted cuboid-calcaneal articular surface.
The cuboid in living hyaenids is very similar
to the cuboid in the domestic cat, except that
in living hyaenids the groove for the tendon
of the peroneus longus muscle (that runs
transversely across the carnivoran tarsus to
attach to the head of metatarsal 5) is not es-
pecially deeply incised in the plantar surface
of the cuboid, whereas in most other carniv-
orans (including Tungurictis) this groove is
pronounced. A weakly defined groove is
characteristic of the living brown and spotted
hyaenas.

The navicular of Tungurictis is similar to
the navicular of Hyaena brunnea, yet differs
in details of its shape. The proximal surface
is typically concave to receive the neck of the
astragalus, and the posterointernal process of
the navicular that supports the most medial
part of the astragalar neck is long and well
developed as in the brown hyaena. Both the
plantar process of the navicular and its small
entocuneiform facet are positioned as in the
brown hyaena, but in Tungurictis the facet is
directed toward the plantar surface whereas
in the brown hyaena it faces distad. This facet
indicates that the entocuneiform and a prob-
ably reduced first metatarsal were present
(neither are preserved).

The form of the ectocuneiform is also very
similar to this bone in the brown hyaena. In
carnivorans the navicular rests upon the ecto-
and mesocuneiform bones, and the relative
size of these two elements is registered on the
underside of the navicular as two adjacent
facets. In Tungurictis the mesocuneiform fac-
et on the navicular is small in area (only the
impression of the mesocuneiform is pre-
served in matrix), somewhat smaller than the
same facet on the brown hyaena navicular,
suggesting that the mesocuneiform of the
Mongolian hyaenid is somewhat reduced, and
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in fact more similar in relative size and pro-
portion to the mesocuneiform of the domes-
tic cat. On this basis, we infer some degree
of proximal reduction in metatarsals 1-2 rel-
ative to metatarsals 3—4, presumably corre-
lated with development of a paraxonic hind-
foot.

Metatarsus: In shaft diameter and in the
size of proximal and distal ends, metatarsals
2 through 5 are intermediate between the swift
and red foxes but, in terms of length, the 7.
spocki metatarsals are somewhat shorter than
the metatarsals of either of these species. In
the swift and red foxes, length of metatarsals
3—4 relative to basilar skull length is 49.4%
and 50.2%, respectively; assuming that
AMNH 26600 (cranium) and AMNH 99146
(metatarsus) belong to the same individual,
this same ratio is only 41.3% in Tungurictis.

In the foxes, the shafts of the four meta-
tarsals are fitted tightly together—in fact the
sides of the metatarsals are flattened to fa-
cilitate this registration. In T. spocki the
metatarsals are appressed but the sides of the
shafts do not show the extreme degree of flat-
tening seen in the foxes.

The distal ends of the fox metatarsals dis-
play sharp keels for articulation with the
proximal phalanges and sesamoids. In Tun-
gurictis the metatarsal keels are present but
not as well developed.

" In the foxes the proximal ends of the meta-
tarsals show very tight registration. We have
chosen not to separate the articulated meta-
tarsals of Tungurictis, hence some sediment
intervenes between the proximal ends, how-
ever it appears that registration is not as tight
as in the foxes, and is very similar to the
registration found in the domestic cat. In
structure and form of the proximal metatar-
sals, the small hyaenid is likewise similar to
the pattern observed in the domestic cat.

Important differences in the morphology
of the proximal metatarsals occur among liv-
ing hyaenids, Tungurictis, canids, and felids:

1. In living canids (subfamily Caninae) the
proximal end of metatarsal 3 is compressed
between the heads of metatarsals 2 and 4
when viewing the plantar surface of the hind-
foot. This is not an effect of body size because
this trait is found in both small (Vulpes velox)
and large (Canis lupus) living canids. This
metatarsal compression also appears in ex-
tinct early members of the family: an artic-
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ulated hindfoot attributable to the Mesocyon
lineage of early canids from late Oligocene
rocks of western Nebraska shows a com-
pressed metatarsal 3; the proximal end, how-
ever, is more robust and not as laterally com-
pressed as in living Caninae.

2. Living felids show a degree of metatarsal
3 compression similar to but not as extreme
as that of living canids.

3. The living hyaenids Crocuta crocuta and
Hyaena brunnea do not show compression
of the proximal metatarsal 3.

4. In Tungurictis spocki the proximal meta-
tarsals are most similar to those of living fe-
lids such as the domestic cat. However, this
is not necessarily a mark of close relationship
but more likely indicates that both the do-
mestic cat and the small Mongolian hyaenid
share an aeluroid foot slightly specialized for
a moderately cursorial digitigrade stance.

5. Living hyaenids show a very reduced
peroneal process on the proximal end of
metatarsal 5. However, a developed peroneal
process is plesiomorphic for Carnivora, and
Tungurictis still retains this process. Reduc-
tion of the process suggests a diminished at-
tachment of the peroneus brevis muscle, and
a lessened ability to evert the foot in living
hyaenids.

6. In canids the plantar edges of the ecto-
cuneiform and mesocuneiform bones that
surmount metatarsals 2 and 3, respectively,
are bladelike and compressed between the
cuboid and entocuneiform. In living hyae-
nids the ecto- and mesocuneiform bones are
more robust and their plantar margins are
not as compressed as in canids. This tarsal-
metatarsal compression is the morphological
expression of the close apposition of the
proximal metatarsals and distal tarsals in the
living Canidae.

7. Living canids possess a well developed,
blunt plantar process on metatarsal 2 that is
absent in living hyaenids, felids, and in Tun-
gurictis. It appears to be a specialization of
the canine hindfoot.

8. In living canids the cuboid and navicular
are slightly elongate tarsal elements. Their
length is correlated with an elongate meta-
tarsus. In a late Oligocene canid, however,
the cuboid, navicular, and metatarsals are not
elongated, nor are the proximal metatarsals
closely appressed, as in the living canine ca-
nids. The hindfoot has not developed the de-
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gree of elongation typical of the living species
of the family. In living hyaenids the cuboid
and navicular are not elongate, and Tunguric-
tis has cuboid and navicular bones of this
kind. Lack of tarsal elongation is clearly a
plesiomorphic state for Carnivora. Thus the
living canid hindfoot is specialized for cur-
sorial gait in its elongate tarsal and metatarsal
elements, the loss of digit 1, and the closely
appressed and strongly keeled metatarsals.

Phalanges: The proximal phalanges of the
hindfoot of Tungurictis reveal little worthy
of comment, except that the phalanges of
digits 3—4 are somewhat longer than the pha-
langes of digits 2 and 5. However, the inter-
mediate phalanges are of much interest be-
cause of their evident asymmetry. The degree
of asymmetry exceeds that seen in the same
phalanges of the spotted and brown hyaenas,
and is comparable to (but slightly less de-
veloped than) the asymmetry seen in the do-
mestic cat. As in the domestic cat, the inter-
mediate phalanges of digits 3 and 4 are longer
than the same phalanges of digits 2 and 5,
reflecting the paraxonic symmetry of the
hindfoot.

Because the metatarsals, and proximal and
intermediate phalanges of Tungurictis are
similar to those of the domestic cat, one might
expect to find comparable ungual phalanges
as well. On the contrary, the ungual phalanges
are about the same length, but lack the well-
developed bony hood and large proximal
plantar process for attachment of the flexor
digitorum profundus tendon found in living
felids with retractile claws (Gonyea and Ash-
worth, 1975). The ungual phalanges of Tun-
gurictis are very similar to those of the living
foxes, but are somewhat more laterally com-
pressed. Furthermore, the degree of asym-
metry of the intermediate phalanges of the
North American red fox is comparable to the
asymmetry observed in intermediate phalan-
ges of Tungurictis. We infer no significant
ability to retract the claws of the hindfeet of
Tungurictis beyond that found in the North
American red fox.

CONCLUSIONS

The small Mongolian aeluroid carnivoran
Tungurictis spocki Colbert, from the mid-
Miocene of Tung-Gur, long believed to be a
viverrid, is in fact a true hyaenid, based upon
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the structure of its auditory bulla, dentition,
and referred hindfeet. This small hyaenid was
less than 5 kg in body weight, about the size
of a swift fox (Vulpes velox), with hypercar-
nivorous dentition and digitigrade stance. It
presumably paralleled the New World foxes
in its ecological role.

The upper teeth of T spocki are most sim-
ilar to upper teeth of the small European
hyaenid Protictitherium gaillardi (Forsyth-
Major, 1903), from the mid-Miocene of La
Grive, France. However, the species of Pro-
tictitherium, including the genoholotypic P.
crassum (Deperet, 1892), are known only
from dentitions and postcranials; no basi-
crania or complete skulls have been discov-
ered. On the basis of the correspondence in
their upper dentitions, Tungurictis Colbert
1939 is regarded as a junior synonym of Pro-
tictitherium Kretzoi 1938. The Mongolian
cranium thus shows us for the first time the
skull form and basicranial structure of the
small hyaenid Protictitherium.

Protictitheriumincludes the oldest and most
plesiomorphic species of hyaenids, hence P.
(Tungurictis) provides insight into the cranial
structure of the ancestral hyaenid stock. We
separate Protictitherium into two subgenera:
P. (Protictitherium), based upon P. crassum
from La Grive, France, and P. (Tungurictis),
from the Tung Gur Formation of Inner Mon-
golia.

Skulls of small hyaenids (less than 5 kg
body weight) with intact well-preserved basi-
crania were previously known only from the
late Miocene Turolian faunas of Pikermi and
Samos (MN12, Plioviverrops orbignyi). Plio-
viverrops orbignyi appears to represent a relict
late Miocene lineage of tiny hypocarnivorous
protictitheres distinct from the more hyper-
carnivorous species that belong in Proticti-
therium. With the identification of Tunguric-
tis as a hypercarnivorous protictithere, we
now are able to recognize a second lineage of
small Miocene carnivorans with a hyaenid
auditory region. A third Miocene lineage of
small hyaenids in which the basicranium and
hyaenid bulla are preserved is represented by
the recent discovery of a small cranium from
zone MN6-equivalent rocks in China attrib-
uted to Percrocuta primordialis.

The conservative nature of the hyaenid ba-
sicranial pattern is indicated by the fact that
a typical hyaenid auditory region occurs in
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association with a different dental pattern in
each of these mid- to late Miocene genera
(Plioviverrops, Percrocuta, Protictitherium
[Tungurictis]). Furthermore, this evidence in
combination with the presence of hyaenid
dentitions in European rocks as old as zone
MN4b suggests that the hyaenid ancestor pre-
dates the mid-Miocene, and was probably an
early Miocene or late Oligocene species of
small body size and generalized aeluroid den-
tition, possessing the hallmark hyaenid bulla.
We further conclude that the typical hyaenid
auditory bulla evolved prior to the appear-
ance of hyaenid dental specializations for du-
rophagy (enormous carnassials and premo-
lars, reduced tubercular molars, broad skull,
wide palate), seen today in the living species
(Crocuta crocuta, Hyaena brunnea, H. hy-
aena), and in several extinct mid- and late
Cenozoic lineages.

The hindfoot of Tungurictis from Inner
Mongolia appears to be very similar in an-
atomical detail to hindfeet of protictitheres
found in Europe and in Turkey, suggesting
that a paraxonic digitigrade stance was an
early attribute of the family, evolving prior
to the development of specialized duropha-
gous dentitions, enlarged forequarters, and
elongate forelimbs found in living hyaenid
species. A small digitigrade paraxonic hind-
foot may be an ancient acquisition of hyae-
nids, perhaps in response to expansion into
more open environments during the Eurasian
early and middle Miocene. The slight asym-
metry of the median phalanges as seen in
foxes and in Tungurictis may represent a ple-
siomorphic character state preceding the ex-
treme phalangeal asymmetry and specializa-
tion of the ungual phalanges for claw
retractility typical of living felids.
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