
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln
Computer Science and Engineering: Theses,
Dissertations, and Student Research Computer Science and Engineering, Department of

4-2019

GAINDroid: General Automated Incompatibility
Notifier for Android Applications
Bruno Vieira Resende e Silva
University of Nebraska-Lincoln, bvrsilva1@gmail.com

Follow this and additional works at: https://digitalcommons.unl.edu/computerscidiss

Part of the Computer Engineering Commons, and the Computer Sciences Commons

This Article is brought to you for free and open access by the Computer Science and Engineering, Department of at DigitalCommons@University of
Nebraska - Lincoln. It has been accepted for inclusion in Computer Science and Engineering: Theses, Dissertations, and Student Research by an
authorized administrator of DigitalCommons@University of Nebraska - Lincoln.

Vieira Resende e Silva, Bruno, "GAINDroid: General Automated Incompatibility Notifier for Android Applications" (2019).
Computer Science and Engineering: Theses, Dissertations, and Student Research. 167.
https://digitalcommons.unl.edu/computerscidiss/167

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNL | Libraries

https://core.ac.uk/display/215160859?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscienceandengineering?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/258?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/142?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/computerscidiss/167?utm_source=digitalcommons.unl.edu%2Fcomputerscidiss%2F167&utm_medium=PDF&utm_campaign=PDFCoverPages

GAINDROID: GENERAL AUTOMATED INCOMPATIBILITY NOTIFIER FOR

ANDROID APPLICATIONS

by

Bruno Vieira Resende e Silva

A THESIS

Presented to the Faculty of

The Graduate College at the University of Nebraska

In Partial Fulfilment of Requirements

For the Degree of Master of Science

Major: Computer Science

Under the Supervision of Hamid Bagheri

Lincoln, Nebraska

April, 2019

GAINDROID: GENERAL AUTOMATED INCOMPATIBILITY NOTIFIER FOR

ANDROID APPLICATIONS

Bruno Vieira Resende e Silva, M.S.

University of Nebraska, 2019

Adviser: Hamid Bagheri

With the ever-increasing popularity of mobile devices over the last decade,

mobile apps and the frameworks upon which they are built frequently change.

This rapid evolution leads to a confusing jumble of devices and applications

utilizing differing features even within the same framework. For Android apps

and devices, representing over 80% of the market share, mismatches between the

version of the Android operating system installed on a device and the version

of the app installed, can lead to several run-time crashes, providing a poor user

experience.

This thesis presents GAINDroid, an analysis approach, backed with a class-

loader based program analyzer, that automatically detects three types of mis-

matches to which an app may be vulnerable across versions of the Android API

it supports. Unlike all prior techniques that focus on identifying a particular

problem, such as callback APIs issues, GAINDroid has the potential to greatly in-

crease the scope of the analysis by automatically and effectively analyzing various

sources of incompatibilities that may lead an app to crash at run-time. We applied

GAINDroid to 3,590 real-world apps and compared the results of our analysis

against state-of-the-art tools. The experimental results demonstrate its ability to

outperform the existing analysis techniques in terms of both the number and type

of mismatches correctly identified as well as run-time performance of the analysis.

iii

Table of Contents

List of Figures v

List of Tables vi

1 Introduction 1

2 Background 5

2.1 Android API Background . 5

2.2 API Compatibility Issues . 6

2.2.1 API invocation mismatch . 7

2.2.2 API callback mismatch . 8

2.3 Permission-induced Compatibility Issues 9

3 Approach 12

3.1 API Usage Extraction . 13

3.2 Database Construction . 14

3.3 Permissions Mapping . 15

3.4 Mismatch Detection . 15

4 Empirical Evaluation 22

4.1 Objects of Analysis . 23

4.2 Variables and Measures . 25

iv

4.2.1 Independent Variables . 25

4.2.2 Dependent Variables . 26

4.2.3 Study Operation . 26

4.3 Threats to Validity . 27

5 Results 28

5.1 RQ1: Accuracy . 30

5.2 RQ2: Real-World Applicability . 34

5.3 RQ3: Performance . 36

6 Discussion 41

7 Related Work 43

8 Conclusion and Future Work 48

Bibliography 51

v

List of Figures

2.1 Mismatch between app and device API level 7

3.1 Architectural Overview of GAINDroid 13

5.1 Scatter plot representing analysis time for compatibility checking of

Android apps using GAINDroid . 38

5.2 Number of classes loaded by GAINDroid and CiD when analyzing

real-world Android apps. 39

5.3 Amount of memory used by GAINDroid and CiD when analyzing

real-world Android apps. 40

vi

List of Tables

2.1 Types of mismatch . 5

4.1 Basic Characteristics of Objects of Analysis 24

5.1 Effectiveness and Efficiency of GAINDroid 29

5.2 Time comparison between GAINDroid 37

7.1 Comparing GAINDroid to the state-of-the-art of compatibility detection

techniques. 45

1

Chapter 1

Introduction

Android is the leading mobile operating system representing over 80% of the

market share [4]. The rapid rise of Android is largely due to its vibrant app

market [12], which currently contains nearly three million apps, with thousands,

are added and updated on a daily basis. Android apps are developed using an

application development framework (ADF) that ensures apps devised by a wide

variety of suppliers can interoperate and coexist in the same environment. An ADF

exposes well-defined application programming interfaces (APIs) that encapsulate

a series of commands that directly access resources from the Android operating

system and hardware. In this fashion, developers can devote their effort only

to develop apps using the provided APIs, instead of deeply understanding the

operating system or hardware.

The Android ADF evolves frequently, with hundreds of releases from multiple

device vendors since the birth of Android in 2008 [27]. Such a rapid evolution

witnessed in the Android ADF can lead to various incompatibilities in the Android

apps that target a specific version of the Android operating system but run on

older or newer versions of it. As a result, defects and vulnerabilities, especially

after ADF updates, have continued to plague the dependability and security of

the Android devices and their apps [54, 58]. A recent study shows that 23% of

2

Android apps behave differently after a framework update, and around 50% of the

Android updates have caused previously working apps to fail or rendered systems

unstable [45]. This type of dependability concern has been referred to as “death

on update” [33, 39, 36, 64, 47, 69].

In addition, the launch of Android ADF version 6 (API level 23) introduced

a dynamic permission system, which may lead to a new class of incompatibility

issues. In the prior versions, the permission system was entirely static, where

the user should grant permissions requested by an app during the app’s installa-

tion, otherwise the installation would be canceled. The new permission system

instead allows users to give permissions dynamically, allowing only the access

to resources he/she thinks is safe, at run-time [19]. There are two common ways

that compatibility issues can arise; (i) when an app targets an API level of 23 or

higher and it does not appropriately implement mechanisms to support run-time

dangerous permissions; and (ii) when any app using dangerous permissions is

targeting API-level of 22 or below and is installed on devices with the API-level of

23 or higher.

Recent efforts in the literature have studied compatibility issues [46, 67, 68].

However, existing compatibility detection techniques target only certain types of

APIs. For example, work by Huang et al. [46] only targets callback APIs related

lifecycles; generically identifying them requires significant manual labor [46] as

well as thorough inspection of incomplete documentations [68]. Approaches pre-

sented in [51, 44] also target misuse of the Android API. However, they specifically

target mismatched regarding API invocation. In other words, when an API method

is invoked within the code but the current Android platform does not support

the referred method. Problems related to the permission mechanism have also

been targeted [61, 60]. However, those techniques are specific for the interaction

3

between wearable apps with the same mobile app, only verifying if both apps

have shared the same set of permissions. Furthermore, none of the state-of-the-

art techniques consider incompatibilities due to the dynamic permission system,

introduced in Android level 23. Meanwhile, the state-of-the-art compatibility

detection techniques suffer from acknowledged frequent ’false alarms’, because

of the coarse granularity at which they capture API information. With the lack of

proper support for detecting compatibility issues, it may take a long time to isolate

and repair such issues. It has been shown that a large portion of faults reported

after an Android ADF release was not addressed for more than six months [65].

In this thesis, we present GAINDroid (General, Automated Incompatibility

Notifier for AndDROID), that automatically detects mismatches regarding the use

of Android APIs and the permission-induced compatibility issues. Unlike all prior

techniques that focus on identifying a particular problem, such as callback APIs

issues, our approach has the potential to greatly increase the scope of the analysis

by automatically and effectively analyzing three sources of incompatibilities that

may lead an app to crash at run-time.

We present results from experiments on 3,590 real-world apps (including

benchmark apps used to validate state-of-the-art tools), validating GAINDroid’s

ability in (1) effective perform compatibility analysis of Android apps, that many

of those reported issues cannot be even detected by the state-of-the-art analysis

techniques; and (2) outperforming other compatibility detection tools also in terms

of scalability. The rest of this thesis is organized as follows. Chapter 2 presents

essential background information about run-time errors in Android. Chapter 3

describes our approach to identify potential mismatches. Chapter 4 describes our

empirical evaluation. Chapter 5 answers the three research questions about our

approach. Chapter 6 provides an additional discussion of our results. Chapter 7

4

describes related work. Finally, chapter 8 discusses future work and concludes this

thesis.

5

Chapter 2

Background

In this section, we provide background information related to the Android API

and motivating examples that demonstrate the need for building a technique that

can effectively identify general API compatibility issues. We also describe three

types of API and permission-related compatibility issues, summarized in Table 2.1,

with illustrative examples.

Table 2.1: Types of mismatch

App Device
Mismatch type Abbr Compatibility level level Mismatch if
API invocation API Backward ≥ α < α app invokes API method

(App→ Android) Forward < α ≥ α introduced/updated in α
API callback APC Backward ≥ α < α app overrides API callback

(Android→ App) Forward < α ≥ α introduced/updated in α
Permissions PRM N/A ≥ 23 ≥ 23 app misuses runtime

Forward < 23 ≥ 23 permission checking

2.1 Android API Background

As of November 2018, there are 16 releases of the Android API and the most recent

is Android Pie (supporting API level 28) [38]. Each version contains new and

updated methods to improve performance and security, and to make new features

and resources available for developers so they can enhance the user experience of

6

the app. In this work, we mainly refer to each release of the Android API by its API

level (e.g., 26) rather than the associated name (Oreo) or Android version number

(8.0) [6]. Developers use the provided APIs to access the core functionalities of

the platform in order to create an application. Google strongly recommends that

developers specify the range of the API levels that it can support in the manifest

file or Gradle file by specifying a value for three specific attributes:

• minSdkVersion: The earliest level of the API supported by the app. If this

attribute is not set, the app can be installed on a device running any API

level.

• targetSdkVersion: The targeted level of the API, against which the app was

developed.

• maxSdkVersion: The most recent supported level of the API. According to

the Google documentation, declaring this attribute is not recommended [25]

but installing an older app on a newer device may still lead to unexpected

behavior [58].

2.2 API Compatibility Issues

As previously mentioned, incompatible API levels can cause run-time crashes in

Android apps installed on a device running a different level of the API than that

targeted by the app. Changes to the API are generally additive, so most such

crashes stem from a lack of backward-compatibility, where an app is targeting a

higher API level but, installed on a device running a lower one [25]. For example,

in Figure 2.1, in the spectrum of device SDK version, the app would work flawlessly

on devices with Android framework as the same astargetSdkVersion but, when

7

minSdkVersion targetSdkVersion

Mismatch

Method/Callback

Introduced

Device SDK

Version

maxSdkVersion

Method/Callback

Updated

Mismatch

Figure 2.1: Mismatch between app and device API level

installed on devices with older versions of the system (in the first red area), apps

would crash. However, despite Google’s assurances, there may also be issues with

f orward-compatibility when an app is installed on devices with a higher API level

than the app’s target (the second red area in Figure 2.1). If the app invokes a

method or overrides a callback introduced in a newer level of the API than that

supported by the device or removed in a newer level of the API than targeted by

the app, there would be a mismatch, which could potentially crash the app.

We divide these API incompatibilities into two types, as shown in Table 2.1:

invocation mismatches, where an app attempts to directly invoke an API method

that is not supported by the device; and callback mismatches, where an app

implements a callback method missing from the API level installed on the device,

which the Android system on the device will never invoke.

2.2.1 API invocation mismatch

Mismatches in an API method invocation are the simplest type of the API incom-

patibility. An app developed against a higher version of the API attempts to call a

method introduced somewhere between its target version and that installed on

the device, and the app crashes when the system cannot find the desired method.

8

1 @Override

2 protected void onCreate(Bundle b){

3

4 super.onCreate(b);

5 setContentView(R.layout.activity_main);

6

7 TextView text = findViewById(R.id.text);

8 // if (Build.VERSION.SDK_INT >= 23) {

9 text.setTextColor(resources.getColorStateList(

10 R.color.colorAccent , context.getTheme ()));

11 // } else { ... }

12 }

Listing 2.1: API Invocation Mismatch
1 public class CustomPreferenceFragment

2 extends PreferenceFragment {

3

4 @Override

5 public void onAttach(Context context) {

6 reinitializeData(context);

7 super.onAttach(context);

8 }

9 }

Listing 2.2: API Callback Mismatch

It also happens when an app developed against a lower version of the API may

crash on a device running a higher version if a method has been removed.

An illustrative example is shown in Listing 2.1. The app targets Android API

level 28, but its minSdkVersion is set to 21. Assuming that the app was installed

on a device with the specified minSdkVersion, it will crash on the invocation of

getColorStateList (lines 9-10), which was introduced in API level 23. One common

way to protect against this mismatch is to check the device’s API level at run-time,

as shown in the comment on line 8. This prevents the app from executing the call

on versions where it might be missing. However, developers could easily forget to

add or modify the check when updating an app, leaving the app vulnerable to a

mismatch.

2.2.2 API callback mismatch

The second type of mismatch works in the opposite direction, with calls initiating in

the Android system invoking callback methods overridden in the app. Listing 2.2

9

1 @Override

2 protected void onCreate(Bundle b){

3

4 super.onCreate(b);

5 setContentView(R.layout.activity_main);

6

7 // if (Build.VERSION.SDK_INT >= 23) {

8 // ActivityCompat.requestPermissions (...);

9 // } else {

10 Intent intent = new Intent(

11 MediaStore.ACTION_IMAGE_CAPTURE);

12 startActivity(intent);

13 // }

14 }

15

16 // @Override

17 // public void onRequestPermissionsResult (...)

18 // { ... }

Listing 2.3: Permissions Mismatch for app targeting Android API ≥ 23

shows a snippet adapted from the Simple Solitaire [22] app, where the API callback

onAttach(Context), introduced in API level 23, is overridden. However, the app is

also specified to run on devices with API level lower than 23, which would not call

that method. Thus, any critical actions (e.g., initialization of an object) performed

by the app in that method would be omitted, possibly leading to run-time crashes.

2.3 Permission-induced Compatibility Issues

With the release of Android 6 (API level 23), the Android permission system is

completely redesigned. If a device is running Android 5.1.1 (API level 22) or below,

or the app’s targetSdkVersion is 22 or lower, the system grants all permissions

at installation time [19]. On the other hand, for devices running Android 6.0

(API level 23) or higher, or when the app’s targetSdkVersion is 23 or higher, the

app must ask the user to grant dangerous permissions at run-time. According to

the Android documentation [5], the new run-time permission system encourages

developers to help users understand why an application requires the requested

dangerous permission.

10

Permission-induced incompatibility can also be divided into two general types

of mismatch: permission request mismatches, where an app targeting API level

23 or higher does not implement the new run-time permission checking; and

permission revocation mismatches, when an app targeting API 22 or earlier runs

on a device with API 23 or later and the user revokes the use of a dangerous

permission used by the app at run-time.

In the first scenario, an app is targeting an API level that is 23 or higher. How-

ever, it does not implement the new mechanism to handle requests for dangerous

permissions at run-time, which can cause the app to crash. Listing 2.3 illustrates

this scenario. The app may crash on line 12 where it attempts to use dangerous

permission it did not request. To prevent the mismatch, the app would need to

check the API version and request permissions at run-time (shown as comments

on lines 7-9) and implement onRequestPermissionsResult (line 16). More detailed

examples of the new run-time permissions system can be seen in the Android

documentation [5].

The second scenario is when an app targets API levels 22 or below, but is

installed on a device with Android API 23 or above–a f orward-compatibility issue.

In this scenario, the user must accept all dangerous permissions requested by the

app at install time, or the app will not be installed. However, in Android 6.0 (API

level 23) or higher, the user has the ability to revoke those permissions at any

time. If the user revokes any dangerous permission in the older app’s setting after

installation, the app would crash while trying to use that permission. This behavior

has been recurrently reported in real-world apps. AdAway [1], for example, tries to

access to external storage (such as an SD card) at run-time. If that permission is

revoked, the app crashes when it tries to load data from the storage mechanism.

In the next section, we outline our approach to detecting all three types of

11

mismatch–the two stemming from API invocations or callbacks and those arising

from the new run-time permissions system.

12

Chapter 3

Approach

In this thesis, we present a method for identifying the four types of API and

permission-based mismatches described in Table 2.1. Our approach is realized in

GAINDroid (General Automated Incompatibility Notifier for Android Applica-

tions), a static analysis tool capable of detecting all three types of incompatibility.

As depicted in Figure 3.1, our approach comprises four main components,

generating a list of mismatches from an app APK and a set of Android framework

versions. The Android frameworks passed as input range from API level 2 through

API level 28, collected using sdkmanager, provided in the Android SDK Tools to

view, install, update, and uninstall packages for the Android SDK [21].

The three intermediate steps each produce a distinct artifact used by the fourth:

• API Usage Extraction uses static analysis techniques to identify calls to API

methods, generating a usage report containing the call and data flow graphs

for the app.

• Database Construction builds an API database that includes all the API meth-

ods of the relevant API levels.

• Permission Mapping outputs a map from each dangerous permissions to the

API methods known to use that permission.

13

Figure 3.1: Architectural Overview of GAINDroid

• Mismatch Detection consumes each of those three artifacts and produces a list

of all API call or permissions mismatches detected in the app.

3.1 API Usage Extraction

The API Usage Extraction module generates call graphs with embedded instruction

graphs (for data flow analysis purpose) on each of its nodes a given decompiled

APK file. This call and data-flow graph provide information about all Android

API methods and callbacks invoked or overridden in the app, as well as any guard

conditions that might enclose such calls. These graphs are going to be further used

by the Mismatch Detector module.

In GAINDroid, this module is built upon Jitana [66], a high-performance

hybrid analysis tool for Android. Even though Jitana works directly on Dalvik

executable (dex) files such as those contained in an APK, we still need to per-

form APK decompilation to extract information such as needed permissions and

14

supported SDK versions from the decrypted manifest file. We modified Jitana

to work based on .dex files from the Android level 23, a choice that was made

based on the fact that this specific version was the first to introduce instructions to

handle run-time permissions. We also had to modify the static analysis framework

to perform inter-procedural analysis.

3.2 Database Construction

In Database Construction, we built an API database based on the Android APIs

from levels 2 to 28, available via the Android command line tool sdkmanager.

This tool enables us to download any available version of Android ADF. One of

the downloaded files is android.jar, which contains all the Android APIs from

the downloaded version. It can be opened and saved as a text document, which

will be parsed following the package.class name api name(parameters)return type.

This output represents all the Android APIs for a given Android version, in a

format that GAINDroid can read it, and then build the database. The database

is based on Hash Map, where the Android level is the key and its APIs are the

values. It is important to mention that the only intervention needed to update

GAINDroid to analyze a newer version of API levels, is to download its new

version via sdkmanager, parse it and paste the file on GAINDroid’s SDK folder.

The main purpose of building this module is to identify all the APIs that exist

within each level, and a key step in our approach is to verify if a given API method

is presented within the app’s minSdkVersion and targetSdkVersion range. Note

that while Google provides the list of APIs for each level, it does not include

hidden APIs that may be called internally by the APIs within the framework. It

is also important to have as many API levels involved because applications may

15

use different platforms as their minSdkVersion and targetSdkVersion. GAINDroid

parses the provided Android framework versions and stores them in a format that

can be statically analyzed by the API Usage Extraction component to generate the

list of APIs in each level and a method call graph for each API method.

3.3 Permissions Mapping

The Permissions Mapping component produces a map of API methods to the

dangerous permissions used by the Android framework during the execution of

that API method. To achieve this, we used PScout [34], an Android permission

mapping tool. We extended the latest official release of PScout to include new

mappings that would reflect the more up to date Android API levels. Pscout only

maps until Android level 22. Similar to the Android API database, permission

maps are constructed once and reused in the subsequent analyses. It is important

to mention that PScout mapping (regarding APIs) is already in the format that

GAINDroid can decode (the same as in Database Construction). Some manual

work will be necessary to update the mapping to newer Android versions. It

will consist of verifying Android’s official documentation, identifying new APIs

which can access sensitive data, and updating the current mapping adding the

new information, which should be in the same format used by PScout.

3.4 Mismatch Detection

The Mismatch Detection component analyzes the artifacts produced by API Usage

Extraction, Database Construction and Permission Mapping to identify both API-

related mismatches (API Mismatch Detector) and permissions-related mismatches

(Permissions Mismatch Detector). The Mismatch Detection component first checks for

16

API incompatibility issues (described in Section 2.2) using the following process to

detect both API invocation and callback mismatches:

Invocation mismatch: The detector uses Algorithm 1 to detect API invocation

mismatches in each data flow graph in a node in the call graph generated by

the API Usage Extraction module. If the current block represents an if statement

with a guard condition (line 2), the range of supported API levels is filtered by

extracting the minimum and maximum range from the guard and updating the

minimum and maximum supported levels (line 3). If the current block is a call to

an Android API method (line 4), we query the API database at each supported

level to determine whether the method called in the current block is defined in

the database (line 5-6). In case it is not defined, we add the current block to the

set of mismatches (line 7). In the case when the app calls a method which does

not belong to the Android API (line 8), we load and analyze this callee method

(line 9) to check if there are Android API invocations that may lead to run-time

issues. Finally, we reset the minimum and maximum supported API levels to

those defined in the app’s manifest at the end of each the conditional with a guard

condition (lines 10-11). It is important to notice that app.maxSdk represents the

most recent version of the Android API level in our database (currently API level

28).

GAINDroid can reliably detect Invocation mismatches because the API Usage

Extraction component performs path-sensitive, context-aware, and inter-procedural

data-flow analysis, which enables accounting for guard conditions on the sup-

ported versions across methods, missing in the other state-of-the-art techniques,

such as Lint and CiD.

To better understand how our approach identifies API invocation mismatches,

Listing 3.1 presents a code where GAINDroid performs path-sensitivity, context-

17

sensitivity, and inter-procedural analysis. It is crucial for our tool to identify when

the app forks, especially when it is conditioned to guard condition, like in line

14, indicating that the code of block between line 14 and 16 will only be triggered

under specific API levels. After decoding an instruction, we verify if it contains

a method call, a variable declaration, a condition, etc. This functionality is given

by the static analysis framework Jitana. Knowing that the decoded instruction

is an if statement (line 14), we parse it to extract its condition. GAINDroid

understand its condition as a guard condition because Build.VERSION.SDK INT

was decoded. We continue to parse the condition and extract >= and 23. At

this point, GAINDroid knows that the next instructions to be decoded are only

executed in Android version 23 or higher, and keeps this conditional information

as context. The next decoded instruction is line 15. GAINDroid understands

it as a method called by the app because its package is different from the ones

which are part of Android APIs (e.g., android/content/res/Resources). Because

our approach is also class-loader based and implements inter-procedural analysis,

we can efficiently load setText() to analyze it. After loading setText(), GAINDroid

starts analyzing it, but still preserving contexts (e.g., state in the caller method,

current variables and conditions). The decoding of line 2 returns setTextColor(),

getColorStateList(), colorAccent and getTheme(). GAINDroid understands that

setTextColor(), getColorStateList() and getTheme() are Android methods (they

are part of android package) and verifies if they are present in the database for

Android versions from 23 to 28, because we preserve the context that they are

executed (only if Build.VERSION.SDK INT >= 23). In this example, all the APIs

have been found in the API database. Otherwise, GAINDroid would generate

a warning, indicating that an API is not available within the searchable range

of APIS (e.g., from 23 to 28). Once the analysis of setText() is over, GAINDroid

18

Algorithm 1 Finding API mismatches
1: procedure FindApiMismatches(block, app)

. Input: Block from data flow graph, decompiled APK
2: if IsGuardStart(block) then
3: (minLvl,maxLvl)← GetGuard(block,minLvl,maxLvl)
4: else if IsApiCall(block) then
5: for each lvl in (minLvl..maxLvl) do
6: if ¬apidb.Contains(block,lvl) then
7: mismatches← mismatches ∪ {block}
8: else if IsMethod(block) then
9: mismatches← mismatches ∪ FindApiIn(block, minLvl, maxLvl)

10: else if IsGuardEnd(block) then
11: (minLvl,maxLvl)← (app.minSdk,app.maxSdk)
12: return mismatches

goes back to its original context (line 15), concluding the inter-procedural analysis.

When we decode line 16, which contains a special flag, indicating the end of the

path (end of the if statement), finishing the analysis of the first identified path.

Line 17 represents another path in the program, an else statement. Because it does

not have any conditions, GAINDroid negates the previous condition, transforming

Build.VERSION.SDK INT >= 23 to Build.VERSION.SDK INT < 23. All the

API calls inside the else statement are going to be verified if they exist from app’s

minSdkVersion to API level 22. The analysis of this new path works as the same as

described for the if statement, but with a different condition. GAINDroid can also

identify conditions for an else if statement.

Callback mismatch: The detector uses Algorithm 2 to detect API callback mis-

matches in each method within the call graph generated in API Usage Extraction

module. If the method in the call graph overrides an API callback (line 2), we

iterate over the API levels that the app declares to support and query the API

19

1 private void setText(TextView text){

2 text.setTextColor(resources.getColorStateList(

3 R.color.colorAccent , context.getTheme ()));

4 }

5

6 @Override

7 protected void onCreate(Bundle b){

8

9 super.onCreate(b);

10 setContentView(R.layout.activity_main);

11

12 TextView text = findViewById(R.id.text);

13

14 if (Build.VERSION.SDK_INT >= 23) {

15 setText(text);

16 }

17 else { ... }

18 }

Listing 3.1: Code exploring context-sensitive, path-sensitive and inter-procedural analysis of our
approach

database to determine whether the callback is defined within the entire range of

supported API levels (lines 4-5). This is the major difference from our approach

to prior research, such as Cider [68]. We consider all API callbacks in Android,

without any manual modeling of callbacks. Our approach is also easier to scale, in

terms of ability to detect APIs. We only need minimal manual work to support a

new Android API, as described in Section 3.2

It is important to mention that for this detector, Jitana, our static analyzer

framework, already gives a special flag to API callbacks methods. Therefore,

GAINDroid loops through those nodes in the graph, performing decoding and

API database search from minSdkVersion to maxSdkVersion, which is 28.

The second part of the Mismatch Detection component detects incompatibilities

Algorithm 2 Finding APC mismatches
1: procedure IsApcMismatch(method, app)

. Input: Method from call graph, decompiled APK
2: if IsApiOverride(method) then
3: for each lvl in (app.minSdk..app.maxSdk) do
4: if ¬apidb.Contains(method, lvl) then
5: mismatches← mismatches ∪ {method}
6: return mismatches

20

Algorithm 3 Finding PRM mismatches
1: procedure DetectPermissionMismatch(app, graph, permMap)

. Input: Decompiled APK, call/data flow graph, permission map

. Output: List of detected mismatches
2: dangerousPerms← GetDangerousPermsFromManifest(app)
3: if dangerousPerms = ∅ then
4: return ∅
5: callGraph← BuildCallGraph(app)
6: if app.targetSdkVersion ≥ 23 then
7: for each method in callGraph do
8: if OverridesOnRequestPermissionsResult(method) then
9: return ∅

10: return App does not implement runtime permission
11: for each method in callGraph do
12: dataFlowGraph← GetDataFlowGraph(graph, method)
13: for each block in dataFlowGraph do
14: for each perm in dangerousPerms do
15: if permMap.IsUsingPermission(perm, block) then
16: mismatches← mismatches ∪ {perm}
17: return mismatches

related to previous and the new run-time permissions system introduced in API

level 23. A unique capability to our approach. The logic of algorithm 3 that checks

permission-induced compatibility issues is as follows: First, extract dangerous

permissions from the app’s manifest (line 2). If there are no dangerous permissions

there is no risk of permission mismatches, as normal permissions are automatically

granted (lines 3-4). In case the app requests dangerous permissions, we get the

call graph from the API Usage Extraction component (line 5). If the app targets a

more recent version of Android (23 or higher), we check if the call graph contains

a method overriding onRequestPermissionsResult (lines 6-8). In case the app does

implement the new run-time permission system, there is no risk of mismatch (line

9). If after looping through all methods from the app, it did not implement the new

run-time system, we return an error message, indicating that developers should

21

implement this functionality to avoid run-time crashes. If app targets an API level

earlier than 23, the revocation of a dangerous permission could result in a run-time

crash. To detect dangerous permission usages, GAINDroid iterates through each

method in the call graph (line 11), retrieve the data flow graph for the method

(line 12) and check whether each block in the data flow graph uses any of the

dangerous permissions (lines 13-15). In case any dangerous permission is used,

add it to the set of mismatches (line 16). While checking if a block in the data flow

uses a dangerous permission, GAINDroid decodes the instruction, analyzes if it is

an Android API invocation, and checks in the mapping produced in Permission

Mapping (Section 3.3) if the API is used by any dangerous permission.

22

Chapter 4

Empirical Evaluation

This section presents the evaluation of GAINDroid. We have implemented GAIN-

Droid’s static analysis capability on top of the Jitana framework[66]. Jitana is a

high-performance hybrid analysis tool for Android. It works directly on Dalvik

executable (dex) files contained in each APK. We also use APKTool [28] to decom-

pile apks, thus accessing its manifest file and binaries As a result, our approach

implementation does not require the source code from apps, only their executables

(apk). GAINDroid, can be used not only by developers but also by end-users as

well as third-party reviewers to assess the compatibility of their mobile apps.

We further modified Jitana to decode dex files using Android version 6.0.0,

which is the version in which the new runtime permissions system is introduced.

We also extended Jitana to perform inter-procedural dataflow analysis, which

enabled us to detect more API related issues within different methods of an

Android app.

To evaluate GAINDroid, we conducted experiments to answer the following

research questions.

RQ1. Accuracy: What is the overall accuracy of GAINDroid in detecting

compatibility issues compared to the other state-of-the-art techniques?

RQ2. Applicability: How well does GAINDroid perform in practice? Can it

23

find compatibility issues in real-world applications?

RQ3. Performance: What is the performance of GAINDroid’s analysis to

identify sources of compatibility issues?

4.1 Objects of Analysis

In order to evaluate the effectiveness and efficiency of GAINDroid, we compared

GAINDroid against other state-of-the-art applications which utilize different

approaches to detecting API-related compatibility issues. The most closely related

works to ours are by Li et at. [51] (CiD) and by Huang et al. [46] (Cider). To make

the comparison as direct as possible, we used obtained the 7 benchmarks apps

(CiD-Bench) from [51] and the 20 apps (Cider-Bench) used in [46]. One of our

baseline system, Lint, requires building the apps from source code to perform

the compatibility analysis. Out of the 27 benchmark apps, eight apps cannot be

built; therefore, they are excluded from the analysis, leaving the total of 19 apps

used in our comparative study. Table 4.1 shows all benchmark apps, where apps

from 1 to 12 belongs to Cider-Bench and the remaining apps are from CiD-Bench.

The collection includes apps of varying sizes ranging from 10,400 to 294,400 lines

of Dex code and up to tens of thousands of methods. The benchmark apps both

support and target a variety of API levels, with minimum levels ranging from 10

to 21 and targets ranging from level 23 to 27.

We used the Android Studio version 3.1.3 to load and build all the benchmark

apps. However, we were unable to build eight apps from CiD-Bench. The initial

error was related to the Gradle plugin. The applications required to update to

a more recent version of Gradle. After updating the plugin, the apps generated

another error related to toolchains. We had a machine set up with all version of

24

Table 4.1: Basic Characteristics of Objects of Analysis

No. App
Name

Number of
Downloads

Rating KLoC Number of
Methods

minSdkVersion targetSdkVersion

1 AFWall [2] 500K+ 4.3 21.8 46184 15 23

2 DuckDuckGo [8] 1M+ 4.4 10.4 45049 21 27

3 FOSS Browser [10] 5K+ 4.2 18.0 10946 21 27

4 Kolab notes [13] 1K+ 4.1 73.4 34969 16 26

5 MaterialFBook [14] 10K+ 4.3 68.0 34526 17 27

6 Network monitor [16] 50K+ 4.3 20.8 43942 14 27

7 NyaaPantsu [17] - - 14.1 66249 21 27

8 Padland [18] - - 58.9 8713 14 26

9 PassAndroid [37] 1M+ 4.2 85.0 52696 14 25

10 Simple Solitaire [22] 10K+ 4.5 294.4 27782 11 25

11 SurvivalManual [23] 1M+ 4.7 49.4 35832 10 25

12 Uber ride [24] 100M+ 4.2 12.7 25610 14 26

13 Basic [46] - - 10.1 5099 10 25

14 Forward [46] - - 10.2 6201 10 19

15 GenericType [46] - - 12.4 5564 10 25

16 Inheritance [46] - - 11.2 6039 10 25

17 Protection [46] - - 10.9 5198 10 25

18 Protection2 [46] - - 10.8 5988 10 25

19 Varargs [46] - - 12.7 5876 10 25

Android but the error persisted. We then installed the development environment

in two laptops with a different operating system, but the error still persisted. Since

we are also comparing our approach to Lint, which requires building apps, those

eight apps were excluded from our analysis. We provide the basic characteristics

of the remaining 19 apps in Table 4.1. As shown, the collection includes apps of

varying sizes ranging from 10,400 lines of Dex code to 294,400 lines of Dex code

and tens of thousands of methods. The apps both support and target a variety of

API levels, with minimum levels ranging from 10 to 21 and targets ranging from

level 23 up to 27.

To further evaluate the applicability of our tool in practice, we collected a set of

real-world Android apps from two repositories of FDroid [9] and AndroZoo [32].

FDroid is a software repository that contains free and open source Android apps.

Our collection of subject systems includes all 1.391 apps available from the FDroid

repository. We also include 2,300 apps from AndroZoo, a growing repository of

Android apps collected from various sources, including the official Google Play

store [32]. We were unable to build 120 of the apps from AndroZoo so we excluded

25

them from our analysis, leaving 3.571 apps in total.

4.2 Variables and Measures

4.2.1 Independent Variables

Our analysis evaluates GAINDroid against other approaches which also perform

analysis of compatibility issues.

CiD represents a state-of-the-art in detecting Android compatibility issues. It

has been publicly released, and we are able to obtain the tool and compile it in our

experimental environment. We use it as the baseline system to answer RQ1 and

RQ3.

Cider is another state-of-the-art approach developed to analyze API compatibil-

ity issues. Unfortunately, it is not available in either source or binary forms at the

time of writing this article. As such, we rely on their results as reported in [46] to

answer RQ1 and RQ3.

Lint is a static analysis technique, shipped with the Android Development

Tools (ADT), to examine code bases for potential bugs, including incompatible API

usages. Lint performs the compatibility analysis as part of building apps, and

thus requires the app source code to conduct the analysis. We use Lint to answer

RQ1 and RQ3.

We also considered IctApiFinder [44] as a possible baseline technique.

IctApiFinder was introduced at about the same time as Cider. Unfortunately, the

tool is not publicly available and our attempts to contact the authors to request

access were unsuccessful. Therefore, we did not use it in our study.

26

4.2.2 Dependent Variables

As dependent variables, we chose metrics allowing us to answer each of our three

research questions.

To measure accuracy, we compare the number of detected compatibility issues

with known issues as reported by prior work [46, 51]. For each analysis technique,

we report true and false positives and false negatives thereof in detecting compat-

ibility issues of the apps under analysis. Lastly, we report precision, recall, and

F-measure for each technique.

To measure applicability, we report the number of detected compatibility issues

in real-world apps. Finally, to measure performance, we report the analysis

time and the amount of memory used by each of the analysis techniques, i.e.,

GAINDroid, CiD, and Lint.

4.2.3 Study Operation

To address RQ1 and RQ2, we executed GAINDroid, CiD, Cider and Lint once to

identify sources of API incompatibility issues, and verified how many API calls

were identified as problematic. To address RQ3, we performed this experiment

three times and measured the amount of time and memory needed to perform the

analysis of each app.

To perform this study we used a MacBook Pro running OS High Sierra version

10.13.3, with an 8GB memory and a 2.5GHz Intel Core i5. The performance times

we obtained were all recorded within this environment.

27

4.3 Threats to Validity

The primary threat to external validity in this study involves the object programs

utilized. In this work, we have studied a smaller set of benchmark programs

developed and released by prior research work [51, 46] so that we can directly

compare our results with their previously reported results. However, we also

extend our evaluation to employ over 3,590 complex real-world apps from other

repositories, which in turn enabled us to assess our system in real-world scenarios,

representative of those that engineers and analysts are facing.

The primary threat to internal validity involves potential errors in the implemen-

tations of GAINDroid and the infrastructure used to run CiD and GAINDroid.

To limit these, we extensively validated all of our tool components and scripts to

ensure correctness. By using the same objects as our baseline systems we can also

compare the results produced by our approach with those previously reported to

help with ensuring correctness.

The primary threat to construct validity relates to the fact that we study

efficiency measures relative to applications of GAINDroid, but do not yet assess

whether the approach helps software engineers or analysts address dependability

and security concerns more quickly than current approaches.

28

Chapter 5

Results

The results of our analysis regarding mismatch detection are summarized in

Table 5.1. For each of the 19 manually-inspected apps, we report the number of true

and false positives (represented asX� and �, respectively) reported by the approach

for that app for each category of mismatch (using the abbreviations introduced in

Table 2.1) as well as the number of false negatives (�), if an approach missed a

mismatch detected by another approach and verified by manual inspection. The

bottom of the table lists the precision, recall, and F-measure for each technique

to summarize the overall effectiveness. According to [42], precision expresses

the proportion of the data points that our model says was relevant actually were

relevant, for example, APIs classified as mismatch that are actually a mismatch.

Recall expresses the ability to find all relevant instances in a dataset, it means that,

the capability of finding every instance that is a mismatch. Finally, F-measure

is the harmonic mean of precision and recall, in other words, it is the optimal

blend of precision and recall. As reported by [41], it is important to have more

robust metrics such as the ones mentioned above because they are more suitable

for dealing with results such as true positives, false positives and false negatives.

2
9

Table 5.1: Effectiveness and Efficiency of GAINDroid

GAINDroid CiD Cider Lint

App API APC PRM API APC PRM API APC PRM API APC PRM

C
id

er
-B

en
ch

AFWall+ X�(9) X�(7) �(9) - - X��(6) - X�(1)�(8) �(7)
DuckDuckGo � �(3) - - X� - �
FOSS Browser X�(7) X� �(4) - � - �(7) - �(3)�(7) �

Kolab notes X�(3)�(9) X� X�(3)�(13) - � - � - �(3) �
MaterialFBook X�(11)��(3) X�(14)�(17) - - - �(14)

NetworkMonitor X�(5) - - �(5) - �(5)
NyaaPantsu X�(12) - - �(12) - �(12)

Padland � �(4) - - X� - �(2)�
PassAndroid X�(9) X�(3) �(9) - - �(3) - �(9) �(3)

SimpleSolitaire X�� X�(2) X��(10) - - X�� - � �(2)�(2)
SurvivalManual �(19) - - -

Uber ride X�(4) �(2) - - X�(4) - �(1)�(4)

C
iD

-B
en

ch

Basic X� X� - - - - �
Forward X� X� - - - - �

GenericType - - - -
Inheritance X�(2) X�(2) - - - - �(2)
Protection X� X� - - - - �

Protection2 X� X� - - - - �
Varargs X�(2) X�(2) - - - - �(2)

Precision: 79% 100% 100% 27% - 0% - 89% - 100% 0% 0%
Recall: 93% 95% 100% 59% - 0% - 19% - 2% 0% 0%
F-Measure: 85% 98% 100% 42% - 0% - 31% - 4% 0% 0%

30

In order to demonstrate the efficiency of each tool, we reported the analysis

time for each approach against all the 19 benchmark apps. Table 5.2 shows those

results, along with the maximum, minimum and average time to evaluate an app.

It is important to notice that all the unit of measurement is in second.

5.1 RQ1: Accuracy

For RQ1, we evaluated the ability of our tool to find API invocation and callback

mismatches by comparing against CiD [51] ,Cider [46] and Lint [3]. We divide

the results into two parts, API invocation and callback mismatches, respectively.

API Invocation: We first start utilizing the 12 apps that we were able to built

from [46] and applying GAINDroid, CiD and Lint to them.

As shown in Table 5.1, our approach reports less false positives and more true

positives than CiD and Lint.

Our approach and Lint were able to analyze all the 12 apps, while CiD did not

halt for 4 apps (AFWall, NetworkMonitor, NyaaPantsu and PassAndroid).

Comparing against CiD, GAINDroid shows much higher precision and compa-

rable recall, contributing for than double of F-Measure. CiD has a slightly higher

recall because the aforementioned tool finds less false negatives than GAINDroid.

However, GAINDroid identifies less false positives than CiD. Thus, contributing

to higher precision. The tool Lint has higher precision than GAINDroid because

it has found no false positives (but only one true positive). However, it has found

many false negatives, corroborating for lower recall. Its F-Measure is 19 times

lower than GAINDroid. After this analysis and based on a higher F-Measure

compared to CiD and Lint, it is possible to conclude that GAINDroid indeed

better in finding API invocation mismatches, with a convincing number of true

31

positives and lower false positives and false negatives. Below we describe the

reasons that our approach found false positives and false negatives.

The apps Kolab notes, MaterialFbook and SimpleSolitaire are examples of false

positives and false negative, respectively. In the first app, the false positive happens

because of the invocation of getFileName() in method onBindViewHolder(ViewHolder,

int) from class AttachmentRecyclerViewAdapter. It is a call to a method which

belongs to an external library. Jitana understands this method as being part of

the API, searches for it in the database and does not fin it. Therefore, generating a

false positive. We would have to identify in the static analysis framework, why

this error happens while decoding certain instructions. In the second app, The

false positive happens because a correctly guarded call to an Android API (line

27 and 29) in a private method in the MainActivity class is made from inside

an anonymous class (line 8), as shown in Listing 5.1. Finally, the false positive

in SimpleSolitaire is due to an error while decoding the instruction by the static

analysis framework. Jitana incorrectly identified a call to Checkable.setChecked,

which has been in the stack of Android frameworks since version 1, as a call to

TwoStatePreference.setChecked, which was introduced in API level 14. The false

negative happens because of the invocation of getUrl() in method onCreate from

class MainActivity of app MaterialFBook. The API is triggered by a method inside

an anonymous class. The decoding of anonymous class is a challenge that will

definitely improve our results once implemented. However, due to time limitation,

the identification of anonymous classes will be left as future work. Furthermore, the

reason that Lint yield many false negatives is because it does not analyze methods

with the annotation @TargetApi or SuppressLint. For example, app PassAndroid

utilizes the mentioned annotation in the method doPrint in class PrintHelper. The

method uses android.print.PrintManager which was introduced only in API level 19.

32

1 @Override

2 public boolean onCreateOptionsMenu(Menu menu) {

3 ...

4 notif.setOnClickListener(new View.OnClickListener () {

5 @Override

6 public void onClick(View v) {

7 if (Build.VERSION.SDK_INT >= Build.VERSION_CODES.LOLLIPOP)

8 circleReveal(v);

9 mWebView.loadUrl(baseURL + "notifications.php");

10 setTitle(R.string.nav_notifications);

11 Helpers.uncheckRadioMenu(mNavigationView.getMenu ());

12 NotificationsJIS.ClearbyId(MainActivity.this , 1);

13 }

14 });

15 ...

16 return true;

17 }

18

19 @SuppressWarnings("NewApi")

20 private void circleReveal(int viewID , final boolean show) {

21 final View v = findViewById(viewID);

22

23 int cy = v.getHeight () / 2;

24

25 Animator anim;

26 if (show)

27 anim = ViewAnimationUtils.createCircularReveal(v, v.getWidth (), cy , 0,

v.getWidth ());

28 else

29 anim = ViewAnimationUtils.createCircularReveal(v, v.getWidth (), cy , v.

getWidth (), 0);

30

31 ...

32

33 anim.start();

34 }

Listing 5.1: Perfectly guarded API invocation but identified as false positive

However, the app minSdkVersion is 14, then the aforementioned method can fail in

Android versions below 19.

GAINDroid also identifies more true positives than CiD and Lint in some

scenarios. For instance, in the app Simple Solitaire, while CiD only reports only

one true positive and Lint none. Our approach has found two (method setChecked

from class TwoStatePreference in addition to onAttach from class Fragment). We have

noticed that CiD presents more false positives than our approach. During manual

verification, it was possible to identify that CiD reports API invocation issues even

if they are bounded by conditions, in other words, using a guard. For example in

33

app SurvivalManual, where setTextIsSelectable(boolean) is only executed if the app

runs on a device with Android level greater or equal than 11.

The second app set-up consists of utilizing the 7 apps from [51]. As demon-

strated in Table 5.1, GAINDroid was able to find all the errors reported by CiD.

Once again, Lint has only reported false negatives and the reason is all the API

methods causing errors are in methods annotated with @TargetApi or SuppressLint.

Therefore Lint will not check those methods.

With respect to API callback issues, as presented in Table 5.1, our approach

finds more true positives and less false positive errors compared to Cider and

Lint. This is expected because our approach is automatic and does not require

manually constructed callback control flow graph as being done with Cider.

Cider also only detects 4 families of API callbacks (Activity, Fragment, Service

and WebView). Instead, GAINDroid relies on a database of Android methods

derived from each API level. Therefore, it can support a larger number of callback

APIs than the 24 within the 4 families of API callbacks supported by Cider. For

example, Cider finds 1 true positive for the app AFWall while GAINDroid finds 7

true positives. The reported result shows that callbacks such as PreferenceActivity,

ContentObserver and onAuthenticationError from classes that Cider does not support,

have been found as problematic. However, there are some callbacks that Jitana

cannot decode into its call-graph, generating false negative. For example, in apps

DuckDuckGo and Padland, both of these mismatches occur in anonymous classes

which override callbacks. As seen in Listing 5.2, app Padland, a callback that

can be invoked by the system but, it only exists in Android level 23 and further

versions. The app may fail when installed on devices below Android 23.

34

1 private WebView _makeWebView () {

2

3 ...

4

5 String [] url_whitelist = getServerWhiteList ();

6 webView.setWebViewClient(new PadLandSaferWebViewClient(url_whitelist) {

7

8 ...

9

10 @Override

11 public void onReceivedError(WebView view , WebResourceRequest request ,

WebResourceError error) {

12 super.onReceivedError(view , request , error);

13 --webview_http_connections [0];

14 _hideProgressWheel ();

15 Log.e(TAG , "WebView Error " + error.toString () +", Request: "+

request.toString ());

16 }

17 }

18 }

Listing 5.2: Callback being invoked inside an anonymous class

5.2 RQ2: Real-World Applicability

To evaluate the implications of our tool in practice, we applied GAINDroid to real-

world apps collected from [9] and [32]. GAINDroid detected 68,268 potential API

invocation mismatches, with 41.19% of the apps harboring at least one potential

mismatch. It also identified 2,115 potential API callback mismatches occurring in

20.05% of the apps under analysis. To perform the permission-induced mismatch

analysis, we divided the apps into two groups based on the target SDK version:

(i) 1,815 apps target Android API levels greater than or equal to 23 and (ii) 1,756

apps target Android API levels below 23. We identified a total of 1,430 apps

across both groups with at least one permissions-induced compatibility issue. 224

apps (12.34%) in the group (i) attempt to use dangerous permissions without

implementing the runtime permissions request system, and 1,206 apps (68.68%) in

the group (ii) are vulnerable to permissions revocation mismatches.

We then manually investigated the GAINDroid’s results to appraise its utility

in practice. In the following, we report some of our findings. To avoid revealing

35

previously unknown compatibility issues, we only disclose a subset of those that

we have had the opportunity to bring to the app developers’ attention.

API invocation mismatch. In the Offline Calendar app [30], the invocation of

the getFragmentManager() API method in PreferencesActivity.onCreate causes an API

invocation mismatch. The getFragmentManager() method was added to the Activity

class in API level 11. Also, Offline Calendar sets its minSdkVersion to API level 8.

Therefore, as soon as the PreferencesActivity is activated, the Offline Calendar app

will crash if running on API levels 8 to 11. The mismatch could be resolved by

wrapping the call to getFragmentManager() in a guard condition to only execute it

if the device’s API level is equal or greater than 11, or by setting the minSdkVersion

to 11.

API callback mismatch. FOSDEM [29] is a conference companion app. It

exhibits an API callback mismatch in its ForegroundLinearLayout class, which

overrides the View.drawableHotspotChanged callback method, introduced in API

level 21. However, its minSdkVersion is set to API level 15, which would not support

the aforementioned callback method, and in turn may not properly propagate

the new hotspot location to the Drawable stored as a member of the layout class.

This could lead to crashes or other instability in the app’s interface. Setting the

minSdkVersion to 21 would resolve the mismatch.

Permission request mismatch. Kolab Notes [13] is a note-taking app that can

synchronize notes with other apps. It exhibits a permission request mismatch. The

app targets API 26 and uses the WRITE EXTERNAL STORAGE permission, but

does not implement the necessary methods to request the permission at runtime. If

the permission is not already granted when the user attempts to save or load data

to/from an SD card, the action will fail. To resolve the mismatch, the developers

should update the app to implement the new runtime permissions request system,

36

particularly the onRequestPermissionsResult callback.

Permission revocation mismatch. AdAway [1] is an ad blocking app that

suffers from a permission revocation mismatch. The app targets API level 22 and

uses the WRITE EXTERNAL STORAGE permission, which could be revoked by the

user when installed on a device running API 23 or greater. If the user revokes

the permission and tries to export a file, the app will crash. The developers could

resolve the issue by updating the app to use runtime permissions and setting the

minSdkVersion to 23.

5.3 RQ3: Performance

In this last research question, we evaluated the efficiency of GAINDroid and

compared its running time against CiD and Lint. Note that we could not compare

against the performance of Cider because the authors of that work neither reported

the analysis time of their technique nor made the tool available. Since Cider

authors have not replied to our inquiries, we were unable to measure its analysis

time.

Table 5.2 shows the analysis time (in seconds) of GAINDroid and the two

state-of-the-art tools mentioned above. Dashes indicate that a system fails to

produce analysis results after 600 seconds. As shown, the analysis time taken by

GAINDroid is significantly lower than those of CiD and Lint for almost all the

apps. Also, note that CiD fails to completely analyze four apps after 600 seconds

have passed. The average analysis time taken by GAINDroid, CiD, and Lint per

app is 5.7, 22.9 and 17.4 seconds respectively, corroborating that GAINDroid can

efficiently vet Android apps for compatibility issues in a fraction of time taken by

the other state-of-the-art tools.

37

Table 5.2: Time comparison between GAINDroid

and state-of-the-art tools

App GAINDroid
Time (s)

CID
Time (s)

Lint
Time (s)

C
id

er
-B

en
ch

AFWall 8.2 − 41.3
DuckDuckGo 7.7 60.3 35.1
FOSS Browser 3.6 17.2 30.3

Kolab notes 7.2 16.5 22.8
MaterialFBook 6.2 19.6 12.3

NetworkMonitor 8.2 − 40.1
NyaaPantsu 11.3 − 27.4

Padland 2.3 13.3 11.1
PassAndroid 9.9 − 32.5

SimpleSolitaire 6.3 13.2 20.6
SurvivalManual 7.2 60.1 10.5

Uber ride 4.7 15.8 25.8

C
iD

-B
en

ch

Basic 3.9 21.1 2.5
Forward 1.8 6.2 2.5

GenericType 4.1 18.7 2.6
Inheritance 3.8 19.2 3.1
Protection 3.9 17.1 3.5

Protection2 3.9 21.2 3.1
Varargs 3.8 23.5 3.8

Max: 11.3 60.3 41.3
Min: 1.8 6.2 2.5
Average: 5.7 22.9 17.4

Figure 5.1 presents the time taken by GAINDroid to perform compatibility

analysis on real-world apps. The scatter plot depicts both the analysis time and

the app size. As shown in the figure, our approach analyzes 98% of the apps in

less than 20 seconds. The experimental results show that the average analysis

time taken by GAINDroid, CiD, and Lint per app on real-world data sets are 6.2

seconds (ranging from 1.6 to 37.8 seconds), 29.5 seconds (ranging from 4.1 to 78.4

seconds), and 24.7 seconds (ranging from 4.7 to 75.6 seconds), respectively. We

38

Figure 5.1: Scatter plot representing analysis time for compatibility checking of
Android apps using GAINDroid

have found outliers during the analysis. For example, the app in the top left corner

in Figure 5.1 is a game application which extensively uses third-party libraries,

which took a considerable amount of time for our analysis framework to compute

the data structures for analysis, despite its small KLOC. On the other hand, the

app in the right side of the diagram, closer to 80 KLOC, loads three times fewer

library classes than the aforementioned app, implicating in less complex graphs

to analyze. Overall, the timing results show that on average GAINDroid is able

to complete analysis of real-world apps in just a few seconds (on an ordinary

laptop), confirming that the presented technology is indeed feasible in practice for

real-world usage.

To better understand why GAINDroid performs more efficient than the state-

of-the-art approaches, we conducted a further performance evaluation, comparing

the number of resources and analysis efforts required by each approach. Since our

39

Figure 5.2: Number of classes loaded by GAINDroid and CiD when analyzing
real-world Android apps.

approach extends a class-loader based program analysis framework rather than a

compiler based program analyzer, we expect the efficiency gains in GAINDroid is

due to the effective loading of classes during the analysis. In this set of experiments,

we attempted to corroborate our intuition and obtain empirical evidence of this

relationship.

We first monitored the number of analyzed classes in each approach. Figure 5.2

depicts the number of classes loaded by GAINDroid and CiD when analyzing

real-world apps. The red line in Figure 5.2 shows that CiD loads all Android classes

from the latest available Android framework [26]. As of January 2019, there are

8552 classes in the Android framework. On the contrary, GAINDroid only loads

the classes that the app actually uses. According to the diagram, GAINDroid,

shown by the blue line in Figure 5.2, at most loads 3,600 classes, and that only

occurs for a very small number of apps. Indeed, for over 60% of the analyzed

apps, GAINDroid loads less than 1,000 classes, which is eight times more efficient

40

Figure 5.3: Amount of memory used by GAINDroid and CiD when analyzing
real-world Android apps.

compared to CiD.

Loading fewer classes also allows GAINDroid to require less memory to

perform its analysis. To investigate this matter, we also monitored the memory

footprint required by each approach for performing analysis. Figure 5.3 shows

a comparison of how much memory GAINDroid and CiD are using during the

analysis of real-world apps. According to the results, GAINDroid on average

requires 329 MB (ranging from 119MB to 898MB) of memory to perform the

compatibility analysis. On the other hand, CiD on average uses 1.3 GB (or four

times more memory) to perform the same analysis. We interpret this data as

corroborating the effectiveness of our technique based on a class-loader based

approach for compatibility analysis.

41

Chapter 6

Discussion

We were expecting that apps supporting a wider range of API levels would yield

more compatibility issues. However, based on the experimental results presented

in Table 5.1, this behavior is not being observed. For example, The two apps with

the most detected incompatibility support 10 and 8 API levels. Those apps are

MaterialFBook and AFWall, respectively. On the other hand, the two apps that

support the widest ranges of API level (15 for SurvivalManual and 14 for Simple

Solitaire), only show 0 and 1 incompatibility issues, respectively.

The Android framework evolves fast, with at least one release per year. There-

fore, it is important for GAINDroid includes new API methods to its database

easily. For this end, our tool only needs a text file with all API methods from

a given Android level. Adding new API levels will only introduce a negligible

overhead while loading the database for analysis.

It is known that Android is trying to decrease API and permission incompati-

bilities by enforcing new rules to developers. According to [15], Google Play will

require that new apps target at least Android API level 26 from August 1, 2018, and

that updated apps target Android API level 26 from November 1, 2018. Another

announcement [20] states that Android 9 (API level 28) introduce new restriction

regarding the use of hidden APIs, which is the use of Android APIs that are no

42

longer public. However, it will still be possible to download apps from repositories

other than Google Play, such as [9] and [7], which can present runtime failures.

Because of this restriction, a new module able to detect the use of inaccessible APIs

is desirable and we target it as future work.

43

Chapter 7

Related Work

Android incompatibility issues have received a lot of attention recently. Here, we

provide a discussion of the related efforts in light of our research.

API evolution. A large body of existing research focuses on the evolving

nature of APIs, which is an an important aspect of software maintenance [57],

[35], [52], [48], [53], [40], [56], [62]. These research efforts explore the problems

that are introduced by API changes. Among others, McDonnell et al. [57] studied

Android’s fast API evolution (115 API updates/month), and noticed developers’

hesitation in embracing the fast-evolving APIs. The results of this study suggest

that API updates are more defect-prone than other types of changes, which might

cause application instability and potential vulnerabilities. Mutchler et al. [62]

explored the consequences of running applications targeted to older Android

versions on devices employing recent Android versions, and how it can introduce

serious security issues. Li et al. [52] investigated the frequency with which

deprecated APIs are used in the development of Android apps, considering the

deprecated APIs’ annotations, documentations, and removal consequences along

with developers’ reactions to APIs deprecations. Bavota et al. [35] showed that

applications with higher user ratings use APIs that are less change- and fault-

prone compared to the applications with lower ratings. Linares et al. [53] studied

44

the impact of using evolving APIs, concluding that it can significantly hurt an

application’s success.

These prior research efforts clearly motivate the need to address issues that

can arise from API evolution. However, their approaches do not provide detailed

technical solutions or methods to systematically detect the root causes of these

problems. GAINDroid, on the other hand, is designed to be effective at detecting

API related issued that can cause runtime crashes.

Android fragmentation. The other relevant thrust of research has focused

on investigating the Android ecosystem by running different custom Android

distributions on different hardware to identify potential application instability

and uncovering the causes [43], [49], [63], [55], [70], [67], [31]. Aafer et al. [31]

investigated how modifying the operating system can introduce security problems

within the mobile OS. Han et al. [43] studied the bug reports related to HTC

and Motorola devices in the Android issue tracking system, and discovered that

The android ecosystem was fragmented, meaning that applications might behave

differently when installed on phones from different vendors. Liu et al. [55]

observed that a noticeable percentage of Android performance bugs occur only

on specific devices and platforms. Moran et al. [59] presented a systematic input

generation is driven by both static and dynamic analyses to trigger app crashes.

Given such automatically generated inputs, it produces a a crash report containing

screenshots, detailed crash reproduction steps, the captured exception stack trace,

and a fully replayable script that automatically reproduces the crash on a target

device.

These research efforts primarily focused on behavioral differences when an

app is installed on different operating systems and/or hardware platforms. They

mainly rely on hardware specifications and changes in the Android documentation

45

Table 7.1: Comparing GAINDroid to the state-of-the-art of compatibility detection
techniques.

API APC PRM

CiD [51] V X X
Cider [46] X V X
IctApiFinder [44] V X X
Lint [3] V X X
GAINDroid V V V

to uncover potential compatibility or behavioral issues. Therefore, these approaches

are not useful when such platform related information is incomplete, inconsistent,

or unavailable. Furthermore, applying these approaches to test an application

on the entire vast hardware ecosystem of Android devices may not be feasible

due to exponentially large system configurations. Our work, on the other hand,

focuses on a more tractable and important problem due to API evolution and how

it can affect the apps and their performance regardless of the operating system

distribution or the hardware the applications are running on.

API incompatibility. A number of techniques have been recently developed for

detecting Android API incompatibilities. In Table 7.1, we compare the detection

capabilities of GAINDroid against the current state-of-the-art approaches. It

is important to stress that GAINDroid is the only solution that provides the

capability of automatically detecting various types of Android compatibility issues,

i.e., API invocation compatibility issues (API), API callback compatibility issues

(APC), and permission-induced compatibility issues (PRM).

Wu et al. [68] investigated side effects that may cause runtime crashes even

within an app’s supported API ranges, inspiring subsequent work. Huang et

al. [46] aimed to understand callback evolution and developed Cider, a tool

capable of identifying API callback compatibility issues. However, Cider’s analysis

relies on manually built PI-GRAPHS, which are models of common compatibility

46

callbacks of four classes: Activity, Fragment, Service, and WebView. Cider thus

does not deal with APIs that are not related to these classes or permission induced

mismatches. Moreover, by only focusing on callback classes, their reported result

is a subset of ours. In addition, Cider’s API analysis is based on the Android

documentation, which is known to be incomplete [68]. Our work, on the other

hand, automatically analyzes each API level in its entirety to identify all existing

APIs. This allows our approach to be more accurate in detecting actual changes

in API levels, as there are frequent platform updates and bug fixes. As a result,

and as confirmed by the evaluation results, our approach features much higher

precision and recall in detecting compatibility issues.

Lint [3] is a static analysis tool introduced in ADT (Android Development

Tools) version 16. One of the benefits of Lint is that the plugin is integrated with

the Android Studio IDE, which is the default editor for Android development. The

tool checks the source code to identify potential bugs such as layout performance

issues and accessing API calls that are not supported by the target API version.

However, the tool generates false positives when verifying unsupported API calls

(e.g., when an API call happens within a function triggered by a conditional

statement). Another disadvantage is that it requires the availability of the original

source code, and it does not analyze Android application packages, i.e., apk files.

In addition, Lint requires the project to be first built in the Android Studio IDE

before conducting the analysis. Unlike Lint, GAINDroid operates directly on

Dex code. While Lint claims to be able to detect API incompatibility issues, our

experimental results as well as the results obtained by Huang et al. indicate that

Lint is not as effective as GAINDroid or Cider.

Li et al. [51] provided an overview of the Android API evolution to identify

cases where compatibility issues may arise in Android apps. They also presented

47

CiD, an approach for identifying compatibility issues for Android apps. This tool

models the API lifecycle uses static analysis to detect APIs within the app’s code,

and then extracts API methods from the Android framework to detect backward

incompatibilities. CiD supports compatibility analysis up to the API level 25. In

comparison, GAINDroid offers automated extraction of the API database, and

thereby supports up to the most recent Android platform (API level 28). Moreover,

in contrast to GAINDroid, CiD did not consider incompatibilities regarding the

runtime permission system.

Wei et al. [67] conducted a study to characterize the symptoms and root causes

of compatibility problems, concluding that the API evolution and problematic

hardware implementations are major causes of compatibility issues. They also

propose a static analysis tool to detect issues when invoking Android APIs on

different devices. Their tool, however, needs manual work to build API/context

pairs, of which they only define 25. Similar to our prior discussion of work by

Huang et al., the major difference between our work and this work is that our

approach can focus on all API methods that exist at an API level. Again, the result

reported by their approach would be a subset of our detected issues.

48

Chapter 8

Conclusion and Future Work

We have presented GAINDroid, a tool that operates on the Dexcode level to

identify misuse of the Android API and the permission system, which may lead

to runtime crashes. We have compared our results with those of CiD, Cider and

Lint and we can conclude that GAINDroid is more effective than the other three

state-of-the-art approaches. It can detect more sources of potential mismatches

while yielding less false positives. Metrics such as precision, recall, and F-Measure

supports our claim that our approach performs better than the other three state-of-

the-art tools. GAINDroid can also perform analysis at least 3 times faster than

CiD and Lint.

We further conducted a case study using 3,571 real-world Android apps down-

loaded from Androzoo [32] and F-Droid [9]. Again, we used GAINDroid to

detect potential API invocation and callback mismatches, along with permission

request and revocation mismatch. Our analysis results report that 41,19% of the

downloaded apps can have at least one potential API invocation mismatch, they

also show that 20,05% of the analyzed apps can crash due to API callback mis-

match. With respect to permission mismatches, 12,34% suffer from permission

request mismatch while 68,68% of the downloaded apps can suffer from crashes

due to permission revocation mismatch. The obtained results demonstrate that

49

such problems are still present in modern Android apps. The study also showed

that GAINDroid can be used in real-world Android applications to perform a

large-scale analysis.

With respect to future work, we have a few items that we plan to address. Our

immediate plan is to contact Huang et al. [46] and He et al. [44] and request access

to Cider and IctApiFinder so that we can conduct more extensive experiments

to compare their effectiveness and efficiency with our work. We also would like

to evaluate if they can handle misuse of the Android permission mechanism. We

also plan to contact the authors of apps that showed mismatches problems. The

Android framework evolves fast and developers tend to not engage in keeping

their apps up to date to be compatible with new features and APIs in the most

recent versions of the framework.

In terms of implementation of additional features to increase true positives

in GAINDroid, we plan to analyze anonymous classes, inaccessible APIs and

identify behavioral changes in Android APIs.

As described in the Result section, GAINDroid is unable to identify API

methods within anonymous classes in apps such as MaterialFBook, DuckDuckGo

and Padland. Therefore we plan to implement a module that is able to identify

anonymous classes and analyze its content. Thus, recognizing API invocations

and callbacks that could not be analyzed previously, culminating in an increase of

true positives for the aforementioned API related mismatches.

It is known that is possible to access inaccessible APIs, such as internal and

hidden APIs [50]. Such APIs are often classified as not stable enough to be

promoted or are still subject to invasive changes in future releases. However,

developers may find more convenient to implement their desired functionalities

with hidden APIs and consequently, to use them along with public APIs. As stated

50

by Google [20], more restrictions regarding the use of inaccessible APIs will be

implemented, starting in Android level 28. Therefore, the scenario where an app

using a hidden API works flawlessly but, after a system update, the app may

crash because the method is not available anymore due to a system restriction,

can happen. In order to warn developers about this upcoming issue, we want to

include the capability to identify internal and hidden methods within an Android

app.

We are also interested in identifying behavioral changes in API methods across

different levels of Android APIs. The reason for this module is because methods

can still have the same signature but, different implementations in order to improve

performance and security. We want to create a repository containing all changes

of a method and whenever a developer uses an API, GAINDroid would send

an alert to the user, mentioning that the API has changes on its behavior. Maybe

this change in behavior can lead to a runtime crash. For example, API methods

WifiInfo.getMacAddress() and BluetoothAdapter.getAddress() return now return the

default constant value of 02:00:00:00:00:00 starting from Android level 23. Such

behavior change has initiated many discussions online [11].

In addition, another idea is to provide guidance to users to replace the use

of possibly outdated or deprecated APIs with more updated ones. For example,

GAINDroid would recommend a developer to replace Apache HTTP Client class

by the class HttpURLConnection.

51

Bibliography

[1] Adaway. https://github.com/AdAway/AdAway/releases/tag/v3.0.2". 2.3,

5.2

[2] Afwall. https://github.com/ukanth/afwall/tree/71e6c66". 4.1

[3] Android lint. http://tools.android.com/tips/lint. 5.1, 7.1, 7

[4] Android market share. https://www.statista.com/statistics/266136/global-

market-share-held-by-smartphone-operating-systems/. 1

[5] Android runtime permissions. https://source.android.com/devices/tech/

config/runtime perms. 2.3, 2.3

[6] Android versions. https://en.wikipedia.org/wiki/Android version history.

2.1

[7] Bazaar repository. https://cafebazaar.ir. 6

[8] Duck duck go. https://github.com/duckduckgo/Android/tree/2d7d379".

4.1

[9] F-droid repository. https://f-droid.org/. 4.1, 5.2, 6, 8

[10] Foss browser. https://github.com/scoute-dich/browser/commit/

e08f5b6". 4.1

https://github.com/AdAway/AdAway/releases/tag/v3.0.2"
https://github.com/ukanth/afwall/tree/71e6c66"
https://github.com/duckduckgo/Android/tree/2d7d379"
https://github.com/scoute-dich/browser/commit/e08f5b6"
https://github.com/scoute-dich/browser/commit/e08f5b6"

52

[11] Getting mac address in android 23. http://stackoverflow.com/questions/

33159224/getting-mac-address-in-android-6-0. 8

[12] Google play apps repository. https://www.statista.com/statistics/

266210/number-of-available-applications-in-the-google-play-store/.

1

[13] Kolab notes. https://github.com/konradrenner/kolabnotes-android/

commit/14ba3c3". 4.1, 5.2

[14] Materialfbook. https://github.com/ZeeRooo/MaterialFBook/tree/

2cb3c61". 4.1

[15] Meet google play’s target api level requirement. https://developer.android.

com/distribute/best-practices/develop/target-sdk". 6

[16] Network monitor. https://github.com/caarmen/network-monitor/tree/

0e17b95". 4.1

[17] Nyaa pantsu. https://github.com/NyaaPantsu/NyaaPantsu-android-app/

tree/53ad9a8". 4.1

[18] Padland. https://github.com/mikifus/padland/commit/38f7e66". 4.1

[19] Permissions in android. https://developer.android.com/guide/topics/

permissions/overview#permission-groups. 1, 2.3

[20] Restrictions on non-sdk interfaces. https://developer.android.com/about/

versions/pie/restrictions-non-sdk-interfaces. 6, 8

[21] sdkmanager tool. https://developer.android.com/studio/command-

line/sdkmanager. 3

http://stackoverflow.com/questions/33159224/getting-mac-address-in-android-6-0
http://stackoverflow.com/questions/33159224/getting-mac-address-in-android-6-0
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://www.statista.com/statistics/266210/number-of-available-applications-in-the-google-play-store/
https://github.com/konradrenner/kolabnotes-android/commit/14ba3c3"
https://github.com/konradrenner/kolabnotes-android/commit/14ba3c3"
https://github.com/ZeeRooo/MaterialFBook/tree/2cb3c61"
https://github.com/ZeeRooo/MaterialFBook/tree/2cb3c61"
https://developer.android.com/distribute/best-practices/develop/target-sdk"
https://developer.android.com/distribute/best-practices/develop/target-sdk"
https://github.com/caarmen/network-monitor/tree/0e17b95"
https://github.com/caarmen/network-monitor/tree/0e17b95"
https://github.com/NyaaPantsu/NyaaPantsu-android-app/tree/53ad9a8"
https://github.com/NyaaPantsu/NyaaPantsu-android-app/tree/53ad9a8"
https://github.com/mikifus/padland/commit/38f7e66"
https://developer.android.com/guide/topics/permissions/overview#permission-groups
https://developer.android.com/guide/topics/permissions/overview#permission-groups
https://developer.android.com/about/versions/pie/restrictions-non-sdk-interfaces
https://developer.android.com/about/versions/pie/restrictions-non-sdk-interfaces

53

[22] Simple solitaire. https://github.com/TobiasBielefeld/Simple-Solitaire/

commit/1483ee". 2.2.2, 4.1

[23] Survival manual. https://github.com/ligi/SurvivalManual/tree/

13b1f43". 4.1

[24] Uber rides. https://github.com/uber/rides-android-sdk/tree/4d77c38".

4.1

[25] Using sdk in android apps. https://developer.android.com/guide/topics/

manifest/uses-sdk-element. 2.1, 2.2

[26] Android - aosp. https://github.com/aosp-mirror/, 2018. 5.3

[27] Android platform frameworks base. https : //github.com/aosp-

mirror/plat f orm f rameworks base/releases, August 2018. 1

[28] Apktool. https://ibotpeaches.github.io/Apktool/, 2018. 4

[29] FOSDEM Companion. https://github.com/cbeyls/fosdem-companion-

android/releases/tag/1.5.0, 2018. 5.2

[30] Offline Calendar. https://github.com/PrivacyApps/offline-

calendar/releases/tag/v1.8, 2018. 5.2

[31] Yousra Aafer, Xiao Zhang, and Wenliang Du. Harvesting inconsistent security

configurations in custom android roms via differential analysis. In USENIX

Security Symposium, pages 1153–1168, 2016. 7

[32] Kevin Allix, Tegawendé F Bissyandé, Jacques Klein, and Yves Le Traon.

Androzoo: Collecting millions of android apps for the research community.

https://github.com/TobiasBielefeld/Simple-Solitaire/commit/1483ee"
https://github.com/TobiasBielefeld/Simple-Solitaire/commit/1483ee"
https://github.com/ligi/SurvivalManual/tree/13b1f43"
https://github.com/ligi/SurvivalManual/tree/13b1f43"
https://github.com/uber/rides-android-sdk/tree/4d77c38"
https://developer.android.com/guide/topics/manifest/uses-sdk-element
https://developer.android.com/guide/topics/manifest/uses-sdk-element

54

In Mining Software Repositories (MSR), 2016 IEEE/ACM 13th Working Conference

on, pages 468–471. IEEE, 2016. 4.1, 5.2, 8

[33] AndroidCentral. Phone Died During System Update, 2013.

http://forums.androidcentral.com/htc-desire-c/265098-phone-died-during-

system-update.html. 1

[34] Kathy Wain Yee Au, Yi Fan Zhou, Zhen Huang, and David Lie. Pscout:

analyzing the android permission specification. In Proceedings of the 2012 ACM

conference on Computer and communications security, pages 217–228. ACM, 2012.

3.3

[35] Gabriele Bavota, Mario Linares-Vasquez, Carlos Eduardo Bernal-Cardenas,

Massimiliano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. The impact

of api change-and fault-proneness on the user ratings of android apps. IEEE

Transactions on Software Engineering, 41(4):384–407, 2015. 7

[36] A. Bera. How To Fix Apps Crashing After 4.4 Kit-Kat Update Problem On

Nexus 7, 2016. http://www.technobezz.com/fix-apps-crashing-4-4-kitkat-

update-problem-nexus-7/. 1

[37] Marcus Bueschleb. PassAndroid. https://github.com/ligi/PassAndroid/

tree/fcd9ba", 2018. 4.1

[38] Dave Burke. Introducing Android 9 pie. https://android-

developers.googleblog.com/2018/08/introducing-android-9-pie.html,

2018. 2.1

https://github.com/ligi/PassAndroid/tree/fcd9ba"
https://github.com/ligi/PassAndroid/tree/fcd9ba"

55

[39] Zach Epstein. Did Apps Just Start Crashing Constantly on Your Android

Phone?, 2015. http://bgr.com/2015/04/28/android-tips-tricks-fix-crashing-

apps/. 1

[40] Mattia Fazzini and Alessandro Orso. Automated cross-platform inconsistency

detection for mobile apps. In Proceedings of the 32Nd IEEE/ACM Interna-

tional Conference on Automated Software Engineering, ASE 2017, pages 308–318,

Piscataway, NJ, USA, 2017. IEEE Press. 7

[41] Aurélien Géron. Hands-on machine learning with Scikit-Learn and TensorFlow:

concepts, tools, and techniques to build intelligent systems. ” O’Reilly Media, Inc.”,

2017. 5

[42] Cyril Goutte and Eric Gaussier. A probabilistic interpretation of precision,

recall and f-score, with implication for evaluation. In European Conference on

Information Retrieval, pages 345–359. Springer, 2005. 5

[43] Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and

Eleni Stroulia. Understanding android fragmentation with topic analysis

of vendor-specific bugs. In Reverse Engineering (WCRE), 2012 19th Working

Conference on, pages 83–92. IEEE, 2012. 7

[44] Dongjie He, Lian Li, Lei Wang, Hengjie Zheng, Guangwei Li, and Jingling

Xue. Understanding and detecting evolution-induced compatibility issues in

android apps. In Proceedings of the 33rd ACM/IEEE International Conference on

Automated Software Engineering, pages 167–177. ACM, 2018. 1, 4.2.1, 7.1, 8

[45] Ville-Veikko Helppi. What Every App Developer Should Know About An-

droid. http://www.smashingmagazine.com/2014/10/02/what-every-app-

developer-should-know-about-android/, October 2014. 1

56

[46] Huaxun Huang, Lili Wei, Yepang Liu, and Shing-Chi Cheung. Understanding

and detecting callback compatibility issues for android applications. 2018. 1,

4.1, 4.1, 4.2.1, 4.2.2, 4.3, 5.1, 7.1, 7, 8

[47] Apple breaks new iphones with terrible software update.

http://www.slate.com/blogs/

future tense/2014/09/24/apple ios 8 0 1 software update

major bugs hit iphone 6 6 plus.html, 2014. 1

[48] Maxime Lamothe and Weiyi Shang. Exploring the use of automated api

migrating techniques in practice: An experience report on android. 2018. 7

[49] Huoran Li, Xuan Lu, Xuanzhe Liu, Tao Xie, Kaigui Bian, Felix Xiaozhu Lin,

Qiaozhu Mei, and Feng Feng. Characterizing smartphone usage patterns

from millions of android users. In Proceedings of the 2015 Internet Measurement

Conference, pages 459–472. ACM, 2015. 7

[50] Li Li, Tegawendé F Bissyandé, Yves Le Traon, and Jacques Klein. Accessing

inaccessible android apis: An empirical study. In Software Maintenance and

Evolution (ICSME), 2016 IEEE International Conference on, pages 411–422. IEEE,

2016. 8

[51] Li Li, Tegawendé F. Bissyandé, Haoyu Wang, and Jacques Klein. Cid: Au-

tomating the detection of api-related compatibility issues in android apps.

In Proceedings of the 27th ACM SIGSOFT International Symposium on Software

Testing and Analysis, ISSTA 2018, pages 153–163, New York, NY, USA, 2018.

ACM. 1, 4.1, 4.2.2, 4.3, 5.1, 5.1, 7.1, 7

57

[52] Li Li, Jun Gao, Tegawendé F Bissyandé, Lei Ma, Xin Xia, and Jacques Klein.

Characterising deprecated android apis. In Proceedings of the 15th International

Conference on Mining Software Repositories, pages 254–264. ACM, 2018. 7

[53] Mario Linares-Vásquez, Gabriele Bavota, Carlos Bernal-Cárdenas, Massimil-

iano Di Penta, Rocco Oliveto, and Denys Poshyvanyk. Api change and fault

proneness: a threat to the success of android apps. In Proceedings of the 2013

9th joint meeting on foundations of software engineering, pages 477–487. ACM,

2013. 7

[54] Mario Linares-Vásquez, Gabriele Bavota, Massimiliano Di Penta, Rocco

Oliveto, and Denys Poshyvanyk. How do api changes trigger stack over-

flow discussions? a study on the android sdk. In proceedings of the 22nd

International Conference on Program Comprehension, pages 83–94. ACM, 2014. 1

[55] Yepang Liu, Chang Xu, and Shing-Chi Cheung. Characterizing and detecting

performance bugs for smartphone applications. In Proceedings of the 36th

International Conference on Software Engineering, pages 1013–1024. ACM, 2014.

7

[56] Mehran Mahmoudi and Sarah Nadi. The android update problem: an empiri-

cal study. In Proceedings of the 15th International Conference on Mining Software

Repositories, pages 220–230. ACM, 2018. 7

[57] Tyler McDonnell, Baishakhi Ray, and Miryung Kim. An empirical study of

api stability and adoption in the android ecosystem. In Software Maintenance

(ICSM), 2013 29th IEEE International Conference on, pages 70–79. IEEE, 2013. 7

[58] Michael Kassner. Beware of danger lurking in Android

phone updates. http://www.techrepublic.com/article/

http://www.techrepublic.com/article/beware-of-danger-lurking-in-android-phone-updates/"
http://www.techrepublic.com/article/beware-of-danger-lurking-in-android-phone-updates/"

58

beware-of-danger-lurking-in-android-phone-updates/", April 2014.

1, 2.1

[59] Kevin Moran, Mario Linares-Vásquez, Carlos Bernal-Cárdenas, Christopher

Vendome, and Denys Poshyvanyk. Crashscope: A practical tool for automated

testing of android applications. In Software Engineering Companion (ICSE-C),

2017 IEEE/ACM 39th International Conference on, pages 15–18. IEEE, 2017. 7

[60] Suhaib Mujahid. Detecting wearable app permission mismatches: a case study

on android wear. In Proceedings of the 2017 11th Joint Meeting on Foundations of

Software Engineering, pages 1065–1067. ACM, 2017. 1

[61] Suhaib Mujahid and Emad Shihab Rabe Abdalkareem. Studying permission

related issues in android wearable apps. 1

[62] Patrick Mutchler, Yeganeh Safaei, Adam Doupé, and John Mitchell. Target

fragmentation in android apps. In 2016 IEEE Security and Privacy Workshops

(SPW), pages 204–213. IEEE, 2016. 7

[63] Abhinav Pathak, Y Charlie Hu, and Ming Zhang. Bootstrapping energy

debugging on smartphones: a first look at energy bugs in mobile devices. In

Proceedings of the 10th ACM Workshop on Hot Topics in Networks, page 5. ACM,

2011. 7

[64] Mehul Rajput. Tips For Solving Your Android App Crashing Issues, 2015.

http://tech.co/tips-solving-android-app-crashing-issues-2015-10. 1

[65] Mallisa Tolentino. Will These Bugs be Fixed in Android 5.1.1 Up-

date. http://siliconangle.com/blog/2015/04/24/will-these-bugs-be-fixed-in-

android-5-1-1-update/, April 2015. 1

http://www.techrepublic.com/article/beware-of-danger-lurking-in-android-phone-updates/"
http://www.techrepublic.com/article/beware-of-danger-lurking-in-android-phone-updates/"

59

[66] Yutaka Tsutano, Shakthi Bachala, Witawas Srisa-An, Gregg Rothermel, and

Jackson Dinh. An efficient, robust, and scalable approach for analyzing

interacting android apps. In Proceedings of the 39th International Conference on

Software Engineering, pages 324–334. IEEE Press, 2017. 3.1, 4

[67] Lili Wei, Yepang Liu, and Shing-Chi Cheung. Taming android fragmentation:

Characterizing and detecting compatibility issues for android apps. In Pro-

ceedings of the 31st IEEE/ACM International Conference on Automated Software

Engineering, pages 226–237. ACM, 2016. 1, 7, 7

[68] Daoyuan Wu, Ximing Liu, Jiayun Xu, David Lo, and Debin Gao. Measuring

the declared sdk versions and their consistency with api calls in android apps.

In International Conference on Wireless Algorithms, Systems, and Applications,

pages 678–690. Springer, 2017. 1, 3.4, 7

[69] YouTube API change: some older devices can’t update to new

app. http://hexus.net/ce/news/audio-visual/82570-youtube-api-change-

older-devices-update-new-app/, 2014. 1

[70] Xiaoyong Zhou, Yeonjoon Lee, Nan Zhang, Muhammad Naveed, and Xi-

aoFeng Wang. The peril of fragmentation: Security hazards in android device

driver customizations. In Security and Privacy (SP), 2014 IEEE Symposium on,

pages 409–423. IEEE, 2014. 7

	University of Nebraska - Lincoln
	DigitalCommons@University of Nebraska - Lincoln
	4-2019

	GAINDroid: General Automated Incompatibility Notifier for Android Applications
	Bruno Vieira Resende e Silva

	List of Figures
	List of Tables
	Introduction
	Background
	Android API Background
	API Compatibility Issues
	API invocation mismatch
	API callback mismatch

	Permission-induced Compatibility Issues

	Approach
	API Usage Extraction
	Database Construction
	Permissions Mapping
	Mismatch Detection

	Empirical Evaluation
	Objects of Analysis
	Variables and Measures
	Independent Variables
	Dependent Variables
	Study Operation

	Threats to Validity

	Results
	RQ1: Accuracy
	RQ2: Real-World Applicability
	RQ3: Performance

	Discussion
	Related Work
	Conclusion and Future Work
	Bibliography

