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OSCILLATION OF SOLUTION TO SECOND-ORDER
HALF-LINEAR DELAY DYNAMIC EQUATIONS

ON TIME SCALES

HONGWU WU, LYNN ERBE, ALLAN PETERSON

Abstract. This article concerns the oscillation of solutions to second-order

half-linear dynamic equations with a variable delay. By using integral averag-
ing techniques and generalized Riccati transformations, new oscillation criteria

are obtained. Our results extend Kamenev-type, Philos-type and Li-type os-

cillation criteria. Several examples are given to illustrate our results.

1. Introduction

Consider the second-order half-linear dynamic equation with a variable delay(
r(t)

(
x∆(t)

)γ)∆ + q(t)f(x(τ(t))) = 0, t ≥ t0, (1.1)

where the independent variable is in a time scale T. Since we are interested in the
oscillatory behavior of solutions near infinity, we assume that sup T = ∞. Recall
that a solution to (1.1) is a nontrivial real function x(t) such that x(t) ∈ C1

rd[b,∞),
and r(t)

(
x∆(t)

)γ ∈ C1
rd[b,∞) and satisfying (1.1) on [c,∞), where c > b is chosen so

that τ(t) ≥ b for t ≥ c, and Crd is the space of real-valued right-dense continuous
functions (see [4]). Throughout this paper, we shall restrict attention to those
solutions of (1.1) which exist on some half line [c,∞) and satisfy sup{|x(t)| : t >
d} > 0 for any d > c. For simplicity of notation in the lemmas, theorems, and
examples that follow, we use [t0,∞) := [t0,∞)R ∩ T and (x(σ(t)))γ = (xσ(t))γ =
(xγ(t))σ.

The oscillation theory of difference and functional differential equations has
been developed extensively during the past several years. We refer the reader
to [2, 6, 10, 9, 13, 14, 16, 17, 18, 21, 23, 24, 25, 27] as well as the references cited
therein. Recently, there has been an increasing interest in studying the oscillation of
dynamic equations on time scales [1, 3, 5, 7, 8, 11, 12, 15, 19, 20, 22, 26, 28, 29, 30].
The oscillation problem for (1.1) and its various particular cases has been studied
extensively. An important tool in the study of oscillatory behavior of solutions is
the integral averaging technique which goes back as far as the classical results of
Wintner [25] and Hartman [10] giving a sufficient condition for oscillation of the
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linear differential equation of the form

x′′(t) + q(t)x(t) = 0, t ∈ R. (1.2)

Another technique to study the oscillation problem involves the Riccati transfor-
mation

ω(t) = r(t)
x′(t)
x(t)

, t ∈ R, (1.3)

which is used to reduce the higher order equations to the first order Riccati equation
(or inequality) (see [13, 16]). The result of Wintner [25] was improved by Kamenev
[13] in 1978, and one of the main results is as follows.

Theorem 1.1 (Kamenev-type oscillation criteria). Equation (1.2) is oscillatory,
if

lim sup
t→∞

1
tn

∫ t

t0

(t− s)nq(s)ds =∞, for some n > 1. (1.4)

Theorem 1.1 has been extended by several authors. In 1989, Philos [16] obtained
new results on oscillation by replacing the kernel function (t−s)n by a general class
of functions H(t, s). The following is the main result by Philos.

Theorem 1.2 (Philos-type oscillation criteria). Let D0 = {(t, s) : t > s ≥ t0, t, s ∈
R} and D = {(t, s) : t ≥ s ≥ t0, t, s ∈ R}. Suppose that there exist functions
H ∈ C(D,R) and h ∈ C(D0,R) which satisfy the following three conditions:

(i) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for all (t, s) ∈ D0;
(ii) Hs(t, s) ≤ 0 for all (t, s) ∈ D0;

(iii) −Hs(t, s) = h(t, s)
√
H(t, s), for all (t, s) ∈ D0.

If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)q(s)− 1

4
h2(t, s)

]
ds =∞, (1.5)

then (1.2) is oscillatory.

Theorems 1.1 and 1.2 cannot be applied to the Euler differential equation

x′′(t) +
λ

t2
x(t) = 0, t ∈ R, (1.6)

where λ > 0 is a constant. In fact, (1.6) is oscillatory if λ > 1/4 and nonoscillatory
if λ ≤ 1/4. In 1995, Li [14] considered the linear differential equation

(r(t)x′(t))′ + q(t)x(t) = 0, t ∈ R. (1.7)

To improve the oscillation criteria of Philos [16] and Yan [27], Li [14] used the
generalized Riccati transformation

ω(t) = Φ(t)r(t)
(x′(t)
x(t)

+ φ(t)
)
, t ∈ R . (1.8)

This has also been used to study other types of equations in [24]. Here it is assumed
that Φ(t) > 0 and φ(t) are differentiable functions. Using these ideas one is able
to obtain some new sufficient conditions for oscillation which can be applied to
equations which cannot be treated by the results using the Riccati transformation
(1.3). As is pointed out in Li [14], by using the generalized Riccati transformation
(1.8), Kamenev-type oscillation criteria can be applied to the Euler differential
equation (1.6). The following is the main result by Li [14].
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Theorem 1.3 (Li-type oscillation criteria). Let D0 = {(t, s) : t > s ≥ t0, t, s ∈ R}
and D = {(t, s) : t ≥ s ≥ t0, t, s ∈ R}. Let H ∈ C(D,R) satisfy the following two
conditions:

(i) H(t, t) = 0 for t ≥ t0, H(t, s) > 0 for all (t, s) ∈ D0;
(ii) Hs(t, s) ≤ 0 for all (t, s) ∈ D0.

Suppose that h ∈ C(D0,R) is a continuous function with

−Hs(t, s) = h(t, s)
√
H(t, s) for all (t, s) ∈ D0.

Assume that there exists a function g ∈ C1[t0,∞) such that∫ t

t0

a(s)r(s)h2(t, s)ds <∞ for all t ≥ t0, (1.9)

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)ψ(s)− 1

4
a(s)r(s)h2(t, s)

]
ds =∞, (1.10)

where a(s) = exp{−2
∫ s
g(ξ)dξ} and ψ(s) = a(s){q(s) + r(s)g2(s) − [r(s)g(s)]′}.

Then (1.7) is oscillatory.

In 1996, Rogovchenko [17] proved that Theorem 1.3 holds without assumption
(1.9). For the case involving a delay, we use the modified Riccati transformation

ω(t) = Φ(t)r(t)
( x′(t)
x(τ(t))

+ φ(t)
)
, t ∈ R. (1.11)

In 2008, by using the generalized Riccati transformation

ω(t) = Φ(t)r(t)
((x∆(t)

x(t)

)γ
+ φ(t)

)
, t ∈ T, (1.12)

with φ(t) = 0, Hassan [11] considered the second-order half-linear dynamic equation
without delay (

r(t)
(
x∆(t)

)γ)∆

+ q(t)xγ(t) = 0, t ∈ T, (1.13)

where γ is the quotient of odd positive integers, r(t) and q(t) are positive rd-
continuous functions on T.

In the following, we will consider the second-order nonlinear dynamic equation
with a variable delay on time scales. We will employ the generalized Riccati trans-
formation

ω(t) = Φ(t)r(t)
(( x∆(t)

x(τ(t))

)γ
+ φ(t)

)
, t ∈ T. (1.14)

Our goal here is to establish oscillation criteria for (1.1) under very mild conditions.
That is, we do not assume that any of the following conditions:

• γ ≥ 1, see e.g. [8, 26];
• r∆(t) ≥ 0, see e.g. [28];
•
∫∞
t0
τ(t)q(t)∆t =∞, see e.g. [7];

• T̃ := τ(T) ⊂ T, and σ ◦ τ = τ ◦ σ, see e.g. [5, 26].
Rather we assume that

(H1) γ > 0 is a quotient of odd positive integers;
(H2) τ ∈ Crd(T,R) is strictly increasing, τ(t) ≤ t and limt→∞ τ(t) =∞;
(H3) q ∈ Crd(T,R) is nonnegative for t ≥ t0 and not identically zero on any

half-line of the form [t∗,∞);
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(H4) f ∈ C(R,R) satisfies f(x)/xγ ≥ L for some positive constant L and all
x 6= 0;

(H5) r ∈ Crd(T,R+) satisfies
∫∞
t0

(
1
r(s)

)1/γ

∆s =∞; or

(H5’) r ∈ Crd(T,R+) satisfies
∫∞
t0

(
1
r(s)

)1/γ

∆s <∞.

In other words, by careful observation and calculation, we will show that we can
obtain similar results without introducing the term φ(t) in (1.11) or (1.14). Our
results extend, improve and unify a number of other existing results and handle
some cases which are not covered by known criteria.

In the next section, we shall give several important lemmas, which will be used
to prove our main results. In Section 3, we shall establish several new oscillation
criteria for (1.1). Finally, in Section 4, by means of several examples, we illustrate
our results.

2. Preliminary results on time scales

The following lemmas will be needed in the proofs of our results. Lemma 2.1
can be found in [5, 8]. Lemma 2.2 can be found in [4, Theorem 1.14]. Lemma 2.3
is similar to Zhang and Wang [28, Lemma 2.3].

Lemma 2.1. Assume condition (H1) holds and xγ(t) ∈ C1
rd([b,∞)T,R). Then

(xγ(t))∆ ≥

{
γ (xσ(t))γ−1 (t)x∆(t), 0 < γ ≤ 1,
γ (x(t))γ−1 (t)x∆(t), γ ≥ 1.

Lemma 2.2 (Mean Value Theorem). Let f be a continuous function on [a, b] that
is differentiable on [a, b). Then there exist η, ξ ∈ [a, b) such that

f∆(ξ) ≤ f(b)− f(a)
b− a

≤ f∆(η).

Lemma 2.3. Let ψ(u) = a0u− b0(u− c0)(γ+1)/γ where γ > 0 is a quotient of odd
positive integers, a0 and c0 ∈ R, and b0 > 0. Then ψ(u) attains its maximum value

at u∗ = c0 +
(

a0γ
b0(γ+1)

)γ
, and

max
u∈R

ψ(u) = ψ(u∗) = a0c0 +
γγ

(γ + 1)γ+1

aγ+1
0

bγ0
.

The proof of the above lemma is simple, it can be obtained directly through a
change of variables from Zhang and Wang [28, Lemma 2.3]. We omit it.

3. Main results

Theorem 3.1. Assume that conditions (H1)–(H5) hold. Also assume that there
exists a function Φ ∈ C1

rd(T,R+) such that

lim sup
t→∞

{
LΦ(t)

∫ ∞
t

q(s)∆s+
∫ t

t0

[
LΦ(s)q(s)−

r∗(s)
(
Φ∆

+(s)
)γ+1

(γ + 1)γ+1
(
τ∆(s)Φ(s)

)γ ]∆s} =∞,

(3.1)
where Φ∆

+(s) = max{Φ∆(s), 0} and r∗(s) = max{r(ξ)|τ(s) ≤ ξ < τσ(s)}. Then
(1.1) is oscillatory.
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Proof. Suppose to the contrary that (1.1) has a nonoscillatory solution on [t0,∞).
Without loss of generality, we may assume that x(t) > 0 for t ≥ t0. From condition
(H1), we shall only consider this case, since the substitution z(t) = −x(t) transforms
(1.1) into an equation of the same form. Then there exists t1 ≥ t0 such that
x(τ(t)) > 0 when t ≥ t1. In view of (1.1), conditions (H3) and (H4), we immediately
get(

r(t)
(
x∆(t)

)γ)∆ = −q(t)f(x(τ(t))) ≤ −Lq(t) (x(τ(t)))γ ≤ 0 for t ≥ t1. (3.2)

So r(t)(x∆(t))γ is eventually of one sign. We assert that r(t)(x∆(t))γ > 0 for t ≥ t1.
To see this, we suppose not. Then there exists a t2 ≥ t1 such that r(t2)(x∆(t2))γ =
α ≤ 0 and r(t)(x∆(t))γ ≤ α for all t ≥ t2. If α = 0 and r(t)(x∆(t))γ = 0 for all
t ≥ t2, from condition (H3) and (3.2), we have f(x(t)) ≡ 0, which contradicts the
fact that f(x) > 0 for x > 0. Therefore it follows that α < 0. From condition (H5)
we have

x(t) ≤ x(t2) + α1/γ

∫ t

t2

(
1
r(s)

)1/γ

∆s→ −∞ as t→∞,

which contradicts the fact that x(t) > 0. Thus we have

x(t) > 0, x∆(t) > 0 and
(
r(t)(x∆(t))γ

)∆ ≤ 0 for t ≥ t1. (3.3)

Define

ω(t) = Φ(t)r(t)
( x∆(t)
x(τ(t))

)γ
for t ≥ T ≥ t1. (3.4)

From (1.1), (3.2) and (3.3), we see that

r(t)(x∆(t))γ ≥ L
∫ ∞
t

q(s)xγ(τ(s))∆s ≥ Lxγ(τ(t))
∫ ∞
t

q(s)∆s.

It follows that

ω(t) = Φ(t)r(t)
( x∆(t)
x(τ(t))

)γ
≥ LΦ(t)

∫ ∞
t

q(s)∆s > 0 for t ≥ T. (3.5)

Now, by the product rule and the quotient rule, from (3.2), (3.4) and (3.5), we
obtain

ω∆ = [r(x∆)γ ]∆
Φ

(x ◦ τ)γ
+ [r(x∆)γ ]σ

[ Φ
(x ◦ τ)γ

]∆
= Φ

[r(x∆)γ ]∆

(x ◦ τ)γ
+ [r(x∆)γ ]σ

[ Φ∆

(x ◦ τσ)γ
− Φ[(x ◦ τ)γ ]∆

(x ◦ τ)γ(x ◦ τσ)γ
]

≤ −LΦq +
Φ∆

Φσ
ωσ − Φ

[r(x∆)γ ]σ[(x ◦ τ)γ ]∆

(x ◦ τ)γ(x ◦ τσ)γ

≤ −LΦq +
Φ∆

+

Φσ
ωσ − Φ

[r(x∆)γ ]σ[(x ◦ τ)γ ]∆

(x ◦ τ)γ(x ◦ τσ)γ
.

(3.6)

By Lemma 2.1, we obtain

[(x ◦ τ)γ ]∆ ≥

{
γ (x ◦ τσ)γ−1 (x ◦ τ)∆, 0 < γ ≤ 1,

γ(x ◦ τ)γ−1(x ◦ τ)∆, γ ≥ 1.
(3.7)
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Fix t ∈ Tκ. If σ(t) > t, by Lemma 2.2, we obtain

(x ◦ τ)∆(t) =
(x ◦ τσ)(t)− (x ◦ τ)(t)

σ(t)− t

=
(x ◦ τσ)(t)− (x ◦ τ)(t)

τσ(t)− τ(t)
τ∆(t)

≥ x∆(ξ)τ∆(t),

(3.8)

where ξ ∈ [τ(t), τσ(t)). If σ(t) = t, by condition (H2), we obtain σ(τ(t)) =
τ(σ(t)) = τ(t) and

(x ◦ τ)∆(t) = x′(τ(t))τ ′(t), (3.9)
Using (3.7), (3.8) and (3.9) in (3.6), we have

ω∆ ≤ −LΦq +
Φ∆

+

Φσ
ωσ −

γΦ [r(x∆)γ ]σ(x◦τσ)γ−1x∆(ξ)τ∆

(x◦τ)γ(x◦τσ)γ , 0 < γ ≤ 1

γΦ[r(x∆)γ ]σ(x◦τ)γ−1x∆(ξ)τ∆

(x◦τ)γ(x◦τσ)γ , γ ≥ 1

= −LΦq +
Φ∆

+

Φσ
ωσ −

{
γΦτ∆ [r(x∆)γ ]σ

(x◦τσ)γ+1
(x◦τσ)γ

(x◦τ)γ x
∆(ξ), 0 < γ ≤ 1,

γΦτ∆ [r(x∆)γ ]σ

(x◦τσ)γ+1
x◦τσ
x◦τ x

∆(ξ), γ ≥ 1.

(3.10)

From (3.3) and condition (H2), it is easy to see that (x ◦ τσ)(t) ≥ (x ◦ τ)(t).
Therefore, for γ > 0, from (3.10), we obtain

ω∆ ≤ −LΦq +
Φ∆

+

Φσ
ωσ − γΦτ∆ [r(x∆)γ ]σ

(x ◦ τσ)γ+1
x∆(ξ), (3.11)

where ξ ∈ [τ(t), τσ(t)). From (3.3) and condition (H2), we have

r(ξ)
(
x∆(ξ)

)γ ≥ r(τσ(t))
(
x∆(τσ(t))

)γ ≥ r(σ(t))
(
x∆(σ(t))

)γ
.

Therefore,

x∆(ξ) ≥
(
r(σ(t))

(
x∆(σ(t))

)γ)1/γ

(r∗(t))−1/γ , (3.12)

where r∗(t) = max{r(ξ)|τ(t) ≤ ξ < τσ(t)}. Using (3.12) in (3.11), we have

ω∆ ≤ −LΦq +
Φ∆

+

Φσ
ωσ − γΦτ∆

[[r(x∆)γ
] γ+1

γ

(x ◦ τ)γ+1

]σ
(r∗)−1/γ

= −LΦq +
Φ∆

+

Φσ
ωσ − γΦτ∆[

ωσ

Φσ
]1+ 1

γ (r∗)−1/γ

= −LΦq +
Φ∆

+

Φσ
ωσ − γΦτ∆(r∗)−1/γ(Φσ)−

γ+1
γ (ωσ)

γ+1
γ .

(3.13)

Let

a0 =
Φ∆

+

Φσ
, b0 = γΦτ∆(r∗)−1/γ(Φσ)−

γ+1
γ , c0 = 0. (3.14)

From Lemma 2.3, (3.13) and (3.14), we have

ω∆ ≤ −LΦq +
r∗(Φ∆

+)γ+1

(γ + 1)γ+1(Φτ∆)γ
for t ≥ T.

Integrating the above inequality from T to t, we obtain

ω(t) ≤ ω(T )−
∫ t

T

[
LΦ(s)q(s)−

r∗(s)
(
Φ∆

+(s)
)γ+1

(γ + 1)γ+1 (τ∆(s)Φ(s))γ
]
∆s.
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From (3.5), we have

Φ(t)
∫ ∞
t

q(s)∆s+
∫ t

T

[
LΦ(s)q(s)−

r∗(s)
(
Φ∆

+(s)
)γ+1

(γ + 1)γ+1 (τ∆(s)Φ(s))γ
]
∆s ≤ ω(T ).

Taking the lim sup on both sides of the above inequality as t → ∞, we obtain a
contradiction to condition (3.1). This completes the proof of Theorem 3.1. �

Let Φ(t) = t, then Φ∆(t) = 1 and Theorem 3.1 yields the following result.

Corollary 3.2. Suppose that conditions (H1)–(H5) hold. If

lim sup
t→∞

{
Lt

∫ ∞
t

q(s)∆s+
∫ t

t0

[
Lsq(s)− r∗(s)

(γ + 1)γ+1 (τ∆(s))γ sγ
]
∆s
}

=∞,

where r∗(s) = max{r(ξ)|τ(s) ≤ ξ < τσ(s)}, then (1.1) is oscillatory.

Remark 3.3. Theorem 3.1 is new, since we have the term Φ(t)
∫∞
t
q(s)∆s in (3.1).

It should be noted that the term Φ(t)
∫∞
t
q(s)∆s in (3.1) is important, and Theorem

3.1 can be applied to different equations which cannot be covered by the results
established in [1, 3, 5, 7, 8, 10, 11, 13, 14, 15, 16, 17, 19, 20, 22, 23, 24, 25, 26, 28, 29].
We shall illustrate the importance of this term in Example 4.1.

Theorem 3.4. Suppose that conditions (H1)–(H5) hold. Let D0 = {(t, s) : t > s ≥
t0, t, s ∈ T} and D = {(t, s) : t ≥ s ≥ t0, t, s ∈ T}. Moreover, suppose that there
exist functions H ∈ C(D,R), h ∈ C(D0,R), and Φ(t) ∈ C1

rd(T,R+), such that the
following three conditions hold:

(i) H(t, t) = 0 for all t ≥ t0, H(t, s) > 0 for all (t, s) ∈ D0;
(ii) H has a continuous and non-positive partial derivative on D0 with respect

to the second variable;
(iii) −[H(t, s)Φ(s)]∆s = h(t, s)[H(t, s)Φ(s)]

γ
γ+1 , for all (t, s) ∈ D0.

If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
LH(t, s)Φ(s)q(s)− r∗(s)hγ+1(t, s)

(γ + 1)γ+1(τ∆(s))γ

]
∆s =∞, (3.15)

where r∗(s) = max{r(ξ)|τ(s) ≤ ξ < τσ(s)}, then (1.1) is oscillatory.

Proof. Suppose to the contrary that x(t) is a nonoscillatory solution of (1.1). Define
ω(t) as in (1.14), where φ ∈ C1

rd(T,R). We see that

ω(t) = Φ(t)r(t)
(( x∆(t)

x(τ(t))

)γ
+ φ(t)

)
≥ Φ(t)r(t)φ(t) for t ≥ T ≥ t1. (3.16)

In a manner similar to the proof of Theorem 3.1, we can prove the inequality

ω∆ ≤ −LΦq + Φ(rφ)∆ +
Φ∆

Φσ
ωσ − γΦτ∆(r∗)−1/γ(Φσ)−

γ+1
γ (ωσ − (rφΦ)σ)

γ+1
γ .

(3.17)
Multiplying (3.17) (with t replaced by s) by H(t, s), integrating with respect to s
from T to t for t ≥ T ≥ t2, using the following integration by parts formula (see
[4]), ∫ b

a

f(t)g∆(t)∆t = [f(t)g(t)]ba −
∫ b

a

f∆(t)gσ(t)∆t, (3.18)
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and rearranging the terms, by condition (i) and (iii) we find that∫ t

T

H(t, s)Φ
(
Lq − (rφ)∆

)
∆s

≤ −
∫ t

T

H(t, s)ω∆(s)∆s+
∫ t

T

H(t, s)
Φ∆

Φσ
ωσ∆s

−
∫ t

T

[ H(t, s)γΦτ∆

(r∗)1/γ(Φσ)
γ+1
γ

(ωσ − (rφΦ)σ)
γ+1
γ

]
∆s

= −H(t, s)ω(s) |tT +
∫ t

T

[[
H∆s(t, s) +H(t, s)

Φ∆

Φσ
]
ωσ

− H(t, s)γΦτ∆

(r∗)1/γ(Φσ)
γ+1
γ

(ωσ − (rφΦ)σ)
γ+1
γ

]
∆s

= H(t, T )ω(T ) +
∫ t

T

[
− h(t, s)

Φσ(s)
(H(t, s)Φ)

γ
γ+1ωσ

− H(t, s)γΦτ∆

(r∗)1/γ(Φσ)
γ+1
γ

(ωσ − (rφΦ)σ)
γ+1
γ

]
∆s.

(3.19)

Fix t ≥ T , and set

a0 = −h(t, s)
Φσ

(H(t, s)Φ(s))
γ
γ+1 , b0 =

H(t, s)γΦτ∆

(r∗)1/γ(Φσ)
γ+1
γ

, c0 = (rφΦ)σ. (3.20)

Then, by Lemma 2.3, (3.19) and (3.20), we have∫ t

T

H(t, s)Φ(s)
(
Lq(s)− (r(s)φ(s))∆

)
∆s

≤ H(t, T )ω(T ) +
∫ t

T

[
− (r(s)φ(s))σh(t, s)(H(t, s)Φ(s))

γ
γ+1

+
r∗(s)hγ+1(t, s)

(γ + 1)γ+1(τ∆)γ

]
∆s.

(3.21)

From (3.21) and condition (iii) we obtain

H(t, T )ω(T )

≥
∫ t

T

[
H(t, s)Φ

(
Lq − (rφ)∆

)
+ (rφ)σh(t, s)(H(t, s)Φ)

γ
γ+1 − r∗(s)hγ+1(t, s)

(γ + 1)γ+1(τ∆)γ

]
∆s

=
∫ t

T

[
H(t, s)Φ

(
Lq(s)− (rφ)∆

)
− (rφ)σ(H(t, s)Φ)∆ − r∗(s)hγ+1(t, s)

(γ + 1)γ+1(τ∆)γ

]
∆s

=
∫ t

T

[
LH(t, s)Φq − (H(t, s)Φrφ)∆ − r∗(s)hγ+1(t, s)

(γ + 1)γ+1(τ∆)γ

]
∆s

= H(t, T )Φ(T )r(T )φ(T ) +
∫ t

T

[
LH(t, s)Φq − r∗(s)hγ+1(t, s)

(γ + 1)γ+1(τ∆)γ

]
∆s.

From (3.16) and condition (ii) it is easy to see that∫ t

T

[
LH(t, s)Φ(s)q(s)− r∗(s)hγ+1(t, s)

(γ + 1)γ+1(τ∆)γ

]
∆s ≤ H(t, T )[ω(T )− Φ(T )r(T )φ(T )]
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≤ H(t, t0)[ω(T )− Φ(T )r(T )φ(T )].

It follows that for t ≥ t0,∫ t

t0

[
LH(t, s)Φ(s)q(s)− r∗(s)hγ+1(t, s)

(γ + 1)γ+1(τ∆)γ

]
∆s

=
∫ T

t0

[
LH(t, s)Φ(s)q(s)− r∗(s)hγ+1(t, s)

(γ + 1)γ+1(τ∆)γ

]
∆s

+
∫ t

T

[
LH(t, s)Φ(s)q(s)− r∗(s)hγ+1(t, s)

(γ + 1)γ+1(τ∆)γ

]
∆s

≤ H(t, t0)
∫ T

t0

LΦ(s)q(s)∆s+H(t, t0)[ω(T )− Φ(T )r(T )φ(T )].

That is,

1
H(t, t0)

∫ t

t0

[
LH(t, s)Φ(s)q(s)− r∗(s)hγ+1(t, s)

(γ + 1)γ+1(τ∆)γ

]
∆s

≤
∫ T

t0

LΦ(s)q(s)∆s+ ω(T )− Φ(T )r(T )φ(T ) <∞,

which is a contradiction to (3.15). This completes the proof. �

From the proof of Theorem 3.4, it is easy to see that the term φ(t) appearing in
(1.14) is not important, and we can obtain the same result without φ(t). Suppose
φ(t) = 0. Then replacing inequality (3.17) by (3.13), we can prove the Theorem
3.5, which improves Theorem 3.4 when h(t, s) is oscillatory or h(t, s) ≥ 0.

Theorem 3.5. Suppose that all conditions hold as in Theorem 3.4. Also assume
that

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
LH(t, s)Φ(s)q(s)− r∗(s)(h−(t, s))γ+1

(γ + 1)γ+1(τ∆(s))γ

]
∆s =∞,

where r∗(s) = max{r(ξ)|τ(s) ≤ ξ < τσ(s)} and h−(t, s) = max{−h(t, s), 0}. Then
(1.1) is oscillatory.

If T = R, we have r∗(t) = r(τ(t)). In a manner similar to the proof of Theorems
3.1 and 3.4, we can prove the following results for (1.13).

Theorem 3.6. Suppose that T = R and r(t) > 0 hold. Also, assume that there
exists a function Φ(t) ∈ C1(R,R+) such that

lim sup
t→∞

{
Φ(t)

∫ ∞
t

q(s)ds+
∫ t

t0

[
Φ(s)q(s)−

r(τ(s))
(
Φ′+(s)

)γ+1

(γ + 1)γ+1Φγ(s)

]
ds
}

=∞,

where Φ+(s) = max{Φ(s), 0}. Then (1.13) is oscillatory.

Theorem 3.7. Suppose that conditions T = R and r(t) > 0 hold. Let D0 = {(t, s) :
t > s ≥ t0, t, s ∈ T} and D = {(t, s) : t ≥ s ≥ t0, t, s ∈ T}. Moreover, suppose
that there exist functions H ∈ C(D,R), h ∈ C(D0,R), and Φ(t) ∈ C1(R,R+), such
that the following three conditions hold:

(i) H(t, t) = 0 for all t ≥ t0, H(t, s) > 0 for all (t, s) ∈ D0;
(ii) H has a continuous and non-positive partial derivative on D0 with respect

to the second variable;
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(iii) −[H(t, s)Φ(s)]′ = h(t, s)[H(t, s)Φ(s)]
γ
γ+1 , for all (t, s) ∈ D0.

If

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)Φ(s)q(s)− r(τ(s)(h−(t, s))γ+1

(γ + 1)γ+1

]
ds =∞, (3.22)

where h−(t, s) = max{−h(t, s), 0}, then (1.13) is oscillatory.

Remark 3.8. From Theorems 3.1, 3.4 and 3.5, we can present different explicit
sufficient conditions for the oscillation of (1.1) by appropriate choices of Φ(s) and
H(t, s). For instance, we may choose Φ(s) to be 1, s, etc.; we may choose H(t, s) =
(t− s)k, or H(t, s) = [R(t)−R(s)]k, for t ≥ s ≥ t0, where k > 1 is a constant, and
R(t) =

∫ t
t0

1/r(s)∆s for t ≥ t0.

Remark 3.9. If we take T = R, r(t) = 1, f(x) = x, τ(t) = t, γ = 1, H(t, s) =
(t−s)k and Φ(s) = 1, then Theorem 3.7 reduces to Theorem 1.1. If we take T = R,
f(x) = x, τ(t) = t, γ = 1 and Φ(s) = 1, then Theorem 3.7 reduces to Theorem 1.2.
If we take T = R, f(x) = x, τ(t) = t, γ = 1, then Theorem 3.7 reduces to Theorem
1.3. It is particularly interesting that we can get condition (1.5) from condition
(3.22). We can see this from the following proof. Since T = R, f(x) = x, τ(t) = t,
γ = 1, and Φ(s) = a(s) = exp{−2

∫ s
g(ξ)dξ}, from (3.22) and condition (iii) of

Theorem 3.7, we obtain

lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)Φ(s)q(s)− r(s)hγ+1(t, s)

(γ + 1)γ+1

]
ds

= lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)aq − 1

4
r(s)

[Hs(t, s)a(s) +H(t, s)a′(s)]2

H(t, s)a(s)

]
ds

= lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)aq − 1

4
ra
H2
s (t, s)
H(t, s)

− 1
2
r(s)Hsa

′(s)

− H(t, s)r(s)(a′(s))2

4a(s)

]
ds

= lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)aq − 1

4
ra
H2
s (t, s)
H(t, s)

+ a(s)r(s)g(s)Hs

−H(t, s)r(s)(g(s))2
]
ds

= lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)a{q + rg2 − (rg)′} − 1

4
ra
H2
s (t, s)
H(t, s)

+ (H(t, s)arg)′
]
ds

= lim sup
t→∞

1
H(t, t0)

∫ t

t0

[
H(t, s)a{q + rg2 − (rg)′} − 1

4
ra
H2
s (t, s)
H(t, s)

]
ds

− a(t0)r(t0)g(t0).

Therefore, our results unify Li-type oscillation criteria.

Remark 3.10. Theorem 3.4 improves the corresponding results established by Yan
[27], Sahiner [19], Wu et al [26], and Chen [5]. Also, when T = N it improves the
oscillation results in Thandapani et al [21].
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As we have seen before, we can obtain different corollaries from Theorem 3.7 by
choosing different Φ(t). Next, we consider the case when (H5’) holds. We remark
that since the crucial step in obtaining Theorem 3.1 is to show that eventually
positive and eventually increasing solutions of (1.1) do not exist, then we have an
analogue of Theorems 3.1 and 3.4.

Theorem 3.11. Suppose that conditions (H1)–(H4) and (H5’) hold. Let Φ(t) be
defined as in Theorem 3.1 such that (3.1) holds. Assume further that∫ ∞

t0

q(s)∆s =∞ and
∫ ∞
t0

[ 1
r(s)

∫ s

t0

q(u)∆u
]1/γ

∆s =∞. (3.23)

Then every solution of (1.1) oscillates or converges to zero.

Proof. Suppose to the contrary that (1.1) has a nonoscillatory solution on [t0,∞)T.
Without loss of generality, we may assume that x(t) > 0 for t ≥ t0. In view of
Theorem 3.1 we see that x∆(t) is eventually negative or eventually positive. If
x∆(t) is eventually positive, we are then back to the proof of Theorem 3.1 and
we obtain a contradiction to condition (3.1). If x∆(t) is eventually negative, then
limt→∞ x(t) = M ≥ 0. We claim that M = 0. If not, then x(t) ≥ M > 0. From
(H3), there exists t1 ≥ t0 such that f(t, x(τ(t))) ≥ q(t) (x(τ(t)))γ ≥ q(t)Mγ , for
t ≥ t1. Therefore, from (1.1), we have(

r(t)
(
x∆(t)

)γ)∆

= −f(t, x(τ(t))) ≤ −q(t)Mγ ≤ 0, for t ≥ t1.

Integrating the above inequality from t1 to t, we obtain

r(t)
(
x∆(t)

)γ ≤ r(t1)
(
x∆(t1)

)γ −Mγ

∫ t

t1

q(u)∆u.

In view of (3.23), it is possible to choose t2 sufficiently large such that for all t ≥ t2,

r(t)
(
x∆(t)

)γ ≤ −Mγ

2

∫ t

t2

q(u)∆u. (3.24)

Therefore

x∆(t) ≤ − M

21/γ

[ 1
r(t)

∫ t

t2

q(u)∆u
]1/γ

.

Integrating both sides of the last inequality from t3 to t, we obtain

x(t) ≤ x(t3)− M

21/γ

∫ t

t3

[ 1
r(s)

∫ s

t2

q(u)∆u
]1/γ

∆s.

So it follows from (3.23) that x(t) is eventually negative, a contradiction. This
completes the proof. �

In a manner similar to the proof of Theorems 3.11, we can prove the following
result.

Theorem 3.12. Suppose that conditions (H1)–(H4) and (H5’) hold. Let H ∈
C(D,R), h ∈ C(D0,R), and Φ(t) ∈ C1

rd(T,R+) be defined as in Theorem 3.4 such
that (3.15) holds. Assume that∫ ∞

t0

q(s)∆s =∞ and
∫ ∞
t0

[ 1
r(s)

∫ s

t0

q(u)∆u
]1/γ

∆s =∞.

Then every solution of (1.1) oscillates or converges to zero.
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4. Examples

Let us consider the following examples to better understand our results.

Example 4.1. Consider the second-order half-linear dynamic delay equation((
x∆(t)

)γ)∆

+
λ

tσγ(t)
(x(τ(t)))γ = 0, (4.1)

where λ > 0 and 0 < γ ≤ 1 is a quotient of odd positive integers.

Here L = 1 and r∗(t) = r(t) = 1. For arbitrary time scale T, we take Φ(t) = t.
Since( 1

tγ

)∆

= − (tγ)∆

tγσγ(t)
= − 1

tγσγ(t)
σγ(t)− tγ

σ(t)− t
= − 1

tγσγ(t)
γηγ−1(σ(t)− t)

σ(t)− t

≥ − γtγ−1

tγσγ(t)
= − γ

tσγ(t)
, η ∈ [t, σ(t)].

(4.2)

Therefore, from Corollary 3.2 and (4.2), we obtain

lim sup
t→∞

{
Lt

∫ ∞
t

q(s)∆s+
∫ t

T

[
Lsq(s)− r∗(s)

(γ + 1)γ+1 (τ∆(s))γ sγ

]
∆s
}

= lim sup
t→∞

{
t

∫ ∞
t

λ

sσγ(s)
∆s+

∫ t

T

[ λ

σγ(s)
− 1

(γ + 1)γ+1 (τ∆(s))γ sγ

]
∆s
}

≥ lim sup
t→∞

{λ
γ
t1−γ +

∫ t

T

[ λ

σγ(s)
− 1

(γ + 1)γ+1 (τ∆(s))γ sγ

]
∆s
}
.

(4.3)

If T = R and τ(t) = t − τ for τ ≥ 0, then conditions (H1)–(H5) are satisfied. For
0 < γ < 1 and λ > γ/(γ + 1)γ+1, we have

lim sup
t→∞

{λ
γ
t1−γ +

∫ t

T

[ λ

σγ(s)
− 1

(γ + 1)γ+1 (τ∆(s))γ sγ

]
∆s
}

= lim sup
t→∞

{λ
γ
t1−γ +

∫ t

T

[ λ
sγ
− 1

(γ + 1)γ+1sγ

]
ds
}

= lim sup
t→∞

{λ
γ

+
1

1− γ

(
λ− 1

(γ + 1)γ+1

)}
t1−γ − 1

1− γ

(
λ− 1

(γ + 1)γ+1

)
T 1−γ

= lim sup
t→∞

1
γ(1− γ)

(
λ− γ

(γ + 1)γ+1

)
t1−γ − 1

1− γ

(
λ− γ

(γ + 1)γ+1

)
T 1−γ =∞.

(4.4)
Hence (4.1) is oscillatory when 0 < γ < 1 and λ > γ/(γ + 1)γ+1.

Note that when T = R, γ = 1 and τ(t) = t, from (4.4) we see that (4.1) is also
oscillatory provided λ > 1/4, which is the sharp condition for the Euler differential
equation (1.6) to be oscillatory. When T = R and 0 < γ < 1, from Example 4.1
we obtain λ > γ/(γ + 1)γ+1. However, to the best of our knowledge, the results in
[1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26, 27,
28, 29] yield λ > 1/(γ + 1)γ+1.

Next, we consider the quantum time scale T = qN = {qn : n ∈ N}, where q > 1,
q ∈ R, and τ(t) = t

τ for τ = qm, m ∈ N and m < N , then conditions (H1)− (H5)
are satisfied. Noting that( t

tγ

)∆

=
1

σγ(t)
− t (tγ)∆

tγσγ(t)
=

1
σγ(t)

− t

tγσγ(t)
σγ(t)− tγ

σ(t)− t
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=
1

σγ(t)
− t

tγσγ(t)
γηγ−1(σ(t)− t)

σ(t)− t

≥ 1
σγ(t)

− tγtγ−1

tγσγ(t)
=

1− γ
σγ(t)

, η ∈ [t, σ(t)],

from (4.3) we obtain

lim sup
t→∞

{λ
γ
t1−γ +

∫ t

T

[ λ

σγ(s)
− 1

(γ + 1)γ+1 (τ∆(s))γ sγ

]
∆s
}

≥ lim sup
t→∞

{λ
γ
t1−γ − λ

γ
T 1−γ +

∫ t

T

[ λ

σγ(s)
− τγ

(γ + 1)γ+1sγ

]
∆s
}

= lim sup
t→∞

{λ
γ

∫ t

T

( t
tγ
)∆∆s+

∫ t

T

[ λ

σγ(s)
− τγ

(γ + 1)γ+1sγ

]
∆s
}

≥ lim sup
t→∞

{λ
γ

∫ t

T

1− γ
σγ(s)

∆s+
∫ t

T

[ λ

σγ(s)
− τγ

(γ + 1)γ+1sγ

]
∆s
}

= lim sup
t→∞

∫ t

T

[ λ

γσγ(s)
− τγ

(γ + 1)γ+1sγ

]
∆s =∞.

Since σ(s) = qs, (4.1) is oscillatory when λ > γ(qτ)γ/(γ + 1)γ+1. However, to the
best of our knowledge, the results in [1, 2, 3, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22, 23, 24, 25, 26, 27, 28, 29] give the estimate λ > (qτ)γ/(γ+ 1)γ+1.
Therefore, our results improve the corresponding results in these references, even
for τ(t) = t.

Example 4.2. Consider the second-order dynamic delay equation(1
t
x∆(t)

)∆

+
λ

t3
x(τ(t)) = 0, t ∈ T. (4.5)

Note that in the case T = R, and τ(t) = t, we see that λ = 1 which is the sharp
condition for (4.5) to be oscillatory, and x(t) = 1/t is a solution when λ = 1. Here
we take Φ(s) = s2, and H(t, s) = (t− s)2. From Theorem 3.4, we obtain

lim sup
t→∞

1
H(t, T )

∫ t

T

[
H(t, s)Φ(s)q(s)− r∗(s)(h(t, s))γ+1

(γ + 1)γ+1(τ∆(s))γ

]
∆s

= lim sup
t→∞

t−2

∫ t

T

[
(t− s)2s2 λ

s3
− (t− 2s)2

τ(s)τ∆(s)

]
∆s.

(4.6)

If T = R and τ(t) = t, then conditions (H1)–(H5) are satisfied. By (4.6) we obtain

lim sup
t→∞

t−2

∫ t

T

[
(t− s)2λ

s
− (t− 2s)2 1

s

]
ds

= lim sup
t→∞

t−2

∫ t

T

[
(t− s)2λ

s
− (t− s)2 1

s
+ 2s(t− s)1

s
− s2 1

s

]
ds

= lim sup
t→∞

t−2

∫ t

T

[λ− 1
s

(t− s)2 + 2t− 3s
]
ds

= lim sup
t→∞

t−2

∫ t

T

[λ− 1
s

t2 + 2(2− λ)t+ (λ− 4)s
]
ds =∞.

(4.7)

From Theorem 3.4, (4.5) is oscillatory for λ > 1. Moreover, Our results are estab-
lished for arbitrary time scales.
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