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Abstract 

This research analyzes multiple approaches to software development management through the 

lens of my experience in the Raikes Design Studio capstone program. The Design Studio project 

I participated in was a project for the company Hudl, and throughout its course we used 

techniques from the Agile framework of Scrum. I compared the Scrum principles to my team’s 

own application over the course of the project, and I researched other software development 

methodologies such as Extreme Programming and Lean in order to determine whether they could 

improve the effectiveness of the current Design Studio experience. The proposed solution to this 

question is to continue using Scrum methods, but to also take inspiration from Extreme 

Programming and to encourage pair programming in all Design Studio teams, as well as to make 

an effort to improve Design Studio sponsor communication.  
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Running head: SOFTWARE DEVELOPMENT APPROACHES IN DESIGN STUDIO 

Introduction 

 Design Studio is the capstone program within the Raikes School. The difference between 

Design Studio and Senior Design (i.e., the typical non-Raikes Computer Science capstone 

program) is that Design Studio is more geared towards introducing students to industry 

experience. Non-Raikes Honors students in Computer Science, such as myself, are allowed to 

apply and participate in Design Studio as “Associates.” 

 Software engineering methodologies have been evolving throughout the years, from 

linear Waterfall development to the more flexible Agile development techniques (See Appendix 

A). Design Studio’s methodologies are no exception; the program previously used Waterfall 

techniques but has since switched to Agile methods.  

Through this thesis, I will examine the application of Scrum practices in Design Studio 

through the lens of my project experience, and I will attempt to evaluate the success of this 

methodology. In addition, I will propose a few simple improvements to Design Studio’s unique 

implementation of Scrum. This proposal will be more of a recommendation than a prescription, 

because I’m aware that my project experience is just one of many and other teams may not have 

experienced the same issues over the course of the year. 

Design Studio Project Background 

 The Design Studio project I worked on was for the company Hudl. Hudl is a sports 

technology company whose platform gives athletes the ability to review their performances and 

helps to them get recruited. According to their website, Hudl “offers the tools to edit and share 

video, interact with stats, and create quality highlight reels for entertainment and recruiting 

purposes” (“About Hudl”, n.d., para. 1). Hudl has had nine projects in the Design Studio 

program, spanning the past thirteen years. 



 
4 

SOFTWARE DEVELOPMENT APPROACHES IN DESIGN STUDIO 

Each Design Studio project has a summary provided at the beginning of the year to serve 

as a description, as well as a way for students to make decisions about which team they are 

interested in joining. Hudl’s summary for my team’s project specified that they wanted to  

make it easier for athletes to build their own highlights and share it with their fans. … 

Athletes have to go through a lengthy process to find and create highlights from moments 

that they want to share. … We want you to focus on making this process as easy as 

possible for volleyball, soccer, and lacrosse teams (“Hudl design studio 2018/19”, n.d., 

para. 4).  

This summary was intentionally vague on the details of implementation because it was meant to 

serve as only a starting point. It instead placed an emphasis on auto-generating highlights and on 

cutting as many steps out of the process as possible.  

As the project progressed, it became clear that Hudl’s vision for the project was for our 

team to creatively come up with several solutions to improve the highlighting process for the 

aforementioned sports, build them out only to the extent that they could be tested with users, and 

gather statistical data on the viability of each approach. The end goal was to present this data and 

recommend a solution to Hudl that the company could then continue to pursue. 

Methodology/Processes I Used in Design Studio 

The methodology I used over the course of this project was Scrum (See Appendix A). 

The Design Studio program placed an emphasis on using Scrum methods, with the minutiae of 

how these processes were carried out being left to the individual teams. However, not everything 

was decided by the team. There were several mandated procedures that every team was expected 

to follow, starting with the organization of the team itself. 
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 In accordance with Design Studio’s typical procedures, our Design Studio teams were 

organized into hierarchies with Product Managers and Development Managers as the student 

leadership (see Figure 1). The rest of the teams, known as the developers, constituted the 

“Squads.” There were Project Managers, Coaches and Tribe Leads who provided each team with 

guidance and ultimately issued grades in the course.  Each team was required to meet for twelve 

to fifteen hours each week to work. Time spent working was called “team time.” 

Each team was required to hold weekly update meetings with their sponsors, as well as 

three product releases each semester, or six in total. These “releases” occurred approximately 

once a month. Every team was expected to follow the same release schedule even though 

projects could be vastly different, because this schedule provided a sense of unity and structure. 

 Other than these guidelines, the teams were mostly free to choose their organizational 

methods, staying within the framework of Scrum but adapting specifics according to each 

Figure 1. A diagram depicting the organizational structure of Design Studio, including 
participant roles and their relationships (Slide 17). Taken from: Antonson, Mark. 
(2018). Overview & Syllabus [PowerPoint slides]. Retrieved from 
https://canvas.unl.edu/courses/45000/files/folder/Presentations?preview=2558982 

https://canvas.unl.edu/courses/45000/files/folder/Presentations?preview=2558982
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project. Within the team, the Product Manager has the responsibility of making decisions on the 

details of the implementation. In my team, we followed a simple but effective plan which 

allowed us to be extremely Agile no matter what obstacles we faced. 

My team’s version of the daily scrum was a daily stand-up. Each team time began with 

the daily stand-up. First, we each answered an interesting get-to-know-you question, ranging 

from topics such as “When you were a child, what did you want to be when you grew up?” to 

“What is your favorite brand of shoes?” or even, “What is your favorite song by the artist 

‘Pitbull’?” Next, each person described what they worked on the previous team time, and what 

they planned on working on once the stand-up session had adjourned. The stand-up was also a 

good time to raise any concerns or ask questions of the other team members. 

Our next activities were sprint planning and estimation. Sprint planning and estimation 

took place at the beginning of each of our two-week sprints. Sprint planning involved identifying 

stories and allocating points to these tasks by using a simplified version of planning poker. We 

would  

briefly discuss each story and then each team member [simultaneously held] up their 

fingers with how many story points they [thought] the task [deserved] after a count of 3. 

If there [was] a discrepancy among the team, members with the “extreme” point value 

suggestions [stated] their cases and the story [was] repointed until a consensus [was] 

reached (Wiles, 2019a, para. 5).  

The points were allocated in increments of Fibonacci numbers, with an added value of 1/2 

points, suitable for any task which was deemed inconsequentially simple. This differed from the 

method usually recommended by Scrum - a lengthier process involving playing cards, deeper 

discussion, and more repetitions of the cycle (Rubin, 2013). 
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After allocating the story points, we tracked tasks using the tool Jira (See Figure 2). Most 

teams were encouraged by Design Studio to use a tool called Zenhub for this step, but Hudl 

provided Jira, so using Jira made the most sense for my team. We used Jira for sprint planning, 

story tracking, the product backlog, and burndown charts. Jira’s tools gave each sprint their own 

board, with sections or lanes labeled “To-Do”, “In-Progress”, and “Done”. Tasks were moved 

from one lane to another depending on our progress. Jira was able to track these changes and 

generate a burndown chart based on when tasks were completed. Burndown charts were 

particularly useful because “we [used] these charts to help understand what our typical velocity 

[was], which then [helped] us to plan how much work [could] be achieved in future sprints and 

releases” (Wiles, 2019a, para. 10). 

 

Figure 2. View of our Jira board, depicting tasks in the 'To Do', 'In-Progress', and 'Done' 
categories. Allocated points are shown in the bottom-right hand corner of each task. Taken from: 
Wiles, B. (2019a). Design studio behaviors. Unpublished manuscript. Retrieved from 
https://unl.box.com/s/5ns780min9v5oxihmc14uhzghdzrou13  

In terms of testing practices, we did have some amount of testing built into our project. 

Hudl’s testing tools were available for us to run unit tests locally and remotely, and when we 

pushed code to a remote branch it was required by their continuous integration server to pass unit 
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tests (Wiles, 2019a). Despite this, tests were more or less an afterthought, due to the nature of 

our project. If you recall, the project vision was for us to iteratively create solutions only to the 

extent that we could test them with users, so we operated out of the mindset that we were just 

gathering data. Writing tests wasn’t our highest priority, and test-driven development wasn’t 

something we considered at all, although it may have had its benefits. We knew anything we put 

into production would most likely be deprecated with the possibility of being rewritten in the 

future (Wiles, 2019a). 

For telemetry and data analysis, the primary metrics my team was interested in testing 

involved highlight creation and the highlights that were being viewed. We were “fortunate to 

have a sponsor with extensive telemetry architecture. ... SumoLogic [was used to store] data 

from the past 30 days and re:dash [stored] longer-term data” (Wiles, 2019a, para. 9). We used 

these tools along with other services of Hudl’s to create queries which measured the success of 

each of our product iterations. The queries returned data (e.g., the number of users utilizing our 

solutions) that allowed us to calculate the percentages of users that were funneling down each 

step of our project's flow (See Appendix C). It was important that we were able to obtain these 

metrics because the success of our approach depended on gathering this type of data and passing 

it along to Hudl at the end of the project (Wiles, 2019a). 

Finally, for our release meetings, we met at Hudl headquarters with  

all team members, the sponsor, the technical sponsor, our tribe lead, our project manager, 

and ideally, our corporate sponsor. … This meeting typically [lasted] an hour and 

[discussed] the long-term plans of the project and what has occurred in the past release 

(Wiles, 2019a, para. 7).  
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We provided a deliverable at each of these meetings which consisted of a minimum viable 

product (MVP) or new feature and/or the results from user testing the last MVP. During these 

meetings, we also sought confirmation on the direction of the project in case we were heading in 

a direction the sponsor did not like. We took careful notes in case any important changes or 

decisions were made during the meeting (Wiles, 2019a).  

Soon after each release meeting, my team went to a restaurant together to have a release 

retrospective in a casual setting. During dinner, we took out sticky notes and each wrote down 

two good things that occurred in the past release, two bad things, and two suggestions for how to 

improve the bad items. We read all the notes together and discussed them, and decided what our 

next steps could be. 

There were a few ways in which our team’s methods differed from traditional Scrum 

processes. I’ve already mentioned the changes we made to planning poker, but there were more 

significant ones as well. For example, we didn’t have a designated ScrumMaster. Instead, we had 

a Product Manager. The differences between the two roles are subtle. A Product Manager 

traditionally has more authority over the team than a ScrumMaster in terms of the ability to 

dictate what they work on (Rubin, 2013). This structure suited us, however, because our Product 

Manager had many of the same duties as a ScrumMaster, and we didn’t need another person to 

fill that role.  

We also didn’t do sprint reviews or sprint retrospectives. We had two-week sprints, but 

we found it more valuable to do a retrospective after each release. This retrospective covered a 

span of about a month, as opposed to sprint reviews/retrospectives which discuss the past two 

weeks. If we had done a sprint review for every sprint, it would not have been practical because 

it would have taken up valuable development time. 
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Results 

 The results of this project are largely qualitative. It is difficult to quantify the success of 

our methods because the success or failure of these management processes cannot necessarily be 

measured quantitatively. Due to the nature of the project, there would be nothing to compare it 

against, because that would require executing the same project multiple times concurrently using 

different processes. On another note, if we were only concerned with measuring the success of 

the project, which aimed to produce a software solution, it would be much simpler. Our team 

was successful according to these criteria because we produced several simple software solutions 

(See Appendix B) that we were able to put into production for a time, and we used metrics to test 

whether these software solutions made a significant impact for Hudl (See Appendix C). 

However, I want to focus more on the management process than the software produced. In any 

case, there were definitely areas in which we had more success than others. 

For example, one of the things we did well during our process using the Scrum methods 

was that we were easily able to pivot and adapt our project when we realized we were heading 

down the wrong path. This occurred during Release 2, when we had a discussion with our 

sponsor one day and realized our concept of the project didn’t match their vision. We thought we 

were going to be creating a fully-realized product that was ready for production, but Hudl wanted 

us to take a more iterative approach. In essence, they wanted us to research a few different 

concepts for how to improve the Highlights workflow and to deliver them statistics on which 

solution would be best for them to pursue in the future. After we had this discussion, our team 

was able to adjust our frame of mind and reevaluate our plans.  

Although it was an unexpected circumstance, we were able to switch easily because we 

were following the Agile philosophy of responding to change over following a plan, and the 
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Scrum technique of iterative sprint planning. We weren’t bound to the work we had already 

done. Additionally, after this switch, our sponsor was pleased with the new direction we were 

taking. In his comments on the end-of-release meeting for Release 2, our sponsor remarked,  

I think the team did a great job of taking a step back this release and really [looking] at 

what we are trying to do with the project. They did a much better job in pulling the right 

stakeholders to make sure that we adjusted the plan and that it was communicated 

effectively. [They] set some much better expectations for everyone else and I feel like we 

are headed in a great direction right now (Moore, 2018). 

Another area in which our project succeeded was that our team was amiable towards one 

another and had a good balance of bonding time versus work time. Interpersonal relationships 

may only be tangentially related to the project, but they greatly affect the experience of working 

on a team, so it was valuable that we had built-in bonding activities to strengthen our team. For 

example, what we did for our Retrospective after each release was attend a team dinner together. 

We voted on what restaurant we wanted to dine at, and then we had a pleasant evening dining 

together and relaxing, while simultaneously discussing and reflecting on what had happened the 

past month or so.  

Of course, there were several things with which my team struggled, one of which was 

communicating with our sponsor. This is what initially led to the predicament we found 

ourselves in during Release 2, when we had to pivot based on our understanding of the project. 

Even though we had weekly sponsor meetings and were at the Hudl headquarters for several 

hours each week, it felt like we seldom got down to talking about the things that were most 

important for our success. Specifically, these meetings were focused more on the big picture of 

the project, when more often than not we needed specific technical help. We would update the 
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sponsors on what we worked on in the previous week, and they would comment on our progress, 

direction, and ask big-picture questions. Often, we waited until after the meeting to ask one of 

our sponsors about any specific programming questions. This also led to us needing to reach out 

to him and schedule a lot of meetings outside of team times (which unfortunately were not 

usually during business hours) and weekly sponsor meetings. 

 We also struggled with finding the right balance between estimation and work. In Release 

3, we confidently started with the idea that we could produce another fully-realized MVP 

because we successfully created one within the span of Release 2. However, we failed to realize 

that the solution we were building was more complex this time and, furthermore, we had less 

work time to devote to these efforts due to Thanksgiving and winter break. We also had some 

unavoidable circumstances with team members getting sick during this release. It would have 

been wise if we had initially factored in the break time and allowed ourselves to build this 

solution over the span of two releases. 

 Most importantly, we struggled with dividing work and allocating tasks to those who 

could carry them out most effectively, particularly in the beginning of the project. For example, 

the amount of work needed was often underestimated and only one person was assigned to each 

task at a time. This led to developers having an overabundance of knowledge in one topic but no 

knowledge in others. As the project progressed, we learned from this problem and the situation 

improved as we increased our collaboration and pair programming.   

Disadvantages of Scrum 

Like any framework, Scrum has its shortcomings. Some of my team’s struggles were 

related to its faults. For example, we had a tendency to over-estimate how much work we could 

accomplish, particularly during Release 3. In Scrum, it is often difficult to estimate, particularly 
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at the beginning of a project. Utilizing story points and planning poker allows a team to come to 

a consensus on task difficulty, which Scrum assumes approaches the reality of how much effort 

each task will require. In practice, it’s impossible to truly predict the future. The process of 

estimating effort can work well if the team has enough combined expertise. However, a team that 

is starting a project with unfamiliar technologies or a degree of uncertainty about their goals will 

struggle to estimate the time and effort that may be required. 

Not only can it be difficult to estimate these items, but Scrum exacerbates this problem 

by placing a heavy emphasis on estimation. Some critics argue that Scrum focuses on the wrong 

idea in this regard, because the end goal of a project should always be to create high-quality 

software. One critic specifies that  

techniques like burn down charts and planning poker put the focus on your ability to 

accurately estimate task duration, not your ability to create software that is delightful to 

use, meets your users’ needs, keeps technical debt to a minimum, can be quickly and 

easily modified, [and] has a small number of bugs … unfortunately, far too many teams 

spend massive amounts of time and money just trying to measure their ability to guess 

how long work will take (Gray, 2015, para. 18).  

The team’s resources might be better spent on development time. 

The daily stand-up meeting is another Scrum practice which could be viewed negatively. 

It is usually touted as an innovative method to avoid long update meetings which waste the 

team’s time (See Appendix A). For instance, consider a different perspective in which a team 

member didn’t manage to accomplish anything significant the previous day or didn’t know what 

they needed to work on next. This team member could be reluctant to admit this in front of their 

entire project team. Alternatively, what would occur if someone oversold their accomplishments 
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to make themselves seem like a team hero?  In these scenarios the stand-up meeting adds 

unnecessary tension between team members.  

Alternatives 

 To overcome these shortcomings and the aforementioned difficulties my team 

experienced during our project, I would like to discuss the possibility of using alternative 

methods in Design Studio.   

 The first alternative that comes to mind is Waterfall (See Appendix A). Most Waterfall 

methods have evolved into the Iterative and Incremental approach. Neither of these two methods 

are completely Agile. They use sequential development techniques which require planning to be 

done upfront (Poppendieck, M., & Poppendieck, T., 2003). However, it would be a waste of time 

to consider either of these options as a viable alternative to Design Studio’s Scrum processes. For 

one thing, Design Studio previously used the Waterfall approach, and switched to Scrum for a 

good reason. Sequential development would not have been suited to the type of project I was 

working on because it requires all planning to occur before development. This would have led to 

failure in our case because our project was quite vague at the beginning and required us to 

change plans often. For this reason I would like to stay within the Agile realm. 

Another alternative is Extreme Programming (XP) (See Appendix A). The only 

procedures associated with using XP that aren’t already part of Design Studio’s Scrum process 

are its encouragement of pair programming and mandated test-driven development. Pair 

programming would be ideal for remedying my team’s problem of difficulty assigning tasks. It 

would encourage us to help one another and develop our understanding of code by sharing our 

knowledge with one another. The only foreseeable problems which could arise would be 

conflicts and personal differences which may occur when two team members don’t get along. 
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Test-driven development would be helpful in its own way. It could help ensure quality 

programming by requiring the team to keep the end goal in mind, because tests are written before 

anything else. Unfortunately, extreme programming’s emphasis on testing, while valuable in 

many cases, may not work for every team. Testing is an extremely important practice, but for 

Design Studio it really depends on the sponsor and the situation the team is placed in as to 

whether they need to implement testing or not. For example, the team may be creating a front-

end for a project that has existing functionality, or simply researching MVP’s, as my project did. 

However, if the team doesn’t need to write tests, according to the creator of extreme 

programming, “You don't get to choose whether or not you will write tests—if you don't, you 

aren't extreme: end of discussion” (Beck, 2000, “What Is XP?”, para. 2). 

A third alternative is Lean (See Appendix A). Much like XP, Lean recommends utilizing 

pair programming. Lean recommends pair programming because it follows a couple of central 

principles of Lean, empowering the team members while also promoting learning over getting it 

right the first time (Poppendieck, M., & Poppendieck, T., 2003). Furthermore, Lean advocates 

that the downfalls of planning in Agile methods can actually be considered advantages. Agile 

approaches  

do not provide for design prior to the beginning of programming. … Those with a bias 

toward sequential development would like to see all design done prior to the start of 

programming. [Instead,] Agile approaches recognize that architectures evolve and 

mature; the practical approach is to provide for an emerging design rather than try to stop 

it (Poppendieck, M., & Poppendieck, T., 2003 “Chapter 5. Empower the Team, The 

Fuzzy Front End”, para. 1). 
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Kanban (See Appendix A) is a simple procedure which could help to alleviate some of 

the difficulty planning and allocating tasks in Scrum. The good news is that the simple card 

system Kanban advocates is exactly like the configuration of my team’s Jira board. This means 

we were essentially already using Kanban techniques. However, not all teams use Jira. As 

mentioned previously, many of them use Zenhub because this is the tool Design Studio 

encourages. Zenhub is adequate for most teams’ needs, and has equivalent functionality to Jira, 

depending on how columns on its board are customized. If Zenhub were inadequate, other teams 

could take advantage of the index-card technique Kanban describes. This technique is simple, 

but effective, and would not require a large amount of extra resources for Design Studio to 

implement. 

Conclusions 

 Based on my experience, I believe Design Studio’s Scrum practices are on the whole 

adequate for its needs. The recommended practices effectively allow each team to be flexible and 

to develop its own practices within the framework. However, if I were to propose a couple of 

changes to Design Studio, it would be to heavily encourage pair programming and to increase 

sponsor communication. 

To improve the problem we had with sponsor communication, it would have helped my 

project if we had a designated time to discuss technical aspects of the project. Perhaps Design 

Studio could add a second weekly meeting, or, if that requires too much extra time as an 

investment, teach the team leads to always bring up technical questions during the weekly 

meetings. Perhaps Design Studio could rework their focus on the Agile principle which states: 

“Business people and developers must work together daily throughout the project” (Beck et al., 
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2001a, para. 4). While this may not be possible for all projects (for example, those with remote 

sponsors), increased sponsor communication would help guide many teams. 

 Of course, if communication between the team and sponsor is increased too much, there 

could be a point where it becomes more detrimental than helpful. The sponsor could become 

overbearing with more frequent demands for the team, or become more aware of the team’s daily 

struggles and have a negative view of how the project is going. More communication would also 

take away from development time. Design Studio should strive to find the correct balance. 

However, I think my suggestions will help without making this goal too overwhelming.  

 To enable us to better allocate tasks and learn from one another, Design Studio should 

also place a greater emphasis on pair programming. Design Studio already has a discussion of 

pair programming during one of the class periods. It is combined with another topic, but it takes 

up about half a class period. This discussion could be expanded into a full lecture. Another 

possibility is that an in-class hands-on activity could be added. Alternatively, Design Studio 

could add a pair programming assignment where each team has to have each a combination of 

developers collaborate together and report on the results. 

 If these changes were to be implemented, they would help solve the problems my team 

faced.  For instance, these changes would have dealt with our difficulty in allocating tasks, in not 

having enough technical knowledge, and in the need to reevaluate our project vision. 

Research Challenges 

 During the course of our project, my team faced a couple of research challenges that had 

nothing to do with our development methods or Scrum. One such challenge was that our 

development environment setup took a long time at the beginning of the project. Not being able 

to start hands-on coding for a month or so forced us to focus more on ideation during that phase 
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of the project. We attempted to continually be productive by spending that time generating ideas 

for our solution while development was delayed.  

 Another challenge arose when our Development Manager had to drop out for personal 

reasons. This was particularly tough for our team because it occurred halfway through the year, 

and we suffered a loss of expertise about the project. To minimize our losses, we were able to 

promote a new Development Manager from within the existing team and to add a new developer. 

However, we still had to spend time and resources setting up the new developer’s development 

environment, as well as updating him on the technologies involved and the state of the project. 

For practically an entire release we had one less developer than usual. It didn’t seem to affect our 

progress too much, but then again it is impossible to say how much more we could have 

accomplished if we’d had another developer working during that time.  
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Glossary 

Agile: A software project management philosophy which values responding to change over 

following a predetermined plan (See Appendix A) (Beck et. al., 2001b). 

Burndown Chart: A graph depicting the number of Story Points completed in a Scrum Sprint 

over time. A visual representation of progress the team has made during the Sprint. 

Daily Scrum: Also known as the daily stand-up. It is a short meeting limited to fifteen minutes 

during which the team members stand and answer the questions: 

• What are the obstacles or impediments that are preventing me from making 

progress? (See Appendix A) (Rubin, 2013). 

• What did I accomplish since the last daily scrum? 

• What do I plan to work on by the next daily scrum? 

Development Manager: Design Studio role. A student leadership position within the team itself. 

Responsible for guiding the more technical aspects of the project. 

Extreme Programming: An Agile-like framework which preceded the Agile philosophy, and 

included specific implementation guidelines such as test-driven development (See Appendix A). 

Incremental and Iterative: Software development processes which represent a more modern 

interpretation of Waterfall. They can be thought of as a mixture between Waterfall and Agile. 

They involve cycles of development with distinct linear stages within each cycle (See Appendix 

A). 

Jira: A paid sprint planning tool for software development which can be accessed at: 

https://www.atlassian.com/software/jira 
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Kanban: A method of planning a software project by organizing cards into sections such as “To-

Do”, “In-Progress”, and “Done”, and moving cards whenever a relevant change occurs (See 

Appendix A). 

Lean: A set of principles that were originally applied to manufacturing, but have since been 

adopted and applied to software development (See Appendix A). 

Minimum Viable Product (MVP): A product which produces the desired functionality with the 

minimum possible effort. Used in user testing, prototypes, etc. 

Pair Programming: Pairs of developers work together, with one typing at the computer and the 

other providing comments and supervising. Allows developers to share expertise (See Appendix 

A). 

Planning Poker: Method recommended by Scrum to allocate story points to each task. A game 

which enables the team to agree on the amount of points to assign (See Appendix A). 

Product Manager: Design Studio role. A student leadership position within the team itself. 

Responsible for sponsor communication, team management, planning and organization. 

Release: A deadline where a finalized unit of the project or some equivalent deliverable is 

presented. 

Scrum: A commonly implemented set of software development rules which follow the Agile 

philosophy (See Appendix A). 

ScrumMaster: A role recommended by Scrum (See Appendix A). “Helps everyone involved 

understand and embrace the Scrum values, principles, and practices” (Rubin, 2013, “Chapter 2. 

Scrum Framework, ScrumMaster”, para. 1). 

Sponsor: Design Studio role. A representative from the participating company who is 

responsible for and involved in the Design Studio project. 
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Sprint Retrospective: Last activity in a Scrum Sprint. It allows the team to inspect and adapt 

their process, as opposed to the product (See Appendix A) (Rubin, 2013). 

Sprint Review: Second-to-last activity in a Scrum Sprint; a conversation amongst all the 

relevant parties which allows the team to inspect and adapt the product that is being built (See 

Appendix A) (Rubin, 2013). 

Sprint: A fixed period of time in which the steps of the Scrum cycle occur. Usually about two 

weeks (see Appendix A). 

Story Points: Points allocated to tasks in Scrum which are used to estimate the task’s difficulty. 

Not tied to any concrete measure, like time (See Appendix A). 

Team Time: A Design Studio team’s working hours. 

Telemetry: In a software development context, telemetry refers to collecting data about the 

software’s performance and usage. 

Test-Driven Development: A method of software development wherein tests are written first, 

and code is developed to suit the test afterwards. Recommended by Extreme Programming (See 

Appendix A). 

Waterfall: A software development process which has linear stages. Planning occurs before 

development. It was the most common process used before the advent of Agile (See Appendix 

A). 

Zenhub: A free alternative to Jira; a sprint planning tool for software development which can be 

accessed at: https://www.zenhub.com/ 

  



 
22 

SOFTWARE DEVELOPMENT APPROACHES IN DESIGN STUDIO 

Appendix A 

Literature Review 

Investigating alternatives to Scrum software development practices for Design Studio was one of 

the main goals of this research. To determine which set of practices would be best suited to 

Design Studio, I conducted a review of the literature. This research covered a large amount of 

material because of the large variety of software development philosophies. This section is 

dedicated to defining the terminology and concepts behind each practice. However, not all of the 

practices or terms will be discussed here. I’ve limited the scope to only the best alternatives I 

considered and to relevant concepts that I discuss in this thesis, with the aim of using this 

material as a reference for the previous sections of this thesis which discuss their feasibility. 

Agile:  

The word “Agile” is commonly used as an umbrella to cover a set of many different, yet 

similar, brands of software engineering practices. Because of this, it could easily be mistaken as 

referring to one of those methods individually. However, at its core, Agile is a philosophy rather 

than a strict set of rules and practices. This began as a set of principles called the Agile 

Manifesto, written by a group of software engineers to function as “a distillation of the ideas that 

had been circulating in the IT community, as developers searched for alternatives to the 

Waterfall methodology and its many pitfalls” (Freedman, 2017, “What is Agile?”, para. 5). The 

Agile Manifesto is simply the following statement:  

We are uncovering better ways of developing 

software by doing it and helping others do it. 

Through this work we have come to value: 
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Individuals and interactions over processes and tools 

Working software over comprehensive documentation 

Customer collaboration over contract negotiation 

Responding to change over following a plan 

 

That is, while there is value in the items on the right,  

we value the items on the left more (Beck et. al., 2001b). 

Later, the authors of the Agile Manifesto expanded upon these simple principles and created a 

document that described twelve Agile Principles, which were more specific and which many find 

to be a more useful guide than the Manifesto to implementing this practice (Freedman, 2017). 

These twelve principles are as follows: 

1. Our highest priority is to satisfy the customer through early and continuous 

delivery of valuable software. 

2. Welcome changing requirements, even late in development. Agile processes 

harness change for the customer's competitive advantage. 

3. Deliver working software frequently, from a couple of weeks to a couple of 

months, with a preference to the shorter timescale. 

4. Business people and developers must work together daily throughout the project. 

5. Build projects around motivated individuals. Give them the environment and 

support they need, and trust them to get the job done. 

6. The most efficient and effective method of conveying information to and within a 

development team is face-to-face conversation. 

7. Working software is the primary measure of progress. 
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8. Agile processes promote sustainable development. The sponsors, developers, and 

users should be able to maintain a constant pace indefinitely. 

9. Continuous attention to technical excellence and good design enhances agility. 

10. Simplicity--the art of maximizing the amount of work not done--is essential. 

11. The best architectures, requirements, and designs emerge from self-organizing 

teams. 

12. At regular intervals, the team reflects on how to become more effective, then 

tunes and adjusts its behavior accordingly (Beck et al., 2001a). 

 

Extreme Programming:  

 Many people confuse Agile and Extreme Programming.   Extreme Programming actually 

predates the Agile Manifesto, and is one of the methodologies from which the Agile Manifesto 

evolved. Extreme Programming arose after the days of Waterfall and was developed by Kent 

Beck. 

 According to Beck, Extreme Programming’s distinguishing qualities are: 

• Its early, concrete, and continuing feedback from short cycles. 

• Its incremental planning approach, which quickly comes up with an overall plan that 

is expected to evolve through the life of the project. 

• Its ability to flexibly schedule the implementation of functionality, responding to 

changing business needs. 

• Its reliance on automated tests written by programmers and customers to monitor the 

progress of development, to allow the system to evolve, and to catch defects early. 
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• Its reliance on oral communication, tests, and source code to communicate system 

structure and intent. 

• Its reliance on an evolutionary design process that lasts as long as the system lasts. 

• Its reliance on the close collaboration of programmers with ordinary skills. 

• Its reliance on practices that work with both the short-term instincts of programmers 

and the long-term interests of the project. (2000, “What Is XP”, para. 1). 

As you can see, this description mirrors the philosophy of Agile. Extreme Programming, 

however, prescribes more specific practices than Agile. For example, it emphasizes test-driven 

development and pair programming. A typical development cycle in Extreme Programming 

would include the following practices: 

• Pairs of programmers program together. 

• Development is driven by tests. You test first, then code. Until all the tests run, you aren't 

done. When all the tests run, and you can't think of any more tests that would break, you 

are done adding functionality. 

• Pairs don't just make test cases run. They also evolve the design of the system. Changes 

aren't restricted to any particular area. Pairs add value to the analysis, design, 

implementation, and testing of the system. They add that value wherever the system 

needs it. 

• Integration immediately follows development, including integration testing. (Beck, 2000, 

“Chapter 2. A Development Episode”, para. 20). 

Scrum:  

 The Scrum framework is a commonly implemented version of Agile. Those who choose 

Scrum appreciate its flexibility and ability to adapt to suit each organization’s needs. Scrum “is 
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based on a set of values, principles, and practices that provide the foundation to which [each] 

organization [adds] its unique implementation … for realizing the Scrum practices. The result 

[is] a version of Scrum that is [unique]” (Rubin, 2013, “Chapter 2. Scrum Framework, 

Overview”, para. 1). 

Interestingly, Scrum is able to achieve this flexibility while also providing a framework 

with a specific and clear set of practices. These practices can be divided into Roles, Activities, 

and Artifacts, as well as numerous specific Rules which I will not cover in this discussion 

(Rubin, 2013).  

Roles:  

The product owner is defined as being “the single authority responsible for 

deciding which features and functionality to build.” In addition, he or she “maintains and 

communicates to all [outside] participants a clear vision of what the Scrum team is trying 

to achieve …[and] is responsible for the overall success of the solution” (Rubin, 2013, 

“Chapter 2. Scrum Framework, Product Owner”, para. 1). 

The ScrumMaster “helps everyone involved understand and embrace the Scrum 

values, principles, and practices” (Rubin, 2013, “Chapter 2. Scrum Framework, 

ScrumMaster”, para. 1). He or she “is also responsible for protecting the team from 

outside interference … The ScrumMaster has no authority to exert control over the team, 

so this role is not the same as the traditional role of project manager or development 

manager” (Rubin, 2013, “Chapter 2. Scrum Framework, ScrumMaster”, para. 2). 

The development team “is a diverse, cross-functional collection of … people 

who are responsible for designing, building, and testing the desired product,” also known 

as developers (Rubin, 2013, “Chapter 2. Scrum Framework, Development Team”, para. 
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1).. They could include programmers, testers, UI designers, etc., but they are all termed 

“developers” by scrum. Ideally, the team is fairly small, around five to nine people 

(Rubin, 2013). 

Activities: 

Sprints are periods of time during which the following activities take place. 

Conceptually, sprints can be thought of in terms of iterations or cycles and should 

represent a fixed duration of time (Rubin, 2013). 

Sprint planning is the process of preparing for the upcoming sprint by 

determining a sprint goal and breaking each goal into a set of tasks called the sprint 

backlog (Rubin, 2013). 

The daily scrum, also known as a daily stand-up, is a short meeting limited to 

fifteen minutes during which the team members answer the questions: 

 What did I accomplish since the last daily scrum? 

 What do I plan to work on by the next daily scrum? 

 What are the obstacles or impediments that are preventing me from 

making progress? 

It is a common practice for the entire team to stand during this meeting to encourage 

brevity (Rubin, 2013). 

The majority of the time spent in the sprint, while the team is completing tasks 

from the backlog, is called the sprint execution (Rubin, 2013). 

The sprint review is the second-to-last activity in a sprint and is a conversation 

amongst all the relevant parties which is meant to allow the team to inspect and adapt the 

product that is being built (Rubin, 2013). 
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The sprint retrospective is the last activity at the end of the sprint. It allows the 

team to inspect and adapt their process, as opposed to the product (Rubin, 2013). 

After the sprint cycle and before the next sprint, the process of “creating and 

refining product backlog items, estimating them, and prioritizing them” takes place and is 

called product backlog grooming (Rubin, 2013, “Chapter 2. Scrum Framework, Product 

Backlog”, para. 3). 

Artifacts:  

The product backlog is a prioritized list of features. It begins as a list of 

requirements that are needed to meet the product owner’s vision but evolves over the 

course of an ongoing project into a list that may contain new features, changes, 

improvements, etc. (Rubin, 2013). 

A sprint backlog is the collection of tasks needed to complete a targeted feature 

within a sprint (Rubin, 2013). 

The result of the sprint should be a potentially shippable product increment 

that meets the standards of the team according to their definition of done. The product 

doesn’t necessarily have to be shipped, but there should be a state of confidence that the 

sprint’s tasks are complete (Rubin, 2013). 

 

Lean: 

Lean originated as a set of principles that are applied to manufacturing, but it can also be applied 

to Agile software development. Mary and Tom Poppendieck are authors of a book which 

identified seven of these Lean principles and provided tools to implement them in a software 

development context (2003). These principles are as follows: 
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1. Eliminate waste. 

a. In a software development context, this means eliminating partially done work, 

extra processes, extra features, defects, and any other undesirable byproducts of 

the process (Poppendieck, M., & Poppendieck, T., 2003). 

2. Amplify learning. 

a. Lean recommends focusing on learning effectively, rather than getting it right the 

first time. Take advantage of techniques such as learning cycles, iterations with 

refactoring, and increasing feedback (Poppendieck, M., & Poppendieck, T., 

2003). 

3. Decide as late as possible. 

a. In Agile software development, it is possible to create multiple options and delay 

making a decision on them until customer needs are better understood 

(Poppendieck, M., & Poppendieck, T., 2003).  

b. There is a distinction between plans and predictions, which are a good thing, and 

making irrevocable decisions based on speculation, which should be avoided 

(Poppendieck, M., & Poppendieck, T., 2003) . 

4. Deliver as fast as possible. 

a. Do not rush projects, but learn to deliver rapidly to gain a competitive advantage 

and benefit the customer (Poppendieck, M., & Poppendieck, T., 2003). 

b. Complements the decide as late as possible principle. 

c. Pull systems such as Kanban are more effective than strict software development 

schedules in complex environments with even a slight amount of variability 

(Poppendieck, M., & Poppendieck, T., 2003). 
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5. Empower the team. 

a. Attempt to provide intrinsic motivation to the team. This involves defining a clear 

and compelling purpose, that is achievable, and giving the team access to the 

customers (Poppendieck, M., & Poppendieck, T., 2003). 

b.  Encourage pair programming and design reviews because they provide expertise 

sharing between team members. However, design reviews should focus on 

learning rather than criticizing mistakes (Poppendieck, M., & Poppendieck, T., 

2003). 

6. Build integrity in. 

a. Strive to build a system with high perceived and conceptual integrity by having 

detailed information flows from customer to development team as well as among 

the development team itself (Poppendieck, M., & Poppendieck, T., 2003). 

b. Perceived integrity: affected by the customer’s whole experience of a system. 

Maintain institutional knowledge about the system with a suite of automated test 

and good documentation (Poppendieck, M., & Poppendieck, T., 2003). 

c. Conceptual integrity: System’s central concepts are cohesive and work as a 

whole. They have an effective architecture. Strive for simplicity, clarity, 

suitability for use, no repetition or extra features (Poppendieck, M., & 

Poppendieck, T., 2003). 

7. See the whole. 

a. Utilize systems thinking. It is important to realize that 

a system is not just the sum of its parts—it is the product of their 

interactions. The best parts do not necessarily make the best system; the 
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ability of a system to achieve its purpose depends on how well the parts 

work together, not just how well they perform individually (Poppendieck, 

M., & Poppendieck, T., 2003, “Chapter 7. See the Whole, Systems 

Thinking”, para. 1). 

b. Avoid fixing scope in detail, so you can be flexible. (Poppendieck, M., & 

Poppendieck, T., 2003). 

Kanban: 

 Kanban is a “pull scheduling” system of using cards to dictate every step of a process. It 

was “originally patterned after restocking grocery store shelves. Kanban means sign or placard in 

Japanese” (Poppendieck, M., & Poppendieck, T., 2003). In a more general context, which may 

be applied to software engineering,  

Kanban advocates that you: 

• Visualize how the work flows through the system (for example, the steps that the 

support organization takes to resolve a support request) 

•  Limit the work in process (WIP) at each step to ensure that you are not doing more 

work than you have the capacity to do 

•  Measure and optimize the flow of the work through the system to make continuous 

improvements (Rubin, 2013, “Chapter 1. Introduction, Interrupt-Driven Work”, para. 

3). 

As a software engineering implementation of Kanban, index cards can be created for each 

task and organized into three categories on a centrally visible bulletin board: “To-do,” “In-

progress,” and “Done.” This approach can enable developers to visualize exactly what to work 

on at a glance (Poppendieck, M., & Poppendieck, T., 2003). 
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The Lean methodology mentioned delivering “as fast as possible” as one of its principles. 

Kanban “is the enabling mechanism of [this principle]. [In the grocery store example, it was] the 

thing that [told] people and machines what to do from hour to hour in order to achieve optimum 

plant output” (Poppendieck, M., & Poppendieck, T., 2003, “Chapter 4. Deliver as Late as 

Possible, Manufacturing Schedules”, para. 7).  

Kanban is a beneficial system because it empowers the team to regulate their own work. 

For example, in the  

pre-lean days, people were told what to do by managers who modified the … schedule 

based on their personal knowledge and decided what each workstation should do. … The 

interesting thing about pull scheduling is that it takes the manager out of the loop of 

having to tell workers what to do. The work is self-directing. The managers spend their 

time coaching the team (Poppendieck, M., & Poppendieck, T., 2003, “Chapter 4. Deliver 

as Late as Possible, Manufacturing Schedules”, para. 8). 

Waterfall:  

Waterfall does not follow the Agile philosophy. It was the traditional method used before 

the advent of Agile, and it is linear in nature. It  

is predicated on a sequential approach to change whereby development is linear, with 

outputs of each phase of an analysis (requirements), the design, build, and test and deploy 

development process cascading like a waterfall into the next phase upon completion 

(Davis, B., & Radford, D., 2014, “What is Waterfall?”, para. 2). 
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Figure 3. Stages of the Project Life Cycle in Waterfall Development. Taken from: Davis, B., & 
Radford, D. (2014). Going beyond the waterfall: Managing scope effectively across the project 
life cycle. Plantation, FL; 4: J. Ross Publishing. Retrieved from 
https://www.safaribooksonline.com/library/view/-/ 

 

Waterfall used to be popular “primarily because it is simple. It is easy to understand and 

follow, and therefore adopts a logical sequenced approach” (Davis, B., & Radford, D., 2014, 

“What is Waterfall?”, para. 3). Most of the project life cycle time is spent in various forms of 

planning. Implementation only begins after every aspect of the project has been planned in 

advance. According to Davis and Radford, “with time spent up front defining and ultimately 

fixing the scope, a key principle of Waterfall is that once fixed, the development machine will 

progress and take that agreed scope and make it real” (2014, “Impacts of Waterfall on Scope”, 

para. 2). 

Much of the reason Waterfall has not been in use much anymore is that, due to the nature 

of fixing scope before actually implementing, there is no room for error or unexpected 
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circumstances. If something unexpected does happen, it disrupts the entire planned project 

timeline. 

Incremental/Iterative: 

Iterative and incremental development can be thought of as a halfway point 

between Waterfall and Agile. It uses aspects of both, with each increment or iteration 

taking place in its own cycle, much like Agile, but following a similar pattern to 

Waterfall within each iteration. 

 

Figure 4. Iterative and Incremental project development cycle from the Project Manager 
perspective. Taken from: Bittner, K., & Spence, I. (2006). Managing iterative software 
development projects. Upper Saddle River, NJ: Addison-Wesley. Retrieved 
from https://www.safaribooksonline.com/library/view/-/ 032126889X/?ar  

Iterative and incremental development has the following characteristics: 

• It involves the iterative application of a set of activities to evaluate a set of 

assertions, resolve a set of risks, accomplish a set of development objectives, and 

incrementally produce and refine an effective solution. 

• It is iterative in that it involves the successive refinement of the understanding of 

the problem, the solution’s definition, and the solution’s implementation by the 

repetitive application of the core development activities. 

https://www.safaribooksonline.com/library/view/-/
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• It is incremental in that each pass through the iterative cycle grows the 

understanding of the problem and the capability offered by the solution. 

• Multiple applications of the iterative cycle are sequentially arranged to compose a 

project (Bittner, K., & Spence, I., 2006, “Iterating and the Scientific Method”, 

para. 5). 

 

 

Figure 5. Graphical representation of relationships between software development 
methodologies described in this Appendix. 
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Appendix B 

Software Solutions 

This section provides an overview of the MVP software solutions we identified and implemented 

for Hudl over the course of the project: 

Suggestions 

 
Figure 6. Hudl Highlights editor sidebar before implementation of the Suggestions menu. 
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Figure 7. Hudl Highlights editor sidebar with the Suggestions option added. 

 

• In the Highlights editor, users are able to open a menu which suggests their most recent 

10 clips for them to use in their highlight. 

• Results of A/B testing this solution led us to not recommend pursuing it further (See 

Appendix C). 
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Notify and Filter 

 

Figure 8. Email notification sent to athletes after their gameplay video is fully tagged with game 
data by a coach. The link takes athletes to a pre-filtered video on Hudl with all of their best 
gameplay moments selected for them. 
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Figure 9. Hudl video player before filtering tags.  

 

Figure 10. Hudl video player after positive tags are filtered. This is the view the email links to. 
The ability to “Send to Highlights” with one click of a button after these moments are selected 
makes creating highlights a simple process. 
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Figure 11. Hudl video player with pre-selected positive filters shown on the right. Normally an 
athlete would have to manually select these filters, but the email link takes them directly to a pre-
selected version. 

• After a video from a game is tagged by the coach, a notification appears which directs the 

athlete to click on a link. This link leads them to a pre-filtered video with all their best 

moments already selected, after which they can send it to the highlights editor with one 

click. 

• Email notifications were implemented, and the possibility of other types of notifications 

was discussed. 

• Testing this solution and gathering data on its usage was not complete at the time of 

writing this thesis. 

The following are some possible solutions we identified, but chose not to pursue: 

One-Click Auto-Gen 

• Athletes would be able to automatically generate a highlight based on a recent video 

with one button. 
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• This solution did not make it far past the ideation stage because we realized it would 

be too complex and not feasible for the scope of our project. 

Mobile Notify and Filter 

• While this would have brought more value to our Notify and Filter solution for Hudl, 

the idea was presented with only two releases left in the project and only one of our 

developers had any iOS development experience, so it was decided not to pursue it. 

Future Solutions 

At the time of writing this thesis, there was one modification to a solution still in the early 

stages of development and planned as the next deliverable feature. 

Notify and Filter with Statistics 

• A minor modification to the Notify and Filter email message will be included which 

lists how many of each type of positive moment the athlete had in a game, so they can 

review their statistics. 

• Hopefully this modification will get athletes excited about what they accomplished, 

even more than the current email’s wording, and encourage them to make highlights 

of the game. 
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Appendix C 

Suggestions A/B Test Results 

The results of our A/B Test were evaluated using an online tool: https://neilpatel.com/ab-testing-

calculator/. This tool provides results which include the percentage better or worse the 

experimental option is to the control, the certainty, and categorizes results on whether they are 

statistically significant or not, or “questionable.” It seems that the tool uses a p-value threshold of 

< .05 for a “yes” answer, “questionable” indicates a p-value between .05 and .1, and “no” is 

anything greater than .1. 

 

Table C1 

Highlight Creation (Primary Metric) 

 Suggestions 
ON 

Suggestions 
OFF 

Better/
worse? 

Certainty? Statistically 
significant? 

P-Value 

Week % Created % Created     

49 20.94% 21.09% -1% 53% in favor of OFF No .47 

50 28.74% 25.15% 15% 99% in favor of ON Yes .01 

51 28.29% 26.05% 9% 90% in favor of ON Questionable .1 

52 30.98% 31.22% -1% 54% in favor of OFF No .46 

1 29.37% 30.10% -3% 65% in favor of OFF No .35 

2* 25.12% 25.94% -4% 60% in favor of OFF No .4 

Total 27.93% 26.70% 5% 93% in favor of ON Questionable .07 

*as of 1/8/19  

 

 

https://neilpatel.com/ab-testing-calculator/
https://neilpatel.com/ab-testing-calculator/


 
43 

SOFTWARE DEVELOPMENT APPROACHES IN DESIGN STUDIO 

 

Figure 12. This graph depicts the percentage of users creating highlights after entering the 
highlights editor, over a test period of 6 weeks. Taken from: Wiles, B. (2019b). Suggestions AB 
test results. Retrieved from 
https://sync.hudlnet.com/display/BETS/Suggestions+AB+Test+Results 
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Table C2 

Highlight Sharing 

 Suggestions 
ON 

Suggestions 
OFF 

Better/
worse? 

Certainty? Statistically 
significant? 

P-Value 

Week % Shared % Shared     

49 60.00% 40.30% 49% 100% in favor of 
ON 

Yes < .01 

50 26.94% 28.33% -6% 68% in favor of OFF No .32 

51 32.30% 29.40% 10% 80% in favor of ON No .2 

52 25.20% 30.16% -20% 88% in favor of OFF No .12 

1 28.50% 23.81% 20% 91% in favor of ON Questionable .09 

2* 20.75% 16.83% 24% 74% in favor of ON No .26 

Total 30.72% 28.25% 9% 94% in favor of ON Questionable .06 

*as of 1/8/19  

 

Conclusions 

Based on these results, we had the following conclusions: 

Overall, the test appears to be inconclusive, with slight preference towards turning 

suggestions on. However, the statistical significance for both metrics overall is 

questionable. There are some weeks where suggestions on wins and is statistically 

significant, but that doesn't hold true at scale. It is possible that … users were more 

curious about it, but that interest declined as time went on. Many weeks saw suggestions 

lose or have no statistical significance. My suggestion is to no longer pursue or invest 

resources in this feature (Wiles, 2019b). 
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