
University of Nebraska - Lincoln
DigitalCommons@University of Nebraska - Lincoln

Faculty Publications in the Biological Sciences Papers in the Biological Sciences

2-5-2018

Temperature Drives Epidemics in a Zooplankton-
Fungus Disease System: A Trait-Driven Approach
Points to Transmission via Host Foraging
Marta S. Shocket
Indiana University - Bloomington & Stanford University, mshocket@stanford.edu

Alexander T. Strauss
Indiana University & University of Minnesota

Jessica L. Hite
Indiana University & University of Nebraska - Lincoln, jhite2@unl.edu

Maja Šljivar
Indiana University

David J. Civitello
Indiana University & Emory University

See next page for additional authors

Follow this and additional works at: https://digitalcommons.unl.edu/bioscifacpub

Part of the Biology Commons

This Article is brought to you for free and open access by the Papers in the Biological Sciences at DigitalCommons@University of Nebraska - Lincoln.
It has been accepted for inclusion in Faculty Publications in the Biological Sciences by an authorized administrator of DigitalCommons@University of
Nebraska - Lincoln.

Shocket, Marta S.; Strauss, Alexander T.; Hite, Jessica L.; Šljivar, Maja; Civitello, David J.; Duffy, Meghan A.; Cáceres, Carla E.; and
Hall, Spencer R., "Temperature Drives Epidemics in a Zooplankton-Fungus Disease System: A Trait-Driven Approach Points to
Transmission via Host Foraging" (2018). Faculty Publications in the Biological Sciences. 718.
https://digitalcommons.unl.edu/bioscifacpub/718

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by UNL | Libraries

https://core.ac.uk/display/215159701?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://digitalcommons.unl.edu?utm_source=digitalcommons.unl.edu%2Fbioscifacpub%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/bioscifacpub?utm_source=digitalcommons.unl.edu%2Fbioscifacpub%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/bioscipapers?utm_source=digitalcommons.unl.edu%2Fbioscifacpub%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/bioscifacpub?utm_source=digitalcommons.unl.edu%2Fbioscifacpub%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/41?utm_source=digitalcommons.unl.edu%2Fbioscifacpub%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.unl.edu/bioscifacpub/718?utm_source=digitalcommons.unl.edu%2Fbioscifacpub%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages


Authors
Marta S. Shocket, Alexander T. Strauss, Jessica L. Hite, Maja Šljivar, David J. Civitello, Meghan A. Duffy, Carla
E. Cáceres, and Spencer R. Hall

This article is available at DigitalCommons@University of Nebraska - Lincoln: https://digitalcommons.unl.edu/bioscifacpub/718

https://digitalcommons.unl.edu/bioscifacpub/718?utm_source=digitalcommons.unl.edu%2Fbioscifacpub%2F718&utm_medium=PDF&utm_campaign=PDFCoverPages


Temperature Drives Epidemics in a Zooplankton-Fungus

Disease System: A Trait-Driven Approach Points

to Transmission via Host Foraging

Marta S. Shocket,1,* Alexander T. Strauss,1,† Jessica L. Hite,1,‡ Maja Šljivar,1 David J. Civitello,1,§

Meghan A. Duffy,2 Carla E. Cáceres,3 and Spencer R. Hall1

1. Department of Biology, Indiana University, Bloomington, Indiana 47405; 2. Department of Ecology and Evolutionary Biology, University
of Michigan, Ann Arbor, Michigan 48109; 3. School of Integrative Biology, University of Illinois at Urbana-Champaign, Urbana,
Illinois 61801

Submitted January 30, 2017; Accepted October 10, 2017; Electronically published February 5, 2018

Online enhancements: appendix. Dryad data: http://dx.doi.org/10.5061/dryad.3k8m3.

abstract: Climatic warming will likely have idiosyncratic impacts
on infectious diseases, causing some to increase while others decrease
or shift geographically. A mechanistic framework could better predict
these different temperature-disease outcomes.However, such a frame-
work remains challenging to develop, due to the nonlinear and (some-
times) opposing thermal responses of different host and parasite traits
and due to the difficulty of validating model predictions with obser-
vations and experiments. We address these challenges in a zooplankton-
fungus (Daphnia dentifera–Metschnikowia bicuspidata) system. We
test the hypothesis that warmer temperatures promote disease spread
and produce larger epidemics. In lakes, epidemics that start earlier and
warmer in autumn grow much larger. In a mesocosm experiment,
warmer temperatures produced larger epidemics. A mechanistic model
parameterized with trait assays revealed that this pattern arose primar-
ily from the temperature dependence of transmission rate (b), gov-
erned by the increasing foraging (and, hence, parasite exposure) rate
of hosts ( f ). In the trait assays, parasite production seemed sufficiently
responsive to shape epidemics as well; however, this trait proved too
thermally insensitive in the mesocosm experiment and lake survey to
matter much. Thus, in warmer environments, increased foraging of
hosts raised transmission rate, yielding bigger epidemics through a po-
tentially general, exposure-based mechanism for ectotherms. This mech-
anistic approach highlights how a trait-based framework will enhance

predictive insight into responses of infectious disease to a warmer
world.

Keywords: temperature, infectious disease, fungal disease, transmis-
sion rate, Daphnia, Metschnikowia.

Introduction

How will climate change impact infectious diseases? This
question is difficult to answer, often controversial, and yet
crucial to resolve in our warming world. About 15 years ago,
concern arose that a warmer world would generate wide-
spread increases in infectious disease (e.g., Harvell et al.
2002). However, in the current prevailing view, climate
change will have important but idiosyncratic impacts on in-
fectious disease: some diseases will increase, some will de-
crease, and others will simply shift their geographic range
(Lafferty 2009; Altizer et al. 2013). Thus, it is critical to de-
velop theory for thermal disease ecology that accounts for
different temperature-disease relationships within a general
predictive framework (Rohr et al. 2011; Altizer et al. 2013).
This framework must be hypothesis driven, field tested, and
founded on mechanisms and functional traits that drive the
temperature dependence of disease (Rohr et al. 2011; Altizer
et al. 2013; Rodó et al. 2013). Furthermore, it should apply
across a broad variety of transmissionmodes, hosts, parasites,
and habitats (Altizer et al. 2013).
Several challenges have hindered this mechanistic frame-

work for the thermal effects on disease spread. First, temper-
ature affects multiple components of the transmission process
simultaneously (Rohr et al. 2011). The thermal responses of
different host or parasite traits often have opposing effects
on disease spread, making the net outcome unclear. In the
classic example, the maturation time of malaria parasites
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and mosquito life span both decrease with temperature; the
former increases transmission, while the latter decreases it,
because for transmission to occur, a mosquito must survive
long enough for the parasites to reach maturity (Rogers and
Randolph 2006; Paaijmans et al. 2009). Therefore, mean-
ingful predictions require resolving tension between many
traits via quantification of the whole transmission process.
Second, these conflicting traits typically have nonlinear re-
sponses to temperature (Angilletta 2006; Rohr et al. 2011;
Mordecai et al. 2013). Thus, characterizing their reaction
norms requires fitting nonlinear functions to data that cover
the relevant temperature gradient with sufficient resolution.
Third, it can be difficult to validate predictions from mech-
anistic models with field observations. Long-term data sets
of outbreaks in nature are costly to assemble and scarce.
Fourth, the trait-based, whole-transmission approach has
largely focused onmosquito-borne diseases of humans. This
important but narrow scope currently limits a theory for the
thermal ecology of disease: breadth is needed with other
types of hosts and transmission modes. Additionally, while
human diseases have important health consequences, field
observations are influenced by social factors and inter-
ventions, and experimental manipulations can be unethical
(Altizer et al. 2013). Thus, comparing model predictions
with field data and demonstrating mechanistic causality is
even more difficult for human diseases. These four chal-
lenges have limited our ability to create a predictive, mech-
anistic framework for temperature-based regulation of dis-
ease spread.

In this study, we use a freshwater zooplankton-fungus
disease system to overcome these four challenges. First,
we build a model of disease spread that captures the trans-
mission ecology in terms of host and parasite traits. Second,
we parameterize these traits with nonlinear functions across
the relevant temperature gradient via experiments with the
easily cultured host and parasite. Third, we compare the
model predictions for epidemic size to patterns from a field
survey of epidemics in lakes. In the field survey, epidemics
vary greatly in size and starting temperature, providing sub-
stantial variation to explain. We also test causality using
mesocosm experiments that manipulate temperature. Fi-
nally, the system’s natural history shares features with many
other systems but is not well represented in current thermal
disease theory (but see Hall et al. 2006). Because hosts eat
spores produced by an obligate killer fungus, the thermal re-
sponse of foraging (exposure) rate and spore production
from dead hosts could be critical. Thus, we are able to rigor-
ously broaden a predictive, mechanistic framework for the
temperature dependence of infectious disease.

Our analysis uses a combination of field surveys, param-
eterized mathematical models, and a mesocosm experiment
to test the hypothesis that warmer temperatures promote
disease. A six-year survey of fungal epidemics in Daphnia

host populations demonstrates that epidemics that start dur-
ing warmer temperatures (i.e., earlier in the season) grow larger
(“Field Survey”). We establish mechanistic links between
temperature and epidemic size with a mathematical model
based on the study system’s natural history (“Temperature-
Dependent Model”) and parameterized using several ex-
perimental assays (“Parameterizing Temperature-Dependent
Traits”) or literature values. With these temperature-
dependent functions, we calculated a synthetic index of dis-
ease spread, R0. This approach resolves tension between the
conflicting thermal responses of two key traits: transmission
rate and parasite production (“Predicting Disease Spread:
R0”). The analysis found that increasing transmission rate
dominates, so warmer temperatures should indeed cause larger
epidemics. We tested this prediction using a mesocosm ex-
periment. The experiment echoed the field pattern: epi-
demics grew exponentially larger inwarmer conditions (“Tests
of Predictions: Mesocosm Experiment”), while parasite pro-
duction remained fairly flat (therefore, less important). This
result echoed similar results in the field (“Spore Load in Nat-
ural Epidemics”), prompting our conclusion that higher
transmission rate leads to larger epidemics in warmer condi-
tions.

Methods and Results

Study System

The focal hosts (Daphnia dentifera; hereafter, hosts) are
dominant zooplankton grazers in many freshwater, tem-
perate lakes across the Midwestern United States (Tessier
andWoodruff 2002). Some populations experience epidem-
ics of the virulent fungal parasite Metschnikowia bicuspi-
data (hereafter, fungus; Hall et al. 2010b; Penczykowski
et al. 2014a). Hosts become infected when they filter feed
nonselectively on phytoplankton and inadvertently con-
sume fungal spores (Hall et al. 2007). The fungal spores
pierce through the host’s gut wall, entering the host body
cavity. Once inside, the fungus replicates, producing spores
and eventually killing the host. Following host death, fungal
spores are released into the water column where new hosts
can consume them (Ebert 2005). Many traits that influence
the spread of the parasite (e.g., demographic traits of hosts,
probability of infection, and production of spores) change
plastically with temperature (Hall et al. 2006). Epidemics
typically begin in late summer or early fall (August–
October) and wane in late fall or early winter (November–
December; Hall et al. 2011; Penczykowski et al. 2014a). Max-
imum prevalence can reach up to 60% (Penczykowski et al.
2014a). During this time period, weighted temperature of
lake water (defined below in “Field Survey”) declines from
∼257C to∼57C. Thus, epidemics that begin earlier experience
warmer temperatures than those starting later.
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Field Survey

Methods. We tested whether warmer conditions were asso-
ciated with larger epidemics using 6 years of field data. We
surveyed 10–28 lakes per year in southwestern Indiana (Greene
and Sullivan counties) on a weekly (2009–2011) or biweekly
(2013–2015) basis from August to December, yielding data
for 74 epidemics. For each visit, we collected a zooplankton
sample (by pooling three vertical tows of a 13-cm-diameter
Wisconsin net with 153 mmmesh) andmeasured lake water
temperature data at 0.5- to 1-m intervals with a Hydrolab
multiprobe (Hach Environmental, Loveland, CO). We vi-
sually diagnosed at least 400 live hosts from the zooplankton
sample with a dissecting scope (#20–#50 magnification).

From these field data, we took two temperature and two
disease metrics. The temperature metrics account for varia-
tion in realized thermal environments of hosts. The effective
temperature depends ondaily verticalmigration betweenupper,
warmer waters (epilimnion, during night) and deeper, colder
waters (hypolimnion, during day) of these often stratified (di-
mictic) lakes. The proportion of hosts that migrate below the
epilimnion during the day varies between lakes (S. R. Hall,
unpublished data). Thus, twomeasures of temperature bracket
two extremes of migration. First, a mean epilimnetic temper-
ature assumes no vertical migration. Second, a time-weighted
temperature based on day length assumes that all hosts mi-
grate down to the colder, deeper layer during the day (here-
after, weighted temperature; see appendix, available online,
for details; Hall et al. 2005). In reality, most lakes likely fall
somewhere between these two extremes. Then, we calculated
twodiseasemetrics.An epidemic started on the datewhen in-
fection prevalence first exceeded 1% and wasmaintained above
1% for at least two consecutive sampling visits. (This choice
eliminated false starts.) Epidemic size was calculated by inte-
grating the area under the prevalence time series using the trap-
ezoid rule (Penczykowski et al. 2014a; Strauss et al. 2015).

We fit linear mixed effects models predicting epidemic
size as a function of lake, year, and temperature at the start
of epidemics using the nlme package (Pinheiro and Bates
2000; Pinheiro et al. 2009) in R (R Core Team 2016). We
performed model selection according to Bolker et al. (2009)
and Zuur et al. (2009). Lake and year were included as ran-
dom effects. We log transformed epidemic size to meet the
assumption of normally distributed residuals. This trans-
formation resulted in an exponential (rather than linear)
relationship between temperature and epidemic size. We
calculated the marginal R2 value (variance explained by fixed
effects, i.e., temperature at epidemic start) using theMuMIn
package (Bartoń 2009; Nakagawa and Schielzeth 2013). We
tested the significance of fixed and random factors using
likelihood ratio tests. The data and code for all analyses in
this article are deposited in the Dryad Digital Repository:
http://doi.org/10.5061/dryad.3k8m3 (Shocket et al. 2018).

Results. Fungal epidemics that start earlier and warmer grow
larger (fig. 1). More specifically, the field data show an expo-
nential relationship between epidemic size and both mea-
sures of lake water temperature at the start of epidemics
(fig. 1A, 1B; P ! :0001 compared to null model [without
temperature] for both measures of temperature; weighted
temperature slope coefficient p 0:228 [95% confidence in-
terval (CI): 0.175–0.281], epilimnetic temperature slope
coefficient p 0:173 [95% CI: 0.140–0.206]). In both mod-
els, temperature at the epidemic start explains 43% of the
variation in epidemic size (marginal R2 p 0:430 for weighted
temperature and 0.434 for epilimnetic temperature). In
both models, the random effect for lake was significant
(P p :0001 for weighted temperature, and P p :0004 for
epilimnetic temperature), but the random effect for year
was not (Pp 1 for weighted temperature, and Pp :14 for
epilimnetic temperature). This field pattern suggests that
temperature could contribute to variation in epidemic size.
However, temperature could be confounded with other bi-
otic or abiotic factors also changing seasonally. Therefore,
we turn to a mechanistic model and experiment to examine
the causal relationship between temperature and epidemic
size.

Temperature-Dependent Model

We used a temperature-explicit model of the zooplankton-
fungus system to determine how the thermal responses of
host and parasite traits govern disease spread. In this math-
ematical model, key traits of the host and parasite (i.e., model
parameters) vary as functions of temperature. Themodel with-
out temperature notation is

dS
dt

p e  f  A(S1 I)2 dS2 bSZ, ð1aÞ

dI
dt

p bSZ 2 diI, ð1bÞ

dZ
dt

p diI jmax

�
A

A1 h

�
2 mZ 2 f (S1 I)Z, ð1cÞ

dA
dt

p rAA

�
12

A
KA

�
2 f (S1 I)A ð1dÞ

(see also table 1). Susceptible hosts (S; eq. [1a]) increase via
births from susceptible and infected (I) classes; hosts feed at
the same foraging rate ( f ) on algae (A) and produce offspring
with conversion efficiency (e). (Infection does not reduce fe-
cundity in this model.) Susceptible hosts decrease at back-
ground death rate d and become infected at transmission rate
b after encountering fungal spores (Z). Infected hosts (eq. [1b])
are lost at disease-elevated death rate di 1 d. Dead infected
hosts release spores (eq. [1c]) following a saturating func-
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tion of algal resource density with a maximal spore yield
(jmax) and a half-saturation constant (h; Hall et al. 2009b;
Strauss et al. 2015). Spores are lost at a background rate
(m) and by the foraging of susceptible and infected hosts,
f (S1 I). Algal resources (eq. [1d]) grow logistically with a
maximal per capita growth rate (rA) and carrying capacity
(KA). They are eaten by susceptible and infected hosts.

We parameterized foraging rate ( f ), conversion efficiency
(e), transmission rate (b), background and disease-elevated
death rates (d and di), maximal spore yield (jmax), algal-
specific growth rate (rA), and algal carrying capacity (KA) as

functions of temperature (see “Parameterizing Temperature-
Dependent Traits”). Given lack of data, we assume that back-
ground spore loss (m) and spore production’s half-saturation
constant (h) do not vary with temperature.

Parameterizing Temperature-Dependent Traits

Methods: Experimental Assays. To parameterize the model,
we measured traits over a temperature gradient that covers
the most relevant part of the thermal range in which the
hosts and epidemics occur (approximately 157, 187, 207, 227,
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Figure 1: A, B, Field data from 6 years support temperature as a potential driver of disease: epidemic size (summed area under the curve of
time series of infection prevalence) increases exponentially with weighted temperature (A) and epilimnetic temperature (B) of lake water at
the start of the epidemic. Each point is a lake in a single year. The thick lines are linear mixed effects models fit to log-transformed epidemic
size data, with lake and year as random effects (P ! :0001 compared to null model [without temperature] and marginal R2 p 0:43 for both
measures of temperature; weighted temperature slope coefficient p 0:228 [95% confidence interval (CI): 0.175–0.281], epilimnetic tempera-
ture slope coefficient p 0:173 [95% CI: 0.140–0.206]). Gray shading shows 95% CIs for the temperature slope coefficients. C, Examples of
epidemic time series from four lakes in 2010: two epidemics that start early in the year (solid black and gray lines) reach higher prevalence
and are bigger compared to two epidemics that start later in the year (dotted and dashed lines).
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and 267C, varying slightly among experiments; see fig. 2).
Hosts cannot be cultured in constant temperatures above
277C (M. S. Shocket, unpublished data), while infection
develops extremely slowly at 107C (Hall et al. 2006). Trait
measurements came from a foraging assay, an infection as-
say, and a life table. Each of these is outlined briefly below;
see appendix for details and parameter estimation. All ex-
periments used a single clonal genotype of the host isolated
from a lake in Michigan due to logistical constraints on the
size of experiments. This clone is relatively susceptible to
fungal infection (Hall et al. 2010a, 2012) and shows a rep-
resentative thermal reaction norm for growth rate (fig. A1;
figs. A1–A3 are available online).

Foraging assay. We collected foraging rate data across
gradients of temperature and host body length (L). Forag-
ing rate in Daphnia depends on both (Kooijman 2009),
and our analysis requires foraging rate estimates for two
different body sizes. The transmission assays used large
adults (L p 1:5 mm), while mean body size in the meso-
cosm experiment and natural populations is much smaller
(L ≈ 0:85 mm, the size we used in simulations; M. S. Shocket,
unpublished data). We selected individuals from each tem-
perature treatment (167, 187, 217, 247, 277C) that spanned a
wide size gradient. Hosts were placed into individual tubes
containing a known volume of algae suspended in filtered lake
water and allowed to forage for 8.5 h. We used fluorometry
to compare the amount of algae remaining in the grazed tubes
to ungrazed controls.

Infection assay. We measured transmission rate (b) via
the infection assay. For each temperature treatment, repli-
cate beakers of six 5-day-old hosts (all reared at 207C, aver-
age L p 1:5 mm) were exposed to a fixed dose (100 spores/
mL) of spores for 24 h. Ten to 18 days later (depending on
temperature), we diagnosed the infection status of the hosts
and calculated the proportion of hosts infected in each bea-
ker. We estimated the transmission rate for large adults
(badult) from these data by fitting a temperature-dependent
model. However, this calculation overestimates the trans-
mission rate for mixed-age host populations, which are typ-
ically juvenile dominated (Hite et al. 2016). Because host for-
aging rate ( f ) is size dependent, large adults contact more
spores and are more likely to become infected (Hall et al.
2007). We estimated a population-level transmission rate
(bpop) by adjusting for the lower foraging rate of smaller-
bodied hosts found in a typical natural population (L ≈
0:85 mm). First, we divide the adult transmission rate by
the adult foraging rate to calculate the per-spore infectivity
(u): u p badult=f adult. Then we multiply spore infectivity by
the foraging rate for the population average body size so that
bpop p u ⋅ f pop. This breakdown allows analysis of each un-
derlying mechanisms’ contribution—host-parasite contact
and spore infectivity—to the temperature dependence of
transmission rate (b). The population-level transmission

rate (hereafter, b) was used in all subsequent analyses of dis-
ease spread (i.e., R0 calculation, sensitivity analysis, and ep-
idemic simulations).
Life table. Most other traits were parameterized by a life

table experiment. We estimated maximal spore yield (jmax),
death rates of susceptible and infected hosts (d and di, re-
spectively), and intrinsic rate of increase of hosts (r) directly
from the life table. For each temperature treatment, we cre-
ated two cohorts of same-age hosts; one was exposed to a
high dose of parasite spores. We monitored individually
housed hosts daily for survival and offspring production
(yielding d and di from survival models and r estimated
from the Euler-Lotka equation). We ground up dead in-
fected hosts to count spores produced within each individ-
ual. Spore production at the high algal density used (2.0 mg
dry/L) approximates maximal spore yield (jmax; Hall et al.
2009b; Strauss et al. 2015). We calculated conversion effi-
ciency of host births (e) with data from the life table and
the foraging assay. First, we calculated the host birthrate
(b) as the sum of host intrinsic rate of increase (r) and back-
ground death rate (d): b p r 1 d. Then, we assumed birth-
rate equals assimilated energy converted into offspring,
e f A (eq. [1a]), where f is per capita foraging rate for large,
adult hosts (L p 1:5 mm) on algae (A, converting 2.0 mg
dry/L to 23.23 mg Chla/L). Conversion efficiency was then
estimated as e p b=( f  A).
Literature-based parameters. Parameter values for algal

growth and the half-saturation constant (h) in the spore
yield function came from the literature.We used an existing
temperature-dependent function for maximum per capita
growth rate (rA) and data for the thermal response of algal
carrying capacity (KA) for Scenedesmus sp. (Xin et al. 2011).
The functions for these parameters (rA and KA) were each
scaled by a constant factor to give reference values (at 207C)
close to those used by Strauss et al. (2015). This approach
preserves the temperature dependence from Xin et al.
(2011), while producing more realistic grazer-resource dy-
namics in our model. The half-saturation constant (h) in
the spore yield function was taken from previously published
data (Strauss et al. 2015).

Methods: Fitting the Functions.We fit temperature-dependent
functions for each trait using Bayesian inference with vaguely
informative priors. The functions were fit with replicate-level
data (individual hosts for life table experiment and foraging
rate assay, beakers for infection assay) from all temperature
treatments simultaneously (i.e., propagating all error), imple-
mented with the R2jags package (Plummer 2003; Su and
Yajima 2009) in R. We used similar methods to estimate the
value of traits at each temperature individually. These point
estimates provide graphical insight (fig. 2), but subsequent
R0 calculations and so forth used predicted values from the
functions across the temperature-gradient.

440 The American Naturalist



0.5 1.0 1.5 2.0

0.00

0.01

0.02

0.03

0.04

0.05

0.06
Fo

ra
gi

ng
 ra

te
 −

 f 
(L

/d
ay

) 27 °C
24 C
21 °C
18 °C
16 °C

A

Body length (mm)
16 18 20 22 24 26

0.000

0.002

0.004

0.006

0.008

Fo
ra

gi
ng

 ra
te

 −
 f 

(L
/d

ay
) B

Temperature (°C)

L= 0.85 mm

16 18 20 22 24 26

0.0

0.2

0.4

0.6

0.8

1.0

Tr
an

s.
 ra

te
 −

 β
 (L

 s
po

re
−1

 d
ay

−1
10

−4
)

C

16 18 20 22 24 26

0.0

0.5

1.0

1.5

S
po

re
 in

fe
ct

iv
ity

 −
 u

 (s
po

re
−1

10
−3

)

D

16 18 20 22 24 26

0.00

0.02

0.04

0.06

0.08

0.10

0.12

D
ea

th
 ra

te
s 

− 
d,

 d
i (

da
y−1

)

d i

d

E

16 18 20 22 24 26

0.0

0.5

1.0

1.5

2.0

C
on

ve
rs

. e
ff.

 −
  e

 (μ
g 

C
hl

a−1
)

F

16 18 20 22 24 26

0

5

10

15

20

M
ax

. s
po

re
 y

ie
ld

 −
σ m

ax
 (h

os
t−1

10
4 )

G

Temperature (°C)
16 18 20 22 24 26

0.00

0.05

0.10

0.15

0.20

0.25

M
ax

. a
lg

al
 g

ro
w

th
 ra

te
 −

  r
A
 (d

ay
−1

)

0

5

10

15

20

25

30

35

A
lgal carrying capacity −  K

A   (μ g C
hla/L)

KA

rA

Temperature (°C)

H

°

Figure 2: Host, parasite, and resource traits as functions of temperature (also see table 1). A, Host foraging rate ( f ) as a function of body size
and temperature. B, Host foraging rate ( f ) for a body length (L) of 0.85 mm (typical population average). C, Population transmission rate (b,
for L p 0:85). D, Spore infectivity (u). E, Death rates of uninfected (d) and infected hosts (di). F, Conversion efficiency of births of hosts (e).
G, Maximal spore yield (jmax). H, Growth rate of algae (rA) and algal carrying capacity (kA). Functions were fit by Bayesian inference. Thick
lines are medians of the probability density function; thin lines with gray shading are 95% credible intervals. Points are observed data (A) or
Bayesian estimates of traits (C–G) from data at a single temperature treatment (with 95% credible intervals). Resource functions (H ) are mod-
ified from published values (see table 1; Xin et al. 2011).



We used several different thermal functions to map traits
to temperature. We used the Arrhenius function to model
adult transmission rate (badult), death rates of susceptible
and infected hosts (d and di, respectively), and host intrinsic
rate of increase (r). The Arrhenius function mechanistically
captures the exponentially increasing portion of a thermal
reaction norm (Hall et al. 2006; Kooijman 2009). In this ap-
proach, the trait value (y) at any temperature (T), y(T),
depends on the trait value (yR) at a reference temperature
(TR p 207C) and an Arrhenius coefficient (TA) governing
how steeply the trait scales with temperature:

y(T) p yR ⋅ eTA(1=TR21=T): ð2Þ
The foraging rate ( f ) function uses this Arrhenius function
(eq. [2]) but also includes a power function of body length
(L), with power coefficient g and size-specific foraging at
207C, fR:

f (T , L) p Lg ⋅ f R ⋅ eTA(1=TR21=T): ð3Þ
Thus, foraging increases almost exponentially with temper-
ature but also scales with a power of body length. Maximal
spore yield (jmax) responded unimodally to temperature, T.
Thus, we fit a quadratic function of temperature (Angilletta
2006), according to

jmax(T) p a2 ⋅ T2 1 a1 ⋅ T 1 a0, ð4Þ
where the a2, a1, and a0 parameters are fitted constants.

The thermal responses for derived traits were calculated
by numerically combining the output of these functions
(eq. [2]–[4]) over the temperature gradient. Specifically, we
calculated posterior distributions for conversion efficiency
(e), spore infectivity (u), and population-level transmission
rate (b) by combining the posterior distributions of their
component traits (see descriptions above and table 1).

Results. All of the host and parasite traits changed with tem-
perature (fig. 2; table 1). Foraging rate ( f ) also increased with
host body length by approximately length squared (i.e., pro-
portional to host surface area; fig. 2A). Foraging rate ( f ) in-
creased over the entire temperature range. For hosts with
body length equal to the natural population average (L p
0:85 mm), foraging rate increased by a factor of 3 over this
temperature range (fig. 2B). Because foraging rate controls
host exposure to parasites, it is unsurprising that transmis-
sion rate (b) also increased over the entire temperature
range. For hosts with body length equal to the natural pop-
ulation average (L p 0:85mm), transmission rate increased
by a factor of 4.7 (fig. 2C). Accounting for the contribution
of exposure to transmission rate, spore infectivity (u) in-
creased weakly over the entire temperature range, by a fac-
tor of 1.6 (fig. 2D). The death rates of both uninfected hosts
(d) and infected hosts (di) increased over the entire temper-

ature range by factors of 5.2 and 2.0, respectively (fig. 2E).
Thus, the death rate of uninfected hosts increased more
strongly with temperature, even though the death rate of in-
fected hosts was higher overall. Host birthrate (b) increased
over the entire temperature range, by a factor of 1.7 (see
fig. A2B). However, because birthrate (b) increased less than
foraging rate ( f ), conversion efficiency (e) decreased over the
entire temperature range, by a factor of 0.57 (fig. 2F). Maxi-
mal spore yield initially increased with temperature and then
decreased, peaking at 21.57C, with a spore yield 1.7 times
(70%) higher than the minimum at 157C (fig. 2G).

Predicting Disease Spread (R0)

Methods. We used a common metric of disease spread, R0,
to quantitatively combine the temperature-dependent func-
tions for all of the traits. Here R0 is an invasion criterion that
estimates the parasite population growth rate in a disease-
free host population at equilibrium. We calculated R0 for
the model (eq. [1]) using the next-generation matrix ap-
proach (Diekmann et al. 2010). The resulting quantity is
the ratio of gains (numerator) to losses (denominator) of the
parasite:

R0 p
b ⋅ S*b ⋅ jmax(A*

b=A
*
b 1 h)

m1 f ⋅ S*b
, ð5Þ

where gains stem from infections at transmission rate (b) of
susceptible hosts (S*b , S at the disease-free boundary equilib-
rium) and the release of spores. Spore production depends
on the maximal yield (jmax), the density of algae (A*

b , A at
the disease-free boundary equilibrium), and a half satura-
tion constant (h). Losses come from various background
sources (at rate m) and consumption by hosts (at foraging
rate f ). Equilibrial expressions for algal resource density
(A*

b) and host density (S*b) at the disease-free boundary are

A*
b p

d
e ⋅ f

, ð6aÞ

S*b p
rA
f

�
12

A*
b

KA

�
, ð6bÞ

where A*
b (eq. [6a]) is the minimal resource requirement of

the host; it is the ratio of background per capita death (d) to
the slope of birthrate (ef ). Host density (eq. [6b]) is then a
function of A*

b , f, and producer traits (maximal per capita
growth rate, rA, and carrying capacity, KA). (It is the ratio
of primary production, per unit algal resource, divided by
foraging rate.) For the analyses of R0, A*

b, and S*b, we used
foraging rate ( f ) calculated for the average body length in a
natural population (L p 0:85 mm).
We used sensitivity analysis (following Mordecai et al.

2013) to identify which traits in equations (5), (6) most
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strongly influenced how R0 changed with temperature. We
also analyzed the two components of transmission rate (b):
foraging rate as it contributes to host-spore contact ( fb) and
spore infectivity (u). We calculated the partial derivative of
R0 with respect to each trait y (∂R0=∂y), scaled per unit of
R0 (1=R0). Multiplying this quantity by the derivative of
the trait y with respect to temperature (dy=dT) gives the
trait’s contribution to the change in R0. Thus, for a generic
trait (y), the contribution of that trait to changes in R0 is
equal to the quantity

1
R0

 
∂R0

∂y
 
dy
dT

, ð7Þ

which is calculated across the temperature gradient. Sen-
sitivity analyses were conducted using Mathematica 8
(Wolfram-Alpha; see appendix for details).

Results. The two predicted equilibrial densities in R0 pull
against each other. Algal density (A*

b) at the disease-free
boundary equilibrium increases with temperature (T; fig. 3A),
while host density (S*b) decreases with T (fig. 3B). Increasing
A*

b should promote disease with higher T (since spore pro-
duction increases with A*

b). On the other hand, decreasing
S*b should reduce disease with higher T (since the positive
effect of new infections in the numerator dominates the
disease-suppressing effect of susceptible hosts as spore re-
movers in the denominator). Overall, the index of disease
spread (R0) increases over the entire temperature range, al-
though it begins to level off at high temperatures (fig. 3C).
Therefore, epidemics should become larger in warmer con-
ditions.

The sensitivity analysis reveals which traits are responsi-
ble for R0 increasing with temperature. Transmission rate
(b) most strongly drives the increase of R0 over most tem-
peratures (T 1 16:57C), and its effect is essentially constant
over the entire range of T (fig. 3D). On the other hand, the
effect of spore yield (jmax) changes withT and ismost impor-
tant at cold temperatures (T ! 16:57C). Low spore produc-
tion when cold keeps R0 low (so R0 is sensitive to any in-
crease in jmax with T); as spore yield increases with warming,
it contributes to the rise of R0. Then, as spore yield decreases
from its maximum (at 21.57C), its contribution to R0 be-
comes negative, eventually causing R0 to begin leveling off.
Increasing foraging rate ( f, considered here as it appears in
eq. [5], i.e., as spore removal only) and decreasing host den-
sity (S*b) both lower R0 as T increases (since higher f means
fewer spores remain in the environment and decreasing S*b
means fewer hosts are present to become infected). Increas-
ing algal density raises R0 as T increases (since more algal
resources elevate spore production). However, the magni-
tude of the impact of these three factors ( f, S*b,A

*
b) is minimal

relative to the other two components (b, jmax), and they es-

sentially cancel each other out. Both mechanistic compo-
nents of transmission rate (b)—foraging rate as it contrib-
utes to host-spore contact ( fb) and spore infectivity (u)—
increase R0 (fig. 3E). The former contributes approximately
two-thirds of the increase of b, while the latter contributes
approximately one-third. For an in-depth analysis of forag-
ing rate ( f ) and the other components of algal (A*

b) and host
density (S*b), see the appendix.

Test of Predictions: Mesocosm Experiment

Methods.We directly tested the prediction that warmer tem-
peratures promote disease spread with a mesocosm exper-
iment at 15.57, 18.57, and 237C. Each replicate tank (N p 3
per temperature) was filled with 33 L of water (50% high
hardness COMBO [Baer and Goulden 1998] and 50% fil-
tered lake water [A/E filters, 1.0 mm pore size]), inoculated
with a nutritious algae (Scenedesmus acutus), and lighted
to support algal growth. Nutrients were elevated to 20 mg/L
phosphorus (as K2HPO3) and 300 mg/L nitrogen (as NaNO3)
and replaced assuming a 5% loss rate per day. We reared the
same host genotype used previously at 237C and distributed
hosts among tanks. After 10 days, we initiated epidemics
(with the addition of 6.2 spores/mL). Host densities did
not differ significantly between treatments when the spores
were added (ANOVA P p :76, average 59.6 hosts/L, stan-
dard error [SE] p 4:6). Experimental epidemics ran for
56 days after spores were added (3–5 parasite generations,
depending on temperature treatment).
We sampled mesocosms to track infection prevalence,

host density, and resource density every 3–5 days. To col-
lect samples, we sieved (80 mm) 0.75 L of water to collect
hosts (water was returned to the mesocosm). All hosts
were diagnosed for infection using a dissecting microscope
(#20–#50 magnification). We pooled and homogenized
batches of infected hosts from each tank to estimate mean
spore load. (The term “spore load” here is used to differen-
tiate spore number measured in live animals at a variety of
infection stages vs. “spore yield” in the life table, where
animals died due to infection.)We also measured algal den-
sity (via chlorophyll a, measured using narrow band fluo-
rometry following chilled ethanol extraction [Welschmeyer
1994]).
We tested for the effect of temperature on epidemic size

(integrated area under the prevalence time series) using a
linear model in R. As in “Field Survey,” we log transformed
epidemic size, which resulted in an exponential (rather than
linear) relationship between temperature and epidemic size.
We fit linear mixed effects models predicting spore load and
algal density over the whole experiment using similar meth-
ods as in “Field Survey.” Tank (random) was nested within
temperature (fixed, treated as a factor). Sampling day was
initially included as a fixed factor but was not significant

Temperature Drives Disease via Foraging 443



16 18 20 22 24 26

0

2

4

6

8

10

E
q.

 a
lg

al
 d

en
si

ty
 −

  A
b
* 

(μ
g 

C
hl

a/
L)  A

16 18 20 22 24 26

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

0.25

R
0  

se
ns

iti
vi

ty

β

A*b

S*b

f

σmax

D

16 18 20 22 24 26

0

20

40

60

80

E
q.

 h
os

t d
en

si
ty

 −
  S

b
* 

(N
o.

/L
)  B

16 18 20 22 24 26

−0.10

−0.05

0.00

0.05

0.10

0.15

0.20

R
0  

se
ns

iti
vi

ty

Temperature (°C)

E

fβ

u

16 18 20 22 24 26

0

5

10

15

20

D
is

ea
se

 s
pr

ea
d 

− 
R

0

 C

Temperature (°C)

Figure 3: Temperature-dependent functions for density of algae at the disease-free boundary equilibrium, A*
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for either model (P p :68 and P p :14, respectively). For
spore load, tank was not significant (P p 1). For algal den-
sity, we included autocorrelation (f p 0:64). Because of the
autocorrelation structure, we could not perform a likelihood
ratio test on the tank effect; however, the variance captured
by the tank effect was incredibly low (standard deviation p
2:0# 1025).

Simulations of Epidemics Using the Parameterized Model.
We simulated epidemics for the three temperatures used
in the mesocosm experiment (15.57, 18.57, and 237C) using
the mathematical model (eq. [1]). Parameter values for host
and parasite traits were sampled randomly from the poste-
rior distributions at each temperature. Resource traits used
the single values estimated from the temperature-dependent
functions. Simulations were run with the deSolve package
(Soetaert et al. 2010).

Results. The mesocosm results support the prediction that
epidemics should become larger as temperature increases
(fig. 4A, 4B). Epidemic size increased exponentially with tem-
perature (fig. 5A; P ! :0001, adjusted R2 p 0:94). However,
while the simulated epidemics make accurate qualitative pre-
dictions for the mesocosm, they do not make accurate quan-
titative predictions for the time-series dynamics (fig. 4C). The
dynamical model is extremely sensitive to changes in trans-
mission rate (b). As parameterized from the lab assays, it
overpredicts the epidemic size and speed of disease spread
for the warmest treatment (237C) and underpredicts these
quantities for the coldest treatment (15.57C).More generally,
themodel does not capture the successive waves of infections
that appear in all of the temperature treatments. Instead, the
model predicts a constant increase in infection prevalence
until the system reaches an equilibrium. Thus, this model
is not a good tool for accurately predicting time series dy-
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Figure 4: Predictions from model simulations (A) and results (B) from experimental mesocosms for infection prevalence (i.e., proportion
infected) during epidemics. A, Model simulations used parameters randomly sampled from the posterior distributions of trait values at each
temperature. Thick lines show median values and shaded areas show 67% intervals from 1,000 simulations. B, Time series from mesocosm
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namics or values of infection prevalence. Instead, we use it as
a guide to make qualitative predictions for how temperature
impacts disease spread and epidemic size.
Based on the spore yield (jmax) results from the trait as-

say, we predicted that spore load would be lower in the
15.57C treatment than in the two warmer treatments. How-
ever, spore load did not vary with temperature (fig. 5B;
mixed effects model: P p :90). Spore production also de-
pends on quantity of algal resources (Civitello et al. 2015).
Thus, low algae at higher temperaturesmight explain the flat
thermal response of spore load. There was less algae at 237C
than at the two cooler temperatures (fig. 5C; mixed effects
model: P p :013; see appendix for extended discussion).
Low algae could explain flat spore load at 237C but not why
it did not increase at 18.57C relative to the other temperatures.
Nonetheless, based on this flat response, we infer that exper-
imental epidemics grew larger with warming due to increas-
ing transmission rate (b) and remained constrained at low
temperatures by low transmission rate.

Thermal Response of Spore Load in Natural Epidemics

Methods. We returned to the lake survey to further evaluate
the thermal plasticity of spore load. In the life table experi-
ment, spore yield (spores upon death from infection) re-
sponded unimodally to temperature. However, spore load
(spore content of randomly selected infected individuals)
did not differ in the mesocosm experiment, despite a wide
temperature range from 15.57 to 237C. Thus, we asked, does
spore load in nature remain fairly flat (and variable) with
temperature? Using spore load data from 2010 (13 lakes)
and 2014 (23 lakes), we fit linear mixed effects models pre-
dicting spore load on a given sampling date as a function of
lake (random), year (fixed), and water temperature (fixed)
using similar methods as in “Field Survey.” In both models,
lake was significant (both models: P p :0001), but year was
not (weighted temperature: P p :44; epilimnetic tempera-
ture: P p :6). See appendix for details.

Results. The field data show a quadratic relationship be-
tween spore load and temperature for weighted temperature
(fig. 6A; P p :02 compared to null model without temper-
ature). However, this thermal effect was small: temperature
explained only 3.8% of the variation in spore load (mar-
ginal R2 p 0:038). Furthermore, there was no relationship
between spore load and epilimnetic temperature (fig. 6B;
P p :37). Additionally, in the relationship with weighted
temperature, spore load peaked at 15.47C, substantially
lower than the peak temperature for spore yield in the trait
assay (21.57C). Thus, over a significant temperature range
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Figure 5: Data from a mesocosm experiment manipulating temper-
ature. A, Epidemic size (summed area under the time series curve of
infection prevalence) increased with temperature. The curve is a lin-
ear model fit to log-transformed epidemic size (P ! :0001, adjusted
R2 p 0:94). Points are jittered for visual clarity. B, Spore load (spores
per infected host, harvested randomly during sampling) did not vary
between temperature treatments (mixed effects model: P p :9). C, Den-
sity of algae (measured as concentration of chlorophyll a) was lower
at 237C than at 15.57C and 18.57C (mixed effects model: tempera-

ture P p :013). B, C, Error bars show standard error through time
and across replicate tanks.
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(15:47C ! T ! 21:57C), a contradiction arose: spore load
decreased slightly in the field but increased to its peak in
the trait assay. Overall, given the fairly flat relationship in
the field (like in the mesocosm experiment), we conclude
that the spore load responds too weakly to temperature
in nature to increase epidemic size with temperature (see
fig. 1A). The thermal response of spore yield might contrib-
ute to the waning of natural epidemics at even colder tem-
peratures (!157C; see fig. 6). Nonetheless, we still conclude
that thermal response of transmission rate likely matters
more than that of parasite production in nature.

Discussion

To what extent, and through what mechanisms, does tem-
perature drive variation in infectious disease? The answer
has important implications for predicting future impacts
of climate change on disease. To help answer this question, we
investigated the thermal ecology of a freshwater zooplankton-
fungus model system. In this system, epidemics start at var-
ious times during autumn. Given these staggered starts, sea-
sonal cooling of lakes creates variation in temperature regimes
for epidemics. Field data demonstrated that epidemics that
started earlier and warmer grew much larger. A mechanis-
tic model parameterized with lab experiments revealed that
this temperature-epidemic size pattern could stem from the
temperature dependence of transmission rate (b). The ther-
mal response of transmission rate was predominantly gov-
erned by exposure (foraging) rate of hosts ( f ) rather than
by spore infectivity (u). We then confirmed that warmer tem-
peratures caused larger epidemics with a population-level

experiment in mesocosms. Thus, in warmer environments,
increased foraging of hosts increases their exposure to par-
asites, resulting in more transmission and bigger epidemics.
Warmer temperatures promote disease over the relevant

thermal range of our host, in contrast to the few mechanis-
tic models that exist for other systems. More commonly,
disease spread or severity peaks at intermediate tempera-
tures. This pattern arises in helminthic parasites of Arctic
ungulates (Molnár et al. 2013), schistosomiasis (Mangal
et al. 2008), humanmalaria (Mordecai et al. 2013), and den-
gue fever (Mordecai et al. 2017). In each of thesemodels, the
intermediate peak stems from increased mortality of a key
host and/or of the parasite at higher temperatures. For in-
stance, high temperatures elevate mosquito mortality, thereby
strongly limiting the spread of human malaria and dengue
fever (Mordecai et al. 2013, 2017). The intermediate peak in
schistosomiasis is driven by increasingmortality of both the
snail host and the free-living parasite stages (Mangal et al.
2008). For the helminths in arctic ungulates, free-living par-
asite mortality is most important for limiting disease at high
temperatures (Molnár et al. 2013). Thus, higher host or par-
asite mortality under warm conditions is the key trait for
many systems where disease spread peaks at intermediate
temperatures. In the Daphnia-fungus system here, in the
relevant temperature range considered, similar mortality
factors were not strong.
In contrast, transmission rate (b) drives thewarmer-sicker

relationship in this plankton case study. Transmission rate
dominates disease spread because it directly generates new
infections, it increases exponentially with temperature over
the relevant thermal range, and it is unconstrained by other
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traits. Transmission rate itself depends mechanistically on
foraging rate ( f ; since hosts contact spores while feeding)
and spore infectivity (u). Both f and u increase with temper-
ature. Therefore, in warmer environments, hosts contactmore
fungal spores and are more likely to become infected given
exposure. However, foraging rate most strongly drives trans-
mission rate (approximately two-thirds of the thermal re-
sponse). The thermal response of foraging may generally
create a positive relationship between temperature and dis-
ease when poikilothermic hosts eat parasites. For example,
higher temperatures increase outbreak size by increasing con-
sumption of baculovirus particles on leaves by armyworm
caterpillars (Elderd and Reilly 2014). However, transmission
rate plateaued at high temperatures in another Daphnia dis-
ease system with foraging-based exposure (bacteria Pasteuria
ramosa; Vale et al. 2008). Thus, foraging controlled exposure
to parasitesmay ormay not cause transmission rate to increase
with temperature. Thermal plasticity of transmission, therefore,
warrants further study.

Spore production responded weakly and inconsistently
to temperature. Spore yield (j, spores at host death from in-
fection) peaked at an intermediate temperature in the trait
assay. Parasite load is also maximized at intermediate tem-
peratures for nematode parasites in slugs (Wilson et al.
2015), Ribeiroia trematodes in their snail intermediate hosts
(Paull et al. 2012), and P. ramosa bacteria in Daphnia (Vale
et al. 2008). (But parasite load can also peak at low tem-
peratures: plague bacteria in fleas [Williams et al. 2013],
Providencia bacteria in fruit flies [Lazzaro et al. 2008], and
Holospora bacteria in paramecium [Fels and Kaltz 2006]).
Based on the R0 model here, the unimodal response of spore
yield should enhance the effect of transmission rate (b) at low
temperatures (causing even smaller epidemics) and counter it
at high temperatures (flattening the response of epidemic
size). However, spore load (spores in randomly sampled in-
fected animals) was flat in the mesocosm experiment and
was either flat (for epilimnetic temperature) or peaked at a
much lower temperature (for weighted temperature) in nat-
ural epidemics (15.47Cvs. 21.57C). Therefore, other drivers of
spore load likely matter more than temperature during epi-
demics. For instance the quality and quantity of algal re-
sources influence spore production (Hall et al. 2009a),
and lakes with more algae have higher spore load and larger
epidemics (Civitello et al. 2015). Algal resources sometimes
increase as lakes cool (Hall et al. 2009a), possibly counter-
ing the influence of temperature on parasite production and
causing spore load to peak later in the epidemic season.
However, we did not disentangle interactions of food re-
sources, temperature, spore load, and epidemics here. Re-
gardless, while very cold temperatures (!157C) might still
constrain outbreaks via low parasite production, transmis-
sion rate remains the central trait connecting warmer tem-
peratures to larger epidemics.

At higher temperatures in the trait assays, transmission
rate increasedwhile parasite production declinedwithwarm-
ing. Thus, these traits pulled against each other—and similar
tension arises between them along other environmental
gradients. For instance, copper contamination and low-quality
algal food both increase transmission rate but depress spore
production (Hall et al. 2009a; Civitello et al. 2012). However,
the dominant trait varies. For chronic copper exposure, spore
yield dominates, suppressing epidemic size (Civitello et al.
2012). For food quality, the dominant trait shifts along a
quality gradient (Hall et al. 2009a). For potassium concen-
tration in lake water, spore yield is maximized at interme-
diate levels while transmission rate is unaffected (Civitello
et al. 2013). Over these examples, parasite production seems
sensitive to environmental factors that influence within-host
resource budgets. With thermal physiology alone, foraging-
based transmission rate dominated along temperature gra-
dients. Perhaps this trend will prove general in other systems
as well.
Temperature canmagnify other biotic and abiotic factors

that influence disease spread via changes in epidemic tim-
ing. In the plankton case study, start date determines the ther-
mal environment. Therefore, any factor that controls the
timing of disease emergence will indirectly affect epidemic
size via temperature effects. For instance, epidemics start
later in lakes with less dissolved organic carbon since these
pigmented compounds shield spores from damaging ultra-
violet radiation (Overholt et al. 2012). High densities of a
spore-eating, resistant competitor species (diluter Daphnia
pulicaria) also delay epidemic start dates (Penczykowski
et al. 2014a). These factors postpone the start of epidemics
into colder conditions and, thus, indirectly reduce epidemic
size through the thermal mechanisms described here. This
pattern could matter greatly because epidemics that start
earlier and grow larger also have a stronger negative impact
on host densities (Hall et al. 2011). Is this type of interaction
between temperature and other ecological factors a general
phenomenon? It seems likely a priori, given that seasonal
outbreaks are common (Altizer et al. 2006) and diseases
are often regulated by multiple, seasonally varying climatic
and ecological factors (Rohr et al. 2011; Altizer et al. 2013).
However, synthesizing the effects of multiple interacting
drivers of disease—particularly in a thermally explicit con-
text—remains a challenge (Rohr et al. 2011; but see Strauss
et al. 2016).
Four other aspects of thermal ecology could enhance the

trait-based approach here. First, a future perspective must
embrace temperature variation. Analyses of mosquito-
vectored diseases demonstrate how daily variation of tem-
perature influences traits and disease spread (Paaijmans
et al. 2009; Liu-Helmersson et al. 2014). While aquatic
habitats are buffered from daily fluctuations relative to ter-
restrial habitats, the host here often (but not always) verti-
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cally migrates. Thus, it can experience wide diurnal variation
in temperature (which we averaged out here in our weighted
temperature calculation;Hall et al. 2005). Second, upper ther-
mal thresholds could limit epidemics more than suggested by
this constant temperature approach. Although these hosts
cannot survive constant temperatures above 277C, in summer
they can experience hotter temperatures during night (viami-
grations to the upper, warmer epilimnion). If the fungus is
more thermally sensitive than the host, these summer tem-
peratures could exclude disease (Thomas and Blanford 2003).
Third, a focus on fungal physiology could help explain the
unimodal response of spore yield. Declining spore yield in
warm conditions could potentially result from a lower para-
site growth rate within hosts, higher virulence causing hosts
to die sooner (thus giving parasites less time to replicate),
more effective immune clearance, or a combination thereof.
(For a similar discussion of bacterial load in fruit flies, see
Lazzaro et al. 2008.) Finally, genetic variation in host and par-
asite thermal responses could also matter quantitatively, since
traits like growth rate and susceptibility could show genotype-
by-temperature interactions among host clones (Mitchell et al.
2005; see appendix for host growth rate thermal responses
among Daphnia dentifera clones). Each of these directions
would focus the mechanistic framework on other key as-
pects of hotter temperatures thatmay alsomatter in a warmer
world.

Disease ecology needs a better mechanistic framework to
link temperature to the spread of epidemics. In this study,
we used a planktonic disease system to address some key
challenges for this framework.We concluded that epidemic
size should increase with temperature because transmission
rate increases sensitively with warming. This prediction
explained why epidemics that started warmer could grow
larger in the field (as confirmed in a population-level meso-
cosm experiment). Thus, temperature-dependent foraging
may be the central trait to examine in many systems with
foraging-dependent exposure to parasites. With a mecha-
nistic, thermally explicit framework, disease ecologists can
tackle the next questions in the context of climate change.
For example, warmer, summerlike conditions will extend
deeper into autumn (Ibáñez et al. 2010). Will these changes
increase disease? Or will other ecological factors that inhibit
epidemics also shift and compensate for warmer tempera-
tures? Better connections between thermal physiology and
other aspects of ecology will help to anticipate effects of cli-
mate change for disease outbreaks.
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