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Abstract: Ultrasound is a prominent nondestructive testing modality
for the detection, localization, and sizing of defects in engineering mate-
rials. Often, inspectors analyze ultrasonic waveforms to determine if
echoes, which stem from the scattering of ultrasound from a defect,
exceed a threshold value. In turn, the initial selection of the threshold
value is critical. In this letter, a time-dependent threshold or upper
bound for the signal envelope is developed based on the statistics gov-
erning the scattering of ultrasound from microstructure. The utility of
the time-dependent threshold is demonstrated using experiments con-
ducted on sub-wavelength artificial defects. The results are shown to
enhance current nondestructive inspection practices.
VC 2019 Acoustical Society of America
[CCC]
Date Received: December 11, 2018 Date Accepted: January 22, 2019

1. Introduction

The ultrasonic waveform observed when attempting to detect flaws in engineering mate-
rials often exhibits grain noise from the interaction of the wave field with the microstruc-
ture. In the pulse-echo configuration, the grain noise created by the microstructural
interaction is also called the diffuse ultrasonic backscatter because of the lack of coher-
ence of these signals with the incident wave. When a discontinuity such as void, inclu-
sion, or crack is in the field of view of the transducer, the reflection can be masked by
this noise, especially when the discontinuity has characteristic dimensions or morphology
which is not distinct from the microstructure. Thus, the grain noise for a given material
is often the dominant factor limiting the detection of defects and flaws.1,2

Recently, Song et al. developed a mathematical formalism that incorporated
the inherent material-dependent backscatter response into a protocol for identification
of flaw echoes when backscatter is significant.3–5 The formalism, based on statistical
extreme value theory, provides an explicit expression for the upper bound of maximum
amplitudes of grain noise, which can be used as a time-dependent threshold to separate
sub-wavelength micro-flaws from the background of grain noise under ultra-high gain.
However, previous research was aimed at either the radio frequency (RF) signal3 and
the absolute value (ABS) of the signal.4,5

Ultrasonic inspection based on the amplitude of the signal envelope is popular
among inspectors because of its straightforward interpretation. Moreover, Thompson
and Margetan indicated that the noise envelope distribution plays a fundamental role
in the prediction of the probability of detection (POD), a key parameter used to man-
age the life of structural parts such as aircraft engines.6 The POD is also associated
with the smallest detectable flaw size, which restricts the load capacities of damage tol-
erance design and lightweight design for structural parts. Considering a process in
which a noise free flaw echo and grain noise add linearly, and assuming normally dis-
tributed noise with envelope detection, the resulting distribution has been proven to
follow the Rician distribution. Thus, the POD value for a specific threshold can be
defined for the Rician distribution.6,7 Meanwhile, the probability of false alarms
(PFAs) of the ultrasonic system should be kept as low as possible. However, in most
cases these methods use relatively low gain and fixed threshold, such that they are not
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practical for detection of sub-wavelength micro-flaws. To determine the smallest detect-
able flaw size under ultra-high gain using POD and PFA models, the noise envelope
distribution and the relevant time-dependent threshold need to be derived.

In this letter, the enhanced ultrasonic flaw detection method is expanded to
include the backscatter signal envelope, which is assumed to obey a Rayleigh distribution.
This assumption allows the max-domain of attraction of the Rayleigh distribution to be
determined. Then, we give and proof the normalizing constants of the asymptotic distribu-
tion of the largest order statistic from the Rayleigh distribution. Thus, the theoretical
upper bound of the backscatter signal envelope can be given by the normalizing constants
and the diffuse backscatter model from Turner and co-workers.8–10 Finally, the present
method is verified using scattering measurements performed on a stainless steel specimen
with artificial flat bottom holes (FBHs) designed with sub-wavelength dimensions.

2. Theory and method

Let the total number of ultrasonic signal envelopes acquired in an experiment be N. The
ith ultrasonic waveform in the ensemble is a backscatter signal envelope denoted as EiðtÞ,
whose corresponding RF signal is denoted as ViðtÞ. Suppose that ViðtÞ belongs to a nor-
mal distribution with zero-mean and standard deviation RðtÞ, such that EiðtÞ is a member
of the Rayleigh distribution. If all the waveforms are independent and identically distrib-
uted (IID), the experimental maximum amplitudes in the ensemble are

A exp
maxðtÞ ¼ max EiðtÞ½ �: (1)

The goal of this letter is to build the theoretical maximum amplitudes Atheory
max ðtÞ and

their bounds for signal envelopes. The superscripts exp and theory are used to indicate
the experimental and the theoretical quantities, respectively.

The probability density function (PDF) and the cumulative distribution func-
tion (CDF) of EiðtÞ are given, respectively, by

f E tð Þ½ � ¼ E tð Þ
R tð Þ½ �2

exp � E tð Þ2

2 R tð Þ½ �2

" #
; (2)

F E tð Þ½ � ¼
ðE tð Þ

0
f Zð ÞdZ ¼ 1� exp � E tð Þ2

2 R tð Þ½ �2

" #
; (3)

where i ¼ 1; 2;…;N and EðtÞ > 0. As shown in Appendix A, the Rayleigh CDF, F ,
belongs to the max-domain of attraction of the Gumbel extreme value distribution,
with normalized constants aNðtÞ ¼ RðtÞ=

ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

and bNðtÞ ¼ RðtÞ
ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

. Then, the
mathematical expectation and the confidence bound of Atheory

max ðtÞ can be given accord-
ing to the properties of the Gumbel distribution. The mathematical expectation of
Atheory

max ðtÞ for the backscatter signal envelope is then11

Atheory
max tð Þ ¼ bN tð Þ þ aN tð Þc ¼ cþ 2lnNð Þffiffiffiffiffiffiffiffiffiffiffi

2lnN
p Rtheory tð Þ; (4)

where c � 0:5772 is the Euler–Mascheroni constant and RtheoryðtÞ is the theoretical spa-
tial standard deviation curve. The upper bound of Atheory

max ðtÞ can be approximated as
U theory

1 ðtÞ ¼ bNðtÞ � aNðtÞln½�lnðaÞ�.11 However, this approximate expression is based
on the asymptotic behavior of the Gumbel distribution, which requires N !1.
Alternatively, we derive U theory

2 ðtÞ in Appendix A as

U theory
2 ðtÞ ¼ RtheoryðtÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnN � lnðN �Na1=NÞ
� �q

; (5)

where a is the confidence level. Equation (5) is the primary result of this letter. The dif-
ference between U theory

1 ðtÞ and U theory
2 ðtÞ is discussed in Sec. 3.

Finally, RtheoryðtÞ can be estimated by the diffuse backscatter model that has
been developed previously4,5 for which

RtheoryðtÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
U0 ~g N����p̂p̂ ŝ ŝ

����p̂p̂ ŝ ŝ wðtÞ
q

; (6)

where U0 is the system calibration coefficient. In Eq. (6), ~g and N����p̂p̂ ŝ ŝ
����p̂p̂ ŝ ŝ represent geo-

metric and elastic properties of the microstructure and are defined as the spatial
Fourier transform of the two-point correlation function, and the inner product between
wave vectors and eighth-rank covariance tensor of the elastic moduli, respectively.12

wðtÞ is a temporal and spatial integration related to the transducer beam pattern.
Explicit parameter definitions are dependent on the specific experimental case.8–10 In
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practice, the upper bound U theory
1 ðtÞ or U theory

2 ðtÞ can be used to establish a time-
dependent threshold to be triggered by an echo caused by a flaw.5 In addition, the
lower bound can be calculated by an analogous form to Eq. (5). However, it is beyond
the scope of the present letter.

3. Experiments and results

The flaw detection experiments are performed on a 304 stainless steel specimen. It has
a / 0.3 mm FBH with 10 mm depth, and two / 0.2 mm FBHs with 10 and 12 mm
depths, respectively; besides the FBH region, it has a reference region which is
assumed free of any flaws (see Fig. 2 in Ref. 5) and is used to quantify the grain noise.
The thickness of the specimen is 15 mm. The mean grain diameter is 44.2 6 2.8 lm
revealed by optical microscopy via ASTM standard E112.15

The C-scan immersion system employs a JSR DPR-300 pulser/receiver
(Pittsford, NY), an Olympus 7.5 MHz focused transducer (Waltham, MA, 51.9 mm
focal length, 12.7 mm element diameter), a 200 MHz ADLink PCIe-9852 DAQ card
(Beijing, China), and a computer-controlled motion platform. Normal incidence
pulse/echo measurements are used. The spot size of this focused transducer is
�3.2 mm (much larger than the mean grain diameter of 44.2 lm), which means the
backscatter signal envelopes are expected to have a Rayleigh distribution. The cou-
plant is water, whose density, longitudinal wave velocity, and attenuation coefficient
are qf¼ 998 kg/m3, cf¼ 1486 m/s, and af¼ 1.42 Np/m, respectively. The single crystal
elastic constants of the stainless steel are assumed to be c11¼ 204.6 GPa,
c12¼ 137.7 GPa, c44¼ 126.2 GPa.5 Its density, longitudinal wave velocity, and attenua-
tion coefficient are measured as cL¼ 5855 m/s and aL¼ 8.76 Np/m at 7.5 MHz. The
focus is set in the middle of the specimen, i.e., the material path is 7.50 mm, such that
the water path is zf¼ 22.4 mm.

To enhance the sensitivity of flaw detection, an ultra-high gain of 57 dB is
used. Before scanning the FBH region, we need to verify the accuracy of the mathe-
matical expectation, Eq. (4), and the upper bound, Eq. (5), for the maximum ampli-
tude curve. Thus, the microstructure reference region, which is assumed to be free of
flaws, is scanned with a resolution of 0.4 mm, and 900 waveforms are recorded. The
corresponding spatial correlation coefficient (SCC) is checked as 0.46 6 0.11 to meet
the IID condition with a time gate from 32.0 to 34.5 ls. Note that the SCC needs
another independent test with RF signals due to the original definition of SCC in Ref.
13. Using the known mean grain diameter as input, the theoretical maximum ampli-
tudes of the signal envelopes, the bounds, and the experimental result are shown in
Fig. 1. It should be noted that Atheory

max ðtÞ mainly agrees with A exp
maxðtÞ, but Atheory

max ðtÞ is
slightly larger at the peak. The reason may be that the asymptotic Gumbel distribution
needs N !1. Nevertheless, the mathematical expectation will not be used to detect
flaws. The upper bounds agree well with the experimental result. The actual probabili-
ties that A exp

maxðtÞ lies below these two types of 95% upper bounds are 100% and 98.8%
via the above-mentioned time gate. Thus, U theory

2 ðtÞ works better than U theory
1 ðtÞ, and

its error might be due to the non-Rayleigh distribution of the data. Moreover, the
deviations at late arrival times are attributed to the limitations of the single scattering

Fig. 1. (Color online) The maximum amplitudes of enveloped backscattering signals and the effects of confi-
dence level on two kinds of upper bounds.
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assumption. Fortunately, a higher confidence level can guarantee all the grain noise is
captured. Therefore, we use U theory

2 ðtÞ with a 99.99% confidence level as the time-
dependent threshold for flaw detection.

Next, the artificial FBH region that includes the micro-flaws is scanned with a
resolution of 0.4 mm. Figure 2 shows the C-scan images of the FBHs before and after
image segmentation using different thresholds. It still has some false positives when
using an upper bound of 95% as Fig. 2(b) shows. However, all of these three micro-
flaws are clearly visible in Fig. 2(c) when the 99.99% upper bound is used. For com-
parison, the 99.99% upper bound for the ABS signal described in Ref. 5 is used to gen-
erate Fig. 2(d), and a few false positives appear. Moreover, fixed thresholds using 0.7
and 1.4 V are applied in Figs. 2(e) and 2(f). False positives and missed detections result
as expected. The deeper / 0.2 mm FBH is missed completely in Fig. 2(f).

To further illustrate the present method, Fig. 3 shows the relationship between
the flaw echo of the deeper / 0.2 mm FBH, and the grain noise, the theoretical upper
bound U theory

2 ðtÞ with 99.99% confidence level, and the fixed threshold of 1.4 V.
Compared with Fig. 6 in Ref. 5, the signal envelopes are more succinct, but the perfor-
mance based on the signal envelope is as good as that based on the ABS signals previ-
ously. More importantly, a 15 MHz transducer was used previously,5 but here a
7.5 MHz transducer is used. Thus, the / 0.2 mm FBHs are only 0.256k here, and the
flaws smaller than 0.5k were hard to detect before.

Fig. 2. (Color online) The C-scan images of the FBHs after image segmentation. (a) Raw C-scan, (b) time-dependent
threshold for the signal envelope with a¼ 95%, (c) time-dependent threshold for the signal envelope with a¼ 99.99%,
(d) time-dependent threshold for ABS signal with a¼ 99.99%, (e) fixed threshold 0.7 V, and (f) fixed threshold 1.4 V.

Fig. 3. (Color online) The relationship between the waveforms, the thresholds, and the time gate. The flaw echo
based on the envelope is from a / 0.2 mm FBH with 12 mm depth.
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It should be noted that the apparent dimensions of the detected micro-flaws in
the C-scan image, as seen in Fig. 2, are larger than the actual size. The reason for the
larger apparent size is in the spreading of the scattered field from the sub-wavelength
flaw.14 A secondary “blurring” effect caused by the interaction between the grain and
flaw scattering could also be present. Both of these effects will exhibit an inherent
depth dependence, which indicate the inadequacy of a fixed threshold and promotes
our use of a depth- or time-dependent threshold.

Additionally, it is worthwhile to emphasize that our original interest for this
work is the prediction of the POD, the PFA, and the smallest detectable flaw size. In
terms of the calculation scheme of the physics-based POD and PFA models from
Thompson and Margetan (see Fig. 11 in Ref. 6), the Gumbel distribution given in this
letter is introduced to improve the threshold selection method as shown in Fig. 4. The
diffuse ultrasonic scattering model8–10 and the ultrasonic measurement model14 are the
cores of the physics-based POD and PFA models. The four models that appear in the
upper-most portion of the figure represent the input factors. The instantaneous noise
envelope distribution, maximum noise distribution, and distribution of the coherent

Fig. 4. (Color online) Schematic diagram showing the role played by the Rayleigh, Gumbel, and Rician distri-
butions in determining POD and PFA.
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superposition of signal and noise then can be deduced by the spatial standard deviation
curve and the noise free flaw response. They can be described by the Rayleigh,
Gumbel, and Rician distributions, respectively. In the end, we can determine the POD
and PFA values at specific time points, i.e., the time-dependent POD and PFA models.
Although this work itself seems like a parallel development to our previous works, the
authors believe that the results can be used to build physics-based POD and PFA mod-
els in the near future.

4. Conclusion

In this article, upper bounds to the amplitude of ultrasonic backscatter signal envelopes
were established based on extreme value distributions. The mathematical expectation
and confidence estimate to the upper bound are given when the scattered signals can
be assumed to belong to a Rayleigh distribution. In conjunction with experimental
measurements, the model demonstrates the ability to detect internal micro-flaws that
are �k=4 dimension in a fine-grained stainless steel specimen. In combination with pre-
vious works, the enhanced ultrasonic flaw detection method has been verified univer-
sally for several signal types, including RF, ABS, and signal envelope. In the future, a
model-assisted POD model based on the present technique will be explored to aid in
the detection, localization, and sizing of a micro-flaw.
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APPENDIX A

Brief proofs are given here for the propositions that the Rayleigh distribution belongs to
the max-domain of attraction of the Gumbel extreme value distribution, and the normal-
ized constants are aNðtÞ ¼ RðtÞ=

ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

and bNðtÞ ¼ RðtÞ
ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

. In the following, the
superscripts exp and theory are ignored; also, the t dependence of AmaxðtÞ, EiðtÞ, and
ViðtÞ is suppressed for brevity, until it is necessary. The derivative of the PDF of the
Rayleigh distribution is

f 0 Eð Þ ¼ df Eð Þ
dE

¼ 1

R2 1� E2

R2

� �
exp � E2

2R2

� �
: (A1)

Then, we have

f 0 Eð Þ 1� F Eð Þ½ �
f Eð Þ
� �2 ¼ R2

E2 � 1! �1; E !1 : (A2)

Thus, the Rayleigh CDF F belongs to the max-domain of attraction of the Gumbel
extreme value distribution KðEÞ ¼ exp ½�exp ð�EÞ�, following Proposition 1.1(b) of
Resnick.11

The remaining task is to find the normalized constants aN and bN , which lead to
limN!1PrfAmax � aNE þ bNg ¼ KðEÞ. Assume that aN ¼ R=

ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

and bN ¼ R
ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

,
such that

Pr Amax � aNE þ bNf g ¼ F aNE þ bNð Þ½ �N

¼ 1� 1
N

exp �E � E2

4lnN

� �� �N

: (A3)

Because for large N, we have

exp Nln 1� 1
N

exp �E � E2

4lnN

� �� �	 


¼ exp �exp �Eð Þ 1� E2

4lnN
þ E4

32 lnNð Þ2
þ o lnNð Þ�2
� �" #( )

: (A4)

Thus, Eq. (A3) can be rewritten as

Pr Amax � aNE þ bNf g ¼ 1� 1
N

exp �E � E2

4lnN

� �� �N

! exp �exp �Eð Þ

 �

; (A5)

as N !1. Hence, the assumptions for the normalized constants aN and bN are correct.
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Finally, to calculate the upper bound more accurately, we utilize the inverse solution of
HðaÞ ¼ f1� exp ½�E � E2=ð4lnNÞ�=NgN to calculate the upper bound as

U2ðtÞ ¼ bNðtÞ þ aNðtÞH�1ðaÞ

¼ RðtÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 lnN � lnðN �Na1=NÞ
� �q

: (A6)

APPENDIX B

A short summary and comparison of the extreme value distributions for different kinds of
signals is given. The extreme value distribution of the RF signal, ABS signal, and signal
envelope all follow the Gumbel distribution. As shown in Table 1, the only difference is the
normalizing constant bN . Considering the role of bN on the upper bound, or the time-
dependent threshold in the present method, if bN gets larger, the time-dependent threshold
becomes greater. Thus, the time-dependent threshold of the RF signal is seen to be the low-
est while the threshold of the enveloped signal is the highest. Physically, this can be traced to
the enveloped signal always being equal to or greater than the ABS signal.
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Table 1. Normalizing constants and time-dependent thresholds for different signal mode.

Signal Mode
Underlying
Distribution Normalizing Constants Time-Dependent Threshold

RF Normal aN ¼ R=
ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

,

bN ¼ R
ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

� lnlnN þ ln4pffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

� � U ¼ bN � aN ln½�lnðð1þ aÞ=2Þ�,
L ¼ �bN þ aN ln½�lnðð1þ aÞ=2Þ�

ABS Half normal aN ¼ R=
ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

,

bN ¼ R
ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

� lnlnN þ lnpffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

� � U ¼ bN � aN ln½�lnðaÞ�

Enveloped Rayleigh aN ¼ R=
ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

,

bN ¼ R
ffiffiffiffiffiffiffiffiffiffiffi
2lnN
p

U ¼ bN � aN ln½�lnðaÞ� or
U ¼ bN þ aN H�1ðaÞ with

H að Þ ¼ 1� 1
N

exp �E � E2

4lnN

� �� �N
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