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1 INTRODUCTION 

1.1 Background 

In recent years, the Midwest States Pooled Fund has been developing a non-proprietary, 

high-tension, cable median barrier in conjunction with the Midwest Roadside Safety Facility 

(MwRSF). The barrier was to be developed for placement anywhere within a 6H:1V V-ditch as 

well as to satisfy the Test Level 3 (TL-3) evaluation criteria published in the Manual for 

Assessing Safety Hardware (MASH) [1]. The most recent design prototype was a four cable 

system supported by Midwest Weak Posts (MWP) [2], as shown in Figure 1.  

 

Figure 1. Current Cable Median Barrier Prototype 

Development of the cable median barrier has progressed through multiple crash tests in 

accordance with MASH TL-3. Full-scale testing and evaluation with a 1500A sedan and 2270P 

pickup trucks resulted in satisfactory system performance [3]. However, full-scale crash testing 

with the 1100C small car resulted in the top of the post tearing the vehicle’s floorpan and 

penetrating into the occupant compartment as the vehicle overrode the system posts [4].  

Review of the test vehicles and high-speed videos revealed that the tears were caused by 

a combination of the post’s weak-axis bending strength and cross-sectional geometry. The 

strength of the post, specifically the elastic restoration force of the MWP, caused the top of each 

overridden post to press up on the undercarriage of the vehicle. The cross-sectional geometry of 

the MWP contained free, or exposed, edges that transmitted the post contact forces into the 

floorpan over a very narrow area. Thus, the free edge created high stress concentrations in the 

floorpan and ultimately resulted in scraping, gouging, and tearing. These tears were deemed 

penetrations into the vehicle’s occupant compartment and prevented the full-scale crash tests 
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from satisfying the MASH safety criteria. Therefore, modifications to the MWPs were needed to 

prevent tearing of the vehicle’s floorpan. 

During the full-scale crash testing of the cable median barrier prototype, observations 

were made concerning tears in the vehicle’s exterior sheet metal due to contact with the cable 

splices during redirection [3-4]. Sheet metal tearing had been observed on all three vehicle types 

(1100C, 1500A, and 2270P) and was common along vehicle fenders, front doors, and A-pillars. 

These tears were only to the exterior sheet metal layer and did not result in penetration of the 

occupant compartment. Thus, they did not affect the MASH evaluation of the cable barrier. 

However, they do illustrate the ability of the current cable splice to act as a potential snag hazard 

and could potentially cause significant damage to the vehicle. Utilization of different cable splice 

hardware may reduce the propensity for snag and/or sheet metal tearing. Therefore, an evaluation 

was desired into the strength and geometry of all available cable splice hardware. 

1.2 Research Objectives 

The research and development effort described herein contained two independent 

objectives. The first objective was to mitigate the potential for vehicle floorpan tearing by 

modifying the MWP utilized in the current cable median barrier prototype. The second objective 

was to investigate other cable splice hardware for the use in the cable median barrier that would 

reduce the propensity for snag and sheet metal tearing.  

1.3 Scope 

Exploration into the mitigation of floorpan tearing began with an analysis into the 

mechanisms forming the tears. Next, various modifications to the MWP were identified that 

could reduce the propensity for floorpan tearing. The modifications thought to be the most 

effective were then evaluated through dynamic component testing with a bogie vehicle equipped 

with a simulated small car floorpan. Additional dynamic tests were conducted with a separate 

bogie vehicle to evaluate the strong-axis bending strength of the modified MWP. Finally, 

conclusions and recommendations were made concerning potential post modifications to 

alleviate floorpan tearing. 

Investigation into alternative splice hardware began with a literature review of currently 

available splice connections for ¾-in. (19-mm) diameter, 3x7 wire rope. After reviewing the 

splice options with the project sponsors, a total of three dynamic component tests were 

conducted on the current cable splice and the selected alternative splice. Finally, conclusions and 

recommendations were formulated based on the component tests. 
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2 MITIGATION OF FLOORPAN TEARING 

2.1 Exploration of Floorpan Tearing 

Prior to the development of system modifications to prevent tearing of the vehicle’s 

floorpan, the physical mechanisms causing these tears to form had to be identified. Thus, the 

high-speed videos, system posts, and the vehicles from test nos. MWP-6 and MWP-7 [4] were 

analyzed and inspected. Through this effort, two post characteristics were identified as factors 

resulting in the tearing of vehicle floorpans: (1) the weak-axis bending strength of the post and 

(2) the presence of free edges. 

The weak-axis bending strength of the post, and specifically the elastic response, is 

critical for the top of the post to contact, crease, and tear the vehicle’s floorpan. When a vehicle 

runs over a post, a plastic hinge forms in the post, and the post is bent over such that the top of 

the post passes underneath the vehicle’s bumper and undercarriage. However, an elastic response 

in the post causes it to spring back and push up against the vehicle’s floorpan. The top of the post 

then applies a vertical force to the vehicle floorpan proportional to the elastic restoration strength 

remaining in the hinged post. Since material failure is associated with the magnitude of the 

applied force, the propensity for floorpan tearing is directly related to the elastic bending strength 

of the posts utilized in the barrier system. 

The presence of free edges within the post’s cross-section amplifies the effect of this 

restoration force. Free edges are characterized as areas of the post’s cross section where an end 

of a flange, or another thin element, is exposed within the cross section. The location of free 

edges on common post shapes are shown in Figure 2. The thin elements and small contact areas 

of these free edges result in higher stress concentrations during impact events. Thus, under 

equivalent restoration forces, posts with free edges will impart higher stresses to the vehicle’s 

floorpan than posts with continuous faces or closed cross sections.  

 

Figure 2. Post Shape Free Edges  

A review of previous full-scale tests conducted on barrier systems utilizing posts with 

free edges was undertaken as part of the investigation into the mechanics of floorpan tearing. 

This review included tests conducted according to the MASH or the National Cooperative 

Research Program (NCHRP) Report No. 350 criteria [1, 5]. An additional three full-scale crash 
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tests encountered tearing of the vehicle floorpan, while two other crash tests had tearing of the 

gas tank or the underside of the trunk. Although the tearing of the gas tank or the underside of 

the trunk did not penetrate into the occupant compartment, the sheet metal forming the gas tank 

and underside of the trunk was similar to that of the floorpan. Thus, these tests demonstrated a 

propensity for floorpan tearing. All seven crash tests with tearing of the vehicle undercarriage are 

summarized in Table 1. Numerous full-scale tests also contained scraping and gouging of the 

vehicle undercarriage (damage typically accompanying tears), but only the tests which exhibited 

tearing were included in the table.  

The review of previous full-scale tests revealed that tearing of the pickup truck floorpans 

was not found. This is due to the floorpan of a pickup truck being located above the frame 

elements of the truck. Thus, the elastic spring back of a steel post would not be enough for the 

top of post to impact the floorpan. In contrast, the floorpans of small cars and sedans are located 

flush with the rest of the vehicle undercarriage leaving these floorpans susceptible to contact 

with barrier components. 

Table 1. Previous Full-Scale Tests Exhibiting Undercarriage Tearing 

Test Ref. System Post Vehicle 
Tearing 

Location 

MWP-6 [4] Cable Barrier MWP 2009 Kia Rio Floorpan 

MWP-7 [4] Cable Barrier MWP 2009 Kia Rio Floorpan 

4CMBLT-1 [6] Cable Barrier S3x5.7 2006 Ford Taurus Floorpan 

CT-2 [7] Cable End Terminal S3x5.7 1995 Geo Metro Floorpan 

NYBBT-3 [8] 
Box Beam End 

Terminal 
S3x5.7 2002 Kia Rio 

Floorpan & 

Gas Tank 

4CMB-4 [9] Cable Barrier S3x5.7 2002 Kia Rio *Trunk 

473750-4 [10] Weak-Post W-Beam S3x5.7 1997 Geo Metro *Gas Tank 

* Tears in vehicle undercarriage, but not into occupant compartment. Test passed. 

 

All floorpan tearing was associated with impacts into weak-post barrier systems. Tests 

with strong-post systems, such as the Midwest Guardrail System or the G4(1S), did not show 

evidence of floorpan tearing. Further investigation of these crash tests revealed that reduced 

system deflections associated with small car tests into strong-post guardrail systems as compared 

to weak-post guardrail systems may reduce the propensity for the undercarriage of small cars to 

significantly pass over the top of posts during oblique impacts. The front of small cars and the 

front impact-side tires often contact and/or override the strong posts, but the vehicles are often 

redirected prior to the floorpan being contacted by the posts. This behavior may only apply to 

oblique impacts as end-on impacts would allow the center of the vehicle to override several posts 

where the floorpan may be contacted by bent or hinged, steel posts.  

Finally, the numerous post sections and barrier types listed in Table 1 demonstrate that 

floorpan tearing may not be exclusive to one specific barrier system. Rather, this list supports the 

theory that these tears are the result of the combination of (1) the elastic response and upward 

contact between the undercarriage and the overridden posts and (2) the presence of free edges 
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within the post’s cross-section. Further, the review of previous crash testing suggests that 

floorpan tearing may be alleviated by eliminating one or both of the noted characteristics. 

2.2 Post Modifications to Mitigate Tearing 

After the investigation into the history and mechanisms behind vehicle floorpan tearing, 

multiple design modifications were considered for use in the prototype cable median barrier 

being developed by the Midwest States Pooled Fund Program. The design modifications focused 

on altering the MWP in order to minimize either the elastic spring-back in the post or the 

exposure of the free edges. A brief discussion on each of these potential design retrofits is 

provided in the following sections. 

2.2.1 Breakaway Posts 

One proposed method to eliminate the elastic spring-back of a guardrail post was to add a 

breakaway mechanism to the MWP. Modifying the post such that the top of the post releases 

from the base at designated loads and/or displacements. The posts could still provide lateral 

resistance to the cables during impact events, but it would breakaway when directly impacted by 

the vehicle. A breakaway post could potentially eliminate the elastic response of the post and 

prevent the top of the posts from contacting the bottom of the vehicle’s floorpan. However, after 

the post released from its base, the top of the post could become debris with potential for 

interaction with the redirecting vehicle, causing vehicle instabilities or spearing of the 

undercarriage of an overriding vehicle. Additionally, the top of the post may remain attached to 

the system cables and affect the capture/interlock of the cables with the vehicle. Due to these 

possible negative outcomes associated with post debris, the concept of adding a breakaway 

mechanism to the system posts was not selected for further development at this time. 

2.2.2 Hinged Posts 

Hinged posts function similar to breakaway posts in that the hinging mechanism activates 

at a prescribed load or displacement. However, the top of a hinged post remains attached to the 

base so the risks associated with post debris are mitigated. The development of a hinged version 

of the MWP would require significant time and resources. Additionally, existing hinged-post 

patents would need to be reviewed to prevent infringing upon any proprietary technology. 

Consequently, a hinged post for the cable system was not selected for further development. 

2.2.3 Post Weakening 

The elastic spring-back of a deformed guardrail post can be reduced by weakening it. 

Punching holes or cutting the post near the plastic hinge location reduces the weak-axis bending 

strength of the post without using a different post section. A reduction in weak-axis bending 

strength would decrease the elastic spring-back force of a post. Further, discontinuities, such as 

holes and notches, create stress concentrations when loaded, which could lead to tearing in the 

post cross section and further reductions to the elastic response of a deformed post. Properly 

designed holes and/or notches would reduce a post’s weak-axis bending strength without greatly 

affecting the strong-axis bending strength so that overall system performance is not greatly 

changed. Finally, weakening mechanisms can be added to the punch pattern of an MWP at 
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minimal additional cost. Thus, the effectiveness of weakening holes was selected for further 

evaluation and component testing. 

2.2.4 Edge Rounding 

One method to mitigate the cutting potential associated with the exposed edges of the 

MWP is to round the edges. Edge rounding is commonly utilized during the fabrication of sheet 

steel products to remove the sharp edges. After being cut to the desired shape, the sheet steel is 

fed through a roller which rounds the sides of the sheet and eliminates the sharp edges, as shown 

in Figure 3. There are various types of edge rounding, characterized by the resulting shape of the 

steel edges. No. 4 edge rounding utilizes a small radius for each individual edge, while no. 1 

edge rounding creates a continuous semi-circle joining the top and bottom surfaces. Due to the 

low-cost associated with this common manufacturing practice, edge rounding was selected for 

further evaluation and component testing. 

 

Figure 3. Sheet Steel Edge Rounding Process and Types 

2.2.5 Edge Hemming 

Edge hemming is another common manufacturing technique utilized to eliminate the 

sharp edges of sheet steel products. Edge hemming involves folding the exposed edge of the 

sheet steel 180 degrees so that the sharp edges are facing inward. Because edge hemming is 

another common practice in sheet steel manufacturing, it can be performed at a relatively low 

cost. However, the MWP is fabricated from 7-gauge (4.6-mm thick) steel which would be 

difficult to bend at such a tight radius. Therefore, edge hemming was not selected for further 

evaluation. 

 

Figure 4. Sheet Steel Edge Hemming 
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2.2.6 Edge Protectors 

Another method of mitigating the cutting potential of the free edges would be to prevent 

direct contact to the exposed edges. Edge protectors are attached to the post to shield the exposed 

edges from direct contact with vehicle floorpans. Edge protectors could be made from various 

materials (e.g., steel, rubber, plastic, fiberglass) and applied along an exposed edge or wrapped 

over the top of the post. Due to the vast range of possible designs and the benefits associated 

with preventing direct contact with the floorpan, edge protectors were explored and evaluated 

through component testing. 

2.2.7 Closed Cross-Section Post 

The risk of floorpan tearing due to direct contact with a free edge could be completely 

eliminated if the post had no free edges. Closed-section posts, such as circular and rectangular 

tubes, provide much larger surface areas in which to distribute the contact load. The stress 

concentrations from contact with a free edge never forms, and the propensity for sheet metal 

tearing is reduced. Unfortunately, changing the post section from the current MWP would also 

require alterations to the cable attachment brackets and top cable keeper rod. Therefore, the use 

of a closed cross-section post in lieu of the MWP was not initially selected for development and 

evaluation due to a desire to use the existing MWP and cable-to-post attachments. 
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3 STATIC COUPON TESTING  

3.1 Purpose 

Dynamic component testing was desired to evaluate the effectiveness of post 

modifications to reduce the propensity for tearing of the vehicle’s floorpan. However, before 

testing could begin, a simulated small car vehicle floorpan was required. Measurements taken 

from the 2009 Kia Rio vehicles used in test nos. MWP-6 and MWP-7 indicated an average 

floorpan thickness of 0.025 in. (0.64 mm). Thus, 24-gauge (0.61-mm) sheet steel was obtained to 

simulate the floorpan of an 1100C small car vehicle during the evaluation of floorpan tearing. 

Unfortunately, the chemical and mechanical properties of the actual floorpan steel were 

unknown. Therefore, static tensile tests were required to ensure that the 24-gauge (0.61-mm) 

sheet steel had similar mechanical properties to that of the actual vehicle floorpan. 

3.2 Scope 

A total of seven static tensile tests were performed on coupon samples. Four coupons 

were cut from 24-gauge (0.61-mm) ASTM A653 sheet steel and evaluated in test nos. BFPC-1 

through BFPC-4. Three coupons were cut from an actual Kia Rio floorpan and evaluated in test 

nos. KFPC-1 through KFPC-3. All seven coupons were cut according to the ASTM A370 

standards [11] with a 0.50-in. (12.7-mm) width and 8-in. (200-mm) total length, as shown in 

Figure 5. 

 

Figure 5. Static Testing Coupon Dimensions 

An MTS Landmark Test System equipped with a 22 kip (100 kN) load cell was utilized 

to conduct the static testing. The samples were clamped on each end with a grip pressure of 1.5 

ksi (10 MPa) and subjected to a loading rate of 0.2 in./in./sec until failure. An LX Series 500 

Laser extensometer and an MTS Model no. 634.25E-24 mechanical extensometer were used to 

record displacements in the specimen. A standard-speed digital video and a digital camera were 

used to document the tests.  

3.3 Static Testing Results 

All seven of the tensile coupons fractured within the reduced cross-section region of the 

coupons. Further, the fracture locations were all within the gauge lengths of the laser 

extensometer, so accurate displacements and strains were recorded until the time of fracture. A 
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significant amount of necking was observed around the fracture location for all tests, a 

phenomenon typical of steel tensile failure. Pre-test and post-test measurements were recorded to 

calculate the reduction in cross-sectional area at fracture. 

The extensometer and load cell data for each static test were analyzed to calculate peak 

loads and displacements at fracture, yield stress, Young’s modulus, and ultimate tensile strength. 

A summary of the analyzed data results is shown in Table 2. Average results for both source 

materials, the 24-gauge (0.61-mm) sheet steel and the Kia Rio floorpan, were also calculated and 

included in the highlighted columns of Table 2. Engineering stress vs. strain curves for each test 

are shown in Figure 6 and true stress vs. strain curves for each test are shown in Figure 7. 

Detailed results for each test are provided individually in Appendix A. Although the individual 

extensometers produced similar results, the values described herein were calculated from the 

laser extensometer data in order to provide results through fracture.  
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Table 2. Summary of Static Tensile Testing 

Test No. BFPC-1 BFPC-2 BFPC-3 BFPC-4 Average KFPC-1 KFPC-2 KFPC-3 Average 

Source Material 
24-gauge 

A653 

24-gauge 

A653 

24-gauge 

A653 

24-gauge 

A653 

24-gauge 

A653 

Kia Rio 

Floorpan 

Kia Rio 

Floorpan 

Kia Rio 

Floorpan 

Kia Rio 

Floorpan 

Thickness 

in. (mm) 

0.025 

(0.635) 

0.026 

(0.660) 

0.025 

(0.635) 

0.026 

(0.660) 

0.026 

(0.660) 

0.025 

(0.635) 

0.026 

(0.660) 

0.026 

(0.660) 

0.026 

(0.660) 

Width 

in. (mm) 

0.501 

(12.7) 

0.504 

(12.8) 

0.505 

(12.8) 

0.507 

(12.9) 

0.504 

(12.8) 

0.493 

(12.5) 

0.492 

(12.5) 

0.492 

(12.5) 

0.492 

(12.5) 

Yield Load 

lb (kg) 
553 (251) 537 (244) 565 (256) 560 (254) 553 (251) 498 (226) 488 (221) 476 (216) 488 (221) 

Peak Load 

lb (kg) 
686 (311) 688 (312) 700 (318) 695 (315) 692 (314) 618 (280) 611 (277) 599 (272) 610 (277) 

Failure Load 

lb (kg) 
617 (280) 619 (218) 630 (286) 625 (283) 623 (283) 557 (253) 550 (250) 539 (244) 549 (249) 

Yield Strength-2% 

offset 

ksi (GPa) 

43.8 (302) 41.4 (285) 44.1 (304) 42.3 (292) 42.9 (296) 44.3 (305) 42.2 (291) 41.9 (289) 42.8 (295) 

Young's Moduls 

ksi (GPa) 

21,934 

(151,229) 

20,887 

(144,010) 

22,320 

(153,890) 

21,358 

(147,258) 

21,625 

(149,099) 

22,289 

(153,677) 

21,247 

(146,492) 

20,998 

(144,776) 

21,511 

(148,313) 

Ultimate Tensile 

Strength 

ksi (GPa) 

54.4 (375) 53.0 (365) 54.8 (378) 52.5 (362) 53.7 (370) 54.9 (379) 52.9 (365) 52.7 (363) 53.5 (369) 

Eng. Stress at 

Failure 

ksi (GPa) 

48.9 (337) 47.7 (329) 49.3 (340) 47.2 (325) 48.3 (333) 49.4 (341) 47.6 (328) 47.4 (328) 48.2 (332) 

True Stress at 

Failure 

ksi (GPa) 

73.6 (507) 73.2 (505) 72.3 (498) 73.7 (508) 73.2 (505) 90.3 (623) 
105.3 

(726) 
96.6 (666) 97.4 (672) 

True Strain at 

Failure 

(in./in.) 

0.41 0.43 0.38 0.44 0.42 0.60 0.79 0.71 0.70 

Reduction in Area 33.6% 34.7% 31.8% 35.9% 34.0% 45.2% 54.8% 50.9% 50.3% 

2-in. Elongation at 

Fracture 
24.6% 24.4% 25.8% 26.4% 25.3% 30.8% 32.5% 32.5% 31.9% 
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Figure 6. Engineering Stress vs. Strain for Static Coupon Tests 
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Figure 7. True Stress vs. True Strain for Static Coupon Tests 
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3.4 Discussion 

The tensile strength of the 24-gauge (0.61-mm) ASTM A653 sheet steel was found to be 

very similar to that of the steel used in the actual Kia Rio floorpan. The 2-percent offset yield 

strengths, elastic moduli, and ultimate tensile strengths of the two source materials differed by 

less than 1 percent. The average peak and failure loads of the 24-gauge (0.61-mm) sheet steel 

were higher, but this can be attributed to the sheet steel coupon samples having a slightly larger 

width than the Kia Rio floorpan coupon samples. 

The two materials differed in ductility and behavior at the onset of yielding. The Kia Rio 

coupon samples demonstrated greater ductility with a 6.6 percent increase in elongation at 

fracture and a 66 percent increase in true strain at failure compared to the 24-gauge (0.61-mm) 

sheet steel. Additionally, the Kia Rio samples exhibited smooth transitions between the elastic 

and plastic loading portions of the curves and nearly resembled an elastic-perfectly plastic steel, 

as shown in Figure 6. Alternatively, the 24-gauge (0.61-mm) sheet steel exhibited a stress drop at 

the onset of yielding, which is characteristic of low-carbon steels. Thus, the steel alloy utilized in 

the actual Kia Rio floorpan likely has a higher carbon content than the ASTM A653 sheet steel. 

Overall, the 24-gauge (0.61-mm) sheet steel compared favorably to the steel utilized in 

the Kia Rio floorpan. The thickness and ultimate stress of the sheet steel was nearly identical to 

that of the floorpan steel. Thus, the onset of failure/tearing should occur at similar loads. The 

reduced ductility of the sheet steel may cause it to rupture or tear easier than the actual floorpan 

making any results observed from component testing with this sheet steel conservative in relation 

to actual floorpans. Therefore, the 24-gauge (0.61-mm) ASTM A653 sheet steel was 

recommended for use as a surrogate floorpan during component tests designed to evaluate the 

potential for floorpan tearing. 
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4 COMPONENT TESTING CONDITIONS – FLOORPAN TEARING 

4.1 Purpose 

Previous full-scale crash tests on a prototype cable median barrier resulted in the top of 

the MWP tearing through the vehicle floorpan [4]. These tears are classified as penetrations into 

the occupant compartment, which is a violation of the MASH criteria. Dynamic component 

testing was desired to analyze floorpan tearing and evaluate the potential of various post retrofits 

to mitigate the propensity for tearing. 

4.2 Scope 

A total of fifteen dynamic bogie tests were conducted in order to evaluate the propensity 

for floorpan tearing associated with cable barrier posts. Each test involved two posts being 

impacted and overrun by a bogie vehicle equipped with a simulated small car floorpan. The posts 

were spaced 8 feet (2.4 m) apart longitudinally and were offset 4¼ in. (108 mm) laterally so that 

the posts contacted the simulated floorpan independently. The posts were installed in either an 8-

in (203-mm) diameter hole cored into the tarmac or an 18-in. (457-mm) hole augured into a soil 

test pit. Both hole types were backfilled with compacted soil to MASH specifications. Post 

orientation was varied between tests to evaluate the effect of impacting and overriding the posts 

from multiple angles. Eight different post configurations were evaluated, but the posts within 

each individual test were identical in both configuration and orientation. The bogie vehicle 

impacted the posts at a height of 12 in. (305 mm) above groundline at a targeted impact speed of 

25 mph (40 km/h). The dynamic testing matrix is summarized in Table 3, while the test setup to 

evaluate floorpan tearing is shown in Figure 8. 

The first two tests were conducted on the MWP in an effort to replicate the tearing 

observed during full-scale crash testing and validate the test setup. The MWP used within test 

nos. MWPFP-1 and MWPFP-2 were identical to the prototype cable median barrier in crash test 

no. MWP-7. The MWP had keyways and bolt holes cut into its flanges where the cable brackets 

would be attached. Two top corners of the post were radiused to ⅝ in. (16 mm), as shown in 

Figure 9. The other two corners were radiused to ¼ in. (6 mm). Once the test setup demonstrated 

the ability to replicate the tearing observed during full-scale testing, the testing and evaluation 

efforts focused on modifications to the MWP to mitigate tearing. 

A total of nine tests were conducted on the MWP with various weakening holes or slots 

cut into the upstream and downstream surfaces of the posts at groundline. Five tests were 

conducted on the MWP with ¾-in. (19-mm) diameter holes cut into both surfaces, two tests were 

conducted on the MWP with three ⅜-in. (10-mm) holes cut into both surfaces, and two tests 

were conducted on the MWP with ⅜-in. x 1⅛-in. slots (10-mm x 29-mm) slots cut into both 

surfaces, as shown in Figures 10 through 14, respectively. 

One test, test no. MWPFP-6, was conducted to evaluate the effects of edge rounding on 

the MWP. Edge rounding is typically only performed on flat sheet steel. Since MwRSF already 

had the MWPs on site, the edge rounding was simulated to save time and minimize cost. Thus, a 
3/16-in. (5-mm) steel rod was welded to the free edge of the post to simulate no. 1 edge rounding, 

as shown in Figure 12. The rod was only welded to the top 11½ in. (292 mm) of the post which 

may be in contact with the simulated floorpan, so the bending strength of the posts was not 
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affected. If edge rounding was shown to prevent tearing, a new MWP with actual rounded edges 

would be fabricated for the next full-scale crash test. 

One test, test no. MWPFP-13, was conducted to evaluate the effects of adding an edge 

protector to the free edges of the posts. Each edge protector was a 3/16-in. (5-mm) thick steel plate 

bent at 90 degrees, as shown in Figure 15. The longer sides of the plates were welded to the 

strong-axis flanges of the MWP, and the shorter sides were cut to match the geometry of the V-

notch cut into the top of the MWP. This edge protector configuration was selected for testing, 

because it would also represent the effects of extending the flanges at the top of the post and 

folding them over at 90 degrees, effectively shielding the free edges of the post from direct 

contact. If this retrofit showed promise, a new MWP could be fabricated with extended flanges 

that folded over to match the effect of this welded-on edge protector. 

Finally, two tests were conducted on S3x5.7 (S76x8.5) posts, which are commonly used 

as weak posts in other cable barrier systems. As discussed in Chapter 2, floorpan tearing had 

been observed in multiple crash tests into barrier systems utilizing S3x5.7 (S76x8.5) posts. These 

more traditional weak posts were evaluated as part of this study to compare the propensity for 

tearing between S3x5.7 (S76x8.5) posts and the MWP. The S3x5.7 (S76x8.5) posts were 

evaluated at two different heights, 39¼ in. (997 mm) matching the current MWP cable system 

posts and 31 in. (787 mm) matching the low-tension cable barrier system posts, as shown in 

Figure 11.  

Material specifications, mill certifications, and certificates of conformity for the posts are 

shown in Appendix B. A compacted, coarse, crushed limestone material that met AASHTO 

standard soil designation M147 Grade B, as recommended by MASH, was utilized for all tests 

[1].  
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Table 3. Dynamic Component Testing Matrix, Floorpan Tearing Evaluation 

Test 

Post 
Post Installed 

in 

Tarmac/Soil 

Targeted Impact Conditions 

Type 

Above-Ground 

Height 

in. (mm) 

Modifications 
Speed 

mph (km/h) 

Height 

in. (mm) 

Angle 

(deg) 
Top Radius  

in. (mm) 

Groundline  

in. (mm) 

MWPFP-1 MWP 39¼ (997)  ⅝ (16) - Tarmac 25 (40) 12 (305) 0 

MWPFP-2 MWP 39¼ (997) ⅝ (16) - Tarmac 25 (40) 12 (305) 0 

MWPFP-3 MWP 39¼ (997) ⅝ (16) Ø¾ (19) holes Tarmac 25 (40) 12 (305) 0 

MWPFP-4 S3x5.7 39¼ (997) - - Tarmac 25 (40) 12 (305) 0 

MWPFP-5 S3x5.7 31 (787) - - Tarmac 25 (40) 12 (305) 0 

MWPFP-6 MWP 39¼ (997) 
⅝ (16) with #1 Edge 

Protection 
- Tarmac 25 (40) 12 (305) 0 

MWPFP-7 MWP 39¼ (997) ⅝ (16) Ø¾ (19) holes Soil 25 (40) 12 (305) 0 

MWPFP-8 MWP 39¼ (997) ⅝ (16) Ø¾ (19) holes Soil 25 (40) 12 (305) -25 

MWPFP-11 MWP 39¼ (997) ⅝ (16) (3) Ø⅜ (10) holes Tarmac 25 (40) 12 (305) 0 

MWPFP-12 MWP 39¼ (997) ⅝ (16) 
Ø⅜ (10) x 1⅛ (29) 

slots 
Tarmac 25 (40) 12 (305) 0 

MWPFP-13 MWP 39¼ (997) Flange Extension - Tarmac 25 (40) 12 (305) 0 

MWPFP-14 MWP 39¼ (997) ⅝ (16) (3) Ø⅜ (10) holes Soil 25 (40) 12 (305) 25 

MWPFP-15 MWP 39¼ (997) ⅝ (16) 
Ø⅜ (10) x 1⅛ (29) 

slots 
Soil 25 (40) 12 (305) 25 

MWPFP-18 MWP 39¼ (997) ⅝ (16) Ø¾ (19) holes Soil 25 (40) 12 (305) 25 

MWPFP-21 MWP 39¼ (997) ⅝ (16) Ø¾ (19) holes Soil 25 (40) 12 (305) -25 

   0 degree orientation corresponds to impacts along the longitudinal axis of the post/barrier 
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Figure 8. Dynamic Component Test Setup, Floorpan Tearing Evaluation 
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Figure 9. MWP with Rounded Corners, Test Nos. MWPFP-1 and MWPFP-2 



 

 

1
9
 

M
ay

 1
6

, 2
0
1

7
 

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-3
2
4
-1

7
 

 
Figure 10. MWP with ¾-in. (19-mm) Diameter Holes, Test Nos. MWPFP-3, MWPFP-7 Through MWPFP-8, MWPFP-18, and 

MWPFP-21 
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Figure 11. S3x5.7 (S76x8.5) Posts, Test Nos. MWPFP-4 and MWPFP-5 
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Figure 12. MWP with Simulated #1 Edge Rounding, Test No. MWPFP-6 
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Figure 13. MWP with Three ⅜-in. (10-mm) Diameter Holes, Test Nos. MWPFP-11 and MWPFP-14 
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Figure 14. MWP with ⅜-in. x 1⅛-in. (10-mm x 29-mm) Slots, Test Nos. MWPFP-12 and MWPFP-15 
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Figure 15. MWP with Steel Plate Edge Protector, Test No. MWPFP-13 
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4.3 Equipment and Instrumentation 

Equipment and instrumentation that was utilized to collect and record data during the 

dynamic bogie tests included: a bogie vehicle; an accelerometer; a retroreflective speed trap; 

high-speed and standard-speed digital video; and still cameras. 

4.3.1 Bogie Vehicle 

A rigid-frame bogie vehicle, equipped with a simulated small car floorpan, was used to 

impact the posts. The simulated floorpan consisted of a 120-in. x 23¾-in. (3,048-mm x 603-mm) 

sheet of 24-gauge (0.61-mm) ASTM A653 steel. The sheet steel was mounted to the bottom of 

an undercarriage frame at a height of 8 in. (203 mm), which matched the height of the Kia Rio 

floorpans from the previous full-scale crash tests. The undercarriage frame was constructed from 

3½-in. x 3½-in. x ⅜-in. (90-mm x 90-mm x 10-mm) steel tubes and was bolted to the inside of 

the bogie vehicle frame. The front beam of the undercarriage frame was positioned in front of the 

simulated floorpan and shifted downward 1¾ in. (44 mm). This vertical offset prevented the top 

of the post from snagging on the front edge of the sheet steel, and acted as a stiff cross member 

of the vehicle undercarriage (e.g., frame element, axle) that caused the post to bend down and 

spring back upward toward the floorpan as the bogie overrode the top of the post. A 1¾-in. (44-

mm) square tube was bolted underneath and across the middle of the simulated floorpan to create 

a second location where the post would be pushed down and allowed to spring back upward. 

Photographs of the bogie vehicle are shown in Figure 16, while details of the simulated vehicle 

undercarriage are shown in Figures 17 through 23.  

The bogie impact head consisted of a 2½-in. x 2½-in. x ¼-in. (64-mm x 64-mm x 6-mm) 

square tube mounted to the front of the bogie at a height of 12 in. (305 mm), measured to the 

center of the tube. A ¾-in. (19-mm) thick neoprene pad was wrapped around the tube to prevent 

local damage to the posts during impact. The weight of the bogie with the addition of the impact 

head and simulated floorpan was approximately 2,400 lb (1,089 kg). 

A pickup truck with a reverse-cable tow system was used to propel the bogie to a target 

impact speed of 25 mph (40 km/h). When the bogie approached the end of the guidance system, 

it was released from the tow cable, allowing it to be free rolling when it impacted the post. A 

remote-controlled, braking system was installed on the bogie, thus allowing it to be brought 

safely to rest after the test. 
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Figure 16. Bogie Vehicle and Guidance Track - Floorpan Testing 
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Figure 17. Bogie Details for Floorpan Evaluation 
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Figure 18. Bogie Details, Undercarriage Assembly 
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Figure 19. Bogie Details, Undercarriage Welds 



 

 

3
0
 

M
ay

 1
6

, 2
0
1

7
 

M
w

R
S

F
 R

ep
o

rt N
o
. T

R
P

-0
3

-3
2
4
-1

7
 

 

Figure 20. Bogie Details, Floorpan Connections 
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Figure 21. Bogie Details, Floorpan and Undercarriage Components 
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Figure 22. Bogie Details, Undercarriage Components 
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Figure 23. Bogie Details, Fasteners 
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4.3.2 Accelerometers 

One environmental shock and vibration sensor/recorder system was used to measure the 

accelerations in the longitudinal, lateral, and vertical directions. The accelerometer was mounted 

near the center of gravity of the bogie vehicle. The electronic accelerometer data obtained in 

dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filters 

conforming to the SAE J211/1 specifications [12]. 

The SLICE-2 accelerometer unit was a modular data acquisition system manufactured by 

Diversified Technical Systems Inc. of Seal Beach, California. The acceleration sensors were 

mounted inside the body of a custom built SLICE 6DX event data recorder and recorded data at 

10,000 Hz to the onboard microprocessor. The SLICE 6DX was configured with 7 GB of non-

volatile flash memory, a range of ±500 g’s, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 

1000) anti-aliasing filter. The “SLICEWare” computer software program and a customized 

Microsoft Excel worksheet were used to analyze and plot the accelerometer data. 

4.3.3 Retroreflective Optic Speed Trap 

The retroreflective optic speed trap was used to determine the speed of the bogie vehicle 

before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, 

were applied to the side of the vehicle. When the emitted beam of light was reflected by the 

targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer as 

well as the external LED box activating the LED flashes. The speed was then calculated using 

the spacing between the retroreflective targets and the time between the signals. LED lights and 

high-speed digital video analysis are used only as a backup in the event that vehicle speeds 

cannot be determined from the electronic data. 

4.3.4 Digital Photography 

A combination of one AOS high-speed digital video camera, five GoPro digital video 

cameras, and one JVC digital camera were used to document each test. The AOS high-speed 

camera had a frame rate of 500 frames per second, the GoPro video cameras had a frame rate of 

120 frames per second, and the JVC digital video camera had a frame rate of 29.97 frames per 

second. Three cameras- one AOS, one GoPro, and one JVC video camera- were placed laterally 

from the post, with a view perpendicular to the bogie’s direction of travel. The remaining 

cameras were placed at various locations on and around the bogie- two cameras with view of the 

bogie’s floorpan and the remainder placed with view of the posts. A Nikon D50 digital still 

camera was also used to document pre- and post-test conditions for all tests. 

4.4 Data Processing 

The electronic accelerometer data obtained in dynamic testing was filtered using the SAE 

Class 60 Butterworth filter conforming to the SAE J211/1 specifications [12]. The pertinent 

acceleration signal was extracted from the bulk of the data signals. The processed acceleration 

data was then multiplied by the mass of the bogie to get the impact force using Newton’s Second 

Law. Next, the acceleration trace was integrated to find the change in velocity versus time. Initial 

velocity of the bogie, calculated from the retroreflective optic speed trap data, was then used to 

determine the bogie velocity, and the calculated velocity trace was integrated to find the bogie’s 
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displacement. This displacement is also the displacement of the post. Combining the previous 

results, a force vs. deflection curve was plotted for each test. Finally, integration of the force vs. 

deflection curve provided the energy vs. deflection curve for each test. 
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5  TESTING RESULTS - FLOORPAN TEARING 

5.1 Results 

A total of fifteen dynamic component tests were conducted with the simulated vehicle 

floorpan bogie. A summary of each bogie test, including sequential and post-test photographs, is 

provided in the following sections. The accelerometer data for each test was processed in order 

to obtain force vs. deflection and energy vs. deflection curves. Detailed accelerometer results for 

each test are provided in Appendix B.  

5.1.1 Test No. MWPFP-1 

Test no. MWPFP-1 was conducted on two MWPs installed in strong soil with a 0-degree 

orientation angle, thus creating an impact about the post’s weak-axis of bending. This test was an 

attempt to replicate the floorpan tearing witnessed during full scale test nos. MWP-6 and MWP-7 

and to validate the testing setup and procedure. During the test, the bogie impacted the first post 

at a speed of 25.0 mph (40.2 km/h). The bogie then went on to impact the second post at 0.220 

seconds and caused similar deformation and spring-back characteristics as observed in the first 

post. The bogie overrode both posts. However, the top corners of both posts left distinct creases 

or gouge marks that began near the front edge of the simulated floorpan and extended the length 

of the bogie undercarriage. Tearing was also observed within both creases corresponding to the 

free edges of the posts. These creases and tears were similar to the damage found in test nos. 

MWP-6 and MWP-7. 

Unfortunately, the crossbeams located at the front and mid-span of the simulated floorpan 

had not been installed for test no. MWPFP-1. Thus, the front edge of the sheet steel was exposed 

to contact, and the posts snagged on the simulated floorpan. The simulated floorpan was torn 

from the front of the undercarriage frame, as shown in Figure 25. This result allowed a broader 

area of the simulated floorpan to deform and reduced the severity of the localized gouging and 

tearing. Therefore, modifications to the test setup were required to accurately replicate the 

floorpan of a Kia Rio. Subsequently, crossbeams were added to eliminate this problem for 

subsequent tests and to simulate undercarriage support members. 

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times when the bogie 

overrode each post, the posts contacted the simulated floorpan, and the posts lost contact with the 

bogie vehicle. Results from the data and video analysis are shown in Figure 30. The recorded 

impact loads were lower for the bogie impact with the second post. This finding was likely due 

to a combination of a reduced impact velocity and a higher impact point on the second post. The 

reduced impact velocity resulted from the energy absorbed by the impact with the first post, 

while the higher impact point was caused by the bogie pitching upward as it overrode the first 

post. 
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Figure 24. Time-Sequential and Post Damage Photographs, Test No. MWPFP-1 
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Figure 25. Simulated Floorpan Damage, Test No. MWPFP-1 
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Figure 26. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-1 
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Table 4. Floorpan Damage Measurements, Test No. MWPFP-1 

MWPFP-1 Floorpan Damage 

Description 

1st Post 2nd Post 

Free Edge  

in. (mm) 

Continuous 

Edge  

in. (mm) 

Free Edge  

in. (mm) 

Continuous 

Edge  

in. (mm) 

Tear Length 3½ (89) - 2½ (64) - 

Max. Tear Width 1/16 (2) - 1/16 (2) - 

Crease Length 107¾ (2,737) 106½ (2,705) 106½ (2,705) - 

 

5.1.2 Test No. MWPFP-2 

Test no. MWPFP-2 was conducted on MWPs installed in 8-in. (203-mm) diameter 

concrete sleeves with a 0-degree orientation angle, thus creating an impact about the post’s 

weak-axis of bending. During the test, the bogie impacted the first post with a speed of 25.8 mph 

(41.5 km/h). Upon impact, a plastic hinge formed in the post near the groundline, and the post 

bent over until the bogie overrode it. As the crossbeams passed over the post, elastic restoration 

caused the top of the post to rebound upward and contact the simulated floorpan. The first post 

impacted the front and rear bays of the simulated floorpans 0.158 seconds and 0.298 seconds 

after impact, respectively. The bogie impacted the second post at 0.224 seconds and caused 

similar deformation and spring-back characteristics as observed in the first post. The second post 

impacted the front and rear bays of the simulated floorpans at 0.396 seconds and 0.540 seconds, 

respectively. The elastic spring-back of the posts and the contact with the simulated floorpan 

were captured via digital video taken underneath the bogie vehicle, as shown in Figure 27. 

The posts were bent plastically near the groundline, and contact marks were found on the 

top half of the post along the free edge and impact side face of the post, as shown in Figure 28. 

Damage to the simulated floorpan included creasing and tearing due to contact from the top 

corners of both posts, as shown in Figure 29. Two tears were found in both the front and rear 

bays of the simulated floorpan. These tears corresponded to the location of initial contact 

between the free edges of the posts and the floorpan as the posts passed the crossbeams and 

rebounded upward. The largest tear was 5 in. (127 mm) long and had a maximum width of ½ in. 

(13 mm). Creases in the simulated floorpan were found extending from the tears toward the rear 

of the bogie. Approximately 3 in. (76 mm) to the right of the tears and creases caused by the free 

edges, additional creases caused by the continuous edges of the posts were present on the 

floorpan. All tears and creases observed on the simulated floorpan were measured and are 

summarized in Table 5. 

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times when the bogie 

overrode each post, the posts contacted the simulated floorpan, and the posts lost contact with the 

bogie vehicle. Results from the data and video analysis are shown in Figure 30. The recorded 

impact loads were lower for the bogie impact with the second post. This finding was likely due 

to a combination of a reduced impact velocity and a higher impact point on the second post. The 

reduced impact velocity resulted from the energy absorbed by the impact with the first post, 
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while the higher impact point was caused by the bogie pitching upward as it overrode the first 

post. 

Test no. MWPFP-2 provided very similar results as compared to full-scale crash testing. 

The elastic response of the overridden posts applied a vertical contact force to the simulated 

floorpan. Tears observed in the simulated floorpan were all caused by the free edges of the posts 

and were similar in length and opening width to those found in the test vehicles of test nos. 

MWP-6 and MWP-7. Additionally, creases running the length of the simulated floorpan were 

formed from contact with both edges the posts. Therefore, the bogie testing setup was thought to 

accurately replicate the floorpan damage observed in full-scale test nos. MWP-6 and MWP-7. 

The same test setup was utilized in the remaining bogie tests to evaluate various tearing 

mitigation methods. 
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Figure 27. Time-Sequential Photographs Underneath Bogie, Test No. MWPFP-2 
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Figure 28. Time-Sequential and Post Damage Photographs, Test No. MWPFP-2 
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Figure 29. Simulated Floorpan Damage, Test No. MWPFP-2 
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Figure 30. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-2 
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Table 5. Floorpan Damage Measurements, Test No. MWPFP-2 

MWPFP-2 Floorpan Damage 

Location Description 

1st Post 2nd Post 

Free Edge  

in. (mm) 

Continuous 

Edge  

in. (mm) 

Free Edge  

in. (mm) 

Continuous 

Edge  

in. (mm) 

Front Bay 

Tear Length 5 (127) - 4¼ (108) - 

Max. Tear Width ½ (13) - 3/16 (5) - 

Crease Length 31 (787) 3½ (89) 33½ (851) 37 (940) 

Rear Bay 

Tear Length 4½ (114) - 2¾ (70) - 

Max. Tear Width ½ (13) - 1/8 (3) - 

Crease Length 48¼ (1,226) 3 (76) 51 (1,296) 48½ (1,232) 

 

5.1.3 Test No. MWPFP-3 

Test no. MWPFP-3 was conducted on the modified MWP with ¾-in. (19-mm) diameter 

weakening holes in the weak-axis flanges at groundline, as shown in Error! Reference source 

not found.. The posts were installed in 8-in. (203-mm) diameter concrete sleeves with a 0-

degree orientation angle, thus creating an impact about the post’s weak-axis of bending. During 

the test, the bogie impacted the first post at a speed of 26.8 mph (43.1 km/h). Upon impact, a 

plastic hinge formed in the post at the groundline, and the post bent over until the bogie overrode 

it. As the crossbeams passed over the post, elastic restoration caused the top of the post to 

rebound upward and contact the simulated floorpan. The first post impacted the front and rear 

bays of the simulated floorpan 0.156 seconds and 0.286 seconds after impact, respectively. The 

bogie impacted the second post at 0.212 seconds and caused similar deformation and spring-back 

characteristics as observed in the first post. The second post impacted the front and rear bays of 

the simulated floorpans at 0.376 seconds and 0.504 seconds, respectively. 

   

Figure 31. MWP with ¾-in. (19-mm) Diameter Weakening Holes 
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The posts were bent plastically near the groundline, and tearing was found in both posts, 

as shown in Figure 32. The tears initiated from the weakening holes on the impact side of the 

posts and extended into the webs and adjacent flanges. Contact marks were found on the top half 

of the post along the free edge and impact side face of the post. Damage to the simulated 

floorpan included scrapes and creases but no tearing. Four creases were found in both the front 

and rear bays of the simulated floorpan, as shown in Figure 33. The creases resulting from 

contact with the free edges of the posts extended nearly the entire length of the bogie vehicle, 

while the creases resulting from contact with the continuous edges of the posts were limited in 

length. All creases observed on the simulated floorpan were measured and are summarized in 

Table 6. 

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times when the bogie 

overrode each post, the posts contacted the simulated floorpan, and the posts lost contact with the 

bogie vehicle. Results from the data and video analysis are shown in Figure 34. The peak impact 

loads and absorbed energies were relatively constant between the two posts. 
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Figure 32. Time-Sequential and Post Damage Photographs, Test No. MWPFP-3 
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Figure 33. Simulated Floorpan Damage, Test No. MWPFP-3 
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Figure 34. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-3 
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Table 6. Floorpan Damage Measurements, Test No. MWPFP-3 

MWPFP-3 Floorpan Damage 

Location Description 

1st Post 2nd Post 

Free Edge 

in. (mm) 

Continuous 

Edge  

in. (mm) 

Free Edge 

in. (mm) 

Continuous 

Edge  

in. (mm) 

Front Bay 

Tear Length - - - - 

Max. Tear Width - - - - 

Crease Length 35⅜ (899) 4 (102) 31½ (800) 3 (76) 

Rear Bay 

Tear Length - - - - 

Max. Tear Width - - - - 

Crease Length 51½ (1,308) 3½ (89) 51 (1,295) 2½ (64) 

 

5.1.4 Test No. MWPFP-4 

Test no. MWPFP-4 was conducted on S3x5.7 (S76x8.5) posts with a height of 39¼ in. 

(997 mm) above the groundline, matching that of the MWP in the prototype cable barrier system. 

The posts were installed in 8-in. (203-mm) diameter concrete sleeves with a 0-degree orientation 

angle, thus creating an impact about the post’s weak-axis of bending. During the test, the bogie 

impacted the first post at a speed of 27.9 mph (44.9 km/h). Upon impact, a plastic hinge formed 

in the post near groundline, and the post bent over until the bogie overrode it. As the crossbeams 

passed over the post, elastic restoration caused the top of the post to rebound upward and contact 

the simulated floorpan. The first post impacted the front and rear bays of the simulated floorpan 

0.152 seconds and 0.280 seconds after impact, respectively. The bogie impacted the second post 

at 0.210 seconds and caused similar deformation and spring-back characteristics as observed in 

the first post. The second post impacted the front and rear bays of the simulated floorpans at 

0.370 seconds and 0.508 seconds, respectively. 

The posts were bent plastically near the groundline, and contact marks were present on 

both edges of the posts, as shown in Figure 35. Damage to the simulated floorpan included 

tearing and creasing due to contact with the top corners of both posts, as shown in Figure 36. 

Four tears were found in both the front and rear bays of the simulated floorpan. These tears 

corresponded to the location of initial contact between the free edges of the posts and the 

floorpan as the posts passed the crossbeams and rebounded upward. The largest tear was 6¾ in. 

(171 mm) long and had a maximum width of 5/16 in. (8 mm). Creases in the simulated floorpan 

were found following all four tears and extending toward the rear of the bogie. All of the tears 

and creases observed on the simulated floorpan were measured and summarized in Table 7. 

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine when the bogie overrode 

each post, the posts contacted the simulated floorpan, and the posts lost contact with the bogie 

vehicle. Results from the data and video analysis are shown in Figure 37. The impact loads were 

lower for the bogie impact with the second post. This finding was likely due to a combination of 

a reduced impact velocity and a higher impact point on the second post. The reduced impact 

velocity resulted from the energy absorbed by the impact with the first post, while the higher 

impact point was caused by the bogie pitching upward as it overrode the first post.
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Figure 35. Time-Sequential and Post Damage Photographs, Test No. MWPFP-4 
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Figure 36. Simulated Floorpan Damage, Test No. MWPFP-4 
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Figure 37. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-4 
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Table 7. Floorpan Damage Measurements, Test No. MWPFP-4 

MWPFP-4 Floorpan Damage 

Location Description 

1st Post 2nd Post 

Left Flange  

in. (mm) 

Right Flange 

in. (mm) 

Left Flange 

in. (mm) 

Right Flange 

in. (mm) 

Front Bay 

Tear Length 5¾ (146) 5 (127) 4½ (114) 5 (127) 

Max. Tear Width 3/16 (5) ¼ (6) 3/16 (5) ¼ (6) 

Crease Length 31 (787) 30½ (775) 31 (787) 32 (813) 

Rear Bay 

Tear Length 6¾ (171) 6¼ (159) 6¼ (159) 6 (152) 

Max. Tear Width 5/16 (8) ¼ (6) ⅛ (3) ⅛ (3) 

Crease Length 51 (1,295) 51 (1,295) 49 (1,244) 49 (1,244) 

 

5.1.5 Test No. MWPFP-5 

Test no. MWPFP-5 was conducted on S3x5.7 (S76x8.5) posts with a height of 31 in. (787 

mm) above the groundline, matching the height of a typical post in the non-proprietary, low-

tension, cable barrier system. The posts were installed in 8-in. (203-mm) diameter concrete 

sleeves with a 0-degree orientation angle, thus creating an impact about the post’s weak-axis of 

bending. During the test, the bogie impacted the first post at a speed of 30.5 mph (49.1 km/h). 

Upon impact, a plastic hinge formed in the post near the groundline, and the post bent over until 

the bogie overrode it. As the crossbeams passed over the post, elastic restoration caused the top 

of the post to rebound upward and impact the simulated floorpan. The first post impacted the 

front and rear bays of the simulated floorpan 0.124 seconds and 0.234 seconds after impact, 

respectively. The bogie impacted the second post at 0.188 seconds and caused similar 

deformation and spring-back characteristics as observed in the first post. The second post 

impacted the front and rear bays of the simulated floorpans at 0.312 seconds and 0.434 seconds, 

respectively. 

The posts were bent plastically near the groundline, and contact marks were present on 

both edges of the posts, as shown in Figure 38. Damage to the simulated floorpan included 

tearing and creasing due to contact with the top corners of both posts, as shown in Figure 39. 

Four tears were found in both the front and rear bays of the simulated floorpan corresponding to 

the location of initial contact between the posts and the floorpan as the posts passed the 

crossbeams and rebounded upward. The largest of these initial tears was 6½ in. (165 mm) long 

and had a maximum width of ¼ in. (6 mm). Continued contact with one of the posts resulted in 

two additional tears in the front bay measuring 16 in. (406 mm) and 13 in. (330 mm) in length. 

The shorter height of the posts appeared to cause higher restoration forces, which led to these 

additional tears. Creases were also found in the simulated floorpan extending from the initial 

tears toward the rear of the bogie. All of the tears and creases observed on the simulated floorpan 

were measured and are summarized in Table 8. 

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times when the bogie 

overrode each post, the posts contacted the simulated floorpan, and the posts lost contact with the 

bogie vehicle. Results from the data and video analysis are shown in Figure 40. The impact loads 
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were lower for the bogie impact with the second post. This finding was likely due to a 

combination of a reduced impact velocity and a higher impact point on the second post. The 

reduced impact velocity resulted from the energy absorbed by the impact with the first post, 

while the higher impact point was caused by the bogie pitching upward as it overrode the first 

post. 
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Figure 38. Time-Sequential and Post Damage Photographs, Test No. MWPFP-5 
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Figure 39. Simulated Floorpan Damage, Test No. MWPFP-5 
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Figure 40. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-5 
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Table 8. Floorpan Damage, Test No. MWPFP-5 

MWPFP-5 Floorpan Damage 

Location Description 

1st Post 2nd Post 

Left Flange 

in. (mm) 

Right Flange 

in. (mm) 

Left Flange 

in. (mm) 

Right Flange 

in. (mm) 

Front Bay 

Initial Tear 

Length 
6 (152) 5½ (140) 3¼ (83) 2¾ (70) 

Max. Tear Width ⅛ (3) ¼ (6) ¼ (6) ¼ (6) 

Crease Length 33 (838) 35½ (902) - - 

2nd Tear Length 16 (406) 13 (330) - - 

Max. Tear Width 1/16 (2) ¼ (6) - - 

Rear Bay 

Tear Length 6½ (165) 6½ (165) 3½ (89) 2¾ (70) 

Max Tear Width ⅛ (3) ¼ (6) ⅛ (3) 3/16 (5) 

Crease Length 49½ (1,257) 48½ (1,232) 54 (1,372) 54 (1,372) 

 

5.1.6 Test No. MWPFP-6 

Test no. MWPFP-6 was conducted on the MWP with simulated no. 1 edge rounding 

applied along the free edges near the top of each post, as shown in Figure 41. The posts were 

installed in 8-in. (203-mm) diameter concrete sleeves with a 0-degree orientation angle, thus 

creating an impact about the post’s weak-axis of bending. During the test, the bogie impacted the 

first post with a speed of 28.1 mph (45.2 km/h). Upon impact, a plastic hinge formed in the post 

near the groundline, and the post bent over until the bogie overrode it. As the crossbeams passed 

over the post, elastic restoration caused the top of the post to rebound upward and impact the 

simulated floorpan. The first post impacted the front and rear bays of the simulated floorpans 

0.146 seconds and 0.270 seconds after impact, respectively. The bogie impacted the second post 

at 0.208 seconds and caused similar deformation and spring-back characteristics as observed in 

the first post. The second post impacted the front and rear bays of the simulated floorpans at 

0.360 seconds and 0.494 seconds, respectively.  

The posts were bent plastically near the groundline, and contact marks were found on the 

top half of the post along the free edge and impact side face of the post, as shown in Figure 42. 

Damage to the simulated floorpan included creasing and tearing due to contact from the top 

corners of both posts, as shown in Figure 43. Two tears were found in both the front and rear 

bays of the simulated floorpan. These tears corresponded to the location of initial contact 

between the free edges of the posts and the floorpan as the posts passed the crossbeams and 

rebounded upward. The largest tear was 12¾ in. (324 mm) long and had a maximum width of ½ 

in. (13 mm). Creases in the simulated floorpan were found extending from the tears toward the 

rear of the bogie. Additional creases caused by the continuous edges of the posts were present in 

the floorpan, approximately 3 in. (76 mm) to the right of the tears and creases caused by the free 

edges of the post. All tears and creases observed on the simulated floorpan were measured and 

are summarized in Table 9. 

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times when the bogie 
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overrode each post, the posts contacted the simulated floorpan, and the posts lost contact with the 

bogie vehicle. Results from the data and video analysis are shown in Figure 44. The recorded 

impact loads were lower for the bogie impact with the second post. This finding was likely due 

to a combination of a reduced impact velocity and a higher impact point on the second post. The 

reduced impact velocity resulted from the energy absorbed by the impact with the first post, 

while the higher impact point was caused by the bogie pitching upward as it overrode the first 

post. 

   

Figure 41. MWP with Simulated No. 1 Edge Rounding, Test No. MWPFP-6 
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Figure 42. Time-Sequential and Post Damage Photographs, Test No. MWPFP-6 
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Figure 43. Simulated Floorpan Damage, Test No. MWPFP-6 
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Figure 44. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-6 
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Table 9. Floorpan Damage Measurements, Test No. MWPFP-6 

MWPFP-6 Floorpan Damage 

Location Description 

1st Post 2nd Post 

Free Edge  

in. (mm) 

Continuous 

Edge 

in. (mm) 

Free Edge 

in. (mm) 

Continuous 

Edge  

in. (mm) 

Front Bay 

Tear Length 12¾ (324) - 2 (51) - 

Max. Tear Width ½ (13) - ¼ (6) - 

Crease Length 40½ (1,029) 34 (864) 40 (1,016) 44 (1,118) 

Rear Bay 

Tear Length 7 (178) - 5 (127) - 

Max. Tear Width ½ (13) - ¼ (6) - 

Crease Length 52 (1,321) 4 (102) 56 (1,422) 58½ (1,486) 

 

5.1.7 Test No. MWPFP-7 

Test no. MWPFP-7 was conducted on the MWP with ¾-in. (19-mm) diameter weakening 

holes in the weak-axis flanges at the groundline. The posts were installed in a strong soil with a 

0-degree orientation angle, thus creating an impact about the post’s weak-axis of bending. 

During the test, the bogie impacted the first post at a speed of 29.7 mph (47.8 km/h). Upon 

impact, a plastic hinge formed in the post at the groundline, and the post bent over until the bogie 

overrode it. As the crossbeams passed over the post, elastic restoration caused the top of the post 

to rebound upward and impact the simulated floorpan. The first post impacted the front and rear 

bays of the simulated floorpan 0.142 seconds and 0.262 seconds after impact, respectively. The 

bogie impacted the second post at 0.186 seconds and caused similar deformation and spring-back 

characteristics as observed in the first post. The second post impacted the front and rear bays of 

the simulated floorpans at 0.338 seconds and 0.458 seconds, respectively. 

The posts were bent plastically near the groundline, and tearing was present in both posts, 

as shown in Figure 45. The tears initiated from the weakening holes on the impact side of the 

posts and extended into the webs and adjacent flanges. The posts displaced approximately 1 in. 

(25 mm) through the soil at the groundline. Contact marks were found on the top half of the post 

along the free edge and impact side face of the post. Damage to the simulated floorpan included 

scrapes and creases, but no tearing. Four creases were found in both the front and rear bays of the 

simulated floorpan, as shown in Figure 46. The two creases in each bay resulted from contact 

with the free edges of the posts and extended nearly the entire length of the bogie vehicle. The 

creases resulting from contact with the continuous edges of the posts were limited to less than 6 

in. (152 mm). All creases observed on the simulated floorpan were measured and summarized in 

Table 10. 

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times when the bogie 

overrode each post, the posts contacted the simulated floorpan, and the posts lost contact with the 

bogie vehicle. Results from the data and video analysis are shown in Figure 47. The peak impact 

loads and absorbed energies were relatively constant between the two posts. 
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Figure 45. Time-Sequential and Post Damage Photographs, Test No. MWPFP-7 
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Figure 46. Simulated Floorpan Damage, Test No. MWPFP-7 
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Figure 47. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-7 
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Table 10. Floorpan Damage Measurements, Test No. MWPFP-7 

MWPFP-7 Floorpan Damage 

Location Description 

1st Post 2nd Post 

Free Edge 

in. (mm) 

Continuous 

Edge  

in. (mm) 

Free Edge in. 

(mm) 

Continuous 

Edge 

in. (mm) 

Front Bay 

Tear Length - - - - 

Max. Tear Width - - - - 

Crease Length 34½ (876) 3½ (89) 41½ (1,054) 6 (152) 

Rear Bay 

Tear Length - - - - 

Max. Tear Width - - - - 

Crease Length 55¼ (1,410) 5 (127) 54 (1,372) 2¼ (57) 

 

5.1.8 Test No. MWPFP-8 

Test no. MWPFP-8 was conducted on the MWP with ¾-in. (19-mm) diameter weakening 

holes in the weak-axis flanges at the groundline. The posts were installed in a strong soil with a 

65-degree orientation angle as measured from the longitudinal (weak) axis. The posts were 

targeted for a 25-degree orientation angle, but during installation the angle was measured relative 

to the strong axis instead of the weak axis. During the test, the bogie impacted the first post at a 

speed of 26.6 mph (42.8 km/h). Upon impact, a plastic hinge formed in the post at the 

groundline, and the post bent over until the bogie overrode it. As the crossbeams passed over the 

post, elastic restoration caused the top of the post to rebound upward and impact the simulated 

floorpan. The first post impacted the front and rear bays of the simulated floorpan 0.160 seconds 

and 0.300 seconds after impact, respectively. The bogie impacted the second post at 0.217 

seconds and caused similar deformation and spring-back characteristics as observed in the first 

post. The second post impacted the front and rear bays of the simulated floorpans at 0.386 

seconds and 0.544 seconds, respectively. 

The posts were bent plastically near groundline, and contact marks were found along the 

top half of the post, as shown in Figure 48. No tearing was observed in the post around the 

weakening holes. The posts displaced 2 to 3 in. (51 to 76 mm) through the soil at the groundline. 

Damage to the simulated floorpan included tears and creases, as shown in Figure 49. Tears were 

found in the front and rear bays corresponding to contact from the free edge of the first post. 

Each bay had an initial tear near the crossbeam, the largest of which was 10¾ in. (273 mm) long 

with a maximum opening width of ⅝ in. (16 mm). Creasing followed these tears and eventually 

led to secondary tears measuring 25 in. (635 mm) and 18½ in. (470 mm). The free edge of the 

second post left a prominent crease along the front bay of the simulated floorpan and a short 

crease on the rear bay before sliding to the side of the bogie and losing contact with the floorpan. 

Due to the orientation angle of the post, the continuous edges left only minor creases in the 

floorpan. All tears and creases observed on the simulated floorpan were measured and are 

summarized in Table 11. 

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times in which the bogie 
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overrode each post, the posts contacted the simulated floorpan, and the posts lost contact with the 

bogie vehicle. Results from the data and video analysis are shown in Figure 50. The recorded 

impact loads were lower for the bogie impact with the second post. This finding was likely due 

to a combination of a reduced impact velocity and a higher impact point on the second post. The 

reduced impact velocity resulted from the energy absorbed by the impact with the first post, 

while the higher impact point was caused by the bogie pitching upward as it overrode the first 

post. 
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Figure 48. Time-Sequential and Post Damage Photographs, Test No. MWPFP-8 
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Figure 49. Simulated Floorpan Damage, Test No. MWPFP-8 
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Figure 50. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-8 
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Table 11. Floorpan Damage Measurements, Test No. MWPFP-8 

MWPFP-8 Floorpan Damage 

Location Description 

1st Post 2nd Post 

Free Edge  

in. (mm) 

Continuous 

Edge 

in. (mm) 

Free Edge 

in. (mm) 

Continuous 

Edge  

in. (mm) 

Front Bay 

Tear Length 10¾ (273) - - - 

Max. Tear Width ⅝ (16) - - - 

Crease Length 9 (229) 5 (127) 31 (787) - 

2nd Tear Length 25 (635) - - - 

Max. Tear Width ⅛ (3) - - - 

Rear Bay 

Tear Length 8¾ (222) - - - 

Max. Tear Width ¾ (19) - - - 

Crease Length 24¾ (629) 5 (127) 6 (152) - 

2nd Tear Length 18½ (470) - - - 

Max. Tear Width ⅛ (3) - - - 

 

5.1.9 Test No. MWPFP-11 

Test no. MWPFP-11 was conducted on the MWP with three ⅜-in. (10-mm) diameter 

weakening holes in the weak-axis flanges at the groundline, as shown in Figure 51. The posts 

were installed in 8-in. (203-mm) diameter concrete sleeves with a 0-degree orientation angle, 

thus creating an impact about the post’s weak-axis of bending. During the test, the bogie 

impacted the first post at a speed of 25.9 mph (41.7 km/h). Upon impact, the post began to bend 

and tear near the groundline, and the post bent over until the bogie overrode it. Due to the 

severity of the tearing, the post bent all the way down to the ground and did not spring back 

upward. Thus, the post never contacted the simulated floorpan. The bogie impacted the second 

post at 0.219 seconds and caused similar behavior as observed in the first post.  

   

Figure 51. MWP with Three ⅜-in. (10-mm) Diameter Weakening Holes 
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The posts were completely bent over, and tearing was present in both posts, as shown in 

Figure 52. The tears initiated from the weakening holes on the impact side of the posts and 

extended into the webs and adjacent flanges. Additional tears occurred in the free edges of the 

posts leaving only the backside face of the posts to hold the posts together. After the tears formed 

in the posts, the angular momentum of the top of the posts rotated backward and then impacted 

the ground causing the bottom of the posts to pull out of the ground vertically a few inches. The 

simulated floorpan was undamaged as the posts never contacted the undercarriage of the bogie 

vehicle.  

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times in which the bogie 

overrode each post and the posts lost contact with the bogie vehicle. Results from the data and 

video analysis are shown in Figure 53. The peak impact loads and absorbed energies were 

relatively constant between the two posts. 
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Figure 52. Time-Sequential and Post Damage Photographs, Test No. MWPFP-11 
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Figure 53. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-11 
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5.1.10 Test No. MWPFP-12 

Test no. MWPFP-12 was conducted on the MWP with ⅜-in. x 1⅛-in. (10-mm x 29-mm) 

weakening slots in the weak-axis flanges at the groundline, as shown in Figure 54. The posts 

were installed in 8-in. (203-mm) diameter concrete sleeves with a 0-degree orientation angle, 

thus creating an impact about the post’s weak-axis of bending. During the test, the bogie 

impacted the first post at a speed of 24.4 mph (39.3 km/h). Upon impact, the post began to bend 

and tear near groundline, and the post bent over until the bogie overrode it. Eventually, the top of 

the post tore away from the bottom. Due to rupturing, the post never contacted the simulated 

floorpan. The bogie impacted the second post at 0.232 seconds and caused similar behavior as 

observed in the first post. 

    

Figure 54. MWP with ⅜-in. x 1⅛-in. (10-mm x 29-mm) Weakening Slots 

Both posts had ruptured at the groundline, as shown in Figure 55. Tearing was initiated 

around the weakening slots on the impact side of the posts and continued through the entire cross 

section. The simulated floorpan was undamaged as the posts never contacted the undercarriage 

of the bogie vehicle.  

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times in which the bogie 

overrode each post and the posts lost contact with the bogie vehicle. Results from the data and 

video analysis are shown in Figure 56. The recorded loads were significantly higher during the 

impact with the second post due to the crossbeam of the bogie impacting the detached portion of 

the first post at the same time. The top of the first post was subsequently propelled downstream. 

Thus, the unusually high force is a combination of the bogie impacting both posts 

simultaneously.  
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Figure 55. Time-Sequential and Post Damage Photographs, Test No. MWPFP-12 
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Figure 56. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-12 
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5.1.11 Test No. MWPFP-13 

Test no. MWPFP-13 was conducted on the MWP with steel plate edge protectors welded 

to the top of the posts, as shown in Figure 57. The posts were installed in 8-in. (203-mm) 

diameter concrete sleeves with a 0-degree orientation angle, thus creating an impact about the 

post’s weak-axis of bending. During the test, the bogie impacted the first post at a speed of 24.2 

mph (38.9 km/h). Upon impact, a plastic hinge formed in the post near the groundline, and the 

post bent over until the bogie overrode it. As the crossbeams passed over the post, elastic 

restoration caused the top of the post to rebound upward and impact the simulated floorpan. The 

first post impacted the front and rear bays of the simulated floorpan at 0.170 seconds and 0.322 

seconds after impact, respectively. The bogie impacted the second post at 0.238 seconds and 

caused similar deformation and spring-back characteristics as observed in the first post. The 

second post impacted the front and rear bays of the simulated floorpan at 0.426 seconds and 

0.588 seconds, respectively.  

   

Figure 57. MWPs with Steel Plate Edge Protectors 

The posts were bent plastically near the groundline, and contact marks were found along 

the impact side of the posts, as shown in Figure 58. Damage to the simulated floorpan included 

tearing and creasing due to contact from the top corners of both posts, as shown in Figure 59. 

Two tears were found in both the front and rear bays of the simulated floorpan. These tears 

corresponded to the location of initial contact between the continuous edges of the posts and the 

floorpan as the posts passed the crossbeams and rebounded upward. The largest tear was 3 in. 

(76 mm) long and had a maximum width of ¼ in. (6 mm). Creases in the simulated floorpan 

were found along the entire length of the simulated floorpan. All tears and creases observed on 

the simulated floorpan were measured and are summarized in Table 12. 

Closer inspection of the posts revealed that the continuous edges of the posts did not 

incorporate a radius as intended. A ¼-in. (6-mm) radius was added to the MWP between the top 

edge and the V-notch to eliminate sharp edges or corners near the top of the post. As shown in 
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Figure 60, the lack of a radius at this location resulted in a sharp corner exposed to contact with 

an impacting vehicle. Further, these sharp corners were responsible for all four tears observed in 

the simulated floorpan. The protected free-edge sides of the posts caused only creasing in the 

simulated floorpan. Thus, the steel plate edge protector may have actually prevented tearing if 

the posts had been fabricated correctly. 

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times in which the bogie 

overrode each post, the posts contacted the simulated floorpan, and the posts lost contact with the 

bogie vehicle. Results from the data and video analysis are shown in Figure 61. The recorded 

loads were lower for the bogie impact with the second post. This finding was likely due to a 

combination of a reduced impact velocity and a higher impact point on the second post. The 

reduced impact velocity resulted from the energy absorbed by the impact with the first post, 

while the higher impact point was caused by the bogie pitching upward as it overrode the first 

post. 
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Figure 58. Time-Sequential and Post Damage Photographs, Test No. MWPFP-13 
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Figure 59. Simulated Floorpan Damage, Test No. MWPFP-13 
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Figure 60. Post Damage, Test No. MWPFP-13 
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Figure 61. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-13 

-4

-2

0

2

4

6

8

10

12

0 50 100 150 200 250 300

Fo
rc

e
 (

ki
p

s)

Displacement (in.)

MWPFP-13

MWPFP-13

Post 1 Override

Post 1 Contact Floorpan

Post 1 Loss of Contact

Post 2 Override

Post 2 Contact Floorpan

Post 2 Loss of Contact

0

50

100

150

200

250

0 50 100 150 200 250 300

En
er

gy
 (

ki
p

-i
n

.)

Displacement (in.)

MWPFP-13

MWPFP-13

Post 1 Override

Post 1 Contact Floorpan

Post 1 Loss of Contact

Post 2 Override

Post 2 Contact Floorpan

Post 2 Loss of Contact



May 16, 2017 

MwRSF Report No. TRP-03-324-17 

87 

Table 12. Floorpan Damage Measurements, Test No. MWPFP-13 

MWPFP-13 Floorpan Damage 

Location Description 

1st Post 2nd Post 

Free Edge 

in. (mm) 

Continuous 

Edge  

in. (mm) 

Free Edge 

in. (mm) 

Continuous 

Edge  

in. (mm) 

Front Bay 

Tear Length - 3 (76) - 1½ (38) 

Max. Tear Width - ¼ (6) - ¼ (6) 

Crease Length 40 (1,016) 31 (787) 33 (838) - 

Rear Bay 

Tear Length - 2 (51) - 1½ (38) 

Max. Tear Width - ¼ (6) - ¼ (6) 

Crease Length 49½ (1,257) 43 (1,092) 53½ (1,359) 4 (102) 

 

5.1.12 Test No. MWPFP-14 

Test no. MWPFP-14 was conducted on the MWP with three ⅜-in. (10-mm) diameter 

weakening holes in the weak-axis flanges at the groundline. The posts were installed in strong 

soil with a 25-degree orientation angle matching the impact angle of full-scale MASH testing for 

median barriers. During the test, the bogie impacted the first post at a speed of 26.7 mph (43.0 

km/h). Upon impact, the post began to bend and tear near the groundline, and the post bent over 

until the bogie overrode it. Due to the severity of the tearing, the post bent completely down to 

the ground and did not spring back upward. Thus, the post never contacted the simulated 

floorpan. The bogie impacted the second post at 0.212 seconds and caused similar behavior as 

observed in the first post.  

The posts were completely bent over, and tearing was present in both posts, as shown in 

Figure 62. The tears initiated from the weakening holes on the impact side of the posts and 

extended through the adjacent flanges and the webs. Only the opposite-side flanges and the 

backside faces of the posts were still intact and held the posts together. The posts displaced 

approximately 1½ in. (38 mm) through the soil at the groundline. The simulated floorpan was 

undamaged as the posts never contacted the undercarriage of the bogie vehicle.  

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times in which the bogie 

overrode each post and the posts lost contact with the bogie vehicle. Results from the data and 

video analysis are shown in Figure 63. The peak impact loads and absorbed energies were 

relatively constant between the two posts. 
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Figure 62. Time-Sequential and Post Damage Photographs, Test No. MWPFP-14 
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Figure 63. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-14 
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5.1.13 Test No. MWPFP-15 

Test no. MWPFP-15 was conducted on the MWP with ⅜-in. x 1⅛-in. (10-mm x 29-mm) 

weakening slots in the weak-axis flanges at the groundline. The posts were installed in strong 

soil with a 25-degree orientation angle matching the impact angle of full-scale MASH testing for 

median barriers. During the test, the bogie impacted the first post at a speed of 26.1 mph (42.0 

km/h). Upon impact, the post began to bend and tear near groundline, and the post bent over until 

the bogie overrode it. Due to the severity of the tearing, the post bent completely to the ground 

and did not spring back upward. Thus, the post never contacted the simulated floorpan. The 

bogie impacted the second post at 0.209 seconds and caused similar behavior as observed in the 

first post.  

The posts were completely bent over, and tearing was present in both posts, as shown in 

Figure 64. The tears initiated from the weakening slots on the impact side of the posts and 

extended through the adjacent flanges and the webs. Only the opposite-side flanges of the posts 

were still intact and held the posts together. The posts displaced approximately ½ in. (13 mm) 

through the soil at groundline. The simulated floorpan was undamaged as the posts never 

contacted the undercarriage of the bogie vehicle.  

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times in which the bogie 

overrode each post and the posts lost contact with the bogie vehicle. Results from the data and 

video analysis are shown in Figure 65. The peak impact loads and absorbed energies were 

relatively constant between the two posts. 
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Figure 64. Time-Sequential and Post Damage Photographs, Test No. MWPFP-15 
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Figure 65. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-15 
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5.1.14 Test No. MWPFP-18 

Test no. MWPFP-18 was conducted on the MWP with ¾-in. (19-mm) diameter 

weakening holes in the weak-axis flanges at the groundline. The posts were installed in strong 

soil with a 25-degree orientation angle matching the impact angle of full-scale MASH testing for 

median barriers. During the test, the bogie impacted the first post at a speed of 25.7 mph (41.4 

km/h). Upon impact, the post began to bend and tear at the groundline, and the post bent over 

until the bogie overrode it. The severity of the tearing prevented the post from rebounding 

upward and contacting the floorpan. The bogie impacted the second post at 0.216 seconds, and 

the post began to bend and tear near the groundline. As the crossbeams passed over the post, 

elastic restoration caused the top of the second post to rebound upward and impact the simulated 

floorpan. The second post impacted the front and rear bays of the simulated floorpans at 0.390 

seconds and 0.528 seconds, respectively. 

The posts were bent plastically near the groundline, and tearing was present in both posts, 

as shown in Figure 66. The tears initiated from the weakening holes on the impact side of the 

posts and extended into the webs and adjacent flanges. Additional tearing was found on the 

opposite side flange of the first post. The posts displaced approximately 1½ in. (38 mm) through 

the soil at the groundline. Damage to the simulated floorpan included scrapes and creases, but no 

tearing. Two creases were found in both the front and rear bays of the simulated floorpan, as 

shown in Figure 67. Only one of the creases extended past the region of initial contact. All 

creases observed on the simulated floorpan were measured and are summarized in Table 13. 

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times in which the bogie 

overrode each post, the posts contacted the simulated floorpan, and the posts lost contact with the 

bogie vehicle. Results from the data and video analysis are shown in Figure 68. The peak impact 

loads and absorbed energies were relatively constant between the two posts. 
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Figure 66. Time-Sequential and Post Damage Photographs, Test No. MWPFP-18 
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Figure 67. Simulated Floorpan Damage, Test No. MWPFP-18 
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Figure 68. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-18 
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Table 13. Floorpan Damage Measurements, Test No. MWPFP-18 

MWPFP-18 Floorpan Damage 

Location Description 

1st Post 2nd Post 

Free Edge  

in. (mm) 

Continuous 

Edge  

in. (mm) 

Free Edge 

in. (mm) 

Continuous 

Edge 

in. (mm) 

Front 

Bay 

Tear Length - - - - 

Max. Tear Width - - - - 

Crease Length - - 33 (838) 5 (127) 

Rear 

Bay 

Tear Length - - - - 

Max. Tear Width - - - - 

Crease Length - - 5 (127) 5 (127) 

 

5.1.15 Test No. MWPFP-21 

Test no. MWPFP-21 was conducted on the MWP with ¾-in. (19-mm) diameter 

weakening holes in the weak-axis flanges at the groundline. The posts were installed in strong 

soil with a -25 degree orientation angle matching the impact angle of MASH if the cable barrier 

system was installed on the roadside as opposed to the median. During the test, the bogie 

impacted the first post at a speed of 25.7 mph (41.4 km/h). Upon impact, the post began to bend 

and tear at the groundline, and the post bent over until the bogie overrode it. As the crossbeams 

passed over the post, elastic restoration caused the top of the post to rebound upward and impact 

the simulated floorpan. The first post impacted the front and rear bays of the simulated floorpan 

0.166 seconds and 0.304 seconds after impact, respectively. The bogie impacted the second post 

at 0.218 seconds and caused similar deformation and spring-back characteristics as observed in 

the first post. The second post impacted the front and rear bays of the simulated floorpan at 0.392 

seconds and 0.538 seconds, respectively. 

The posts were bent plastically near the groundline, and tearing was present in both posts, 

as shown in Figure 69. The tears initiated from the weakening holes on the impact side of the 

posts and extended into the webs and adjacent flanges. The posts displaced approximately 1½ in. 

(38 mm) through the soil at the groundline. Damage to the simulated floorpan included scrapes 

and creases, but no tearing. Three creases were found in both the front and rear bays of the 

simulated floorpan, as shown in Figure 70. Creases resulting from contact with free edges 

extended along the length of the simulated floorpan. Creases formed from contact with 

continuous edges were limited to only the area of initial contact. All creases observed on the 

simulated floorpan were measured and are summarized in Table 14. 

Force vs. deflection and energy vs. deflection curves were created from the accelerometer 

data. Additionally, the high-speed video was analyzed to determine the times in which the bogie 

overrode each post, the posts contacted the simulated floorpan, and the posts lost contact with the 

bogie vehicle. Results from the data and video analysis are shown in Figure 71. The peak impact 

loads and absorbed energies were relatively constant between the two posts. 
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Figure 69. Time-Sequential and Post Damage Photographs, Test No. MWPFP-21 
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Figure 70. Simulated Floorpan Damage, Test No. MWPFP-21 
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Figure 71. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-21 
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Table 14. Floorpan Damage Measurements, Test No. MWPFP-21 

MWPFP-21 Floorpan Damage 

Location Description 

1st Post 2nd Post 

Free Edge 

in. (mm) 

Continuous 

Edge 

in. (mm) 

Free Edge 

in. (mm) 

Continuous 

Edge 

in. (mm) 

Front Bay 

Tear Length - - - - 

Max. Tear Width - - - - 

Crease Length 37 (940) 2½ (64) 31 (787) - 

Rear Bay 

Tear Length - - - - 

Max. Tear Width - - - - 

Crease Length 49 (1,245) 2½ (64) 40 (1,016) - 

 

5.2 Discussion 

A total of fifteen dynamic component tests were conducted utilizing a bogie vehicle with 

a simulated floorpan. The first two tests were conducted to verify the test setup could replicate 

the floorpan tearing and creasing observed during the previous full-scale crash tests. In test no. 

MWPFP-2, the free edges of both posts caused tears to form in both the front and rear bays of the 

simulated floorpan. Additionally, contact with both corners of the posts caused creases to form 

along the length of the simulated floorpan. This tearing and creasing behavior was very similar to 

that observed in the full-scale tests. The following thirteen tests were conducted to evaluate the 

floorpan damage associated with various posts and post modifications designed to prevent 

floorpan tearing. 

Test nos. MWPFP-4 and MWPFP-5 were conducted on S3x5.7 (S76x8.5) posts oriented 

at 0 degrees, or about the post’s weak-axis of bending. During the tests, both of the free edges on 

each S3x5.7 (S76x8.5) post caused tears to both bays of the simulated floorpan. Not only did the 

S3x5.7 (S76x8.5) posts cause twice as many tears as the MWP, but the tears tended to be larger 

than those observed from testing with the MWP. Test no. MWPFP-5 evaluated a 31-in. (787-

mm) tall post matching the height of the non-proprietary, low-tension, cable median barrier. The 

shorter height seemed to result in higher vertical loads being imparted to the simulated floorpan 

as the post elastically restored. Subsequently, sharp creases and secondary tears were found 

within the first bay of the floorpan. Testing with S3x5.7 (S76x8.5) posts indicated that floorpan 

tearing was not specific to the MWP. Rather, any post with free/exposed edges may be at risk to 

cause floorpan tearing. 

One test was conducted on the MWP with simulated no. 1 edge rounding. The edge 

rounding did not appear to have much of an effect as the free edges still caused tearing to the 

simulated floorpan during test no. MWPFP-6. Thus, edge rounding was not recommended for 

further evaluation as a method to mitigate tearing. 

Test no. MWPFP-13 featured the MWP with 3/16-in (5-mm) thick steel plate edge 

protectors. The edge protectors successfully mitigated floorpan tearing as the free-edge side of 

the posts only created creases in the simulated floorpan. The tears that occurred in the floorpan 
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during test no. MWPFP-13 were the result of contact with the continuous edges of the posts. A 

fabrication error resulted in a sharp corner in the continuous edge of the MWP being exposed to 

contact. If the proper radius had been applied to the cut pattern for the posts, it is unlikely that 

any tearing would have occurred. Therefore, these tears were not considered a result of the edge 

protectors, and the use of edge protectors was deemed an effective tearing mitigation method. 

Five tests were conducted on the MWP with ¾-in. (19-mm) diameter weakening holes. 

Testing of these posts with orientation angles of 0, 25, and -25 degrees all produced similar 

results. The holes weakened the cross section of the posts and led to tearing of the posts at the 

weakening holes. These tears reduced the elastic restoration forces of the posts and limited the 

magnitude of the contact forces between the posts and the vehicle undercarriage. Subsequently, 

tearing to the simulated floorpan was averted, and damage was limited to contact marks and 

creases. One test, test no. MWPFP-8, was accidentally conducted with the weakened posts 

oriented at 65 degrees and resulted in tearing in both the front and rear bays of the simulated 

floorpan. However, a vehicle impact at 65 degrees is extremely severe and likely beyond the 

capture and/or redirection capabilities of the cable barrier system. Thus, the results of test no. 

MWPFP-8 were not considered relevant, and the utilization of ¾-in. (19-mm) diameter 

weakening holes was deemed a viable option to mitigate tearing in actual vehicle floorpans. 

Two other post weakening techniques were evaluated: (1) three ⅜-in. (10-mm) diameter 

holes and (2) a ⅜-in. x 1⅛-in (10-mm x 29-mm) slot. When tested at both 0- and 25-degree 

orientation angles, both of these weakening methods caused extensive tearing of the MWPs and 

eliminated the ability of the posts to spring-back upward to contact the vehicle undercarriage. 

The weakening slots actually resulted in complete rupture of the post at the groundline during the 

0-degree orientation test, test no. MWPFP-12. All four tests resulted in no contact between the 

post and the simulated floorpan. Therefore, both the three ⅜-in. (10-mm) diameter holes and the 

⅜-in. x 1⅛-in (10-mm x 29-mm) slot were also deemed viable options to prevent vehicle 

floorpan tearing. 

Dynamic component testing results illustrated that both edges protectors and post 

weakening were effective methods to mitigate floorpan tearing. However, weakening of the 

MWP seemed easier and less costly to implement. Weakening holes or slots could be added to 

the keyway punch pattern for the posts at minimal cost and would require no additional 

fabrication time. Using edge protectors would require additional parts and labor to apply them to 

the posts. Therefore, it was recommended that weakening holes/slots be implemented in the 

MWP to prevent floorpan tearing in future testing and development of the prototype cable 

median barrier system. 

To better understand the effect of the various weakening mechanisms, the accelerometer 

data from each test was analyzed to obtain peak forces and absorbed energies for each post. 

Table 16 provides a comparison of these values organized by post section and impact conditions. 

Test nos. MWPFP-8 and MWPFP-21 were not included because they had unique impact angles 

and could not be directly compared to any other tests. MWPFP-7 was also excluded as it was the 

only 0-degree test to be conducted in soil. As expected, the S3x5.7 (S76x8.5) posts provided the 

highest peak forces. The standard MWP provided the second highest forces, and the weakening 

holes and slots followed in order of the amount of section removed. This pattern remained the 

same when looking at absorbed energy per post and was consistent for both the 0-degree and 25-

degree impact conditions. Interestingly, a comparison of the level of floorpan damage caused by 
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each post section would result in the same pattern. The S3x5.7 (S3x5.7) posts caused the most 

tearing, the standard MWPs caused tearing and creasing, the ¾-in. (19-mm) diameter weakening 

holes caused creasing only, and the three ⅜-in. (10-mm) diameter holes and the ⅜-in. x 1⅛-in 

(10-mm x 29-mm) slot caused no damage at all. These results support the theory that post 

strength and the restoration force of deformed posts directly relates to the potential for floorpan 

damage. 

The average peak force did not change dramatically between the various standard and 

weakened configurations of the MWP. This finding may be a result of post inertia accounting for 

a large portion of the initial forces during an impact event. The average absorbed energy values 

provided a better metric for which to compare the MWP configurations. For 0-degree impacts, 

the ¾-in. (19-mm) diameter holes resulted in a 28 percent reduction in absorbed energy, the three 

⅜-in. (10-mm) diameter holes resulted in a 34 percent reduction, and the ⅜-in. x 1⅛-in (10-mm x 

29-mm) slot resulted in a 43 percent reduction compared to the standard MWP section. These 

energy reductions have already been shown to reduce the propensity for floorpan damage, but 

they may also result in reducing small car instabilities during impact events – another benefit of 

weakened posts that the other tearing mitigation methods could not provide. 

Unfortunately, the addition of weakening holes/slots to the system posts may also affect 

the stiffness and behavior of the cable barrier system. The post strength comparison was only 

relevant to impacts through the longitudinal, or weak axis of the posts. Prior to the selection of a 

specific weakening mechanism, the effect of these holes and slots on the post’s strong-axis of 

bending needed to be quantified as lateral post strength can greatly affect system deflections and 

working widths. Thus, dynamic component testing was required to evaluate the strong-axis 

bending strengths of the various weakened MWP configurations. 
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Table 15. Component Testing Summary, Floorpan Tearing Evaluation 

Test No. 

Post 
Tarmac 

or Soil 

Impact Speed 

mph (km/h) 

Impact 

Angle 

(deg.) 

Post 

Damage 

Floorpan Damage 

Type 
Height 

in. (mm) 

Modifications Front Bay Rear Bay 

Top Groundline Tears Creases Tears Creases 

MWPFP-1 MWP 
39¼ 

(997) 
R⅝" N/A Tarmac 25.0 (40.2) 0 Bending 2 4 0 0 

MWPFP-2 MWP 
39¼ 

(997) 
R⅝" N/A Tarmac 25.8 (41.5) 0 Bending 2 4 2 4 

MWPFP-3 MWP 
39¼ 

(997) 
R⅝" Ø¾" Holes Tarmac 26.8 (43.1) 0 

Bending 

& Tearing 
0 4 0 4 

MWPFP-4 S3x5.7 
39¼ 

(997) 
N/A N/A Tarmac 27.9 (44.9) 0 Bending 4 4 4 4 

MWPFP-5 S3x5.7 31 (787) N/A N/A Tarmac 30.5 (49.0) 0 Bending 6* 2 4* 4 

MWPFP-6 MWP 
39¼ 

(997) 

R⅝"  

#1 Edge 
N/A Tarmac 28.1 (45.2) 0 Bending 2 4 2 4 

MWPFP-7 MWP 
39¼ 

(997) 
R⅝" Ø¾" Holes Soil 29.7 (47.8) 0 

Bending 

& Tearing 
0 4 0 4 

MWPFP-8 MWP 
39¼ 

(997) 
R⅝" Ø¾" Holes Soil 26.6 (42.8) 65 Bending 2* 3 2* 3 

MWPFP-11 MWP 
39¼ 

(997) 
R⅝" (3) Ø⅜" Holes Tarmac 25.9 (41.7) 0 

Bending 

& Tearing 
0 0 0 0 

MWPFP-12 MWP 
39¼ 

(997) 
R⅝" 

Ø⅜"x 1⅛" 

Slots 
Tarmac 24.4 (39.3) 0 Rupture 0 0 0 0 

MWPFP-13 MWP 
39¼ 

(997) 

Flange 

Extension  
N/A Tarmac 24.2 (38.9) 0 Bending 2 3 2 4 

MWPFP-14 MWP 
39¼ 

(997) 
R⅝" (3) Ø⅜" Holes Soil 26.7 (43.0) 25 

Bending 

& Tearing 
0 0 0 0 

MWPFP-15 MWP 
39¼ 

(997) 
R⅝" 

Ø⅜"x 1⅛" 

Slots 
Soil 26.1 (42.0) 25 

Bending 

& Tearing 
0 0 0 0 

MWPFP-18 MWP 
39¼ 

(997) 
R⅝" Ø¾" Holes Soil 25.7 (41.4) 25 

Bending 

& Tearing 
0 2 0 2 

MWPFP-21 MWP 
39¼ 

(997) 
R⅝" Ø¾" Holes Soil 25.7 (41.4) -25 

Bending 

& Tearing 
0 3 0 3 

     *Additional tears formed beyond initial contact with simulated floorpan 

     N/A – Not Applicable 
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Table 16. Component Testing Summary of Forces and Energies 

Test No. 
Post 

Type 
Weakening 

Installed 

in 

Impact 

Angle 

(deg.) 

Post 1 Post 2 Average 

Peak Force 

kips (kN) 

Absorbed 

Energy 

kip-in. (kJ) 

Peak Force 

kips (kN) 

Absorbed 

Energy 

(kip-in.) 

Peak Force 

kips (kN) 

Absorbed 

Energy 

(kip-in.) 

MWPFP-4 S3x5.7 N/A Tarmac 0 12.35 (54.9) 110.89 (12.5) 9.90 (44.0) 89.00 (10.1) 11.13 (49.5) 99.94 (11.3) 

MWPFP-5 S3x5.7 N/A Tarmac 0 12.40 (55.2) 101.85 (11.5) 10.17 (45.2) 65.17 (7.4) 11.28 (50.2) 83.51 (9.4) 

Average S3x5.7 Tarmac 0 12.38 (55.1) 106.37 (12.0) 10.04 (44.7) 77.08 (8.7) 11.21 (49.9) 91.73 (10.4) 

MWPFP-1 MWP N/A Tarmac 0 10.35 (46.0) 78.07 (8.8) 9.30 (41.4) 70.83 (8.0) 9.82 (43.7) 74.45 (8.4) 

MWPFP-2 MWP N/A Tarmac 0 9.98 (44.4) 79.74 (9.0) 8.58 (38.2) 74.75 (8.4) 9.28 (41.3) 77.24 (8.7) 

MWPFP-13 MWP N/A Tarmac 0 9.30 (41.4) 80.17 (9.1) 8.25 (36.7) 79.35 (9.0) 8.77 (39.0) 79.76 (9.0) 

MWPFP-6 MWP N/A Tarmac 0 10.60 (47.2) 92.14 (10.4) 7.95 (35.4) 68.16 (7.7) 9.27 (41.2) 80.15 (9.1) 

Average MWP Tarmac 0 10.06 (44.7) 82.53 (9.3) 8.52 (37.9) 73.27 (8.3) 9.29 (41.3) 77.90 (8.8) 

MWPFP-3 MWP Ø¾" Hole Tarmac 0 10.02 (44.6) 55.61 (6.3) 9.91 (44.1) 57.15 (6.5) 9.97 (44.3) 56.38 (6.4) 

MWPFP-11 MWP 
(3) Ø⅜" 

Holes 
Tarmac 0 9.75 (43.4) 51.42 (5.8) 9.71 (43.2) 50.80 (5.7) 9.73 (43.3) 51.11 (5.8) 

MWPFP-12 MWP 
Ø⅜"x 1⅛" 

Slot 
Tarmac 0 9.02 (40.1) 39.40 (4.4) 13.36* (59.4) 49.64* (5.6) 9.02 (40.1) 44.52 (5.0) 

MWPFP-18 MWP Ø¾" Hole Soil 25 8.61 (38.3) 40.92 (4.6) 8.75 (38.9) 54.93 (6.2) 8.68 (38.6) 47.92 (5.4) 

MWPFP-14 MWP 
(3) Ø⅜" 

Holes 
Soil 25 8.93 (39.7) 45.39 (5.1) 8.08 (35.9) 38.50 (4.3) 8.50 (37.8) 41.94 (4.7) 

MWPFP-15 MWP 
Ø⅜"x 1⅛" 

Slot 
Soil 25 8.06 (35.9) 38.91 (4.4) 8.05 (35.8) 38.33 (4.3) 8.06 (35.9) 38.62 (4.4) 

     *Top of post no. 1 impacted at same time as post no. 2 causing erroneous and high forces 

     Test nos. MWPFP-8 and MWPFP-21 were not included here due to unique impact angles 

     Test no. MWPFP-7 was not included here due to unique combination of 0 degree angle and soil 

     N/A – Not Applicable 
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6 COMPONENT TESTING CONDITIONS – POST STRENGTH 

6.1 Purpose 

Dynamic component testing has demonstrated that post weakening can mitigate the 

propensity for guardrail posts to tear, or penetrate, a vehicle’s floorpan. The weakening holes and 

slots evaluated in Chapter 5 were placed on the upstream and downstream flanges of the MWP to 

maximize weakening along the longitudinal barrier axis, or about the post’s weak-axis, while 

minimizing their effect on the strong-axis bending strength of the post. Reductions to the strong-

axis bending strength of the barrier posts could affect system performance by altering initial 

stiffness, cable release times, cable pocketing angles, system deflections, and working widths. 

Therefore, prior to the selection of a specific weakening mechanism, the effect that holes and 

slots had on the MWP’s strong-axis bending strength needed to be quantified through dynamic 

component testing. 

6.2 Scope 

A total of six dynamic bogie tests were conducted in order to evaluate the lateral, or 

strong-axis, bending strength of the MWP with various weakening holes or slots. Three different 

weakening mechanisms were evaluated along with the unmodified MWP for a total of four 

different post configurations. Two tests each were conducted on both the unmodified MWP and 

the MWP with ¾-in. (19-mm) diameter weakening holes. One test each was conducted on both 

the MWP with three ⅜-in. (10-mm) diameter holes and the MWP with ⅜-in. x 1⅛-in. (10-mm x 

29-mm) slots. However, the latter two tests were conducted with two posts offset 8 ft (2.4 m) 

longitudinally. Thus, each post configuration was impacted a total of two times within the six 

dynamic component tests. 

All posts were installed within an 8-in. (203-mm) diameter hole cored into the tarmac and 

backfilled with a compacted, coarse, crushed limestone material that met AASHTO standard soil 

designation M147 Grade B, as recommended by MASH. The MWPs were oriented at a 90-

degree angle, thus creating an impact about the post’s strong-axis of bending. The bogie vehicle 

impacted the posts at a height of 27 in. (686 mm) above the groundline at a targeted impact 

speed of 25 mph (40 km/h). The dynamic testing matrix is summarized in Table 17, while the 

single- and double-post test setups are shown in Figures 72 and 73, respectively. Details for each 

of the MWP configurations are shown in Figures 74 through 77. Material specifications, mill 

certifications, and certificates of conformity for the posts are shown in Appendix B.
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Table 17. Dynamic Component Testing Matrix, Post Strength Evaluation 

Test 

No. 

Post 
Post Installed 

in Tarmac/Soil 

Targeted Impact Conditions 

No. of 

Posts 

Weakening 

Mechanism 

Speed 

mph (km/h) 

Height 

in. (mm) 

Angle 

(deg) 

MWPFP-9 1 Ø¾" holes Tarmac 25 (40) 27 (686) 90 

MWPFP-10 1 N/A Tarmac 25 (40) 27 (686) 90 

MWPFP-16 2 (3) Ø⅜" holes Tarmac 25 (40) 27 (686) 90 

MWPFP-17 2 Ø⅜" x 1⅛" slots Tarmac 25 (40) 27 (686) 90 

MWPFP-19 1 N/A Tarmac 25 (40) 27 (686) 90 

MWPFP-20 1 Ø¾" holes Tarmac 25 (40) 27 (686) 90 

    90 degree orientation corresponds to lateral, or strong-axis, impacts 

    N/A – Not Applicable 
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Figure 72. Single Post Dynamic Component Test Setup, Test Nos. MWPFP-9, MWPFP-10, MWPFP-19, and MWPFP-20 
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Figure 73. Double Post Dynamic Component Test Setup, Test Nos. MWPFP-16 and MWPFP-17 
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Figure 74. Unmodified MWP, Test Nos. MWPFP-10 and MWPFP-19 
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Figure 75. MWP with ¾-in. (19-mm) Holes, Test Nos. MWPFP-9 and MWPFP-20 
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Figure 76. MWP with three ⅜-in. (10-mm) Holes, Test No. MWPFP-16 
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Figure 77. MWP with ⅜-in. x 1⅛-in. (10-mm x 29-mm) Slots, Test No. MWPFP-17 
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6.3 Equipment and Instrumentation 

Equipment and instrumentation that was utilized to collect and record data during the 

dynamic bogie tests included: a bogie vehicle; an accelerometer; a retroreflective speed trap; 

high-speed and standard-speed digital video; and still cameras. 

6.3.1 Bogie Vehicle 

A rigid-frame bogie, equipped with a variable-height, detachable impact head, was used 

to impact the posts. The bogie head was constructed of 8-in. (203-mm) diameter, ½-in. (13-mm) 

thick standard steel pipe, with ¾-in. (19-mm) neoprene belting wrapped around the pipe to 

prevent local damage to the post from the impact. The impact head was bolted to the bogie 

vehicle, creating a rigid frame with an impact height of 27 in. (686 mm). The bogie with the 

impact head is shown in Figure 78. The weight of the bogie with the addition of the mountable 

impact head and accelerometers was 1,874 lb (850 kg). 

 

Figure 78. Second Rigid-Frame Bogie and Guidance Track 

A pickup truck with a reverse-cable tow system was used to propel the bogie to a target 

impact speed of 25 mph (40 km/h). When the bogie approached the end of the guidance system, 

it was released from the tow cable, allowing it to be free rolling when it impacted the post. A 

remote-controlled, braking system was installed on the bogie, allowing it to be brought safely to 

rest after the test. 
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6.3.2 Accelerometers 

One environmental shock and vibration sensor/recorder system was used to measure the 

accelerations in the longitudinal, lateral, and vertical directions. The accelerometer was mounted 

near the center of gravity of the bogie vehicle. The electronic accelerometer data obtained in 

dynamic testing was filtered using the SAE Class 60 and the SAE Class 180 Butterworth filters 

conforming to the SAE J211/1 specifications [12]. 

The SLICE-2 accelerometer unit was a modular data acquisition system manufactured by 

Diversified Technical Systems of Seal Beach, California. The acceleration sensors were mounted 

inside the body of a custom built SLICE 6DX event data recorder and recorded data at 10,000 Hz 

to the onboard microprocessor. The SLICE 6DX was configured with 7 GB of non-volatile flash 

memory, a range of ±500 g’s, a sample rate of 10,000 Hz, and a 1,650 Hz (CFC 1000) anti-

aliasing filter. The “SLICEWare” computer software program and a customized Microsoft Excel 

worksheet were used to analyze and plot the accelerometer data. 

6.3.3 Retroreflective Optic Speed Trap 

The retroreflective optic speed trap was used to determine the speed of the bogie vehicle 

before impact. Five retroreflective targets, spaced at approximately 18-in. (457-mm) intervals, 

were applied to the side of the vehicle. When the emitted beam of light was reflected by the 

targets and returned to the Emitter/Receiver, a signal was sent to the data acquisition computer as 

well as the external LED box activating the LED flashes. The speed was then calculated using 

the spacing between the retroreflective targets and the time between the signals. LED lights and 

high-speed digital video analysis are used only as a backup in the event that vehicle speeds 

cannot be determined from the electronic data. 

6.3.4 Digital Photography 

A combination of one AOS high-speed digital video camera and three GoPro digital 

video cameras were used to document each test. The AOS high-speed camera had a frame rate of 

500 frames per second, while the GoPro video cameras had a frame rate of 120 frames per 

second. The cameras were typically placed laterally from the post, with a view perpendicular to 

the bogie’s direction of travel. A Nikon D50 digital still camera was also used to document pre- 

and post-test conditions for all tests. 

6.4 Data Processing 

The electronic accelerometer data obtained in dynamic testing was filtered using the SAE 

Class 60 Butterworth filter conforming to the SAE J211/1 specifications [12]. The pertinent 

acceleration signal was extracted from the bulk of the data signals. The processed acceleration 

data was then multiplied by the mass of the bogie to get the impact force using Newton’s Second 

Law. Next, the acceleration trace was integrated to find the change in velocity versus time. Initial 

velocity of the bogie, calculated from the retroreflective optic speed trap data, was then used to 

determine the bogie velocity, and the calculated velocity trace was integrated to find the bogie’s 

displacement. This displacement is also the displacement of the post. Combining the previous 

results, a force vs. deflection curve was plotted for each test. Finally, integration of the force vs. 

deflection curve provided the energy vs. deflection curve for each test. 
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7 TESTING RESULTS – POST STRENGTH EVALUATION 

7.1 Results 

A total of six dynamic component tests were conducted to evaluate the strength of the 

MWPs with various weakening holes or slots. Two of these tests, test nos. MWPFP-16 and 

MWPFP-17, were conducted with two posts in series. Since the two posts were spaced such that 

the bogie vehicle would only be in contact with one post at a time, each post impact was 

analyzed as though it was a separate impact test. A summary of the eight independent dynamic 

component impact events is provided in the following sections. The accelerometer data for each 

test was processed in order to obtain acceleration, velocity, and deflection curves, as well as 

force vs. deflection and energy vs. deflection curves. Detailed accelerometer results for each test 

are provided in Appendix B. 

7.1.1 Test No. MWPFP-9 

During test no. MWPFP-9, the bogie impacted the MWP with ¾-in. (19-mm) diameter 

weakening holes at a speed of 25.3 mph (40.7 km/h) and at an angle of 90 degrees for a strong-

axis evaluation. Upon impact, the post yielded and began to bend backward. The bogie 

eventually overrode the top of the post at a deflection of 38.3 in. (973 mm). 

Force vs. deflection and energy vs. deflection curves created from the accelerometer data 

are shown in Figure 79. The forces quickly rose to a peak force of 4.93 kips (21.94 kN) over the 

first few inches of deflection. The forces steadily declined through the rest of the impact event. 

The post provided an average resistive force of 1.91 kips (8.50 kN) and absorbed 38.3 kip-in. 

(4.3 kJ) of energy through 20 in. (508 mm) of deflection. 

Sequential and post damage photographs are shown in Figure 80. Contact marks were 

present along the top portion of the impact-side flange. A plastic hinge was observed around the 

weakening holes near groundline, and the post flanges collapsed inward toward the web. The 

weakening holes were deformed, but the post did not tear.  
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Figure 79. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-9 

-10

0

10

20

30

40

50

60

70

-1

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

En
er

gy
 (

k-
in

.)

Fo
rc

e
 (

ki
p

s)

Displacement (in. )

Force

Energy



May 16, 2017 

MwRSF Report No. TRP-03-324-17 

118 

 
 IMPACT 

 
 0.020 sec 

 
 0.040 sec 

 
 0.060 sec 

 
 0.080 sec 

 
 0.100 sec 

 

Figure 80. Time-Sequential and Post-Impact Photographs, Test No. MWPFP-9 
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7.1.2 Test No. MWPFP-10 

During test no. MWPFP-10, the bogie impacted the unmodified MWP at a speed of 26.0 

mph (41.8 km/h) and at an angle of 90 degrees for a strong-axis evaluation. Upon impact, the 

post yielded and began to bend backward. The bogie eventually overrode the top of the post at a 

deflection of 38.5 in. (978 mm). 

Force vs. deflection and energy vs. deflection curves created from the accelerometer data 

are shown in Figure 81. The forces quickly rose to a peak force of 4.88 kips (21.72 kN) over the 

first few inches of deflection. The forces steadily declined through the rest of the impact event. 

The post provided an average resistive force of 1.74 kips (7.74 kN) and absorbed 34.7 kip-in. 

(3.9 kJ) of energy through 20 in. (508 mm) of deflection. 

Sequential and post damage photographs are shown in Figure 82. Contact marks were 

present along the top portion of the impact-side flange. A plastic hinge had formed in the post 

near the groundline, and the post flanges collapsed inward toward the web, but the post did not 

tear. 

 
Figure 81. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-10 
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Figure 82. Time-Sequential and Post-Impact Photographs, Test No. MWPFP-10 
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7.1.3 Test No. MWPFP-16 Post 1 

During test no. MWPFP-16, the bogie impacted the first MWP with three ⅜-in. (10-mm) 

diameter weakening holes at a speed of 26.4 mph (42.5 km/h) and at an angle of 90 degrees for a 

strong-axis evaluation. Upon impact, the post yielded and began to bend backward. The bogie 

eventually overrode the top of the post at a deflection of 34.4 in. (874 mm). 

Force vs. deflection and energy vs. deflection curves are shown in Figure 83. The forces 

quickly rose to a peak force of 5.74 kips (25.54 kN) over the first few inches of deflection. The 

forces oscillated throughout the rest of the impact event with the local peaks steadily decreasing 

in magnitude. The post provided an average resistive force of 1.47 kips (6.54 kN) and absorbed 

29.4 kip-in. (3.3 kJ) of energy through 20 in. (508 mm) of deflection. 

Sequential and post damage photographs are shown in Figure 84. Contact marks were 

present along the top portion of the impact-side flange. The post was bent and tore near the 

groundline. The front flange was completely torn, and the tear extended through the adjacent 

weakening holes. A second tear occurred between the weakening holes on the backside of the 

post. 

 
Figure 83. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-16 Post 1 
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Figure 84. Time-Sequential and Post-Impact Photographs, Test No. MWPFP-16 Post 1 
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7.1.1 Test No. MWPFP-16 Post 2 

The bogie impacted the second MWP with three ⅜-in. (10-mm) diameter weakening 

holes at a speed of 25.5 mph (41.0 km/h) and at an angle of 90 degrees for a strong-axis 

evaluation. Upon impact, the post yielded and began to bend backward. The bogie eventually 

overrode the top of the post at a deflection of 31.3 in. (795 mm). 

Force vs. deflection and energy vs. deflection curves are shown in Figure 85. The forces 

quickly rose to a peak force of 5.14 kips (22.87 kN) over the first few inches of deflection. The 

forces oscillated throughout the rest of the impact event with the local peaks decreasing in 

magnitude. The post provided an average resistive force of 1.32 kips (5.87 kN) and absorbed 

26.5 kip-in. (3.0 kJ) of energy through 20 in. (508 mm) of deflection. 

Sequential and post damage photographs are shown in Figure 86. Contact marks were 

present along the top portion of the impact-side flange. The post was bent and tore near the 

groundline. The front flange was completely torn, and the tear extended through the adjacent 

weakening holes. A second tear occurred between the weakening holes on the backside of the 

post. 

 
Figure 85: Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-16 Post 2 
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Figure 86. Time-Sequential and Post-Impact Photographs, Test No. MWPFP-16 Post 2 
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7.1.2 Test No. MWPFP-17 Post 1 

During test no. MWPFP-17, the bogie impacted the first MWP with a ⅜-in. x 1⅛-in. (10-

mm x 29-mm) slot at a speed of 25.2 mph (40.6 km/h) and at an angle of 90 degrees for a strong-

axis evaluation. Upon impact, the post yielded and began to bend backward. The bogie 

eventually overrode the post at a deflection of 34.3 in. (871 mm). 

Force vs. deflection and energy vs. deflection curves are shown in Figure 87. The forces 

quickly rose to a peak force of 5.30 kips (23.59 kN) over the first few inches of deflection. The 

forces oscillated throughout the rest of the impact event with the local peaks decreasing in 

magnitude. The post provided an average resistive force of 1.07 kips (4.76 kN) and absorbed 

21.5 kip-in. (2.4 kJ) of energy through 20 in. (508 mm) of deflection. 

Sequential and post damage photographs are shown in Figure 88. Contact marks were 

present along the top portion of the impact-side flange. The post was bent near the groundline, 

and the front flange tore completely adjacent to the slot. The back flange buckled inward at the 

location of the plastic hinge. The slot adjacent to the back flange was deformed, but no additional 

tearing was observed. 

 
Figure 87. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-17 Post 1 
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Figure 88. Time-Sequential and Post-Impact Photographs, Test No. MWPFP-17 Post 1 
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7.1.1 Test No. MWPFP-17 Post 2 

The bogie impacted the second MWP with a ⅜-in. x 1⅛-in. (10-mm x 29-mm) slot at a 

speed of 24.3 mph (39.1 km/h) and at an angle of 90 degrees for a strong-axis evaluation. Upon 

impact, the post yielded and began to bend backward. The bogie eventually overrode the post at 

a deflection of 31.9 in. (810 mm). 

Force vs. deflection and energy vs. deflection curves are shown in Figure 89. The forces 

quickly rose to a peak force of 5.11 kips (22.74 kN) over the first few inches of deflection. The 

forces oscillated throughout the rest of the impact event with the local peaks decreasing in 

magnitude. The post provided an average resistive force of 1.19 kips (5.30 kN) and absorbed 

23.9 kip-in. (2.7 kJ) of energy through 20 in. (508 mm) of deflection. 

Sequential and post damage photographs are shown in Figure 90. Contact marks were 

present along the top portion of the impact-side flange. The post was bent near the groundline, 

and the front flange tore completely adjacent to the slot. The back flange buckled inward at the 

location of the plastic hinge. The slot adjacent to the back flange was deformed, but no additional 

tearing was observed. 

 
Figure 89. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-17 Post 2 
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Figure 90. Time-Sequential and Post-Impact Photographs, Test No. MWPFP-17 Post 2 
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7.1.2 Test No. MWPFP-19 

During test no. MWPFP-19, the bogie impacted the unmodified MWP at a speed of 26.4 

mph (42.5 km/h) and at an angle of 90 degrees for a strong-axis evaluation. Upon impact, the 

post yielded and began to bend backward. The bogie eventually overrode the top of the post at a 

deflection of 33.5 in. (851 mm). 

Force vs. deflection and energy vs. deflection curves created from the accelerometer data 

are shown in Figure 91. The forces quickly rose to a peak force of 6.07 kips (27.01 kN) over the 

first few inches of deflection. The forces oscillated while decreasing through the rest of the 

impact event. The post provided an average resistive force of 2.29 kips (10.19 kN) and absorbed 

45.8 kip-in. (5.2 kJ) of energy through 20 in. (508 mm) of deflection. 

Sequential and post damage photographs are shown in Figure 92. Contact marks were 

present along the top portion of the impact-side flange. A plastic hinge had formed in the post 

near the groundline, and the post flanges collapsed inward toward the web, but the post did not 

tear. 

 

Figure 91. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-19 
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Figure 92. Time-Sequential and Post-Impact Photographs, Test No. MWPFP-19 
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7.1.3 Test No. MWPFP-20 

During test no. MWPFP-20, the bogie impacted the MWP with ¾-in. (19-mm) diameter 

weakening holes at a speed of 26.2 mph (42.2 km/h) and at an angle of 90 degrees for a strong-

axis evaluation. Upon impact, the post yielded and began to bend backward. The bogie 

eventually overrode the post at a deflection of 33.6 in. (853 mm). 

Force vs. deflection and energy vs. deflection curves created from the accelerometer data 

are shown in Figure 93. The forces quickly rose to a peak force of 5.33 kips (23.72 kN) over the 

first few inches of deflection. The forces oscillated while decreasing through the rest of the 

impact event. The post provided an average resistive force of 1.69 kips (7.16 kN) and absorbed 

33.7 kip-in. (3.8 kJ) of energy through 20 in. (508 mm) of deflection. 

Sequential and post damage photographs are shown in Figure 94. Contact marks were 

present along the top portion of the impact-side flange. A plastic hinge was observed around the 

weakening holes near the groundline, and the post flanges collapsed inward toward the web. The 

weakening holes were deformed, but did not tear. 

 

Figure 93. Force vs. Deflection and Energy vs. Deflection, Test No. MWPFP-20 

-10

0

10

20

30

40

50

60

70

-1

0

1

2

3

4

5

6

7

0 5 10 15 20 25 30 35

En
er

gy
 (

k-
in

.)

Fo
rc

e
 (

ki
p

s)

Displacement (in. )

Force

Energy



May 16, 2017 

MwRSF Report No. TRP-03-324-17 

132 

 
 IMPACT 

 
 0.020 sec 

 
 0.040 sec 

 
 0.060 sec 

 
 0.080 sec 

 
 0.100 sec 

 

Figure 94. Time-Sequential and Post-Impact Photographs, Test No. MWPFP-20 
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7.2 Discussion 

Six dynamic component tests were conducted to evaluate the strong-axis bending 

strength of the MWPs with various weakening holes or slots. Due to the double-post setup 

utilized in two of the tests, a total of eight posts were impacted. Two impacts were conducted on 

each of four different MWP configurations: (1) unmodified; (2) ¾-in. (19-mm) diameter holes; 

(3) three ⅜-in. (10-mm) diameter holes; and (4) ⅜-in. x 1⅛-in. (10-mm x 39-mm) slots. Each 

post was impacted at approximately 25 mph (40 km/h) and 90 degrees (strong-axis impact) at a 

height of 27 in. (686 mm) above the groundline. A summary of the test results are shown in 

Table 18. 

All eight posts were hinged at the groundline due to the bogie vehicle impact. Both the 

MWPs with weakening slots and the MWPs with three ⅜-in. (10-mm) diameter holes also 

experienced tearing of the post’s cross section as the front flange completely tore in all four 

posts. Additional tearing was observed between the three ⅜-in. (10-mm) diameter holes at both 

weakening locations. The posts with ¾-in. (19-mm) diameter holes were deformed, but it did not 

experience any tearing. The unmodified MWPs also showed no signs of tearing.  

The weakening mechanisms also affected the resistive forces of the MWP. The average 

peak forces were similar between the four configurations, but the initial peaks were largely the 

result of inertia. However, the unmodified MWPs provided an average force of 2.01 kips (8.94 

kN) over 20 in. (508 mm) of deflection. Over the same deflection interval, the MWPs with ¾-in. 

(19-mm) diameter holes provided an average force of 1.80 kips (8.01 kN), the MWPs with three 

⅜-in. (10-mm) diameter holes provided an average force of 1.40 kips (6.23 kN), and the MWPs 

with the ⅜-in. x 1⅛-in. (10-mm x 39-mm) slot provided an average force of 1.13 kips (5.03 kN). 

These average forces for one ¾-in. (19-mm) hole; three ⅜-in. (10-mm) holes, and one slot; 

corresponded to reductions of 10 percent, 30 percent, and 44 percent, respectively, when 

compared to the unmodified MWPs. Similar results were observed when comparing the absorbed 

energy from each configuration. 

The two weakening patterns that resulted in tearing of the post’s cross section caused 

significant reductions in the post strength. Alternatively, the ¾-in. (19-mm) diameter weakening 

holes provided results similar to the unmodified MWP in terms of post damage and strength 

during strong-axis impacts. Therefore, a modified MWP with ¾-in. (19-mm) diameter 

weakening holes was recommended for implementation into the prototype cable barrier system 

as a way to mitigate floorpan tearing without affecting the stiffness or deflections of the system.  
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Table 18. Component Testing Summary, Strong-Axis Bending Impacts 

Test 

No. 

Post 

Weakening 

Impact 

Speed 

mph 

(km/h) 

Post 

Damage Peak Force 

kip (kN) 

Average Force 

kips (kN) 

Absorbed Energy 

kip-in. (kJ) 

@10" @15" @20" @10" @15" @20" Total 

MWPFP-10 N/A 
26.0 

(41.8) 
Bending 4.88 (21.7) 

2.07 

(9.2) 

1.90 

(8.8) 

1.74 

(7.7) 

20.7 

(2.3) 

28.5 

(3.2) 

34.7 

(3.9) 

51.0 

(5.8) 

MWPFP-19 N/A 
26.4 

(42.5) 
Bending 6.07 (27.0) 

2.78 

(12.4) 

2.58 

(11.5) 

2.29 

(10.2) 

27.8 

(3.1) 

38.7 

(4.4) 

45.7 

(5.2) 

57.0 

(6.4) 

Average 5.48 (24.4) 
2.42 

(10.8) 

2.24 

(10.0) 

2.01 

(8.9) 

24.2 

(2.7) 

33.6 

(3.8) 

40.2 

(4.5) 

54.0 

(6.1) 

MWPFP-9 
Ø¾" dia. 

Holes 

25.3 

(40.7) 
Bending 4.93 (21.9) 

2.26 

(10.1) 

2.11 

(9.4) 

1.91 

(8.5) 

22.6 

(2.6) 

31.7 

(3.6) 

38.3 

(4.3) 

54.2 

(6.1) 

MWPFP-20 
Ø¾" dia. 

Holes 

26.2 

(42.2) 
Bending 5.33 (23.7) 

2.15 

(9.6) 

1.95 

(8.7) 

1.69 

(7.5) 

21.5 

(2.4) 

29.3 

(3.3) 

33.7 

(3.8) 

43.0 

(4.9) 

Average 5.13 (22.8) 
2.20 

(9.8) 

2.03 

(9.0) 

1.80 

(8.0) 

22.0 

(2.5) 

30.5 

(3.4) 

36.0 

(4.1) 

48.6 

(5.5) 

MWPFP-16 P1 
(3) Ø⅜" dia. 

Holes 

26.4 

(42.5) 

Bending 

&Tearing 
5.74 (25.5) 

2.09 

(9.3) 

1.83 

(8.1) 

1.47 

(6.5) 

20.9 

(2.4) 

27.5 

(3.1) 

29.4 

(3.3) 

32.1 

(3.6) 

MWPFP-16 P2 
(3) Ø⅜" dia. 

Holes 

25.5 

(41.0) 

Bending 

&Tearing 
5.14 (22.9) 

1.85 

(8.2) 

1.58 

(7.0) 

1.32 

(5.9) 

18.5 

(2.1) 

23.8 

(2.7) 

26.5 

(3.0) 

30.0 

(3.4) 

Average 5.44 (24.2) 
1.97 

(8.8) 

1.71 

(7.6) 

1.40 

(6.2) 

19.7 

(2.2) 

25.6 

(2.9) 

27.9 

(3.2) 

31.1 

(3.5) 

MWPFP-17 P1 
⅜" x 1⅛" 

Slots 

25.2 

(40.6) 

Bending 

&Tearing 
5.30 (23.6) 

1.50 

(6.7) 

1.42 

(6.3) 

1.07 

(4.8) 

15.0 

(1.7) 

21.3 

(2.4) 

21.5 

(2.4) 

24.7 

(2.8) 

MWPFP-17 P2 
⅜" x 1⅛" 

Slots 

24.3 

(39.1) 

Bending 

&Tearing 
5.11 (22.7) 

1.56 

(6.9) 

1.18 

(5.2) 

1.19 

(5.3) 

15.6 

(1.8) 

17.7 

(2.0) 

23.9 

(2.7) 

26.2 

(3.0) 

Average 5.21 (23.2) 
1.53 

(6.8) 

1.30 

(5.8) 

1.13 

(5.0) 

15.3 

(1.7) 

19.5 

(2.2) 

22.7 

(2.6) 

25.5 

(2.9) 

N/A – Not Applicable 
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8 EVALUATION OF SPLICE HARDWARE 

8.1 Purpose 

All of MwRSF’s full-scale crash test installations for the prototype, high-tension, cable 

median barrier have utilized a cable coupler manufactured by Bennett Bolt Works, Inc., model 

no. CGBBHT. The cable is inserted through one end of the coupler, and a malleable iron wedge 

is placed between the three strands of the cable to prevent it from pulling out of the coupler. A 

threaded rod and nut is used on the opposite side of the coupler to complete the assembly. These 

couplers have been used on both sides of turnbuckle splices as well as for configuring end 

fittings within the cable anchorage system, as shown in Figure 95.  

 

   

Figure 95. Bennett Bolt Works, Inc. Cable Coupler – Model No. CGBBHT 

During full-scale crash testing, the cable splices located within the impact region of the 

barrier system have caused significant exterior sheet metal damage to the impacting vehicles. 

Due to the relatively large cross section of the coupler as compared to the cable, the couplers 

have snagged on vehicle doors and A-pillars, thus causing crushing and sheet metal tearing. 

Examples of this damage were observed in full-scale crash tests of small cars, sedans, and pickup 

trucks, as shown in Figure 96. The interaction between the vehicle and the couplers has not 

resulted in failure of the MASH safety performance criteria, but the undesired snagging and 

tearing did reveal some risk of eventual penetration into the occupant compartment. Therefore, 

an investigation was launched to investigate alternative cable splices that may mitigate snagging 

and decrease sheet metal damage.  
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Figure 96: Vehicle Door and A-Pillar Damage from Splice Snagging 

8.2 Review of Wire Rope Coupler Options 

Various wire rope couplers, including proprietary connection systems, mechanical 

connectors, epoxy sockets, and field swaged connections, were investigated for use in the cable 

barrier system. The Bennett Bolt Works, Inc. coupler currently implemented in the prototype 

cable barrier system, model no. CGBBHT, consists of two components: a coupler housing and a 

wedge, both fabricated from ASTM-A47 malleable cast iron. The cable is inserted into one side 

of the housing and is seated using the wedge. The other side of the housing is connected to 

threaded rod using a standard nut. The housing has a cross section diameter of 2½ in. (64 mm) 

on the cable attachment end and 2¼ in. (57 mm) on the threaded rod end, as shown in Figure 97. 

Previous dynamic testing of this coupler assembly resulted in a peak load of 41 kips (182 kN) 

prior to the cable pulling out of the coupler [13]. The ¾-in. (1-mm) diameter, 3x7 wire rope has 

an estimated capacity of 39 kips (174 kN), so the coupler demonstrated the ability to develop the 

full capacity of the cable.  
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Figure 97: Bennett Bolt Coupler Dimensions, Model No. CGBBHT 

The Texas A&M Transportation Institute has conducted both static and dynamic testing 

on four types of cable splices: (1) an epoxy socket; (2) the Field Swage Termination; (3) the 

Precision Sure-Lock Prototype 2; and (4) the Nucor Steel Marion termination connection [14]. 

The static tests used a hydraulic cylinder to pull on the 3x7 wire rope attached to the coupler 

assembly until failure. Dynamic testing consisted of the cable and coupler assembly attached to a 

rigid post at one end and a pendulum at the other end. The falling mass created an impulse load 

on the assembly to simulate dynamic tension loads. The wire rope for these tests was rated to 43 

kips (191 kN).  

Both the Precision Sure-Lock Prototype 2 and the Nucor Steel Marion Connection failed 

prior to reaching the full capacity of the wire rope. The Precision Sure-Lock Prototype 2 

connection failed the static test at 32.20 kips (142.34 kN) and failed the dynamic tests at 34.80 

and 33.58 kips (154.80 and 149.37 kN). The Nucor Steel Marion Connection failed the static 

tests at 31.47 and 32.03 kips (139.99 and 142.48 kN) and the dynamic tests at 35.88 and 34.73 

kips (159.60 and 154.49 kN). Due to these connections failing prior to reaching the capacity of 

the wire rope, they were not considered viable options for use within the prototype cable median 

barrier system.  

The epoxy socket connection failed the static tests at 38.92 and 38.43 kips (173.12 and 

170.95 kN) and the dynamic tests at 37.04, 38.37, and 43.49 kips (164.76, 170.68, and 193.47 

kN). Thus, the average failure strength of the epoxy socket connection was within 10% of the 

wire rope capacity. Unfortunately, the connection has a large socket diameter, which would 

promote snagging and vehicle danage, and the epoxy hardening time is temperature dependant, 

which could create installation issues as the epoxy can take weeks to harden during cold winter 

months. Therefore, the epoxy socket was also not considered a viable option for use within the 

prototype cable median barrier system. 

Testing of the Field Swage Termination connection resulted in failure strengths of 37.94, 

32.89, and 38.28 kips (168.77, 146.30, and 170.28 kN) statically and 40.77 and 46.83 kips 

(181.35 and 208.31 kN) dynamically. Thus, the average tensile capacities were within 10% of 

the wire rope. Field swages use a thinner body than the epoxy and mechanical couplers, 

including the Bennett Bolt Works coupler, which would reduce the risk of vehicle snagging. 

Thus, field swage connections showed promise as a replacement for the current Bennett Bolt 

Works Coupler. However, at the time of this study, the swaging machine required for this 
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process costs around $25,000. Due to this high cost, field swaging was not selected for further 

evaluation. 

The last option investigated for use in the prototype cable barrier system was a new 

Bennett Bolt Works mechanical coupler, model no. CGBBWTH. This new coupler was 

fabricated from ASTM-A536, a stronger iron casting material than the older model. This 

selection allowed for the end diameter of the coupler to be reduced to 1¼ in. (32 mm) compared 

to the 2½ in. (63.5 mm) diameter of the older model. The geometry of the opposite side of the 

coupler, which received the threaded rod, remained very similar between the two Bennett Bolt 

Works couplers. A photograph comparing the end fittings is shown in Figure 98. The new 

coupler model utilized the same wedge as the previous model, making the assembly process 

identical. The new coupler model was also rated to the same strength as the previous coupler 

model. Therefore, the Bennett Bolt Works coupler model no. CGBBWTH was selected for 

further testing and evaluation as an alternative coupler for use in the prototype cable barrier 

system. 

 

Figure 98: Bennett Bolt Works Coupler Model Nos. CGBBHT (Left) and CGBBWTH (Right) 

8.3 Component Testing Scope and Instrumentation  

Three dynamic component tests were conducted to evaluate the capacity of the cable 

couplers. Two tests were conducted on the newer Bennett Bolt Works coupler, model no. 

CGBBWTH, and one test was conducted on the model no. CGBBHT coupler currently utilized 

within the prototype cable barrier system. For each test, the couplers were installed at both ends 

of a ¾-in. (19-mm) diameter, 3x7 wire rope. One end of the wire rope was attached to a cable 

barrier anchor bracket, and the other end was attached to a bogie vehicle. For test no. BBNC-1, 

two additional couplers were utilized within a turnbuckle splice located near the center of the 

wire rope. The bogie was accelerated to a target speed of 20 mph (32 km/h) and the wire rope 

was jerked to simulate dynamic tension. The test layout is shown in Figures 99 through 101, and 

installation photographs are shown in Figures 102 through 105. Complete drawing sets are 

shown in Appendix C. Material specifications and mill certifications for the couplers are shown 

in Appendix D. 
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A 50-kip (222-kN) tension load cell was used to record the forces in the wire rope during 

each test. For test no. BBNC-1, the load cell was placed within the turnbuckle splice assembly. 

For test nos. BBNC-2 and BBNC-3, the load cell was located between the end coupler and the 

anchor bracket. An additional 80-kip (356-kN) compression load cell was installed around the 

anchor rods during test nos. BBNC-2 and BBNC-3. Both load cells were operating with a sample 

rate of 10,000 Hz. The locations of the load cells during each test are shown in Figures 103 

through 105.  

A combination of AOS high-speed digital video cameras and GoPro digital video 

cameras were used to document each test. The AOS high-speed cameras had a frame rate of 500 

frames per second, while the GoPro video cameras had a frame rate of 120 frames per second. 

The cameras were placed near each of the couplers utilized during a particular test. A Nikon D50 

digital still camera was also used to document pre- and post-test conditions for all tests. 
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Figure 99. Coupler Testing Layout, Test Nos. BBNC-1 through BBNC-3 
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Figure 100. Bennett Bolt Works Coupler Model No. CGBBWTH, Test Nos. BBNC-1 and BBNC-2 
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Figure 101. Coupler Model No. CGBBHT and Associated Splice Hardware, Test No. BBNC-3 
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Figure 102. Test Installation Photographs, Test Nos. BBNC-1 through BBNC-3 
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Figure 103. Test Installation Photographs, Test No. BBNC-1 

  

Figure 104. Test Installation Photographs, Test No. BBNC-2 

   

Figure 105. Test Installation Photographs, Test No. BBNC-3 
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8.4 Testing Results 

Results from all three dynamic component tests are provided in the following sections. 

Although the loads recorded from the various transducers were similar, only the data recorded by 

the 50-kip (222-kN) load cell is described herein to establish consistency between tests. Results 

from all load cells can be found in Appendix E. Note, there was not a direct link between the 

load cell data and the recording of the digital video camera. As such, event times from individual 

devices may not agree with one another.  

8.4.1 Test No. BBNC-1 

Test no. BBNC-1 was conducted with the newer Bennett cable couplers, model no. 

CGBBWTH, located on both ends of the cable and on both sides of the turnbuckle splice. During 

the test, the cable was loaded to a maximum tension of 33.28 kips (148.10 kN), after which, the 

cable and wedge pulled through the coupler linking the cable to the anchor bracket. Sequential 

photographs and system damage photographs are shown in Figure 106. 

The inside of the failed coupler contained striations, formed from the wire rope as it 

pulled through the opening, but the coupler was otherwise undamaged. The upstream end of the 

cable that pulled through the coupler was deformed and frayed, and the wedge was no longer 

entwined within the wire strands. The cable ends pulled ⅝ in. (16 mm) out of the other three 

couplers. 
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Figure 106. Time-Sequential and Post-Test Photographs, Test No. BBNC-1 
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8.4.1 Test No. BBNC-2 

Test no. BBNC-2 was conducted with the newer Bennett cable couplers, model no. 

CGBBWTH, located on both ends of the cable. During the test, the cable was loaded to a 

maximum tension of 32.43 kips (144.26 kN), after which, the cable and wedge pulled through 

the coupler linking the cable to the anchor bracket. Sequential photographs and system damage 

photographs are shown in Figure 107. 

The inside of the failed coupler had striations formed from the wire rope as it pulled 

through the opening, but the coupler was otherwise undamaged. The upstream end of the cable 

that pulled through the coupler was deformed and frayed, and the wedge was no longer entwined 

within the wire strands. The wedge was deformed and contained more pronounced striations than 

the coupler. The cable end attached to the bogie vehicle pulled 1⅛ in. (29 mm) out of the 

coupler, and the wedge pulled ¼ in. (6 mm) out of the coupler.  
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Figure 107. Time-Sequential and Post-Test Photographs, Test No. BBNC-2 
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8.4.2 Test No. BBNC-3 

Test no. BBNC-3 was conducted with the Bennett cable couplers currently utilized in 

full-scale crash testing of the cable barrier located on both ends of the cable, model no. 

CGBBHT. During the test, the cable was loaded to a maximum tension of 30.17 kips (134.20 

kN), after which, the cable and wedge pulled through both couplers simultaneously. Sequential 

photographs and system damage photographs are shown in Figure 108. 

The inside of the couplers contained striations formed from the wire rope as it pulled 

through the opening, but the couplers were otherwise undamaged. The cable ends were deformed 

and frayed, but unlike the previous tests, the wedges were still entwined within the wire strands 

at both ends. The wedges were crushed and plastically deformed around the individual wires of 

the cable.  
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Figure 108. Time-Sequential and Post-Test Photographs, Test No. BBNC-3 

Upstream end of cable 

Downstream end of cable 
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8.4.3 Discussion 

Three dynamic component tests were performed to evaluate the performance of two 

Bennett Bolt Works cable couplers. Two tests were conducted on the new cable coupler, model 

no. CGBBWTH, and one test was conducted on the old cable coupler, model no. CGBBHT. A 

summary of the coupler component testing result is shown in Table 19. 

Table 19. Test Results for Test Nos. BBNC-1 through BBNC-3 

Test No. 
Coupler 

Model No. 

Material 

Specification 

Maximum Tensile Load 

Failure 

Description 

Tension 

Load Cell 

kips 

(kN) 

Compression 

Load Cell 

kips 

(kN) 

BBNC-1 CGBBWTH ASTM-A536 
33.28 

(148.10) 
N/A 

Cable and wedge 

pullout from 

upstream coupler 

at anchor bracket 

BBNC-2 CGBBWTH ASTM-A536 
32.43 

(144.31) 

37.08 

(165.07) 

Cable and wedge 

pullout from 

upstream coupler 

at anchor bracket 

BBNC-3 CGBBHT ASTM-A47 
30.17 

(134.26) 

26.79 

(119.22) 

Cable and wedge 

pullout from 

upstream and 

downstream 

coupler 

N/A: Not Applicable 

All three tests resulted in similar failures. In test nos. BBNC-1 and BBNC-2, the cable 

and wedge pulled out of the coupler attached to the cable anchor bracket, while in test no. 

BBNC-3, the cables and wedges simultaneously pulled out of the couplers on both ends of the 

cable. The test components in each test sustained similar damage. The released cable ends were 

frayed, and the wedges were deformed and had very pronounced striations from the wires 

pressing into the wedge. Recall, the same wedge is utilized in both coupler models. Therefore, 

similar wedge damage was expected. 

The couplers remained largely undamaged except for the marks and striations inside the 

couplers by the individual wires as the cables pulled out of the couplers. The striations appeared 

to be more severe in the newer coupler, model no. CGBBWTH, than in the older coupler, model 

no. CGBBHT. The older and newer couplers were made from ASTM A-47 malleable iron and 

ASTM A-536 ductile iron, respectively. Although ASTM A-536 iron has a 50 percent higher 

tensile strength than ASTM A-47 iron, it may also allow for greater deformations when loaded. 

Differences in geometry may have also played a part in the damage severity difference between 

the two couplers. 
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Both tests with the coupler model no. CGBBWTH resulted in higher load capacities than 

the coupler model no. CGBBHT. At first, it appeared that the newer Bennett Bolt Works coupler 

was stronger than the previous model and showed promise for use in the cable barrier system. 

However, none of the tests resulted in forces near the nominal capacity of the ¾-in. (19-mm) 

diameter, 3x7 wire rope, which is 39 kips (174 kN). Utilization of a coupler that can develop the 

full strength of the cable was considered very important to the robustness of the cable barrier.  

In previous component testing conducted under similar conditions, the coupler model no. 

CGBBHT had demonstrated the ability to achieve this targeted capacity prior to failure [13]. The 

loads from the previous study were collected via accelerometers mounted on the bogie vehicle, 

but the load cells utilized in this current study should have provided similar test results. There is 

a possibility that the couplers for test no. BBNC-3 had sustained damage prior to their 

component testing, which would make them susceptible to premature failure. The coupler model 

no. CGBBHT had been previously used in full-scale testing of the prototype cable barrier system 

and had not failed. Subsequently, further testing and evaluation is required of both coupler 

models to gain a better understanding of their strengths and durability. 
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9 SUMMARY, CONCLUSIONS, AND RECOMMENDATIONS 

The first objective of this research study was to investigate post modifications as 

potential floorpan tearing mitigation techniques for the prototype cable barrier system. This 

effort began with the development of a new component testing apparatus to simulate a small car 

overriding cable barrier support posts. Through a combination of field measurements and static 

coupon testing, 24-gauge (0.61-mm) ASTM A653 sheet steel was found to have a similar 

thickness and tensile strength to the floorpan of a Kia Rio, a common test vehicle that satisfies 

the MASH 1100C small car requirements. Subsequently, this sheet steel was mounted to the 

underside of a rigid-frame bogie vehicle at 8 in. (203 mm) above the ground, which is the same 

height as the floorpan of the Kia Rio.  

The new bogie vehicle equipped with a simulated floorpan was utilized to impact and 

override a series of two posts spaced 8 ft (2.4 m) apart with a targeted impact speed of 25 mph 

(40 km/h). Initial baseline testing conducted on the unmodified MWPs resulted in tearing and 

creasing of the simulated floorpan which resembled the Kia Rio floorpan damage observed in 

actual full-scale testing of the prototype cable barrier. Thus, the component testing setup was 

replicating actual vehicle floorpan penetrations, and the study continued with the evaluation of 

various post configurations. 

Two simulated floorpan tests were conducted on S3x5.7 (S76x8.5) posts, the standard 

low-tension cable guardrail post. Not only did the S3x5.7 (S76x8.5) posts cause twice as many 

tears as the MWP, but the tears tended to be larger than those observed from testing with the 

MWP. This finding was likely due to the increased bending strength of the S3x5.7 (S76x8.5) 

post. Testing of S3x5.7 (S76x8.5) posts confirmed that floorpan tearing was not specific to the 

MWP and can occur with any deformed post with free/exposed edges. 

Additional floorpan testing was conducted to evaluate the propensity for floorpan tearing 

of three different MWP modification concepts. Testing of the MWP with simulated no. 1 edge 

rounding on the free/exposed edge resulted in tears similar to the baseline MWP configuration. 

Thus, edge rounding did not adequately reduce the stress concentrations that led to tearing, and 

edge rounding was not considered for further evaluation. Testing was also conducted on the 

MWP with bent steel plates covering the free edges of the posts. The steel plate edge protectors 

left contact marks and creases in the simulated floorpan but prevented tearing. The tears that did 

occur during the test were the result of a fabrication error in the post that left a sharp corner in 

the continuous/bent side of the post cross section. Although the edge protectors showed promise 

to prevent tearing, the addition of extra parts to the MWP was undesired, and the concept was 

not evaluated further. 

Post weakening was the final MWP modification concept evaluated through a total of 

nine component tests with the simulated vehicle floorpan. Three different weakening patterns 

were investigated: (1) ¾-in. (19-mm) diameter weakening holes; (2) three ⅜-in. (10-mm) 

diameter weakening holes; and (3) ⅜-in. x 1⅛-in. (10-mm x 29-mm) weakening slots. When 

impacted, these weakening mechanisms caused tears to form in the post cross section, 

subsequently reducing the section modulus and elastic spring-back of the post. Testing of the 

MWP retrofitted with either of the latter two weakening patterns resulted in no contact between 

the top of the posts and the simulated floorpan. This finding was true for impact angles of both 0 

and 25 degrees.  
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Testing of the MWP weakened by ¾-in. (19-mm) diameter holes resulted in less tearing 

of the post cross section as compared to the other two weakening patterns. Thus, the posts 

retained enough elastic response to spring-back upward and contact the simulated floorpan. 

These posts left contact marks and creases in the simulated floorpan but did not cause any tears 

for impact angles of 0, 25, and -25 degrees. Thus, all three of the weakened MWP designs 

showed a propensity to mitigate vehicle floorpan tearing. 

Prior to recommending any of the weakened MWP for use in the prototype cable barrier 

system, it was important to study the effect these holes and slots had on the strong-axis bending 

strength of the MWP. Accordingly, six dynamic component tests were conducted with the bogie 

vehicle impacting the posts at a 90-degree angle. Two posts retrofitted with each of the 

weakening patterns were impacted during the strong-axis evaluation tests. All of the posts hinged 

at groundline, but both the MWP with weakening slots and the MWP with three ⅜-in. (10-mm) 

diameter holes also experienced tearing of the post cross section as the front flange completely 

ruptured in all four posts. Due in large part to these ruptures, the average resistance forces of 

these weakened MWP were reduced by 30 percent for three ⅜-in. (10-mm) holes and 44 percent 

for slots as compared to the unmodified MWP.  

Alternatively, the MWP with ¾-in. (19-mm) diameter holes did not experience any 

tearing of the post cross section around the weakening holes. These two posts provided an 

average resistance force similar to the unmodified MWP with only a 10 percent decrease over 20 

in. (508 mm) of deflection. Therefore, the MWP with ¾-in. (19-mm) diameter weakening holes 

was recommended for implementation into the prototype cable barrier system to mitigate 

floorpan tearing without affecting the stiffness or deflections of the system. The actual effect 

these weakening holes have on system performance should be evaluated through full-scale crash 

testing according to MASH guidelines. 

The second objective of this research effort was to investigate other cable splice hardware 

for the use in the cable median barrier that would reduce the propensity for vehicle snag and 

sheet metal tearing. A review of available wire rope splicing hardware revealed three options that 

were rated to the full strength of the ¾-in. (19-mm) diameter, 3x7 wire rope utilized in cable 

guardrails. However, the epoxy socket coupler has a large cross section that would likely result 

in increased snagging and deformation of an impacting vehicle. Additionally, field swaging 

requires the purchase of a $25,000 specialized swaging machine, which was more than the 

project budget would allow. Thus, only the new Bennett Bolt Works mechanical coupler, model 

no. CGBBWTH, was selected for evaluation through component testing. 

A total of three dynamic component tests were performed to evaluate the performance of 

the two Bennett Bolt Works cable couplers. Two tests were conducted on the new coupler, 

model no. CGBBWTH, and one test was conducted on the old coupler, model no. CGBBHT. All 

three of the tests resulted in similar failures. Both tests with the new coupler resulted in the cable 

and wedge pulling out of the coupler attached to the cable anchor bracket, while the test of the 

old coupler resulted in the cable ends and wedges being simultaneously pulled out of the 

couplers on both ends of the cable. The test components from each test sustained similar damage. 

The released cable ends were frayed, and the wedges were deformed and had very pronounced 

striations resulting from the wires pressing into the wedge. The couplers remained largely 

undamaged except for the marks and striations inside the couplers left by the individual wires as 

the cables pulled out of the couplers.  
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Both tests with the new coupler model no. CGBBWTH resulted in higher load capacities 

than the current coupler model no. CGBBHT. Since the new model is narrower than the current 

model, it showed promise as an alternative coupler for use in the prototype cable barrier. 

However, all of the tests resulted in failure loads below the full strength of the ¾-in. (19-mm) 

diameter, 3x7 wire rope, and it has been considered essential for the coupler hardware to develop 

the full strength of the cable to ensure robustness of the cable guardrail. Previous component 

tests have shown that the older coupler has a capacity greater than the rated strength of the cable. 

Therefore, further testing and evaluation is required to further explain these unexpectedly low 

failure loads and to better understand the strengths and durability of each coupler type. 
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Appendix A. Static Tension Testing Results 

The recorded data results from each static coupon test are provided individually in the 

summary sheets found in this appendix. Summary sheets include pre- and post-test 

measurements, yield strength, ultimate tensile strength, elongation at fracture, force vs. 

displacement plots, and stress vs. displacement plots. 
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Figure A-1. Test No. BFPC-1 Results 

Test Information

Test Description:

Test Name: BFPC-1

Specimen Number: 1

Test Date: 5/15/2015

Results Folder Test Run 18

Testing Procedure

Testing Frame: Landmark 22kip

Test Rate: .007 in/sec 

Grips: 0-0.30 in. flat surfalloy

Grip Pressure: 10 MPa

Measurement Equipment: 2 in. Extensometer

Laser Extensometer

22kip Load Cell

Initial Cross Sectional Area Measurments

Average Width: 0.501  in. 

Average Thickness: 0.025  in. 

Initial Area: 0.013  sq. in.

Initial Gauge Length 2.000  in. 

Final Cross Sectional Area Measurments

Average Width: 0.380  in. 

Average Thickness: 0.022  in. 

Final Area: 0.008  sq. in.

Reduction in Area: 33.6  %

Gauge Length at Fracture: 2.492  in. 

2 in. Elongation at Fracture: 24.6  %

Test Results Summary

Yield Load: 0.553  kip

Peak Load: 0.686  kip

Failure Load: 0.617  kip

Yield Strength (2% offset): 43.80  ksi

Ultimate Tensile Strength: 54.35  ksi

Engineering Stress at Failure: 48.92  ksi

True Stress at Failure: 73.64  ksi

True Strain at Failure: 0.41

Young's Modulus (.2% Offset): 21934  ksi
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Figure A-2. Test No. BFPC-2 Results 

Test Information

Test Description:

Test Name: BFPC-2

Specimen Number: 2

Test Date: 5/15/2015

Results Folder Test Run 19

Testing Procedure

Testing Frame: Landmark 22kip

Test Rate: .007 in/sec 

Grips: 0-0.30 in. flat surfalloy

Grip Pressure: 10 MPa

Measurement Equipment: 2 in. Extensometer

Laser Extensometer

22kip Load Cell

Initial Cross Sectional Area Measurments

Average Width: 0.504  in. 

Average Thickness: 0.026  in. 

Initial Area: 0.013  sq. in.

Initial Gauge Length 2.000  in. 

Final Cross Sectional Area Measurments

Average Width: 0.386  in. 

Average Thickness: 0.022  in. 

Final Area: 0.008  sq. in.

Reduction in Area: 34.7  %

Gauge Length at Fracture: 2.488  in. 

2 in. Elongation at Fracture: 24.4  %

Test Results Summary

Yield Load: 0.537  kip

Peak Load: 0.688  kip

Failure Load: 0.619  kip

Yield Strength (2% offset): 41.40  ksi

Ultimate Tensile Strength: 53.04  ksi

Engineering Stress at Failure: 47.74  ksi

True Stress at Failure: 73.16  ksi

True Strain at Failure: 0.43

Young's Modulus (.2% Offset): 20887  ksi
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Figure A-3. Test No. BFPC-3 Results 

Test Information

Test Description:

Test Name: BFPC-3

Specimen Number: 3

Test Date: 5/15/2015

Results Folder Test Run 20

Testing Procedure

Testing Frame: Landmark 22kip

Test Rate: .007 in/sec 

Grips: 0-0.30 in. flat surfalloy

Grip Pressure: 10 MPa 

Measurement Equipment: 2 in. Extensometer

Laser Extensometer

22kip Load Cell

Initial Cross Sectional Area Measurments

Average Width: 0.505  in. 

Average Thickness: 0.025  in. 

Initial Area: 0.013  sq. in.

Initial Gauge Length 2.000  in. 

Final Cross Sectional Area Measurments

Average Width: 0.410  in. 

Average Thickness: 0.021  in. 

Final Area: 0.009  sq. in.

Reduction in Area: 31.8  %

Gauge Length at Fracture: 2.517  in. 

2 in. Elongation at Fracture: 25.8  %

Test Results Summary

Yield Load: 0.565  kip

Peak Load: 0.700  kip

Failure Load: 0.630  kip

Yield Strength (2% offset): 44.15  ksi

Ultimate Tensile Strength: 54.77  ksi

Engineering Stress at Failure: 49.29  ksi

True Stress at Failure: 72.26  ksi

True Strain at Failure: 0.38

Young's Modulus (.2% Offset): 22320  ksi
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Figure A-4. Test No. BFPC-4 Results 

Test Information

Test Description:

Test Name: BFPC-4

Specimen Number: 4

Test Date: 5/15/2015

Results Folder Test Run 21

Testing Procedure

Testing Frame: Landmark 22kip

Test Rate: .007 in/sec 

Grips: 0-0.30 in. flat surfalloy

Grip Pressure: 10 MPa

Measurement Equipment: 2 in. Extensometer

Laser Extensometer

22kip Load Cell

Initial Cross Sectional Area Measurments

Average Width: 0.507  in. 

Average Thickness: 0.026  in. 

Initial Area: 0.013  sq. in.

Initial Gauge Length 2.000  in. 

Final Cross Sectional Area Measurments

Average Width: 0.394  in. 

Average Thickness: 0.022  in. 

Final Area: 0.008  sq. in.

Reduction in Area: 35.9  %

Gauge Length at Fracture: 2.529  in. 

2 in. Elongation at Fracture: 26.4  %

Test Results Summary

Yield Load: 0.560  kip

Peak Load: 0.695  kip

Failure Load: 0.625  kip

Yield Strength (2% offset): 42.27  ksi

Ultimate Tensile Strength: 52.46  ksi

Engineering Stress at Failure: 47.21  ksi

True Stress at Failure: 73.66  ksi

True Strain at Failure: 0.44

Young's Modulus (.2% Offset): 21358  ksi
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Figure A-5. Test No. KFPC-1 Results 

Test Information

Test Description:

Test Name: KFPC-1

Specimen Number: 5

Test Date: 5/15/2015

Results Folder Test Run 22

Testing Procedure

Testing Frame: Landmark 22kip

Test Rate: .007 in/sec 

Grips: 0-0.30 in. flat surfalloy

Grip Pressure: 10 MPa

Measurement Equipment: 2 in. Extensometer

Laser Extensometer

22kip Load Cell

Initial Cross Sectional Area Measurments

Average Width: 0.493  in. 

Average Thickness: 0.023  in. 

Initial Area: 0.011  sq. in.

Initial Gauge Length 2.000  in. 

Final Cross Sectional Area Measurments

Average Width: 0.331  in. 

Average Thickness: 0.019  in. 

Final Area: 0.006  sq. in.

Reduction in Area: 45.2  %

Gauge Length at Fracture: 2.617  in. 

2 in. Elongation at Fracture: 30.8  %

Test Results Summary

Yield Load: 0.498  kip

Peak Load: 0.618  kip

Failure Load: 0.557  kip

Yield Strength (2% offset): 44.27  ksi

Ultimate Tensile Strength: 54.94  ksi

Engineering Stress at Failure: 49.44  ksi

True Stress at Failure: 90.29  ksi

True Strain at Failure: 0.60

Young's Modulus (.2% Offset): 22289  ksi
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Figure A-6. Test No. KFPC-2 Results 

Test Information

Test Description:

Test Name: KFPC-2

Specimen Number: 6

Test Date: 5/15/2015

Results Folder Test Run 23

Testing Procedure

Testing Frame: Landmark 22kip

Test Rate: .007 in/sec 

Grips: 0-0.30 in. flat surfalloy

Grip Pressure: 10 MPa

Measurement Equipment: 2 in. Extensometer

Laser Extensometer

22kip Load Cell

Initial Cross Sectional Area Measurments

Average Width: 0.492  in. 

Average Thickness: 0.023  in. 

Initial Area: 0.012  sq. in.

Initial Gauge Length 2.000  in. 

Final Cross Sectional Area Measurments

Average Width: 0.284  in. 

Average Thickness: 0.018  in. 

Final Area: 0.005  sq. in.

Reduction in Area: 54.8  %

Gauge Length at Fracture: 2.650  in. 

2 in. Elongation at Fracture: 32.5  %

Test Results Summary

Yield Load: 0.488  kip

Peak Load: 0.611  kip

Failure Load: 0.550  kip

Yield Strength (2% offset): 42.21  ksi

Ultimate Tensile Strength: 52.87  ksi

Engineering Stress at Failure: 47.58  ksi

True Stress at Failure: 105.33  ksi

True Strain at Failure: 0.79

Young's Modulus (.2% Offset): 21247  ksi
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Figure A-7. Test No. KFPC-3 Results 

 

Test Information

Test Description:

Test Name: KFPC-3

Specimen Number: 7

Test Date: 5/15/2015

Results Folder Test Run 24

Testing Procedure

Testing Frame: Landmark 22kip

Test Rate: .007 in/sec 

Grips: 0-0.30 in. flat surfalloy

Grip Pressure: 10 MPa

Measurement Equipment: 2 in. Extensometer

Laser Extensometer

22kip Load Cell

Initial Cross Sectional Area Measurments

Average Width: 0.492  in. 

Average Thickness: 0.023  in. 

Initial Area: 0.011  sq. in.

Initial Gauge Length 2.000  in. 

Final Cross Sectional Area Measurments

Average Width: 0.297  in. 

Average Thickness: 0.019  in. 

Final Area: 0.006  sq. in.

Reduction in Area: 50.9  %

Gauge Length at Fracture: 2.650  in. 

2 in. Elongation at Fracture: 32.5  %

Test Results Summary

Yield Load: 0.476  kip

Peak Load: 0.599  kip

Failure Load: 0.539  kip

Yield Strength (2% offset): 41.90  ksi

Ultimate Tensile Strength: 52.70  ksi

Engineering Stress at Failure: 47.43  ksi

True Stress at Failure: 96.62  ksi

True Strain at Failure: 0.71

Young's Modulus (.2% Offset): 20998  ksi
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Appendix B. Bogie Test Results 

The results of the recorded data from each accelerometer for every dynamic bogie test 

conducted to evaluate the propensity for floorpan tearing are provided in the summary sheets 

found in this appendix. Summary sheets include acceleration, velocity, and deflection vs. time 

plots as well as force vs. deflection and energy vs. deflection plots. 
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Figure B-1. Test No. MWPFP-1 Results (SLICE-2) 

 

Test Results Summary

Test Description: Event Duration: 0.6780  sec

Test Number: MWPFP-1 Max. Deflection: 265.0  in.

Test Date: 3/26/2018 Peak Force: 10.3  k

Failure Type: Initial Linear Stiffness: 3.2  k/in.

Total Energy: 160.9  k-in.

Post Properties
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Figure B-2. Test No. MWPFP-2 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.6880  sec

Test Number: MWPFP-2 Max. Deflection: 278.1  in.

Test Date: 3/31/2015 Peak Force: 10.0  k

Failure Type: Initial Linear Stiffness: 2.9  k/in.

Total Energy: 179.7  k-in.
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Figure B-3. Test No. MWPFP-3 Results (SLICE-2) 

 

Test Results Summary

Test Description: Event Duration: 0.6400  sec

Test Number: MWPFP-3 Max. Deflection: 281.4  in.

Test Date: 3/31/2015 Peak Force: 10.0  k

Failure Type: Initial Linear Stiffness: 2.8  k/in.

Total Energy: 119.5  k-in.
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Figure B-4. Test No. MWPFP-4 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.5410  sec

Test Number: MWPFP-4 Max. Deflection: 233.0  in.

Test Date: 4/8/2015 Peak Force: 12.4  k

Failure Type: Initial Linear Stiffness: 2.0  k/in.

Total Energy: 239.3  k-in.
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Figure B-5. Test No. MWPFP-5 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.5620  sec

Test Number: MWPFP-5 Max. Deflection: 273.5  in.

Test Date: 4/8/2015 Peak Force: 12.4  k

Failure Type: Initial Linear Stiffness: 5.0  k/in.

Total Energy: 217.4  k-in.
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Figure B-6. Test No. MWPFP-6 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.6360  sec

Test Number: MWPFP-6 Max. Deflection: 281.7  in.

Test Date: 4/22/2015 Peak Force: 10.6  k

Failure Type: Initial Linear Stiffness: 2.8  k/in.

Total Energy: 211.1  k-in.

Post Properties
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Figure B-7. Test No. MWPFP-7 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.5700  sec

Test Number: MWPFP-7 Max. Deflection: 280.7  in.

Test Date: 6/3/2015 Peak Force: 8.5  k

Failure Type: Initial Linear Stiffness: 2.2  k/in.

Total Energy: 128.3  k-in.

Post Properties
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Figure B-8. Test No. MWPFP-8 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.6840  sec

Test Number: MWPFP-8 Max. Deflection: 280.2  in.

Test Date: 6/8/2015 Peak Force: 11.3  k

Failure Type: Initial Linear Stiffness: 5.4  k/in.

Total Energy: 214.6  k-in.
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Figure B-9. Test No. MWPFP-9 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.0892  sec

Test Number: MWPFP-9 Max. Deflection: 38.3  in.

Test Date: 6/5/2015 Peak Force: 4.9  k

Failure Type: Initial Linear Stiffness: 2.4  k/in.

Total Energy: 54.2  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 2.61 2.26 2.11 1.91

Post Length: 13.0 22.6 31.7 38.3
Embedment Depth:
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Figure B-10. Test No. MWPFP-10 Results (SLICE-2) 

 

Test Results Summary

Test Description: Event Duration: 0.0870  sec

Test Number: MWPFP-10 Max. Deflection: 38.5  in.

Test Date: 6/5/2015 Peak Force: 4.9  k

Failure Type: Initial Linear Stiffness: 2.5  k/in.

Total Energy: 51.0  k-in.
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Figure B-11. Test No. MWPFP-11 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.3050  sec

Test Number: MWPFP-11 Max. Deflection: 131.8  in.

Test Date: 6/30/2015 Peak Force: 9.7  k

Failure Type: Initial Linear Stiffness: 2.8  k/in.

Total Energy: 110.8  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 7.01 5.16 3.52 2.60

Post Length: 35.1 51.6 52.9 52.0
Embedment Depth:

Orientation:

Soil Properties

Gradation:

Moisture Content:
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Impact Velocity: 25.85 mph (37.91 ft/s)
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Figure B-12. Test No. MWPFP-12 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.3050  sec

Test Number: MWPFP-12 Max. Deflection: 125.0  in.

Test Date: 7/1/2015 Peak Force: 13.4  k

Failure Type: Initial Linear Stiffness: 0.1  k/in.

Total Energy: 102.6  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 6.51 3.80 2.63 1.81

Post Length: 32.5 38.0 39.5 36.3
Embedment Depth:

Orientation:
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Gradation:
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Figure B-13. Test No. MWPFP-13 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.7520  sec

Test Number: MWPFP-13 Max. Deflection: 278.8  in.

Test Date: 7/1/2015 Peak Force: 9.3  k

Failure Type: Initial Linear Stiffness: 2.9  k/in.

Total Energy: 184.0  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 6.66 5.03 3.80 3.06

Post Length: 33.3 50.3 57.0 61.1
Embedment Depth:
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Figure B-14. Test No. MWPFP-14 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.3340  sec

Test Number: MWPFP-14 Max. Deflection: 149.5  in.

Test Date: 7/7/2015 Peak Force: 8.9  k

Failure Type: Initial Linear Stiffness: 2.1  k/in.

Total Energy: 95.1  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 6.29 4.53 3.12 2.35

Post Length: 31.4 45.3 46.8 47.0
Embedment Depth:
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Figure B-15. Test No. MWPFP-15 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.3230  sec

Test Number: MWPFP-15 Max. Deflection: 142.9  in.

Test Date: 7/8/2015 Peak Force: 8.1  k

Failure Type: Initial Linear Stiffness: 1.9  k/in.

Total Energy: 78.3  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 5.72 3.91 2.63 1.99

Post Length: 28.6 39.1 39.5 39.7
Embedment Depth:
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Gradation:
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Figure B-16. Test No. MWPFP-16 P1 Results (SLICE-2) 

 

Test Results Summary

Test Description: Event Duration: 0.0759  sec

Test Number: MWPFP-16 - P1 Max. Deflection: 34.4  in.

Test Date: 7/9/2015 Peak Force: 5.7  k

Failure Type: Initial Linear Stiffness: 2.3  k/in.

Total Energy: 32.1  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 2.61 2.09 1.83 1.47

Post Length: 13.0 20.9 27.5 29.4
Embedment Depth:
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Figure B-17. Test No. MWPFP-16 P2 Results (SLICE-2) 

 

Test Results Summary

Test Description: Event Duration: 0.0713  sec

Test Number: MWPFP-16 - P2 Max. Deflection: 31.3  in.

Test Date: 7/9/2015 Peak Force: 5.1  k

Failure Type: Initial Linear Stiffness: 2.1  k/in.

Total Energy: 30.0  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 1.88 1.85 1.58 1.32

Post Length: 9.4 18.5 23.8 26.5
Embedment Depth:
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Figure B-18. Test No. MWPFP-17 P1 Results (SLICE-2) 

 

Test Results Summary

Test Description: Event Duration: 0.0790  sec

Test Number: MWPFP-17 - P1 Max. Deflection: 34.3  in.

Test Date: 7/9/2015 Peak Force: 5.3  k

Failure Type: Initial Linear Stiffness: 2.4  k/in.

Total Energy: 24.7  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 1.80 1.50 1.42 1.07

Post Length: 9.0 15.0 21.3 21.5
Embedment Depth:
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Gradation:

Moisture Content:
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Figure B-19. Test No. MWPFP-17 P2 Results (SLICE-2) 

 

Test Results Summary

Test Description: Event Duration: 0.0760  sec

Test Number: MWPFP-17 - P2 Max. Deflection: 31.9  in.

Test Date: 7/9/2015 Peak Force: 5.1  k

Failure Type: Initial Linear Stiffness: 3.1  k/in.

Total Energy: 26.2  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 1.75 1.56 1.18 1.19

Post Length: 8.7 15.6 17.7 23.9
Embedment Depth:
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Figure B-20. Test No. MWPFP-18 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.6690  sec

Test Number: MWPFP-18 Max. Deflection: 281.0  in.

Test Date: 7/27/2015 Peak Force: 8.8  k

Failure Type: Initial Linear Stiffness: 2.5  k/in.

Total Energy: 122.4  k-in.

Post Properties
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Figure B-21. Test No. MWPFP-19 Results (SLICE-2) 

 

Test Results Summary

Test Description: Event Duration: 0.0750  sec

Test Number: MWPFP-19 Max. Deflection: 33.5  in.

Test Date: 7/29/2015 Peak Force: 6.1  k

Failure Type: Initial Linear Stiffness: 2.5  k/in.

Total Energy: 57.0  k-in.

Post Properties
Post Type: @ 5" @ 10" @ 15" @20"

Post Size: 2.83 2.78 2.58 2.29

Post Length: 14.2 27.8 38.7 45.7
Embedment Depth:

Orientation:

Soil Properties

Gradation:

Moisture Content:

Compaction Method:

Impact Velocity: 26.36 mph (38.66 ft/s)

Impact Height:

Bogie Mass: 1874 lb

Accelerometer:

Camera Data:

Data Acquired

Average Force (k)

Energy (k-in.)

MASH Strong soil - in 8" cored hole

NA

HE-8

GoPros, AOS-9 perpendicular

27"

Slice2

Bogie Test Summary

MIDWEST ROADSIDE SAFETY FACILITY

Test Information

Dynamic Post in Sleeve

Post Bending at Ground Line

MWP

7-gauge 3" by 1.75" MWP post

81.25"
42"

90° (strong axis)

Bogie Properties

-1

0

1

2

3

4

5

6

7

0 10 20 30 40

Fo
rc

e
 (

k)

Deflection (in.)

Force vs. Deflection At Impact Location

0

10

20

30

40

50

60

0 10 20 30 40

En
e

rg
y 

(k
-i

n
.)

Deflection (in.)

Energy vs. Deflection At Impact Location

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08

A
cc

e
le

ra
ti

o
n

 (
g'

s)

Time (s)

Bogie Acceleration vs. Time

0

5

10

15

20

25

30

35

40

45

0 0.02 0.04 0.06 0.08

V
e

lo
ci

ty
 (

ft
/s

)

Time (s)

Bogie Velocity vs. Time

0

5

10

15

20

25

30

35

40

0 0.02 0.04 0.06 0.08

D
e

fl
e

ct
io

n
 (

in
.)

Time (s)

Deflection at Impact Location vs. Time



May 16, 2017 

MwRSF Report No. TRP-03-324-17 

189 

 

Figure B-22. Test No. MWPFP-20 Results (SLICE-2) 

 

Test Results Summary

Test Description: Event Duration: 0.0750  sec

Test Number: MWPFP-20 Max. Deflection: 33.6  in.

Test Date: 7/29/2015 Peak Force: 5.3  k

Failure Type: Initial Linear Stiffness: 2.5  k/in.

Total Energy: 43.0  k-in.
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Figure B-23. Test No. MWPFP-21 Results (SLICE-2) 

Test Results Summary

Test Description: Event Duration: 0.6790  sec

Test Number: MWPFP-21 Max. Deflection: 282.9  in.

Test Date: 7/30/2015 Peak Force: 7.5  k

Failure Type: Initial Linear Stiffness: 2.0  k/in.

Total Energy: 132.0  k-in.
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Appendix C. Evaluation Of Splice Hardware Drawing Set 
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Figure C-1. System Layout, Test Nos. BBNC-1 through BBNC-3 
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Figure C-2. System Details, Test Nos. BBNC-1 through BBNC-3 
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Figure C-3. Cable Router Assembly, Test Nos. BBNC-1 through BBNC-3 
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Figure C-4. Cable Router Weld Detail, Test Nos. BBNC-1 through BBNC-3 
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Figure C-5. Cable Router Components, Test Nos. BBNC-1 through BBNC-3 
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Figure C-6. End Cable Connector Detail, Test Nos. BBNC-1 through BBNC-3 
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Figure C-7. Bill of Materials, Test Nos. BBNC-1 through BBNC-3 
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Appendix D. Material Specifications 
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Figure D-1. Simulated Floorpan Sheet Steel 
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Figure D-2. S3x5.7 (S76x8.5) Posts, Test Nos. MWPFP-4 and MWPFP-5  
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Figure D-3. Midwest Weak Posts (MWP) 
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Figure D-4. Midwest Weak Posts (MWP), Continued 
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Figure D-5. New Bennett Bolt Works Coupler, Model No. CGBBWTH 
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Figure D-6. Malleable Iron Wedge for Bennett Couplers 
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Figure D-7. Current Bennett Bolt Works Coupler, Model No. CGBBHT 
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Appendix E. Coupler Testing – Load Cell Results 
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Figure E-1. Test No. BBNC-1 Results, Tension Load Cell 

Test Information:

Test No: BBNC-1

Date: 6/16/2015

System / Test Article: Bennet Bolt New Coupler with std Fittings and Cable

LC Location / Component: In-line with cable at splice

Additional Notes:

Load Cell Information: Results:

Load Cell No.: 143433 Preload: 0 kips

Calibration Factor: 2.16495 mv/V Max. Load: 33.28 kips

Input Voltage (excitation): 9.99 Volts Time of Max. Load: 0.1892 sec

Gain: 400 Event Duration: 0.2023 sec

Full Scale Load: 50 kips Final Load: -0.03 kips

Sample Rate: 10000 Hz

Cutoff Frequency: 100 Hz
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Figure E-2. Test No. BBNC-2 Results, Tension Load Cell 

Test Information:

Test No: BBNC-2

Date: 6/17/2015

System / Test Article: Bennet Bolt New Coupler with std Fittings and Cable

LC Location / Component: In-line with cable at anchor

Additional Notes:

Load Cell Information: Results:

Load Cell No.: 143432 Preload: 0 kips

Calibration Factor: 2.15992 mv/V Max. Load: 32.43 kips

Input Voltage (excitation): 10 Volts Time of Max. Load: 0.1088 sec

Gain: 400 Event Duration: 0.1195 sec

Full Scale Load: 50 kips Final Load: -0.06 kips

Sample Rate: 10000 Hz

Cutoff Frequency: 100 Hz
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Figure E-3. Test No. BBNC-2 Results, Compression Load Cell 

Test Information:

Test No: BBNC-2

Date: 6/17/2015

System / Test Article: Bennet Bolt New Coupler with std Fittings and Cable

LC Location / Component: Underneath anchor rod at anchor

Additional Notes:

Load Cell Information: Results:

Load Cell No.: PCB - 1378 Preload: 0 kips

Calibration Factor: 0.0657 mv/V Max. Load: 37.08 kips

Input Voltage (excitation): NA Volts Time of Max. Load: 0.1089 sec

Gain: NA Event Duration: 0.1195 sec

Full Scale Load: 80 kips Final Load: -12.96 kips

Sample Rate: 10000 Hz

Cutoff Frequency: 100 Hz
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Load Cell Summary
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Figure E-4. Test No. BBNC-3 Results, Tension Load Cell 

Test Information:

Test No: BBNC-3

Date: 6/17/2015

System / Test Article: Bennet Bolt Standard High Tension Coupler with std Fittings and Cable

LC Location / Component: In-line with cable at anchor

Additional Notes:

Load Cell Information: Results:

Load Cell No.: 143432 Preload: 0 kips

Calibration Factor: 2.15992 mv/V Max. Load: 30.17 kips

Input Voltage (excitation): 10 Volts Time of Max. Load: 0.1105 sec

Gain: 400 Event Duration: 0.1199 sec

Full Scale Load: 50 kips Final Load: -0.03 kips

Sample Rate: 10000 Hz

Cutoff Frequency: 100 Hz
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Load Cell Summary
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Figure E-5. Test No. BBNC-3 Results, Compression Load Cell 

Test Information:

Test No: BBNC-3

Date: 6/17/2015

System / Test Article: Bennet Bolt Standard High Tension Coupler with std Fittings and Cable

LC Location / Component: Underneath anchor rod at anchor

Additional Notes:

Load Cell Information: Results:

Load Cell No.: PCB - 1378 Preload: 0 kips

Calibration Factor: 0.0657 mv/V Max. Load: 26.79 kips

Input Voltage (excitation): NA Volts Time of Max. Load: 0.0992 sec

Gain: NA Event Duration: 0.1199 sec

Full Scale Load: 80 kips Final Load: -16.50 kips

Sample Rate: 10000 Hz

Cutoff Frequency: 100 Hz
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Wedge pulled out of coupler at anchor and at bogie connection due to crush 
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