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Abstract 
Annealing twins often form in metals with a face centered cubic structure during 
thermal and mechanical processing. Here, we conducted molecular dynamic (MD) 
simulations for copper and aluminum to study the interaction processes between {1 
1 1}1/2 <1 1 0> dislocations and a three-dimensional annealing twin. Twin bound-
aries are characterized with Σ3{1 1 1} coherent twin boundaries (CTBs) and Σ3{1 1 
2} incoherent twin boundaries (ITBs). MD results revealed that dislocation-ITB inter-
actions affect slip transmission for a dislocation crossing CTBs, facilitating the nu-
cleation of Lomer dislocation. 

Keywords: Annealing twin, Dislocation, Slip transmission, Molecular dynamics 

1. Introduction 

Annealing twins can form in metals with a face centered cubic (FCC) struc-
ture through thermal-mechanical processing. This phenomenon was firstly 
reported by the Carpenter and Tamura in 1926 [1]. Many models that ad-
dress the formation of annealing twins can be classified into four groups,  
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i) the grain encounter model [2], ii) stacking fault model [3], iii) grain bound-
ary dissociation model [4,5] and iv) growth accident model [6,7]. Annealing 
twins result in substantial evolution of microstructures and tailor mechani-
cal properties in a large variety of metallic materials [1,8–11]. Twin bound-
aries (TBs) effectively strengthen materials by impeding dislocations mo-
tion and increase work-hardening capability [12]. For example, FCC-phase 
high entropy alloys generally exhibit low yield strength but superb ductility 
associated with slips and twinning [13,14]. Ming et al. realized a synchro-
nized increase in strength and ductility of single FCC-phase CrFeCoNiMo 
alloy by developing hierarchical microstructure that comprises annealing 
nano-twins in recrystallized fine grains and stable dislocation walls in non-
fully recrystallized fine grains [15]. Severe deformation at low temperature 
and followed annealing at room temperature led the formation of such hi-
erarchical microstructures. 

Twin boundaries associated with annealing twins in FCC materials are 
characterized with Σ3{1 1 1} coherent twin boundaries (CTBs) and Σ3{1 1 
2} incoherent twin boundaries (ITBs) due to their low formation energies 
[16,17]. Many experimental observations and molecular dynamic simula-
tions have been conducted to explore the interactions of dislocations with 
CTBs or ITBs individually [18–20]. Σ3{1 1 1} CTB is a strong barrier to slip 
transmission because of the discontinuity of slip systems [18,19,21]. Trans-
mission mechanisms for dislocations vary with characters of incoming dis-
locations and local stress states in the vicinity of the boundary [22,23,24]. A 
screw dislocation can either cross slip onto the CTB plane or transmit onto 
the complementary {1 1 1} plane in the twin [19,20,25]. After slip transmis-
sion, no residual defect is left at the CTB [19,25]. A mixed dislocation under 
a shear stress parallel to the CTB plane glides from a {1 1 1} plane in matrix 
to a mirror {1 1 1} plane in the twin [18], but under biaxial loading parallel 
and/or normal to the CTB a mixed dislocation glides onto a {1 0 0} plane in 
the twin [26]. Differing from the case of screw dislocation, one Shockley par-
tial is left at the CTB, causing the migration of the CTB [26]. In situ nanoin-
dentation also suggested a multiplication mechanism for Shockley partial 
dislocations at CTBs through the dissociation of a full dislocation into and 
the reassembly of a Frank partial dislocation and a Shockley partial disloca-
tion [27]. Σ3{1 1 2} ITBs associated with growth/annealing twin can be rep-
resented as a set of partial dislocations on every {1 1 1} plane [28]. The sum 
of these Burgers vectors in one triple unit equals zero. ITBs may dissociate 
into two tilt walls bounding a volume of 9R phase [29,30]. The separation of 
the two tilt walls is dependent on stacking fault energy and applied shear 
stress [29]. In situ indentation studies of nano-twinned Cu and Al have re-
vealed slip transmission for dislocations across ITBs and formation of steps 
along ITBs [31–33]. 
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Twins, however, are 3-dimensional domains. Practically all the work done 
on dislocation-twin interactions regards twins as two-dimensional entities, 
sectioned along the plane that contains the propagation and normal direc-
tion. In this article, we conducted molecular dynamic simulations to study 
the interaction processes of {1 1 1}1/ 2<1 1 0>dislocations (screw-type and 
mixed-type) approaching a three-dimensional (3D) annealing twin. Cu with 
mediate stacking fault energy (SFE) and Al with high SFE are chosen for this 
study in order to explore the effect of SFE on interaction processes. The re-
sults revealed that dislocation-ITB interactions affect slip transmission for a 
dislocation across CTBs. 

2. Atomistic simulations 

Fig. 1(a) shows the possible slip systems in matrix and twin that are de-
fined under the coordinate, x-axis along [2 1

– 1
–
]M, y-axis along [1

–
 1
–
 1
–
]M, and 

z-axis along [0 1 1
–
]M. On (1 1

–
 1
–
)M plane, there are two mixed full dislocations  

(bI
1 = ½[1 0 1]M  and bIII

1 = ½[1 1 0]M) and one screw full dislocation (bII
1 = 

½[0 1
–
 1]M) as the line sense of dislocations is parallel to the z-axis. Three full 

dislocations can be further written as the superposition of one edge par-
tial dislocations (pII

1 = 1/6 [2 1 1]M) and two mixed partial dislocations (pI
1=  

1/6 [1
–
 1 2

–
]M  and  pIII

1 = 1/6 [1
–
 2
–
 1]M). The (1 0 0)T plane, as the candidate slip 

plane for dislocation transmission/ transmutation, has 15.8x deviation from 
the (1 1

–
 1
–
)M plane. Two full dislocations, an edge-type bI

2 and a screw-type 
bII

2, can also glide on (1 0 0)T plane. Besides (1 0 0)T plane, full dislocation bII
1 

with screw character can cross slip onto (1 1
–
 1
–
)T plane and the twin bound-

ary plane ((1 1 1)M||(1 1 1)T). It should be noted that bII
1, –bII

2, bII
3, and bII

4 
used in the following sections have the same Burgers vector. 

Twin boundaries associated with annealing/growth twins in FCC metals 
have been systematically studied [34]. Three sets of tilt Σ3 GBs have been 
studied with respect to the tilt axis <1 1 1>,<1 1 2>, and <1 1 0>, respec-
tively [34]. Σ3 {1 1 1} CTB and Σ3{1 1 2} ITBs are thermodynamically stable 
with low formation energy, which is consistent with TEM observation [17]. 
Moreover, atomic structures of ITBs vary with stacking fault energies (SFEs) 
[29,30]. Hereby, Cu and Al with mediate and high SFEs are taken as the 
model materials. The simulation models start with a 26 × 46 × 40 nm Cu 
single crystal and a 29 × 52 × 46 nm Al single crystal. The coordinate is x-
axis along [2

–
 1 1]M, y-axis along [1

–
 1
–
 1
–
]M, and z-axis along [0 1 1

–
]M. A 15 × 50 

× 5 nm region in the single model is selected and rotated about the x-axis 
for 180°. A twinned domain is created, as shown in Fig. 1(b). The initial twin 
boundaries comprise Σ3 {1 1 1} CTB and Σ3{1 1 2} ITBs. 
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Corresponding to the crystallography of the twin, two mixed full dis-
locations bI

1 and bIII
1 will result similar interaction processes with the twin 

though they have opposite screw components. In the following simulations, 
we studied the interaction process between a mixed dislocation bI as well as 
a screw dislocation bII and the 3D twin. The introduction of a dislocation into 
the twined model is accomplished by the application of anisotropic Barnett-
Lothe solutions for the displacement field of a dislocation in the bi-crystal 
[35]. We initially introduce a dislocation on (1 1

–
 1
–
)M plane at 4 nm from the 

upper CTB. With periodic boundary conditions along x- and z-directions 
and fixed boundary condition in y-direction, the dislocation-twin structures 
are then relaxed at 0 K until the maximum force acting on each atom is less 
than 5 pN. During relaxation, the embedded atom method potentials for 

Fig. 1. (a) A schematic 3D annealing twin and the available slip systems. The blue 
dashed lines and red stripe denote two Shockley partial dislocations and stacking 
fault region. The dislocation line is initially along the z-axis. (b) The initial 3D twin 
morphology, showing ITBs (cyan) and CTBs (red). Atomic configurations of initial 
simulation models, showing a 3D annealing twin and an extended 60° mixed dis-
location in Cu (c), and a 3D annealing twin and an extended 60° mixed disloca-
tion in Al (d).   
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Cu [36] and Al [37] are employed. These potentials have shown to provide 
reliable results in studies of energetics and kinetics of surfaces, defects, in-
terfaces, and crystal growth [36,37]. The relaxed structures for Cu and Al are 
shown in Fig. 1(c) and (d). The wider dislocation core is found for Cu due 
to its low SFE. The irregular-shaped twin for Cu is attributed to high mobil-
ity of ITBs in Cu [16]. The relaxed structures are then subjected to constant 
deformation rate at 5 K. More simulation details will be described with re-
spect to each simulation case. 

3. Dislocation-3D twin interactions 

3.1. A screw dislocation-3D twin interactions 

Figs. 2(a) and 3(a) show the relaxed structures containing the screw disloca-
tion bII

1 and the 3D twin in Cu and Al, respectively. bII
1 splits into two mixed 

partial dislocations −pI
1 and pIII

1 . In Cu with low SFE, the separation between 
the two partials are larger than that in Al. Besides the cross-slip of the bII

1 

Fig. 2. (a) Initial 3D atomic configuration showing a 3D annealing twin and a pure 
screw dislocation bII

1 . (b) and (c) bII
1 crosses the upper CTB into the twin, and a 

new dislocation bII
3 dislocation nucleates. (d) bII

1 crosses the lower CTB into the 
twin and a new dislocation bII

3 nucleates in the twin. (e) Annihilation of the two bII
3 

dislocations by cross-slip onto (111)T plane in the twin. (f) An annealing twin with-
out steps left on CTBs after bII

1 dislocation loops the 3D twin.  
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onto (1 0 0)T plane and (1 1
–
 1
–
)T plane, bII

1 dislocation can also cross slip onto 
the twin boundary plane with two partials pI

4 and −pIII
4 . In order to activate 

different cross-slip processes, we applied two representative loadings, 1st 
loading (constant deformation rate F∙ 1) and 2nd loading (F∙ 2), 

	 0	 0	 0
F∙̇1 = γ∙0 (	 0 	 0 	 0   	)	 –1 	 0 	 0 	  (1) 

              	 0	 –1	 0
F∙2 = γ

∙
0  (	 0 	 0 	 0 	 )              –1	 0 	 0 	  (2) 

where  γ
∙
0 = 3 × 108 s−1. When deformation gradients are equal to 1% (F1 and 

F2), we estimated the stress filed σ at the deformation gradient, and then 

Fig. 3. Schematics of the interaction between a screw dislocation bII
1 and a 3D an-

nealing twin in Cu. (a) Initial 3D annealing twin and a core-extended pure screw dis-
location bII

1 . (b) bII
1 starts looping over the 3D twin. (c) Transmutation of bII

1 across 
the upper CTB into the twin domain. (d) Transmutation of bII

1 across the lower CTB 
into the twin. (e) Two bII

3 dislocations cross slip onto (1 1 1)T plane and then dis-
location annihilation takes place inside the twin. (f) bII

1 glides on initial slip plane, 
leaving dislocation loops on ITBs. The arrow on dislocation line represents the dis-
location line vector.   
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calculated Peach-Koehler force →F =(σ · →b )×d→l , where σ is local stress, →b is 
Burgers vector and d →l is line direction. The RSS is calculated to be Fg/|b|, 
where Fg is the gliding force. The RSS in Cu/Al is 2.83/1.61 GPa for bII

1 on 
(1 1

–
 1
–
)M and for bII

1  on (1 1
–
 1
–
)T plane, zero for bII

4  on the twin boundary 
plane and 2.44/1.33 GPa RSS for bII

2  on (1 0 0)T plane. Although the RSS for 
bII

4  on the twin boundary plane is equal to zero, the RSS for the two par-
tials on twin plane is different. F∙ ̇1 generates zero RSS for pI

4  and −pIII
4  on 

the twin boundary plane but F∙ ̇2 results in 591.5/463.0 MPa RSS for pI
4  and 

−591.5/−463.0 MPa RSS for −pIII
4  on the twin boundary plane. Therefore, F∙ 2̇ 

favors the cross-slip for bII
1  onto the twin boundary plane because of non-

zero RSS for pI
4  and −pIII

4 . Here, it should be mentioned that such predic-
tion does not take the role of ITBs into account. 

3.1.1. Interaction process under the 1st loading 

Under the 1st loading, cross-slips of bII
1 onto (1 0 0)T or (1 1

–
 1
–
)T planes dur-

ing the interaction are expected. In Cu, bII
1 passes the twin without the gen-

eration of additional defects at the CTBs by dislocation looping mechanisms. 
Fig. 2 shows the interaction process and Fig. 3 schematically explains the 
process. Under loading, bII

1 with planar-extended core moves towards the 
twin (Figs. 2(a) and 3(a)). Figs. 2(b) and 3(b) shows the snapshots when bII

1 
reaches the upper CTB. The part of bII

1 that touches the upper CTB exhib-
its a condensed core while the other part remains a planar-extended core. 
Driven by loading, looping of bII

1 over the twin is observed (Fig. 2(c) and 
(d)), forming bII

1 dislocation on the lower CTB with opposite line vector 
comparing to bII

1 dislocation on the upper CTB. During looping, 1st cross-
slip of bII

1 (Figs. 2(c) and 3(c)) from the upper CTB and 2nd cross-slip of bII
1 

from the lower CTB (Figs. 2 (d) and 3(d)) onto two parallel (1 1
–
 1
–
)T planes 

occur. Two dislocations bII
3 nucleate and glide on  (1 1

–
 1
–
)T  planes. With fur-

ther glide of the two bII
3 on (1 1

–
 1
–
)T planes to the same height in y-direc-

tion, the attraction between them facilitate the 2nd cross-slips (Figs. 2(e) and 
3(e)) of the two bII

3 dislocations onto the same (1 1 1)T  plane. Then, dislo-
cation annihilation takes place since two dislocations with the opposite line 
sense and the same Burgers vector. In the final structure (Figs. 2(f) and 3(f)), 
four bII

1 loops are left on ITBs. In principle, annihilation can also occur on  
(1 1

–
 1
–
)T plane, if the incoming dislocation on the top CTB crosses slip onto the  

(1 1
–
 1
–
)T plane, the incoming dislocation from the bottom CTB transfers into 

the twin and glides into the top CTB. 
In Al, as shown in Fig. 4, only looping of bII

1 over the twin is observed 
while the cross-slips and annihilation don’t happen. Under loading, bII

1 with a 
condensed core moves towards the twin (Fig. 4(a) and (a’)) and is obstructed 
by the upper CTB (Fig. 4(b) and (b’)). Then, bII

1 forms on the lower CTB af-
ter looping. Differing from the case in Cu, CTBs show strong obstruction to 
two bII

1 dislocations, making cross-slips harder to happen (Fig. 4(c) and (c’)). 
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3.1.2. Interaction process under the 2nd loading 

Under the 2nd loading, cross-slips of bII
1 onto (1 0 0)T  or (1 1

–
 1
–
)T  planes and 

glide of pI
4 and −pIII

4 on the twin boundary plane during the interaction are 
possible. In Cu, looping process is similar to that described in Figs. 2 and 
3, leaving two bII

1 dislocations along the intersection line between (1 1
–
 1
–
)M 

and the twin boundary plane. Instead of the cross-slips onto (1 0 0)T or  
(1 1

–
 1
–
)T planes, bII

1 dissociates into pI
4 and −pIII

4 on the upper CTB and lower 
CTB planes. With the opposite RSS associated with pI

4 and −pIII
4 on the twin 

boundary plane, pI
4 and −pIII

4 glide in the opposite direction, thickening 
the twin by one layer (Fig. 5(a and b)). Despite the interaction process dif-
fers, the final structure under the 2nd loading is similar to that under the 
1st loading (Fig. 4(c)). 

In Al, Fig. 5(c–g’) reveals some features different from previous simula-
tions [19,20] except the dislocation looping over the 3D twin. During loop-
ing (Fig. 5(d) and (e)), part of the condensed-core bII

1 dislocation on the up-
per CTB crosses slip onto the (1 0 0)T plane from the ITBs as show in Fig. 5(e) 
and (e’). Wang et al.. reported such a similar process in twinned nanowire 
where free surface favors such a cross-slip [26]. Due to the 15.8Â° deviation 
angle between the glide plane (1 1

–
 1
–
)M (on which bII

1 glides) and the glide 
plane (1 0 0)T (on which –bII

2 glides), a dislocation segment created on ITBs 
(marked by red solid line in Fig. 5(e’)) connects bII

1 on (1 1
–
 1
–
)M and −bII

2 on 

Fig. 4. Interaction between a pure screw dislocation and a 3D annealing twin in 
Al. (a) and (a’) Initial 3D atomic configuration containing an annealing twin and 
a pure screw dislocation bII

1 . (b) and (b’) Cross-slip of bII
1 from matrix onto the 

upper CTB, (c) Dislocations structures around the 3D twin after the looping of bII
1 

over the 3D twin.   
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Fig. 5. Interaction between a pure screw dislocation bII
1 and a 3D twin in Cu (a–b) and Al (c–g’). In Cu, (a) A 

dislocation loop on 3D twin boundaries in Cu and (b) A screw dislocation bII
1 dissociates onto CTBs, thick-

ening the twin by one atom layer. In Al, (c) Initial 3D atomic configuration containing an annealing twin and 
a pure screw dislocation bII

1 , (d) bII
1 cross-slip onto the upper CTB, (e) bII

1 transmission into the twin, (f) 
−bII

2 cross-slip onto lower CTB, and (g) Perfect CTB with steps free after annihilation of the −bII
2 and bII

4.  
(e’-g’) Schematic of nucleation and glide of a dislocation on (1 0 0)T plane from the CTB-ITB corner and the 
annihilation of dislocations on the lower CTB.   
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(1 0 0)T  planes. Since the Burgers vector of this segment is not lying on the 
ITBs, the segment does not glide on the ITB. When−bII

2 on (1 0 0)T plane 
reaches the lower CTB (Fig. 5(f) and (f’)), it dissociates into pI

4 and −pIII
4. In 

Fig. 5(g) and (g’), pI
4 and −pIII

4 are cancelled by pI
4 and −pIII

4 that are disso-
ciated from bII

4 (bII
1) on the lower CTB. In the final structure, two dislocation 

loops are left on ITBs while the CTBs are defect free. In general, the (1 0 0) 
plane is not a common slip plane, but slip on (1 0 0) plane happens under 
specific local stress states. In our simulation, the cross-slip on (1 0 0) plane 
is attributed to high Schmid factor on (1 0 0)T plane. Furthermore, the ITB 
provides a pathway for dislocation climb, realigning the dislocation line on 
the (1 0 0)T plane. Under the 1st loading, we only observed cross-slip onto 
(1 1

–
 1
–
)T  plane in Cu and (1 1 1)T plane in Al. This is because the stress field 

does not favor the climb of the dislocation on ITB. 

3.2. A 60° mixed dislocation-3D twin interactions 

Figs. 6(a) and 7(a) show the relaxed structures containing the mixed full dis-
location bI

1 and the 3D twin in Cu and Al, respectively. In both Cu and Al, 
bI

1 dislocation splits into an edge pII
1 and a mixed −pIII

1 partial dislocations. 
Affected by SFE, bI

1 has a wider core in Cu and a condensed core in Al. With 
the mixed character, bI

1 cannot cross slip onto other planes. The 3rd load-
ing with the constant deformation rate F ̇3

	 0	 –1	 0
F∙ 3 = γ

∙
0          (	 0	 0 	 0  	)	 –1	 0 	 0 	   (3) 

is applied to the relaxed structures. γ∙0  = 3 × 108 s –1. Under the loading, the 
RSSes in Cu/Al (estimated at 1% strain) are 2.71/1.45, 2.71/1.45, 0.55/0.06 
and 3.10/1.56 GPa associated with bI

1 on (1 1
–
 1
–
)M, −bI

3  on (1 1
–
 1
–
)T  plane, bI

4  
on the twin boundary plane and −bI

2  on (1 0 0)T plane, respectively. Trans-
mission, transmutation and dissociation of dislocations on (1 1

–
 1
–
)T, (1 0 0)T 

and twin boundary plane are possible. Dislocation transmutation is similar 
to dislocation transformation, meaning that a new dislocation nucleates at 
interface when an incoming dislocation enters the interface. As result, shear 
associated with the incoming dislocation is partially or fully transformed in 
the adjacent grain across the interface. In our MD simulations, the interac-
tion between a dislocation and twin boundary is accomplished through nu-
cleation and emission of another dislocation in the twin. The two disloca-
tions may or may not have the same character. In FCC, both experiments 
and molecular dynamic simulations have demonstrated the possibility of a 
dislocation gliding on {1 0 0} plane [26,38,39]. Because the glide of dislo-
cations on {1 0 0} plane is hard, the RSS of bI

2
  on (1 0 0)T plane is designed 
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to be the largest among all possible slip systems. Figs. 6 and 7 describe the 
interaction between b1 I and the 3D twin in Cu and Al. In both material sys-
tems, looping of bI

1  over the twin (Figs. 6(c) and 7(c)) is always observed. 
In Cu, as shown in Fig. 6(c), a Lomer dislocation −bI

2 nucleates and glides 
on (1 0 0)T, leaving a partial dislocation pI

4 on the upper twin boundary. Re-
action can be described by bI

1 → −bI
2 + pI

4. The Lomer dislocation −bI
2 then 

dissociates into partials pI
3 on (1 1– 1–)T plane, pIII

4 on (1 1 1)T  plane and a Stair-
rod dislocation br. The dissociation is energetically favorable and facilitated 

Fig. 6. Interaction between a mixed dislocation bI
1 and a 3D twin in Cu. (a) Initial 

3D atomic configuration containing a 3D twin and a 60Â° mixed dislocation bI
1. (b) 

Dislocation loops the 3D twin. (c) and (d) The nucleation and glide of a Lomer dis-
location −bI

2 on (1 0 0)T plane in the twin. (e) The dissociation of a Lomer disloca-
tion −bI

2 on two {1 1 1} planes, forming a Lomer-Cottrell lock. (f) Atomic config-
uration showing the Lomer-Cottrell lock and Shockley partial dislocations one the 
upper CTB.  
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by the local stress associated with −bI
1 on the lower CTB. The dissociation 

is described by the following reaction −bI
2 → pI

3 + pIII
4 +br.  pI

3, pIII
4 and 

br form a Lomer-Cottrell (L-C) lock, as shown in Fig. 6(f). The L-C lock to-
gether with bI

1 on ITBs will contribute to the hardening of the material. Slip 
transmission from (1 1

–
 1
–
)M to (1 0 0)T is difficult in general. It was reported 

in nanowires where free surface favors the nucleation of the dislocation on 
{1 0 0} plane [26]. In our case, there is no free surface, but the dislocation 
loops the twin. The dislocation segment on ITB can climb, realigning the 
dislocation line from (1 1

– 
1
– 

)M to (1 0 0)T  plane, which facilitates slip trans-
mission from (1 1

–
 1
–
)M to (1 0 0)T. During looping process in Al, on the upper 

CTB, the dissociation of bI
1 (Fig. 7(b)) into pI

4 on the twin boundary plane 
and a sessile Frank partial dislocation bf with Burgers vector ⅓[1 1 1]M.  

Fig. 7. Interaction between a mixed dislocation bI
1 and a 3D twin in Al. (a) Initial 

3D atomic configuration containing a 3D annealing twin and a mixed dislocation 
bI

1. (b) bI
1 touches on the upper CTB. (c) bI

1 dislocation loops the 3D twin, leaving 
a dislocation loop on twin boundaries. (d) The dissociation of bI

1 onto a Frank par-
tial and a Shockley partial on the upper CTB.   
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pI
4 glides on the twin boundary, thickening the twin by one atomic layer 

(Fig. 7(c)). In Fig. 7(d), final structure contains sessile Frank partial disloca-
tions on CTBs and bI

1 on ITBs. During the interaction between bI
1 disloca-

tion and twin, sessile L-C lock inside twin in Cu and Frank partial dislocation 
on CTB in Al are generated. On lateral side of the twin, bI

1 piles up on ITBs. 

4. Conclusion 

We conducted MD simulations of the interaction between the dislocations 
and a 3D annealing twin in copper and aluminum. The lateral boundaries 
of annealing twins are characterized by ITBs that are composed of an ar-
ray of Shockley partial dislocations. The migration of ITBs during deforma-
tion was observed in all simulation cases of Cu, but was not apparent in Al. 
These results implied the irregular shape for annealing twins might in Cu 
and the regular shape for annealing twins in Al, which is consistent with pre-
vious study [16,29]. 

When a screw dislocation moves towards the 3D annealing twin, several 
scenarios may happen. For Cu, when a screw dislocation enters the twin 
boundaries by external stress, the dislocation is temporarily blocked by twin 
boundaries. As the deformation continues, the screw dislocation can trans-
mit across both upper and lower CTBs and then annihilate inside the twin 
by cross-slips, depending on the applied shear stress. For Al, a screw dislo-
cation may cross slip onto CTBs or transmit into (1 0 0)Tin the twin. 

When a 60Â° mixed dislocation interacts a 3D twin, a ½<1 1 0> disloca-
tion generates and glides on a (1 0 0) plane and leaves a glissile dislocation 
of Burgers vector 1/6<1 1 2> on the twin boundary in the case of Cu. Anom-
alous dislocation ½<1 1 0> on (1 0 0)T plane can dissociate into a L-C lock. 
For Al, a dislocation loop will leave on twin boundaries. Dislocation segments 
on CTBs can dissociate into a Shockley partial dislocation and a Frank par-
tial dislocation on CTBs. 

During the interaction between a screw dislocation and twin under the 
2nd loading in Al as well as that between a mixed dislocation and twin 
under the 3rd loading in Cu, the nucleation of a Lomer dislocation on  
(1 0 0)T plane takes place at the CTB-ITB corner. In these cases, local stress 
associated with ITBs together with high RSS for dislocations on (1 0 0)T 
plane facilitate the nucleation and glide of ½<1 1 0> dislocation on (1 0 0)T  

plane. In addition, dislocations are deposited on ITBs in all cases after a 
dislocation loops a 3D twin. This is different from CTBs where defects are 
free in most cases. Therefore, ITBs may contribute more to work hard-
ening than CTBs. 
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