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†Department of Animal Science, University of Nebraska-Lincoln, Lincoln, Nebraska 68583, United States
‡ARS, U.S. Meat Animal Research Center, USDA, Clay Center, Nebraska 68933, United States

*S Supporting Information

ABSTRACT: A study of multiple tissues was conducted to identify potential metabolic
differences in cattle differing in feed efficiency. Individual feed intake and body weight was
measured on 144 steers during 105 days on a high-concentrate ration. Steers were selected
according to differences in average daily gain (ADG) with those with the greatest ADG (n =
8; 1.96 ± 0.02 kg/day) and least ADG (n = 8; 1.57 ± 0.02 kg/day), whose dry matter
intake was within 0.32 SD of the mean intake (10.10 ± 0.05 kg/day). Duodenum, liver,
adipose, and longissimus-dorsi were collected at slaughter, and metabolomics profiles were
performed by ultra performance liquid chromatography quadrupole-time of-flight mass
spectrometry. Principal components analyses, t-tests, and fold changes in tissues profile
were used to identify differential metabolites between ADG groups. These were primarily
involved in α-linolenic metabolism, which was downregulated in the greatest ADG as
compared to least-ADG group in duodenum, adipose, and longissimus-dorsi. However,
taurine and glycerophospholipids metabolisms were both upregulated in the greatest ADG
compared with least-ADG group in the liver. The phospholipids and cholesterol were quantified in the tissues. Lipid transport
and oxidation were the main common metabolic mechanisms associated with cattle feed efficiency. Combining analyses of
multiple tissues may offer a powerful approach for defining the molecular basis of differences in performance among cattle for
key production attributes.

■ INTRODUCTION

Increased sustainability of livestock production is needed by
the growing human population.1 Conversion of feed into meat
is associated, among others, with emission of greenhouse gases
and excretion of nitrogen and phosphorus.2 Thus, improving
production efficiency by increasing beef produced per amount
of feed offered would reduce both operating cost and waste
from beef cattle production.
Through more than 50 years of research focused on

nutritional management and genetic selection for beef cattle
production, feed efficiency conversion rate has been improved
on average from 10.2:13,4 to 5.4:1.5,6 Some of the traditional
strategies are the use of high-concentrate diets and animal
selection by moderately heritable variables such as intake and
gain.7,8 However, large phenotypic differences regarding many
complex traits of general biological interest in cattle such as
growth, fat deposition, and energy partitioning are not
completely understood.9 Application of new technologies,
including “omics” selections that incorporate molecular
breeding values, plays an important role in meeting these
challenges.10 The use of genome-wide SNP markers is a
promising predictor of the genetic merit of animals, despite
genetics limiting to explain the differences of the phenotype.10

Thus, the final “omic” level in a biological system,
metabolomics may provide the most “functional” information
of the omics technologies, allowing the measure of the end
products of the complex genetic epigenetic and environmental

interactions.11 This analytical technique is increasingly used in
livestock research for providing a distinctive insight into the
biochemical activity and robustly correlate with animal
production traits.11

For the first time, we previously characterized metabolite
changes in the rumen using the distinct ruminal profiling
method, identifying 33 biomarkers related to differences in
average daily gain (ADG).12 Linoleic/α-linolenic acids (ALA)
metabolism and biosynthesis of aromatic amino acids were the
most altered functional pathways in the rumen associated with
production efficiency of beef steers. In addition, fatty acids
were quantified and evaluated as potential biomarkers to
predict ADG in cattle.
An identification of a distinctive physiological process across

multiple tissues could therefore usefully contribute for
understanding the mechanism associated with cattle feed
efficiency. We hypothesize that differences in ADG of cattle,
with similar intake, are associated with common biochemical
pathways at multiple levels of the tissues metabolism. A
combination of metabolomics fingerprint and targeted
lipidomics analysis was used to identify metabolites from
animals that differed with feed efficiency in duodenum, liver,
subcutaneous adipose, and longissimus-dorsi.
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■ RESULTS
Tissues Metabolomics Profiling. Differences in metab-

olites were identified between least-ADG and greatest-ADG
animals (p < 0.05; see Supporting Information Table S1) in
duodenum (n = 87), liver (n = 92); longissimus-dorsi (LD, n =
95), and adipose (n = 52) tissue. The analysis of these

metabolites revealed specific metabolic pathways to ADG
groups in the duodenum, liver, adipose, and LD (Figures 1 and
2; see Supporting Information Table S2). The α-linolenic acid
(ALA) metabolism was the most relevant metabolic pathway
downregulated in adipose, duodenum, and LD tissues (impact
value = 1 and p < 0.05), whereas taurine and glutathione

Figure 1. Tissues metabolomics pathway analysis by MetaboAnalyst 3.0 Software on the steers with the greatest average daily gain compare to the
least ADG with similar average dry matter intake according to Bos taurus KEGG pathway database. Ultra performance liquid chromatography
quadrupole-time of-flight mass spectrometry (UPLC-q-Tof MS) metabolites identified to differ between ADG by t-test (p < 0.05). (a) α-Linolenic
acid metabolism. (b) Taurine and hypotaurine metabolism. (c) Glycerophospholipids (GLP). (d) Glutathione metabolism. (e) Synthesis and
degradation of ketone bodies. (f) Primary bile biosynthesis. (g) Glycine, serine, and threonine metabolism. (h) Histidine metabolism. (i)
Gluconeogenesis/glucogenolisis metabolisms. (j) Purine metabolism. (k) Steroids metabolism. (l) Pyruvate metabolism. (m) Cholic acid
biosynthesis. (n) Cysteine and methione metabolism. (o) Creatinine metabolism. (p) Unsaturated fatty acids. (q) Ether lipids metabolism. (r)
Pentose and glucoronate interconversion. The darker the color and larger the size represent higher p-value from enrichment analysis and greater
impact from the pathway topology analysis, respectively.
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biosynthesis were upregulated in hepatic tissue (impact value =
0.5 and p < 0.08) in greatest ADG compared to least-ADG
animals.
No common identified metabolites were found in the four

tissues evaluated (Figure 3). However, alanine and ALA were
downregulated in duodenum, LD, and adipose tissues, whereas
oleamide was upregulated in duodenum, LD, and liver tissues,
in greatest ADG compared to least-ADG animals (Figure 3).
In addition, phosphatidylcholine (PC) was upregulated in

high-ADG animals in the four tissues but differed within fatty
acids (Supporting Information Table S1).
Principal component analysis and score plot from supervised

partial least square of discriminant analysis (PLS-DA) were
conducted on the metabolites identified in the tissues. The
analysis revealed a clear clustering between least-ADG and
greatest-ADG animals (Figure 4), which suggest that
biochemistry changed in the tissues according to cattle feed
efficiency. The p-value for 1000 permutations was p < 0.05 in
the tissues, indicating that the PLS-DA model was valid. For
the first component of PLS-DA, descriptive statistics from
model fitting by accuracy, estimates of the goodness of fit (R2),
and estimates of goodness prediction (Q2) by tissue were:
accuracy = 0.81, R2 = 0.52, and Q2 = 0.40 for LD; accuracy =
0.75, R2 = 0.64, and Q2 = 0.42 for adipose; accuracy = 0.94, R2

= 0.94, and Q2 = 0.62 for duodenum; accuracy = 0.75, R2 =
0.77, Q2 = 0.39 for liver.

Phospholipids Quantification in Tissues. On the basis
of the findings of the nontargeted metabolomic analysis,
phospholipids were quantified in liver (Table 1), duodenum
(Table 2), adipose (Table 3), and LD (Table 4). The
performance of phospholipids as biomarkers was assessed
using receiver−operator characteristic (ROC) curves. Accord-
ing to the accepted classification of biomarker utility, the area
under the curve (AUC) was the metric used to assess the
metabolites as candidate markers.17

The concentrations of compounds with the greatest
sensitivity/specificity for ADG differences were cholesterol
and LPC-18:1 in liver (AUC = 0.99, AUC = 0.98; FDR < 0.05;
respectively) followed by PC-18:0/20:3 in LD (AUC = 0.86;
FDR = 0.03). Steers with the greatest ADG had lower

Figure 2. Integrated pathways metabolomics analysis in adipose, duodenum, longissimus-dorsi, and liver compare high-ADG vs low-ADG beef
cattle with similar average dry matter intake according to Bos taurus KEGG pathway database. UPLC-q-Tof MS metabolites identified to differ
between ADG groups by t-test (p < 0.05).

Figure 3. Venn diagram showing the overlap across tissues of the
metabolites identified that differ between ADG groups by t-test (p <
0.05).
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Figure 4. Tissues metabolomic profile of the steers with the greatest average daily gain (high-ADG; open red triangle) and the least ADG (low-
ADG; green plus) with similar average dry matter intake. (A) Principal component analysis for UPLC-q-Tof MS metabolites identified to differ
between ADG by t-test (p < 0.05). (B) Partial least square-discriminant analysis for UPLC-q-Tof MS metabolites identified to differ between ADG
by t-test (p < 0.1). One data point represents one steer.

ACS Omega Article

DOI: 10.1021/acsomega.8b02494
ACS Omega 2019, 4, 3973−3982

3976

http://dx.doi.org/10.1021/acsomega.8b02494


concentration of cholesterol and LPC-18:1 in liver and higher
concentration of PC-18/20:3 in LD than least-ADG steers.
No significant differences (p > 0.05) in phospholipids

concentration were found in the duodenum and adipose
tissues across ADG classification. However, liver cholesterol
concentration was associated with cholesterol concentration in
LD (r = 0.68; p < 0.01) and in duodenum (r = −0.67; p <
0.01), whereas liver cholesterol was not associated with
cholesterol concentration in adipose tissue (r = 0.03; p = 0.40).

■ DISCUSSION
This study represents the first comprehensive metabolome
evaluation based on phenotypic differences in cattle efficiency
for four tissues, duodenum, liver, adipose, and LD, combining
metabolomics and targeted lipidomics approaches. Previ-
ously,12 rumen fluid was evaluated by UPLC-q-Tof MS
metabolomics analysis associated with univariate and multi-
variate statistical methods to identify metabolites that differ-
entiate steers with greatest ADG from least-ADG. On the basis
of this previous approach, metabolomics analyses in multiple
tissues on the same animals were conducted to provide
evidence on physiological mechanisms involved in differences
in weight-to-gain ratios in cattle with similar DMI.
Furthermore, targeted lipidomics analysis was conducted to
support the metabolomics results and provided valuable
potential biomarkers for feed efficiency.
In the current study, the compounds identified according to

differences in ADG, reflected the complexity and diversity of
the metabolism in different tissues. For instance, the adipose

tissues presented 51 compounds mainly associated with fatty
acid metabolism, whereas in the liver 92 compounds were
associated mainly with taurine and glutathione metabolism.
Indeed, no common identified metabolites were found across
the four tissues evaluated. However, ALA metabolism was
downregulated in adipose, duodenum, and LD tissues in
animals with greatest ADG. Lower level of ALA in more
efficient animals might reflect more extensive ruminal
biohydrogenation as reported before in ruminal fluid and
plasma in the same animals.12 The ALA entering tissues is
rapidly accumulated, although a certain percentage of ALA is
subjected to desaturation or β-oxidation depending on the
tissues needs. For instance, longer n-3 fatty acids, such EPA or
DHA or others energetic carbons products, including ATP,
monosaturated fatty acids, and phospholipids.18 In vivo, the
two basic ALA metabolic fates are associated with the
expressions of lipogenic enzymes, substrate level, and product
inhibition.19 Therefore, considering that in this study the
intake is similar between the two ADG groups, ALA levels in
tissues probably reflected a predominant catabolic fate
producing more energy in more efficient animals.
On the basis of fingerprint analysis, glycerophospholipid

(GLP) compounds were the main lipid category, and their
metabolism was displayed in the four tissues evaluated.
According to differences on GLP head group, PC was the
main phospholipid class in LD, liver, and adipose tissue,
whereas the GLP acyl chain length was widely distributed
across tissues. The specific functions of these GLP class/
species are not full elucidated. However, the fatty acid pattern

Table 1. Phospholipid and Cholesterol Concentrations (mg/g) in Longissimus-Dorsi on Steers with the Low and High
Average Daily Gain

groupa

phospholipids and cholesterol high-ADG low-ADG SEM AUCb p FDRc

phosphatidylcholine
16:0/16:0 8.30 7.26 0.87 0.61 0.42 0.47
16:0/18:1 7.09 5.82 0.89 0.66 0.33 0.47
16:/20:3 8.99 7.31 1.01 0.67 0.26 0.43
16:0/20:4 13.1 10.2 1.57 0.63 0.21 0.38
18:0/18:1 2.01 1.72 0.26 0.61 0.43 0.47
18:0/18:2, 18:1/18:1 2.42 1.85 0.29 0.69 0.19 0.38
18:0/20:3 1.12 0.55 0.16 0.86 <0.01 0.03
18:0/20:4 2.93 1.77 0.37 0.80 0.04 0.25
18:0/22:5 1.16 0.52 0.21 0.81 <0.01 0.05
18:0/22:6, 18:1/22:5 2.53 1.72 0.31 0.75 0.09 0.26
18:1/20:4, 18:0/20:5, 16:0/22:5 3.63 2.67 0.46 0.70 0.16 0.37

phosphatidylethanolamine
16:0/18:2 0.28 0.23 0.06 0.55 0.58 0.58
18:0/18:0 0.76 0.52 0.12 0.66 0.16 0.37
18:0/22:5 0.10 0.09 0.02 0.53 0.89 0.89
18:0/22:6 0.28 0.22 0.05 0.56 0.45 0.47

lysophosphatidylcholine
18:0 0.25 0.37 0.09 0.63 0.37 0.47
18:1 0.19 0.20 0.06 0.52 0.94 0.94
18:2 0.07 0.06 0.14 0.53 0.62 0.62

lysophosphatidylethanolamine
16:0 0.04 0.05 0.01 0.61 0.43 0.47
18:0 0.59 0.755 0.06 0.75 0.08 0.18
cholesterol 1.25 1.71 0.08 0.78 0.07 0.18

aGroups were least-ADG steers (n = 8), with the least average daily gain, and greatest-ADG steers (n = 8), with the greatest average daily gain, with
groups having similar dry matter intake. bAUC = area under the curve calculated by receiver−operator characteristic curve analysis. cFDR = false
discovery rate p-adjustment.
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of GLP membrane together with the class distribution of
phospholipids are major lipid-related factors that characterize
the properties and functions of the membranes, including the
regulation of transport processes, energy homeostasis, and
signal transduction.20 Thus, the GLP profile is associated with
diverse metabolic states. For instance, the PC acyl chain length
was associated with the concentrations of glucose, insulin,
leptin, and hepatic cholesterol in humans, and mice fed a high-
fat diet..21−23 Furthermore, in our results, a fatty acid amide
synthesized from phospholipids membrane, Oleamide, was
upregulated in duodenum, liver, LD, and previously, in rumen
fluid.12 The fatty acid amines belong to a group of endogenous
lipid mediators, endocannabinoids, implicated on feed
efficiency and carcass composition of beef cattle.25 Considering
GLP is not only an energy-storage compound but also an
interactive player in various metabolic processes, we sought to
quantify main phospholipids species and cholesterol associated
with ADG in cattle.
Phosphatidylcholine is required for many energetic mech-

anisms such as the efflux of triglycerides and cholesterol by
VLDL and HDL, respectively. In the hepatocytes, it also
regulates fatty acid synthesis and cholesterol oxidation.24

Indeed, the supplementation of rumen-protected choline (as a
precursor of phospholipids) reduced triacylglycerol accumu-
lation in the liver and increased milk yield during the transition
period in dairy ruminants.26,27 However, phosphatidylcholine
has not been extensively studied in beef cattle. Certainly,
dietary supplementation with lecithin improves the feed
conversion rate in pigs on a high-fat diet during finishing
period,28 and rumen-protected choline supplementation has

been shown to promote weight gain and improve meat quality
in young lambs.29 In addition, differential gene expression and
transcripts already highlighted the importance of phospholipids
metabolism in cattle feed efficiency.30,31 Despite dietary
phospholipids are extensively degraded by the rumen32 and
PC concentration depends almost exclusively upon endoge-
nous synthesis,33 understanding of the requirements of PC is
needed to improve feed efficiency in beef cattle.
The concentration of cholesterol is considered a robust

biomarker of feed efficiency in cattle34,35 as consistent with our
results, lower cholesterol in liver and blood is associated with
more efficient beef cattle. Cholesterol concentrations in fact
reflect the capacity of synthesis, transport, and oxidation by the
liver.36 Particularly in ruminants, cholesterol is derived from
hepatic de-novo biosynthesis,37 and its major catabolism
represents the bile acid synthesis.38 In our results, cholesterol
oxidation products, such as glycine or taurine conjugated, were
in turn higher in the liver of animals with greater ADG.
Therefore, the excretion and reabsorption of bile acid forms
represent the basis of the enterohepatic circulation, an essential
mechanism for the digestion and absorption of fatty acids,
which likely relates to cattle feed efficiency.
By contrast, the less efficient animal presented higher

hepatic concentration of cholesterol with an increase of
glutathione metabolism. The liver is the primary organ for
the synthesis of glutathione from glutamate, glycine, and
cysteine and it is a major antioxidant, which regulates the
homeostasis of free radicals.39 Perturbations of glutathione
status are usually a consequence of oxidative stress and redox
shift that impair liver function.40 Thus, the accumulation of

Table 2. Phospholipid and Cholesterol Concentrations in Liver (mg/g) on Steers with the Low and High Average Daily Gain

groupa

phospholipids and cholesterol low-ADG high-ADG SEM AUCb p FDRc

phosphatidylcholine
16:0/16:0 31.9 31.5 2.62 0.59 0.69 0.68
16:0/18:1 6.19 5.01 0.13 0.67 0.14 0.13
16:/20:3 16.1 12.1 1.27 0.79 0.05 0.07
16:0/20:4 16.9 14.1 1.25 0.64 0.13 0.13
18:0/18:1 17.9 14.1 1.46 0.81 0.06 0.09
18:0/18:2, 18:1/18:1 5.24 4.08 0.25 0.78 0.09 0.09
18:0/20:3 7.53 6.07 0.29 0.64 0.12 0.12
18:0/20:4 10.6 8.63 0.88 0.62 0.12 0.12
18:0/22:5 15.4 12.6 1.21 0.64 0.13 0.13
18:0/22:6, 18:1/22:5 12.0 9.71 0.99 0.64 0.12 0.12
18:1/20:4, 18:0/20:5, 16:0/22:5 13.9 11.8 0.95 0.61 0.13 0.13

phosphatidylethanolamine
16:0/18:2 0.20 0.21 0.02 0.53 0.92 0.92
18:0/18:0 0.18 0.15 0.02 0.72 0.23 0.24
18:0/22:5 0.16 0.18 0.01 0.61 0.27 0.27
18:0/22:6 0.12 0.12 0.01 0.61 0.27 0.27

lysophosphatidylcholine
18:0 0.74 1.26 0.20 0.89 0.07 0.07
18:1 1.55 2.47 0.17 0.98 <0.01 0.01
18:2 0.65 0.75 0.14 0.63 0.32 0.32

lysophosphatidylethanolamine
16:0 1.54 2.14 0.29 0.70 0.16 0.16
18:0 0.71 1.02 0.11 0.78 0.07 0.07
cholesterol 3.40 5.06 0.47 0.99 <0.01 0.02

aGroups were least-ADG steers (n = 8), with the least average daily gain, and greatest-ADG steers (n = 8), with the greatest average daily gain, with
groups having similar dry matter intake. bAUC = area under the curve calculated by receiver−operator characteristic curve analysis. cFDR = false
discovery rate p-adjustment.
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cholesterol in the liver may result in part from a decrease in
cholesterol oxidation and transport probably linked with
hepatic performance.
In our results, the concentration of cholesterol was positively

associated in liver and muscle. Despite the lack of information
on body composition or carcass traits in this study, improving
cattle feed efficiency potentially has a beneficial effect on
carcass composition, particularly for the human health aspect.
Furthermore, metabolomics results in LD from animals that
are more efficient and presented a higher level of creatinine
and glucose and lower levels of lactic acid and acetoacetic acid,
which might reflect differences in muscle metabolism. The
physiological role of creatine in the skeletal muscle is as an
“energy shuttle” transferring ATP energy from mitochondria to
the myofibrils, whereas glucose contributes to an intramuscular
great proportion of acetyl units for fatty acid biosynthesis.41,42

In this experimental model, where diet and intake have been
fixed, group differences according to feed efficiency classi-
fication are most likely involved with differences in cattle
physiology and metabolism. Hence, elucidating the metabolic
mechanisms of muscle growth and development associated
with feed efficiency and more importantly developing the
ability to advantageously manipulate gain-to-intake ratios
would allow significant contributions to meat composition.

■ CONCLUSIONS
Overall, lipid transport and oxidation were the main common
metabolic mechanism involved in weight-gain differences at
multiple metabolic levels of complexity in beef cattle

notwithstanding the uniqueness of the molecular composition
of each tissue. Both mechanisms were associated with the
levels of ALA, phosphatidylcholine, and cholesterol that could
be considered as useful biomarkers (in other sample formats
e.g., blood, plasma) for feed efficiency in beef cattle. The
integration of the metabolomics profiles of tissues and
metabolites points to the hepatic function as an important
metabolic crossroad that has the potential to improve the gain-
to-feed ratios.
Combining analyses of multiple tissues may offer a powerful

approach for defining the molecular basis of differences in
performance among cattle for key production attributes

■ EXPERIMENTAL PROCEDURES

Study Design and Samples Details. This study was
approved by the Institutional Animal Care and Use Committee
(IACUC) at the U.S. Meat Animal Research Center.
After weaning, steers (n = 144 Angus-sired) were housed in

a facility with Calan Broadbent electronic headgates (American
Calan, Inc., Northwood, NH) to measure individual feed
intake. The diet consists on a DM basis, of 8% chopped alfalfa
hay, 20% wet distillers grains with solubles, 67.75% dry-rolled
corn, and 4.25% commercial vitamin and mineral supplement;
the supplement contained monensin (Rumensin 80; Elanco
Animal Health, Greenfield, IN) to meet the nutrient
requirements (NRC, 2016) and provide a finished marketed
carcass. Further details about the experimental design were
provided previously.12 Briefly, feed intake was measured for

Table 3. Phospholipid and Cholesterol Concentrations in Adipose Tissue (mg/g) on Steers with the Low and High Average
Daily Gain

groupa

phospholipids and cholesterol high-ADG low-ADG SEM AUCb p FDRc

phosphatidylcholine
16:0/16:0 14.1 9.6 2.08 0.70 0.14 0.59
16:0/18:1 3.77 3.2 0.64 0.62 0.55 0.67
16:/20:3 6.36 5.3 1.04 0.52 0.80 0.85
16:0/20:4 8.21 6.7 1.13 0.58 0.35 0.59
18:0/18:1 1.28 1.6 0.26 0.67 0.44 0.59
18:0/18:2, 18:1/18:1 1.81 1.6 0.31 0.67 0.40 0.59
18:0/20:3 2.05 1.7 0.30 0.63 0.35 0.59
18:0/20:4 3.69 2.9 0.54 0.55 0.31 0.59
18:0/22:5 1.35 0.9 0.25 0.62 0.20 0.59
18:0/22:6, 18:1/22:5 2.84 2.5 0.43 0.68 0.21 0.59
18:1/20:4, 18:0/20:5, 16:0/22:5 3.65 2.9 0.50 0.63 0.30 0.59

phosphatidylethanolamine
16:0/18:2 0.39 0.21 0.06 0.77 0.06 0.59
18:0/18:0 0.15 0.09 0.02 0.71 0.14 0.59
18:0/22:5 0.47 0.29 0.05 0.69 0.19 0.59
18:0/22:6 0.71 0.52 0.12 0.63 0.30 0.59

lysophosphatidylcholine
18:0 0.03 0.04 0.01 0.61 0.45 0.59
18:1 0.06 0.07 0.02 0.52 0.89 0.89
18:2 0.38 0.32 0.05 0.53 0.81 0.85

lysophosphatidylethanolamine
16:0 0.03 0.02 0.01 0.55 0.45 0.59
18:0 0.76 0.70 0.15 0.60 0.28 0.59
cholesterol 3.29 3.23 0.22 0.53 0.78 0.59

aGroups were least-ADG steers (n = 8), with the least average daily gain, and greatest-ADG steers (n = 8), with the greatest average daily gain, with
groups having similar dry matter intake. bAUC = area under the curve calculated by receiver−operator characteristic curve analysis. cFDR = false
discovery rate p-adjustment.
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105 days in steers, and body weight was measured on days 0, 1,
21, 42, 63, 84, 104, and 105 of the experiment.
After the end of intake study, steers received the same ration

ad libitum and remained in the same pen until slaughter (5−8
days). On the basis of the DMI and ADG data, steers were
selected according to differences in ADG (p = 0.01) with those
with the greatest ADG (n = 8; 1.96 ± 0.02 kg/day) and least
ADG (n = 8; 1.57 ± 0.02 kg/day), whose dry matter intake
was within 0.32 SD of the mean intake (10.10 ± 0.05 kg/day; p
= 0.41). The final body weight of the steers with the greatest
ADG was 582.80 ± 52.06 kg and least ADG was 596.80 ±
58.87 kg.
Steers were slaughtered 5 days after the feeding period for 4

consecutive days (4 animals/day). Before slaughter, steers had
ad libitum access to feed and water. Tissues were collected
immediately after slaughter; the mucosa layer was removed
from the wall of duodenum with a sterile scalpel blade from the
small intestine from a section removed approximately 5 cm
caudal of the cranial duodenal flexure; subcutaneous adipose
tissues were collected from the tail−head; liver samples were
collected from left lobule, and longissimus-dorsi (LD) from the
section adjacent from the 12th rib. All tissue samples were
immediately placed in liquid nitrogen, with storage at −80 °C
after collection.
Nontargeted Metabolomics Analysis. Duplicate sam-

ples of each tissues were extracted for metabolomics analysis.
The extraction procedure was adapted from Artegoitia et al.12

Briefly, tissues were individually pulverized with 6875D
Freezer/Mill (Spex sample prep; Metuchen, NJ), and 50 mg

of each tissue was weighed and diluted with 1 mL of
chloroform/methanol/water (1:2:0.8 v/v), vortexed, and
centrifuged at 16 000g for 10 min at 4 °C. The supernatant
and solid precipitate were separated in different vials for
aqueous (supernatant) and organic (precipitate) extractions,
respectively. For the aqueous extraction, the supernatant was
transferred to a new vial, dried under a nitrogen stream, and
resuspended in 500 μL of acetonitrile/water (9:1 v/v). For the
organic extraction, the solid precipitate was dissolved in 1 mL
of dichlormethane/methanol (3:1 v/v), centrifuged (16 000g,
10 min at 4 °C), dried under a nitrogen stream, and
resuspended in 500 μL in acetonitrile/water (9:1 v/v). The
ultra-performance liquid-chromatography/mass spectrometry
(UPLC/MS) analysis was carried out using a Waters
ACQUITY ultra-performance liquid-chromatography
(UPLC) system (Waters Corp., Milford, MA) equipped with
an autosampler and coupled with a hybrid triple quadrupole-
time of-flight mass spectrometry (XEVO-G2-S-qTOF; Waters
Corp.). Details of instrument calibration, quality control
samples, chromatogram separation, and MS system parameters
were carried out as described before.13

Quantitative Lipidomics Analysis. The phospholipids
were quantified in duodenum, liver, longissimus-dorsi (LD),
and adipose tissue by UPLC-triple quadrupole mass
spectrometry using an adapted methodology.13 Briefly,
phospholipids were extracted from 50 mg of tissues using
the Bligh and Dyer method.14 A mixture (1 μL) of deuterated
phospholipids (Avanti Polar 330707, Alabaster, AL) was used
as an internal standard. The calibration curves for lysophos-

Table 4. Phospholipid and Cholesterol Concentrations in Duodenum (mg/g) on Steers with the Low and High Average Daily
Gain

groupa

phospholipids and cholesterol high-ADG low-ADG SEM AUCb p FDRc

phosphatidylcholine
16:0/16:0 10.3 8.84 0.65 0.72 0.13 0.24
16:0/18:1 1.04 0.87 0.07 0.75 0.10 0.21
16:/20:3 2.03 1.64 0.13 0.73 0.06 0.21
16:0/20:4 2.57 2.08 0.16 0.77 0.06 0.21
18:0/18:1 0.42 0.34 0.03 0.75 0.10 0.21
18:0/18:2, 18:1/18:1 0.63 0.50 0.05 0.77 0.07 0.21
18:0/20:3 0.40 0.34 0.03 0.67 0.21 0.26
18:0/20:4 0.86 0.74 0.06 0.70 0.17 0.25
18:0/22:5 1.85 1.73 0.28 0.66 0.18 0.25
18:0/22:6, 18:1/22:5 1.81 1.39 0.17 0.75 0.10 0.21
18:1/20:4, 18:0/20:5, 16:0/22:5 1.14 0.96 0.08 0.73 0.16 0.25

phosphatidylethanolamine
16:0/18:2 0.42 0.39 0.06 0.56 0.76 0.76
18:0/18:0 0.20 0.22 0.02 0.60 0.57 0.59
18:0/22:5 0.59 0.47 0.02 0.52 0.75 0.75
18:0/22:6 0.05 0.06 0.01 0.53 0.59 0.59

lysophosphatidylcholine
18:0 0.92 0.81 0.08 0.67 0.38 0.43
18:1 3.70 3.41 0.53 0.57 0.70 0.70
18:2 21.1 21.8 4.94 0.56 0.91 0.91

lysophosphatidylethanolamine
16:0 3.73 4.27 1.06 0.52 0.72 0.72
18:0 1.23 1.07 0.09 0.73 0.84 0.84
cholesterol 1.46 1.20 0.09 0.62 0.10 0.21

aGroups were least-ADG steers (n = 8), with the least average daily gain, and greatest-ADG steers (n = 8), with the greatest average daily gain, with
groups having similar dry matter intake. bAUC = area under the curve calculated by receiver−operator characteristic curve analysis. cFDR = false
discovery rate p-adjustment.
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phatidylcholine (LPC; Avanti Polar 83007, Alabaster, AL),
lysophosphatidylamine (Avanti Polar 840081, Alabaster, AL),
phosphatidylethanolamine (Avanti Polar 330707, Alabaster,
AL), phosphatidylcholine (PC; Avanti Polar 840055, Alabast-
er, AL), and cholesterol (Avanti Polar 700000, Alabaster, AL)
were prepared by serial dilution (8-fold) in water/methanol
(1:9 v/v).
The UPLC/MS analysis was carried out using a Waters

ACQUITY ultra-performance liquid-chromatography (UPLC,
Acquity BEH HILIC, 2.1 × 100 mm × 1.7 μm; Waters Corp.,
Milford, MA) equipped with an autosampler and coupled with
a triple quadrupole mass spectrometry (XEVO-TQS; Waters
Corp.). Details of instrument calibration, chromatogram
separation, and MS system parameters were carried out as
described before.13

Data and Statistical Analysis. Data processing and
analysis were conducted individually for each tissue. Raw
data from the fingerprinting analysis was aligned and
normalized using total ion intensity using Progenesis QI v1.0
software (Waters Corp.). The bovine Metabolome Database
(http://www.cowmetdb.ca/) was used to identify tissue’s
compounds by using exact m/z values and retention times.
Data were tested for normality and log transformed and

standardized using the Pareto scaling technique. The t-test,
principal components analysis, and partial least square of
discriminant analysis (PLS-DA) were conducted to identify
and visualize differences of the compounds identified between
least-ADG and greatest-ADG animals using MetaboAnalyst 3.0
software according to previously published recommended
statistical procedure for metabolomics analysis.15 Raw p-values
were adjust by PROC MULTTEST procedure of SAS 9.3
(SAS Inst. Inc., Cary, NC) and reported as fold discovered rate
(FDR) p-adjusted.
The Venn diagram of the identified metabolites between

ADG groups was conducted across the four tissues.16 Pathway
analysis was performed using a Bos taurus pathway library,
which integrates global pathway enrichment analysis and
relative between centrality pathway topology analysis from
MetaboAnalyst 3.0 software. The identification and visual-
ization of the top altered pathway were based on KEGG
(http://www.genome.jp/kegg/) database sources.
The concentration of phospholipids was evaluated by t-test

(p-adjusted), and a receiver−operator characteristic curve
(ROC) used to evaluate the sensitivity and specificity of
potential metabolic biomarkers.17 In addition, the association
of cholesterol concentration among tissues was evaluated by
PROC CORR procedure of SAS 9.3 (SAS Inst. Inc., Cary,
NC).
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