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ABSTRACT 

Transdisciplinary food systems research aims to merge insights from multiple 

fields, often revealing confounding, complex interactions.  Computational modeling 

offers a means to discover patterns and formulate novel solutions to such systems-level 

problems.  The best models serve as hubs—or boundary objects—which ground and 

unify a collaborative, iterative, and transdisciplinary process of stakeholder 

engagement.  This dissertation demonstrates the application of agent-based modeling, 

network analytics, and evolutionary computational optimization to the pressing food 

systems problem areas of livestock epidemiology and global food security.  It is 

comprised of a methodological introduction, an executive summary, three journal-

article formatted chapters, and an overarching discussion section.   

 

Chapter One employs an agent-based computer model (RUSH-PNBM v.0.8) 

developed to study the potential impact of the trend toward increased producer 

specialization on resilience to catastrophic epidemics within livestock production 

chains.  In each run, an infection is introduced and may spread according to 

probabilities associated with the various modes of contact between hog producer, feed 

mill, and slaughter plant agents.  Experimental data reveal that more-specialized 

systems are vulnerable to outbreaks at lower spatial densities, have more abrupt 

percolation transitions, and are characterized by less-predictable outcomes; suggesting 

that reworking network structures may represent a viable means to increase biosecurity.   

 

Chapter Two uses a calibrated, spatially-explicit version of RUSH-PNBM 

(v.1.2) to model the hog production chains within three U.S. states.  Key metrics are 

calculated after each run, some of which pertain to overall network structures, while 

others describe each actor’s positionality within the network.  A genetic programming 

algorithm is then employed to search for mathematical relationships between multiple 

individual indicators that effectively predict each node’s vulnerability.  This “meta-

metric” approach could be applied to aid livestock epidemiologists in the targeting of 

biosecurity interventions and may also be useful to study a wide range of complex 

network phenomena.   

 

Chapter Three focuses on food insecurity resulting from the projected gap 

between global food supply and demand over the coming decades.  While no single 

solution has been identified, scholars suggest that investments into multiple 

interventions may stack together to solve the problem.  However, formulating an 

effective plan of action requires knowledge about the level of change resulting from a 

given investment into each wedge, the time before that effect unfolds, the expected 

baseline change, and the maximum possible level of change.  This chapter details an 

evolutionary-computational algorithm to optimize investment schedules according to 

the twin goals of maximizing global food security and minimizing cost.  Future work 

will involve parameterizing the model through an expert informant advisory process to 

develop the existing framework into a practicable food policy decision-support tool.   
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INTRODUCTION 

1.1 Problem Statement and Overview 

Given the complex, interconnected nature of food production, distribution, and 

consumption, the shortcomings of traditional methodological approaches—i.e. those 

rooted within single academic disciplines—have become increasingly evident.  For 

example, while statistical survey research, interviews and other qualitative methods, 

supply chain and network modeling, public policy analysis, and other methodologies 

can provide valuable clues, they often struggle to capture overarching patterns that are 

not immediately evident through these field-specific analytical techniques.  Recent 

transdisciplinary food systems studies have shown that, when diverse research efforts 

are integrated under a single framework, the sum can be bigger than its parts (Deppisch 

and Hasibovic 2013).  However, even when guided by systems thinking (Meadows 

2008), amalgamating research findings across multiple fields often quickly becomes a 

“big data” problem, with complex, non-linear interaction effects making it difficult or 

impossible to simply intuit high-level patterns.   

Computational modeling and data science offer a unique opportunity to parse 

this complexity and discover patterns that lie at the nexus of disciplinary boundaries, 

leading to new intuitions about how to address systems-level problems.  Often the goal 

is to create a Digital Decision Support Systems (DDSS) that can help to inform and 

guide policymaking and other strategic decisions.  The best models integrate existing 

findings from key disciplinary fields, available datasets compiled by governmental and 
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other large-scale agencies, as well as an iterative and collaborative process of original 

qualitative and/or quantitative research to solicit expert stakeholder input and advice 

(Alavi and Leidner 2001).  The diverse stakeholder group involved in parameterizing 

and ground-truthing this kind of model throughout its development can also serve as an 

outlet to disseminate model results to a non-academic audience for maximum possible 

real-world effect.   

This dissertation includes three chapters, each of which provides an example of 

the ways in which complex systems computational methods—including agent-based 

modeling, computational optimization, and supply chain network analytics—can be 

applied to the critical food systems problem areas of livestock disease prevention 

(Chapters 1 and 2) and global food security (Chapter 3).  The introduction section 

provides an overview of previous research in the areas of food systems and complex 

systems scholarship.  Following that is an executive summary section focused on 

research motivations and key takeaways from this dissertation.  After the three chapters 

are presented, a summary section reflects on lessons learned through the 

transdisciplinary research process (specifically as pertains to the application of 

computer modeling), suggests directions for future research, and highlights key policy 

implications.   

1.2 Food Systems Research 

Food systems is a relatively novel field of study that has gained considerable 

traction in recent years.  It is rooted in an inter/trans-disciplinary ethos which aims to 
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bridge across multiple traditional avenues of academic study to inform a holistic 

understanding that’s bigger than the sum of its parts.  While they share similar 

motivations, a distinction may be drawn between the interdisciplinary and 

transdisciplinary approach.  Interdisciplinary research involves a shared central core set 

of research questions, with scholars in various disciplines contributing to the overall 

project according to their own areas of expertise.  In contrast, transdisciplinary research 

establishes a collaborative research agenda from the outset that is explicitly aimed at 

discovering new understandings that lie between traditional disciplinary bounds 

(Hammond and Dubé 2012, Méndez et al. 2013).  Along with inter/trans-disciplinarity, 

a coequal core tenet of food systems research is that it should reach beyond the 

academy to inform and drive real-world positive change, for example by 

communicating key findings in clear language that can be understood by practitioners, 

rather than focusing solely on academic publications.   

Breaking down the title itself, “food systems” is first and foremost focused on 

the multiple and varied implications of the interactions between human society and the 

food we eat.  However, rather than focusing on just one component of food as 

traditional disciplines have done (e.g. nutrition, food science, agronomy), food systems 

works across multiple interrelated domains including agricultural production, 

ecological systems, pests and disease, labor justice, economics, distribution chains, 

consumption choices, preparation practices, human health, and waste processing.   
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Also inherent in the food systems approach is the concept of systems thinking.  

Viewing the world through a systems lens requires scholars to transcend the simple 

cause-and-effect reasoning that is so common in academia.  Instead of, for example, 

chasing p-values of bivariate correlations, systems thinkers must accept complexity and 

wrestle with the interactions between the multiple and varied moving parts that make 

up our food systems, accounting for factors such as feedback loops, nonlinearities, time 

delays, leverage points, and unintended consequences (Meadows 2008).   

The goal of food systems research is not to precisely predict outcomes, but 

instead to embrace the inherent complexity associated with our field of study.  As food 

systems scholars, we should be up front about the limitations of our predictions and 

proposed solutions.  However, we should still recognize the potential of our research to 

inform valuable new intuitions about how to tackle complex challenges.  In the words 

of pioneering systems thinker Donella Meadows (2001): 

The future can't be predicted, but it can be envisioned and brought lovingly into 

being. Systems can't be controlled, but they can be designed and redesigned. We 

can't surge forward with certainty into a world of no surprises, but we can expect 

surprises and learn from them and even profit from them. We can't impose our 

will upon a system. We can listen to what the system tells us, and discover how its 

properties and our values can work together to bring forth something much better.  
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1.2.1 Development of Food Systems Frameworks 

Given the diverse disciplines and components of food systems, as well as the 

varying scales across which it operates, many efforts have been made to formalize the 

complex set of interactions between key food systems actors and processes.  Sobal et al. 

(1998) were among the first to propose an integrated conceptual model of the overall 

food system.  The authors leverage existing academic understandings of individual 

disciplinary sub-systems, coupled with new qualitative research, to inform a 

synthesized, transdisciplinary framework linking production, consumption, nutrition, 

geophysical resources, social structures, policymaking, and other factors (Figure 1).  

Through such an integrated framework, the authors encourage future food systems 

researchers to anticipate how their own findings may resonate through the system and 

affect outcomes across interconnected domains.   
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Figure 1: Food system interactions and feedbacks proposed by Sobal et al. (1998) 

 

Ericksen (2008) follows up with a framework that delves deeper into the 

complex interactions between food systems structures, global environmental change, 

and resultant societal outcomes; including food security, ecosystem services, and social 

welfare (Figure 2).  The authors aim to bridge findings from the natural sciences and 

social sciences to analyze how factors previously conceived as disparate may interact 

through the multi-scale interventions, feedback loops, and tradeoffs described by 

systems theorists.  While they recognize that their model remains theoretical, they 

suggest that additional empirical research may one day flesh it out such that it can be 

used to guide real-world decision-making.   
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Figure 2: Theoretical framework showing major drivers of food systems outcomes (a), and 

primary food systems actors and activities (b), from Ericksen (2008). 
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As the field has grown, a more recent trend in theoretical food systems research 

aims to compare and contrast the multiple existent frameworks that have been proposed 

under the food systems umbrella.  Yu at al. (2012) distinguish between several 

divergent perspectives through which scholars have traditionally addressed food 

security, for example crop yields (especially with respect to climate change), versus 

food distribution and allocation.  The authors categorize these research approaches into 

spatial levels (field, regional, and global), as well as their specific research domains.  

They go on to synthesize these studies and develop an integrated framework through 

which food security policy can be evaluated, concluding that data from long-term in 

situ field experiments, regional monitoring and simulation, and global scenario 

assessments must be joined to inform effective solutions.   

Similarly, Foran et al. (2014) use a “conceptual triangulation” approach to 

assess four different frameworks, focusing on the causes of food insecurity from the 

perspective of either agroecology, agricultural innovation, social-ecological systems, or 

political ecology.  The authors identify divergent findings in some regards, but 

synergies in others, leading them to propose public policy interventions that can help to 

address food security from a systems perspective.   

Ruben et al. (2019) also attempt to operationalize efforts to conceptualize a food 

systems framework toward the goal of improving nutrition outcomes.  The authors 

present the problem through the so-called “3I approach,” which considers (a) 
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intersections with other systems, (b) interactions within the food system, and (c) 

incentives for future innovations.  They analyze various propositions aimed at 

improving nutrition, finding a diversity of proposed solutions, each largely situated 

within disciplinary bounds.  The authors call for an integrated approach that accounts 

for dynamic feedbacks between actions at different food systems levels, more research 

toward identifying effective leverage points and external drivers of system dynamics, 

and the identification of tradeoffs between proposed interventions.  By strategically 

considering how interventions in seemingly-disparate parts of the food system may 

impinge upon nutrition outcomes, it becomes possible to identify leverage points that 

can efficiently improve nutrition outcomes, while also potentially leading to positive 

change in other food systems problem areas.    

1.2.2 Applications of the Food Systems Methodology 

While serving as important foundational roadmaps, generalized frameworks 

representing interactions between the full range of food system actors are not generally 

sufficiently-detailed to guide on-the-ground action.  To focus research efforts on real-

world problem-solving, applied food systems research is generally tailored to address a 

subset of problem areas, albeit still accounting for exogenous factors stemming from 

other changes to the system.   

For example, Born and Purcell (2006) analyze the validity of the commonly-

held assumption that local food systems are necessarily more ecologically-sustainable, 

nutritious, and socially-just by examining case-study evidence.  The authors conclude 
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that this assumption—which they call the “local trap”—is not necessarily valid due to 

heterogeneities in production scale, labor practices, transportation, and distribution 

independent of the physical proximity between producer and consumer.   

Agroecology is another active area of transdisciplinary food systems research 

which aims to integrate key findings related to agricultural production, economics, 

environmental impacts, and social wellbeing (Méndez et al. 2013).  Francis et al. (2007) 

criticize the “siloed” academic discourse in these areas, arguing that a key solution rests 

in the intentional development of effective pedagogical landscapes that enable students 

to think critically, adapt to change, cross disciplinary boundaries, and participate with 

community stakeholders to effect on-the-ground results.   

Thompson and Scoones (2009) focus on agricultural policy, criticizing the 

hegemonic neoliberal approach for its focus solely on technology and production 

efficiency, and pointing out its failure to adequately grapple with issues of 

distributional equity and poverty.  The authors propose that an interdisciplinary 

research agenda focusing on social, environmental, and economic factors at the local 

level can be far more effective than analyzing aggregate statistical averages, as it would 

allow for deeper understandings of the ways in which dynamic interactions between 

these factors can help inform more resilient food systems.   

Ingram (2011) uses the food systems methodology to analyze the interactions 

between global climate change and projected food security over the coming decades.  

By integrating projected effects across all major food systems activities (e.g. 
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production, processing, consumption, etc.), the author makes the case that a systems-

thinking approach can help to identify critical stakeholders, effective leverage points, 

likely environmental externalities, and research agendas which will help to produce and 

equitably-distribute sufficient quantities of food to feed our growing population.   

Hammond and Dubé (2012) also peer through a systems lens to develop a 

transdisciplinary framework encapsulating the precursors underlying nutrition and food 

security.  The authors point to three interacting systems—agri-food, health, and 

environment—as the primary drivers.  They suggest that computational simulation 

models which integrate insights from multiple domains may be a valuable tool to better 

understand these complex interactions and to broaden the scope of policy intervention 

proposals designed to curb food insecurity.   

Vermeulen et al. (2012) use interdisciplinary research methods to study the 

relationships between food systems and anthropogenic climate change, accounting for 

factors from multiple disciplines including agricultural yield trends, economic demand, 

supply chain logistics, and food safety.  Based on computational integrative assessment 

modeling, the authors analyze the likely strengths and weaknesses associated with 

interventions designed to intensify agricultural production and/or reduce food waste.   

Foran (2015) leverages the food systems approach to analyze the water-energy-

food nexus in southeast Asia.  She focuses on the interactions between three key study 

domains—energy efficiency, fisheries, and smallholder agriculture—to develop a 
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holistic model which identifies specific policy interventions aimed at the nexus between 

the three.   

Despite the demonstrated potential of trans / interdisciplinary, systems-oriented 

research to identify new leverage points to solve food systems problems, there is often a 

knowledge gap between research focusing on high-level theoretical frameworks and 

research aimed at identifying workable solutions (Sobal et al. 1998, Ericksen 2008, 

Thornton et al. 2018).  The crux of this shortcoming in food systems praxis stems from 

the inherent difficulty of distilling the complex interactions between diverse multi-scale 

interventions into efficient, concrete action steps.  In the following sections we argue 

that recent advances in complex systems scholarship—which relies on computational 

science to discover the links between individual human actions and macro-level 

consequences—represent an effective means to integrate systems thinking with the goal 

of real-world positive change within our food systems.   

1.3 Complex Systems Research 

The genesis of complexity theory stems from the realization that many real-

world problems and observed phenomena are governed by multi-scale, interconnected, 

adaptive, self-organizing systems (Boccara 2010).  Complex systems has been called 

“the essential 21st Century science” due to its focus on producing radical new ways of 

understanding these phenomena (ISTFETC Action 2006).  Complex systems research 

often leverages humanity’s ever-growing mountain of data, applying novel 
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computational methods to explore the complex relationships and interactions that lead 

to emergent, sometimes-unanticipated systems-level outcomes.   

Dynamic natural systems are often characterized as “robust yet fragile,” 

meaning that—while they are generally balanced, flexible, and resilient to 

perturbations—under the right circumstances, they are prone to sudden changes, 

potentially leading to catastrophic outcomes from which recovery is difficult or 

impossible (Carlson and Doyle 2000, 2002, Newman et al. 2002).  For example, 

positive feedback loops may accelerate the pace of change as some system parameter 

nears a point of criticality, potentially shifting the system toward a new equilibrium, or 

even a fundamentally-different dynamical regime, such as periodic fluctuations, or 

chaotic, unpredictable outcomes.  A system which has reached such a “tipping point” 

may also experience hysteresis, meaning that simply reverting the key parameter back 

toward its original value will fail to bring the system back to its original equilibrium 

(Ball 2004, Sornette 2006).   

For example, climate scientists predict that increasing arctic temperatures will 

result in increased snow-melt, which—because the bright surface of snow reflects a 

great deal of heat energy away from the earth—forms a positive feedback loop, leading 

to runaway increases in global temperature.  There may well be a critical point—which 

global society had better hope we haven’t already surpassed—beyond which simply 

reducing global temperatures, for example by ceasing to burn carbon fuels, will no 
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longer be sufficient to bring the system back to its original, comfortable equilibrium 

state (Lenton et al. 2008).   

A related concept from complex systems science is percolation theory, which 

describes how incrementally increasing density or connectivity within a system can 

lead to nonlinear scaling in the size of a spreading event (Stauffer and Ammon 2014).  

Once the density or connectivity surpasses some “percolation threshold,” the expected 

magnitude of spread in the system begins to skyrocket.  This behavior has been 

observed across many systems, ranging from the impact of tree density upon forest fire 

size, to the impact of internet connectivity upon resilience to outages, to the impact of 

connectivity patterns within social, transportation, and trade networks upon the 

likelihood of catastrophic disease outbreaks (Grassberger 1983, Ohtsuki and Keys 

1986, Moore and Newman 2000, Cohen et al. 2000, Sander et al. 2002, Serrano and 

Boguná 2006, Stauffer and Ammon 2014).   

1.3.1 Modeling Complex Systems 

Computational modeling represents a potent tool to explore the mechanisms 

underlying complex, emergent, systems-level outcomes.  Systems composed of large 

numbers of heterogenous interacting agents do not lend themselves to analytical (i.e. 

formal mathematical) analysis.  Instead, the fundamental properties of these systems 

have historically been obtained through numerical analysis (i.e. data-driven statistical 

approaches) of computer model outputs (Boccara 2010).  The computer-modeling-plus-
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numerical-analysis approach has led to many key insights into the dynamics of both 

conceptual and real-world complex systems.   

Echoing Meadows’ (2001) argument against the expectation of precise 

prediction and control, complexity theorists have philosophized about the common 

presumptions surrounding the computer modeling project.  While it is generally 

assumed that prediction should be the ultimate goal of any computer model (as it is in, 

for example, weather forecasting), this is not the only valuable result that has come 

from complex systems modeling endeavors.  Even where prediction is unfeasible—due, 

for example, to a lack of sufficiently-precise parameterization data—models can still 

illuminate complex phenomena, identify the core dynamics of a system, highlight 

uncertainties, raise new questions, and serve as touchstones which ground and verify 

the diverse assumptions of an interdisciplinary research team (Epstein 2008).    

Due to the diversity of the complex systems research community—which is 

made up of computer scientists, physical scientists, natural scientists, social scientists, 

policymakers, and more—computational models have taken many forms.  Some 

models—often referred to as “toy” models—are explicitly designed to be as simple as 

possible, and to be generalizable across multiple domains, serving as thought 

experiments rather than attempting to accurately represent any real-world system 

(Schelling 1978, Boccara 2010).  For example, the Lotka-Volterra predator-prey model 

(Lotka 1925, Volterra 1926)—which is based on two simple differential equations—is 

classically taught in undergraduate ecology courses.  Despite being empirically 
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“wrong” when applied to any real-world system, it remains valuable because it helps 

students to formulate intuitions about the core dynamics at play in predator-prey cycles 

more generally.  Similarly, the Kermack-McKendrick equations, which form the basis 

of the Susceptible Infective Recovered (SIR) model, offer fundamental insights into the 

nonlinear threshold nature of disease spread, despite being too simplistic to predict the 

course of any real-world epidemic (Kermack and McKendrick 1927, Epstein 2008).  

Despite their limitations as predictive decision support tools, the “stylized facts” 

generated from this class of models can be academically-valuable in their own right.   

Other modelers aim to apply the qualitative insights and technical methods of 

complex systems modeling to better understand, interpret, and perhaps even forecast 

real-world outcomes.  These context-specific models are often intended to inform high-

level decision-making (Miller and Page 2009, Squazzoni and Boero 2010).  Whereas 

some have claimed that increased complexity muddies the waters when formulating 

concrete plans of action, others embrace the inherent complexity associated with 

virtually-all important decisions.  By leveraging computational models, policymakers 

can begin to think beyond simple cause and effect logic, leading to improved 

considerations of uncertainty, probability, and potential unintended consequences 

(Bankes 2002).   

1.4 Application of Complex Systems Modeling to Food Systems 

Based on the above, it is clear that important synergies exist between food 

systems and complex systems research.  Both are rooted in systems thinking and seek 
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to understand how the interactions between a heterogenous set of agents operating 

across multiple scales and in varying roles produce emergent macro-level outcomes 

(Meadows 2001).  While complex systems science has been applied widely—exploring 

both “toy” models and context-specific ones—in food systems, we aim to apply 

insights from foregoing complexity research to effect positive change in real-world 

problem areas.   

The food system encompasses many sub-disciplines, and as such, computational 

modeling has been applied broadly.  Much as applied food systems research must focus 

on a limited set of problems, the application of complex systems modeling is generally 

narrowed around one of the key food systems problem areas, including human 

nutritional wellbeing, agricultural economic viability, food availability and security, 

disease resilience, ecological externalities, and more.   

Perrot et al. (2011) lay out a comprehensive framework establishing the 

applicability and usefulness of complex systems science to tackle major food systems 

problems.  The authors classify modeling approaches based on their scale (macro, 

meso, and micro).  They also distinguish between empirical models in which all 

relevant parameterization data are available, versus those in which the general structure 

is prescribed by the modeling team, while experimental and statistical data are used to 

fill in missing knowledge wherever possible.   

Hammond (2009) considers public policies designed to address the obesity 

epidemic that is currently sweeping the globe.  He notes that the challenge of solving 
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the problem stems from the fact that it operates within a complex adaptive system, 

being characterized by multiple scales, heterogeneous actors, uncertainty as to effective 

leverage points, tipping points, and emergent systems-level properties.  The author 

concludes that effective models of the obesity epidemic should capture these 

complexities, accounting for multiple theories of change across varied actors operating 

at different scales.   

Van der Vorst et al. (2000) focus on the food supply chain, using discrete-event 

simulation to evaluate how supply chain management (SCM) decisions impinge upon 

the efficient and safe transportation of chilled food products from producer to 

consumer.  Despite the fact that SCM is typically approached using analytical models, 

the authors suggest that the multi-echelon, heterogeneous nature of managerial 

decision-making necessitates complex dynamic modeling, and thus numerical analysis.  

Results suggest that a focus on delivery ordering, frequency, lead times, and new 

informational systems are most likely to increase supply chain throughput.   

Bryceson and Smith (2008) also study decision-making within agri-food chains, 

once again identifying the fundamental characteristics of complex systems within the 

food system.  In this case, the authors point out how firms from different industry 

sectors (for example grain, beef, dairy, and wool) must collaborate to form both inter-

organizational and cross-organizational decision-making networks.  Focusing on the 

Australian beef production chain, the authors compare and contrast Bayesian and agent-
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based modeling approaches, concluding that—given sufficient computational power 

and data availability—both represent valuable means to study such systems.   

Finally, a great deal of food systems modeling research has focused on the 

impact of agricultural production and land-use practices on nonpoint-source pollution.  

This problem is particularly “wicked,” since it occurs within a coupled human and 

natural-system.  Each piece of the puzzle is itself complex, with nutrient flows being 

governed by geophysical dynamics, and agricultural production practices by human 

decision-making.  Young et al. (1989) were among the first to develop a computer 

model to explore how nonpoint-source pollution spreads across land cells in a 

watershed, accounting for factors including runoff vs. retention, nutrient transport 

through different soils, site elevation, surrounding geography, nutrient solubility, and 

discharge dynamics.  More recently, models focused on human factors have been 

developed, such as Tsai et al.’s (2015) Land Use Transition Agent-Based Model 

(LUTABM), which accounts for each land manager’s expected utility, socio-economic 

trends, and forestation / deforestation dynamics to forecast regional land-use changes.  

Zia et al. (2016) expand on this work, coupling results from LUTABM with nutrient 

loading models to develop an integrated assessment model which considers the 

potential effects of both climate change and land use decisions on agricultural runoff 

and water quality.   

Upon first glance, it would seem that the primary purpose of computational 

modeling for food systems research rests in the final product, i.e., the DDSS that is 
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ultimately developed and can be leveraged to guide and inform policy decisions.  While 

this is certainly a critical goal, it is merely the endpoint of a lengthy process.  In this 

dissertation, I argue that the computational modeling process itself can be a valuable 

transdisciplinary research tool: success often derives from the journey, and not solely 

the destination.  Computational model development can serve as a framework to ground 

a transdisciplinary research endeavor.  With a collaboratively-developed model as the 

backbone, experts from multiple disciplines—both inside and outside academia—can 

provide input based on their own lived experiences.  Their diverse hypotheses can be 

formally evaluated through the modeling process, and the iterative development of the 

model can serve as a sounding board through which consensus can be established.  This 

companion modeling process can indeed produce effective DDSS tools, but it can also 

serve as an ecosystem which promotes transdisciplinary communication and builds 

mutual trust and understanding.   
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BACKGROUND AND EXECUTIVE SUMMARIES BY CHAPTER 

2.1 Chapters 1 and 2 Background, Methodology, and Overarching Goals 

2.1.1 Background 

Chapters One and Two report on two experiments based on the Regional U.S. 

Hog Production Network Biosecurity Model (RUSH-PNBM), the development and 

parameterization of which has been undertaken in collaboration with a nationwide team 

of livestock industry and veterinary professionals as part of the Animal Disease 

Biosecurity Coordinated Agricultural Project (ADB-CAP; PI: Julie Smith, 

DVM/Ph.D.).  RUSH-PNBM is a Susceptible / Infective (SI) agent-based model 

(ABM) that simulates interactions between hog industry actors operating within 

regional networks.  As producer, feed mill, and slaughter plant agents trade livestock 

and feed according to behavioral heuristics developed in consultation with industry 

experts, they create chances for disease spread.  I have worked on this model for the 

past three years, in partnership with the UVM Social Ecological Gaming and 

Simulation (SEGS) lab.    

ABMs have been used extensively to analyze complex phenomena that emerge 

from the relatively-simple actions of a cohort of interacting individuals (Granovetter 

1978, Axelrod and Cohen 2000, Janssen and Ostrom 2006).  Using the 2013 PEDv 

outbreak as a case study, two key mechanisms facilitating disease transmission in the 

hog industry were identified: (a) the transfer of infected animals between premises, and 

(b) the contamination of livestock and feed transportation equipment (Lowe et al. 2014, 
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Bowman et al. 2015).  Contact between producers, slaughter plants, and feed mills was 

found to be largely responsible for spreading the disease (O’dea et al. 2015).  In RUSH-

PNBM, agents are placed realistically in space according to empirically-observed 

patterns.  Decision heuristics developed in consultation with industry experts define 

how and when agents come into contact, potentially spreading the infection.   

Two articles are presented, each of which evaluates the impact of network 

features on epidemiological resilience through model-based experiments.  The key 

research questions explored in these articles are (a) to what extent does the ongoing 

trend toward increased livestock producer specialization influence disease risk, and (b) 

are there network metrics that are consistent predictors of epidemiological 

vulnerability, either at the agent level, or at the whole-network level?   

2.1.2 Methodological Grounding 

2.1.2.1 Epidemiological modeling 

Many mathematical and computational frameworks have been put forward to 

understand and forecast the dynamics of disease spread.  At the core of many of these 

approaches is the susceptible / infective / recovered (SIR) framework, under which an 

infective individual may spread a disease to susceptible individuals for a given period 

of time, after which the infective individual transitions to the recovered state and cannot 

be infected again (Kermack and McKendrick 1927).  Several SIR derivatives have also 

been developed, such as the SI framework, which allows for repeated infections.  SIR-

class models based on differential equations—despite being relatively simple—
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successfully replicate many of the complex temporal patterns typical of epidemic 

events (Heesterbeek 2000, Hethcote 2000, Harko et al. 2014).  While numerous 

differential equation-based SIR variants—both deterministic and stochastic—have been 

developed, the real-world predictive power of this approach has been criticized, as it 

implicitly posits both a homogenous population and complete mixing (Anderson et al. 

1992).   

To overcome these limitations, computer simulations that rely upon numerical 

rather than analytical methods have increasingly been applied.  Cellular Automata (CA) 

SIR models conceive of individuals as grid cells, with contact mediated by spatial 

neighborhoods.  CA SIR models successfully reproduce complex phenomena such as 

waves of infection radiating outward from a source (Cliff 1981, Fuentes and Kuperman 

1999), providing insights into the importance of agents’ relative spatial positions 

(Keeling 1999, Pfeifer et al. 2008).  Phase transitions have also been replicated using 

CA models (Kinzel 1985).  Further developments have examined the impact of 

heterogenous susceptibility, transmission rate, and infectious period parameters 

(Keeling et al. 2003), as well as modulating contact rates and transmission probabilities 

as a function of spatial proximity (Mikler et al. 2005, White et al. 2007).   

Realizing that real contagions occur within populations of agents whose 

relationships are not defined solely by spatial proximity, and whose differences do not 

simply come down to differential parameter values, in recent decades, researchers have 

begun to unpack the critical relationships between network structures, interaction 
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contexts, and contagion dynamics.  Bailey (1975) suggests that, in global human 

epidemics, the majority of spreading occurs within small network clusters, and is only 

transmitted beyond those local contexts by individuals who occasionally bridge 

between them.  Similar patterns have been empirically observed in livestock epidemics.  

Firestone et al. (2011) evaluated the spatial distribution and contact patterns of infected 

premises during the 2007 Equine Influenza outbreak in Australia, finding strong 

evidence that the movement of infected horses between spatially-clustered groups of 

premises was correlated with the spread of the disease.  Similarly, Fournié et al. (2013) 

analyzed the network connectivity patterns of agents involved in Vietnam’s live bird 

markets to assess the role of network structure on the spread of H5N1 influenza.  The 

team found that individual market locations served as hubs, linked by a few bridging 

individuals, and concluded that the contact network may be largely “disconnected” by 

focusing on disinfection of transportation equipment at a few of the large hubs to 

prevent spread between localized clusters.  In the 2013 U.S. hog industry PEDv 

epidemic, the structure of transportation networks for feed and livestock was found to 

be the primary predictive factor underlying observed disease spread patterns (O’dea et 

al. 2015).  

In light of such observations, recent epidemiological models have increasingly 

investigated the role of the structural topology of “mixing networks” on disease 

percolation (Keeling and Eames 2005).  In models using simple heterogeneously 

degree-distributed networks—including scale-free topologies—epidemics have been 
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shown to cascade from highly-connected hubs through smaller degree classes 

(Barthélemy et al. 2004), although the sharp percolation threshold associated with 

homogeneous models is not observed (Pastor-Satorras and Vespignani 2001, 

Vespignani 2012).  In metapopulation (or subpopulation) models, however, critical 

values for the rate of spreading between otherwise-isolated groups has been found to 

induce percolation, shedding light on the empirical observation that epidemic events 

tend to be either quite local, or nearly systemic (Bailey 1975, Bajardi et al. 2011).  

Watts et al. (2005) used a metapopulation SIR model to show that a simple hierarchical 

system of interaction contexts can lead to multiscale epidemic size distributions, further 

explaining the role of network structure on the phase change between localized and 

global epidemics.   

Coelho et al. (2008) characterize the complexification of epidemiological 

simulations over time as a shift between “strategic models” that explore the 

fundamental features of epidemics, to “tactical models” that mirror the conditions 

within which a real-world epidemic may unfold.  Agent-based SIR models (ABMs) 

have proven especially useful as “tactical models” due to their ability to generate 

empirically-calibrated, spatially-explicit networks of interacting agents that are 

heterogeneous not only in their parameter values, but also in the behavioral heuristics 

that govern how and when contact occurs (Rahmandad and Sterman 2008).  ABMs 

simulating disease spread have utilized spatial technologies such as GIS (Perez and 

Dragicevic 2009) and have incorporated real-world network data—such as the structure 
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of airline routes, or telephone contact records—that have empirically been found to 

correlate with disease spread (Colizza et al. 2006, Frias-Martinez et al. 2011).  Similar 

approaches have been applied to analyze disease spread in livestock production 

networks, incorporating factors such as the life cycle stages of animals, operational 

details of farms, and different disease transmission vectors (Bagni et al. 2002, 

Bradhurst et al. 2013).   

Another class of ABMs lets network structures emerge organically during each 

model run as a result of heuristics governing agents’ decision-making.  Using this 

methodology, Ghani and Garnett (2000) found network centrality measures that 

predicted an agent's chance of either getting or spreading a sexually-transmitted 

disease.  Eubank et al. (2004) developed an ABM that utilized heuristics parameterized 

from large-scale datasets to generate realistic urban social contact networks in order to 

assess epidemiological vulnerabilities.  The ABM developed for this experiment is of 

this latter class, using empirical data to generate realistic hog production systems, and 

behavioral heuristics specific to each agent type to generate the contact networks that 

underlie disease spread in real time as the model runs.   

2.1.2.2 Overview of RUSH-PNBM 

RUSH-PNBM may be classified as an agent-based, susceptible / infective (SI) 

epidemiological model, with high context specificity.  Specialized versions of the 

model, v.0.8 and v.1.2, were developed for each experiment.  The two versions are 

fundamentally similar in operation, but in v.0.8, agents are simply placed in a 
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continuous two-dimensional space, whereas in v.1.2, agents exist in a GIS-based spatial 

framework within study areas defined by three prominent hog-producing U.S. states 

(IL, IA, and NC), and have their locations, sizes, and typologies initialized using 

USDA, geospatial, and proprietary hog industry datasets.   

Features shared between the two versions include multiple agent classes, 

encompassing six types of hog producers differing by industry role, in addition to feed 

mills and slaughter plants.  Agents’ decision rules govern how and when they interact 

within contact networks according to heuristics developed out of a collaborative and 

iterative expert informant advisory process.  As batches of pigs reach the appropriate 

age, producer agents transfer them to trading partners within a certain radius, of the 

appropriate industry role, and with sufficient excess capacity.  Feed mill agents 

periodically generate delivery routes encompassing a subset of producers in their 

service areas.  The model is calibrated to reflect the transmission of a fecal-oral disease 

like Porcine Epidemic Diarrhea virus (PEDv), meaning that various modes of contact 

between agents—either in the form of contaminated feed, infected animals, or 

contaminated transportation equipment—each carry specific probabilistic risks of 

infection spread (O’dea et al. 2015).  For full implementation details, see Appendices 1 

and 2.   

Data output by RUSH-PNBM allow for analyses of how the structure of 

livestock production networks can influence epidemiological resilience in the face of 

regional disease threats.  Key parameter values and epidemiological statistics are output 
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after each run, in addition to adjacency lists encoding inter-agent contact patterns, 

which can be post-processed to analyze network features.  By calculating key network 

metrics for these graphs, we can evaluate how agents’ network positionalities, along 

with overall network structures, can make either individual agents, or the entire 

regional production networks, differentially-vulnerable to catastrophic disease risks.   

2.1.3 High-Level Objectives 

Food animal disease presents a threat to the economic wellbeing of industry 

actors, and in some cases—for example where quarantines or stop-motion orders are 

called for—such events can impinge upon the food security of members of the public, 

driving up food prices, and thus limiting access to key food products.  Whereas the 

threat of such catastrophic events is well understood by stakeholders—and biosecurity 

efforts are continually promoted and implemented across all levels of livestock 

production systems—RUSH-PNBM facilitates more precise decision-making to combat 

disease threats, allowing funds and interventions to be allocated strategically for 

maximum effect.   

By better understanding how patterns of trade and interaction between the 

diverse entities involved in complex livestock production networks translate into 

epidemiological risk factors, government regulatory agencies, private livestock 

production system managers, veterinarians, and other stakeholders can focus their 

preventive efforts on the nodes, links, and structures of production networks that are 

most likely to promote catastrophic epidemiological events.  Such biosecurity 
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interventions could take the form of discrete physical measures, for example 

strategically-placed truck wash facilities; human behavioral approaches, such as means 

to promote farmer adoption of shower-in-shower-out protocols or the development of 

better educational resources used by university extension services; or systemic changes 

to industry network structures, for example efforts to limit disease spread by removing 

risky network edges, thus isolating potential outbreaks.   

2.2 Chapter 1 Executive Summary 

Chapter One uses RUSH-PNBM v.0.8, which focuses on network structure 

rather than context specificity.  The goal of chapter one is to use RUSH-PNBM to study 

the interplay between two ongoing network-structural trends and the epidemiological 

resilience of hog industry production networks.  The first of these trends is the growing 

size and spatial density of networks, and the second is increasing producer 

specialization, for example from single-phase “farrow to finish” farms to multi-phase 

production systems in which each premises focuses on a specific life cycle stage.   

Whereas in the past it was standard practice for a single producer to take a pig 

“from farrow to finish,” it is now increasingly common for livestock to be housed at 

two or, more recently, three different producer operations throughout their lives, with 

each operation specializing in a specific life cycle stage (USDA APHIS 2006).  While 

there are efficiency advantages associated with increased specialization, its effect on 

disease spread is not fully understood. 
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2.2.1 Methods 

To evaluate the interplay between these effects, three experimental treatments 

are used.  In the 1-phase treatment, all producer agents are farrow to finish producers.  

In the 2-phase treatment, half are farrow to feeder, and half are feeder to finish.  In the 

3-phase treatment—the highest level of producer specialization—one third are farrow 

to wean, one third wean to feeder, and one third feeder to finish.  All other parameters, 

such as the timing of agents’ decision rules, and probabilities of infection, are held 

constant between treatments.   

For each treatment, a parameter sweep experiment is conducted, varying the 

number of producers in the network—which corresponds to their spatial density—from 

10 to 1500.  15,000 model runs are conducted for each treatment, and results are 

evaluated according to producer density level.  The dependent variables chosen to 

indicate the severity of an infection are (a) the overall infection duration in the system 

in model days, and (b) the proportion of agents infected.   

The purpose of the parameter sweep is to evaluate percolation dynamics in the 

networks.  Percolation is a mathematical phase-change that occurs when the density of 

entities in a system becomes sufficient that the magnitude of spreading events no longer 

scales linearly with each incremental increase in density, but instead accelerates rapidly 

toward near-complete spreading.  The point at which this transition occurs—the 

percolation threshold—is defined as the point at which, in an infinite network, the 

expected size of the “giant component”—i.e. the subset of nodes encountering the 
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spreading event—is also infinite (Stauffer and Aharony 1994, Grimmett 1999, Albert et 

al. 2000, Carlson and Doyle 2000, 2002, Newman et al. 2002).   

Disease epidemics can be aptly evaluated through the lens of percolation theory.  

In general, pathogens are regularly introduced to a system with little consequence 

beyond relatively-minor localized outbreaks.  However, due to stochasticity and 

internal heterogeneities in contact network structures, occasionally a single pathogen 

can ignite a widespread epidemic, a property referred to as “robust yet fragile” 

(Grassberger 1983, Ohtsuki and Keyes 1986, Moore and Newman 2000, Sander et al. 

2002, Serrano and Boguná 2006, Sornette 2006).   

As more producers are added to the system, the network’s average degree 

should increase.  With more edges in the system, we can anticipate that percolation 

behavior should emerge after a critical number of producers are added.  Further, higher 

producer specialization requires more transfers of animals over their life cycle, adding 

contact network edges where previously there were none.  Following the work of both 

epidemiological modelers and empirical analysts, a greater probability of large-scale 

“global” epidemics should be observed wherever the network typology is such that, 

without additional edges acting as bridges, the contagion would have been isolated 

within localized clusters.  Here we investigate the extent to which increased producer 

specialization may create such bridging edges, negatively impacting the overall disease 

resilience of the simulated networks by shifting the percolation threshold downward.   
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Since the model is too complex to calculate expected percolation thresholds 

analytically, a numerical method was devised to approximate them.  This method uses a 

LOESS-smoothing approach, with the point at which the slope of the LOESS-smoothed 

curve is maximized defining the approximate percolation threshold.  This smoothing 

approach allows for a meaningful comparison between treatments and their effects on 

disease spread risk.    

2.2.2 Key Takeaways 

Results indicate that producer specialization is a very important factor 

underlying epidemic percolation in livestock production networks.  Specifically, single-

phase networks have significantly higher percolation thresholds than the more 

specialized treatments, meaning that these systems can withstand a higher density of 

producers in a given area before systemic epidemics become likely.  Producer 

specialization also positively correlates with outcome variability once the threshold is 

surpassed, meaning that, for high-specialization networks, there is much more 

uncertainty as to the ultimate size and duration of an epidemic in the system.   

As a secondary analysis, adjacency lists defining the inter-agent contact 

networks are output after each model run.  Network analysis tools are then used to 

analyze the graphs, allowing us to examine the interplay between several network 

typology indicators and the percolation dynamics we identify.   

Overall, our experiment reveals that both hog industry network trends—

increased spatial density and increased specialization—negatively impact average 
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network-level disease resilience.  Policy recommendations based on these findings 

include an additional focus on network configurations—rather than biosecurity 

interventions aimed at individual agents—when formulating strategies to reduce disease 

risk in livestock production chains.   

2.3 Chapter 2 Executive Summary 

Chapter two uses RUSH-PNBM v.1.2, which relies on empirical data to 

position agents with realistic characteristics at realistic locations within a GIS 

framework defined by the U.S. states of North Carolina, Iowa, or Illinois.  The goal of 

this experiment is to assess how formal properties of the production systems in each 

state may impinge upon the disease risk for both (a) the overall hog production systems 

within the state, and (b) the individual agents within those networks.  We conduct the 

assessment using network analysis algorithms and employ both traditional statistical 

techniques and a genetic programming algorithm to ascertain the degree to which either 

single network metrics or mathematical combinations of metrics (“meta-metrics”) 

correlate with disease risk.   

2.3.1 Methods 

The GIS-enabled RUSH-PCBM v.1.2 model was executed 50 times for each 

study area, maintaining all parameters constant across all repetitions, aside from the 

numbers, spatial distributions, and pool of potential trading partners for each type of 

agent, which were hard coded for each state based on USDA NASS and other 

parameterization data, together with proprietary initialization functions.   
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Throughout each run, a contact network was built up by tracking the number of 

times each agent contacted another agent—as a result of either delivering or receiving 

livestock or feed—with the final edge weights being equal to the number of contacts 

between connected agents.  In a similar fashion, an infectivitity network was 

constructed, with edge weights representing the number of times an agent transmitted 

the infection through inter-agent contact.  The networks generated during the 

experiment, along with key statistics associated with each agent, were output after the 

conclusion of each run.   

We use a twofold approach to analyze the relationship between network 

structure and epidemic risk factors in the RUSH-PNBM output data.  First, we examine 

the relationship between network metrics that capture overarching features of the study 

area networks as a whole, and the average number of times an agent in these networks 

received or spread the infection.  Second, we examine the relationships between node-

level metrics that capture an individual agent's positionality in the network, and that 

individual agent's risk of receiving or spreading the infection.   

Whole-network metrics include average degree, k-core size and order, average 

assortativity, and average clustering.  Node-level metrics include in- and out-degrees 

and several measures of centrality.  These metrics are statistically evaluated against 

disease vulnerability to determine the extent to which network structure and node 

positionality indicators may be utilized to predict infection risk.   
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2.3.2 Key Takeaways 

Our experimental results show that, although the set of probabilities governing 

whether a given agent will spread or receive an infection upon contact were the same 

across all three study areas, there is nevertheless a great deal of variability in the scale 

and duration of epidemic events between study areas.  Since the spread probabilities 

were constant, and nodes’ spatial positions and trading partner pools were maintained 

across all runs within each state, the observed disease risk discrepancies must result 

from differences in the network topologies associated with each study area.   

Overall, we find that no single network metric is sufficient to predict the 

vulnerability—in terms of infection frequency—of a given node in our model results 

across study areas.  None of the global metrics explains more than 5% of the variability 

in the vulnerability of individual agents.  The best node-level metric, weighted in-

degree, explains 30% of the variability, but this result is self-evident, and still does not 

serve as an effective indicator of risk.   

Our data show clear trends in some cases, but confusing non-linearities in 

others.  Single metrics were often a strong predictor of node-level infection risk in one 

study area, but not in the others.  We believe that this is due to complex interactions 

between network topology and node positionality indicators in complex ways.  With 

this in mind, we present a method to incorporate both overall network structure as well 

as node positionality into a single indicator to predict epidemiological risk.  
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Using a Genetic Programming (GP) algorithm (Schmidt and Lipson 2013), we 

were indeed able to discover formulae combining multiple metrics—both node-level 

and global—to make more-precise predictions as to the infection risk of a given node.  

Using this novel methodology, which we’re calling “meta-metrics,” we were able to 

identify a node’s vulnerability with up to 91% accuracy across all three study areas.   

2.4 Chapter 3 Executive Summary 

Chapter Three describes a procedure to optimize public investments into 

interventions aimed at bolstering future global food supplies, with the goal of 

improving food security over the decades to come according to UN Sustainable 

Development Goal Two.  This work picks up on the “food wedge” framework 

originally conceived by Keating et al. (2014), which describes how multiple 

interventions aimed at either reducing demand or increasing supply may stack together 

to fill the large food production deficit that is projected to face global society by 2050.  

The overarching goal of Chapter Three is to use computational optimization to expand 

the theoretical food wedge model into a practicable decision support tool.   

Owing to inherent heterogeneities between wedges—for example the fact that 

some wedges are long-term while some are short-term, some multiply existing levels 

while some simply add or subtract, some have a limited upside potential, and so on—as 

well as the fact that the effect of any wedge intervention depends in part on previous 

interventions into both that wedge and possibly other wedges, it becomes impossible to 

simply intuit one’s way to an investment schedule that optimally allocates resources.  
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Further, the solution space is too large and complex to rely upon brute-force 

computational methods (i.e. simply trying all options).  Complex tradeoff environments 

like this are prime candidates for computational optimization.  We employ a multi-

objective evolutionary algorithm to search for solutions that both minimize the supply / 

demand gap and minimize total cost.   

2.4.1 Background 

Due to factors such as a rising population and the shift toward more resource-

intensive diets, global food demand is projected to increase significantly by 2050 

(Brown and Cameron 2000, United Nations 2015).  In light of production-side stressors 

such as soil / water degradation and climate change, scholars question whether our 

current food systems can meet future food demand without significant intervention-

driven change (Eswaran et al. 2001, Keating et al. 2014).   

Although a single solution has not been identified, it is suggested that public 

investments into multiple “food wedges,” aimed at either reducing calorie demand or 

increasing supply, may stack together to close projected supply / demand gaps (Keating 

et al. 2014).  The idea of the food wedge model—which is based on the Pacala and 

Socolow (2004) climate stabilization wedge model—is to identify a diverse portfolio of 

public interventions targeting either supply-increasing or demand-reducing measures 

(e.g. sustainable agricultural intensification, reducing consumption of meat, avoiding 

soil degradation, etc.) can each play a part in the overall solution.  Keating et al. (2014) 

used an expert informant advisory process to arrive at ballpark estimates of the percent 
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of necessary demand-reduction or supply-increase that each wedge could theoretically 

contribute.  This work builds upon the basic food security wedge framework by 

employing computational and mathematical methods to lend depth and precision to the 

wedge model’s value as a decision support tool.   

The original climate change wedge model (Pacala and Socolow 2004), along 

with its subsequent application to global food security (Keating et al. 2014), were 

meant primarily as high-level strategic concepts.  Although the wedge framework 

serves as a valuable tool to conceptualize multiple interacting solutions to a large-scale 

problem, it was never intended to serve as a decision support tool, or to evaluate how 

resources may be allocated most efficiently.  Examining Keating’s framework with a 

critical eye reveals several implicit presuppositions that cast serious doubt on the 

model’s real-world efficacy for practitioners in the field.   

First, the authors assume that the effect of each wedge will unfold linearly at a 

constant rate (thus making the wedges truly “wedge”-shaped).  In other words, each 

wedge is assumed to continue to effect the same annual quantity of change (at least out 

to 2050), without any acceleration or deceleration.  In reality, intervention-driven 

change is likely to exhibit neither an immediate effect nor a steady trajectory, instead 

generally being characterized by a sigmoid curve, in which the annual level of change 

first slowly ramps up, and later gradually tapers off.  Such a pattern has been commonly 

observed in the diffusion of innovations (Rogers 2010).  For a food systems planner, it 

is critical to understand not only the ultimate quantity of change that can be expected 
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from each wedge, but also the temporal trajectory that characterizes the way in which 

that change will ultimately be realized.   

The second implicit assumption is that changes resulting from investments into 

each wedge will all begin simultaneously (apparently in 2010).  Realistically, only a 

certain quantity of funding is available during any given time period, so investments 

will need to be strategically staggered, with the highest-priority interventions receiving 

funding first.  A wedge model that could serve as a decision support tool would need to 

include recommendations as to the timeframe by which investments into each wedge 

should optimally be scheduled.   

We must also consider the scale at which action is feasible.  While international 

organizations—such as the UN FAO—to some extent shape global food policy, 

concrete policy interventions are actualized at the national, regional, or even local scale.  

Thus, while global policy—as is considered in the Keating et al. (2014) wedge model—

may be valuable from a high-level strategic perspective, it would also be useful to 

consider the finer-grained details of policy implementation by, for example, reshaping 

the model to focus on the goals and theories of change associated with an existing 

regional food policy organization.   

The fourth assumption relates to how the baseline curves for supply and demand 

are conceived.  The demand curve is pinned to world population growth projections, 

but demand projections should encompass other factors as well, such as trends in diets 

toward more meat consumption as people in developing countries gain wealth.  The 
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authors discuss how interventions in these areas can bend the curve, but it is unclear 

whether the baseline curve includes “natural” changes; that is, those that would occur 

without any intervention.  On the supply side, the authors break the baseline simply into 

“avoiding losses” and “filling the production gap,” with the overall supply baseline 

(accounting for both factors) apparently projected to take a sharp and steady turn for the 

worse starting in 2010.  In reality, the supply baseline—like the demand baseline—

should encompass projected trends in each supply wedge, accounting for both positive 

trends (such as the ongoing spread of yield-enhancing agricultural innovations), as well 

as negative trends (such as climate change pressures), with the final curve being 

defined as the summation of all relevant factors.   

The above presuppositions limit the usefulness of the Keating model for real-

world strategists making high-level decisions.  In light of these limitations, yet also 

recognizing the overall potential of the interacting-wedge framework as a guide for 

tackling complex, systemic food systems problems, the aim of this project is to build 

the simple Keating wedge model into a decision support tool that captures the nuances 

required for food systems leaders to begin to thoughtfully chip away at the looming 

global food supply/demand gap.   
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2.4.2 Methods 

The concept of our wedge investment optimization procedure is to first 

formalize the interacting dynamics of each wedge mathematically, and then use 

computational optimization to hone in on an investment schedule that fulfils the desired 

objectives.  This procedure is based on the wedge concept, yet addresses the 

shortcomings described above.   

As a proof of concept, we selected six wedges from Keating et al. (2014) 

identified as having large potential effects, and also added one wedge not included in 

Keating (birth control).  The functions associated with each were roughly 

parameterized through a survey of the primary literature.   

Following researchers such as Kummu et al. (2017), a technical insight that 

adds depth to the original Keating work is the realization that some wedges act to 

increment or decrement supply or demand (for example adding new land), while others 

serve to multiply or divide the existing level of production or consumption (for example 

increasing agricultural efficiency).  Wedges may be further classified based on whether 

they reduce demand or increase supply, yielding four high-level wedge categories.   

Once the wedges are assigned to their appropriate categories, their dynamics 

can be encoded formally.  As in Keating et al. (2014), we use total kilocalories (kcal) 

per year as a common metric of impact.  Obviously, the model requires a function 

describing how investment in a wedge will play out as supply or demand change over 

time.  However, as discussed above, each wedge also contributes to the baseline in 
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some way, requiring another function.  Finally, owing to the realization that, for 

example, there is only so much land available for agriculture, we also needed a way to 

define how investment may become less effective over time.  Thus, each wedge can be 

defined as a system of three interacting equations, these being: 

1. Baseline change:  What will happen if we do nothing? 

2. Intervention-driven change:  What will happen if we invest 100% of one year’s 

food security policy budget into a wedge? 

3. Diminishing returns:  How will the effectiveness of additional investments in a 

wedge diminish once a certain level of change is achieved? 

More specifically, the baseline change function defines the level of expected 

change in a wedge in the absence of any intervention, as well as the rapidity and 

trajectory with which that change may be expected to play out.  Similarly, the 

intervention-driven change function defines the quantity, timeframe, and temporal 

dynamics of positive change that may be expected to result, going forward from the 

investment date.  This function is calibrated for 100% annual budget investment, but its 

magnitude can be scaled down proportional to the investment quantity.  Finally, the 

diminishing returns function defines how the efficacy of additional investments into a 

wedge can be expected to make less and less difference after a certain level of change 

from that wedge has been achieved.   

In light of the above, it becomes apparent that—since the result of any given 

wedge investment depends in part on (a) the baseline curves, (b) previous investments 
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into the wedge, and (c) interactions between multiplying/dividing and 

adding/subtracting wedge interventions—stacking the effects of multiple wedge 

interventions is quite complex.  To accomplish this, I developed an objective function 

that begins by establishing the overall baseline curves, and then uses a genome vector 

representing the schedule of wedge interventions to mathematically ‘stack’ the impact 

of each intervention—according to their function parameters—to evaluate the overall 

summed effect from all wedge interventions on the global food supply and demand 

curves.  The function then calculates the total food supply/demand gap over the study 

period (which we call SD fitness), and also the level of public investment—relative to 

the total available public and private funding that may theoretically be allocated to food 

security—required to meet the intervention schedule (cost fitness).  

We then employ this objective function within an evolutionary algorithm known 

as Multi-Objective Differential Evolution (MODE) to optimize the wedge intervention 

schedule (Storn and Price 1997).  The algorithm generates a series of solutions along a 

Pareto front defined by SD fitness and cost fitness, allowing the user to evaluate 

tradeoffs between efficacy and cost.  Solutions take the form of investment schedules 

that specify the level of funding devoted to each wedge in each investment year.    

The primary goal of Chapter Three is an experiment to hone the parameter 

values of the MODE algorithm such that it functions best on this optimization task.  We 

evaluate the effect of seven key parameters, accounting for both solution quality and 

execution time, to determine effective baselines.  We also analyze the preliminary 
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solution set in several ways to explore patterns and tradeoffs in food wedge investment 

prioritization.   

2.4.3 Key Takeaways 

Despite the model being a proof of concept, initial results are promising, with 

the optimization procedure successfully discovering roadmaps toward closing the 

global food supply / demand gap, while also accounting for cost.  We find that our 

baseline parameterization optimizes the effectiveness of the algorithm for this class of 

problems on both solution efficacy and computation time.   

In general, results indicate that early investments should be made in long-term 

demand-reducing interventions such as birth control, as well as in interventions that 

bolster long-term supply-side productivity, like closing yield gaps and adapting 

agricultural systems to climate change.  Another key takeaway is that, in general, if 

more funding is put into the problem in the near term, less overall funding will be 

required as we look out to 2050 and beyond.   

A limitation of the study is that, at present, wedge parameterization was 

accomplished using a relatively-cursory survey of the primary literature.  This yielded 

good estimates for some wedge function parameters, but also left several knowledge 

gaps that were simply filled by the best estimates of our modeling team.  In light of 

such uncertainty, the current parameterization is meant mainly as a proof of concept.  

Further work on this project will endeavor to flesh out these known unknows.  Much 

empirical as well as model-based research has been conducted in the area of global 
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food policy (e.g. Ryan and Gross 1943, Ellison and Fudenberg 1993, Fischer et al. 

1996, Baerenklau 2005, Rogers 2010).  We plan to use qualitative methods to solicit 

input from a cohort of experts in the various fields underlying each wedge.  We have 

already developed a survey instrument which we intend to distribute to domain-level 

experts to parameterize the wedge functions.  An iterative Delphi procedure may also 

be utilized strategically to resolve conflicting projections and converge upon realistic 

parameter values (Rescher 1998).  We may also conduct follow-up interviews where 

called for.   

Overall, our findings suggest that, once precisely calibrated, our method should 

be very useful as a decision support tool to guide high-level public policies aimed at 

reducing the threat of hunger stemming from future gaps between global food 

production and consumption.  The model must navigate a highly-complex “fitness 

landscape,” simultaneously weighing factors such as the relative influence of the spread 

of agricultural innovations in the near term vs. productivity-killing environmental 

degradation in the long term; the impact of previous interventions upon future ones; and 

tradeoffs between investing in solutions that have small but fast-acting impacts vs. 

those that take many years but ultimately have large effects.  Because humans cannot 

simply intuit their way to good solutions within such tradeoff-laden, systems-level 

problem domains, computational decision support tools will likely become increasingly 

important.  Computational methods such as the one demonstrated here can help 

planners and policymakers to analyze the effects of many compounding factors in 
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aggregate, allowing for more informed, evidenced-based policymaking that directs 

funding to solutions that promise the maximum long-run positive impact.   
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CHAPTER 1: USING AN AGENT-BASED MODEL TO EVALUATE THE 

EFFECT OF PRODUCER SPECIALIZATION ON THE EPIDEMIOLOGICAL 

RESILIENCE OF LIVESTOCK PRODUCTION NETWORKS 

3.1 Abstract 

An agent-based computer model that builds representative regional U.S. hog 

production networks was developed and employed to assess the potential impact of the 

ongoing trend towards increased producer specialization upon network-level resilience 

to catastrophic disease outbreaks. Empirical analyses suggest that the spatial 

distribution and connectivity patterns of contact networks often predict epidemic 

spreading dynamics. Our model heuristically generates realistic systems composed of 

hog producer, feed mill, and slaughter plant agents. Network edges are added during 

each run as agents exchange livestock and feed. The heuristics governing agents’ 

contact patterns account for factors including their industry roles, physical proximities, 

and the age of their livestock. In each run, an infection is introduced, and may spread 

according to probabilities associated with the various modes of contact. For each of 

three treatments—defined by one-phase, two-phase, and three-phase production 

systems—a parameter variation experiment examines the impact of the spatial density 

of producer agents in the system upon the length and size of disease outbreaks. 

Resulting data show phase transitions whereby, above some density threshold, systemic 

outbreaks become possible, echoing findings from percolation theory. Data analysis 

reveals that multi-phase production systems are vulnerable to catastrophic outbreaks at 

lower spatial densities, have more abrupt percolation transitions, and are characterized 
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by less-predictable outbreak scales and durations. Key differences in network-level 

metrics shed light on these results, suggesting that the absence of potentially-bridging 

producer–producer edges may be largely responsible for the superior disease resilience 

of single-phase “farrow to finish” production systems.  

3.2 Introduction 

There is widespread agreement among livestock veterinarians and 

epidemiologists that mitigating disease outbreaks is critical to promote food safety, 

maintain food availability, and reduce economic risk in the marketplace. Livestock 

epidemiologists commonly focus on promoting the adoption of discrete biosecurity 

measures, such as truck wash facilities and biocontainment procedures at individual 

premises [1]. However, empirical research has increasingly revealed the importance of 

understanding how the structures of trade and transportation networks can aid in 

predicting and preventing outbreaks [2-4]. In light of these observations, more work is 

clearly needed to understand how livestock biosecurity may be bolstered from a 

systems perspective.  

Recent years have seen significant structural changes within the U.S. hog 

industry, with a marked trend toward increased producer specialization. Whereas in the 

past it was standard practice for a single producer to take a pig “from farrow to finish,” 

it is now increasingly common for livestock to be housed at two or, more recently, three 

different producer operations throughout their lives, with each operation specializing in 
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a specific life cycle stage [5]. While operational efficiency advantages may be gained 

through increased specialization, its effect on disease spread is not fully understood.  

To address this question, we developed an agent-based susceptible / infective 

(SI) computer model to simulate epidemiological events in hog production networks. 

Agent-based models (ABMs) have been used extensively to analyze complex 

phenomena that emerge from the relatively-simple actions of a cohort of interacting 

individuals [6-8]. Using the 2013 PEDv outbreak as a case study, three key mechanisms 

facilitating disease transmission in the hog industry were identified: (a) the transfer of 

infected animals between premises, (b) deliveries of contaminated feed, and (c) 

contaminated livestock and feed transportation equipment [9, 10]. Contact between 

producers, slaughter plants, and feed mills was found to be largely responsible for 

spreading the virus. In our ABM, structured populations of these three agent types are 

placed in the simulation, an infection is introduced randomly, and decision heuristics 

define how and when agents come into contact, potentially transmitting the infection. 

Using this model, we report on a series of parameter variation experiments that 

investigate the epidemic spread characteristics resulting from varied levels of producer 

specialization and numbers of producers in the system, finding evidence of percolation 

dynamics, with increased specialization leading to significantly diminished 

epidemiological resilience.  
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3.2.1 Percolation Theory 

The “robust yet fragile” nature that describes a diversity of complex systems 

offers a useful framework to understand the spread of diseases through networks. 

Pathogens are regularly introduced with little consequence, but due to stochasticity and 

internal heterogeneities in contact network structures, a single pathogen can 

occasionally ignite a widespread epidemic [11-16]. Percolation is the mathematical 

phase-change that occurs when the density of entities in a system becomes sufficient 

that the expected outbreak magnitude no longer scales linearly with each added node, 

but instead accelerates rapidly toward near-complete spreading. The point at which this 

transition occurs—the percolation threshold—is defined as the density at which, in an 

infinite network, the expected size of the “giant component” is also infinite [17-22]. 

While much of the work in this area has concerned itself with analytically-formalizing 

percolation behavior in relatively-simple systems, the insights gained through such 

investigations are relevant for understanding dynamical regimes in complex real-world 

systems as well. To investigate percolation in our experimental results, we numerically 

assess how the size and duration of epidemic events in a series of model runs scale with 

the addition of producer nodes.  

3.2.2 Models of Epidemic Spreading 

At the core of many model-based inquiries into disease spread is the susceptible 

/ infective / recovered (SIR) framework. In SIR models, an infective individual may 

spread a disease to susceptible individuals for a period of time, after which the infective 
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individual transitions to the recovered state and cannot be reinfected [23]. The SI 

framework, a common SIR derivative, allows for repeated infections. SIR models based 

on differential equations (DEs) have successfully replicated many of the complex 

temporal patterns typical of epidemics [24-26]. However, the DE approach has been 

criticized, as it implicitly posits both a homogeneous population and complete 

mixing [27]. Structured population models partially overcome these shortfalls, defining 

heterogeneous distributions for parameters such as age, size, spatial position, and 

movement [28, 29]. Cellular Automata (CA) SIR models additionally reproduce spatial 

phenomena such as waves of infection radiating outward from a source [30, 31], and 

can also produce percolation-type phase transitions [32], providing insights into the 

impact of agents’ relative spatial positions on spreading dynamics [33, 34]. More 

advanced CA models examine the impact of heterogeneous susceptibilities, 

transmission rates, and infectious periods [35], as well as modulating parameters as a 

function of spatial proximity [36, 37].  

In recent years, epidemiological modelers have increasingly investigated the 

role of the structural topology of “mixing networks” on disease percolation [38]. SIR 

simulation studies on complex networks demonstrate the impact of degree distribution 

on the speed, size, and variability of epidemic events, with more heterogeneously-

distributed networks pushing the percolation threshold towards zero as N → ∞ [39]. 

Epidemics on scale-free networks cascade from highly-connected hubs through smaller 

degree classes [40], although a sharp percolation threshold is not observed [41, 42]. In 
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metapopulation (or subpopulation) networks, surpassing critical values for the rate of 

spreading between subpopulations can trigger percolation, shedding light on the 

mechanism behind the “robust yet fragile” nature of these systems [43-45].  

Coelho, Cruz, and Codeço [46] characterize the complexification of 

epidemiological simulations over time as a shift between “strategic models” that 

explore the fundamental features of epidemics, to “tactical models” that mirror the 

conditions within which a real-world epidemic may unfold. Agent-based models are 

often examples of the latter, generating empirically-calibrated networks of interacting 

agents that are heterogeneous not only in their parameter values, but also in the 

behavioral heuristics that govern how and when contact occurs [47]. Modelers can 

hard-code agents’ positions or spatial distributions using a GIS framework [48], and 

may incorporate empirical data—such as airline routes or telephone records [49, 50]; 

or, in the case of livestock epidemics, the operational details and locations of farms [51, 

52]—that have been shown to correlate with outbreak patterns. Other modelers let 

networks emerge organically during each model run as a result of agents’ decision-

making heuristics. Using the latter methodology, Ghani & Garnett [53] found network 

centrality measures that predicted an agent’s chance of either getting or spreading a 

sexually-transmitted disease. Eubank et al. [54] developed an ABM that utilized 

heuristics parameterized from large-scale datasets to generate realistic urban social 

contact networks and identified resulting epidemiological vulnerabilities. Gojovic et 

al. [55] implemented a model to evaluate optimal immunization strategies during the 



69 

 

2009 H1N1 pandemic, using demographic and employment records to assign agent 

parameters, and incorporating differential transmission probabilities for multiple 

contexts. Keeling et al. [56] developed a model of U.K. farms—parameterized via 

census data—and performed a Monte Carlo simulation to understand how factors 

including agent heterogeneities and movement restrictions explain the observed spread 

of the 2001 UK Foot and Mouth epidemic. The ABM we have developed for this 

experiment builds on prior work in this area, leveraging empirical data to heuristically 

generate hog production systems that are structurally-parallel to real-world examples, 

and encoding behavioral rules in collaboration with industry experts that allow the 

contact networks underlying disease spread to emerge organically in each model run.  

3.2.3 Network Analytics and Epidemiological Vulnerability 

Bailey [43] was among the first to suggest that, while contagions are generally 

confined to small network clusters, global epidemics may result when an edge forms a 

bridge between clusters. This pattern has been empirically observed in both human and 

livestock epidemics. Firestone et al. [2] analyzed infected premises during the 2007 

Equine Influenza outbreak in Australia, finding strong evidence that the movement of 

infected horses between spatially-clustered groups of premises correlated with the 

spread of the disease. Fournié et al. [3] investigated the network connectivity patterns 

of agents involved in Vietnam’s live bird markets during an H5N1 influenza outbreak, 

concluding that the contact network could have been largely “disconnected” by 

focusing on disinfection of transportation equipment at a few of the large hubs. The 
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structure of transportation networks for feed and livestock was found to be the primary 

factor underlying the 2013 U.S. hog industry PEDv epidemic, with slaughter plants and 

feed mills serving as the primary hubs [4].  

Network theorists have conducted several investigations into the relationships 

between metrics describing a network’s structure, and the propensity of that network to 

promote or inhibit spreading [57, 58]. Experiment two below evaluates six network 

metrics that may impact epidemiological resilience. As a baseline, we investigate 

whether—as would be expected—hog production networks with higher average degree 

〈k〉 promote disease spread. Small-world graphs—a class into which many real-world 

livestock production networks fall [59-61]—are characterized by a smaller mean 

shortest path length 〈l〉 and greater clustering C than corresponding random graphs with 

equivalent 〈k〉 [62]. Research shows that spreading in small-world networks (versus 

corresponding random graphs) proceeds more rapidly but results in fewer infected 

nodes, and also that small-world networks exhibit significantly higher k-core 

densities [63]. Other studies have found that k-core boundaries often define the part of a 

graph in which a spreading event is more likely to persist [64]. Experiment two thus 

analyzes the role of k-core size Skc , in addition to k-core order Okc , and number of k-

cores Nkc . While there is debate over whether weighted versus unweighted—as well as 

directed versus symmetrized—versions of network metrics are more appropriate, at 

least in some contexts, metrics calculated on unweighted, symmetrized graphs best 
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predict epidemiological vulnerability [65]. In light of this, we opt to binarize and 

symmetrize the graphs in our analysis.  

3.2.4 Research Questions and Hypotheses 

This study uses an agent-based model to investigate the impact of two ongoing 

network-structural trends in the U.S. hog industry upon system-level epidemiological 

resilience. The first of these trends is the growing spatial density of networks. With 

more potential trading partners from which to choose, the average degree of the 

network will tend to increase, which should correlate positively with outbreak severity. 

The second trend, increasing producer specialization, will necessarily add producer–

producer edges where previously there were none. Following the empirical and 

computational studies cited above, we can hypothesize that a greater probability of 

large-scale “global” epidemics should be observed wherever the network typology is 

such that, without these additional edges acting as bridges, the contagion would have 

been isolated within localized clusters. By systematically varying both the spatial 

density of the simulated networks, along with the level of producer specialization, the 

experiments described below investigate how the interplay between these two factors 

may render a system more or less vulnerable to catastrophic disease outbreaks.  

3.3 Materials and Methods 

3.3.1 Model Design Concepts 

The Regional U.S. Hog Production Network Biosecurity Model (RUSH-

PNBM) v.0.8 generates simulated hog production systems composed of producer, 
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slaughter plant, and feed mill agents. Heterogeneous parameter values, multiple 

interaction contexts, and spatial proximity considerations, are incorporated into agents’ 

decision heuristics, and determine contact patterns and infection spread potentials. The 

epidemiological submodel is of the SI type, since, in the case of PEDv, reinfections of 

the same premises have been reported [66].  

RUSH-PNBM is a “tactical” model, in that it is empirically-calibrated to mirror 

a real-world system, but it also aims to avoid being overly context-specific, leaving 

sufficient flexibility to analyze a variety of scenarios [46]. To this end, elements that 

were deemed significant facilitators of disease spread by a cohort of industry 

consultants were included in the model, while many extraneous and/or uncertain details 

were bracketed [67]. The baseline parameterization—although ground-truthed by our 

advisors as well as several datasets—is not meant to project the course of a specific 

infectious agent through any real-world production network, but rather to facilitate a 

workable and reasonably-realistic simulation useful for understanding the network 

trends important for this experiment.  

The model was developed using AnyLogic 7 software, with all functions written 

in Java. The sections below provide an overview of initialization procedures, agents’ 

behavioral heuristics, and parameter calibration methods. For full implementation 

details, see S1 Protocol.  
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3.3.2 Agent Initialization 

At model initialization, all agents are assigned a fixed location stochastically within a 

continuous two-dimensional spatial framework defined by an 880 x 490 unit rectangle, 

with units representing kilometers. Producer agents are assigned one of five industry 

roles (see Figure 3) according to distributions corresponding to the treatment scenario 

(see Experimental design section). The livestock capacity of each producer agent is 

assigned by drawing from a normal distribution (Table 1 gives parameter values). 

Producer agents may have one or several batches of pigs, with each batch considered to 

be the same age. Each producer begins at full capacity, with the age of pig batches drawn 

from a uniform distribution corresponding to the industry role of the producer.  

 

 

Figure 3: Structure of agent connections in the model. Shows 1-phase (low-specialization), 2-phase 

(mid-specialization), and 3-phase (high-specialization) connectivity heuristics. Also indicates 

livestock transfer age conditions. 
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Table 1: Parameter values used in the experiment. 

 Parameter Value(s) 

Explored 

Network parameters 

 Area of network region (km2) 431200 

 Number of producer agents in the model [10:10:1500] 

 Number of livestock per producer [normal distribution; rounded to 

integer] 

μ=1,000; 

σ=300; x≥50 

 Number of producer production phases [1, 2, 3] 

 Number of slaughter plant agents in the model 3 

 Number of feed mill agents in the model 10 

Epidemiological parameters 

 Suckling pig mortality rate 0.95 

 Nursery pig mortality rate 0.6 

 Grow/finish hog mortality rate 0.1 

 Length of producer infection (days) [triangular distribution] μ=30; 

0≤x≤60 

 Length of slaughter plant contamination (days) [triangular 

distribution] 

μ=5; 0≤x≤10 

Farrowing parameters 

 Frequency of farrowing (days) 30 

 Minimum farrowing quantity as a proportion of producer capacity 0.25 

Producer–producer parameters 

 Maximum producer to producer connection distance (km) 100 

 Minimum transfer quantity as a proportion of transferee capacity 0.25 

 Prob. of infection via trailer returning from infected transferee 0.15 

Feed mill–producer parameters 

 Frequency of feed distribution trips (days) 1 

 Percent of producers in feed mill service area visited per trip 15 

 Probability that truck will be contaminated upon visiting an infected 

producer 

0.15 

 Probability that contaminated truck will infect subsequent producers 

on route 

0.15 

Producer–slaughter plant parameters 

 Probability that infected hogs will contaminate slaughter plant 

receiving area 

0.75 

 Probability of infection via truck returning from infected slaughter 

plant 

0.15 
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3.3.3 Network Initialization 

Network edges in the model are subdivided into three contexts: (a) producer–

producer, (b) producer–slaughter plant, and (c) feed mill–producer. The basic structure 

of connections between agents of each industry role is visualized in Figure 3.  A 

network initialization function generates a set of potential trading partners for each 

agent, defining the possible edges across which contact may occur during the remainder 

of the model run. Producer agents are each assigned to their most proximal feed mill, 

and finishing producers are also assigned to their most proximal slaughter plant. Each 

non-finishing producer is assigned a pool of potential transferee producers of the 

appropriate industry role for outgoing shipments (see Figure 3), and within a maximum 

distance of 100km. Figure 4 shows a sample network as displayed on the model 

dashboard, and briefly describes the heuristics associated with each agent class.  
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Figure 4: Sample network map as displayed on the model dashboard. Shows agents as nodes and 

inter-agent contacts (both potential and active) as edges. Key provides an overview of connectivity 

heuristics for each agent type. 

 

3.3.4 Initial Infection 

The initial infection event is triggered after one model year, to skip the transient 

period and allow the simulation to stabilize. At this point, a single producer agent is 

selected randomly and transitioned to the infected state.  

3.3.5 Behavioral Heuristics 

The major functions controlling agent behavior, network connectivity, and infection 

transmissibility, are detailed below. Specific parameter values appear in Table 1.   

.  

3.3.5.1 Farrowing 

Farrowing producers (where piglets are born) periodically replenish their 

inventories by generating new pig batches. New batches are the size of the producer’s 
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spare capacity. A minimum farrowing quantity parameter ensures reasonably-sized 

batches.  

3.3.5.2 Producer–producer livestock transfers 

Non-finishing producers transfer pig batches that have reached the transfer age 

corresponding to their industry role to an appropriate transferee (see Figure 3). A 

minimum transfer size requirement ensures realistically-sized shipments between 

producers. Transferee producers are sequentially evaluated in order of proximity until a 

producer with sufficient excess livestock capacity is identified, at which point the pig 

batch meeting the transfer age requirement is deleted from the transferring producer’s 

stock and added to the transferee’s. If the transferring producer is infected, the infected 

livestock will spread the disease to the transferee. If the transferee producer is infected 

but the transferring producer is not, the returning “delivery truck” may become 

contaminated and infect the transferring producer according to a set probability. If a 

producer becomes infected, the size of each of its pig batches is diminished by the 

mortality rate associated with the batch’s age. Producers remain infected for a duration 

determined by a triangular distribution—an intuitive and reliable proxy for the beta 

distribution [68]—with a mean of 30 days.  

3.3.5.3 Producer–slaughter plant livestock transfers 

Finishing producers ship livestock to their slaughter plant as soon as a pig batch 

reaches the designated age. If the transferring producer is infected, the receiving area of 

the slaughter plant may become contaminated according to a set probability. If infected, 
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a slaughter plant will remain infected for a duration determined by a triangular 

distribution with a mean of 5 days. If the receiving area of the slaughter plant is already 

contaminated when a shipment arrives, the returning “delivery truck” may infect the 

shipping producer according to a set probability.  

3.3.5.4 Feed mill–producer delivery routes 

Every model day, each feed mill generates a delivery route by first selecting a 

producer agent within its service area at random. From this location, the nearest 

producer within the feed mill’s service area that has not been visited becomes the next 

stop on the route, and this process is repeated until the “delivery truck” has visited the 

designated number of farms. Should the truck encounter an infected producer premises 

on its route, the truck may become contaminated according to a set probability. Once a 

truck is contaminated, the infection may spread to subsequent producers on the route 

according to a set probability.  

3.3.6 Parameter Calibration 

The structural makeup and contact patterns of the simulated hog industry 

network are based on several statistical datasets, as well as qualitative input from a 

cohort of experts including veterinarians, epidemiologists, and hog industry analysts. 

Distributions of producer livestock capacity and spatial density were generalized from 

USDA Census of Agriculture data [69], while slaughter plant density was generalized 

from USDA Food Safety and Inspection Service data [70]. Feed mill data proved more 

elusive, so parameterization was based primarily on expert estimates. Temporal aspects 
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of the simulation, such as the frequency with which contact events occur, were 

generalized from a search of the primary literature coupled with industry expert 

consultations.  

Porcine Epidemic Diarrhea virus (PEDv) is a disease that swept through the U.S. hog 

industry starting in 2013, causing widespread mortality and morbidity among 

livestock [71]. This outbreak was used as a case study to calibrate the epidemiological 

parameters of the model. In consultation with livestock veterinary professionals, 

reasonable baseline values for parameters such as mortality rates for animals of different 

ages were chosen. A series of parameter variation experiments were used to hone in on 

baseline parameter values for infection probabilities and durations such that the infection 

within the model spread in a manner similar to the patterns observed in the real-world 

PEDv outbreak, for which tracking data are available [66]. These values were then 

exogenized as baseline parameters that remained fixed across all experimental runs 

(Table 1). 

3.3.7 Experimental Design 

Using the model detailed above, two experiments were performed. The first 

explored disease percolation by varying the number of producers in the model. The 

second explored the relationship between key network metrics and epidemiological 

resilience.  

The treatments differed according to the distribution of industry roles assigned 

to producer agents. Aside from these producer classification assignments, all 
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parameters remained constant across all runs. The treatments are defined as follows 

(see also Figure 3): 

1. High specialization  

• Three-phase production system  

• Equal numbers of Farrow to Wean, Wean to Feeder, and Feeder to Finish 

producers  

2. Medium specialization  

• Two-phase production system  

• Equal numbers of Farrow to Feeder and Feeder to Finish producers  

3. Low specialization  

• One-phase production system  

• Farrow to Finish producers only 

3.3.7.1 Experiment 1 

Experiment one was a parameter variation experiment in which, for each 

treatment scenario, the number of producer agents in the model (Np) was varied 

between 10 and 1,500 in increments of 10. Since the network region area is fixed, 

varying Np corresponds to a change in the spatial density of producers. For each 

treatment, the model was executed 100 times at each of the 150 Np values, for a total of 

15,000 model runs for each specialization level, or 45,000 runs overall. In each run, the 

model was stopped 4,135 model days after the initial infection; sufficient time for the 

infection to either die out or become systemic. Each run generated two dependent 
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variable datapoints: (a) the overall duration of the infection event within the network as 

a whole, and (b) the proportion of agents that became infected at least once during the 

model run.  

3.3.7.2 Experiment 2 

In experiment two, features of production networks resulting from differential 

producer specialization were quantified and analyzed. Contact network data from 150 

model runs for each specialization level—with Np=100:100:1500, and 10 repetitions 

per parameterization—were exported from the model and analyzed as unweighted, 

undirected graphs. A similar edge list containing only the subset of nodes that had been 

infected during each model run was also stored. For both the contact network and the 

infected component network, six metrics were calculated using functions from the 

Python NetworkX library [72], with values for each metric plotted against Np for each 

treatment. Table 2 gives Python and NetworkX code used in the analyses.  
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Table 2: Python / NetworkX Code Used in Experiment Two. 

Network Metric Python / NetworkX Code 

Average Degree 〈k〉 sum(G.degree().values()) / len(G.nodes()) 

Average Shortest Path Length 〈l〉 nx.average_shortest_path_length(G) 

Clustering Coefficient C nx.average_clustering(G) 

k-core Order Okc nx.degree(k_core(G), nbunch = 

k_core(G).nodes()[1]) 

k-core Size Skc len(nx.k_core(G).nodes()) 

Number of k-cores Nkc nx.number_connected_components(nx.k_core(G)) 

Note: Python 2.7 and NetworkX 2.0 were used for all analyses. The prefix “nx.*” 

indicates a NetworkX function. “G” represents the NetworkX graph object to be 

analyzed. 

 

3.4 Results 

3.4.1 Experiment 1 

As an initial step to examine the model output data, histograms were produced 

to visualize the distribution of outbreak sizes (the proportion of agents infected) and 

overall infection durations (the time between the initial infection and the last agent 

recovering from infection, in model days); with data stratified into three Np ranges 

(Figure 5). These plots show that the distribution of infection severity—especially in 

the high-Np runs—is bimodally-distributed. Kolmogorov-Smirnov normality tests 

using Np as the theoretical distribution confirm that, overall, the data are not normally-

distributed (for proportion infected D = −9.1205, p = 0.000; for infection duration D = 

−9.1981, p = 0.000). This finding would appear to mirror the literature on epidemic size 
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distributions, suggesting that infection events in the model generally remain within a 

local cluster, but sometimes explode in scale due to bridging links [2-4, 43-45].  

 

 

Figure 5: Histograms showing distribution of dependent variables. Infection duration data appear 

in the left column and proportion of infected agents in the right column, with color indicating 

producer specialization level. Low density runs were those with 0<N
p

≤500, mid-density 

500<N
p
≤1000, and high-density 1000<N

p
≤1500. Data were split into 40 bins. 

 

Digging deeper into the behavior of the system within the subset of model runs 

that resulted in a long-duration “systemic” infection, we plot histograms including only 

runs in which the overall infection duration was ≥3000 model days (Figure 6). This 

analysis indicates that, at sufficiently-high Np values, all three treatments sometimes 
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result in full-duration (4135 model day) epidemics. Once an infection reaches the 

systemic level, it is very unlikely to die off naturally prior to the end of the model run. 

However, even among the systemic outbreaks, the scale of spreading exhibits wider 

variability, with the high-specialization runs more likely to result in larger epidemics.  

 

 

Figure 6: Right-censored histograms showing distribution of dependent variables. These plots are 

parallel to those in Figure 5, yet include only datapoints in which the infection duration was ≥3000 

model days. Data were split into 11 bins. 

 

Scatter plots of the raw data (Figure 7) reveal a nonlinearity, with Np values 

below some value never igniting a globalized epidemic. This critical value appears to 

vary by specialization level. Kruskal-Wallis equality-of-populations rank tests (used 
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due to the non-normal data distributions) indicate that the data associated with each 

treatment differ significantly in terms of both infection duration and proportion infected 

(Table 3). Based on a cursory visual analysis, for the multi-phase systems, the critical 

region occurs at approximately 500≤Np≤1000, separating the unimodal phase (in which 

all infections are small and short) from the bimodal phase (in which infections are 

either small and short or large and long, but never in between). For the single-phase 

systems, the critical region would appear to occur around 600≤Np≤1400. Only within 

the critical regions do we ever observe mid-length or mid-scale outbreaks.  
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Figure 7: Scatter plots showing full model-output dataset for both dependent variables. Proportion 

of agents infected (cumulative) appears in the top row, and network-level infection duration in the 

bottom. Each point represents one of the 45,000 model runs (15,000 for each level of 

specialization). 

  

Table 3: Kruskal-Wallis equality-of-populations rank test statistics. 

 Rank Sums   

Dependent Variable 1 Phase 2 Phase 3 Phase χ2 d.f. p 

Proportion infected 2.99e+08 3.47e+08 3.67e+08 962.912 2 0.0001 

Infection duration 3.09e+08 3.44e+08 3.59e+08 517.021 2 0.0001 
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To investigate the apparent percolation dynamics in the raw data, we plot the 

mean and 95% confidence interval for both dependent variables—as well as two 

alternative indicators of infection severity—over the full Np range (Figure 8). These 

data, especially the metrics that focus on large-scale and long-term infection events 

(bottom row), provide further evidence of a percolation threshold. We also note that 

variability increases dramatically as Np surpasses the critical region, with higher 

variability in the high-specialization data.  
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Figure 8: Percolation threshold visualizations. Lines plot average values for the 100 runs at each of 

150 N
p

 levels, with corresponding color fields indicating 95% CI. Top left plot shows infection 

duration. Top right shows mean proportion infected (cumulative). Bottom left shows the fraction 

of runs resulting in a systemic network-level infection lasting the full duration of the model run 

(4135 model days). Bottom right shows the fraction of runs in which 95% or more of the agents 

became infected. 
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To further analyze the scaling behavior of the dependent variables, we apply 

LOESS smoothing to the raw model output data. The Np value at which the LOESS-

smoothed curve has the highest slope indicates the point at which outbreak severity 

scales most abruptly with Np , or the approximate percolation threshold. Figure 9 

displays the results of this procedure, with the lower plots showing the slope of the 

LOESS curves as a function of Np . The Np values corresponding to the maximum 

slopes (indicated in the figures) would appear to correspond to the critical Np ranges 

observed visually in Figure 7 and Figure 8 for all treatments. On both epidemic severity 

metrics, the three-phase treatment exhibits the lowest percolation threshold, as well as 

the highest slope at this point, indicating that the high-specialization networks are 

vulnerable to epidemic percolation at lower densities, and also exhibit a more-abrupt 

phase-change. Although the difference between the two- and three-phase systems is 

marginal, we can conclude that there is a marked differentiation between the behavior 

of single- versus multi-phase systems at criticality.  
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Figure 9: Finding percolation points numerically. Upper plots show raw model output data with 

LOESS-smoothed curves (span length = 0.45×N). Lower plots show the slope of each LOESS curve, 

with maximum-slope points annotated. Green represents 1-phase, blue 2-phase, and red 3-phase 

treatments. 
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3.4.2 Experiment 2 

3.4.2.1 Contact network metrics 

Experiment one found that the greatest differences in percolation risk occur 

when stepping from single-phase to multi-phase systems. Here we investigate whether 

key network metrics may provide clues that explain this result from a network-theoretic 

perspective (Table 4 and Figure 10). The most striking feature in these data is that, in 

the single-phase networks, several of the network metrics simply do not scale with Np 

as they do in the multi-phase scenarios. Network maps plotted from sample model runs 

(Figure 11) illustrate the fundamental structural difference underlying this result: in the 

single-phase systems, each producer is connected only to a single feed mill and a single 

slaughter plant. In light of this, it is clear why the average clustering coefficient 〈C〉—

defined as the ratio of “closed triangles” to “total triangles”—will by definition be 

equal to zero for all single-phase runs. For the same reason, average degree 〈k〉=3, k-

core size Skc≈Np, and k-core order Okc=2 also hold universally.  
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Table 4:  Key contact network metrics for each producer specialization level, stratified across three 

producer density categories. 

  0<Np≤500 500<Np≤1000 1000<Np≤1500 

Network 

Metric 

 
Mean 95% CI Mean 95% CI Mean 95% CI 

Average 

Degree 〈k〉 
1 Phase 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 3.00 

2 Phase 7.14 6.42 7.86 15.58 14.52 16.64 24.84 22.90 26.78 

3 Phase 6.70 5.90 7.50 16.62 15.67 17.57 26.88 24.98 28.78 

Average 

Shortest Path 

Length 〈l〉 

1 Phase 3.70 3.60 3.82 3.66 3.56 3.77 3.54 3.44 3.64 

2 Phase 3.82 3.72 3.92 3.58 3.52 3.64 3.57 3.51 3.62 

3 Phase 4.16 4.17 4.45 3.85 3.81 3.89 3.80 3.75 3.85 

Clustering 

Coefficient 

C 

1 Phase 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 Phase 0.20 0.19 0.21 0.13 0.12 0.14 0.09 0.08 0.10 

3 Phase 0.19 0.18 0.20 0.13 0.12 0.13 0.09 0.08 0.09 

k-core Order 

Okc 

1 Phase 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 2.00 

2 Phase 8.34 7.39 9.29 17.42 15.80 19.04 26.88 23.90 29.86 

3 Phase 8.58 7.47 9.69 19.88 18.09 21.67 29.78 26.71 32.85 

k-core Size 

Skc 

1 Phase 308.40 266.63 350.17 812.76 772.16 853.36 1312.8 1272.2 1353.5 

2 Phase 66.12 52.13 80.11 242.42 200.33 284.51 547.80 481.56 614.04 

3 Phase 67.04 50.74 83.34 209.88 175.72 244.04 443.50 375.73 511.27 

Number of k-

cores Nkc 

1 Phase 1.02 0.98 1.06 1.00 1.00 1.00 1.00 1.00 1.00 

2 Phase 1.12 1.03 1.21 1.04 0.98 1.10 1.00 1.00 1.00 

3 Phase 1.10 1.00 1.20 1.00 1.00 1.00 1.00 1.00 1.00 
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Figure 10: Correlating N
p

 with contact network metrics. Key contact network metrics, calculated 

for each treatment. Lines plot averages for each N
p

 value; color fields show 95% CI. Green 

represents 1-phase, blue 2-phase, and red 3-phase treatments. 
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Figure 11: Visualizations of sample networks generated by the model under each level of producer 

specialization. N
p

=500 for each network. Nodes were positioned using a spring layout, and sized 

according to total number of contact events. Blue nodes are producers; yellow are feed mills, and 

red are slaughter plants. 

 

For the multi-phase networks, the explanation for the higher 〈k〉 is trivial: an 

entire interaction context is added, so there must be more edges. The more important 

realization is that the addition of the producer–producer interaction context can add 

bridging edges, resulting in elevated 〈C〉 values. Places where these bridges connect 

portions of the network that would otherwise have remained isolated represent clear 

risk points for disease outbreaks to become systemic.  

But, can any of these metrics reliably predict epidemiological risk? For the 

multi-phase networks, many of the metrics seem to scale roughly linearly with Np, with 

〈k〉, 〈Okc〉, and 〈Skc〉 being positively correlated; and 〈l〉 and 〈C〉 being negatively 

correlated. Unfortunately, the lack of any significant nonlinearity suggests that the 
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percolation point cannot be reliably predicted a priori by tracking these network 

metrics as a network grows. Developing metrics that are effective predictors of disease 

spread risk in complex networks remains an area for future study.  

3.4.2.2 Infected component network metrics 

Examining metrics calculated on infected-component subgraphs (Table 5) 

provides insights into the network structures that underlie percolation, and how these 

structures differ between the single- and multi-phase networks. Overall, we note that 

only 226 of the 450 model runs conducted in experiment two resulted in an infection 

network, with the infection in the remaining 224 runs failing to spread beyond the 

initially-infected node. This mirrors the bimodal epidemic size distribution discussed 

above and shown in Figure 5 and Figure 6. As a result of this lower N, Np values were 

divided into five bins for visualization (Figure 12).  
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Table 5:  Key infected component network metrics for each producer specialization level, stratified 

across three producer density categories. 

  0<Np≤500 500<Np≤1000 1000<Np≤1500 

Network 

Metric 

 
Mean 95% CI Mean 95% CI Mean 95% CI 

Average 

Degree 〈ki〉 

1 Phase 1.05 0.95 1.14 1.26 0.99 1.53 1.76 1.33 2.19 

2 Phase 1.25 1.08 1.42 3.95 1.70 6.21 10.64 7.10 14.18 

3 Phase 1.25 0.96 1.54 5.33 3.09 7.58 13.41 9.10 17.72 

Average 

Shortest Path 

Length 〈li〉 

1 Phase 1.20 1.06 1.35 1.72 1.35 2.09 2.20 1.66 2.73 

2 Phase 1.63 1.34 1.91 2.35 1.81 2.88 2.70 2.24 3.15 

3 Phase 1.69 1.34 2.04 2.40 1.86 2.95 2.68 2.22 3.13 

Clustering 

Coefficient 

Ci 

1 Phase 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 

2 Phase 0.06 -0.02 0.13 0.09 0.03 0.15 0.07 0.04 0.09 

3 Phase 0.02 -0.01 0.05 0.07 0.04 0.11 0.05 0.03 0.08 

k-core Order 

O
i

kc
 

1 Phase 1.18 0.96 1.40 1.48 1.09 1.87 1.67 1.25 2.08 

2 Phase 1.54 1.31 1.76 5.76 2.19 9.33 14.21 9.06 19.37 

3 Phase 1.54 1.11 1.97 7.37 3.81 10.93 14.44 9.07 19.80 

k-core Size 

S
i

kc
 

1 Phase 2.64 2.21 3.06 39.61 -11.78 91.00 342.62 112.69 572.55 

2 Phase 4.64 3.03 6.26 47.67 11.24 84.09 105.96 44.94 166.99 

3 Phase 4.54 2.65 6.43 50.48 21.21 79.76 158.72 90.45 226.99 

Number of k-

cores N
i

kc
 

1 Phase 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

2 Phase 1.00 1.00 1.00 1.00 1.00 1.00 1.04 0.96 1.11 

3 Phase 1.00 1.00 1.00 1.00 1.00 1.00 1.03 0.97 1.09 

Note: Reported values are averages for runs falling into each producer density 

category.  
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Figure 12: Correlating N
p

 with infected component network metrics. Key infected component 

network metrics, calculated for each treatment. Bars plot averages for five N
p

 ranges; whiskers 

show 95% CI. Green represents 1-phase, blue 2-phase, and red 3-phase treatments. 

 

Data analyses reveal several differences between the overall contact networks 

and the infected component networks. Whereas 〈C〉 in the contact network drops as Np 

rises, 〈Ci〉 remains relatively flat, suggesting that subgraphs with relatively-higher 

clustering than the rest of a network may be especially vulnerable to disease. Secondly, 

in the multi-phase systems, a nonlinearity would appear to exist in 〈ki〉 with respect to 

Np around the critical percolation regions. As a network grows larger, it becomes less 

likely that any two randomly-selected nodes will be linked, since only so many contacts 
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can occur in a given timeframe. Therefore, heavily-connected nodes will tend to be the 

ones whose edges happen to impinge upon an infected trading partner. 〈O
i

kc
〉 and 〈S

i

kc
〉 

also appear to exhibit a similar non-linearity. Interestingly, for the multi-phase 

networks, 〈O
i

kc
〉 would seem to more heavily reflect the percolation threshold, whereas 

for the single-phase networks, in which it was always the case that 1<〈O
i

kc
〉<2, it is 

〈S
i

kc
〉 that balloons upon reaching the threshold.  

3.5 Discussion 

Our experimental results strongly suggest that, at least in the context of the 

model presented here, the risk of catastrophic infectious disease outbreaks may be 

inhibited by (a) sparser networks, and, perhaps more critically, (b) networks in which 

fewer contexts for interaction facilitate greater compartmentalization of inter-agent 

contact patterns, leading to both shorter and smaller outbreaks, as well as less 

uncertainty about whether a given outbreak will become systemic. These findings 

corroborate previous theoretical research into the network features that can promote 

large-scale epidemics [43, 44], as well as empirical studies that point to similar 

infection spread patterns having occurred in real-world outbreaks [2-4].  

Despite the phase transitions in our data not being particularly “sharp,” there is 

clear evidence of a nonlinearity in the scaling of epidemic severity with producer 

density in the hog production systems generated by our model. Quantifying the 
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producer densities at which adding additional producers to the system is most-strongly 

correlated with an increased risk of catastrophic disease spread reveals a clear 

differentiation between the epidemiological resilience of low- versus high-

specialization treatments.  

As in many dynamical systems, we find that the critical region around the 

percolation threshold acts as a border between a unimodal system state in which disease 

outbreaks virtually always die out quickly, and a bimodal state in which large-scale, 

systemic outbreaks are possible. It is only within the critical region that medium-

severity outbreaks are observed. This finding is important because it entails that, if the 

size and/or duration of disease events in a growing livestock production network has 

begun to show wider variability, this could be an indication that further increasing the 

regional production density may not simply increase the risk linearly, but instead 

accelerate the system toward a regime characterized by the possibility for catastrophic 

epidemic events.  

A limitation of the model concerns human behavioral adaptation in the face of 

epidemiological threats. Whereas the model used here assumes that agents’ behavioral 

heuristics remain static, previous research has pointed to the potential for behavioral 

adaptation—for example limiting contact as a disease becomes more prevalent—to 

significantly affect the course of an outbreak [73]. The extent to which such adaptive 

behavior may differentially-impact the disease resilience of livestock production 
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networks with varying levels of producer specialization or spatial density remains an 

area for future research.  

A limitation of experiment two rests in our selection of network metrics, and 

our choice to binarize and symmetrize the networks for analysis. While binarization and 

symmetrization have been employed historically in network analysis—and while there 

is some evidence to suggest that this approach is valuable for the evaluation of 

spreading dynamics [65]—future studies will compare the efficacy these metrics to 

their weighted and/or directed counterparts as indicators of epidemiological 

vulnerability. It would also be useful to analyze vulnerability not only from the whole-

graph perspective, but from the level of individual nodes.  

Another area for future study is to investigate percolation dynamics within 

mixed systems of single- and multi-phase producers. This would lend further insight to 

optimize risk mitigation strategies in real-world networks, which generally contain 

multiple overlapping production systems. For example, it would be valuable to 

understand the extent to which the introduction of just a few multi-phase producers into 

a region dominated by farrow to finish farms may impact percolation risk.  

3.6 Conclusion 

Those concerned with preventing the spread of catastrophic diseases in the U.S. 

hog industry most-commonly promote the adoption of discrete biosecurity and 

biocontainment interventions at the premises level; strategies which may well be 

efficacious in many situations. However, epidemics are ultimately spread through 
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complex networks of interacting actors, and—as we have shown—the structure of a 

given network can have a dramatic impact on the epidemiological resilience of the 

system. As hog production grows denser and more spatially-consolidated, it will 

become increasingly vital to consider how operational decisions made at the farm level 

impinge upon the patterns of trade and contact that may become transmission vectors in 

the next outbreak.  

While single-phase systems may be falling out of favor for reasons of 

production efficiency, our results suggest that industry practitioners, managers, and 

regulators would be wise to consider the biosecurity advantages associated with farrow 

to finish farms when developing best management practices to mitigate epidemiological 

risk. All else being equal, systems dominated by single-phase producers should 

theoretically be able to withstand significantly higher farm densities without a 

corresponding increase in the risk of large-scale disease percolation. This is because 

adding a producer–producer interaction context can form bridges between otherwise-

isolated parts of a network, turning what could have been a short-term, localized 

outbreak into an ongoing, systemic one. In hog-dense regions such as Iowa, Illinois, 

and North Carolina—where disease is a constant threat—a turn back toward single-

phase production may offer a means to increase system-wide disease resilience, even 

while maintaining high regional hog production capacity.  
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3.7 Supporting information 

The RUSHPNBM v.0.8 ODD+D Protocol appears at the end of this dissertation 

as Appendix 1.  The datasets are available upon request from the author. 

3.7.1 S1 Protocol 

RUSHPNBM v.0.8 ODD+D Protocol. Describes in detail the technical 

specifications of the model developed for this experiment, including parameter values, 

calibration details, and pseudocode representations of all functions. 

3.7.2 S1 Dataset 

Infection Data. Infection duration and size data for 45,000 model runs. Used in 

experiment one. 

3.7.3 S2 Dataset 

Network Data. Network edge list data for all agents, across 450 model runs. 

Used in experiment two. 
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CHAPTER 2: NETWORK META-METRICS: USING EVOLUTIONARY 

COMPUTATION TO IDENTIFY EFFECTIVE INDICATORS OF 

EPIDEMIOLOGICAL VULNERABILITY IN A LIVESTOCK PRODUCTION 

SYSTEM MODEL 

4.1 Abstract 

We developed an agent-based susceptible / infective model which simulates 

disease incursions in the hog production chain networks of three U.S. states. Agent 

parameters, contact network data, and epidemiological spread patterns are output after 

each model run. Key network metrics are then calculated, some of which pertain to 

overall network structure, and others to each node’s positionality within the network. 

We run statistical tests to evaluate the extent to which each network metric predicts 

epidemiological vulnerability, finding significant correlations in some cases, but no 

individual metric that serves as a reliable risk indicator. To investigate the complex 

interactions between network structure and node positionality, we use a genetic 

programming (GP) algorithm to search for mathematical equations describing 

combinations of individual metrics—which we call “meta-metrics”—that may better 

predict vulnerability. We find that the GP solutions—the best of which combine both 

global and node-level metrics—are far better indicators of disease risk than any 

individual metric, with meta-metrics explaining up to 91% of the variability in agent 

vulnerability across all three study areas. We suggest that this methodology could be 

applied to aid livestock epidemiologists in the targeting of biosecurity interventions, 



112 

 

and also that the meta-metric approach may be useful to study a wide range of complex 

network phenomena.  

4.2 Introduction 

This paper reports on an experiment that leverages network analytics and 

evolutionary computation to identify indicators of network structure and node 

positionality that predict epidemiological vulnerability within simulated livestock 

production chains. We use an agent-based model (ABM) to generate network graphs 

and employ network analytical techniques, statistical analysis, and evolutionary 

computation to investigate the extent to which either single network metrics, or 

combinations of metrics, may serve as indicators of infection risk. Understanding these 

relationships will aid livestock production practitioners, managers, and epidemiologists 

in targeting interventions which may preempt the spread of socioeconomically-

important diseases through livestock production networks.  

The field of animal health has received considerable attention due to the 

significant economic impacts on livestock enterprises caused by recent epidemics, as 

well potential implications associated with maintaining a stable, secure food supply. 

Studies of disease dynamics—specifically, targeted interventions to prevent 

outbreaks—has therefore become an important area of study for both scientists and 

policymakers (Schoenbaum & Disney, 2003).  

The Regional U.S. Hog Production Network Biosecurity Model (RUSH-

PNBM) v.1.2 is an ABM developed to assess disease spread through regional livestock 



113 

 

production systems. The model uses a GIS-based spatial framework, with three 

important hog-producing U.S. states—North Carolina, Iowa, and Illinois—defining the 

study areas. Three types of agents—hog producers, feed mills, and slaughter plants—

interact through the transfer of livestock and feed, based on parameters including 

industry role, size, and proximity. The model is calibrated to examine the spread of a 

fecal-oral disease such as Porcine Epidemic Diarrhea virus (PEDv), transmitted by 

either infected animals, contaminated feed, contaminated slaughter plant receiving 

areas, or contaminated transportation equipment (Schulz & Tonsor, 2015). Expert 

advisory panels, coupled with available statistical datasets, guided the development, 

calibration, and validation of the model’s heuristics and parameters, with the goal being 

to capture critical complexities underpinning epidemiological spread dynamics 

observed in the real world.  

Because epidemics are fundamentally phenomena that propagate through 

networks (social, business, transportation, etc.), the generation of suitably-realistic 

graph structures that position agents as nodes, and inter-agent contacts as edges, is a 

basic design principle of RUSH-PNBM. Weighted edge lists built up by tracking inter-

agent contact and infection spread patterns are output after each model run. Multiple 

runs across the three study areas provide a dataset upon which network analytics are 

applied to evaluate epidemiological vulnerability.  

To analyze the data, first, global metrics capturing overall structures associated 

with each study area network are statistically correlated with both average and agent-
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level vulnerability. Second, node-level metrics indicating network positionality are 

correlated with individual agents’ vulnerabilities. Finally, realizing that epidemiological 

risk is contingent on a complex interaction between both global and node metrics, we 

employ a procedure to identify “meta-metrics”—using a Genetic Programming (GP) 

evolutionary algorithm—that correlate with the vulnerability of nodes across three 

networks with differing structural typologies. Overall, we find that the meta-metrics 

identified by the GP serve as much better indicators of epidemiological risk than any 

individual metric. While the focus of this study is livestock epidemiology, we suggest 

that this novel methodology may be applied to evaluate a variety of outcomes in a 

diverse range of networked systems.  

The following background section will first cover the contributions of 

computational science to explanatory epidemiological models at a general level. We 

then discuss the application of agent-based models to the study of disease spread. Next, 

we highlight relevant theoretical contributions from the field of network analytics. 

Finally, we discuss previous research applying network science and computer modeling 

to livestock epidemiology.  

4.3 Background 

4.3.1 Computational Epidemiology 

While providing a firm foundation, it has become evident that observational 

epidemiological studies yield limited insights wherever there are large geographical 

areas involved, large numbers of infection cases, multiple potential sources and/or paths 
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of infection, inherent uncertainty, incomplete data collection, and/or other 

complications. Further, proposed interventions may act at different levels, targeting, for 

example, production practices, animal movements, or human-behavioral factors; as 

well as being either preventive or reactionary in nature (Garner et al., 2007; Garner & 

Hamilton, 2011).  

In recent years, computational modeling has increasingly been employed to 

probe such complexities, revealing fundamental characteristics of disease propagation 

within complex systems (Garner & Hamilton, 2011; Parker & Epstein, 2011; Perez & 

Dragicevic, 2009; Perez et al., 2002). Using such approaches, researchers have 

identified key infection nodes and disease pathways, evaluated health-policy scenarios 

utilizing both preventive and reactionary interventions, and projected the economic 

impacts of several disease incursion threats (Robins et al., 2015; Alderton et al., 2016; 

Belkhiria et al., 2016; Bradhurst et al., 2016; Tracey et al., 2014; Arruda et al., 2016; 

Bagni et al., 2002; Schulz & Tonsor, 2015).  

The strength of the modeling approach lies in its ability to distill real-world 

systems down to their core processes. However, the complex nature of biological 

systems has led some to question the extent to which models should be relied upon to 

forecast real-world disease incursions (Moss, 2008). For example, during the United 

Kingdom’s 2001 Foot-and-Mouth Disease (FMD) epidemic, flawed predictive models 

were used to inform the culling policy (Kitching et al., 2006). To prevent such 

occurrences, it is incumbent upon modelers to recognize the limitations of their chosen 
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approaches when drawing conclusions (Bousquet et al., 1999; Barreteau et al., 2003; 

Garner et al., 2007; Klügl, 2008). We note up-front that RUSH-PNBM in its current 

form is not intended as a forecasting tool, but rather to understand and quantify the 

interactions between network structures and disease spread dynamics within parallel 

real-world systems more generally.  

4.3.1.1 Epidemiological agent-based models 

ABMs constitute a class of complex systems models in which the global 

dynamics of a system emerge as a result of many individuals’ decision heuristics and 

resulting interaction patterns, rather than being defined from the top down. Since they 

often incorporate stochasticity, ABMs can be difficult to validate, and they can also 

incur high computational overhead due to the quantity of calculations required 

(Bradhurst et al., 2016). On the plus side, ABMs provide several advantages over other 

methodologies when the goal is to discover previously-unexplored patterns that emerge 

from heterogeneous behavioral patterns, environmental factors, and especially when 

agent behaviors are affected by the state of other agents and/or a changing environment 

(Auchincloss & Diez Roux, 2008; Parker & Epstein, 2011; An, 2012; Shi et al., 2014; 

Kaul & Ventikos, 2013). Used as ”virtual laboratories,” ABMs can unveil insights into 

the inter-agent interaction patterns that underpin macro-level results (Macal & North, 

2010).  

ABMs focused on disease spread typically include two main components: 

within-host progression and between-host transmission (Hunter et al., 2017). Within-
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host progression describes the process of a pathogen infecting a given host, running its 

course, and eventually dying out. A common means of modeling this is the SIR 

framework, in which susceptible (S) agents may contract a disease and become 

infective; infective (I) agents can transmit the disease to others; and removed/recovered 

(R) agents are conceived of as either dead, or having acquired immunity to the disease 

(Anderson & May, 1979). SI, a common variant, allows for repeated reinfections. In 

general, parameters including infection probability and average infection duration 

mediate the dynamics of within-host progression.  

Between-host transmission occurs probabilistically when a susceptible agent 

comes into contact with an infective one. Agents enter into contact either at a rate 

governed by a differential equation, or in the case of ABMs according to the scheduling 

of their individual decision heuristics. Transmission probabilities may also be 

heterogeneous, depending on factors such as inter-agent distance, differing agent 

parameters, or network positionality. Modeling the interactions between a network of 

agents permits the simulation of realistic between-host paths, as well as subsequent 

analysis of individual agent vulnerabilities (Barrett et al., 2008).  

4.3.2 Network Analytics and Spreading Dynamics 

Network analytic techniques have provided insights into spreading behavior in a 

wide range of contexts, including information spread, diffusion of innovations, disease 

transmission, and other phenomena. Researchers compare and contrast spreading on 

different typologies of algorithmically-generated networks (i.e. random graphs, small-
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world, scale-free, etc.), as well as analyzing complex graphs constructed from real-

world datasets and computer simulations (Wasserman & Faust, 1994).  

The application of network science to epidemics has received considerable 

attention due to the ability of network models to simultaneously depict the global 

structure of a population as well as the personal interactions between individuals (Bell 

et al., 1999; Christley et al., 2005; El-Sayed et al., 2012). For example, the transmission 

pathways that mediate the spread of a sexually-transmitted disease will differ 

significantly from those of an airborne-transmitted disease, with the former 

characterized by interpersonal contact networks (Killworth et al., 1998), and the latter 

by global transportation patterns (Colizza et al., 2007).  

Many algorithms have been developed to measure and mathematically-codify 

aspects of network structure and node positionality (Albert & Barabási, 2002). Owing 

largely to continual advancements in this network-analytical toolkit, researchers have 

increasingly worked to identify network metrics that correlate with spreading dynamics. 

Below we first present research examining connections between global network 

structures and spreading dynamics, and second those which focus on individual node 

positionality within a network. We then describe how these insights have been applied 

to the study of epidemiological spread through livestock production networks.  

4.3.2.1 The role of network structure on disease spread 

Several studies have examined connections between the overall structure of a 

network and the propensity with which that network promotes disease spread. Christley 
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et al. (2005) use an SIR model to compare spreading in undirected random networks 

versus small-world networks (which have more heterogeneous degree distributions), 

finding faster spreading but ultimately fewer infected individuals in the small-world 

networks. The small-world networks had greater clustering and significantly higher k-

core densities. In both network typologies, nodes in the k-core were at a higher risk of 

infection. Comparing unweighted centrality measures, the authors find that degree 

centrality is about as good a predictor of a node’s infection risk as random-walk, 

shortest-path, or farness centrality, while being simpler to compute.  

Salathé & Jones (2010) investigate the role of community structure on spreading 

in networks. Community structure (a.k.a. modularity) in a graph exists when nodes are 

densely connected in “cohesive subgroups,” with only a few bridging connections 

between groups. Using SIR simulations, the authors find that targeting high-degree 

nodes for immunization can be effective in low-modularity graphs, but with more 

community structure, targeting bridges between communities—identified by 

betweenness or random-walk centrality—becomes more effective.  

Kitsak et al. (2010) run SIR and SI models on four large, complex real-world 

networks. The authors demonstrate that a node’s “coreness” or “core number”—as 

determined by the k-shell decomposition procedure—can in many cases be a better 

predictor of spreading propensity than either degree or betweenness centrality. Further, 

in their SI model results, the boundaries of k-cores tended to determine where an 

infection would become systemic versus die out. This suggests that coreness interacts 
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with traditional indicators of risk in complex ways: for example, a peripheral yet high-

degree / high-betweenness node may be less infective than a lower-degree or lower-

betweenness node within the core. These findings point to the need for further research 

into the interplay between the overall structure of a graph and the position of a node 

within that graph when estimating the node’s infectivity.  

4.3.2.2 The role of node positionality on disease spread 

Research has also focused on correlations between the positionality of 

individual nodes and their resultant disease risk. In an early effort, Rothenberg et al. 

(1995) use survey data to build a network tracking the spread of HIV within a small 

community. While their results are largely inconclusive—likely owing to the very low 

proportion of infected individuals—they identify several important methodological 

insights. First, they draw a distinction between egocentric network analysis (i.e. 

individual risk based on network positionality) vs. sociocentic analysis (i.e. how macro-

level network structures impact group-level outcomes). Second, they consider whether 

weighted or unweighted network metrics are better indicators of risk. It is unclear 

whether, for example, a person who comes into infrequent contact with many other 

individuals would be more or less vulnerable than a person who comes into more 

frequent contact with fewer individuals. Since measures of centrality, assortativity, and 

other metrics can be based on either weighted or unweighted degree, the distinction is 

important (Wasserman & Faust, 1994).  
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Bell et al. (1999) calibrate an SIR model based on interview data to reflect the 

network structure of a small group of individuals, and use model output data from a 

series of runs to investigate correlations between several indicators of network 

positionality and two dependent variables: (a) vulnerability, or the number of times a 

node became infected during a run; and (b) infectivity, the number of times a node 

spread the infection during a run. As in Rothenberg et al. (1994), both weighted (a.k.a 

valued) and unweighted (a.k.a. dichotomized) versions of metrics were analyzed. The 

authors find that vulnerability is best predicted by unweighted versions of eigenvector 

centrality, information centrality, degree centrality, and in-degree prestige; whereas 

infectivity was most highly correlated with weighted metrics including out-degree 

centrality, influence centrality, degree centrality, eigenvector centrality, and power 

prestige. Similar studies using empirically-derived infection-spreading networks also 

find that multiple centrality measures correlate with infection risk (De et al., 2004).  

Ghani & Garnett (2000) develop a stochastic SI simulation model of gonorrhea 

transmission through large (N=2000) networks of social partners. The authors use 

nested Poisson regression models to compare the relative influence of each node’s 

unweighted degree (k), concurrency, k at distance = 2, k at distance = 3, closeness, 

betweenness, and information centrality on both vulnerability and infectivity. They find 

that k is highly significant in all cases, and concurrency improves the model fit for both 

vulnerability and infectivity. Increased “local” connectivity (k at distance = 2) improves 

the model fit only for vulnerability, whereas indicators of centrality within the full 
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network, including closeness and betweenness, are important in predicting infectivity. 

The authors conclude that vulnerability is primarily contingent upon the structure of 

local network neighborhoods, whereas infectivity depends more on the interactions 

betweeen individual behavior and global network positionality.  

4.3.2.3 Application to livestock epidemiology 

In the case of livestock disease outbreaks, the networks that underlie the 

movement of livestock, feed, supplies, workers, and visitors are often the ones that 

pathogens follow as an epidemic spreads. In addition to direct disease transmission 

resulting from animal movements, disease can be also transmitted indirectly via 

contaminated feed, fomites, and transportation vehicles (Fèvre et al., 2006). Network 

models of livestock disease spread encode the contact patterns between producers and 

other actors such as auction houses, animal fairs, slaughter plants, and feed mills; each 

of which can be analyzed as a node in the overall network.  

The United States Department of Agriculture Animal and Plant Health 

Inspection Service currently utilizes two stochastic state-transition SIR models—

InterSpread Plus (ISP) and the North American Animal Disease Spread Model / Animal 

Disease Spread Model (NAADSM/ADSM)—to simulate disease incursions and 

evaluate the efficacy of control strategies (Stevenson et al., 2013; Harvey et al., 2007). 

These models leverage empirical data to generate spatially-explicit networks of 

livestock production nodes, and can simulate disease transmission via either animal 

movements or airborne spread.  
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Network analytics can illuminate the flow of disease within a production system 

and provide insights into effective control strategies (Dubé et al., 2009). For example, 

livestock movement data reveal the most common pathways over which infection was 

transmitted during the 2001 Foot and Mouth Disease (FMD) outbreak in the UK 

(Mansley et al., 2003; Webb, 2005; Kao et al., 2006; Kiss et al., 2006; Ortiz-Pelaez 

et al., 2006; Dubé et al., 2009). Similarly, analysis of Danish animal movement 

networks has allowed researchers to forecast disease spread through that system 

(Bigras-Poulin et al., 2006, 2007).  

Using an SI model-based approach, Natale et al. (2009) leverage animal 

traceback data to build networks of Italian cattle supply networks, and examine the 

influence of “seeding node” positionality upon the final extent of an epidemic, finding 

that the eigenvector centrality and closeness of the seeding node are strongly correlated 

with epidemic size. The authors find power law degree distributions for both animal 

shipment sizes and the number of shipments per node; characteristics of a “scale free” 

network with “small world” properties. These properties have also been observed in 

other animal movement networks (Bigras-Poulin et al., 2006, 2007).  

Wiltshire (2018) uses an agent-based SI model to analyze the impact of 

increased network density and producer specialization on the size and scale of disease 

outbreaks in U.S. hog production systems, finding evidence of percolation-type phase 

changes, with more-specialized systems becoming vulnerable to catastrophic outbreaks 

at lower density levels.  
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4.3.3 Contributions of This Study 

RUSH-PNBM makes several advances over previous SIR-type livestock 

epidemic models, producing a network with thousands of agents, multiple agent types 

with heterogeneous interaction heuristics, and empirically-derived agent locations and 

operational parameters. Existing models such as Harvey et al. (2007) and Stevenson 

et al. (2013) also use empirical data to generate spatially-explicit livestock supply chain 

networks, but include only livestock production unit actors, whereas RUSH-PNBM 

also incorporates feed mills and slaughter plants, which have been implicated in disease 

incursions historically.  

Natale et al. (2009) include slaughter plants in their model, but only the 

movement of infected animals is considered as a transmission vector, whereas RUSH-

PNBM simulates transmission resulting from contaminated feed, slaughter plant 

receiving areas, and returning livestock transportation equipment as well. Thus, while 

in Natale et al. (2009) slaughter plants serve only as sinks for animals moving through 

the production chain, in our model they also function as hubs that may facilitate 

spreading.  

A further contribution of RUSH-PNBM is that it realistically accounts for 

temporal concurrency. Rather than inter-agent contact occurring with an equal 

probability at each time step, network edges in RUSH-PNBM come into existence only 

when the state of each agent (for example its current inventory), together with its 

individual decision heuristics, dictate that a transfer of animals or feed should proceed.  
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Although the current version of RUSH-PNBM was built to study PEDv 

transmission in three U.S. states, its general structure allows for re-parameterizations 

focused on increased context specificity and/or adaptation to other diseases, study 

areas, or livestock species. This flexibility suggests that the model could serve as a 

valuable tool for practitioners to assess epidemic risk in a variety of livestock 

production contexts.  

Following other studies investigating the interplay between network structures 

and spreading dynamics (Bell et al., 1999; Ghani & Garnett, 2000; Colizza et al., 2007; 

Webb, 2005; Kao et al., 2006; Kiss et al., 2006; Ortiz-Pelaez et al., 2006; Dubé et al., 

2009; Bigras-Poulin et al., 2006, 2007; Natale et al., 2009), we analyze network graphs 

(in this case output from RUSH-PNBM) to determine the extent to which key network 

metrics correlate with nodes’ epidemiological vulnerability. Rothenberg et al. (1995) 

suggest that the fusion of egocentric and sociocentric analytics would be a valuable 

approach for future research. Whereas in much of the previous work in this area only a 

single network is analyzed, our study compares and contrasts networks from three 

distinct study areas, allowing us to investigate the role of both egocentric (node-level) 

and sociocentric (global) metrics upon a node’s vulnerability.  

Our approach to determining the impact of each metric upon vulnerability is 

also innovative. In much of the previous work in this area, bivariate statistical methods 

are utilized, with some authors using multivariate regressions to investigate the relative 

impact of a suite of metrics taken together (Ghani & Garnett, 2000). Rather than relying 
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on traditional statistical techniques, we employ evolutionary computation to search for 

more-complex relationships between network metrics. Using a genetic programming 

algorithm, we obtain a set of “meta-metrics” along a complexity / fitness Pareto front. 

We find that the GP solutions predict infection risk in our data far better than any 

metric taken singly, lending support for the efficacy of this methodology.  

4.4 Model Description 

This section provides an overview of the basic features of the RUSH-PNBM 

v.1.2, including initialization procedures, agent interaction heuristics, the 

epidemiological sub-model, parameterization and validation, and sensitivity analysis. 

The model was built using Anylogic v.8 multimethod modeling software. For 

additional details, reference the RUSH-PNBM v.1.2 ODD+D Protocol (Appendix 2). 

Table 6 gives the model’s global parameters, the values explored in this experiment, 

and the datasets and/or information sources used in parameter calibration. 
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Table 6: Model parameters and values explored in the experiment. “EAP” indicates that the value 

was derived through expert advisory panel sessions. “FHPC” refers to the family-owned hog 

production chain system dataset. 

Parameter Value(s) Source 

Initial network parameters 

Study area [NC, IA, IL] - 

Number of producers in study area [2217, 6266, 2045] Burdett et al. (2015) 

Avg. Producer Capacity [4015, 3265, 2264] Burdett et al. (2015) 

Proportion Farrow to Wean [0.050, 0.026, 0.038] Burdett et al. (2015) 

Proportion Farrow to Feeder [0.005, 0.010, 0.009] Burdett et al. (2015) 

Proportion Farrow to Finish [0.554, 0.304, 0.635] Burdett et al. (2015) 

Proportion Wean to Feeder [0.102, 0.064, 0.023] Burdett et al. (2015) 

Proportion Wean to Finish [0.003, 0.077, 0.055] Burdett et al. (2015) 

Proportion Feeder to Finish [0.286, 0.519, 0.241] Burdett et al. (2015) 

Number of slaughter plants in study 

area 

[24, 18, 25] USDA NASS 

(2014) 

Number of feed mills in study area [40, 114, 37] Google search; EAP 

Producer to slaughter plant λ 2 EAP 

Producer to feed mill λ 1.5 EAP 

Disease parameters 

Percent of producers initially infected 5% - 

Avg. producer infection duration (days) 40 Goede & Morrison 

(2016); EAP 

Avg. slaughter plant infection duration 

(days) 

7 EAP 

Avg. feed mill infection duration (days) 25 EAP 

Suckling pig mortality rate on infection 0.9 Goede & Morrison 

(2016); EAP 

Nursery pig mortality rate on infection 0.4 Goede & Morrison 

(2016); EAP 

Grow/finish hog mortality rate on 

infection 

0.1 Goede & Morrison 

(2016); EAP 

Producer disease spread probabilities 

Prob. producer will become infected if 

returning pig truck is contaminated 

0.3 EAP 

Prob. producer will become infected if 

feed truck is contaminated 

0.8 EAP 

Prob. feed truck will become 

contaminated if producer is infected 

0.05 EAP 
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Prob. pig truck will become 

contaminated if producer is infected 

0.2 EAP 

Feed mill disease spread probabilities 

Prob. feed mill will become infected if 

returning feed truck is contaminated 

0.1 EAP 

Prob. feed truck will become 

contaminated if feed mill is infected 

0.5 EAP 

Slaughter plant disease spread probabilities 

Prob. slaughter plant receiving area will 

become infected if pig batch is infected 

0.4 EAP 

Prob. pig truck will become 

contaminated if receiving area is 

infected 

0.2 EAP 

Producer farrow, wean, and batch parameters 

Farrow to wean sow proportion 

(relative to total capacity) 

0.6 EAP 

Farrow to feeder sow proportion 

(relative to total capacity) 

0.5 EAP 

Farrow to finish sow proportion 

(relative to total capacity) 

0.2 EAP 

Annual number of piglets per sow 34 The Pig Site (2014) 

Max. wean and batch frequency (days) 7 EAP 

Min. batch size (as proportion of non-

sow capacity) 

0.05 EAP 

Capacity under which producer has 

only one batch 

20 EAP 

Producer livestock transfer parameters 

Min. capacity similarity ratio 25 EAP 

Max. producer to producer shipment 

distance (km) 

150 EAP 

Max. number of potential producer to 

producer trading partners 

15 FHPC 

Max. producer to producer shipment 

frequency (days) 

5 FHPC 

Feed mill parameters 

Avg. number of daily feed delivery 

trips per mill 

10 FHPC 

Number of producers visited per feed 

delivery trip λ 

1 EAP 
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4.4.1 Agents and Initialization 

Three types of hog production chain network agents, identified by industry 

experts as critical players in the transmission of fecal-oral diseases, are represented in 

the model, these being (a) hog producers, (b) feed mills, and (c) slaughter plants. 

Producer agents are assigned one of six industry roles based on the classification 

system used by the USDA and other industry analysts, these being (a) Farrow to Wean, 

(b) Farrow to Feeder, (c) Farrow to Finish, (d) Wean to Feeder, (e) Wean to Finish, and 

(f) Feeder to Finish.  

The spatial extent of the model is defined by the boundaries of one of three U.S. 

states: (a) North Carolina, (b) Illinois, or (c) Iowa. These study areas were chosen 

because each is a major producer of hogs, yet key differences exist regarding the size of 

their networks and distribution of industry actors, allowing us to incorporate the impact 

of differences in global network structure into our analysis.  

We use the Farm Location and Agricultural Production Simulator (FLAPS) 

tool—which draws upon USDA Census of Agriculture data along with aerial imaging 

to impute realistic distributions of livestock farms within a specified U.S. region 

(Burdett et al., 2015)—to set producer agent locations and key operational parameters 

including industry roles and capacities. Following FLAPS initialization, each producer 

generates a list of potential producer trading partners, constrained by maximum 

distance, size similarity, and maximum number parameters.  
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Livestock in the model are represented in batches (or metapopulations) of 

animals of the same age. Producer agents are initialized with one or several pig 

batches—depending on their capacity—within the correct age range for their industry 

roles. Farrowing producers periodically generate new piglets, which are subsequently 

batched as weaner pigs at a rate dependent on their sow inventory, according to 

industry standards.  

Because FLAPS only covers animal production units, feed mill and slaughter 

plant locations are initialized by distributing them at random positions within each 

county in proportion to the number of producers in the county, with the overall numbers 

per state being derived from available datasets in conjunction with expert advisory 

panels. These non-producer agents are assigned service areas at initialization by having 

each producer agent connect to the nth-closest of each type, with n being drawn from 

Poisson distributions calibrated in consultation with industry experts. For example, in 

the case of feed mills, λ=1.5, indicating that a producer is most likely to purchase feed 

from the first- or second-closest mill, with fewer purchasing from the third-closest, 

fewer still from the fourth-closest, etc. Alternatively, for slaughter plants, λ=2, 

indicating that the most likely outcome is for a producer to ship hogs to the second-

closest plant. A limitation of RUSH-PNBM is that livestock and feed transfers occur 

only between model agents; thus, since the model’s spatial extent is a single U.S. state, 

interstate transportation and trade is not represented. 
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4.4.2 Behavioral Heuristics 

Agent behavior rules are derived from a review of the primary literature as well 

as from industry expert advisory panels. A schematic showing the basic interaction 

flow appears in Figure 13. Livestock are transferred to appropriate agent(s) upon 

reaching the designated transfer age, and may be split and sent to multiple trading 

partners. Feed mill agents periodically generate delivery routes that visit a subset of 

producer agents within their service areas, with the number of deliveries per route being 

drawn from a Poisson distribution with λ=1.  

  

 

Figure 13: Agent connectivity key. Connections also illustrate potential disease transmission 

vectors. 

 

4.4.3 Epidemiological Sub-Model 

Agents in RUSH-PNBM exist in one of two states: susceptible (S) or infective 

(I). Infection spread becomes possible whenever a susceptible agent comes into contact 

with an infective agent. Several modes of inter-agent contact are represented in the 
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model (Figure 13), each corresponding to a potential disease transmission vector within 

the epidemiological sub-model.  

Infected livestock transferred to a susceptible producer automatically infect the 

recipient. If a susceptible producer transfers livestock to an infective premises, there is 

a small probability that the infection may be brought back in the form of biological 

material which has contaminated the transportation equipment. Once a producer agent 

is infected, it is assumed that its entire premises becomes infected, due to the high 

reported virulence of PEDv once in a herd (Goede & Morrison, 2016). The infection 

event triggers a mortality calculation that decrements the infected agent’s livestock 

inventory according to observed mortality rates from PEDv appropriate for the age of 

each pig batch. Producers remain infective for an average duration of 40 days before 

transitioning back to susceptible. If a producer ships out its entire livestock inventory, it 

is assumed the the premises is disinfected prior to receiving a new shipment.  

Feed mills may become infected if a delivery truck that has previously been 

contaminated (by visiting an infective producer) returns to the mill. Mills remain 

infective for an average of 20 days. While a feed mill is infective, each delivery truck 

departing the mill may become contaminated. The truck may also become 

contaminated upon visiting an infective producer part-way through a route. If a 

contaminated truck visits a susceptible producer, that producer may be infected upon 

receiving a delivery of contaminated feed.  
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Slaughter plant receiving areas may become contaminated upon receiving a 

shipment of infected hogs. The plant’s receiving area will remain infective for an 

average of five days, during which arriving transportation equipment may become 

contaminated. Transportation equipment that has been contaminated in this way may 

then spread the infection upon returning to the originating producer.  

To skip the transient period and allow agent interactions to stabilize, the initial 

infection event, which randomly infects five percent of producer agents, occurs one 

model year post initialization.  

4.4.4 Parameter Calibration and Validation 

Due to the lack of precise animal movement data coupled with the inherent 

variability of epidemic events within complex networked systems, we are interested 

less in empirically-validating the model to be used as a forecasting tool, and more in 

developing sufficient structural- and face-validity to allow for a deeper understanding 

of the fundamental dynamics of the modeled systems (Klügl, 2008). Even given 

identical starting conditions, deviations in contact patterns over the course of a real-

world disease incursion often render precise forecasts unfeasible (Moss, 2008). Our aim 

is rather to uncover and better understand the network features that lead to 

epidemiological vulnerability in livestock production systems more generally (Epstein, 

2008). 

Calibration procedures that leverage concrete historical data are often regarded 

as the best way to bring a model in line with empirical evidence. Unfortunately, there is 
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a marked lack of publicly-available data in the agricultural sector beyond aggregated 

county- or state-level statistics. To the extent that datasets containing explicit locations, 

operational parameters, livestock and feed movements, and disease histories exist; these 

data tend to be held by private enterprises, which view them as sensitive internal 

records. In light of this, following Windrum et al. (2007), we employ several alternative 

calibration procedures that have been widely-used in previous modeling endeavors in 

which fine-grained data are scarce.  

The spatial locations and basic operational parameters of RUSH-PNBM agents 

associated with each study area are calibrated using the “indirect” approach, whereby 

stylized facts about the distribution of agents in the system are gleaned from statistical 

datasets (Windrum et al., 2007). While the FLAPS tool discussed above (Burdett et al., 

2015) serves as our primary means to set agent locations and operational parameters, 

our team also gained access to internal records from a large family-owned hog 

production chain system, which are used to codify realistic contact rate and shipment 

size parameters (see Appendix 2).  

Calibration of model elements that define how and when inter-agent contact 

occurs, as well as epidemiological sub-model parameters, were iteratively honed 

throughout the model development process following the “companion modeling” 

approach (Bousquet et al., 1999; Barreteau et al., 2003). During the scoping phase of 

model development, our research team convened two expert panels that included 

leading policymakers drawn from industry associations (e.g. the National Pork Board) 
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and the USDA, leading veterinary scientists, Agricultural Extension agents focused on 

livestock biosecurity from several states, veterinarians working with major livestock 

production chains, industry communications specialists, and agricultural economists. 

An additional two panels, involving many of these same experts, were convened during 

the model’s development. Finally, a fifth expert panel was convened to discuss and 

interpret the results of the model runs shown here.  

In these panel sessions, we used both targeted focus groups as well as 

quantitative survey questionnaires to elicit and hone parameter values. Through this 

process, model assumptions, data streams, and behavioral heuristics were shared, 

critiqued, and refined; and implications of model results were discussed. Detailed notes 

were taken during these expert panels, which were subsequently coded and analyzed. 

This information was used to bolster the face-validity of the distribution of epidemic 

patterns, scales, and durations produced by the model. Using this participatory 

methodology, the modeled system was brought in line with the collective 

understandings of stakeholders who are intimately familiar with the operational details 

of U.S. livestock production chains.  

A common perception among our expert panelists concerned the complexity of 

disease transmission, the variation of disease spread across different states and 

production chains, and the relatively-meager understanding industry and USDA 

professionals possesses relative to identifying effective leverage points in production 

chains that are both most susceptible to disease, and most critical to its spread. Given 
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the complexity of the production chain—with its segmentation of livestock producer 

roles from farrow to finish—and the importance of feed mills and slaughter plants, 

industry experts called for the development of an ABM that could capture differences 

between regions and the configurations of their associated production chain networks. 

4.4.5 Sensitivity Analysis 

We conducted a sensitivity analysis focusing on four key model parameters. 

While the model includes many parameters (Table 6), these four were chosen because 

each focuses on a specific aspect of the model’s network and/or epidemiological 

architecture. Prob. producer to pig truck infection highlights the impact of outgoing 

disease transmission from a producer agent to either another producer or a slaughter 

plant. Avg. producer infection length is an infection duration parameter, to which 

previous SIR-type models have been found to be sensitive. Max producer connection 

distance evaluates the effect of altering the global network structure from more 

localized to more spatially-diffused neighborhoods. Finally, Prob. feed truck to feed 

mill infection aims at elucidating the relative impact of infections stemming from the 

feed distribution network (versus the livestock transportation network) on system-wide 

disease resilience.  

Each parameter is varied in steps between 50% and 150% of the baseline values 

given in Table 6, with ten replications per step. Table 7 shows the elasticity of the 

response variable—average vulnerability—across this range for each study area. Figure 

14 visualizes the sensitivity analysis data and provides correlation statistics.  
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Table 7: Elasticity of response variable (Avg. Vulnerability) resulting from variation between -

50% and 150% of baseline values for four key parameters. 

 % Change in Avg. Vulnerability 

Parameter North Carolina Iowa Illinois All Study Areas 

 Prob. producer to pig truck 

infection 

49.93 109.9 491.1 94.56 

Avg. producer infection 

length (days) 

2382 3164 6077 3010 

Max. producer connection 

distance (km) 

2.182 -20.32 108.6 7.976 

Prob. feed truck to feed mill 

infection 

36.21 114.8 119.4 50.82 

  

  



138 

 

 

Figure 14: Sensitivity analysis plots for four key parameters. Scatter points show average values at 

each step, colored regions show 95% CIs, and dashed lines show linear trends. Blue represents 

North Carolina, red Iowa, green Illinois, and black the combined dataset. Pearson correlation 

coefficients, p-values, and R
2
 values of linear regressions appear in legends below each figure. 

 

Results show that the model is moderately-sensitive to changes in Prob. 

producer to pig truck infection and Prob. feed truck to feed mill infection; with the 
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effect on average vulnerability being positive and significant in all study areas. It would 

appear that Prob. producer to pig truck infection has a larger impact on the response 

variable in Illinois, whereas Prob. producer to pig truck infection has the largest impact 

in North Carolina, reflecting differences in network structure between study areas. 

Despite state-to-state differences, the fact that increased infectivity in both hog 

transportation and feed distribution networks both led to similar increases in overall 

epidemiological vulnerability suggests that our epidemiological spread sub-model is 

relatively balanced between these two major modes of transmission. This ground-truths 

our model with respect to real-world findings implicating both contaminated feed and 

infected hogs / transportation equipment in the spread of PEDv and other diseases 

(Schulz & Tonsor, 2015).  

We find that the model is not particularly sensitive to Max producer connection 

distance. The magnitude and direction of the effect varies between study areas, with 

only Illinois demonstrating a significant (positive, in this case) relationship to the 

response variable. While somewhat surprising, this result likely reflects the fact that, 

despite increasing the Max producer connection distance, the Max. number of potential 

producer to producer trading partners parameter remained constant (at 15) across all 

runs. This means that the average k of a given producer would only increase with Max 

producer connection distance in more spatially-diffused networks wherein a sizable 

proportion of producers did not have 15 potential producer trading partners within the 

baseline maximum connection distance of 150km. This is more likely to be the case in 



140 

 

Illinois, as there are relatively fewer producers within a relatively large area in that 

state.  

By contrast, increasing Avg. producer infection length causes significant 

increases in average vulnerability across all study areas. In light of previous SIR / SI 

model studies, the observation that average infection duration heavily impacts average 

vulnerability is not a surprise. Further, the shape of the elasticity curves in the top right 

of Figure 14 suggest that percolation dynamics may exist, with the nonlinearity—or 

percolation threshold—being lowest for North Carolina and higher for the other two 

study areas, corroborating findings from Wiltshire (2018).  

4.5 Experimental Design and Data Processing 

The model was executed 50 times for each of the three study areas, maintaining 

all common parameters constant across repetitions. The total run count of 150 was 

chosen due to the large number of agents in each study area, along with the relative 

complexity of the model’s livestock trade and epidemiological spread heuristics, 

rendering each run—along with its associated data analysis—quite computationally-

intensive. The full experimental results encompass 539,300 individual agent-run 

combinations, with all network metrics and epidemiological statistics calculated for 

each, yielding a substantially large and rich dataset totaling approximately two million 

unique datapoints.  

The numbers and spatial distributions of each type of agent were hard-coded 

and maintained across runs within each study area (Table 6). Further, immutable agent 
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properties set at model initialization—including the pool of potential trading partners—

were also held across repetitions within each study area. After initialization, all 

stochastic events in a run utilize a random seed, meaning that—while the underlying 

network structure associated with each study area production chain remains constant—

the transportation of livestock and feed, along with the resultant outbreak progression, 

is unique from one run to the next.  

Throughout each run, a weighted, directed contact network was built up by 

tracking the number of times each agent contacted another agent—as a result of either 

delivering or receiving livestock or feed—with the final edge weights being equal to the 

number of contacts between connected agents. In a similar fashion, an infectivity 

network was constructed, with edge weights tracking the number of times the infection 

was passed between agents over the course of a run. An agent’s vulnerability—the 

dependent variable used in the data analyses below—is defined as a node’s in-degree 

within the infectivity network.  

Networks generated during the experiment, along with key statistics associated 

with each agent, were output as tabular data at the conclusion of each run. Using the 

Python NetworkX 2.0 library (Varoquaux et al., 2008), the weighted edgelists 

describing each network were used to generate weighted, directed network graphs, 

allowing key global and node-level network metrics previously linked to 

epidemiological spreading to be evaluated (Ghani & Garnett, 2000; Colizza et al., 2007; 

Webb, 2005; Kao et al., 2006; Kiss et al., 2006; Ortiz-Pelaez et al., 2006; Dubé et al., 
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2009; Bigras-Poulin et al., 2006, 2007; Natale et al., 2009). Where applicable, both 

weighted and unweighted versions of these metrics were calculated, in order to 

compare between the two (Rothenberg et al., 1995; Bell et al., 1999). The metrics 

utilized in this study are listed and briefly described inTable 8. For clarity, we 

distinguish between the set of node-level metrics pertaining to centrality, versus those 

capturing other aspects of node positionality. The full sets of global and node metrics 

used in the analysis were: 

global=[〈k〉,〈k
w
〉,kCV,k

CV

w ,〈C〉,〈C
w

〉,r,r
w
,pc

max]  

node=[k,k
w
,kin,k

in

w,kout,k
out

w ,C,C
w
,c,CB,C

B

w,CRW,C
RW

w ,CE,C
E

w,CD]  

  

 

Table 8: Network metrics used in the GP analysis. Weighted (W) and unweighted (UW) statistics 

are indicated. 

  Description Ref. 

 Global Metrics 

 UW Average Degree (〈k〉) Number of edges divided by 

number of nodes 

(Albert & 

Barabási, 2002) 

 W Average Degree (〈kw〉) Average number of contact 

events per node per run 

(Albert & 

Barabási, 2002) 

 UW Degree CV (〈kCV〉) Coefficient of variation for 

unweighted degree across all 

nodes 

(Newman, 2003) 

 
W Degree CV (〈k

CV

w
〉) 

Coefficient of variation for 

weighted degree across all 

nodes 

(Newman, 2003) 

 UW Average Clustering (〈C〉) Number of closed triplets 

divided by total number of 

triplets 

(Luce & Perry, 

1949) 



143 

 

 W Average Clustering (〈Cw〉) Geometric average of the 

subgraph edge weights 

(Saramäki et al., 

2007) 

 UW Assortativity Coefficient 

(〈r〉) 
Level of similarity between the 

unweighted degrees of all nodes 

(Newman, 2003) 

 W Assortativity Coefficient 

(〈rw〉) 
Level of similarity between the 

weighted degrees of all nodes 

(Newman, 2003) 

 k-core Fractional Size (pcmax) Fraction of nodes that are within 

the main k-core 

(Batagelj & 

Zaversnik, 2003) 

Node Centrality Metrics 

 UW Shortest Path 

Betweenness (CB) 

Fraction of shortest-paths 

passing through a node 

(Freeman, 1977) 

 W Shortest Path Betweenness 

(C
B

w
) 

Same as above, but 

incorporating edge weights 

(Freeman, 1977) 

 UW Random Walk 

Betweenness (CRW) 

Fraction of random walks 

passing through a node 

(Newman, 2005) 

 W Random Walk 

Betweenness (C
RW

w
) 

Applies an electric current flow 

model across all nodes 

(Brandes & 

Fleischer, 2005) 

 UW Eigenvector (CE) Nodes connected to other high-k 

nodes receive high scores 

(Bonacich, 1987) 

 
W Eigenvector (C

E

w
) 

Same as above, but 

incorporating edge weights 

(Bonacich, 1987) 

 Degree (CD) Fraction of nodes to which a 

node is connected 

(Albert & 

Barabási, 2002) 

Node Positionality Metrics 

 UW In-Degree (kin) Number of incoming edges (Albert & 

Barabási, 2002) 

 
W In-Degree (k

in

w
) 

Total weight of incoming edges (Albert & 

Barabási, 2002) 

 UW Out-Degree (kout) Number of outgoing edges (Albert & 

Barabási, 2002) 

 
W Out-Degree (k

out

w
) 

Total weight of outgoing edges (Albert & 

Barabási, 2002) 

 UW Clustering Coefficient 

(C) 

Fraction of possible triangles 

through a node that exist 

(Luce & Perry, 

1949) 

 W Clustering Coefficient (Cw) Geometric average of the 

subgraph edge weights 

(Saramäki et al., 

2007) 

 Coreness (c) Largest value k of a k-core 

containing the node 

(Batagelj & 

Zaversnik, 2003) 
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To generate meta-metrics—that is, formulae composed of multiple individual 

indicators—we utilized the Eureqa GP package (Schmidt & Lipson, 2009). Due to the 

large size of our dataset, we first sampled the data by randomly selecting 100 agents 

from each study area to include in the GP training and validation sets. Because of the 

lower numbers of feed mills and slaughter plants compared to producers, we ensured 

that all agent types were represented in the data by stipulating that a minimum of five 

agents of each type from each study area were included, yielding 16,050 total rows. The 

GP was trained on half of these data (selected randomly) and validated on the 

remaining half.  

The GP algorithm was permitted to use constants, input variables, the four basic 

arithmetical operators, as well as exponential, logarithmic, and power functions; each 

of which was assigned a complexity value by which to weigh fitness vs. complexity 

tradeoffs between potential solutions (Table 9).  

 

Table 9: Operators used in the GP analysis, with their assigned complexity values. 

 Operator Complexity 

 Constant 1 

Input Variable 1 

Addition 1 

Subtraction 1 

Multiplication 1 

Division 2 

Exponential 3 

Natural Logarithm 3 

Power 3 
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The objective set for the GP was to maximize the R2 coefficient between the 

function output and each node’s vulnerability v—at varying levels of complexity—

according to the function: 

v=f(global,node) 

 

The GP was allowed to run until 100% convergence was indicated. The 

algorithm executed 1.6×1010 function evaluations over the course of 112,378 

generations. 14 total solutions were identified, ranging from complexity = 1 and 

R2 = 0.04 ; to complexity = 24 and R2 = 0.96 .  

4.6 Results 

To analyze our experimental data, we begin by characterizing high-level 

properties of the production chain networks output by RUSH-PNBM. This allows for a 

generalized understanding of the similarities and differences between the hog 

production networks associated with our three study areas, as well as the basic 

connection patterns and epidemiological vulnerabilities associated with each agent 

type. Next, we examine the extent to which network metrics can predict individual 

nodes’ infection vulnerabilities across the three states, examining both network-

structural and node positionality factors. Finding that no individual metric adequately 

correlates with infection risk across study areas, we turn to the GP results to investigate 
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the extent to which formulae composed of multiple metrics—which we call “meta-

metrics”—may predict epidemiological vulnerability.  

4.6.1 Characterizing Study Area Production Networks 

Figure 15 shows the degree distributions for each class of agent and study area. 

Weighted degree (kw) represents the number of times an agent contacted another agent 

(i.e., sending or receiving either livestock or feed) over the course of a run, whereas 

unweighted degree (k) describes the number of unique agents with which an agent had 

contact.  
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Figure 15: Weighted and unweighted degree distributions by agent type for each study area, across 

all runs. Plotted with log-scaled x and y axes. 60 bins were used for producers, and 25 for feed mills 

and slaughter plants. 

 

Overall, producers tend to have the lowest kw and k, followed in order by feed 

mills and slaughter plants. Feed mills’ degrees are constrained to a smaller range, 

whereas the distributions for producers and slaughter plants are quite long-tailed. 

Slaughter plants in Iowa appear to have somewhat higher degrees on average than in 

the other study areas.  
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A linear degree distribution in log-log space demonstrates the power law 

relationship associated with scale-free networks, satisfying P[X≥x]∼cx−α (Barabási & 

Albert, 1999). This appears to be roughly the case for producers, but it is less clear 

whether the other agent classes exhibit a power law degree distribution.  

Additionally, we observe that the degree distribution for producers appears to 

have a different pattern in North Carolina compared with Iowa and Illinois, with North 

Carolina having more high-k producers. An examination of Figure 16 suggests that this 

may be related to the heavily-connected cluster surrounding Duplin County in the 

southeast of North Carolina.  
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Figure 16: Sample model-generated production chain maps (left), and corresponding network 

graphs (right), for each study area. Maps show agents of each type (see Figure 13 for key) and 

infection-spreading edges in red. Graphs show contact (black) and infection-spreading (red) edges. 

Nodes are positioned using a spring layout. Gray nodes are producers, yellow are feed mills, and 

red are slaughter plants. 
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Table 10 gives epidemiological statistics and key network-structural indicators, 

averaged by study area. We find notable differences in infection dynamics between 

study areas, with North Carolina agents having the greatest chance of receiving the 

infection at least once during a model run, at pinf≈ 46%, versus 14% for Iowa, and 17% 

for Illinois. Agents in North Carolina also had the highest average vulnerability (〈v〉≈6), 

as well as the longest average total infection duration (tinf≈101 days).  
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Table 10: Mean values and 95% confidence intervals for epidemiological statistics and network 

metrics across agents in each study area. 

  North Carolina Iowa Illinois 

  Mean 95% CI Mean 95% CI Mean 95% CI 

Epidemiological Statistics 
 Vulnerability (v) 5.949 5.833 6.064 0.6504 0.6387 0.6620 0.9682 0.9480 0.9883 

 Infectivity (i) 5.949 5.858 6.039 0.6504 0.6310 0.6697 0.9682 0.9372 0.9992 

 Infection 

Probability (p
inf

) 

0.4634 0.4606 0.4663 0.1423 0.1411 0.1435 0.1703 0.1680 0.1725 

 Spread 

Probability 

(p
spread

) 

0.6253 0.6225 0.6281 0.3440 0.3424 0.3457 0.3403 0.3374 0.3432 

 Infection Duration 

(t
inf

) 

101.2 100.5 101.9 14.97 14.87 15.07 19.94 19.69 20.19 

Network Metrics 
 Unweighted 

Degree (k) 

7.910 7.838 7.982 6.226 6.161 6.292 5.298 5.228 5.367 

 Weighted Degree 

(k
w

) 

240.6 237.3 244.0 205.4 203.2 207.6 204.3 201.0 207.6 

 Unweighted In-

Degree (k
in

) 

3.955 3.904 4.006 3.113 3.053 3.173 2.649 2.596 2.702 

 Weighted In-

Degree (k
in

w
) 

120.3 118.8 121.8 102.7 101.4 104.0 102.1 100.9 103.4 

 Unweighted Out-

Degree (k
out

) 

3.955 3.903 4.006 3.113 3.085 3.142 2.649 2.601 2.696 

 Weighted Out-

Degree (k
out

w
) 

120.3 117.3 123.4 102.7 100.9 104.5 102.1 98.96 105.3 

 Unweighted 

Degree CV (k
CV

) 

1.565 1.565 1.565 3.047 3.047 3.047 2.172 2.172 2.172 

 Weighted Degree 

CV (k
CV

w
) 

2.385 2.385 2.385 3.110 3.110 3.110 2.703 2.703 2.703 

 Unweighted 

Clustering 

Coefficient (C) 

0.00517

8 

0.00504

9 

0.00530

7 

0.00787

1 

0.00772

3 

0.00801

9 

0.00881

6 

0.00855

4 

0.00907

8 

 Weighted 

Clustering 

Coefficient (C
w

) 

0.00034

97 

0.00034

10 

0.00035

85 

0.00110

0 

0.00107

8 

0.00112

3 

0.00120

3 

0.00116

5 

0.00124

2 

 Unweighted 

Assortativity 

Coefficient (r) 

-0.5009 -0.5009 -0.5009 -0.2490 -0.2490 -0.2490 -0.5859 -0.5859 -0.5859 
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 Weighted 

Assortativity 

Coefficient (r
w

) 

-0.2989 -0.2989 -0.2989 -0.3610 -0.3610 -0.3610 -0.4931 -0.4931 -0.4931 

 k-Core Fractional 

Size (p
cmax) 

0.2101 0.2100 0.2101 0.2673 0.2673 0.2673 0.1380 0.1377 0.1383 

 Node Coreness (c) 4.481 4.464 4.499 3.328 3.323 3.332 2.787 2.780 2.795 

Centrality Indicators 
 Unweighted 

Shortest Path 

Betweenness (C
B

) 

0.00141

5 

0.00138

4 

0.00144

7 

0.00050

33 

0.00049

19 

0.00051

47 

0.00159

1 

0.00155

7 

0.00162

5 

 Weighted Shortest 

Path Betweenness 

(C
B

w
) 

0.00287

5 

0.00280

5 

0.00294

5 

0.00099

89 

0.00098

45 

0.00101

3 

0.00343

0 

0.00334

6 

0.00351

3 

 Unweighted 

Random Walk 

Betweenness 

(C
RW

) 

0.00321

3 

0.00316

1 

0.00326

6 

0.00118

8 

0.00117

2 

0.00120

3 

0.00353

4 

0.00347

6 

0.00359

2 

 Weighted 

Random Walk 

Betweenness 

(C
RW

w
) 

0.00340

1 

0.00334

1 

0.00346

1 

0.00131

9 

0.00130

0 

0.00133

8 

0.00387

0 

0.00380

0 

0.00394

0 

 Unweighted 

Eigenvector (C
E

) 

0.01379 0.01370 0.01389 0.00481

4 

0.00477

4 

0.00485

4 

0.01565 0.01556 0.01574 

 Weighted 

Eigenvector (C
E

w
) 

0.00136

5 

0.00124

4 

0.00148

6 

0.00124

0 

0.00119

7 

0.00128

3 

0.00210

2 

0.00197

1 

0.00223

3 

 
Degree (C

D
) 

0.00346

9 

0.00343

8 

0.00350

1 

0.00097

33 

0.00096

30 

0.00098

36 

0.00251

6 

0.00248

3 

0.00254

9 

  

Examining the averaged network metrics provides some initial insights into 

these disease resilience discrepancies. While the Iowa networks have significantly more 

nodes, the North Carolina networks are the most densely-connected (higher 〈k〉 and 

〈kw〉). Differences are also apparent in the indicators associated with the networks’ k-

cores as well as average centrality values. In the sections below, we statistically 

evaluate the ways in which these patterns in the network data relate to epidemiological 

vulnerability.  
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4.6.2 Can Network Metrics Predict Infection Risk? 

Since the probabilities of disease transmission and agents’ behavioral heuristics 

do not change across runs, the disease risk discrepancies noted above must necessarily 

result from differences in contact networks. We use a three-pronged approach to 

analyze the relationships between network structure and epidemic risk factors in the 

RUSH-PNBM output data. First, we examine the relationships between global metrics 

that capture overarching features of each study area network, versus the average 

vulnerability of nodes in these networks, as well as individual agents’ vulnerabilities. 

Second, we examine the relationships between node-level metrics that capture various 

aspects of positionality, versus each agent’s vulnerability. Finally, we turn to the GP 

results to identify meta-metrics that may serve as better indicators of epidemiological 

risk.  

4.6.2.1 Global network-structural factors 

Figure 17 plots the global network metrics described in Table 8 against the 

average vulnerability of agents in each run. These findings may be analyzed in two 

ways: first, we can determine whether an overall trend exists across all three study 

areas; second, we can determine whether a trend exists across the 50 runs associated 

with each study area. Overall, we find that all global metrics with the exception of k-

core fractional size do indeed correlate significantly with average vulnerability across 

all runs.  
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Figure 17: Correlations between key network-level metrics and the average vulnerability of nodes 

in each run. Weighted (W) and unweighted (UW) statistics are indicated. Scatter points are 

averages for each run, color coded by study area. Black lines show best fit, with Pearson 

correlation statistics and R
2
 given in legends both by state and overall. 
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However, the situation is more complex when examining within-study-area 

trends. We find that weighted and unweighted average degree, unweighted 

assortativity, unweighted clustering, weighted and unweighted degree CV, and k-core 

fractional size all exhibit positive correlations in some states and negative in others. 

Further, the within-state correlations do not achieve significance for several of the 

metrics. No metric we assessed significantly correlates with average vulnerability both 

overall as well as within each study area.  

 While some global network metrics correlate strongly with the average 

vulnerability of agents in each network, we find that global metrics alone do little to 

predict the infection risk of individual nodes, owing to the wide range of vulnerabilities 

between agents. Figure 18 evaluates the same metrics as Figure 17, only this time we 

plot the individual vulnerability of each agent, rather than per-run averages. Here we 

find that, in fact, none of the global metrics taken alone is sufficient to explain more 

than 5% of the variability in the vulnerability of individual agents.  
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Figure 18: Correlations between key network-level metrics and node-level vulnerability. Weighted 

(W) and unweighted (UW) statistics are indicated. Scatter points represent each agent in each run, 

color coded by study area. Black lines show best fit, with Pearson correlation statistics and R
2
 

given in legends both by state and overall. 
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4.6.2.2 Node positionality factors 

For real-world livestock producers, production system managers, veterinarians, 

epidemiologists, and policymakers it would be useful to understand the relationships 

between the network positionality of a given actor and its risk of infection during an 

epidemic event. To investigate this, we plot each node-level metric from Table 8 

against each agent’s vulnerability. Figure 19 shows the various indicators of node 

centrality, while Figure 20 shows the remaining node positionality indicators.  
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Figure 19: Correlations between centrality metrics and vulnerability. Weighted (W) and 

unweighted (UW) statistics are indicated. Scatter points represent each agent in each run, color 

coded by study area. Lines show best fit for each state as well as overall, with Pearson correlation 

statistics and R
2
 given in legends both by state and overall. 
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Figure 20: Correlations between key node-level metrics and vulnerability. Weighted (W) and 

unweighted (UW) statistics are indicated. Scatter points represent each agent in each run, color 

coded by study area. Lines show best fit for each state as well as overall, with Pearson correlation 

statistics and R
2
 given in legends both by state and overall. 
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We find that all node centrality metrics significantly correlate with infection risk 

when using the full dataset composed of all three study areas (Figure 19). With the 

exception of weighted eigenvector, these trends hold within each study area as well. 

The centrality metric with the most consistent positive correlation to vulnerability 

across study areas would appear to be degree centrality.  

However, linear regressions reveal that, despite achieving significant p-values, 

no centrality indicator explains more than 22% of the variability in the data across all 

study areas. Additionally, we find significant variability in the explanatory power of the 

correlations between study areas. This lends further evidence to the assertion that there 

is a complex interplay between the structure of a network overall and the efficacy of 

node-level metrics for determining risk.  

Turning to the remaining node positionality indicators (Figure 20), we find—

unsurprisingly—that both weighted and unweighted in-degree are relatively-strong 

predictors of vulnerability, with the weighted metric explaining 30% of the variability 

in the data. Simply stated, the more times a node is exposed to a potential threat by way 

of incoming livestock or feed, the more likely it is to be infected. We find that out-

degree and clustering coefficient (both weighted and unweighted) do not explain a 

node’s vulnerability. A node’s coreness is a moderate (R2=0.09) predictor of 

vulnerability across study areas, suggesting that subsets of more highly-interconnected 

nodes may be largely responsible for sustaining outbreaks.  
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4.6.2.3 Using Genetic Programming to develop better vulnerability indicators 

Our preliminary findings suggest that, while both global and node-level metrics 

correlate with epidemiological vulnerability in some contexts, there are likely 

complexities arising from the interplay between these factors, and no single indicator 

has a sufficiently high R2 value to be of much use. The development of indicators that 

consistently identify risk—ideally accounting for both overall network structure and 

node positionality within a network—would be a boon for epidemiological analysts 

seeking to target biosecurity interventions in livestock production systems.  

To identify such meta-metrics, we employ a GP algorithm to search the solution 

space for mathematical combinations of individual indicators along a complexity / 

fitness Pareto front (Schmidt & Lipson, 2009). Of the 14 possible solutions generated 

by the GP, six were chosen for further analysis (Table 11). This subset of solutions 

aims to sample a range of complexity / fitness pairings, with solutions situated at 

“knees” of the Pareto front preferred where possible (Branke et al., 2004). To avoid 

overfitting the data, solutions beyond a complexity level of 14 are not considered, as 

there is very little improvement in fitness beyond that point.  
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Table 11: Six possible GP solutions along the complexity / fitness Pareto front. Fitness is defined as 

the R
2
 value on the validation data. Red variables are from the global set; blue are from the node 

set—yet require a full network graph to calculate—and green are from the node set and require 

only node-level data. Constants are truncated to two significant figures. Equations are 

algebraically-simplified where applicable. 

  

 

Overall, it is notable that the better-performing of the GP solutions incorporate 

both node-level and global metrics. The most frequently-used node-level metrics are 

first and foremost weighted in-degree—which is used in all six possible solutions—

followed by coreness, unweighted in-degree, unweighted total degree, and weighted 

eigenvector centrality. The most common (and indeed, only) global metric included in 

the GP formuae is weighted clustering.  

Figure 21 plots the results of the GP solutions against the vulnerability of each 

node in the same manner as Figure 18, Figure 19, and Figure 20. We find that all of the 

GP solutions far outperform any individual metric, providing support for the value of 

the GP-derived meta-metric approach. The best of the GP solutions (S4 and S6) explain 
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91% of the variability in the response variable, while the best single metric (k
in

w
) 

explains just 30%.  
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Figure 21: Correlations between six GP solutions and vulnerability. Scatter points represent each 

agent in each run, color coded by study area (blue = NC; red = IA; green = IL). Lines show best fit 

for each study area as well as overall, with Pearson correlation statistics and R
2
 given in legends. 

Note that, unlike the R
2
 values given in Table 11—which are calculated only on the GP validation 

set—the R
2
 values here are calculated on the full dataset output from the model. 
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4.7 Discussion and Conclusions 

In this study, we apply agent-based computer modeling, network analytics, and 

evolutionary computation to explore the impact of key network metrics on the 

epidemiological vulnerability of livestock production chain actors. We analyze the 

extent to which indicators describing the structure of a complex contact network can be 

combined with those pertaining to a node’s positionality within that network to arrive at 

better risk indicators. To this end, we demonstrate the feasibility of using a GP 

algorithm to formulate such meta-metrics and, at least in this context, we find that the 

GP solutions outperform any single indicator of epidemiological vulnerability. Below, 

we discuss how the meta-metric method could be used by real-world practitioners, 

address methodological issues surrounding data availability and context specificity, and 

propose future research goals.  

Previous research in this area has largely explored bivariate correlations 

between of a suite of metrics and epidemiological outcomes—at either the network or 

individual level—in both simulated and real-world networked systems (Rothenberg 

et al., 1995; Bell et al., 1999; De et al., 2004; Christley et al., 2005; Salathé & Jones, 

2010; Kitsak et al., 2010). Multivariate statistical techniques have also been used to 

evaluate the relative effect of multiple node-level metrics on individual vulnerability 

(Ghani & Garnett, 2000). The GP methodology we have employed expands on this 

work, searching the solution space to identify mathematical relationships encompassing 

multiple metrics to predict a node’s vulnerability across three networks with differing 

sizes, densities, and internal structures.  
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The ability of our GP approach to identify meta-metrics that capture 

complexities arising from the interactions between global and node-level network 

features suggests that this methodology may have widespread applicability. The 

particular networks evaluated in this experiment were state-level livestock production 

systems generated by a computer model, but we believe the procedures used to analyze 

the network data and identify meta-metrics could be applied to study phenomena on a 

wide range of graphs, both empirically- and computationally-derived. While we have 

applied the meta-metric approach to study epidemiological dynamics, meta-metrics 

could equally be formulated to predict other important graph properties, such as the 

probability that a node will add or prune edges over time, the frequency with which a 

node will enter some state, or virtually any other outcome variable of interest.  

4.7.1 Global vs. Node Metrics as Indicators of Vulnerability 

We find that the global metrics, while serving as reasonably-accurate predictors 

of average vulnerability within each study area, do little to predict the risk of an 

individual agent within each run, as a result of the high variability in vulnerability 

across agents of different classes, and with different network positionality 

characteristics (Figure 18).  

Several of the node-level metrics, such as degree centrality and weighted in-

degree, perform reasonably well as predictors of an agent’s vulnerability (R2=0.22 and 

0.30 respectively). However, many of the node metrics demonstrate differential 
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correlation coefficients across each study area, indicating that risk cannot be accurately 

predicted by node-level indicators alone (Figure 19 and Figure 20).  

4.7.2 Evaluating GP-Derived Meta-Metrics 

Turning to the GP solutions, we find that the best-performing meta-metrics (S3–

S6) incorporate both global and node-level indicators. Further, among the node metrics, 

we note that some of the calculations—for example weighted in-degree—require only 

local information from each node for calculation. However, other node metrics—for 

example coreness—require that a full graph of the network is first codified. Notably, all 

six of the GP solutions we analyzed do require at least one instance of a node metric 

that falls into this latter category (primarily coreness in this case), emphasizing the 

interplay between global network structures and node positionality in the prediction of 

infection risk.  

Weighing the six meta-metric solutions against one another, S4 and S6 are the 

best performing of the set, each achieving a high overall R2 value of 0.91 on the full 

dataset. Table 11 reveals that S6, while more complex, cuts the maximum error from 

91.68 for S4 to 75.79 for S6, suggesting that the additional complexity pays off in terms 

of predictive accuracy in this context. Overall, we conclude that the GP approach to 

determining effective predictors of epidemiological risk by combining indicators of 

network structure with node positionality represents an effective and under-explored 

mechanism to evaluate the infection vulnerability of individual nodes within networks.  
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4.7.3 Application to Real-World Decision-Making 

Aside from demonstrating the applicability of our methodology, this work is 

also intended to inform practitioners in their efforts to strategically-allocate resources 

which improve epidemiological resilience in existing livestock production systems. 

While we do not wish to imply that the results presented here can reliably predict the 

course of any real-world disease incursion, our findings suggest several novel ways for 

livestock epidemiologists to approach risk analysis.  

Perhaps the most important takeaway from our study is that risk is a function of 

both network structure and individual decision-making. Biosecurity measures—such as 

shower-in-shower-out facilities, lines of separation, or all-in-all-out protocols—have 

proven effective in limiting the scope of livestock disease outbreaks. While a 

producer’s primary motivation to adopt such measures is rooted in individual risk 

reduction, from a systems perspective, our research suggests that biosecurity protocols 

would be vastly more effective if implemented at especially-vulnerable network loci. 

The methods presented in this study allow for the identification of nodes in a system 

most likely to play a role in disease spread, which can then inform targeted biosecurity 

interventions to reduce systemic risk.  

The lack of available fine-grained U.S. animal movement data currently 

represents a major hurdle for network analysts and modelers interested in livestock 

disease risk mitigation. Animal traceback protocols, which track the movement of 

livestock between premises over their full lifespans, remain controversial in the U.S., 
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likely due to attitudes around privacy. While consumer protection (recalls, etc.) is the 

most-cited reason for the implementation of traceback protocols, in light of our 

findings, an additional consideration is that traceback data could be used to codify 

accurate network representations of livestock supply chains, as has been done in other 

countries (Caporale et al., 2001; Natale et al., 2009).  

Given sufficient input data, RUSH-PNBM could be parameterized to guide on-

the-ground policy and managerial decisions. By encoding the interaction patterns and 

animal movements between actors in real-world production systems into network 

graphs, and then incorporating data tracking the spread of a historical outbreak through 

the system, it becomes possible to apply the methods we have presented to actual 

disease incursion threat scenarios.  

Model use cases could focus on different scales. For example, national agencies 

such as the USDA could use RUSH-PNBM to target nationwide interventions—such as 

the placement of truck-wash sites—or to propose health and safety regulations focused 

on potential “hubs” like slaughter plants and feed mills. Alternatively, owners and 

managers of private livestock production chain systems could employ specifically-

parameterized versions of the model to assess disease risks within their own systems. 

This would facilitate both insights into the individual network loci at which biosecurity 

protocols could do the most good, as well as analyses of how reorganization of network 

structures could improve system-wide disease resilience.  
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4.7.4 Expert Panelist Feedback 

The variation of individual node vulnerabilities found in our results did not 

surprise our panelists: the relationship between an individual node’s vulnerability and 

its position and/or function in the network matters. The potential of our model to 

identify those nodes with the highest disease risk casts light on an important 

informational need raised in our panel sessions. Coupled with finer-grained and more-

detailed data (such as the widespread use of animal traceback protocols), panelists 

agreed that RUSH-PNBM—together with the meta-metric methodology—could 

represent a valuable tool which may be leveraged to identify where best to target 

biosecurity measures. 

Interestingly, many of the expert panelists were less interested in some of the 

broader structural implications that may be drawn from this study. For example, despite 

its demonstrated biosecurity implications, minimizing the bridging links within 

livestock production networks by reducing producer over-specialization was not 

universally deemed desirable. However, more recent engagement between our research 

team and owners of mid-sized, leading-edge production chain systems has revealed an 

openness to rethinking the role of network connectivity structures upon biosecurity 

within the context of their own operational networks. 

4.7.5 Limitations of Our Approach 

Macro-scale socio-economic and political factors can directly and indirectly 

influence the economic incentives, disease patterns, and network-structural parameters 
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embedded in RUSH-PNBM. While this study demonstrates the limited generalizability 

of our model across three states in the U.S., application of the model to other socio-

economic and political contexts (e.g. the EU) will require careful re-calibration and 

validation of model parameters, including securing relevant datasets and convening 

additional expert panels. Extensibility of RUSH-PNBM to generate medium- to long-

term (i.e. 30- to 50-year) scenarios would also require refinement of simulation 

processes and parameters to account for projected changes in economic and political 

conditions within which the simulated networks operate.  

As noted above, practical implementation of this new meta-metric approach (i.e. 

to guide policymaking) will require better contextualization of the network structures 

and underlying theoretical assumptions governing network dynamics. Due to complex 

government-industry relationships and competition within the livestock production 

industry, empirical data concerning underlying network structures, animal movements, 

epidemic spread data, and other important factors are not typically easily available. 

Fortunately, ABMs—acting as virtual laboratories (Macal & North, 2010)—enable 

testing of alternate assumptions about network structures and their underlying 

dynamics. As described above, widespread adoption of animal traceback protocols 

would go a long way toward solving the data availability issue.  

4.7.6 Directions for Future Research 

Previous studies investigating the impact of network positionality on 

epidemiological risk differentiate between vulnerability—which we have used as our 
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dependent variable—and infectivity, i.e. the frequency with which an actor spreads the 

disease to others (Rothenberg et al., 1995; Ghani & Garnett, 2000). Understanding both 

factors is important to guide the implementation of interventions which curb disease 

spread, as some protocols are designed to prevent incoming disease threats, whereas 

others are aimed at limiting outgoing infection spread. An area for future research is to 

develop GP-derived meta-metrics that correlate with a node’s infectivity rather than its 

vulnerability. For example, it would be interesting to determine whether the finding of 

Ghani & Garnett (2000)—that infectivity is more contingent on global network 

structures—is corroborated. This would offer a more complete picture of the overall 

risk environment.  

In addition, future versions of the RUSH-PNBM model itself will be 

increasingly honed. For example, our team will conduct survey research to evaluate the 

economic and human dimensions underlying choices to adopt methods and 

technologies aimed at bolstering producer-level biosecurity. Another future research 

goal is to use experimental gaming data to determine the circumstances under which 

individuals choose to adopt biosecurity protocols in risky and/or uncertain decision 

environments (Merrill et al., 2018). We can then program the agents in RUSH-PNBM 

to adapt their behavior under parallel conditions in the model. Coupling such insights 

with network-based risk analyses—especially those calibrated around real-world 

production chain systems—will allow for a deeper understanding of the human-

behavioral solutions that may promote the adoption of risk-mitigating protocols, as well 
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as helping to focus biosecurity protocol adoption upon the nodes at which it will have 

the greatest effect on system-wide disease resilience.  
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CHAPTER 3: AN EVOLUTIONARY-COMPUTATIONAL 

METHOD TO OPTIMIZE DYNAMIC, MULTI-MODAL 

INTERVENTION-DRIVEN CHANGE TOWARD GLOBAL FOOD 

SECURITY 

5.1 Abstract 

A major priority of the UN Sustainable Development Goals (SDGs) is to 

address the looming threat of increased hunger and food insecurity in the coming 

decades.  While major progress has been made over that past half-century, achieving 

this goal going forward—especially in light of the multiple changing dynamics 

affecting food availability such as a growing population, dietary shifts, and climate 

change—has become increasingly challenging, requiring assessment of multiple 

potential options including both ways to increase food supply and minimize food 

demand.  Food security is in part a component of the difference between food supply 

and demand over a given time interval.  Unfortunately, there is not likely to be a single 

solution that ensures global food availability in the coming decades.  However, it has 

been proposed that public investments into multiple interventions, or “wedges,” (e.g. 

diet changes, climate change adaptation, and increasing yields) may work together to 

increase future food supply and reduce future demand.  To optimize such public policy 

investments requires knowledge about how the change resulting from each intervention 

is likely to affect supply and demand, especially considering that investments in some 

interventions may have complex interaction effects.  In addition to the ultimate change 

in food availability resulting from an investment, the time required for that change to 
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unfold, the expected baseline change (in the absence of any intervention), and the 

maximum possible level of change from a given wedge are all important parameters 

when planning an investment schedule.  Here we examine multiple interventions to 

meet food availability needs by 2050 using a computational method to optimize public 

investments with the twin goals of minimizing both the supply / demand gap and the 

overall cost.  Solutions take the form of investment schedules indicating the optimal 

allocation of public funds devoted to each wedge over several decades.  While future 

research is necessary to precisely hone parameter values, solutions from the proof of 

concept model presented here indicate that investment schedules prioritizing near-term 

interventions across the board, including demand-reducing wedges such as family 

planning and supply-increasing wedges such as yield gaps and climate adaptation, 

together with a bump in funding for key supply-increasing interventions starting around 

2035, represent the most financially-efficient means of closing the supply / demand 

gap.   

5.2 Introduction 

5.2.1 Problem Statement 

Global food demand in the year 2050 is estimated to increase by between 116% 

and 219% from 2010 demand (Keating and Carberry 2010, Alexandratos et al. 

2012, Valin et al. 2014, Pardey et al. 2014, Keating et al. 2014, Cole et al. 

2018), driven largely by projected increases in the global population and shifting diets.  
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Global population is expected to increase from 7.2 to almost 10 billion people by 2050 

(Brown and Cameron 2000, Heikkinen 2014, UN 2015).  However, simultaneously, 

diets are shifting toward both increased overall per-capita caloric demand, as well as 

higher proportions of animal-derived protein consistent with a “nutrition transition” 

(Popkin 2001, Popkin et al. 2012).  Both of these dietary shifts are being largely driven 

by rising per-capita wealth, with an individual in a high-income country currently 

demanding 256% more overall calories and 430% more protein than an individual in a 

lower-income country (Brown and Cameron 2000, Amine et al. 2003, Herrero 

et al. 2013).  With average global wealth (in terms of per-capita GDP) growing at 

around 2.5% per annum, both of these factors will account for a large proportion of 

projected demand looking ahead to 2050 (Tilman et al. 2011).  

These increasing demands for food correspond with existing and projected 

future challenges to food security.  In 2017, more than 820 million people were 

undernourished in the world, the third year in a row that food insecurity rates climbed 

despite decades of previous decreases.  Such increases have been attributed to 

instability resulting from violence and war in certain regions and increasing extreme 

climate events in others (FAO 2018).  Solutions to these inequalities have been debated 

for decades, and are embodied within the Sustainable Development Goals, particularly 

Goal Two to attain a safe and adequate food supply.  Achieving this goal will thus 

require a number of strategies that can aim to address these inequalities and consider 
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food system investments that can both potentially increase food supply while also 

addressing food demands. 

While food security involves multiple components including food availability, 

accessibility, utilization, and stability (Napoli et al. 2011), food supply and demand 

both affect all dimensions of food security.  Several solutions have been proposed to 

curb increasing food demand.  For example, Ranganathan et al. (2016) assess the 

ways in which changes in dietary patterns could theoretically achieve favorable 

nutritional outcomes, while lowering agricultural production demand, and also 

decreasing environmental externalities.  Garnett (2016) notes that food policy 

interventions often aim to influence social and cultural values rather than focusing on 

agricultural technology—the former being more complex but also equally if not more 

important in addressing global food security—highlighting the tradeoffs at play in the 

strategic allocation of funds.  

On the supply side of the coin, technological improvements in agriculture, such 

as those associated with the “green revolution,” have kept approximate pace with 

demand (distribution issues notwithstanding) for the past several decades, however 

serious questions exist as to whether supply-increasing innovations can keep up with 

demand going forward, especially considering that many of our current intensive 

agricultural practices have negative long-term effects on the ability of the land to 

maintain current yields (Eswaran et al. 2001, Nelson et al. 2009, Van Ittersum 

et al. 2013, Sadras et al. 2015, Cole et al. 2018).  While many propose simply 
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increasing the land area devoted to agriculture, sustainable intensification theorists 

focus on increasing agricultural efficiency, curbing land degradation, reducing waste, 

and adapting to climate change as means of increasing supply (Borlaug 2008, 

Tilman et al. 2002, Foley et al. 2011, Garnett et al. 2013).  

In the absence of political interventions, the gap between food supply and 

demand is likely to widen significantly, with a maximum deficit predicted somewhere 

around 2050, after which the global population is expected to level off or possibly even 

decrease as industrialization reduces birth rates (Foley et al. 2011, Keating et al. 

2014).  Ensuring that the supply curve meets the demand curve over the next several 

decades is critical for policymakers for a number of reasons.  Human wellbeing 

requires access to safe, healthy, and nutritionally-sufficient levels of culturally-

appropriate foods; and ensuring an adequate global food supply is an important 

component of achieving this goal (Sen 1999).  Further, from a geopolitical perspective, 

regional food insecurity has often led to political instability and conflict (Lagi et al. 

2011, FAO 2018). 

5.2.2 Sustainable Development Goals 

In 2012, the United Nations Rio+20 Summit laid out a set of sustainable 

development goals (SDGs) to fight global poverty and secure human wellbeing (Griggs 

et al. 2013).  As of September 2015, governments have committed to achieving these 

SDGs by 2030 (Schmidt-Traub and Shah 2015).  While the scope of the SDGs is wide, 

SDG Two is specifically concerned with ensuring a safe, adequate food supply to feed 
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our growing population, while also minimizing the environmental impact of food 

production.  Achieving SDG Two requires reducing global hunger to less than 5% of 

the population, 20% improvements in agricultural nutrient use efficiency, and several 

environmental goals aimed at curbing soil and water degradation and reducing the 

climatological footprint of agricultural production (especially from animal products).  

While these broad targets have been codified and agreed upon—and indicators of 

success identified—significant uncertainty remains as to the best means of meeting 

SDG Two, especially considering the complex interactions between interventions 

(Robert et al. 2005).   

Working toward the establishment of a practical plan of action, Schmidt-Traub 

and Shah (2015) propose an analytical framework to weigh investment priorities into 

the SDGs, identifying eight key investment areas, one of which is food security and 

sustainable agriculture.  The authors then estimate the share of public and private 

financing that should be devoted to each investment area, as well as the economic and 

social tradeoffs that must be considered, concluding that overall about 1.5-2.5% of 

global GDP needs to be allocated to achieve the SDGs.  Within the food security and 

sustainable agriculture investment area, the authors identify an array of necessary 

investments, including “…responses to emergencies; improving nutrition; meeting the 

special needs of smallholder farmers or artisanal fishermen; maintaining and restoring 

productive soils; rural infrastructure; increasing the productivity and sustainability of 

commercial agriculture; reducing greenhouse gas emissions from agriculture; … 
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increasing the resilience of agriculture to climate change; [and] research and 

development for agriculture and food security” (Schmidt-Traub and Shah 2015, p.58).   

Schmidt-Traub and Shah (2015) go on to evaluate four existing publications 

which investigate investment needs to meet SDG Two, arriving at a preliminary 

estimate to meet the goal of around $148 billion per year globally between 2016 and 

2030.  While some estimates of the annual cost required to reduce global hunger to 

acceptable levels—such as Laborde et al.’s (2016) calculation based on the computable 

general equilibrium MIRAGRODEP economic model—project lower investment 

requirements ($11 billion annually in this case), these models do not consider the 

complex interactions between production efficiency, consumption patterns, changing 

diets, nutritional requirements, environmental impacts, and unavoidable climate 

change.   

To account for these important factors, Schmidt-Traub and Shah’s (2015) report 

highlights several important knowledge gaps that require further research to bolster the 

robustness of projected investment requirements.  They call for the need for integrated 

assessment models that account for the “multiple and complex” relationships between 

investments in each sub-area, and for more research focused on dietary change, 

climate-resilient production practices, nutrition, and other factors.   

Other researchers have also identified the need to grapple with the complex 

interactions between interventions designed to address the SDGs, asserting that the 

international negotiations that gave rise to the SDGs were inhibited by the siloed 
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knowledge-base underlying each sub-goal, thus neglecting to establish a framework 

through which investment tradeoffs may be analyzed, and funding prioritized over time 

(Pongiglione 2015, Nillson et al. 2016).  Nillson et al. (2016) introduce a seven-point 

scale describing how goals may range from “indivisible” (one cannot be accomplished 

without the other) to “cancelling” (the goals are mutually exclusive).  For example, they 

describe how climate-change mitigation interacts with food security: on one hand—due 

to agriculture’s GHG footprint—climate mitigation efforts may constrain food 

production to some extent; while at the same time, a stable climate is required for a 

resilient food supply.  Similarly, land taken out of cultivation for reasons of ecosystem 

protection will constrain food production.   

These studies suggest that there is a clear need for additional research on the 

strategies necessary for achieving SDG Two, particularly the need to account for the 

complex interactions and tradeoffs between individual goals.  Developing an effective 

plan of action will require a decision support system capable of weighing such tradeoffs 

and prioritizing intervention investments over time.   

5.2.3 Previous Research into the Complexity of Multiple Food Security 

Interventions 

Keating et al. (2014) analyze the complex nature of these food system 

interactions in a “wedge model” for achieving global food security.  The authors build 

upon the seminal work of Pacala and Socolow (2004), which attempts to quantify 

how—using a variety of interventions, each aimed at tackling a smaller sub-issue—the 
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overall problem of global climate change could be effectively solved.  Both efforts 

acknowledge that climate change and future food security, like other complex issues 

facing our global society, are something of a “wicked problem” (Churchman 1967); 

that is, a conundrum that rests upon probabilistic analyses, and cannot be solved by any 

single intervention.  

To assess these complexities, Keating et al. propose three “mega wedges”—

namely: reducing demand; filling the production gap; and avoiding losses—that, taken 

together, should be able to overcome the 127×1015 kcal deficit the world is projected to 

face between 2010 and 2050 (Figure 22).  Under this food wedge model, each “mega 

wedge” is in turn composed of several individual wedges that each contribute to filling 

some amount of the projected gap.  Through an expert informant advisory process, the 

authors attempt to identify the percentage of resources that should be allocated to each 

wedge.  
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Figure 22: Theoretical food security wedge model from Keating et al. (2014). The top line shows 

the historical and projected global food demand, and the bottom line shows food supply. The 

colored regions illustrate how the wedge model could reduce demand and increase supply to fill the 

projected supply / demand gap.   

 

While Keating et al.’s (2014) framework represents a valuable theoretical 

contribution, it is hampered by a number of critical oversimplifications, some of which 

are inherently identified by food security scholars as being necessary for achieving 

SDG Two (Robert et al. 2005, Pongiglione 2015, Schmidt-Traub and Shah 2015, 

Nillson et al. 2016).  Firstly, it is assumed that all interventions occur simultaneously, 

in 2010.  Second, it is assumed that the effect of each intervention will proceed linearly, 

beginning at the intervention date and extending ad infinitum, with the effect on supply 
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or demand unfolding at a constant rate.  Finally, the authors suggest no mechanism to 

govern the limitations of each wedge given ongoing investments.  

From a pragmatic perspective, it is clear that the food wedge model requires re-

thinking if it is to be useful as a practicable decision-support tool.  Similar to the 

criticisms of SDG Two implementation discussed above (Robert et al. 2005, 

Pongiglione 2015, Schmidt-Traub and Shah 2015, Nillson et al. 2016), the food wedge 

framework needs to bridge between siloed knowledge bases, accounting for factors 

including interactions between interventions and the time required for an intervention to 

come to fruition to determine an effective prioritization schedule for policy actions.   

Several efforts have been made to pick up where Keating et al.’s (2014) model 

left off.  Kummu et al. (2017) review recent literature to examine the potential for 

interventions directed at diet change, food loss reduction, and yield gap closure (in 

terms of both nutrient and water utilization) to increase food supplies to the projected 

2050 food demand, which scholars estimate may be as much as a 100% increase over 

current demand levels.  Following Foley et al. (2011) and Keating et al. (2014), among 

others, they argue that there is a need to de-emphasize individual solutions—especially 

those that derive from increased resource use—and instead focus on the interplay 

between various opportunities targeting both supply and demand.   

Kummu et al. (2017) calculate the projected potential level of change for both 

production-side measures and consumption-side measures based on country-specific 

data and existing production models.  In a departure from the food wedge framework—



193 

 

which considers intervention effects in terms of kcals—the authors instead encode each 

measure as a percentage increase or decrease over current supply or demand.  

Multiplying together the effects of all production-side measures with current production 

levels in kcal by country, and repeating the process for consumption-side measures, the 

authors calculate that the potential does indeed exist to close the projected supply / 

demand gap, although they identify several limitations, such as the fact that climate 

change is not considered in their model.  Going forward, the authors call for several 

methodological developments to obtain a more accurate, integrated understanding.  

They identify three broad categories that need further research, (a) linking 

developments, such as case studies and localized field research, (b) supportive 

developments, such as scenario analyses and feasibility studies, and (c) core 

developments, the most critical of which is the inclusion of dynamic feedback between 

interventions.   

5.2.4 Contributions of Our Study 

In light of the identified need to incorporate complex relationships between 

intervention and prioritization schedules into the implementation plan for SDG Two 

(Robert et al. 2005, Pongiglione 2015, Schmidt-Traub and Shah 2015, Nillson et al. 

2016)—i.e. to address interventions “in combination, not just in parallel” (Kummu et 

al. 2017)—we aim to develop the wedge framework into an integrated decision support 

tool that can be used to guide and prioritize policymaking.  Following previous work in 

this area (Foley et al. 2011, Keating et al. 2014, Kummu et al. 2017), we divide wedges 
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into two basic categories: supply-side interventions (i.e., increasing production) or 

demand-side interventions (i.e., reducing consumption).  An additional insight which 

governs how wedges interact is that some wedges (e.g. increasing land use) will 

manifest as increases or reductions in supply or demand, whereas others (e.g. changing 

diets) will instead serve to multiply or divide the existing level of supply or demand.  

We therefore introduce the sub-classifications of additive / subtractive versus 

multiplicative wedges.  

We can expect each wedge to contribute a certain level of baseline change 

(change in supply or demand that would happen in the absence of any intervention), 

and this change will unfold over some period of time.  Also, given a certain quantity of 

global public investment into a given wedge, a corresponding quantity of change may 

be expected, and, once again, this will occur over some characteristic timeframe.  For 

example, expanding land resources used for agriculture could theoretically be a 

relatively quick-acting intervention, whereas significantly influencing human dietary 

choices can be expected to take years, or perhaps even generations.  Finally, each 

wedge is associated with a maximum possible level of change.  For example, there is 

only so much additional land that could reasonably be converted to agricultural use, 

such that at a certain point additional investments will exhibit diminishing returns.  

Based on the above, this paper presents the computational method we have 

developed to formalize the above parameters using a series of three mathematical 

functions to characterize each wedge.  We then demonstrate how an evolutionary 
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algorithm can be employed to optimize wedge investments over time, report on an 

experiment we conducted to optimally parameterize the algorithm, and finally discuss 

preliminary results. 

5.3 Methods 

5.3.1 Optimization of Intervention-Driven Change 

Based on each wedge’s parameters, our algorithm stacks the curve associated 

with each wedge’s baseline together with the curves resulting from public policy 

allocations into that wedge over time.  The optimization procedure we have developed 

generates an intervention schedule represented by a vector whose values indicate the 

fraction of total annual funding available for food security that should be allocated to 

each wedge in each year.  The effects of a given intervention depend on previous 

interventions, the magnitude of investment, and the shape of the wedge’s characteristic 

intervention curve.  

The goal is to optimize the investment schedule such that supply meets demand 

throughout the entire time period of interest, for the least possible amount of public 

investment.  The problem is therefore a multi-objective optimization, encompassing 

both fitness in terms of the supply-demand difference, as well as cost.  Each optimal 

solution will rest on the Pareto front defined by these twin objectives.  

A given solution takes the form of a schedule of global public policy 

interventions into each wedge—which could be implemented at either the national (e.g. 

a country’s agricultural oversight agency) or international (e.g. the U.N. FAO) level—
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over the time period of interest (e.g. from present day to 2050).  Because of the 

interdependency between the effects of the wedges upon one another—for example the 

fact that the effect of multiplying wedges upon the final supply or demand curve 

depends on previously-implemented reducing/increasing interventions, and vice-

versa—the optimization problem becomes quite complex.  An evolutionary 

computational approach capable of identifying near-optimal solutions within a solution 

space governed by a system of interdependent equations would seem to be the only 

feasible means to tackle such a problem.  Here we approach the optimization by 

leveraging a multi-objective differential evolution (MODE) algorithm (Reynoso-

Meza et al. 2014).  

5.3.2 Wedges Used in the Experiment 

While we base our work on Keating et al. (2014), the number of wedges 

included in our experiment has been cut down from the 14 originally identified to seven 

key wedges, described below.  While future versions of our wedge optimization 

algorithm will incorporate at least 14 wedges, for this proof of concept—in order to 

limit computational overhead—we chose to focus on the six wedges identified by 

Keating et al. (2014) as especially important, in addition to a seventh, family planning, 

which has been identified as a critical factor toward addressing SDG Two (Starbird et 

al. 2016).  We retain the wedge numbering scheme from Keating et al. (2014), but 

wedge categorizations have been updated to clarify their use in our algorithm.  While 

we cannot claim that the present analysis is sufficiently-parameterized to forecast 
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precise results in real-world systems, we believe this project is valuable as it identifies 

“stylized facts” about the system, which can help stakeholders to understand and 

effectively grapple with key questions surrounding complex tradeoff landscapes, as 

well as generating new insights to ground future research efforts (Epstein 2008).   

Wedge parameters required for our model were derived from existing empirical 

data and primary literature sources (Table 12, and described below).  It is important to 

note that many of these values, though based on an analysis of the scientific literature 

from each domain, largely represent the best-estimates of our team.  The experiment 

presented here is meant mainly as a proof of concept to demonstrate our optimization 

procedure.  Future work will involve efforts to more-realistically parameterize the 

wedges based on continued scientific research and expert input.  

 

Table 12: Wedge Parameter Values Used in the Experiment 

Num. Description Class Δ
base

 t(Δ
base

/2) n
base

 Δ
i
 t(Δ

i
/2) n

i
 Δ

max
 a 

5 
Land 

expansion 
↑ Supply 1.05×10

15
 50 1 4×10

14
 3 2 1.6×10

16
 2 

12 
Soil/water 

degradation 
↑ Supply 0 – – 7×10

14
 5 2 1.1×10

16
 2 

8 Yield gaps × Supply 1.05 20 1.25 1.03 8 2 1.1 10 

14 
Climate 

adaptation 
× Supply 0.8 25 2 1.1 10 2 1 2 

15 Birth control ↓ Demand 1.28×10
16

 50 1.25 −1.2×10
15

 15 3 -2.2×10
16

 2 

2 
Over-

consumption 
× Demand 1.05 25 1.25 0.98 5 2 0.75 10 

3 Diet × Demand 1.05 35 1.25 0.98 14 2 0.6 10 
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The most critical parameters for each wedge are as follows: Δ
base

 represents the 

expected level of baseline change in the absence of any intervention.  t(Δ
base

/2) 

indicates the number of years into the future at which half of the baseline change is 

expected to have unfolded.  Similarly, Δ
i
 is the expected level of change resulting from 

expending a full year’s global food security policy budget solely on the wedge, and 

t(Δ
i
/2) is the expected number of years into the future at which half of that intervention-

driven change is expected to have unfolded.  Finally, Δ
max

 represents the theoretical 

upper limit for change associated with each wedge.  The other parameters are less 

critical, tuning more subtle aspects of the equations, such as the transition slope.  The 

specific role of each parameter in the mathematical functions underlying our model are 

detailed in “5.3.4.1 Wedge functions and parameter encoding.”   

5.3.2.1 Supply increasing wedges 

• Expanding agricultural land resources (Wedge 5)  

The USDA reports that global land use for agricultural production increased 

from 1.65 billion acres in 1961 to around 2.32 billion acres as of 2016, an increase of 

40.6% (USDA PSD 2017).  Theoretically, there may be as much as 6 billion acres of 

additional land that could be allocated for agriculture—informing our Δ
max

 value of 

1.6×1016 kcal—although this figure includes reserved and protected land which, if 

utilized, would have significant impacts on environmental resources (FAO 2011, FDI 

2011).   
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Land quality has a large impact on per-acre kcal production, with 80% of 

potential yield presently met with prime land, 40-60% with good land, and < 40% with 

marginal land.  In many cases, it is marginal land that has not yet been cultivated, 

which will limit the productivity potential of newly-cultivated land (Barbier 2004).  

As such, the impetus to cultivate new land—while projected to continue gradually—has 

already tapered off and is expected to plateau in the coming decades (FAO 2011).   

Although more research is needed, given the factors above, we estimate that 

baseline land expansion may increase by around 12% between 2015 and 2050.  With 

current global food production around 9×1015 kcal (Keating et al. 2014), this yields a 

Δ
base

 of 1.05×1015 kcal.  However, due to the marginal nature of much of the potential 

new acreage, we anticipate a relatively long t(Δ
base

/2) of 50 years.  In contrast, we 

anticipate that intervention-driven change may unfold quickly for this wedge, since 

adding new land for agriculture could be incentivized with simple zoning / regulatory 

changes, and as such we estimate a Δ
i
 of 4×1014 kcal, and a t(Δ

i
/2) of three years.   

• Avoiding soil and water degradation (Wedge 12) 

Approximately 25% of cultivated land is currently considered highly degraded, 

with another 44% being moderately degraded (FAO 2011), causing, on average, 20-

40% reductions in yield (Eswaran et al. 2001, Morgan 2009).  Some of this land is 

inherently marginal (Barbier 2004), but it has been suggested that many commonly-

used intensive agricultural practices, together with alternative land uses such as 
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urbanization, have led to the degradation of previously-prime land and water resources 

(Bindraban 2012).  However, better management practices in recent years, such as 

limited tillage, have begun to curb the problem, and the UN FAO currently does not 

consider it a major threat (Gomiero 2016).  Given the uncertainties involved, we set the 

Δ
base

 for this wedge to zero.   

Multiple factors influence the stability of agricultural landscapes, presenting 

many routes for improvements to zoning, soil management, runoff control, and water 

quality that may begin to reverse soil and water degradation (Gomiero 2016).  

Historically, the American dust bowl disaster shows the potential for degraded soil to 

come back into production, given sufficient policy action.  While more research is 

required to determine the projected effects of interventions in this area, we have used an 

estimated Δ
i
 of 7×1014 kcal and a t(Δ

i
/2) of five years in the current model.   

5.3.2.2 Supply multiplying wedges 

• Closing yield gaps in existing crop and/or livestock production systems (Wedge 8) 

Current estimates for potential yield improvements vary by crop type.  For 

example, while average rainfed wheat yields could improve by 25%, irrigated corn 

already achieves 90% of its potential yield (Van Ittersum et al. 2013, Sadras et al.  

2015).  Investing in yield gaps is multiplicative, since it increases per-acre production 

efficiency on existing farmland.   

The global trend over the past century has been toward increased per-acre 

yields—largely due to technological improvements resulting from e.g. the “green 
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revolution”—yet in recent years yields of key staple crops have stagnated and are not 

expected to keep pace with demand going forward (Ray et al. 2013, Pradhan et al. 

2015).  While potential gains are possible—especially in developing regions including 

much of Africa—in the absence of a fundamental paradigm shift, researchers project 

only minor improvements in average global yields over the coming decades (Van 

Ittersum et al. 2013).  In light of these findings, we use a Δ
base

 multiplier of 1.05 (i.e., a 

5% gain), and a t(Δ
base

/2) of 20 years in the model.   

Despite the fact that the effectiveness of the 20th century paradigm to address 

yield gaps is diminishing, there are still many interventions that have the potential to 

increase production efficiency over the longer term (Rodriguez et al. 2018).  The 

current state of the art involves a focus on sustainable intensification, including 

precision agriculture, new management practices, localized cropping decisions, and 

other factors (Foley et al. 2011, Mueller et al. 2012, Cassidy et al. 2013, Steffen et al. 

2015, Rockström et al. 2017).  While a full analysis of the potential effects of 

sustainable intensification remains outside the scope of the current project, it is clear 

that improvements are possible in this area, and as such we set Δ
i
 to 1.028 (i.e., a 2.8% 

gain) and t(Δ
i
/2) to 8 years, accounting for the fact that yield improvement innovations 

have historically spread rather slowly across the globe (Feder and Umali 1993).   

• Adaptation to climate change that can’t be avoided (Wedge 14) 

Climate change is expected to have a major negative impact on agriculture, with 

estimated annual kcal production losses of 20% over current levels projected by 2050 if 
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systems do not adapt (Nelson et al. 2009).  Thus, we set our Δ
base

 multiplier at 0.8, 

and our t(Δ
base

/2) at 25 years for this wedge.   

While the baseline multiplier indicates a loss in productivity in the absence of 

any intervention, investment in the adaptation of agricultural systems to maintain 

productivity in the face of a changing climate may have the potential to mitigate or in 

some cases even reverse these projected losses, for example where a warming climate 

increases the length of the growing season, or where increased CO2 accelerates crop 

growth.  By breeding new varietals of drought-tolerant crops and educating farmers to 

select cultivars that are more amenable to their changing local climates, the negative 

baseline trend can be mitigated to some extent (Bisbis et al. 2018).  In light of these 

findings, we estimate our Δ
i
 at 1.1 (i.e., a 10% gain) and t(Δ

i
/2) to 10 years, owing to 

the expected lag between the development of climate-smart agricultural practices and 

their eventual adoption by farmers on the ground (Burke and Emerick 2016).   

5.3.2.3 Demand reducing wedges 

• Curbing population growth by expanding access to contraceptives (Wedge 15) 

While this wedge was not included in Keating et al. (2014), evidence suggests 

that it may in fact be a crucial leverage point, since more than anything else, rising 

demand is driven by population.  The number of humans is expected to increase from 

7.55 billion to 9.77 billion by 2050 and 11.2 billion by 2100 (UN 2015).  These 

numbers are staggering, as each person consumes an average of 1073 kcal annually 

(Brown and Cameron 2000).  Of course, the situation is complex, since for example 
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individuals in lower-income countries—where contraception tends to be less available, 

and fertility rates are higher—also consume less kcal per capita than their richer 

neighbors.  In light of these projections, we set the Δ
base

 to 1.28×1016 kcal for this 

wedge, albeit with a very long t(Δ
base

/2) of 50 years, indicating that population growth 

will be a steady demand-increasing baseline factor over the next century.   

Despite the baseline increase, providing widespread access to contraception and 

family planning education could drastically curb human population growth, with a 

theoretical possible reduction—assuming one child per woman—of three billion 

individuals, equating to 3.219×1012 kcal annually, by 2045 (Heikkinen 2014).  In light 

of its huge impact on the overall food security problem, SDG Two identifies family 

planning as one of the most powerful levers toward reducing hunger in the coming 

decades (Starbird et al. 2016).  We set our Δ
i
 at −1.2×1015 kcal, representing a 

significant demand reduction.  However, achieving this will require a long-term 

commitment, since reproduction choices are wrapped up in cultural norms, likely 

requiring generational shifts in public opinion (Heikkinen 2014).  As such, we estimate 

t(Δ
i
/2) for this wedge to be 15 years.   

5.3.2.4 Demand multiplying wedges 

• Reducing over-consumption by humans (Wedge 2)  

Over-consumption of food—where caloric intake is higher than caloric 

expenditure in an individual person—results in increased demand that is not necessary 
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for healthy human livelihoods.  This wedge is multiplicative, since it is contingent upon 

the number of humans on the planet.  Globally, adults consume 2940 cal. on average 

daily (Brown and Cameron 2000), whereas the recommended healthy caloric intake 

is around 2000 cal. (Amine et al. 2003), though this is highly dependent on 

individual lifestyles and characteristics.  This means that, in theory, this wedge could 

reduce demand by around 30%, although we choose a more realistic figure of 25% 

reduction to inform our Δ
max

 value of 0.75.   

Global per-capita calorie consumption has increased 31% in the last half-

decade, largely driven by ongoing industrialization and development in formerly-

underdeveloped regions (Roser and Ritchie 2019).  This consumption trend is projected 

to continue in underdeveloped areas, yet it has already tapered off in the world’s most-

developed countries.  As such, we roughly estimate a Δ
base

 value of 1.05 (a modest 5% 

increase) for this wedge, with a t(Δ
base

/2) of 25 years.  The impact of intervention-

driven change designed to reduce overconsumption is also fairly uncertain, although the 

literature does indicate that interventions to shift dietary choices can be effective to a 

certain extent (Racey et al. 2016).  Here we estimate a Δ
i
 of 0.98 (a 2% reduction) and 

t(Δ
i
/2) of 5 years.  Given the uncertainty in the literature, more-precisely forecasting 

trends and projecting intervention impacts toward reducing overconsumption would be 

a valuable avenue for future research.   

• Rebalancing the livestock component in human diets (Wedge 3)  
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Global average meat consumption has increased from 23 kg per person per year 

in 1961 to 42 kg per person per year in 2011, an 82% change (Sans and Combris 2015).  

The energetic requirements to raise livestock have in some cases been estimated to be 

as high as 100 times more costly than if rowcrops were used to feed humans directly 

(Herrero et al. 2013), although the practices, geographical location, and other factors 

associated with animal production complicate this figure.  Nevertheless, increased 

consumption of animal-derived products will on average require higher overall levels of 

agricultural production, in terms of kcal potential for human nutrition (Jalava et al. 

2016).   

It has been widely reported that rising incomes tend to inflate per-capita 

consumption of animal-derived food products, however there is also an income 

threshold—around $36,000 per capita—beyond which meat consumption has been 

found to decline (Vranken et al. 2014).  With global incomes generally rising on 

average, under baseline conditions meat consumption in wealthy areas is projected to 

plateau and eventually decrease, whereas in areas experiencing rapid economic 

development—notably China—demand for animal products will continue to rise.  

While the rapid increase in meat consumption observed over the last half-century is 

already tapering off, there is still an overall upward trend globally.  In light of these 

countervailing factors, we estimate a Δ
base

 value of 1.05 (a 5% increase in kcal demand) 

for this wedge, with a t(Δ
base

/2) of 35 years.   



206 

 

Despite the complexities associated with the impact of animal agriculture on 

food production, climate, and human nutrition, a modest reduction in the average 

proportion of animal-based foods in human diets represents a critical multiplicative 

lever to reduce pressure on global food supplies.  Like overconsumption, the efficacy of 

policies designed to effect dietary change are difficult to predict, but literature shows 

that eating habits can in fact be nudged, albeit gradually (Racey et al. 2016).  We 

therefore estimate a Δ
i
 of 0.98 (a 2% reduction in kcal demand) and t(Δ

i
/2) of 14 years 

for this wedge, with a Δ
max

 of 0.6.   

5.3.3 Genome Representation 

Evolutionary algorithms represent the variable values associated with each 

potential solution as a “genome.”  Here, the genome used to encode each solution was 

implemented as a vector of floating-point values between zero and one.  The genome 

can be divided into a series of repeating blocks, one for each intervention year.  Each 

gene value within these blocks encodes the percentage of global funding available for 

public investments into food security allocated to each wedge in that year. Using the 

notation g
w,y

, where g is the gene value for wedge w in intervention year y, and with n
w
 

and n
y
 being the number of wedges and the number of intervention years, respectively, 

the final genome takes the general form: 
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5.3.4 Objective Function 

The development of an objective function that meets the requirements of a 

“curve-stacking" optimization problem like the one we have outlined represents a key 

contribution of our work.  Such a function must handle interventions that fall into each 

of the four wedge classifications described above.  The function must appropriately 

sum or multiply the supply or demand effects resulting from multiple individual 

interventions for each wedge, with each intervention occurring in a specific year and 

unfolding over time according to several compounding parameters associated with the 

wedge, as well as the expenditure magnitude represented by the genome value.  Finally, 

it must compute the fitness associated with the overall intervention schedule described 

by each genome according to two distinct objectives: the area between the final supply 

and demand curves, and the total summed implementation cost.  

The objective function takes as arguments vectors specifying the wedges from 

each category to be used in the analysis, the start and end year for the optimization (i.e. 

2020 through 2050), the intervention frequency (i.e. re-evaluating investment priorities 

every five years), the initial supply and demand figures (in kcal), as well as several 

parameters associated with deriving the final fitness values (discussed below).  
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5.3.4.1 Wedge functions and parameter encoding 

Each wedge has nine associated parameters—according to the values given in 

Table 12 above—stored in a structure array.  First is the wedge name, and second is its 

class, which can be one of “supply increasing,” “supply multiplying,” “demand 

reducing,” or “demand multiplying.”  The units for increasing / decreasing classes are 

represented in kcal, while the multiplicative wedges result in multiplier values that are 

applied to either the global supply or demand curve.  

The remaining numerical parameters are employed within three functions, each 

of which is called where applicable by the objective function to calculate the overall 

multiplier or kcal Δ vector resulting from the series of interventions associated with 

each wedge.  These wedge functions are: (a) the baseline function, (b) the intervention-

driven change function, and (c) the diminishing returns function.  

(a) The baseline function for each wedge is a Hill function of the form: 

f(x)= 
Δ

base
xn

base

(t(Δ
base

/2))n
base+xn

base
 

Where x is the number of elapsed years since the start year, Δ
base

 is the ultimate 

level of baseline increase or decrease (or, in the case of multiplicative wedges, the 

maximum or minimum baseline multiplier value), n
base

 is the slope of the transition (as 

n
base

→∞ the Hill function becomes a step function; we found values between one and 

three to be realistic), and t(Δ
base

/2) is the number of years before half of the Δ
base

 value 

will have been reached. 
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(b) The intervention-driven change function for each wedge was another Hill 

function of the same form as the baseline function, but calibrated to output a vector the 

length of the number of years between the intervention year and the end year.  The 

intervention parameters are used in the intervention-driven change function in the same 

way as the baseline parameters in the baseline function, substituting Δ
base

 for Δ
i
 , 

t(Δ
base

/2) for t(Δ
i
/2), and n

base
 for n

i
 .  The difference is that, in the case of intervention-

driven change, the effect on the supply or demand curve only begins the year in which 

an intervention is scheduled. Δ
i
 represents the total change (in terms of either multiplier 

or kcal Δ) associated with allocating 100% of a given intervention year’s food policy 

resources to that wedge. t(Δ
i
/2) represents the time in years from the intervention year 

until the year in which the change would equal Δ
i
/2 .  n

i
 encodes the transition slope 

associated with the intervention.  The function and its associated parameters are 

visualized in Figure 23.  
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Figure 23: Hill function of the form used for both the baseline and intervention-driven change 

associated with each wedge, showing the effect of the three key parameters on the shape of the 

resultant curve. 

 

(c) Finally, the diminishing returns parameters describe how additional 

investments into a wedge will begin to become less and less effective.  For example, 

there is only so much additional agricultural efficiency that we can reasonably hope to 

achieve, and at some point additional investments into that wedge will begin to pay 

smaller and smaller dividends.  We found that a modified logistic growth/decay 

function suited the diminishing returns situation well, since, when properly 

parameterized, it has a y ≈ x trajectory initially, followed by a gradual transition to a 

specified limit.  The diminishing returns function took the following general form: 

f(k)= 
aΔ

max

1+e−ak/Δ
max

−Δ
max

 

Where Δ
max

 describes the ultimate maximum level of change that may be gained 

through investments into each wedge (see Figure 24), and a encodes the transition 
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abruptness as regards the diminishment of intervention effectiveness as more 

investments are made.  The function should initially yield y ≈ x (i.e. the outcome from 

the first intervention should equal Δ
i
 ), while further equal investments in the same 

wedge should yield outcomes <Δ
i
 .  We found that a = 2 produced such an outcome for 

the additive / subtractive wedges; while a = 10 produced the same pattern for the 

multiplicative wedges.  

 

 

Figure 24: Effect of the diminishing returns function on five equal intervention investments [i
1
⋯i

5
] 

into the same wedge. Note that Δ
max

 is a limit to which a series of interventions may approach but 

never reach. 

 

We have chosen to use Hill functions and logistic growth / decay functions here 

because they were deemed to best suit the problem at hand.  Were a similar 

optimization method to be used for other applications, the structure of the algorithm 

makes it trivial to use whatever mathematical functions are most appropriate to 
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parameterize each wedge.  Note that we have demonstrated only the supply-increasing 

(y ∝ x) versions in the equations and figures above.  For demand-reducing (y ∝ −x) 

wedges, the equations were modified such that they were mirrored across the x axis, 

and then translated up where necessary.  

5.3.4.2 Curve stacking procedure 

As noted above, food security wedges may act either to increase supply, or to 

decrease demand.  For brevity, we will discuss only the supply side curve stacking 

procedure here, with the demand side calculations simply being a repeat of the same 

process.  Within each broad category, wedges may be broken down into two sub-

classes: (a) multiplying wedges, and (b) increasing/reducing wedges.  

To track the supply multiplying wedge effects in aggregate, an overall supply 

multiplier vector of ones the length of the years vector is initialized.  For each 

multiplying wedge, a separate tracking vector of the same length is initialized by 

calling the baseline change function using that wedge’s baseline parameters as 

arguments.  A loop then traverses each genome index associated with the wedge.  If the 

genome value is non-zero, the intervention-driven change function—again using the 

wedge’s individual parameters as arguments—is executed for the intervention year 

through the end year.  The magnitude of the resulting intervention multiplier vector is 

then multiplied by the expenditure fraction represented by the genome value, which is 

always ≤1.  Next, the corresponding segment of the wedge multiplier vector is 

multiplied by the intervention multiplier vector.  The individual intervention vectors are 
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also stored separately for later plotting.  Once all intervention multipliers associated 

with a given wedge are combined into a single vector, that vector is run through the 

wedge’s diminishing returns function.  Finally, each supply multiplying wedge’s 

associated vector is multiplied together to generate the overall supply multiplier vector.  

The stacking procedure is similar for the supply increasing wedges, except that 

each wedge’s effect vector is initialized with values of zero, and instead of multiplying 

vectors together, they are summed.  Once again, the procedure is to first establish a 

baseline vector for a wedge, then modify this vector by adding in each intervention-

driven change vector for the wedge, and finally run the resulting summed vector 

through the diminishing returns function.  Once all supply increasing wedge vectors are 

calculated in this way, they are summed into a single overall supply increase vector.  

To generate the final supply curve, a vector the length of the years vector is 

initialized with each value being equal to the initial supply level in kcal.  This is then 

summed with the overall supply increase vector.  Finally, the resulting vector is 

multiplied by the overall supply multiplier vector to yield the final supply curve.  As 

noted above, this full procedure is repeated—with appropriate modifications—for the 

demand-side wedges to calculate the final demand curve. 

5.3.4.3 Fitness calculation 

The optimization problem described here encompasses two distinct objectives, 

namely: (O1) minimize the total deficit between food supply and demand in each year, 

and (O2) minimize the average annual cost of global food security interventions.  
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We call the fitness value associated with (O1) “supply / demand (or SD) 

fitness."  This is calculated by traversing the data in one-year segments, and using 

trapezoidal numerical integration on each segment to find the area between the supply 

and demand curves.  If supply is lower than demand, the area value is added to the total 

area difference.  In initial testing, we found that penalizing overproduction allowed the 

algorithm to hone in on more efficient solutions.  In the real world, this would 

correspond to limiting food waste.  To capture this, we stipulate that in years in which 

supply exceeds demand, fitness is penalized by multiplying the area associated with the 

overproduction by the “overproduction penalty factor" parameter (=1.1) before adding 

it to the total area difference.  Finally, the total area difference is normalized by 

dividing it by the area between the pre-intervention baseline supply and demand curves, 

giving us the SD fitness figure.  

We call the fitness value associated with (O2) “cost fitness."  Cost fitness is 

calculated by dividing the sum of the genome by Δ
t
 , the number of years between the 

end year and start year.  This encodes the average annual percentage of possible global 

food security policy resources required to obtain the solution.  

5.3.5 Differential Evolution Model 

In selecting a process to optimize the objective function described above, we 

considered factors such as how the genome was implemented, what the solution space 

may look like, problem dimensionality, and computational requirements.  
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The differential evolution model, pioneered by Storn and Price (1997), like all 

evolutionary algorithms, is based on multi-generational mutation, recombination, and 

selection.  In each generation, the algorithm selects three population members at 

random.  Mutation proceeds by adding the weighted difference between the first two 

vectors to the third.  The resulting “donor vector” is then recombined with a “target 

vector” to form a new vector called the “trial vector.”  Finally, the fitness of the target 

and trial vectors are compared, and the better of the two is selected for admission to the 

next generation.  

Since we have two potentially-competing objectives, an algorithm that outputs a 

set of possible solutions along an approximate Pareto front (i.e. a multi-objective 

algorithm) was necessary.  Several multi-objective extensions of the basic DE 

algorithm have been implemented (Xue et ql. 2003, Reynoso-Meza et al. 2014).  

Our procedure utilizes a Matlab MODE implementation called spMODEx, which 

incorporates a novel method of spherical pruning into the basic MODE 

algorithm (Storn and Price 1997).  We modified the code such that it calls a custom 

population generation function appropriate for the problem at hand, retrieves and passes 

the appropriate wedge parameter and experimental design arguments through to the 

objective function, and utilizes a p-factor parameter—which is multiplied by problem 

dimensionality to calculate population size, as is common in other DE 

implementations—rather than a fixed population size.  We also wrapped the algorithm 
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code in a driver function which initializes and executes the experiment described 

below, and developed extensive scripts to appropriately analyze and visualize results.  

Aside from being comparatively-straightforward to implement, DE algorithms 

have performed very well on a range of benchmarks (Storn and Price 1997, Das and 

Suganthan 2011).  Since, at least to the authors’ knowledge, this study represents the 

first attempt to optimize a curve-stacking problem of this type using an evolutionary 

algorithm, several unknowns exist about the fitness landscape and solution space.  For 

example, whether or not the problem is linearly separable or unimodal is somewhat 

unknown.  The fact that DE has proved very versatile, and has relatively-few tunable 

parameters, whose actions are well-understood, suggests it to be a good fit for a novel 

class of optimization problems (Das and Suganthan 2011). 

One thing we do know is that our class of optimizations are, or at least could be, 

very high-dimensionality problems.  Dimensionality can be calculated here based on 

three problem parameters, as follows: 

D= 
n

w
Δ

t

f
i

 

Where n
w
 is the number of wedges, Δ

t
 is the difference between start year and 

end year, and f
i
 is the intervention frequency.  For example, in the experiment below, 

we use a 30-year time window, a five-year intervention frequency, and 7 wedges, 

meaning the problem takes on a dimensionality of D=42.  
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Another factor in our optimization is its relatively-expensive objective function 

evaluation procedure, which requires several loops and some amount of pre-processing 

overhead.  Because of its low space-complexity, DE has proven especially adept at 

handling both high-dimensionality problems and those with relatively-expensive 

objective function evaluations (Das and Suganthan 2011), once again suggesting 

that it is well suited to our optimization problem. 

5.3.6 Experimental Design 

An iterative process of parameter tuning was undertaken to hone in on baseline 

parameter values which consistently produced high-quality solutions.  To evaluate and 

optimize the MODE algorithm for the curve-stacking problem described above, we 

conduct a sensitivity analysis experiment which systematically varies several key 

model parameters, and analyzes the impact of these changes on solution fitness.  We 

also examine the effect of each of these reparameterizations on average computation 

time.  Finally, we delve deeper into the best set of solutions and comment on the 

patterns and tradeoffs therein.  

5.3.6.1 Parameters of interest 

First we explore several categorical parameters (Table 13).  Recombination 

method indicates the algorithm used to merge the genomes of the target vector and 

donor vector to form the trial vector, with most DE implementations historically 

employing binomial recombination (Xue et al. 2003, Reynoso-Meza et al. 2014).  

Selection strategy affects how the target vector is compared to the trial vector to 
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determine which will be admitted to the next generation.  Here we compare traditional 

dominance-based (“Push”) selection to Reynoso-Meza et al.’s (2014) novel spherical 

pruning (“SphP”) approach.  Normalization algorithm indicates the specific algorithm 

to be used in the spherical pruning process.  

 

Table 13: Categorical Parameters and Values Explored 

Parameter Baseline Values Explored 

 Recomb. Method ‘Binomial’ [‘Binomial,’ ‘Lineal’] 

Selection Strat. ‘SphP’ [‘SphP,’ ‘Push’] 

Normalize. Algo. ‘Euclidean’ [‘Euclidean,’ ‘Manhattan,’ ‘Infinite,’ ‘Physical’] 

   

Next, we evaluate how changing the values of key numerical parameters affects 

results, as well as the models’ degree of sensitivity to change when increasing and 

decreasing the baseline values by a known percentage.  In this case, we evaluate the 

baseline value against 0.75 × baseline and 1.25 × baseline for each parameter of interest 

(Table 14).  Number of initial interventions corresponds to the number of non-zero 

genome entries assigned randomly to each initial population member.  p-factor 

indicates the size of the initial population, with population size equaling p-factor × 

problem dimensionality (D=42 in this case).  Scaling factor—variously known as 

“weighting” or “mutation” factor—affects the extent to which the difference between 

the first two vectors changes, or mutates, the third vector when forming the donor 

vector, and should be between zero and two.  Crossover probability is the chance that 

each element of the donor vector will enter the trial vector (Storn and Price 1997).  
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Finally, we tune the maximum number of generations to investigate the point at which 

the increased run-time associated with more generations no longer yields sufficiently-

better solutions to continue increasing the generation limit.  

 

Table 14: Numerical Parameters and Values Explored 

Parameter 0.75 × Baseline Baseline 1.25 × Baseline 

 N. Init. Intervs. 15 20 25 

P Factor 3.75 5 6.25 

Scaling Factor 0.16875 0.225 0.28125 

Crossover Prob. 0.225 0.3 0.375 

Max. Generations 96 128 160 

   

5.3.6.2 Experiment setup and analysis 

Each of the parameterizations detailed above was run 15 times, which was 

generally sufficient to evaluate the performance of each treatment against the others.  

For parameters where results were inconclusive after 15 runs (Normalize. Algo., N. 

Init. Intervs., and Max. Generations), an additional 15 repetitions were completed for 

each parameterization.  A total of 495 runs were conducted for this experiment.  The 

solutions along the Pareto front from each run were saved in a data structure, along 

with their accompanying fitness values, and the time elapsed for each run.  For each 

parameterization, a combined Pareto front was generated, composed of the fittest 

individuals across all repetitions.  To evaluate the effect of changing parameter values 

on model performance, we also generate a combined Pareto front composed of the best 

individuals across all values evaluated for each parameter.  
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The share of individuals in the combined Pareto front which were drawn from 

each parameterization serves as a reliable indicator of solution quality.  Realizing that, 

for the problem at hand, the solutions we’re most interested in are those with very 

favorable supply-demand fitness (i.e. we want to ensure that the world is fed first and 

foremost), we define a solution acceptability window, with a maximum SD fitness of 

0.0175, and a maximum cost fitness of 0.25.  Within this window, all solutions come 

very close to fully satisfying the SD objective, while also rejecting the few solutions 

with extremely-high cost (which may also be overfitting the data).  We then calculate 

the Pareto front share for each parameterization, constrained within this window.  This 

value—the Pareto front share within the acceptability window—serves as the primary 

indicator of solution quality used to parameterize the model in this experiment.  

Finally, we compute averages and standard deviations for the runtimes to 

evaluate how each parameter change affects the time required for the algorithm to 

complete.  Our goal is to weigh the efficacy of the solutions generated by each 

parameterization against any runtime penalty to arrive at a suitable baseline 

parameterization that consistently produces good results, without requiring excessive 

computation time.  

Baseline values were honed using an iterative series of experimental 

reparameterizations.  The results below reflect the best baseline parameter values we 

were able to achieve and show that deviating from these baselines negatively affects the 

performance and/or computation time of the algorithm.  
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5.4 Results 

We begin by examining the experimental data to evaluate how the baseline 

spMODEx parameterization we have settled on for this use case weighs tradeoffs 

between performance and execution speed.  Next, we analyze the full set of baseline-

parameterized runs to explore similarities and differences among solutions within the 

acceptability window.  

5.4.1 Model Parameterization Experimental Results 

Figure 25 shows experimental results for the categorical parameters.  We find 

that the binomial recombination method, which is typically preferred in most DE 

implementations, is superior both in terms of performance and speed (Storn and Price 

1997, Xue et al. 2003).  However, the spherical pruning selection strategy developed 

by Reynoso-Meza et al. (2014) outperforms the dominance-based strategy 

canonically used in DE algorithms, confirming that, at least for this class of problems, 

spherical pruning is a worthwhile amendment to the MODE algorithm. 
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Figure 25: Left plots show SD Fitness / Cost Fitness Pareto fronts for categorical parameters. Gray 

areas bounded by dashed lines indicate solution acceptability window. The share of the Pareto 

front generated by each parameterization appears in the legend, both over the full range, as well as 

strictly within the acceptability window. Right plots show mean and std. errors of computation 

time per run for each parameterization. 

 

While Euclidean, Manhattan, and Infinite normalization algorithms show little 

difference overall in terms of either performance or execution time, we find that for this 

use case the Euclidean algorithm is preferable, capturing more of the Pareto front share 
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overall, and an equal amount as the Infinite algorithm within the acceptability window; 

while slightly edging out the other algorithms on speed.  

Next, we turn to the numerical parameters, each of which was evaluated at 0.75 

× baseline, baseline, and 1.25 × baseline levels (Figure 26).  Experimental results show 

that the model is quite sensitive to the number of initial interventions in each genome, 

with interesting tradeoffs between performance overall, performance within the 

acceptability window, and speed.  Whereas 15 initial interventions yielded the highest 

overall performance and the fastest execution time, it captured only 22.2% of 

acceptable solutions.  On the other hand, 25 initial interventions captured the highest 

proportion of acceptable solutions—despite generating only 0.8% of overall 

solutions—but this came at the cost of ≈20 second longer run times.  We conclude that 

in this case 20 initial interventions offers a happy medium, generating many acceptable 

solutions without sacrificing a great deal of execution time.  We also noticed that 

increasing the number of initial interventions tended to produce intervention schedules 

with higher numbers of smaller interventions.  While potentially more precise, these 

more complex solutions may come at the cost of being more difficult to for 

policymakers to parse and effectively utilize.  For a global problem like adequate food 

production, the "simpler" solutions—i.e. those that rely on fewer individual 

intervention events—may be easier to implement and communicate to stakeholders 

across the globe than intervention schedules requiring very precise and timely 

coordinated actions.  
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Figure 26: Left plots show SD Fitness / Cost Fitness Pareto fronts for numerical parameters. Gray 

areas bounded by dashed lines indicate solution acceptability window. The share of the Pareto 

front generated by each parameterization appears in the legend, both over the full range, as well as 

strictly within the acceptability window. Right plots show mean and std. errors of computation 

time per run for each parameterization. 



225 

 

 

Overall, the model was minimally sensitive to changes in p-factor, which 

dictates the size of the initial population.  This finding echoes previous studies which 

find that, due to its design, the efficacy of DE is less reliant on population numbers than 

many other evolutionary algorithms (Storn and Price 1997, Xue et al. 2003, Das and 

Suganthan 2011).  We found that a p-factor of five yielded an equal proportion of 

acceptable solutions to any other value we assessed, while also executing slightly faster 

on average.  

Turning to scaling factor, the model would appear to be sensitive with regard to 

speed, but less so with regard to performance, especially within the acceptability 

window.  While each value we assessed produced an equal share of acceptable 

solutions, lower values tended to generate more Pareto front solutions overall but were 

also more computationally costly.  Thus, we arrived at a baseline value of 0.225, as this 

offers a compromise between the three factors.  

For crossover probability, higher values require more computational time, while 

also decreasing performance on the overall Pareto front.  We found that a value of 0.3 

yielded the highest proportion of acceptable solutions, while maintaining moderate 

execution times.  

Finally, as should be expected, increasing the maximum number of generations 

had a large impact on execution time.  It is desirable to choose a value that achieves the 

desired results without unduly burdening the model user with overly long computation 
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times.  In this case, we found that a limit of 128 generations yielded the same 

percentage of acceptable solutions as higher generation limits, while also preserving 

reasonable execution times.  

5.4.2 Best Acceptable Solutions 

To determine the best overall solution(s) to the optimization problem at hand, 

we concatenate results from all baseline-parameterized runs to calculate a final Pareto 

front, and focus in solely on the subset of solutions within the acceptability window.  

This acceptable Pareto front contains 19 solutions (Figure 27), three of which—located 

at the “knees” of the front—are selected for detailed analysis.  

 

 

Figure 27: SD Fitness / Cost Fitness Pareto front for the 19 baseline-parameterized solutions within 

the acceptability window. Red solutions (3, 10, & 16) are detailed in Figure 28. 

 

Figure 28 plots the intervention schedules associated with each of the three 

optimal solutions (3, 10, and 16 from Figure 27).  The top plots of Figure 28 show the 
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effect of each intervention on either global food supply (cool colors) or demand (warm 

colors).  Note that it is possible for multiple interventions to occur in a single 

intervention year.  Essentially, the colored regions expanding from the intervention year 

and extending out toward 2050 can be thought of as the “wedges” of Keating et al. 

(2014).  The cost fitness and SD fitness associated with each solution are also given 

(with lower values being better in this case).  The bottom plots of Figure 28 indicate the 

level of resource allocation (in terms of percentage of global public policy budget 

available for food security) devoted to each wedge in each intervention year.  
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Figure 28: Example solutions—located at the “knees” of the Pareto front—within the acceptability 

window. Upper plots for each solution show the baseline supply and demand curves, along with the 

effect of each wedge intervention called for by the solution on either supply (cool colors) or demand 

(warm colors). Lower plots show the intervention investment schedule indicated by each solution. 
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5.4.3 Prioritizing Wedge Interventions Based on DE Solutions 

Taken together, the three solutions identified above share several similarities as 

well as demonstrating key differences (Table 15).  Clearly, there is more than one way 

to achieve an effective food security intervention schedule, emphasizing the complex 

tradeoff landscape at play.  Solutions 3 and 10 prioritize supply-side interventions, with 

3 emphasizing curbing soil and water degradation, and 10 focusing more on closing 

yield gaps (e.g. by sustainably-intensifying agricultural production).  Both of these 

wedges offer substantial opportunities to bolster agricultural output over the coming 

decades, and policymakers must carefully weigh the tradeoffs between the two.  

Solution 16 differs somewhat in that it relies more heavily on curbing demand through 

birth control and reducing the average quantity of meat in human diets.  Notably, what 

all three solutions have in common, regardless of the overall makeup of supply versus 

demand side wedges, is that the majority of investments invest heavily into climate 

adaptation (on the supply side) and/or birth control (on the demand side). 
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Table 15: Overall Average Allocation to Each Wedge for the Three Best Acceptable Solutions 

 Allocation Percentage 

Wedge S3 S10 S16 

Land expansion 9.72% 7.09% 0.99% 

Soil/water degradation 29.45% 12.17% 5.59% 

Yield gaps 8.99% 26.57% 20.27% 

Climate adaptation 21.69% 30.82% 30.49% 

Birth control 19.06% 14.31% 30.13% 

Over-consumption 7.14% 3.93% 1.57% 

Diet 3.95% 5.11% 10.97% 

 

Among the three solutions, 16 has the lowest cost fitness, indicating that an 

acceptable global food security outcome could be met most cost-effectively by 

following this intervention schedule.  On the other hand, 3 has the lowest SD Fitness, 

meaning that this intervention schedule should yield the highest level of global food 

availability throughout the study period.  

While drilling down into individual solutions illuminates the potential tradeoffs 

at play within the solution landscape, another analysis strategy is to investigate overall 

patterns across the set of acceptable solutions.  Figure 29 shows the average level of 

allocation to each wedge when considering all 19 acceptable solutions.  Here we 

observe several key takeaways.  First off, it is notable that the most efficient solutions 

prioritize heavy up-front investments across the board.  By acting earlier rather than 

later, less resources will ultimately be required to solve the problem.  Second, 

examining Table 15 together with the overall average allocation—over all intervention 

years—across acceptable solutions (Table 16), we find that early interventions (up 
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through 2030) into birth control—a long-term yet potent demand-side intervention—

appear consistently across many solutions and make up the majority (≈23%) of total 

supply side allocations.  Meanwhile, supply-side interventions—primarily yield gaps 

and climate adaptation, at ≈28% and ≈23%, respectively—should receive steady 

investment over the short term, and perhaps even a bump in funding around 2035.  

 

 

Figure 29: Average percent of global budget allocated to each wedge in each intervention year 

across all 19 solutions within the acceptability window. 
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Table 16: Overall Average Allocation to Each Wedge across All Intervention Years for 19 

Acceptable Solutions, with Peak Investment Years 

Wedge Allocation Percentage Top Two Investment Years 

Yield gaps 28.3411% 2020, 2025 

Climate adaptation 23.2418% 2020, 2025 

Birth control 23.1549% 2025, 2020 

Soil/water degradation 9.8146% 2020, 2040 

Over-consumption 5.8547% 2020, 2040 

Diet 5.6264% 2020, 2030 

Land expansion 3.9665% 2020, 2040 

 

While the approach of averaging acceptable solutions illuminates overall 

patterns and trends associated with our proof of concept results, it is important to note 

that this method of analysis has limitations, and should not necessarily be relied upon to 

determine an optimal course of action once the model is more-accurately 

parameterized.  For the conceptual model presented here, averaging solutions is 

informative, but in the future we will also consider how solution patterns change across 

the Pareto front in order to better highlight the tradeoffs at play across the fitness 

landscape.  A related approach would be to test the extent to which the fitness scores of 

averaged solutions fare against the set of individual solutions.  While outside the scope 

of the present study, this remains an area for future research.   

5.5 Discussion 

UN Sustainable Development Goal Two commits world governments to the 

twin objectives of drastically reducing worldwide hunger as well as mitigating the 

worst of the environmental impacts associated with agricultural production by the year 
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2030 (Griggs et al. 2013, Schmidt-Traub and Shah 2015).  Achieving this goal will not 

be simple, since the effects of multiple interventions—including family planning, 

human dietary change, agricultural production practices, waste reduction, climate 

adaptation, and more—need to be carefully weighed (Robert et al. 2005).  The primary 

policymaking challenges revolve around the facts that the set of potential interventions 

interact with one another in complex ways, take different amounts of time to unfold, 

and act on diverse structures within our complex food system.  These factors make 

investment prioritization toward achieving SDG Two very complex (Pongiglione 2015, 

Nillson et al. 2016).  For this reason, previous scholarship in this area has highlighted 

the need to develop integrated assessment models that can effectively weigh tradeoffs 

and optimize intervention investment schedules, accounting for complex interactions 

between the set of proposed solutions (Schmidt-Traub and Shah 2015).  In this paper, 

we have demonstrated the efficacy of a multi-objective differential evolution algorithm 

to generate solutions to the type of complex, dynamic, intervention-driven problems 

that characterize SDG Two.   

Our study was aimed at developing and experimentally-analyzing a novel 

computational method to parse and optimize food policy investment schedules, 

following up on the basic wedge framework of Pacala and Socolow (2004) and later 

Keating et al. (2014).  The wedge framework provides a valuable lens through which 

systems-level problems may be broken down into manageable pieces.  Keating et al. 

(2014) use an expert informant advisory process to identify the theoretical potential—in 
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terms overall contribution percentage—of each wedge toward ensuring adequate future 

global food supplies.  Our work picks up on this theoretical grounding, providing 

insights into not only the level of public policy focus each wedge should receive in a 

general sense, but also the best way to schedule interventions into each wedge over 

time.  For example, while Keating et al. (2014) simply conclude that 14.8% of 

resources should be devoted toward yield gaps and 10.4% toward soil and water 

degradation, our model provides a structure for not only the overall quantity of 

resources allocated to each wedge, but also the ways in which investments in each 

wedge should be prioritized over time, accounting for factors including time lags and 

inter-wedge interaction effects.  We hope that our computational methods—together 

with domain-level expert collaboration—may eventually provide an actionable tool 

which can be utilized to guide real-world investment prioritization decisions.  

The objective function we have developed to pair with the MODE 

algorithm (Storn and Price 1997, Reynoso-Meza et al. 2014) accounts for all inter-

wedge interactions as it “stacks” both the baseline and intervention-driven change 

curves across multiple wedges, intervention years, and levels of investment.  To 

account for the complex interactions between multiple interventions over time, we 

build on the existing wedge model, differentiating between additive / subtractive 

wedges and multiplicative wedges, as well as between those which increase food 

supply versus decrease demand.  
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We go on to experimentally investigate the sensitivity of the algorithm to 

changes in eight key MODE parameters.  Through this parameterization process, we 

arrive at suitable baseline values which account for both solution fitness and execution 

time.  While we find that parameter changes do meaningfully affect the algorithm’s 

performance, the model is generally robust, as minor fluctuations in most parameter 

values do not cause marked effects on either the cost or SD fitness of the final 

solutions.  This can be seen in the left columns of Figure 25 and Figure 26, which show 

that—despite differences in Pareto front share—solutions from all parameterizations we 

explored generally fall within a consistently-shaped curve, suggesting that most 

solutions we obtained are reasonably-close to the true Pareto optima.  Thus, while 

optimizing the parameterization for fitness and computational speed is an important 

goal, gains are mostly made at the margins.  

Using the baseline parameterization, the algorithm produces a variety of 

different solutions within the acceptability window of cost and SD fitness.  The extent 

to which the end user wishes to prioritize each objective can thus be effectively 

weighed.  The study presented here illuminates several insights about intervention 

investment priorities in the area of future global food availability, demonstrating the 

complex tradeoffs involved in such an optimization problem.  For example, prioritizing 

key interventions sooner rather than later can drastically decrease the total resources 

required to achieve long-term policy goals.  Further, complex choices must be made 

between e.g. interventions which have a high ultimate potential for change (large Δ
max

) 



236 

 

but take many years to come to fruition (large t(Δ
i
/2)), versus those with a lower Δ

max
 

and a faster-acting t(Δ
i
/2).  Other important factors that may be incorporated into future 

model versions include ease of implementation, uncertainty when predicting 

intervention outcomes, and scale of action.  Such considerations illustrate the value—

and in fact, necessity—of computational methods to aid policymakers and practitioners 

in such complex prioritization tasks.  Simply put, no unaided human or group of 

humans is capable of intuiting solutions to this class of problems.  

While each solution within the acceptable Pareto front differs to some extent, 

averaging solutions over multiple restarts reveals that the algorithm generally identifies 

similar macro-level investment prioritization patterns across all acceptable solutions 

(Figure 29).  Since, for this type of optimization problem, there may very well be 

multiple intervention schedules which lead to similar cost and SD fitness values, we 

suggest that a multiple-restart approach represents a valuable tool for policymakers or 

others who wish to apply an algorithm like the one we have presented here to a real-

world domain.  However, as discussed above, a systematic evaluation of trends among 

acceptable solutions along the Pareto front should also be conducted for a better 

understanding of the solution landscape.   

While we focus on global food security policy prioritization, we contend that 

this methodology could be applied to a wide variety of domains in which investment 

prioritization amidst a complex tradeoff landscape is called for.  For example, in the 

business context it may be desirable to achieve a certain minimal level of net profit for 
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each quarter, while investing any remaining income back into the business in various 

ways.  This type of problem has many similarities to the one we’ve presented here, and 

a similar schedule of investments could be optimized to allow the business owner to 

maximize the effectiveness of her investments over time.  

5.5.1 Limitations 

We wish to reiterate that the model as it currently exists is parameterized based 

on the work of Keating et al. (2014), together with a review of key scientific literature 

pertinent to each wedge.  This represents a limitation of the study, as there is certainly 

more domain-level expertise available than the scope of this study has allowed to be 

incorporated into the model as it currently stands.  To transform this proof of concept 

into a practicable decision support tool, we intend to convene panels of experts who 

have devoted their careers to studying each wedge, and work collaboratively with these 

stakeholders to hone wedge parameters such that they represent the best current 

scientific understanding.  A fully-calibrated model would also include, at minimum, all 

14 food security wedges originally identified by Keating et al. (2014).  An expert 

advisory process could help to solidify the final set of wedges to employ in the analysis.  

For a variety of reasons, discussed above, we have chosen to employ the 

spMODEx algorithm here (Reynoso-Meza et al. 2014).  Despite the demonstrated 

success of this approach, another avenue for future research is to investigate how other 

evolutionary algorithms perform against our current MODE implementation.  For 

example, the multi-objective CMA-ES algorithm has also proven very capable on high-
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dimensionality problems, and outperforms DE on some non-separable problems with 

many local minima (Rahnamayan and Dieras 2008).  Comparing the two 

algorithms on the class of problems described here was outside the scope of this 

experiment but may be a valuable avenue for future research.  

Additionally, while our model accounts for inter-wedge interactions in the 

context of sufficient food production, we don’t consider how investments into these 

wedges may have other implications and effects.  For example, land expansion is likely 

to be plagued by negative environmental externalities.  Meanwhile, dietary shifts away 

from meat may have unintended public health consequences.  These important 

considerations remain active topics of academic study and could potentially be 

incorporated into future versions of our model.  

A final limitation, identified by Kummu et al. (2017), concerns the loci of 

control associated with global policy implementation.  Even if an intervention 

investment schedule to address global hunger is optimized at the global level, this does 

not guarantee food security in all regional contexts.  Further research is required to 

better understand the inequalities that underlie these heterogeneous effects and develop 

targeted policy solutions that can be effectively carried out within especially-vulnerable 

locales.   

5.6 Conclusion 

The looming threat of global food insecurity is likely one of the most critical 

public policy challenges we currently face.  We believe our technical approach, 
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although leaving ample room for future research, represents a valuable potential tool to 

optimize investments in global food policy over the coming decades.  Aside from other 

“wicked problems” facing society as a whole—such as climate change, which has also 

been described through a wedge model lens—several other uses for our methodology 

are feasible.  Overall, we hope that the method we have developed can to help tackle 

both global food security, as well as a variety of other dynamic intervention-driven 

change problems where the goal is to continually achieve some end (i.e., make two 

curves match at every interval) at a minimal cost.  
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CONCLUSIONS, FUTURE RESEARCH PLANS, AND POLICY 

IMPLICATIONS 

6.1 Overarching Conclusions 

It has long been recognized that the food system is a complex web of interacting 

actors operating at different scales, in different capacities, and with different goals.  As 

such, systems theorists highlight the need to consider potential nonlinearities, 

adaptations, and unanticipated consequences as researchers and policymakers consider 

interventions designed to improve some aspect of the food system (Meadows 2008).  

While efforts have been made to develop frameworks describing connectivity patterns 

between different food systems actors (e.g. Sobal et al. 1998, Ericksen 2008), 

integrating data and academic findings across multiple connected sub-systems to 

project real-world outcomes can be difficult if not impossible without the use of 

computational tools.  In short, modern problems require modern solutions.   

This dissertation has presented three applications of complex systems modeling 

which inform the discussion surrounding critical food systems problem areas.  Each 

chapter describes the development of a computational model toward the ultimate goal 

of creating a useful Digital Decision Support System (DDSS).  Further research efforts 

will be required to reach that objective (discussed below), but the work that I have 

presented here serves as a foundation upon which myself and other researchers 

continue to build.   
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While the development of a practicable final product is an important goal, this 

dissertation also argues that the modeling process itself can be a valuable 

transdisciplinary research tool.  Using a companion modeling approach, we show how 

key stakeholders and experts can be involved across all phases of model development, 

including scoping, parameterization and calibration, experimental design, interpretation 

of findings, and dissemination of results (Bousquet et al. 1999, Barreteau et al. 2003).  

In the case of RUSH-PNBM, our team convened periodic expert stakeholder panel 

sessions to guide and ground-truth our technical work.  In the case of the food wedge 

investment optimization model—which is presently at a proof of concept stage—we are 

in the process of developing partnerships with stakeholder organizations and domain-

level experts, with whom we will work as model development proceeds (discussed in 

the Directions for Future Research section below).   

Overall, I believe there are clear synergies between the ongoing developments 

in complex systems modeling and the need for tools to identify novel solutions to and 

new ways of thinking about key food systems problems.  The continuing integration of 

food systems and complex systems scholarship represents a valuable path forward, 

especially in light of our ever-increasing supply of data, and our expanding recognition 

that food systems research—like virtually all human pursuits—cannot be adequately 

studied without seriously considering the web of interconnections between diverse 

actors and processes.  By thinking beyond traditional academic silos—and employing 

the latest transdisciplinary methods, tools, and technologies—food systems scholarship 
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will continue to produce the cutting edge, practically-motivated, participatory research 

that is so necessary to address society’s need to find new “outside the box” solutions to 

the myriad wicked problems we will face in the decades to come.   

In following sections, I discuss how the work I have presented here fits into a 

larger food systems context.  First, I outline how RUSH-PNBM fits into other ongoing 

research efforts to better understand the leverage points to prevent catastrophic 

livestock disease outbreaks.  I then discuss how researchers have continued to use and 

modify the model I originally developed to study a range of issues surrounding 

livestock biosecurity.  I also acknowledge key limitations in both RUSH-PNBM and 

the food wedge optimization model, and describe future research plans which address 

current shortcomings.  Finally, as the journal article format of the chapters only allowed 

for limited discussion of on-the-ground implications, I go into additional detail about 

how the work I’ve presented could inform the policy debate to bring about positive 

real-world change.   

6.2 Taking a Systems Approach to Livestock Biosecurity 

The Social Ecological Gaming and Simulation (SEGS) lab at UVM, with which 

I have worked closely in the development of RUSH-PNBM, is interested in applying 

systems thinking to complex issues that incorporate both a social-science and natural-

science component.  As part of the ADB-CAP project, our goal is to develop a practical 

DDSS that can be leveraged at multiple scales of action to reduce disease vulnerability 

in the livestock production industry.   
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We work across and incorporate three distinct levels of analysis: operational, 

tactical, and strategic (Figure 30).  The operational level explores decision-making at 

the farm employee level, and largely concerns employees’ willingness to put prescribed 

biosecurity protocols into action.  The tactical level focuses on biosecurity investments 

and implementation of single-site biosecurity measures at the level of an individual 

farm or private production system manager.  Finally, the strategic level focuses on 

macro-scale outcomes stemming from the complex interaction patterns between agents 

across the wider production chain network.  While Chapters 1 and 2 of this dissertation 

focus primarily on the strategic level, my own research is part of a bigger project which 

takes a systems perspective, aiming to integrate all three levels of analysis.   

 

 

Figure 30: Levels of risk management analysis and their application within the ADB-CAP project.   
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At the operational level, SEGS has developed an experimental biosecurity 

compliance game to determine how different methods of risk communication may 

impact a farm employee’s choice to follow established protocols.  We find that farm-

level decisions matter, and that educating and incentivizing farm workers to follow 

biosecurity protocols is a major key to mitigating disease spread.  Our initial results 

suggest that visual threat gauges are most effective at communicating the uncertainties 

associated with the disease threat environment, as opposed to traditional means such as 

verbal presentations or textual pamphlets (Merrill et al. 2019b).   

At the tactical level, we have implemented another experimental game to 

understand the factors underlying a farm manager’s decision to invest money toward 

biosecurity protocol adoption.  Here we find that the availability of information about 

the prevalence, location, and peer-behavior related to a disease in the system can either 

stimulate or inhibit biosecurity adoption in complex ways.  For example, a disease 

which is known to be creeping spatially closer to a decision-maker’s premises tends to 

encourage adoption behavior, whereas awareness of peers’ biosecurity adoption 

decisions is not correlated with increased adoption (Merrill et al. 2019a).  Based on 

these game data, we identify three major clusters, differing based on risk preference.  

Findings from this experimental game have subsequently been used to inform agent 

decision heuristics in RUSH-PNBM (Bucini et al. 2019).   

Finally, the strategic level is where RUSH-PNBM comes into play.  The ABM 

methodology allows for the integration of insights from the operational and tactical 
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levels of analysis to inform a systems-level view.  Using RUSH-PNBM, we have 

illuminated the negative impact on disease resilience of the ongoing trend toward 

producer specialization (Chapter 1).  We have also explored the effects of network 

structure and node positionality on epidemiological risk and proposed new methods to 

measure and quantify an agent’s vulnerability (Chapter 2).  In the following sections, I 

outline the ongoing work that is being conducted based upon the RUSH-PNBM 

framework I originally developed, including incorporation of experimental game results 

to inform agents’ decision heuristics, limitations of our model, and directions for future 

development.   

6.3 The Continuing Legacy of RUSH-PNBM 

My SEGS lab colleagues and I, working under the ADB-CAP project, have 

leveraged my RUSH-PNBM model framework, adapting it to study additional 

phenomena of interest related to biosecurity within livestock production systems.  

Whereas RUSH-PNBM v.0.8 and v.1.2 focused primarily on the impact of network 

structure on the disease resilience of livestock production systems, the model has been 

expanded in several ways, according to the specific requirements of our research 

questions, additional expert panelist feedback, deeper dives into the available statistical 

data, and results from behavioral economics games.   

Together with a cohort of agricultural economists, the development team has 

added an economic sub-model to RUSH-PNBM.  By tracking the sales of livestock—

along with standard prices for suckling pigs, weaners, and finishing hogs—we can 
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calculate each producer agent’s cash-on-hand budget at any given time during a model 

run.  The going rate for a pig at each life cycle stage is modified according to supply 

and demand in the system, since data show that diminishing supplies (e.g. during acute 

periods of disease outbreaks) does not generally not inhibit pork demand and will 

therefore put upward pressure on the price of livestock (Paarlberg 2014, Schulz and 

Tonsor 2015).  The finances of each agent will be used to develop cost-loss functions to 

guide decision-making surrounding biosecurity protocol implementation, which may be 

as much as $2 in additional costs per pig (Dritz 2018).   

In addition, the team has worked to add several realism-enhancing 

modifications shown empirically to impact disease spread.  For example, farm 

visitation events—which have been identified as a weak point in producer 

biosecurity—open an additional possibility for an infection to be introduced 

(Lachappelle et al. 2017).  An environmental avenue of infection is also modeled, 

representing the potential spread of PEDv through survival of the virus in the on-farm 

environment—e.g. in manure storage facilities (Goyal 2014, Tun et al. 2016, Murai et 

al. 2018)—or through exogenous mechanisms such as airborne transmission (Alonso et 

al. 2014). 

Epidemiological data show that the 2013 – present U.S. PEDv epidemic is 

characterized by periodic peaks (in the winter) and valleys (in the summer) of newly-

infected premises (AASV 2018).  The frequency of these oscillations correlates with 

the impact of seasonal change on virus infectivity. These annual virulence cycles have 
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also been implemented in the current model version using a sinusoidal sweep of 

infection risk parameters throughout each model year.   

The epidemiological data show that the peak level of infected premises topped 

out in 2013 and has continually decreased with each subsequent annual virulence cycle 

(AASV 2018).  Since the disease’s morbidity and mortality rates did not change over 

this period, these data suggest that farmers must have made behavioral changes which 

increased their biosecurity as the epidemic continued.  To capture this dynamic, we 

have developed a suite of functions in RUSH-PNBM that modulate how agents’ 

decision heuristics adapt to their surrounding risk environment.   

Essentially, agents in the latest model version periodically choose whether or 

not to implement biosecurity protocols which decrease their chances of contracting the 

infection.  Experimental gaming data collected by the SEGS lab through our protocol 

adoption game (Merrill et al. 2019a) show that, as infections on nearby farms increase, 

managers will become more likely to invest in biosecurity, even if it means taking a 

financial hit up front.  However, the decision-making patterns of our experimental 

participants are complex.  Factors such as risk attitude, availability of information, and 

psychological distancing were all found to play important roles.   

Of primary importance in the current phase of RUSH-PNBM development is 

the incorporation of this nuanced game data into the decision heuristics of model 

agents.  Our team has employed statistical clustering analysis to identify behavioral 

trends within the game data, finding three distinct clusters which differ according to 
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risk attitude.  Risk-averse individuals tend to implement biosecurity protocols whenever 

even a few infections are present in the network.  “Opportunists” don't invest in 

biosecurity when perceived risk is low but begin to invest more heavily when risk is 

high.  Finally, risk-seekers gamble with biosecurity, generally investing very little, and 

only when the perceived epidemic environment is extremely dangerous.   

To model information availability—a primary research question in our protocol 

adoption game—we implement a new agent type: veterinarians.  Each vet has a service 

area and periodically surveys the farms in that area, recording the infection status of 

each.  The proportion of farms that are currently infected is then reported to all farms in 

a vet’s service area, serving as a proxy for the information availability criterion in the 

protocol adoption game.  Each agent’s probability of investing in additional biosecurity 

is governed by a logistic function based on the proportion of infected farms within its 

vet network, together with its risk attitude.   

Psychological distancing is a phenomenon describing why—among other 

things—the longer in the past an event occurred, the less likely it is to be a salient 

decision factor (Yi et al. 2006).  Our expert panelists believe this effect is significant 

when it comes to livestock biosecurity.  Specifically, it has been observed that 

compliance with biosecurity protocols on the part of farm employees tends to fall off 

the longer it has been since the farm experienced an infection event.  The latest version 

of RUSH-PNBM models this "potential biosecurity vs. actual biosecurity" by imposing 

a linear drop-off in compliance rate over time—which corresponds to increases in 
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infection probabilities—for as long as a producer has not experienced an infection 

event.   

Using this new version of RUSH-PNBM, an experiment was conducted which 

systematically swept across treatments varying the relative proportion of risk-averse 

versus risk-taking producers (Bucini et al. 2019).  Results show that the system’s 

epidemiological resilience is sensitive to fairly-minor changes to this parameter.  We 

find that there is a significant difference in median PEDv incidence between the 

“baseline” scenario runs and the “27.5% averse” scenario runs, which include just 10% 

more risk-averse producers than the baseline.  We also find that increasing the number 

of risk-seeking producers in the system leads to more variability in epidemic severity 

between runs, supporting the percolation dynamics reported in Wiltshire (2018), and 

suggesting that the addition of just a few risk-seekers to a production system could 

hamper the efforts of policymakers who rely on disease forecasting to guide reactive 

decision-making in the face of an epidemic threat.   

6.4 Limitations and Directions for Future Research 

6.4.1 Current RUSH-PNBM Development Initiatives 

RUSH-PNBM is still under active development, and as such there are a number 

of important features we intend to implement as the ADB-CAP project progresses to 

address limitations we have identified.  Firstly, we will work to link the budgetary / 

economic sub-model with agents’ biosecurity implementation decision-making, since, 
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in the real world, a hog producer could not implement a new biosecurity protocol 

without sufficient capital on hand, or at least sufficient liquidity to justify a bank loan.   

Another limitation of the current model is that it does not consider hog or feed 

transfers extending beyond the boundaries of the U.S. state being modeled.  With a 

great deal of livestock movement across state borders recorded every year, this likely 

represents a critical factor governing disease spread.  We intend to implement a new 

"out of state" agent class, which will serve as both a source and sink for some subset of 

producers’ livestock shipments.  Incoming out-of-state shipments of infected animals or 

contaminated transportation equipment may then be evaluated as possible disease 

vectors.   

In the longer term, the SEGS team will continue to hone the model to further 

enhance its context-specificity and realism.  In the present version, the agents are 

adaptive, reacting to perceived disease risk within their local regions by potentially 

implementing new biosecurity precautions.  However, they are still not “intelligent,” 

i.e., they don’t learn from the past and adjust their behavior accordingly.  Instead, the 

risk preference of each agent is static throughout each model run.  This represents a 

limitation of the model as it currently stands.  A long-term goal of RUSH-PNBM 

development is to model adaptive behavior over time by imbuing each agent with a 

“memory” whereby previous events and their outcomes may impact their risk 

preference.  Another means of developing agent intelligence we are pursuing is to use 
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experimental gaming data to train an AI algorithm, such as an artificial neural network, 

and use those results to inform model agents’ decision heuristics.   

Finally, we are also interested in risk factors stemming from the intentional 

release of an infective agent into the system.  Bioterrorism of this type poses a serious 

threat to our critical food production infrastructure, and as such has received 

considerable attention in recent years (Madden et al. 2002, Murch 2003, Buehler et al. 

2003, Parnell et al. 2010).  We propose to evaluate attacker / defender dynamics using 

an experimental game.  The data gleaned from this experiment can then be incorporated 

into a new version of RUSH-PNBM to evaluate the potential impact of attacks and 

policy responses on systemwide disease resilience.   

6.4.2 Future RUSH-PNBM Research Goals 

Being a food systems project, practical application of our model toward solving 

real-world problems remains a fundamental goal.  We intend to develop RUSH-PNBM 

to the point that it can serve as an effective DDSS.  To this end, we plan to build the 

model into a standalone application that can be easily utilized by industry stakeholders.  

This will involve development of a user interface which allows a general audience to 

interact with and extract value from the model in an intuitive manner.   

We also plan to leverage RUSH-PNBM to project the systems-level impacts of 

managerial and employee decision-making across multiple levels of risk management, 

i.e. strategic, tactical, and operational.  Of primary concern going forward is to develop 

a better understanding of the connections between human behavior and the resilience of 
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livestock production systems in the face of disease incursions.  RUSH-PNBM will 

allow us to test multiple biosecurity scenarios, ranging from low adoption and 

compliance to full adoption and compliance.  We will then be able to evaluate the 

resilience of our modeled livestock production systems—as indicated by the extent to 

which small perturbations (i.e. just a few more risk-seeking producers) may impact 

systems-level outcomes—as well as to suggest policy interventions that could improve 

disease resilience.  Key questions include: how can we effectively nudge managers and 

workers toward more risk-averse behaviors?  How does the means of information 

transmission (i.e. visual vs. verbal vs. textual) impinge upon biosecurity protocol 

compliance rates?  How will changes in biosecurity protocol adoption and/or 

compliance affect key outcomes such as food availability or farm viability? 

Another potential value proposition of RUSH-PNBM is its flexibility with 

regard to scale.  While we have so far focused on entire U.S. states, we are currently 

exploring potential partnerships with several mid-scale private hog production chain 

enterprises to put our work to use “where the rubber meets the road.”  Despite 

encountering significant hurdles concerning data availability and quality, we are still 

committed to pursuing an industry partnership and developing a specifically-calibrated 

version of the model based on that partner’s own network of operations, shipment 

patterns, existing biosecurity protocols, etc.  Working together, we could then leverage 

RUSH-PNBM to identify risk points and develop effective biosecurity strategies which 

enhance the resilience of our partner’s production chain to disease incursions.   
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A final research goal is to engage directly with stakeholders to gain feedback 

and put our results into action, bridging research outputs with practice and policy.  We 

aim to hold a series of symposia with the theme of improving educational and risk 

communication messages and related policies designed to enhance adoption of and 

compliance with biosecurity practices in food animal production.  Invited stakeholders 

will have an interest in promoting biosecurity to protect food animals from pest and 

disease threats.  In these symposia, we will share our research and receive feedback on 

what we have accomplished, focusing on development of briefs and white papers to 

translate our results into more accessible formats that can be effectively utilized by 

those engaged in setting current policy and practice.  We especially aim to attract 

attention for potential future collaboration, promote the development of systems-level 

tools, and secure funding to continue transdisciplinary work that integrates social and 

agricultural sciences.   

6.4.3 Food Wedge Model Research Plan 

Our food wedge investment optimization model represents significant progress 

toward the ultimate goal of building the wedge framework (Pacala and Socolow 2004, 

Keating et al. 2014) into a practicable DDSS.  The model as currently parameterized 

proves out the technical methodology we have developed, representing the wedges as a 

system of equations, developing a fitness function to integrate the effects of multiple 

wedge interventions, and leveraging a multi-objective evolutionary-computational 

algorithm to optimize an investment schedule.  However, significant work is still 
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required if the model is to become a practicable DDSS.  Specifically, we need to 

transition to a stakeholder-driven, transdisciplinary research process by gathering a 

cohort of qualified individuals to weigh in on the project, including domain-level 

experts focused on each individual wedge, as well as the practitioners and policymakers 

who will ultimately use to model to inform real-world decision-making.   

To this end, we are currently in the process of identifying and reaching out to 

stakeholders using a snowball sampling approach, with a food-policy advocacy 

organization—such as CGIAR’s Research Program on Climate Change, Agriculture 

and Food Security (CCAFS)—acting as the central bridging organization.  Our aim 

would then be to reformulate the wedge model around our partner organization’s 

existing policy goals.  This could involve shifting the scale of action: the model may be 

most useful at a smaller geographic scale, perhaps at a regional or country level, where 

specific investment decisions are being made, rather than a global level, where current 

investment efforts are often hindered by geopolitical challenges.  We will also 

undertake an iterative process of wedge identification and parameterization which 

dovetails with existing policy proposals our partner organization already has on the 

table.   

To accomplish the reparameterization, we have developed a survey 

instrument—which is presently undergoing institutional review board approval—to be 

issued to the expert domain-level stakeholders identified collaboratively alongside our 

partner organization.  This survey asks participants to weigh in on the parameters listed 
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in Table 12, honing values according to their own areas of expertise.  In this sense, we 

seek to obtain a larger range of potential impacts from a given wedge than currently 

utilized, as most of the wedge parameterization has been developed through single 

studies or estimates, often large scale and with high levels of uncertainty.  We will then 

use a Delphi method to further modify parameter values through an iterative process 

asking participants to re-evaluate their original estimates based on feedback from their 

peers.  Armed with a more realistic range of potential parameters for each wedge, 

future model iterations may provide a more reliable estimate of investment priorities.  

We believe this expert stakeholder engagement protocol to be the best way to ground 

the model in cross-disciplinary knowledge.  With food systems being an explicitly 

transdisciplinary research approach devoted to real-world change, this next phase of the 

project is critical to its success, and we look forward to the opportunity to transition the 

project from theory to praxis.   

6.5 Policy Implications by Chapter 

6.5.1 Chapter One 

The primary goal of Chapter One was to explore the effect of network structure 

on the disease resilience of livestock production chains.  The impetus for the project 

stemmed from the realization that the current biosecurity intervention recommendations 

within livestock production systems are rooted in a paradigm that considers actions at 

the level of individual actors to be the basic unit of analysis.  While many of these 

interventions—including lines of separation, truck wash infrastructure, shower-in-
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shower-out facilities, all-in-all-out protocols, limited visitor access, etc.—have proven 

reasonably effective in the fight against disease spread, we wondered whether a systems 

perspective on this issue may cast light on different aspects of the problem, potentially 

illuminating new, outside-the-box solutions.  Specifically, we were interested in the 

livestock industry trend toward utilizing multiple production sites, each specialized in a 

particular life cycle stage of the animals.   

The key policy takeaway from this work is informed by the multi-scale risk 

management framework shown in Figure 30.  Current thinking about disease 

prevention in the industry tends to be focused on the operational and tactical levels of 

analysis; i.e., what can a farm manager do to prevent disease incursions on his or her 

farm, either through adoption of new biosecurity protocols or facilitation of employee 

compliance with existing ones?  While these measures can certainly be effective, 

focusing solely on operational and tactical interventions ignores the broader strategic 

picture, which stems from the complex interactions between production chain actors, 

and thus demands some degree of collective action.  While biosecurity measures at the 

farm level may well diminish the disease transmission probability associated with a 

given hog or feed shipment, simply avoiding that shipment in the first place—by 

reconfiguring the network structure—likely represents a much more powerful leverage 

point to bolster system resilience.   

Of course, collective action problems are notoriously difficult, as achieving 

consensus surrounding mutually-beneficial behavior changes can often result in 
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discrepancies between what is good for the individual versus what is good for the 

community.  However, there are likely existing loci of control in livestock production 

systems which could be leveraged to effect the type of structural change that is called 

for.  At the national level, USDA regulations may play a role, but achieving widespread 

consensus in our current antagonistic political environment may unfortunately render 

that leverage point relatively ineffective.   

The level of individual private production chain management may be the lower-

hanging fruit.  It is in no one’s best interest for a catastrophic disease to spread through 

a livestock production system, so the incentive to increase systemwide resilience is 

shared by capitalistic owners, government regulators, and animal product consumers 

alike.  Hog production in the U.S. is currently something of an oligopoly, with just a 

few corporations dictating production practices across a majority of the industry.  If 

managers of these major production chains were to realize the potential biosecurity 

advantages associated with a commitment to single-phase, farrow-to-finish production, 

it could have a huge impact on the disease resilience not just of their own enterprises, 

but more widely through regional and even national trade networks.  While additional 

economic research is required, it is quite possible that reorganizing production network 

structures in this way—rather than investing huge sums into farm-level biosecurity 

measures—may well be both more efficacious and more cost-effective in the long term, 

representing a win-win across the board.   
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6.5.2 Chapter Two 

Chapter Two focuses on the interaction between node positionality and network 

structure on the disease risks a given livestock production system actor may encounter 

during an epidemic event.  We wish to reiterate that the specific meta-metrics we have 

identified to forecast vulnerability are not necessarily broadly applicable, being based 

on model simulations rather than any actual real-world production system.  However, 

we hope that the methodology we have developed—given sufficient parameterization 

data and stakeholder input—may one day reach beyond the realm of computational 

science to inform on-the-ground policy.   

Despite their limitations, several general policy takeaways may be drawn from 

our results.  First and foremost, we find that epidemiological vulnerability is a function 

of both network structure and individual decision-making.  Echoing implications from 

Chapter One, our findings suggest that biosecurity measures focused on individual 

actors—such as shower-in-shower-out facilities, lines of separation, or all-in-all-out 

protocols—are not the only way to approach livestock biosecurity.   

From a tactical perspective, a producer may implement a new biosecurity 

measure to reduce his / her own vulnerability in the face of a perceived threat.  From an 

operational perspective, employees may comply with biosecurity protocols if they 

receive effective messaging and are appropriately incentivized.  These factors are 

currently being explored through ongoing research as part of the ADB-CAP project 

(Merrill et al. 2019a, 2019b, Bucini et al. 2019).  However, from a strategic, systems-
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level perspective, the identification of especially-vulnerable network loci would allow 

for a more intelligent and effective allocation of resources to curb epidemiological risk 

throughout the system.  This latter factor is the goal of the meta-metric approach 

presented in Chapter Two.   

Examining the meta-metric solutions in detail (Table 11), we find that the 

individual metrics included in the solutions have diverse implications.  The suite of 

interventions that may be implemented at each level of risk analysis (i.e. strategic, 

tactical, and operational) each have their own data-gathering requirements.  In light of 

this observation, we break the network metrics used in the analysis into three categories 

to interpret the GP solutions.   

First is the set of global metrics—shown in red in Table 11—out of which 

weighted clustering coefficient was included in the all of the best-performing solutions.  

A higher clustering coefficient indicates that nodes tend to cohere into tightly-knit 

subgroups characterized by a relatively-high density of local ties, and a relative paucity 

of ties between clusters.  In our solutions, clustering coefficient was included as either a 

denominator or a subtractive element in each function, suggesting that local clustering 

puts downward pressure on systemic vulnerability.  This result is consistent with the 

observation from Chapter One (Figure 11) that networks with low specialization tend to 

include tight-knit communities of producers, feed mills, and slaughter plants; with few 

bridging links that may spread the infection to other areas of the network.   
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Next we examine the node-level metrics, which may themselves be broken 

down into two sub-classifications.  First are the metrics that can only be known once a 

full graph representation is obtained, shown in blue in Table 11.  While these metrics 

indicate a node’s positionality within the overall network, a full codification of the 

network is required for calculation.  This fact has implications for decision-makers 

intending to employ the meta-metric approach to curb vulnerability in a real-world 

system.  Both global metrics and those node-level metrics that require a full graph 

codification necessitate a strategic level of risk analysis and action.  Such analyses 

require a full dataset tracking animal movements through the system (Caporale et al., 

2001), and as such, would likely require top-down action.  In the meta-metrics we 

identify, the most common individual indicator from this category is coreness.  

Coreness is based on the k-core decomposition technique, which generates a series of 

maximal subgraphs in which each node has at least degree k.  The coreness of each 

node equals k if it is a member of the k-core but not the (k+1)-core.  For example, in 

plain terms, the two-core is the set of all nodes that have at least two connections to 

other nodes and are also connected to at least one of the other two-core subgraph 

members.  Thus, a higher coreness indicates that a node is both heavily-connected, and 

also that it is connected to other equally-heavily-connected nodes.  Coreness is a factor 

in the numerator of all six meta-metric solutions identified in Table 11, indicating that 

high-coreness nodes may be especially vulnerable to disease incursions.   
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The other metric in this category—which appears only in the numerator of 

solution six—is weighted Eigenvector centrality.  Eigenvector centrality is based on the 

sum of the centrality values of all neighbors of a given node.  Like coreness, it indicates 

inclusion within a subgroup of relatively-heavily-connected nodes, although for 

weighted Eigenvector centrality the connectivity criterion is the total number of 

livestock or feed transfers during each model run, whereas for coreness it is the number 

of trading partners.  In either case, it would appear that the nodes that are members of a 

central, heavily-connected subgraph—as measured by either coreness or Eigenvector 

centrality—are more vulnerable to disease, all else being equal.   

Finally, we examine the node-level metrics that can be calculated based only on 

information available to each individual agent (shown in green in Table 11).  These 

metrics represent a tactical perspective, as they only require the internal records of an 

individual farm operator, and as such may be valuable in the prediction of disease 

vulnerability where a full network graph cannot be generated, which is unfortunately 

quite likely at present due to the aforementioned lack of transparency as regards 

livestock and feed movements (Caporale et al., 2001).  Here we find that weighted 

and/or unweighted in-degree are included in the numerator of all six meta-metrics.  

This result is fairly trivial on the surface, since clearly more incoming deliveries—as 

well as more inbound trading partners—both open additional pathways through which 

disease may be spread to a given premises.  However, despite its relative simplicity, the 

importance of these metrics cannot be ignored, with weighted in-degree explaining 
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30% of the variability in agent-level vulnerability across the board.  Once again, this 

echoes findings from Chapter One, suggesting that increasing farms’ connectivity can 

do nothing but decrease their epidemiological resilience, and that therefore every effort 

should be made to limit both the number of incoming shipments to each producer, and 

the number of trading partners with which it interacts.   

6.5.3 Chapter Three 

Chapter Three details a novel method for optimizing investment schedules into 

tough, dynamic, systems-level problems.  Here we focus on global food supply and 

security, although we suggest that our methodology may find wide applications.  To 

date, we have taken significant strides toward developing the food wedge framework of 

Keating (2014) into a DDSS that can be effectively employed to help stakeholders 

grapple with investment priorities into multiple, competing, interacting interventions.   

As discussed in the Limitations and Directions for Future Research section 

above, the model currently stands as a proof of concept.  It is not sufficiently-

parameterized to conclude that the intervention investment schedules we have obtained 

should be employed to guide real-world decisions.  However, we believe that the 

stakeholder-driven, transdisciplinary research protocol we have proposed can bring the 

model to a point where it may be effectively utilized by a partnering policy-driven 

organization or government actor.  Despite its current limitations, we believe the 

methodology we have developed may have important policy implications, potentially 

serving as a valuable tool to help decision-makers parse the complexity of interventions 
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in complex problem domains.  This is particularly true as there is increasing focus on 

achieving the Sustainable Development Goals (including Goal Two, which aims to curb 

global hunger and is most relevant to this work).  However key barriers to success in 

SDG implementation still remain, concerning both the scale of implementation and the 

investments and funding mechanisms required (Nillson 2016). 

While the ultimate goal is to develop a reliable DDSS to guide food wedge 

investments, the preliminary findings presented in Chapter Three cast light on the 

potential value proposition we can expect from a fully-parameterized model.  For 

example, we find that the algorithm effectively weighs tradeoffs between investments 

in demand reduction, investments in supply increases, and the overall cost associated 

with an intervention schedule.  Further, our results demonstrate the model’s ability to 

deal with the temporal tradeoffs inherent in the problem, for example the decision to 

invest more up-front to decrease necessary expenditures in future years, or 

considerations which weigh interventions that can be expected to take a long time to 

come to fruition against those that yield quick results.  We look forward to continuing 

this line of research, building upon the technical foundation we have created, and 

convening a cohort of expert stakeholders with whom we will work to help identify 

solutions to the looming global food security crisis.   
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APPENDICES 

7.1 Appendix 1 – ODD+D Protocol: Regional U.S. Hog Production Network 

Biosecurity Model v.0.8 

 

Serge Wiltshire, Food Systems Department, University of Vermont 

9/28/2017 

This material is based upon work that is supported by the National Institute of Food and 

Agriculture, U.S. Department of Agriculture, under award number 2015-69004-23273. 

 

The following model description follows the ODD (Overview, Design concepts, Details) protocol 

for describing individual- and agent-based models (Grimm et al. 20061, 20102), with ODD+D 

amendments as proposed by Müller et al. (20123).  

 

I) Overview 

Purpose 

The Regional U.S. Hog Production Network Biosecurity Model (RUSHPNBM), version 0.8, is an 

agent-based model developed to assess both supply chain network level and human-behavioral 

factors relevant to the spread of socioeconomically-important diseases through the U.S. hog 

production chain.  RUSHPNBM has been developed using AnyLogic 7 software, which uses the 

                                                 

 

 

1 
Grimm V, Berger U, Bastiansen F, Eliassen S, Ginot V, Giske J, Goss-Custard J, Grand T, Heinz SK, 

Huse G, Huth A, Jepsen JU, Jørgensen C,  Mooij WM, Müller B, Pe’er G, Piou C, Railsback SF, 

Robbins AM, Robbins MM, Rossmanith E, Rüger N, Strand E, Souissi S, Stillman RA, Vabø R, Visser 

U, DeAngelis DL. (2006). A standard protocol for describing individual-based and agent-based models. 

Ecological Modelling 198:115-126. 
2 Grimm V, Berger U, DeAngelis DL, Polhill G, Giske J, Railsback SF. (2010). The ODD protocol: a 

review and first update. Ecological Modelling 221: 2760-2768. 
3 Müller, B., Angermueller, F., Drees, R., Dressler, G., Groeneveld, J., Klassert, C., ... & Schwarz, N. 

(2012). Describing Human Decisions in Agent-Based Social-Ecological Models-ODD+ D an Extension 

of the ODD Protocol. Available at SSRN 2044736. 
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Java programming language.  Model calibration was undertaken via available statistical datasets 

coupled with an iterative expert informant advisory process.  The model generates realistic 

production chain networks of producers, feed mills, and slaughter plants at the spatial scale of 

431,200 square kilometers.  The epidemiological spread model is of the Susceptible Infective (SI) 

type, with infections transmitted between agents probabilistically based on patterns of trade 

and contact.  Disease spread probabilities associated with the different types of inter-agent 

contact have been calibrated by reference to epidemiological data concerning disease spread 

dynamics associated with previous real-world epidemic events in the hog industry, as well as 

input from livestock veterinarians.   

The model was designed for use by university researchers, industry practitioners, veterinary 

specialists, and government agencies wishing to analyze the dynamics and consequences of 

disease spread in the U.S. hog production chain under varying assumptions concerning disease 

characteristics, production chain network structures, and implementation of biosecurity 

measures and agent behaviors that may prevent or curb catastrophic outbreaks.   

 

Entities, State Variables, and Scales 

Three classifications of hog production chain network agents, identified by industry experts as 

critical players in the transmission of disease, are represented in the model.  These are (a) 

producers, (b) feed mills, and (c) slaughter plants.  Producer agents are assigned one of five 

industry roles based on the USDA’s classification system for hog producers, these being (a) 

Farrow to Wean, (b) Wean to Feeder (a.k.a. Nursery), (c) Feeder to Finish (a.k.a. Finish Only), (d) 

Farrow to Feeder, and (e) Farrow to Finish.  Figure 1 below shows each agent type, its graphical 

representation in the model, and an outline of the heuristics that govern inter-agent contact 

patterns.  Tables 1-2 below show the agent-level attributes and baseline parameters used in the 

simulations.   

 

 

Figure 1: Structure of connections between agents, including hoofstock age transfer conditions 

where applicable. 
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Table 1.1: Parameters and variables common to all agents 

 

 

Table 1.2: Parameters and variables for producer agents 
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Table 1.3: Parameters and variables for feed mill agents 

 

Table 1.4: Parameters and variables for slaughter plant agents 
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Table 2: Parameters remaining fixed throughout each model run 

μ σ XE, ID, 5 

 
7 

                                                 

 

 

4 FLAPS datasets, generated using tool available at: http://flaps.biology.colostate.edu/ 
5 Ibid. 
6 http://usda.mannlib.cornell.edu/usda/nass/LiveSlauSu/2010s/2014/LiveSlauSu-04-21-2014.pdf 
7 https://www.aasv.org/aasv%20website/Resources/Diseases/PorcineEpidemicDiarrhea.php 
8 http://www.thepigsite.com/stockstds/3/pig-farm-targets/ 
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The model’s parameters and functions controlling pig movement and feed deliveries were 

further specified with the help of data provided by a Family Farm Company from the U.S. (per 

confidentiality, the company’s name is not disclosed here).  The database contains two-year 

records of each pig movement and each feed delivery involving producers in the Family system. 

The Family Farm Company consists of a network of 161 producer partners that raise pigs from 

birth to market.  The pig movement records were used to derive realistic estimates of transfer 

frequencies and number of animals per transfer, as well as reinforcing USDA farm size and 

operational statistics (Table 2; Figure 2).  The feed delivery records were used to estimate 

delivery frequencies (Figure 3).  

 



314 

 

Table 3: Average annual number of pig shipments per agent 

(producer/supplier/packer/costumer) in the Family Farm Company.  
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Figure 2: Farm size distribution by farm type (farrowing, wean-to-finish, nursery, finishing) in the 

Family Farm Company. 
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Figure 3: Average number of feed deliveries per producer per year in the system of Family Farm 

Company. 

 

Finally, a team of experts in veterinary medicine and in agent-based modeling has followed the 

development of the model and collaborated in parametrizing, calibrating and ground truthing it:  

• Julie Smith (DVM, PhD, https://asci.uvm.edu/?Page=faculty/smith/homepage.html) 

• Steve Dritz (DVM, PhD, Swine Specialist, https://www.vet.k-

state.edu/education/dmp/faculty-staff/faculty/dritz/) 

• Asim Zia (PhD, http://www.uvm.edu/~azia/) 

• Christopher Koliba (PhD, http://www.uvm.edu/~ckoliba/index.htm) 

 

How is space included in the model? 

The model is spatially situated in a continuous, two-dimensional environment representing 880 

x 490 km.  Distances between agents are calculated “as the crow flies.”  In some cases, distance 

is a factor in determining inter-agent contact patterns (detailed below).   

 

How is time represented in the model? 

The model’s time scale is based on real-world days, with the initial model date set to January 1st, 

2012.  2012 was chosen because FLAPS initialization data are drawn from the 2012 USDA Census 

of Agriculture.  The model’s stop date can be set as desired depending on the experimental 

phenomena the user is interested in studying, with a default setting of January 1st, 2022.   

https://asci.uvm.edu/?Page=faculty/smith/homepage.html
https://www.vet.k-state.edu/education/dmp/faculty-staff/faculty/dritz/
https://www.vet.k-state.edu/education/dmp/faculty-staff/faculty/dritz/
http://www.uvm.edu/~azia/
http://www.uvm.edu/~ckoliba/index.htm
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Process Overview and Scheduling 

All event scheduling in the model follows a Last-In-First-Out (LIFO) protocol.  Four classes of 

functions define the operation of the model, in order of the point(s) in the simulation that they 

occur.  First are the initialization functions, which define how the agents will be physically 

situated in the space, set each agent’s individual parameters, and identify lists of potential 

trading partners based on the classification and industry role of the agent, as well as spatial 

proximity to other agents.  Second are the cyclically-executing functions, which make up the 

agents’ decision rules, determining how and when contact between agents will occur (through 

the transfer of livestock and the distribution of feed), and thereby opening potentials for 

infection to spread.  These functions also determine and implement the consequences of an 

infection upon the agent.  Third is the initial infection function, which occurs after the initial 

transient period.  Finally, fourth are the set of functions facilitating the output of model data for 

further analysis, including post-experiment scripts to parse model outputs and analyze results 

across multiple runs.   

 

II) Design Concepts 

Theoretical and Empirical Background 

Because real-world epidemics are fundamentally phenomena which propagate through 

networks (social, business, transportation, etc.), the formulation of a suitably-realistic network 

structure within which agents operate is a fundamental basic principle of the model.  A corollary 

to this basic principle concerns the model’s balance between context specificity and analytic 

transparency.  The model’s network generation algorithm strives to maintain sufficient context 

specificity to capture the critical complexities underpinning observed epidemiological spread 

phenomena, while bracketing superfluous elements of real-world production chain networks 

that have not been implicated in previous epidemiological events.  For example, the model 

contains only feed mill, producer, and slaughter plant agent typologies, because these were 

identified by industry experts as the critical players underpinning disease spread.  Whereas in 

real-world hog production chain networks there may be a multitude of other actor typologies 

(i.e. auction houses, equipment suppliers, construction contractors, insurance agents, and many 

more), these were intentionally excluded from the model’s design to simplify analysis.   

Another guiding principle is the spatial framework of the model.  In many epidemiological 

studies, agent density has been shown to impinge directly upon spread characteristics.  With 

high enough density, complex phenomena such as percolation thresholds may emerge.  To 

study this, the model was designed with the ability to flexibly change the density of agents in 

space.   
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On what assumptions is/are the agents’ decision model(s) based? 

The primary assumptions driving agent behavior relate to trade patterns associated with the 

industry role each agent plays.  For example, it is assumed that, as soon as their livestock 

batches reach the transfer age appropriate for their industry role, producer agents will search 

the agent space for appropriate trading partners.   

Another assumption concerns the characteristic distance over which agents may interact.  This 

can be adjusted by tuning the maximum connection distance parameter.  Since specific spatial 

location data were not available in either the USDA statistics or the Family Farm System dataset, 

baseline values were estimated in consultation with industry experts.   

 

Learning 

The agents’ decision rules remain non-adaptive at this stage of model development.  The agents’ 

action heuristics are based on their industry roles, and are designed to realistically replicate 

throughput in the production chain system as a whole.  Thus, an agent will transfer hoofstock to 

an appropriate trading partner as soon as possible, farrowing will proceed regularly wherever a 

producer has sufficient excess capacity, and feed deliveries will take place at a set frequency.  

The agents’ behavior does not change as a result of model conditions, for example the presence 

of a disease within the network, however each agent will necessarily adapt to conditions 

resulting from the factors such as the number of other agents in the space, or the currently-

available spare capacity of its trading partners.  In future model versions, adaptive agent 

behavior will be implemented to reflect the decision-making heuristics of real-world hog 

producers, as identified through data gathering efforts presently underway.   

 

Collectives 

Livestock in the model may be considered as collectives, as they are encoded in batches of 

animals of the same age, and with the same infectivity status.  If a producer is infected, it is 

assumed that all livestock on the premises become infected.  This simplifying assumption 

follows from veterinary reports on the virility of PEDv, which tends to quickly sweep through 

entire herds.  From a standpoint of practicality, encoding livestock in this manner was also 

desirable because it significantly reduces the computational time required for each run.   

In addition, while not defined explicitly as such, groups of agents in the model exhibit emergent 

collective characteristics due to their distribution within the model’s spatial framework.  For 

example, in densely-packed areas, groups of agents tend to interact heavily within connected 

clusters, leading to localized disease outbreaks.  This type of collective behavior is not directly 
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imposed, but rather emerges from interactions between the model parameterization and 

agents’ fixed behavioral rules.   

 

Heterogeneity 

As described in the Entities, state variables, and scales section above, agents fall into three main 

categories: (a) producers, (b) slaughter plants, and (c) feed mills.  Producer agents are assigned 

one of five industry roles based on the USDA classification system for hog producers.  An agent’s 

industry role determines the initial age of its hoofstock, its hoofstock age transfer condition, as 

well as its set of potential trading partners.  These relationships are visualized in Figure 1.  

Agents’ decision-making heuristics also vary according to their class.  For example, a farrow-to-

wean producer will only send pigs to wean-to-feeder producers.   

 

Stochasticity 

RUSHPNBM uses stochasticity for initialization of agent locations and parameters, as well as for 

controlling infection spread.  A random seed is used, such that all runs are different.  These 

stochastic features ensure that the contact patterns that unfold in each model run are never 

repeated.   

Draws from distribution functions (normal, uniform, and triangular) are utilized in some cases.  

For example, the age of the pig groups initially associated with each producer are drawn from a 

uniform distribution bounded according to the producer’s industry role.  Triangular distributions 

underlie the time agents will remain infected before transitioning back to the susceptible state.   

Stochasticity is also used in all disease-spread events.  Uniform probability distributions 

returning “true” if a randomly-drawn value between zero and one is less than p are used to 

determine if the infection will spread whenever contact between a susceptible and an infected 

agent occurs.  Different probability values are used for each mode of transmission.   

 

Observation 

The model tracks in real-time the current hoofstock inventory of all producers in the model, the 

number of currently infected hoofstock, the number of currently infected producers, and the 

cumulative number of infected producers, which can be output as time-series data to examine 

infection-spread dynamics.  The total infection duration is also recorded.   

In addition, we track the flow of feed and livestock between different types of agents in order to 

calibrate model parameters to reflect real-world data, for example the distribution of hog 

shipment sizes and delivery frequencies characteristic of real hog supply chain networks.   
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Finally, a contact network adjacency matrix with link weights encoding the number of times 

each agent interacted throughout the model run is exported as tabular data after each run, and 

later parsed using a series of Python functions.  An infection-spreading network is similarly 

tracked, output, and parsed.  Key statistics on trade and infectivity patterns across a series of 

model runs—both at the individual agent as well as the whole-network level—may then be 

analyzed.   

 

Emergence 

Emergent phenomena in the present model occur as a result of the interaction between agents’ 

behavioral heuristics and structural elements of the model, for example the network 

configuration and disease spread characteristics specified by the user.  This could take the form 

of differential spread characteristics—such as in the observation of percolation thresholds—

resulting from user-input parameters concerning network makeup, probabilities, or duration 

parameters.   

 

III) Details 

Implementation Details 

The model was implemented using AnyLogic version 7 software, which relies upon the Java 

programming language for all scripts and functions.  The sections below use pseudocode to 

describe in detail the algorithmic structures underlying each model function.   

 

Notes on pseudocode used in this document: 

• The characters “//” will be used to designate a comment (i.e., the line of text following the 

“//” is not part of the actual function logic). 

• Parameters referenced in all functions refer to those associated with the agent object from 

which a function has been called.  In some cases, to disambiguate, the terms “self” or “my” 

may be used to refer to the function-calling agent object or its associated parameters. 

• “ADD OR INCREMENT [sender] in [receiver]’s [network edge list]” is defined 

here as: 
IF [sender] is not in [receiver]’s [network edge list] ADD [sender] to 

[receiver]’s [network edge list] with contact counter set to 1 

ELSE INCREMENT contact counter associated with [sender] in [receiver]’s 

[network edge list] by 1 

• “RANDOM DRAW using [probability]” is defined here as the Boolean value resulting 

from: 
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(DRAW random number from uniform distribution between 0 and 1) < 

[probability] 

 

Is the model accessible, and if so where? 

While the raw source code for the model is not accessible, the pseudocode below may be used 

as a guide to understand the model’s structure and logic with a high level of detail.   

 

Initialization 

The model is initialized by progressing through a series of initialization functions.  Agent 

parameters such as location are set as each agent object is generated by the model.  Next, 

producer agents initialize their operational parameters and define their networks of potential 

trading partners to be referenced throughout the model run.   

 

Initialize agent locations:  

All agents are placed at a random location in the continuous 2D space. 

FOR EACH agent object 

SET x coordinate to RANDOM INTEGER between 0 and 880 

SET y coordinate to RANDOM INTEGER between 0 and 490 

Producer agent initialize category function: 

The initialize category function sets the industry role of producers according to the 

specialization level to be evaluated.   

IF (specialization level = “low”) 

SET farm category to “farrow to finish” 

ELSE IF (specialization level = “medium”) 

SET farm category to RANDOM DRAW from [“farrow to feeder”, “feeder 

to finish”] 

ELSE IF (specialization level = “high”) 

SET farm category to RANDOM DRAW from [“farrow to wean”, “wean to 

feeder”, “feeder to finish”] 

 

Producer agent initialize farm function: 

The initialize farm function sets the producer’s maximum capacity and adds one pig batch equal 

to this capacity to the pig batch tracker, with an age corresponding to the producer’s industry 

role.   

SET total capacity to MAX of 50 and (ROUND to INTEGER (DRAW from normal 

distribution with μ = 1,000 and σ = 300)) 
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ADD pig batch to pig batch tracker with size equal to total capacity AND 

birthday equal to to a random integer between the maximum and 

minimum age of a pig for the agent’s industry role 

SET current inventory to total capacity 

 

Producer agent initialize network function: 

Once the agents’ locations and operational parameters have been initialized, a network 

initialization function generates a set of potential trading partners.  All producer agents are 

assigned to the nearest feed mill, and finishing producers are also assigned to the nearest 

slaughter plant.  A pool of potential transferee producers is also generated for each non-

finishing producer according to their industry role.  These relationships are shown in Figure 1.  

The potential transferee producers in this pool are limited by the maximum producer-to-

producer connection distance parameter.   

SET potential farms list to (SORT by distance (FILTER other producer 
agents s.t. (industry role of other producer is the next step in 
the production chain) AND (distance to the other producer <= max 
producer-producer connection distance global parameter))) 

IF industry role is a finishing type 

SET my slaughter plant to closest slaughter plant 

SET my feed mill to closest feed mill 

ADD self to my feed mill’s “links to farms” list 

 

Is the initialization always the same, or is it allowed to vary among simulations? 

The initialization of the spatial location, operational characteristics, and potential trading 

partners for each agent, and initial livestock ages differ between runs.  However, the 

distributions of from which these values are drawn, as well as the basic heuristics controlling the 

behavior of each type of agent, do not change.   

 

Are the initial values chosen arbitrarily or based on data? 

Initialization parameters rely upon several datasets, including the University of Colorado / USDA 

FLAPS system, USDA NASS data, USDA APHIS data, Google Maps queries, proprietary industry 

datasets, and expert input.  For details, see the Entities, State Variables, and Scales section 

above.     
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Submodels 

Producer agent cyclically-executing functions: 

Farrow, wean, and batch piglets function: 

If a farm that farrows piglets (Farrow to Wean, Farrow to Feeder, or Farrow to Finish types) is 

left with excess capacity after a livestock transfer, a periodic farrowing function fills that 

capacity with a new batch of piglets, whose birthday is set to the current model day.  Once 

again, to eliminate unrealistically-small pig groups, a minimum farrowing size as a proportion of 

the farrowing farm’s total capacity is required for the farrowing function to proceed.  Thus, a 

farm which is already almost at maximum capacity will not farrow a new batch of piglets until 

another batch has been shipped to an appropriate trading partner.   

**Recurrence time is the frequency of farrowing global parameter** 

IF industry role is a farrowing type 

Number to wean and batch = remaining pig capacity 

IF (number to wean and batch >= (minimum farrowing batch proportion 

* my capacity)) 

ADD number to wean and batch and birthday = current day to pig 

batch tracker 

INCREMENT pig inventory by batch size 

 

Ship to transferee farms function: 

Non-finishing producers transfer hoofstock to a transferee farm when the hoofstock reach the 

age corresponding to the transfer condition associated with the industry role of the producer.  

This function periodically evaluates whether the transfer age requirement of a pig batch has 

been met.  If so, the producers in the transferring producer’s pool of possible trading partners 

are sequentially evaluated to determine whether they are able to receive the shipment.  To 

eliminate the transfer of unrealistically-small groups of livestock, transfers will only proceed if 

the pig batch size exceeds the minimum transfer quantity, as a proportion of the transferee’s 

total capacity.   

If the transferring producer is infected but the transferee is not, the transferred hoofstock will 

automatically spread the infection to the transferee producer.  If the transferee producer is 

infected but the transferring producer is not, the “delivery trailer” returning from the infected 

transferee producer may infect the transferring producer according to a probability set at model 

initialization.   

The birthday parameter associated with the batch of transferred stock is maintained as it is 

passed to the transferee, such that the pig batch will once again be appropriately transferred to 

the next production phase at the correct transfer age.  In the rare case that a pig batch exceeds 
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the slaughtering age before a suitable transferee producer could be located, it is culled to make 

room for a new batch of pigs.   

**Recurrence time is the maximum frequency of pig shipments global 

parameter** 

IF industry role is NOT a finishing type 

FOR EACH pig batch meeting age transfer requirement 

FOR EACH transferee in my transferee producers 

IF (batch size <= transferee’s spare capacity) AND (batch size 

>= transferee’s minimum batch size) 

IF (transferee’s infectivity state is “infected”) AND 

(infectivity state is “clean”) 

DECREMENT batch size according to mortality rate global 

parameter associated with pigs’ age 

REMOVE pig batch from pig batch tracker 

DECREMENT pig inventory by batch size 

ADD pig batch and birthday to transferee’s pig batch 

tracker 

INCREMENT transferee’s pig inventory by batch size 

 

// update contact network trackers 

ADD OR INCREMENT transferee in contact network out-degree 

list 

ADD OR INCREMENT self in transferee’s contact network in-

degree list 

 

// update pig shipment trackers 

ADD batch size to pig shipments out list 

ADD batch size to transferee’s pig shipments in list 

 

// infection brought to transferee via infected pigs 

IF infectivity state is “infected” 

SET transferee’s infectivity state to “infected” 

ADD OR INCREMENT transferee in infection-spreading 

network out degree list 

 

// infection brought home via trailer from transferee farm 

IF (transferee’s infectivity state is “infected”) AND 

(RANDOM DRAW using Prob. pig truck will become 

contaminated if producer is infected) AND (RANDOM 

DRAW using Prob. producer will become infected if 

returning pig truck is contaminated) 
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SET infectivity state to “infected” 

ADD OR INCREMENT self in transferee’s infection-

spreading network out degree list 

 

// cull pigs that are too old and were never able to be transferred 

FOR EACH pig batch over 168 days old REMOVE batch from pig batch 

tracker 

 

Ship to slaughter plant function: 

Finishing producers (Feeder to Finish and Farrow to Finish types) ship hoofstock to either an 

auction house (as described above), or directly to their slaughter plant, as soon as the hoofstock 

reach the designated slaughtering age.  If the transferring producer is infected, the receiving 

area of the slaughter plant may become contaminated according to a probability set at model 

initialization.  If the receiving area of the slaughter plant is already contaminated, the “delivery 

trailer” returning to the transferring producer may carry the infection back to that producer 

according to another probability set at model initialization.   

 

IF industry role is a finishing type 

FOR EACH pig batch meeting age transfer requirement 

REMOVE pig batch from pig batch tracker 

DECREMENT pig inventory by batch size 

 

// update contact network trackers 

ADD OR INCREMENT slaughter plant in contact network out-degree 

list 

ADD OR INCREMENT self in slaughter plant’s contact network in-

degree list 

 

// update pig shipment trackers 

ADD batch size to pig shipments out list 

ADD batch size to slaughter plant’s pig shipments in list 

 

// infection brought to slaughter plant via infected pigs 

IF (infectivity state is “infected”) AND (RANDOM DRAW using Prob. 

slaughter plant receiving area will become infected if pig 

batch is infected) 

SET slaughter plant’s infectivity state to “infected” 

ADD OR INCREMENT slaughter plant in infection-spreading 

network out degree list 
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// infection brought home via trailer from slaughter plant 

IF (slaughter plant’s infectivity state is “infected”) AND 

(RANDOM DRAW using prob. pig truck will become 

contaminated if receiving area is infected) AND (RANDOM 

DRAW using prob. producer will become infected if 

returning pig truck is contaminated) 

SET infectivity state to “infected” 

ADD OR INCREMENT self in slaughter plant’s infection-spreading 

network out degree list 

 

Feed mill agent cyclically-executing functions 

Feed mills periodically generate delivery routes encompassing a subset of producers within their 

latent feed-mill-to-producer link set.  Each route encompasses a subset of the producers in the 

feed mill’s service area, with the number of stops in each trip resulting from a draw from a 

Poisson distribution.  While there is no actual “feed truck” object in the model, the logic of the 

following function is based on the way such a truck would move between agents and possibly 

spread disease.   

Beginning from the mill, this conceptual feed truck will visit the previously-drawn number of 

randomly-selected producers within the feed mill’s service area before finally returning to the 

feed mill.  If the feed mill is infected, the truck may be contaminated initially.  Should the truck 

encounter an infected producer on its route, it may become contaminated at that point.  Once a 

truck is contaminated, the infection may be spread to subsequent producers on the route.  If a 

contaminated truck returns to the feed mill, the mill itself may become infected.   

 

Distribute feed function: 

**Recurrence time is the frequency of feed deliveries global parameter** 

// generate delivery route 

FOR number of producers in service area * percent of producers in feed 

mill service area visited per trip 

ADD random producer in service area (that is not already in delivery 

route list) to delivery route list 

 

// parse infectivity consequences of delivery route 

FOR EACH producer in delivery route list 

// update contact network trackers 

ADD OR INCREMENT producer in contact network out-degree list 

ADD OR INCREMENT self in producer’s contact network in-degree list 

 

//infected truck infects farm it's delivering to 



327 

 

IF (truck infected is true) AND (RANDOM DRAW using prob. producer 

will become infected if feed truck is contaminated) 

SET producer’s infectivity state to “infected” 

ADD OR INCREMENT producer in infection-spreading network out 

degree list 

 

//truck becomes infected from delivery to infected farm 

IF (producer’s infectivity state is “infected”) AND (RANDOM DRAW 

using prob. feed truck will become contaminated if producer is 

infected) 

SET truck infected to “true” 

 

Initial infection function 

The system is initialized with all agents free of infection.  After one model year has passed, an 

infection is introduced to a random producer agent.  The reason for the one-year lag is to skip 

the transient period and allow the model to stabilize before analyzing the effect of an 

introduced disease.  This lag is necessary because, as in a real production chain, a certain 

amount of slack, or a difference between the theoretical production capacity and actual 

production, is characteristic in the modeled production chains.  In the model, this economic 

slack is due to the producers sometimes temporarily operating at less than maximum hoofstock 

capacity until an appropriate shipment of livestock becomes available.  In general, after about 9 

months, the level of slack in the model has stabilized.   

**Function is called only once, after one model year** 

SET one randomly chosen producer agent’s infectivity state to “infected” 

 

Infection control functions 

Susceptible/infective state charts:  

Each agent has an embedded state chart which encodes its infectivity status, with clean and 

infected states corresponding to the classical susceptible/infective framework.  Should an agent 

become infected, a function is called which calculates the number of its stock that will die of the 

disease.  The proportion of livestock that succumb to the disease is based on their age, with 

uniform mortality rates set at model initialization for suckling pigs, nursery pigs, and grow/finish 

hogs.  After die-off is calculated for pig batches of each life stage within an infected producer’s 

inventory, the producer’s inventory data are updated accordingly.  An agent will remain infected 

for a duration drawn from a triangular distribution whose mean length in days is controlled by 

parameters specific to each agent type.   
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Figure X: Infectivity State Chart 

 

Calculate mortality function: 

FOR EACH pig batch in pig batch tracker 

DECREMENT pig batch size by global parameter encoding mortality 

proportion appropriate for age of pigs 

 

Data output 

At the conclusion of each run, the model determines whether a parameter variation experiment 

is being conducted, and, if so, a line is added to an output csv file containing the number of 

producers in that run, the total infection duration, the proportion of agents that had been 

infected, and the specialization level.   

If desired, a contact network adjacency matrix with link weights encoding the number of times 

each agent interacted throughout the model run, as well as the specialization level and 

repetition number, is generated.  This is accomplished by looping through all agents and adding 

a line to a csv file for each entry in the agent’s contact tracker.  Subsequent network analysis 

may then be performed using external scripts.   

Finally, for calibration purposes, it is possible to output the flow of feed and livestock between 

all agents throughout the run.  A csv is generated that encodes the size and date of each 

transfer, as well as the IDs of the sending and receiving agents.  Agent parameters such as 

classification and operational details are exported to another csv.  The resulting data may then 

be compared to real-world data, and parameters tuned so that agents’ actions in the model 

more closely mirror the distribution of hog shipment sizes and delivery frequencies observed in 

real hog supply chain networks.   
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7.2 Appendix 2 – ODD+D Protocol: Regional U.S. Hog Production Network 

Biosecurity Model v.1.2 

Serge Wiltshire, Food Systems Department, University of Vermont 

 

This material is based upon work that is supported by the National Institute of Food and 

Agriculture, U.S. Department of Agriculture, under award number 2015-69004-23273.  Any 

opinions, findings, conclusions, or recommendations expressed in this publication are those of 

the author(s) and do not necessarily reflect the view of the U.S. Department of Agriculture.  The 

funders had no role in study design, data collection and analysis, decision to publish, or 

preparation of the manuscript. 

 

The following model description follows the ODD (Overview, Design concepts, Details) protocol 

for describing individual- and agent-based models (Grimm et al. 2006, 2010), with ODD+D 

amendments as proposed by Müller et al. (2013).  

 

I) Overview 

I.i Purpose 

I.i.a What is the purpose of the study? 

The Regional U.S. Hog Production Network Biosecurity Model (RUSHPNBM), version 1.2, is an 

agent-based susceptible / infective model developed to assess both supply chain network level 

and human-behavioral factors relevant to the spread of socioeconomically-important diseases 

through regional U.S. hog production chain networks.  RUSHPNBM has been developed using 

AnyLogic v.8 software.  The model is calibrated to represent hog production within the U.S. 

states of North Carolina, Iowa, and Illinois.  These three states serve as case studies, since they 

are all major hog producers, while also having interesting supply chain network features that 

differentiate them from one another.   

Model calibration was undertaken using available datasets coupled with an iterative expert 

advisory panel process.  The model uses agricultural statistics and model calibration tools to 

generate realistic production chain networks of producers, feed mills, and slaughter plants 

within the spatial bounds of each study area state.   

The epidemiological spread submodel is of the susceptible / infective (SI) type, with infections 

transmitted between agents probabilistically based on patterns of trade and contact honed 

through industry expert advisory panels and a review of the primary literature.  Disease spread 
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probabilities associated with the different types of inter-agent contact have been calibrated by 

reference to epidemiological data concerning disease spread dynamics associated with previous 

real-world epidemic events in the hog industry, as well as input from livestock veterinary 

professionals within the expert panel sessions.   

 

I.i.b For whom is the model designed? 

The model was designed for use by university researchers, industry practitioners, veterinary 

specialists, and government agencies wishing to analyze the dynamics and consequences of 

disease spread in U.S. hog production systems under varying assumptions concerning disease 

characteristics, production chain network structures, and implementation of biosecurity 

measures and agent behaviors that may prevent or curb catastrophic outbreaks.   

 

I.ii Entities, State Variables, and Scales 

I.ii.a What kinds of entities are in the model? 

Three classifications of hog production chain network agents, identified by industry experts as 

critical players in the transmission of disease, are represented in the model.  These are (a) 

producers, (b) feed mills, and (c) slaughter plants.  Producer agents are assigned one of six 

industry roles.  Five of these encompass the USDA’s classification system for hog producers, 

these being (a) Farrow to Wean, (b) Wean to Feeder (a.k.a. Nursery), (c) Feeder to Finish (a.k.a. 

Finish Only), (d) Farrow to Feeder, and (e) Farrow to Finish.  Upon the advice of industry experts, 

an additional producer classification, (f) Wean to Finish—which has recently become more 

popular in the industry—is also included in the model.  Figure 1 below shows each agent type, 

its graphical representation, and an outline of the heuristics that govern inter-agent contact 

patterns.   

 

 

Figure 1: Structure of connections between agents, including livestock age transfer conditions 

where applicable 
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I.ii.b By what attributes (i.e. state variables and parameters) are these entities characterized? 

Each agent class has a specific set of state variables and parameters relevant to its industry role.  

These are given in Tables 1–5, below.   

 

Table 1: Parameters and variables common to all agents 

 

Table 2: Parameters and variables for producer agents 
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Table 3: Parameters and variables for feed mill agents 

 

Table 4: Parameters and variables for slaughter plant agents 

 

I.ii.c What are the exogenous factors/drivers of the model? 

Exogenous factors include the spatial and operational distributions of agents of each class within 

each study area (Table 5), as well as parameters held constant across model runs (Table 6).  

These exogenous parameters can be broken down into general disease parameters, disease 
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spread probabilities specific to each modality of inter-agent contact, and parameters pertaining 

to each agent class.     

 

Table 5: Study area network parameters 
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Table 6: Parameters common to all study areas, remaining fixed throughout each model run 
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λ λ

λ λ

λ λ

Note: “EAP” indicates that the value was derived through expert advisory panel sessions.  “FHPC” refers to the family-

owned hog production chain system dataset. 

 

I.ii.d If applicable, how is space included in the model? 

The model is spatially situated in a continuous, two-dimensional GIS environment.  Distances 

between agents are calculated “as the crow flies” and measured in kilometers.  In some cases, 

distance is a factor in determining inter-agent contact patterns.   

 

I.ii.e What are the temporal and spatial resolutions and extents of the model? 

The model’s time scale is based on real-world days, with the initial model date set to January 1st, 

2012.  2012 was chosen because FLAPS initialization data are drawn from the 2012 USDA Census 

of Agriculture (Burdett et al. 2015).  The model’s stop date can be set as desired depending on 

the experimental phenomena the user is interested in studying.  Model time is continuous (i.e., 

events may occur part-way through a day).  The model’s spatial extents correspond to the 

extents of the selected U.S. state study area.  Space is also continuous in the model, utilizing a 

two-dimensional GIS framework.   

 

I.iii Process Overview and Scheduling 

I.iii.a What entity does what, and in what order? 

Four classes of functions define the operation of the model, presented in order of the point(s) in 

the simulation that they occur (see the Implementation Details section).  First are the 

initialization functions, which define how the agents will be physically situated in the space, set 
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each agent’s individual operational parameters, and identify lists of potential trading partners 

based on the classification and industry role of the agent, as well as spatial proximity to other 

agents.  Second are the cyclically-executing functions, which make up the agents’ decision rules, 

determining how and when contact between agents will occur (through the transfer of livestock 

and the distribution of feed), and thereby opening potentials for infection to spread.  These 

functions also determine and implement the consequences of an infection upon the agent.  

Third is the initial infection function, which is called after the initial transient period in each run.  

Finally, fourth are the set of functions facilitating the output of model data for further analysis, 

including post-experiment scripts to parse model outputs and analyze results across multiple 

runs.  All event scheduling in the model follows a Last-In-First-Out (LIFO) protocol.   

 

II) Design Concepts 

II.i Theoretical and Empirical Background 

II.i.a Which general concepts, theories or hypotheses are underlying the model’s design at the 

system level or at the level(s) of the submodel(s) (apart from the decision model)? What is the 

link to complexity and the purpose of the model? 

Because real-world epidemics are fundamentally phenomena which propagate through 

networks (social, business, transportation, etc.), the formulation of a suitably-realistic network 

structure within which agents operate is a fundamental basic principle of the model.  A corollary 

to this basic principle concerns the model’s balance between context specificity and analytic 

transparency.  The model’s network generation algorithm strives to maintain sufficient context 

specificity to capture the critical complexities underpinning observed epidemiological spread 

phenomena, while bracketing superfluous elements of real-world production chain networks 

which have not been implicated in previous epidemiological events.  For example, the model 

contains only feed mill, producer, and slaughter plant agent classes, because these were 

identified by industry experts in our Delphi panels as the critical players underpinning the spread 

of fecal-oral livestock diseases.  Whereas in real-world hog production chain networks there 

may be a multitude of other actor typologies (e.g. equipment suppliers, construction 

contractors, insurance agents, auction houses, and many more), these were intentionally 

excluded from the model’s design to simplify analysis.   

Another guiding principle is the geospatial situation of the model within real U.S. states.  The 

states of North Carolina, Iowa, and Illinois were chosen because they produce a large number of 

the nation’s hogs, as well as being amongst the most hog-dense states.  In many epidemiological 

studies, agent density has been shown to impinge directly upon spread characteristics.  With 

high enough density, complex phenomena such as percolation thresholds may emerge 

(Wiltshire, 2018).   
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II.i.b On what assumptions is/are the agents’ decision model(s) based? 

The primary set of assumptions driving agent behavior relate to trade patterns associated with 

the industry role each agent plays, with agents in the model operating in accordance with 

general industry norms.  For example, it is assumed that, as soon as their livestock batches reach 

the transfer age appropriate for their industry role, producer agents will search the agent space 

for trading partners until an appropriate partner is found, at which point the pig batch will be 

immediately transferred.   

Another assumption concerns the spatial locations of non-producer agents.  Since fine-grained 

spatial data were not available—and the FLAPS tool only covers livestock production units 

(Burdett et al. 2015)—locations of non-producer agents are initialized by distributing them at 

random positions within each county, in proportion to the number of producers in the county. 

Several assumptions also come into play concerning the distance, similarity, and number of 

other industry actors with which each agent may interact.  These assumptions were 

parameterized using the maximum distance, minimum capacity similarity, and maximum 

connection number global parameters, as well as the characteristic connection distance 

“lambda” values that underlie how feed mill and slaughter plant service areas are generated.  

For example, in the case of feed mills, λ = 1.5, indicating that most producers purchase feed 

from the nearest or second-nearest mill, with fewer purchasing from the third-nearest, fewer 

still from the fourth-nearest, etc.  Alternatively, for slaughter plants, λ = 2, indicating that the 

most likely outcome is for a producer to ship hogs to the second-closest plant.  We note that a 

limitation of the model is that, since all agents exist within the bounds of a single U.S. state, 

inter-state trade is not accounted for.   

A further assumption is our representation of livestock in batches (or metapopulations) of 

animals of the same age.  This was primarily done to reduce computational overhead (vs. storing 

each animal’s parameters individually).  In addition to having the same theoretical birthday, it is 

assumed that if a batch is infected, all of its members are infected.   

Finally, it is assumed that if a producer agent becomes infected, all of its livestock batches 

become infected.  While a simplifying assumption to be sure, this is reasonably realistic, owing 

to the high observed virulence of the PED virus, which tends to sweep quickly through entire 

herds.   

 

II.i.c Why is/are certain decision model(s) chosen? 

Agents’ decision heuristics primarily relate to their day-to-day operations, and rely on 

parameters including industry role, size, and spatial location.  Based on industry standards along 

with individual parameters, agents make decisions pertaining to when and with whom inter-

agent contact will occur.  These contact patterns go on to impact the susceptible / infective 
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state variable of each agent, according to probabilities associated with each modality of inter-

agent contact   

 

II.i.d If the model/submodel (e.g. the decision model) is based on empirical data, where do the 

data come from? 

We use the Farm Location and Agricultural Production Simulator (FLAPS) tool—which draws 

upon USDA Census of Agriculture data along with aerial imaging to impute realistic distributions 

of livestock farms within a specified U.S. region—to set producer agent locations and key 

operational parameters including industry roles and capacities (Burdett et al. 2015).  While the 

FLAPS tool serves as our primary means to set production unit locations and operational 

parameters, our team also gained access to internal records from a large family-owned hog 

production chain system—identified as “FHPC” in Table 6—which was used to impute realistic 

contact rate and shipment size parameters.  Several other sources of empirical data were also 

used to parameterize the model, also indicated in Table 6. 

 

II.i.e At which level of aggregation were the data available? 

The FLAPS system uses several core datasets to impute producer agent locations and 

operational characteristics.  The system primarily relies upon the 2012 USDA Census of 

Agriculture, which is aggregated at the county level.  However, FLAPS also leverages aerial 

imaging land use data to position agents more precisely within each county.  Slaughter plant 

data from USDA NASS (2014) were aggregated at the level of the U.S. state.   

 

II.ii Individual Decision-Making 

II.ii.a What are the subjects and objects of the decision-making? On which level of aggregation is 

decision-making modelled? Are multiple levels of decision making included? 

Decision-making is modeled at the level of the agent, be it a producer, feed mill, or slaughter 

plant.  When transferring livestock, for example, a producer agent will wait until a pig batch 

matches the appropriate age corresponding to its industry role.  This subject will then search 

among its potential trading partners (objects, in this case), which were pre-selected at model 

initialization to be of the appropriate industry role, until a suitable agent is found that has 

sufficient capacity to accept the shipment.   
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II.ii.b What is the basic rationality behind agent decision-making in the model? Do agents pursue 

an explicit objective or have other success criteria? 

Agents in the model act according to accepted industry operational standards.  They do not 

pursue a specific “objective,” per se, other than to efficiently take in new livestock and ship 

them out at the appropriate life cycle stage.  Future versions of the model will incorporate 

adaptive agent decision-making, for example allowing for decisions which will reduce an agent’s 

vulnerability if a disease is present in the network.   

 

II.ii.c How do agents make their decisions? 

A series of cyclically-executing functions (outlined in the Implementation Details section) govern 

how and when agents make decisions.  These are based on the industry role of each agent.   

 

II.ii.d Do the agents adapt their behavior to changing endogenous and exogenous state 

variables? And if yes, how? 

Producer agents desiring to transfer livestock to the next production phase adapt their behavior 

based on the operational variables associated with their potential trading partners.  This 

primarily comes down to finding a partner within a certain distance, of the appropriate industry 

role, of sufficiently-similar size, and with sufficient excess capacity to accept the shipment.  The 

number of pigs housed at each production unit is constantly updated as the model runs, so the 

agents have to perform this search with each new outgoing shipment.  However, agents in the 

current model do not adapt their decisions based on the prevalence of disease in the system, or 

other global factors.   

 

II.ii.e Do social norms or cultural values play a role in the decision-making process? 

Agents follow basic industry standards when making their decisions, which could be considered 

a kind of social norm.  Values do not play into their choices, however. 

 

II.ii.f Do spatial aspects play a role in the decision process? 

Producer agents looking to transfer animals to another producer are constrained by a maximum 

distance parameter.  The service areas of slaughter plant and feed mill agents are governed by 

Poisson distributions, with producers most likely to connect to the λth-closest of each.   
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II.ii.g Do temporal aspects play a role in the decision process? 

Producer agents will only transfer livestock to their producer trading partners if the partner has 

sufficient excess capacity.  Since the inventory of each agent is constantly in flux, the time when 

the transfer function is executed will determine the trading partner that is chosen.  Farrowing 

producers will also wait to batch weaner pigs until the quantity of piglets is greater than or 

equal to the minimum batch size, as a proportion of their capacity. 

 

II.ii.h To which extent and how is uncertainty included in the agents’ decision rules? 

Agent behavior does not account for uncertainty in the current model.  However, we are 

pursuing behavioral research which will be used to parameterize agents in future model 

versions to react to uncertainty as regards disease prevalence in the networks.   

 

II.iii Learning 

II.iii.a Is individual learning included in the decision process? How do individuals change their 

decision rules over time as consequence of their experience? 

The agents’ decision rules remain non-adaptive in the current model.  Decision heuristics are 

based on industry roles, and are designed to realistically replicate throughput in the production 

chain system as a whole.  Thus, an agent will transfer animals to an appropriate trading partner 

as soon as possible, farrowing will proceed regularly wherever a producer has sufficient excess 

capacity, and feed deliveries take place at a set frequency.  The agents’ behavior does not 

change as a result of model conditions, for example the presence of a disease within the 

network, however each agent will necessarily adapt to market conditions resulting from the 

available spare capacity of its trading partners.   

 

II.iii.b Is collective learning implemented in the model? 

No. 

 

II.iv Individual Sensing 

II.iv.a What endogenous and exogenous state variables are individuals assumed to sense and 

consider in their decisions? Is the sensing process erroneous? 

Producer agents “sense” the operational variables associated with potential trading partners 

when making decisions concerning livestock transfers.  An agent’s perception of these factors is 
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not erroneous, as it is based on a direct query of the potential recipients’ operational variables 

at the time the transfer is desired.   

 

II.iv.b What state variables of which other individuals can an individual perceive? Is the sensing 

process erroneous? 

The primary state variables agents perceive when making livestock transfer decisions are the 

potential trading partner’s industry role, capacity, inventory, and proximity.   

 

II.iv.c What is the spatial scale of sensing? 

At model initialization, producer agents generate a list of potential producer trading partners 

only within a given distance (150 km).  It could be said that their “sensing” of other producers 

does not extend beyond this distance.  Note that (based on the Poisson distributions discussed 

above), producers may very well interact with slaughter plants and feed mills beyond the 150-

km limit imposed upon producer to producer transfers.   

 

II.iv.d Are the mechanisms by which agents obtain information modelled explicitly, or are 

individuals simply assumed to know these variables? 

Agents are simply assumed to know the relevant operational variables necessary to make the 

choice of which trading partner to choose.   

 

II.iv.e Are the costs for cognition and the costs for gathering information explicitly included in the 

model? 

No. 

 

II.v Individual Prediction 

II.v.a Which data do the agents use to predict future conditions? 

Agents do not engage in predictive behavior concerning the likely outcomes of their actions.   

They simply operate according to industry standards. 
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II.v.b What internal models are agents assumed to use to estimate future conditions or 

consequences of their decisions? 

None, although future versions of the model may incorporate the Theory of Planned Behavior 

with regard to agent decisions to increase biosecurity measures or limit livestock movements in 

response to a perceived disease threat in the system.   

 

II.v.c Might agents be erroneous in the prediction process, and how is it implemented? 

Since prediction is not currently a decision-making factor, no.   

 

II.vi Interaction 

II.vi.a Are interactions among agents and entities assumed as direct or indirect? 

Interactions among agents take the form of transfers of livestock and feed.  These transfers are 

assumed to be mediated by transportation equipment, and so can be conceived as indirect.  For 

example, if a truck delivers livestock to an infected premises, a probability parameter governs 

whether the truck will become contaminated.  The truck is then assumed to return to its origin, 

at which point (if it is contaminated), another probability parameter determines whether the 

truck contamination will result in infection of the original agent.  Similarly, a feed truck 

originating from a mill may become contaminated upon reaching an infected producer 

premises, and then may pass the infection along to another producer on the same route, or to 

the mill itself upon its return.   

 

II.vi.b On what do the interactions depend? 

Interactions depend upon the operational variables associated with each agent.  Producer 

agents will only initiate a transfer when a pig batch reaches the designated transfer age.  Spatial 

proximity and underlying network structure—encoded at model initialization—also mediate 

interactions.  For example, feed mills periodically generate delivery routes which encompass a 

subset of producer agents within their service areas.   

 

II.vi.c If the interactions involve communication, how are such communications represented? 

The only communication that is represented during livestock transfers is the size and age of pig 

batches, along with the spare capacity of the potential trading partner.  This may be conceived 

as a phone call or email to potential trading partners inquiring whether they are able to accept 
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the batch; or alternatively as predetermined business arrangements, common in private 

production system networks.   

 

II.vi.d If a coordination network exists, how does it affect the agent behavior? Is the structure of 

the network imposed or emergent? 

Agents coordinate only in the sense that, during livestock transfers, the receiving agent must 

concurrently have the spare capacity to accept the shipment.  Thus, to the extent that 

coordination occurs in the model, it is emergent, not imposed.   

 

II.vii Collectives 

II.vii.a Do the individuals form or belong to aggregations that affect and are affected by the 

individuals? Are these aggregations imposed by the modeler or do they emerge during the 

simulation? 

Livestock in the model may be considered as collectives (or metapopulations), as they are 

encoded in groups of animals with the same theoretical age.  This is imposed by the model 

structure.   

In addition, while not defined explicitly as such, groups of agents in the model exhibit emergent 

collective characteristics due to their differential spatial distribution across the model’s GIS 

space.  For example, in densely-packed areas, groups of agents tend to interact heavily within 

connected clusters, potentially leading to localized disease outbreaks.  This type of emergent 

collective behavior is not directly imposed by the modeler, although the fixed spatial location 

and network structure that is imposed at model initialization impacts how and where such 

phenomena arise.   

 

II.vii.b How are collectives represented? 

Metapopulations of livestock are tracked as passive objects within a concurrent hash map data 

structure associated with each agent object.  This data structure encodes the size and age of 

each pig batch.   

Emergent “collectives” of heavily-connected agent clusters are captured by tracking agent 

contact patterns over the course of each run, and outputting these data as weighted edge lists.   
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II.viii Heterogeneity 

II.viii.a Are the agents heterogeneous? If yes, which state variables and/or processes differ 

between the agents? 

As described in the Entities, state variables, and scales section above, agents fall into three main 

classes: (a) producers, (b) slaughter plants, and (c) feed mills.  Producer agents are assigned one 

of six industry roles, based on the USDA classification system for hog producers, along with 

expert advisement.  A producer agent’s industry role determines the initial age of its livestock, 

its livestock age transfer condition, as well as the appropriate trading partners which make up its 

set of potential trading partners.  These relationships are visualized in Figure 1.   

 

II.viii.b Are the agents heterogeneous in their decision-making? If yes, which decision models or 

decision objects differ between the agents? 

Agents’ decision-making will differ depending upon their industry roles.  For example, a farrow-

to-wean producer will only send pigs to wean-to-feeder or wean-to-finish producers; slaughter 

plant agents will only receive hogs from finishing producers within their service areas; and feed 

mills will only distribute to producers within their service areas.   

 

II.ix Stochasticity 

II.ix.a What processes (including initialization) are modelled by assuming they are random or 

partly random? 

RUSHPNBM uses both fixed-seed stochasticity (for initialization) as well as random-seed 

stochasticity (to mediate infection spread).  All initialization procedures that are not drawn 

directly from the FLAPS data— for example the list of potential transferees for each producer—

utilize a fixed seed in all draws from stochastic functions.  This is important because we are 

interested in analyzing the dynamics associated with disease risk, and changing the basic supply 

chain network structure across runs would confound results.  We also use fixed-seed draws 

from custom distributions—i.e., those based on the number of observations in a series of 

categories—to establish the spatial location of slaughter plants and feed mills to correspond 

with producer density by county.   

Poisson distributions are utilized in some cases in model initialization, for example to determine 

which slaughter plant or feel mill to which each producer will connect.  Poisson distributions are 

used in the model because they require only a λ parameter corresponding to the expected value 

of the distribution; because they are discrete, returning a whole-number; and because they 

cannot return a value less than zero.   For initialization procedures, the fixed seed is utilized in 
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these Poisson draws, maintaining the same initial “latent” network structure for each study area 

across runs.   

The remainder of the stochasticity in the model uses a random seed, yielding a dataset 

representing a distribution of contact and infection patterns across model runs.  Random-

seeded stochasticity is first used to populate each producer’s initial pig batches.  Both the size 

and age of the pig groups associated with each producer are drawn from a uniform distribution 

bounded according to the producer’s industry role.  Since each producer will always start with a 

slightly different animal inventory, this ensures that the trade patterns that unfold throughout 

each model run are not repeated exactly.  Random-seeded Poisson distributions are used to 

determine the number of producers to visit for each feed distribution trip.   

Random-seed stochasticity is also used for all disease-spread calculations.  Uniform probability 

distributions returning “true” if a randomly-drawn value between zero and one is less than p are 

used to determine if the infection will spread.  Thus, whereas the disease spread probabilities 

stay constant across runs, the result of any given random draw using these probabilities may 

differ.   

Finally, a random-seeded triangular distribution centered at the average infection duration for 

each agent type, and limited to the range between 50% and 150% of this value, is used to 

determine the length of time an agent will remain in the infected state.  Triangular distributions 

were used here because they are a good stand-in for the normal distribution, while offering an 

intuitive means to establish upper and lower limits.   

 

II.x Observation 

II.x.a What data are collected from the ABM for testing, understanding and analyzing it and how 

and when are they collected? 

The model tracks in real-time the current livestock inventory of all producers in the model, the 

number of currently infected animals, the number of currently infected agents, and the 

cumulative number of infected agents, which can be output as time-series data to examine 

infection-spread dynamics.  Tabular data including each agent’s class, operational parameters, 

and other information is also output at the conclusion of each run.   

In addition, a contact network adjacency matrix with link weights encoding the number of times 

each agent interacted throughout the model run is exported as tabular data after each run, and 

later parsed using a series of Python functions.  An infection-spreading network is similarly 

tracked, output, and parsed.  Key statistics on trade and infectivity patterns across a series of 

model runs—both at the individual agent as well as the whole-network level—may then be 

analyzed.   
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Finally, for calibration purposes, we include an option to track the flow of feed and livestock 

between different types of agents, for example the distribution of hog shipment sizes and 

delivery frequencies, which can then be compared with available real-world data.   

 

II.x.b What key results, outputs or characteristics of the model are emerging from the 

individuals? (Emergence) 

Emergent phenomena in the model occur as a result of the contact patterns mediated by 

agents’ decision heuristics.  For example, this could take the form of differential disease spread 

dynamics resulting from the structures of contact networks that emerge throughout each run.   

 

III) Details 

III.i Implementation Details 

III.i.a How has the model been implemented? 

The model was implemented using AnyLogic v.8 software, which relies upon the Java 

programming language for all scripts and functions.  The sections below use pseudocode to 

describe in detail the algorithmic structures underlying each model function.   

 

Notes on pseudocode used in this document: 

• The characters “//” will be used to designate a descriptive comment (i.e., the line of text 

following the “//” is not part of the actual function logic). 

• Parameters referenced in all functions refer to those associated with the agent object from 

which a function has been called.  In some cases, to disambiguate, the terms “self” or “my” 

may be used to refer to the function-calling agent object or its associated parameters. 

• “ADD OR INCREMENT [sender] in [receiver]’s [network edge list]” is defined here as: 
IF [sender] is not in [receiver]’s [network edge list] ADD [sender] to 

[receiver]’s [network edge list] with contact counter set to 1 

ELSE INCREMENT contact counter associated with [sender] in [receiver]’s 

[network edge list] by 1 

• “RANDOM DRAW using [probability]” is defined here as the Boolean value resulting from: 
(DRAW random number from uniform distribution between 0 and 1) < 

[probability] 
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III.i.b Is the model accessible, and if so where? 

While the source code for the model is not accessible due to limitations of the AnyLogic 

software, the pseudocode below explicates the code at a high level of detail.  In principle, these 

pseudocode functions may be used to implement the model using any desired programming 

language.   

 

III.ii Initialization 

III.ii.a What is the initial state of the model world, i.e. at time t = 0 of a simulation run? 

The model is initialized by progressing through a series of functions.  Several agent parameters 

are set as each agent object is generated by the model.  Next, further agent parameters are set 

by reference to the model database.  Finally, upon completion of the preceding, producer 

agents initialize their networks of potential trading partners to be referenced throughout the 

model run.   

 

▪ Initialization functions called from main object (in order of function calls): 

Initialize map view function:  

SET GIS map boundaries and zoom on U.I. dashboard to correspond to study 

area 

 

Initialize agents function:  

Numbers, locations, and typological distributions of producer agents within the model are 

generated heuristically using the Farm Location and Agricultural Production Simulator (FLAPS) 

system developed through a collaboration between Colorado State University and the United 

States Department of Agriculture (Burdett et al. 2015).  FLAPS parses USDA National Agricultural 

Statistics Service (USDA NASS) databases along with land use data to impute spatially-explicit 

datasets depicting the distribution of livestock production units throughout the desired study 

area.  Thus, while not representing actual farm locations, the producer agents in the model are 

distributed geographically and with characteristics including production volume and 

classification category in such a way as to be consistent with real-world distributions.   

An implicit assumption we have made is that the distribution of slaughter plants and feed mills 

mirrors the distribution of producers by county.  Once a non-producer agent’s county has been 

assigned by drawing from this distribution, the agent is placed at a random set of coordinates 

within the selected county.  Thus, counties with higher producer density will tend to have higher 

numbers of non-producer industry actors as well.   
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FOR EACH producer agent 

// read in data for each agent from database and set appropriately 

READ latitude and longitude from database table corresponding to study 

area 

SET agent’s spatial location 

READ total capacity from database table corresponding to study area 

SET agent’s total capacity 

READ producer industry role from database table corresponding to study 

area 

// in consultation with industry experts, producers classified as 

“other” in the USDA NASS data are assumed to be “wean to feeder” 

IF (database query result = “other”) 

SET agent’s industry role to “wean to finish” 

ELSE 

SET agent’s industry role to correspond with database query result 

SET agent’s icon color to match producer type 

IF (agent is a farrowing type) 

SET agent’s sow inventory to MAX of 1 and (total capacity * sow 

ratio parameter appropriate for agent’s type) 

ELSE 

SET agent’s sow inventory to zero 

SET agent’s non-sow capacity to (total capacity – sow inventory) 

 

// iteratively generate initial pig batches 

SET minimum batch size to (agent’s total capacity * minimum batch size 

as proportion of capacity parameter) 

WHILE (minimum batch size < remaining capacity) 

IF (agent’s total capacity <= capacity under which a producer is 

assumed to have only one batch parameter)  

SET batch size to agent’s non-sow capacity 

ELSE  

SET batch size to a random integer between minimum batch size and 

non-sow capacity 

 IF ((batch size + current pig inventory) > non-sow capacity) 

SET batch size to minimum batch size 

SET batch birthday to a random integer between the maximum and 

minimum age of a pig for the agent’s industry role 

ADD batch size and birthday to pig tracker 

INCREMENT agent’s current inventory by batch size 
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// distribute other agents by county to correspond with producer density 

FOR EACH county in study area 

READ number of producers in county from database 

ADD county name to county distribution array as many times as there are 

producers in that county 

FOR EACH slaughter plant agent 

DRAW RANDOM county name from county distribution array 

SET agent’s spatial location to a random point inside the county drawn 

REPEAT above FOR loop for feed mill agents 

 

// now that locations and characteristics are set, run each producer’s 

network initialization function in turn 

FOR EACH producer agent 

CALL agent’s “initialize network” function 

 

▪ Producer agent initialize network function: 

Once the agents’ locations and industry roles have been initialized, a network initialization 

function generates a set of potential trading partners for each agent.  All producer agents are 

assigned one feed mill, and finishing producers are also assigned one slaughter plant, both 

connections being to the nth-closest of that agent type, with n being drawn from a Poisson 

distribution using the appropriate λ parameter.  A pool of potential transferee producers is also 

generated for each non-finishing producer according to their industry role.  These relationships 

are shown in Figure 1.  The potential transferee producers in this potential transferee pool are 

filtered according to (a) the maximum producer-to-producer connection distance parameter, (b) 

the minimum capacity similarity ratio parameter, as well as (c) the maximum number of 

transferee producers parameter.   

IF industry role is NOT a finishing type 

Potential farms list = FILTER other producer agents s.t. (industry role 
of other producer is the next step in the production chain) AND 
(distance to the other producer <= max producer-producer 
connection distance global parameter) AND NOT ((total capacity / 
other producer’s total capacity >= minimum capacity similarity 
ratio parameter) OR (other producer’s total capacity / total 
capacity >= minimum capacity similarity ratio parameter))) 

WHILE (there are still potential farms AND (my transferee producers <= 
max number of transferee producers global parameter)) 

DRAW RANDOM from potential farms list and ADD to my transferee 
producers 

IF my transferee producers is empty 

ADD nearest farm of appropriate industry role 

IF industry role is a finishing type 
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SET my slaughter plant to Nth closest slaughter plant where N is drawn 

from a Poisson distribution where lambda = the global proximity 

lambda parameter for slaughter plant connections 

SET my feed mill to Nth closest feed mill where N is drawn from a Poisson 

distribution where lambda = the global proximity lambda parameter 

for feed mill connections 

 

III.ii.b Is the initialization always the same, or is it allowed to vary among simulations? 

The initialization of the spatial location, operational characteristics, and potential trading 

partners for each agent remains consistent across runs within each of our three study area 

states.  Thus, there are in essence three distinct initial states with regard to the above 

parameters, defined by the study areas.  However, the initial livestock population housed at 

each producer premises differs between runs, as do the real-time trading choices and infection 

spread patterns experienced by each agent throughout the run.  For more detail, see the 

Stochasticity section.   

 

III.ii.c Are the initial values chosen arbitrarily or based on data? 

Initialization parameters rely upon several datasets, including the University of Colorado / USDA 

FLAPS system (Burdett et al. 2015), USDA NASS data (USDA NASS 2014), Google Maps queries, 

and livestock industry internal records.  For more details, see the initialization function 

descriptions and pseudocode above, section III.iv.c, as well as Table 6.     

 

III.iii Input Data 

III.iii.a Does the model use input from external sources such as data files or other models to 

represent processes that change over time? 

The model relies upon an external database to store many of the initialization parameters.  

Once set, these values remain static throughout each model run.   

 

III.iv Submodels 

III.iv.a What, in detail, are the submodels that represent the processes listed in ‘Process Overview 

and Scheduling’? 
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▪ Producer agent cyclically-executing functions: 

Farrow, wean, and batch piglets function: 

If a farm which farrows piglets (Farrow to Wean, Farrow to Feeder, or Farrow to Finish types) is 

left with excess capacity after a livestock transfer, a farrowing function fills that capacity with a 

new batch of piglets, whose birthday is set to the current model day.  Once again, to eliminate 

unrealistically-small pig groups, a minimum farrowing size as a proportion of the farrowing 

farm’s total capacity is required for the farrowing function to proceed.  Thus, a farm which is 

already almost at maximum capacity will not farrow a new batch of piglets until another batch 

has been shipped to an appropriate trading partner.   

**Recurrence time is the frequency of weaning global parameter** 

IF industry role is a farrowing type 

// calculate number of farrowed piglets ready to wean and batch 

Current piglet inventory = MIN of remaining pig capacity and (days since 

last weaning day * number of sows * (global parameter for piglets 

weaned annually / 365)) 

 

 

IF infectivity state is “infected” 

DECREMENT current piglet inventory according to suckling mortality 

rate global parameter 

// wean and batch piglets 

Number to wean and batch = MIN of current piglet inventory and remaining 

pig capacity 

IF (number to wean and batch >= my minimum batch size) 

ADD number to wean and batch and birthday (current day – 35) to pig 

batch tracker 

INCREMENT non-sow pig inventory by batch size 

DECREMENT piglet inventory by batch size 

SET last weaning day to current day 

 

Evaluate pig shipments function: 

Non-finishing producers transfer hoofstock to a transferee farm as soon as the hoofstock reach 

the age corresponding to the transfer condition associated with the industry role of the 

producer.  If it is determined that the transfer age requirement of a pig batch has been met, the 

transferee producers in the transferring producer’s pool of possible producer trading partners 

are sequentially evaluated to determine whether they are able to receive the shipment.  To 

eliminate the transfer of unrealistically-small groups of livestock, transfers will only proceed if 

the pig batch size exceeds the minimum transfer quantity, as a proportion of the transferee’s 

total capacity.  If the excess capacity of a potential transferee producer is less than the size of 
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the pig batch, the pig batch will be split such that the transferree producer’s capacity will be 

filled, and the remaining animals will stay with the transferring producer.  The transferring 

producer will then continue to assess producers until all remaining pigs in the pig batch have 

been transferred to appropriate trading partners.   

If the transferring producer is infected but the transferee is not, the transferred hoofstock will 

automatically spread the infection to the transferee producer.  If the transferee producer is 

infected but the transferring producer is not, the “delivery trailer” returning from the infected 

transferee producer may infect the transferring producer according to a probability set at model 

initialization.   

The birthday parameter associated with the batch of transferred stock is maintained as it is 

passed to the transferee(s), such that the pig batch will once again be appropriately transferred 

to the next production phase at the correct transfer age.  In the rare case that a pig batch grows 

too old before a suitable transferee producer can be located, the pig group is culled, making 

room for a new batch of pigs.   

Finishing producers (Feeder to Finish and Farrow to Finish types) ship hoofstock their slaughter 

plant as soon as the hoofstock reach the designated slaughtering age.  If the transferring 

producer is infected, the receiving area of the slaughter plant may become contaminated 

according to a probability set at model initialization.  If the receiving area of the slaughter plant 

is already contaminated, the “delivery trailer” returning to the transferring producer may carry 

the infection back to that producer according to another probability set at model initialization.   

**Recurrence time is the maximum frequency of pig shipments global 

parameter** 

// to eliminate continually changing inventory levels during execution 

SUSPEND farrow, wean, and batch piglets function countdown 

 

// determine where pigs will be shipped 

IF industry role is NOT a finishing type 

FOR EACH pig batch meeting age transfer requirement 

FOR EACH transferee in my transferee producers 

IF (batch size <= transferee’s spare non-sow capacity) AND (batch 

size >= transferee’s minimum batch size) 

IF (transferee’s infectivity state is “infected”) AND 

(infectivity state is “clean”) 

DECREMENT batch size according to mortality rate global 

parameter associated with pigs’ age 

REMOVE pig batch from pig batch tracker 

DECREMENT non-sow pig inventory by batch size 

ADD pig batch and birthday to transferee’s pig batch tracker 

INCREMENT transferee’s non-sow pig inventory by batch size 
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// update contact network trackers 

ADD OR INCREMENT transferee in contact network out-degree list 

ADD OR INCREMENT self in transferee’s contact network in-

degree list 

 

// update pig shipment trackers 

ADD batch size to pig shipments out list 

ADD batch size to transferee’s pig shipments in list 

 

// infection brought to transferee via infected pigs 

IF infectivity state is “infected” 

SET transferee’s infectivity state to “infected” 

ADD OR INCREMENT transferee in infection-spreading network 

out degree list 

 

// infection brought home via trailer from transferee farm 

IF (transferee’s infectivity state is “infected”) AND (RANDOM 

DRAW using Prob. pig truck will become contaminated if 

producer is infected) AND (RANDOM DRAW using Prob. 

producer will become infected if returning pig truck is 

contaminated) 

SET infectivity state to “infected” 

ADD OR INCREMENT self in transferee’s infection-spreading 

network out degree list 

 

// cull pigs that are too old and were never able to be transferred 

FOR EACH pig batch over 168 days old  

REMOVE batch from pig batch tracker 

DECREMENT non-sow pig inventory by batch size 

 

ELSE IF industry role is a finishing type 

REMOVE pig batch from pig batch tracker 

DECREMENT non-sow pig inventory by batch size 

 

// update contact network trackers 

ADD OR INCREMENT slaughter plant in contact network out-degree list 

ADD OR INCREMENT self in slaughter plant’s contact network in-degree 

list 

 

// update pig shipment trackers 

ADD batch size to pig shipments out list 
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ADD batch size to slaughter plant’s pig shipments in list 

 

// infection brought to slaughter plant via infected pigs 

IF (infectivity state is “infected”) AND (RANDOM DRAW using Prob. 

slaughter plant receiving area will become infected if pig batch 

is infected) 

SET slaughter plant’s infectivity state to “infected” 

ADD OR INCREMENT slaughter plant in infection-spreading network out 

degree list 

 

// infection brought home via trailer from slaughter plant 

IF (slaughter plant’s infectivity state is “infected”) AND (RANDOM DRAW 

using Prob. pig truck will become contaminated if receiving area 

is infected) AND (RANDOM DRAW using Prob. producer will become 

infected if returning pig truck is contaminated) 

SET infectivity state to “infected” 

ADD OR INCREMENT self in slaughter plant’s infection-spreading 

network out degree list 

 

IF (non-sow pig inventory is zero) 

SET infectivity state to “clean” 

RESUME farrow, wean, and batch piglets function countdown 

 

 

▪ Feed mill agent cyclically-executing functions 

Feed mills periodically generate delivery routes encompassing a subset of producers within their 

latent feed-mill-to-producer link set.  Each route encompasses a subset of the producers in the 

feed mill’s service area, with the number of stops in each trip resulting from a draw from a 

Poisson distribution.  While there is no actual “feed truck” object in the model, the logic of the 

following function is based on the way such a truck would move between agents and possibly 

spread disease.   

Beginning from the mill, this conceptual feed truck will visit the previously-drawn number of 

randomly-selected producers within the feed mill’s service area before finally returning to the 

feed mill.  If the feed mill is infected, the truck may be contaminated initially.  Should the truck 

encounter an infected producer on its route, it may become contaminated at that point.  Once a 

truck is contaminated, the infection may be spread to subsequent producers on the route.  If a 

contaminated truck returns to the feed mill, the mill itself may become infected.   
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Distribute feed function: 

**Recurrence time is the frequency of feed deliveries global parameter** 

// determine whether truck is initially infected 

IF (infectivity state is “infected”) AND (RANDOM DRAW using Prob. feed 

truck will become contaminated if feed mill is infected) 

SET truck infected to “true” 

ELSE 

SET truck infected to “false” 

 

// determine number of farms on delivery route 

SET number to visit to MIN of (number of farms in service area) and (DRAW 

from Poisson distribution with lambda equal to global parameter 

encoding average number of producers visited per route) 

 

// generate delivery route 

FOR number to visit 

ADD random producer in service area (that is not already in delivery 

route list) to delivery route list 

 

// parse infectivity consequences of delivery route 

FOR EACH producer in delivery route list 

// update contact network trackers 

ADD OR INCREMENT producer in contact network out-degree list 

ADD OR INCREMENT self in producer’s contact network in-degree list 

 

//infected truck infects farm it's delivering to 

IF (truck infected is true) AND (RANDOM DRAW using Prob. producer will 

become infected if feed truck is contaminated) 

SET producer’s infectivity state to “infected” 

ADD OR INCREMENT producer in infection-spreading network out degree 

list 

 

//truck becomes infected from delivery to infected farm 

IF (producer’s infectivity state is “infected”) AND (RANDOM DRAW using 

Prob. feed truck will become contaminated if producer is 

infected) 

SET truck infected to “true” 

SET “truck-infecting producer” to current producer 

 

// infected truck infects feed mill 
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IF (truck infected is “true”) AND (RANDOM DRAW using Prob. feed mill will 

become infected if returning feed truck is contaminated) 

SET infectivity state to “infected” 

ADD OR INCREMENT self in truck-infecting producer’s infection-spreading 

network out degree list 

 

▪ Initial infection function 

The system is initialized with all agents free of infection.  After one model year has passed, an 

infection is introduced to a random subset of producer agents.  The proportion of agents which 

are infected by the initial infection function may be set at model initialization.   

The reason for the one-year lag is to skip the transient period and allow the model to stabilize 

before analyzing the effect of an introduced disease.  This lag is necessary because, as in a real 

production chain, a certain amount of slack, or a difference between the theoretical production 

capacity and actual production, is characteristic in the modeled production chains.  In the 

model, this economic slack is due to the producers sometimes temporarily operating at less than 

maximum hoofstock capacity until an appropriate shipment of livestock becomes available.  In 

general, after about 9 months, the level of slack in the model has stabilized.   

 

Initial infection function: 

**Function is called only once, after one model year** 

FOR number to infect global parameter 

SET randomly chosen producer agent’s infectivity state to “infected” 

 

▪ Infection control functions 

Susceptible/infective state charts:  

Each agent has an embedded state chart which encodes its infectivity status.  Should an agent 

become infected, a function is called which calculates the number of its stock which are to die of 

the disease.  The proportion of livestock which succumb to the disease is based on the age of 

the pig groups, with uniform mortality rates set at model initialization for suckling pigs, nursery 

pigs, and grow/finish hogs.  After die-off is calculated for pig groups of each life stage within an 

infected producer’s inventory, the producer’s inventory data are updated accordingly.  An agent 

will remain infected for a duration whose mean length in days is controlled by parameters 

specific to each agent type by drawing from a triangular distribution limited to between 50% 

and 150% of the mean value.  Upon transition back to “clean,” the total infection duration is 

updated for later analysis.  In some cases, such as when a producer has an inventory of zero 

after transferring pigs, the transition back to a “clean” state may also be triggered manually.   
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Figure 2: Infectivity State Chart 

 

Livestock mortality calculation:  

Calculate mortality function: 

DECREMENT piglet inventory by global parameter encoding piglet mortality 

proportion 

FOR EACH pig batch in pig batch tracker 

DECREMENT pig batch size by global parameter encoding mortality 

proportion appropriate for age of pigs 

 

III.iv.b What are the model parameters, their dimensions and reference values? 

See Table 6.   

 

III.iv.c How were the submodels designed or chosen, and how were they parameterized and then 

tested? 

Due to the inherent variability of epidemic events within complex networked systems, we are 

interested less in empirically-validating the model to be used as a forecasting tool, and more in 

developing sufficient structural and face validity to allow for a deeper understanding of the 

dynamics of the modeled systems.  Even given identical starting conditions, deviations in 

contact patterns over the course of a real-world disease incursion render precise forecasts 

unfeasible.  For example, while reducing outcome volatility in RUSHPNBM could easily be 

accomplished by eliminating stochasticities associated with disease transmission, calibrating the 

model such that outcomes correspond precisely to a single observed epidemic event misses the 

point.  Our aim is rather to uncover and better understand the fundamental network features 

that lead to epidemiological vulnerability in livestock production systems more generally.   
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Calibration and validation procedures that leverage concrete historical data are often regarded 

as the best way to bring a model in line with empirical evidence.  Unfortunately, there is a 

marked lack of publicly-available data in the agricultural sector beyond aggregated county- or 

state-level statistics.  To the extent that datasets containing explicit locations, operational 

parameters, livestock and feed movements, and disease histories exist; these data tend to be 

held by private enterprises, which view them as sensitive internal records.  In light of this, 

following Windrum et al. (2007), we employ several alternative calibration procedures that have 

been widely-used in previous modeling endeavors in which fine-grained data are scarce.   

The spatial locations and basic operational parameters of RUSHPNBM agents associated with 

each study area are calibrated using the ``indirect'' approach, whereby stylized facts about the 

distribution of agents in the system are gleaned from statistical datasets.  Statistical datasets 

used in this process include the FLAPS output data, USDA data, and livestock and feed 

movement records we obtained from a large U.S. family-owned hog production chain system 

(discussed below).   

To calibration additional model elements that define how and when inter-agent contact occurs, 

as well as epidemiological submodel parameters, we leveraged an iterative companion modeling 

approach (Barreteau et al. 2003).  2015 to 2017, we convened several Delphi panels consisting 

of livestock industry and veterinary experts at national research team meetings and livestock 

veterinary conferences.  In these meetings, we used both qualitative focus groups as well as 

questionnaires to elicit and hone parameter values.  Using this participatory methodology, the 

modeled system was brought in line with the collective understandings of stakeholders who are 

intimately familiar with the operational details of U.S. livestock production systems.  As model 

development progressed, these same experts also provided input to ensure the face validity of 

the distribution of epidemic patterns, scales, and durations produced by the model.   

The model’s parameters and functions controlling pig movement and feed deliveries were 

further validated with the help of data provided by a large U.S. family-owned hog production 

chain system (as a result of our confidentiality agreement, the company’s name is not disclosed 

here). The database contains two-year records of each pig movement and each feed delivery 

involving producers in the system, although spatial data on premises locations were not 

provided.  The family-owned hog production chain system consists of a network of 161 producer 

partners that raise pigs from birth to market.  This production chain system has two 

characteristics that allowed for the parameterization and validation of RUSHPNBM.  The first 

characteristic is that the farm sizes vary from small (300 pigs) to large (8800 pigs, Figure 3).  The 

second characteristic is that pigs are grown at specialized sites including farrowing, wean-to-

finish, nursery, and finishing premises; and are moved across the production network according 

to their growing stage.  The pig movement records were used to derive realistic estimates of hog 

transfer frequencies and number of hogs per transfer relative to farm size, including both 

producer to producer transfers, and producer to slaughter plant transfers (Table 7).  The feed 

delivery records were used to estimate delivery frequencies (Figure 4).  
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Figure 3: Farm size distribution by farm type (farrowing, wean-to-finish, nursery, finishing) 

 

 

 



360 

 

 

Table 7: Average annual number of pig shipments within the study period by operational 

classification 

 

 

 

Figure 4: Average number of feed deliveries per producer per year 

 

Finally, we conducted a sensitivity analysis focusing on four key parameters, each representing a 

specific aspect of the model's architecture.  Each parameter is varied in steps between 50% and 

150% of the baseline values given in Table 6, with ten replications per step.  Table 8 shows the 

elasticity of the response variable---average vulnerability---across this range.  Figure 5 visualizes 

the sensitivity analysis data along with linear correlations.   
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Table 8: Elasticity of response variable (Avg. Vulnerability) resulting from variation between -

50% and 50% of baseline values for four key parameters 

 

 

 

Figure 5: Sensitivity analysis plots for four key parameters.  Scatter points show average values 

at each step, colored regions show 95% CIs, and dashed lines show linear trends.  Blue 

represents North Carolina, red Iowa, green Illinois, and black the combined dataset.  Pearson 

correlation coefficients, p-values, and R2 values of linear regressions appear in legends below 

each figure. 
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Results of the sensitivity analysis show that the model is moderately-sensitive to changes in the 

probability of producer to pig truck infections and the probability of feed truck to feed mill 

infections; with the effect on average vulnerability being positive in all study areas, and 

generally highest in Illinois.  For maximum producer connection distance, the magnitude and 

direction of the effect varies considerably between study areas, with Iowa demonstrating a 

negative relationship with the response variable.  The R2 values suggest that, overall, the model 

is not particularly sensitive to maximum producer connection distance.  By contrast, increasing 

the average producer infection length causes significant increases in average vulnerability across 

all study areas.  In light of previous SIR / SI model studies, the observation that average infection 

duration heavily impacts average vulnerability is not a surprise.  The shape of the elasticity 

curves suggest that percolation dynamics may exist, with the nonlinearity---or percolation 

threshold---being lowest for North Carolina and higher for the other two study areas, 

corroborating findings from Wiltshire (2018).     
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