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ABSTRACT 

 

Cancer progression is driven by cumulative changes that promote and maintain 

the malignant phenotype. Epigenetic alterations are central to malignant transformation 

and to the development of therapy resistance. Changes in DNA methylation, histone 

acetylation and methylation, noncoding RNA expression and higher-order chromatin 

structures are epigenetic features of cancer, which are independent of changes in the 

DNA sequence. Despite the knowledge that these epigenetic alterations disrupt essential 

pathways that protect cells from uncontrolled growth, how these modifications 

collectively coordinate cancer gene expression programs remains poorly understood. In 

this dissertation, I utilize molecular and informatic approaches to define and characterize 

the genome-wide epigenetic patterns of two important human cancer cell models. I 

further explore the dynamic alterations of chromatin structure and its interplay with gene 

regulation in response to therapeutic agents. 

 

In the first part of this dissertation, pancreatic ductal adenocarcinoma (PDAC) cell 

models were used to characterize genome-wide patterns of chromatin structure. The 

effects of histone acetyltransferase (HAT) inhibitors on chromatin structure patterns were 

investigated to understand how these potential therapeutics influence the epigenome and 

gene regulation. Accordingly, HAT inhibitors globally target histone modifications and 

also impacted specific gene pathways and regulatory domains such as super-enhancers. 

Overall, the results from this study uncover potential roles for specific epigenomic 

domains in PDAC cells and demonstrate epigenomic plasticity to HAT inhibitors. 

 

In the second part of this dissertation, I investigate the dynamic changes of 

chromatin structure in response to estrogen signaling over a time-course using Estrogen 

Receptor (ER) positive breast cancer cell models. Accordingly, I generated genome-wide 

chromatin contact maps, ER, CTCF and regulatory histone modification profiles and 

compared and integrated these profiles to determine the temporal patterns of regulatory 

chromatin compartments. The results reveal that the majority of alterations occur in 

regions that correspond to active chromatin states, and that dynamic chromatin is linked 

to genes associated with specific cancer growth and metabolic signaling pathways. To 

distinguish ER-regulated processes in tamoxifen-sensitive and in tamoxifen-resistant 

(TAMR) cell models, we determined the corresponding chromatin and gene expression 

profiles using ER-positive TAMR cancer cell derivatives. Comparison of the patterns 

revealed characteristic features of estrogen responsiveness and show a global 

reprogramming of chromatin structure in breast cancer cells with acquired tamoxifen 

resistance.  

 

Taken together, this dissertation reveals novel insight into dynamic epigenomic 

alterations that occur with extrinsic stimuli and provides insight into mechanisms 

underlying the therapeutic responses in cancer cells. 
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CHAPTER 1 

Comprehensive Literature Review 
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1.1: Basic principles underlying genome organization  

Research over many decades has enhanced our knowledge concerning eukaryotic 

genome organization. Genome organization refers to the structural orientation of 

deoxyribonucleic acid (DNA) and is highly controlled. The discovery of the structure of 

DNA in the 1950s [1] provided the platform for later investigations regarding its 

mechanisms within genetic inheritance, determination of cellular fates and contributions 

to disease phenotypes. Other studies in the 1950s-1960s elucidated significant aspects of 

DNA structure including the ratio of bases [2] and the determination of DNA as the 

‘backbone’ of chromatin structure [1, 3]. After the discovery of its involvement in 

inheritance during the 19th century, its rediscovery inspired researchers to expand on this 

fundamental knowledge and to further investigate DNA’s regulation and influences on 

cellular mechanisms. This became possible as new revelations discovered the genome to 

be densely organized inside of the approximate 10 μm nucleus  [4].  In this section, I 

provide an overview of key concepts governing genome organization including DNA 

structure, epigenetics and gene expression.   

 

1.1.1: The nucleosome as the fundamental subunit of DNA   

Scientific investigations in the 1970s paved the way for succeeding chromatin 

research. In the early 1970s, chromatin fibers were discovered to be approximately 100 

angstroms thick [5, 6] and in 1975 the structure of this fiber was confirmed after earlier 

propositions acknowledging that DNA was wrapped around eight histone proteins in 

repeating units, comprising chromatin  [7]. These units, called nucleosomes, were first 

visualized by Oudet et al. with an electron microscope. They achieved these after 
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depleting lysine-rich histones, which allowed them to observe chromatin structure as a 

replicating unit of spherical particles [7]. The molecular structure of the nucleosome was 

subsequently solved [8, 9] and research began to reveal its significance in biological 

outcomes including transcription, DNA repair and cell cycle processes [10-12]. 

Elucidating the organization of the tightly packed chromatin within the nucleus provided 

the foundation needed to explore chromatin regulation in cellular mechanisms.  

 

1.1.2: Gene expression  

 As the central dogma of molecular biology highlights, underlying information 

contained within DNA has the potential to be transferred to RNA followed by protein 

through successive steps (transcription and translation, respectively) [13]. The 

complexity of how these processes are achieved and the particular outcomes as a result, 

extends far beyond this basic fundamental principle. Underlying this complexity is 

temporal and spatial control of genes relative to the rest of the genome. This determines 

the accessibility of genes and the ability of regulatory protein complexes to bind those 

regions in order to undergo transcription. RNA polymerase proteins are the core of 

transcriptional machinery. There are many different types of RNA polymerases with 

distinct roles regarding the types of genes they are able to transcribe [14]. While RNA 

polymerases I and III transcribe ribosomal RNAs and transfer RNAs/small RNAs 

respectively [15-17], RNA polymerase II regulates protein coding genes and long non-

coding RNA via sophisticated control steps assuring correct structure at the site of 

transcription and allows for correction of mismatched bases [18-20]. Additionally, RNA 

polymerase II coordinates with core general transcription factors, which acts to help RNA 
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polymerase II localize to transcriptional initiation regions known as promoters to carry 

out these activities  [21].  

 A different type of transcription factor class contains proteins that are sequence 

specific and have the ability to bind to DNA binding domains such as the High Mobility 

Group-box (HMG) domain [22, 23].  This ubiquitous protein domain is found in many 

transcription factors including the Sry-type HMG box (SOX) family of transcription 

factors, which play transcriptional roles in development and differentiation [24]. 

Additionally, transcription factors have other effector domains allowing for various other 

functions; for example, the recruitment of other regulatory complexes [25]. The spatial 

and temporal control of the genome also contributes to the ability of these factors to 

recognize their DNA binding sites and carry out their given roles. To this end, there are 

far less transcription factors within the human genome than there are genes and so they 

function via combinatorial mechanisms and make up transcriptional regulatory networks 

[22]. The effector function of transcription factors can vary and dictate the regulatory 

outcome. For instance, they have the capability of activating or repressing gene 

expression programs through the recruitment of chromatin-modifying enzymes and other 

cofactors that influence DNA accessibility directly impacting transcription [26].  

 

1.1.3: Foundational principles of epigenetics  

 Epigenetic mechanisms play key roles in chromatin accessibility. In regard to the 

term itself, ‘epigenetics’ was coined by C.H. Waddington around 1940-1950 [27]. While 

the field of genetics encompasses research elucidating gene-based mechanisms regarding 

heritability, epigenetics extends beyond this notion to not only include heritable changes 
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but rather concerns modifications occurring along the genome that do not include 

alterations to DNA sequences themselves. Consequences of research efforts over many 

years has revealed modifications influencing transcriptional control including DNA 

methylation, post translational histone modifications, chromatin architecture and non-

coding RNAs to be among these epigenetic aspects [28-32].  DNA methylation was 

identified in the 1940s and refers to the transfer of methyl groups to CpG dinucleotides 

by DNA methyltransferase enzymes [33]. Mechanistically, this modification can result in 

gene silencing by blocking the binding of transcriptional regulators or by recruiting gene 

repressive complexes [34-37]. Histone modifications incorporate different edits to amino 

acid tails of histone proteins some of which include acetylation, methylation, 

ubiquitination and phosphorylation. These modifications can either be transferred on or 

removed and can further act as docking sites for chromatin regulatory proteins and 

transcriptional complexes modulating chromatin accessibility and gene regulation [38]. 

Importantly, epigenetic regulation contributes to the heterogeneity of cellular functions as 

a result of gene expression alterations, in part, due to these modifications.  

 

1.2: Higher order chromatin organization  

 Aspects underlying chromatin architecture within the nucleus and its 

contributions to cellular phenotypes are still largely unknown. After the identification of 

3-dimensional chromatin structure within the nucleus, researchers over the last several 

decades have desired to elucidate fundamental principles regarding the nuclear 

organization of chromatin. Moreover, questions within these explorations have included: 

(1) In the small nuclear environment, how is chromatin organized and why does it take on 
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this organization?; (2) What molecular consequences does chromatin organization play in 

driving differentiation and development?; (3) Where are the genome-wide chromosome 

contacts in different cell types and what implications do these have on gene expression 

programs?; and (4) What are the implications of chromatin organization on diseased 

outcomes? In this section, I highlight principles of chromatin architecture and its 

importance in normal cellular phenotypes as well as cancer.  

 

1.2.1: Fundamental principles of chromatin architecture  

Chromatin regulation is a dynamic process by which fluctuations between 

condensed and relaxed chromatin states have been recognized to impact various cellular 

processes. Among these mechanisms are DNA repair [39], transcription [40] and cell 

division [41]. Cells must maintain genomic structural integrity and functional identity 

throughout successive generations to prevent transformations into an aberrant phenotype 

[42, 43]. Unveiling 3-D chromosome organization within the nucleus is crucial for 

understanding direct structural mechanisms underlying gene regulation and other cell-

type specification processes.  

It was first proposed in 1885 by Carl Rabl that chromosomes exist in distinct 

chromosome territories, which was later supported with experimental findings conducted 

by Cremer et al. [44, 45]. How the chromosomes are oriented during interphase is 

important for transcriptional regulatory targets and therefore directly influences cellular 

phenotypic outcome.  The radial positioning of chromosomes in the nucleus and the 

relationship between these territories and gene density have been determined in the 

interphase nucleus [46]. To this end, it is well accepted that these chromosome territories 
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are organized such that gene-dense chromosomes are positioned interiorly [45], allowing 

for long-range interactions between genomic regions and can help dictate the phenotypic 

outcome of the cell [47]. For example, a long range single nucleotide polymorphism 

region was shown to interact with the oncogenic gene c-MYC through long-range 

chromatin interaction in colorectal cancer cells, ultimately playing a role in the 

upregulation of this cancer driver [48].  

Further elucidation of structures contributing to chromosome architecture and 

organization within the nucleus revealed additional components including: the nucleolus, 

transcriptional complexes, histone locus bodies, heterochromatin and euchromatin [49]. 

These discoveries were products of combinatorial efforts involving traditional 

microscopic techniques as well as newly developed molecular tools (discussed in Chapter 

1.5). From here, the interest arose in focusing efforts to identify specific domains 

associated with distinct territories in the nucleus.  

Among the different types of associating contacts identified were lamina 

associated domains, nucleolar associated domains and topologically associated domains 

[50]. While nucleolar and lamina associated domains involve the interaction of 

chromosomes with nuclear components, topological associated domains refer to DNA-

DNA contacts. In addition to the identification of different interacting regions, genomic 

compartments were discovered. These spatially segregated compartments along the 

genome were defined at a 1 Mb resolution and are categorized into either compartment 

types A or B [47]. These compartments were coordinated with epigenetic and gene 

expression programs, allowing for further characterization of these regions. Type A 

compartments were found to be enriched in genes and associated with open chromatin 
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regions; therefore, compartment A is commonly referred to as an open compartment. In 

contrast, compartment B was determined to be more densely packed and is referred to as 

a closed compartment. Understanding these compartments have revealed functional 

relationships between chromatin structure and gene activity. The topologically associated 

domains mentioned previously were identified within these compartments [51]. 

Moreover, topologically associated domains are genomic regions with self-interacting 

chromatin regions. The frequency of interactions within 100 kb along the genome 

revealed dense regions of self-interactions. Observations of these topological associated 

domains also revealed regions along the chromatin where interaction density abruptly 

ends. These regions, termed boundary regions, separate topologically associated domains 

and contain high levels of the transcription factor CCCTC-binding factors (CTCF) [52] in 

addition to other chromatin remodeling proteins, condensin and cohesin [53].  

Long-range chromatin interactions are involved in cis gene regulatory programs 

by facilitating enhancer-promoter interactions [54]. After the discovery of enhancer 

regions, it was postulated that enhancer regions interact with promoter regions to regulate 

gene expression. Their interaction is achieved through chromatin looping as these 

regulatory regions are far apart from each other on a one-dimensional level [55, 56]. For 

example, with the goal of defining mechanisms underlying a gene relevant to kidney 

cancer, Moisan et al., identified enhancer elements that were localized to the promoter 

region of the PKD2 gene via CTCF stabilization mediated by chromatin looping in renal 

cancer cells [57].   

Together the identification of compartments and topological associated domains 

have laid the groundwork needed for understanding spatial organization of chromosomes 
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and its regulatory link to functional biological outcomes. The architecture of 

chromosomes during interphase is important for mediating maintenance of cellular 

genomes and gene expression regulation. Current efforts seek to further elucidate 

mechanisms that these architectural elements play in normal and diseased processes.  

 

1.2.2: Gene regulation mediated by higher order chromatin organization in development 

 While chromosome territories have been determined to display differences in cell 

types through repositioning [57, 58], topologically associated domains are largely 

conserved between species and have shown little variance during differentiation [59]. 

However, the interactions occurring with the topologically associated domains 

themselves can vary. Therefore, the separation of chromosomes into topologically 

associated domains provides a framework for distinct developmental-specific nuclear 

positioning.  As cells differentiate, they respond to many different signals and rely on 

their underlying transcriptional machinery including protein complexes to respond to 

these cues. Among these responses are that of transcriptional regulatory control [60, 61]. 

The gene expression programs are controlled by many different proteins including 

transcription factors, co-regulatory proteins and chromatin regulators that bind to DNA at 

regulatory regions. As chromosomes are arranged in their territories during interphase, 

and within these territories, chromosomes contain regulatory interacting regions as 

discussed earlier. It is evident that organization of the genome is directly important for 

gene expression and therefore research has aimed to uncover their role in development 

through differentiation and cell-type specificity.  
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Among the hallmark studies investigating the role of chromatin organization and 

gene expression in regard to development include studies investigating the inactivation of 

the X chromosome [62-64]. A study seeking to characterize cis-regulatory mechanisms 

involved in X inactivation using female mouse embryonic fibroblasts found that while 

topologically associated domain organization remains largely the same for the X 

inactivated chromosome compared to the activated, there were differences in internal-

topological associated domain interactions [63]. Additionally, when interrogating gene 

expression differences within these regions, they found a correlation between intra-

topologically associated domain alterations and differential gene expression throughout 

differentiation. Lastly, they revealed that alterations of boundary regions resulted in the 

mis-regulation of long-range gene-networks.  A more recent study by Dixon et al. 

mapped genome-wide chromatin interactions in H1 human embryonic stem cells and 

human embryonic stem cell-derived lineages and ultimately uncovered reorganization of 

chromatin architecture during stem cell differentiation [65]. This reorganization during 

lineage specification was observed through switches between chromosome compartment 

types (A and B) and changes in the frequency of local interactions within the topological 

associated domains. They associated these regions with gene expression and identified 

subsets of genes displaying alterations in gene expression patterns. Together these studies 

serve as examples to the groundbreaking efforts implicating differential 3D-genomic 

architecture within chromosome compartments and topologically associated domains, 

their influence on gene regulation and moreover the implications of this molecular 

network on cellular development.  
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1.2.3: Chromosome architecture in cancer programs  

Some of the first hypotheses regarding chromosomal abnormalities within cancer 

were conceived in the late 1800s and early 1900s by the German scientists David Paul 

von Hansemann and Theodore Boveri who proposed that cancer is a result of aberrant 

chromosome regulation during the cell cycle [66,67].  For many years pathologists have 

used changes in nuclear structure as a diagnostic framework to detect cancer [68]. 

Expanding from fundamental observations of abnormal nuclear morphology in addition 

to the quantity of nuclei in cancer cells comes later observations, which have revealed 

changes in higher-order chromatin organization. Despite the advancements in our 

knowledge regarding abnormal gene expression programs within various cancers, the 

specific roles these changes in 3D-chromatin structure plays in cancer phenotypes 

remains to be further elucidated.  

 Changes in chromosome territories have been linked to differential gene 

expression programs in cancer [69, 70]. Marella et al. investigated chromatin territory 

organization in normal epithelial and breast cancer cell lines and observed alterations in 

chromosome territories through an increase in associations between chromosome 4 and 

chromosome 16 [71]. Another study investigating alterations in topologically associated 

domains in cancer revealed changes within interacting regions where they also identified 

differences in chromatin architecture surrounding genes that were differentially expressed 

within these altered long-range chromatin interactions [72]. While there are other similar 

observations in different cancers [73] and recent studies have produced large datasets for 

studying 3-D chromatin alterations in cancer, much still remains to be elucidated.   
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1.3: Post translational histone modifications 

The structure of chromatin and gene expression has emerged as a key area of 

research for uncovering mechanisms underlying cellular phenotypes. Modifications of the 

core histone proteins influence gene expression programs in the way that some 

modifications can dynamically alter how open or closed the chromatin is, thereby 

affecting regulatory protein accessibility to genes during transcription. Research has 

identified modifications that can occur to the free amino acid tails of the core histone 

proteins at specific residues that are directly linked to a biological outcome; this is 

referred to as the histone code hypothesis [74]. Histone tail acetylation and methylation 

are the modifications that have been identified to primarily play the role in switching the 

dynamics of chromatin accessibility. To this end, therapeutic agents targeting epigenetic 

histone modifications have been developed to mitigate oncogenic development in the 

cancer phenotype.  

 

1.3.1: The core histone proteins 

Post translational histone modifications have emerged as important regulatory 

components of cellular processes influencing gene regulation. Histone proteins wrapped 

in DNA assemble into nucleosomes and are the foundational building blocks of 

eukaryotic chromatin. Early reports in the late 1880’s suggest the discovery of histone 

proteins and work in the 1960s was the first to report a potential function for these 

proteins in controlling gene regulation [75]. Evolutionary processes have resulted in the 

four core histone proteins that make up the nucleosome and pack the DNA tightly. These 

four core proteins that make up the octamer are H2A, H2B, H3 and H4 [76]. Each histone 
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protein contains globular domains that modulate the interactions between the core histone 

proteins. Additionally, each protein contains amino tails that contain approximately 30 

amino acids that extend away from the nucleosome structure and are subject to different 

modifications [77].  

 

1.3.2: Modifications of the core histone proteins 

Histone proteins have the potential to gain post translational covalent 

modifications on their extended free amino acid tails. While on an individual level, these 

modifications largely do not affect the structure of the nucleosomes themselves, higher 

order chromatin structure containing many nucleosomes can be impacted by these 

changes [78]. Modifications to the N-terminal tails of H2A, H2B, H3 and H4 were first 

reported in the 1963 by Phillips et al. [79]. The variety of modifications that can occur to 

the amino acid tails include methylation, acetylation, ubiquitylation, phosphorylation, 

ribosylation and sumolyation and each modification has the ability to translate into 

distinct biological outcomes [78]. The histone protein H3 is the most extensively 

modified histone protein and has been studied to examine epigenetic post translational 

histone modifications during normal cellular development as well as the progression and 

maintenance of diseased states [80]. In this review, I highlight histone acetylation and 

methylation of the core histone protein, H3.  

 

1.3.3: Overview of histone acetylation and methylation 

Histone acetylation and methylation was first described in 1964, when Allfrey et 

al. suggested its potential role in the regulation of RNA synthesis [81]. Notably, these 
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modifications have been extensively studied in regard to their contribution to closed and 

permissive chromatin states ultimately impacting nucleosome positioning and orientation 

of key regulatory sequences [82]. 

Histone acetylation is mediated by histone acetyltransferase (HAT) enzymes. 

There are different HATs containing specific subunits that dictate the distinct acetylation 

pattern it writes on the histone tail [83]. Human HATs can be grouped into five families, 

comprising of approximately thirty different HATs and while the sequences in HAT 

domains differ between families, they have high structural similarities within family 

members [84]. These enzymes rely on accessory proteins along the chromatin for 

localization to specific sites allowing the exchange for the acetyl group provided by 

Acetyl-CoA to modify the lysine [77].  This results in a more permissive, open chromatin 

state and allows the recruitment of proteins to these now accessible regions as the 

nucleosomes typically act as a barrier for RNA polymerase during this process [26].  

The HAT ability of CBP/p300, one of the five HAT family members, was 

discovered in 1996 [85, 86]. These enzymes are the only HATs that are able to acetylate 

all of the core histone proteins [86]. In terms of a functional example of this HAT, 

CBP/p300 are recruited by the transcription factor DUX4 in myoblasts to globally mark 

the underlying genome with the H3K27ac modification [87]. This transcription factor is 

known to be involved in a form of muscular dystrophy; however, the mechanisms of 

action remain poorly defined. In this study, Choi et al., highlights a new epigenetic 

mechanism by which a HAT, recruited to the genome via a transcription factor, modifies 

histones resulting in open chromatin surrounding genes relevant to muscular dystrophy.  
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The dynamic exchange between HAT and histone deacetylase (HDAC) enzymes 

results in changes between chromatin states as HDACs remove acetyl groups typically 

resulting in a more closed chromatin arrangement [74]. In principle, the acetylation to the 

lysine group serves two overall purposes: (1) it neutralizes some of the positive charge of 

the histone protein and thus results in a weaker interaction of the DNA with the histone, 

thereby resulting in a euchromatin state [81] and (2) it acts as a docking site for the 

recruitment of other regulatory proteins that can come in and direct transcriptional 

changes.  

In contrast to histone acetylation, histone methylation results in condensed 

chromatin. This modification to the histone tails can be acquired at the amino acids 

arginine or lysine; however, the role of arginine in chromatin dynamics and 

transcriptional regulation is not as well defined compared to those of lysine alterations 

[88]. Lysine has the ability to gain either one, two or three methyl groups which are 

mediated by the enzymes, histone methyltransferases (HMT), that recognize specific 

lysine residues. HMTs that mediate the acquisition of methyl groups of lysine residues 

are of two different broad classes, SET domain containing or non-SET domain 

containing, each with different catalytic mechanisms [89].  

Histone methylation does not change the charge of the histone and so it has the 

ability to correlate with either transcriptional activation or transcriptional repression 

depending on the location of the methylation [77]. These methylation patterns are also 

dynamically regulated by demethylase enzymes and for the case of lysine demethylation, 

these are referred to as lysine demethylases. The methyl groups replace the hydrogen 

groups by exchanging with methyl groups provided by S-Adenosyl methionine to result 
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in either mono, di or tri methylation [90]. Similar to that of acetylation, regulatory 

proteins can recognize these methyl groups. Different chromodomains of HMTs prefer to 

bind to specific methylated lysine residues and go on to perform their specific effector 

function; this results in the outcome of either a more heterochromatin or euchromatin 

state [91].  

Foundational studies characterized the fundamental core histone proteins and 

revealed their N-terminal tails are subject to different covalent post-translational histone 

modifications. Later research identified factors writing and removing these modifications 

from the tails, which was followed with advancements in our knowledge surrounding 

regulatory proteins reading these modifications and carrying out the gene regulatory 

programs influencing cellular phenotypes. The dynamic relationship within histone 

acetylation and histone methylation programs allows for the switch between open and 

closed chromatin states.   

 

1.3.4: Histone acetylation and methylation in cancer 

Cancer is a heterogeneous disease with underlying abnormalities in genomic and 

epigenomic profiles [92]. Aberrant regulation of posttranslational histone modifications is 

among these abnormalities, which has been shown to contribute to the cancer phenotype 

by altering accessibility of key target genes [93]. In fact, histone modifications have 

emerged as key regulators in this disease [94, 95]. This finding expanded on the prior 

determination of DNA methylation in cancer that revealed the interaction of HDACs with 

a chromatin-modifying factor that aids in methylating DNA within promoter regions of 
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tumor suppressor genes [96, 97]. Furthermore, the association of DNA 

methyltransferases (DNMTs) with HDACs was revealed [94, 95].  

The dynamic mechanisms within histone acetylation and histone methylation 

have since been discovered to regulate known oncogenes and tumor suppressors 

ultimately influencing the progression and metastasis of cancers [98, 99]. These finding 

have inspired the expansion of the histone code hypothesis to include the regulatory roles 

of epigenetics in cancer transcriptional programs. Histone acetylation and methylation 

patterns are controlled by the interchange of their enzyme activities, which ultimately 

provide balance in a dynamic relationship between a euchromatin and heterochromatin 

state. Since these processes impact active and inactive gene states, continuing to elucidate 

these mechanisms in the development and maintenance in cancer cell models holds 

relevant purpose in better understanding the mechanisms underlying the disease and has 

also shown promise in therapeutic targets.  

Histone acetylation landscapes that are altered in cancers can be attributed to the 

recruitment of HDACs to tumor suppressor genes that are important for silencing 

epigenetic programs. In contrast, increased HAT activity at oncogenes can contribute to 

growth and proliferation of cancer cells. For example, abnormal HDAC regulation has 

been identified in pancreatic cancer where HDAC1-3 and HDAC7 have been identified to 

be overexpressed [100-103]. The cellular consequence of these alterations is dependent 

on the specific enzyme involved. Notably, the aberrant expression of HDAC7 results in 

the ability to distinguish between advanced pancreatic cancer from earlier neoplasms 

[101] and HDAC1-3 enzymes have been shown to impact processes of p53, NFkB and 

p65 programs, which have been correlated with cancer progression including pancreatic 



 18 

cancer [104, 105]. The HAT p300 has been shown to be influenced by the activity of 

nuclear factor of activated T cells (NFAT) and glioma-associated oncogene family zinc 

finger 3 (GLI3) in that these transcription factors recruit this active HAT and thereby 

mechanistically results in loosening of the chromatin and allows for the transcription of 

the c-MYC oncogene [106], a known regulator of many cancer phenotypes [107, 108].  

 

1.4: Next generation sequencing methods for studying chromatin-based mechanisms  

Early methods in determining DNA structure and the organization relied primarily 

on microscopic and biochemical techniques. These techniques have led us to 

groundbreaking findings that have since served as the foundation of normal and aberrant 

cell phenotypes. Modern technologies have allowed us to study the epigenome and 

transcriptome on a genome-wide scale. These technologies termed ‘Next Generation 

Sequencing’ technologies have revolutionized the way we study genomic based 

mechanisms and have notably provided great insight into cancer phenotypes. Here I 

describe methodologies used to study the various layers of genomic regulation described 

above including: (1) 3-dimensional chromosome architecture, (2) post translational 

histone modifications and (3) gene expression.  

 

1.4.1: Methods for studying 3D chromosome organization  

 Research investigating nuclear organization initially relied on microscopic 

techniques. While on the fundamental level, light microscopy has allowed for the basic 

observation of nuclear morphology, advancements in microscopic methods have allowed 

for interrogation of nucleic acid sequences within the nucleus. Fluorescence in situ 
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hybridization is a microscopic technique developed in the 1980’s that uses fluorescent 

probes designed to bind to a complementary sequence along the genome. This technique 

identified co-localization of distal genes during active transcription [109]. Fluorescence 

in situ hybridization and its derivatives holds power when investigating single cells or 

smaller cell populations. However, when inquiring about cell populations on a genome-

wide level, this and other microscopic techniques fall short.  

 While microscopy still holds importance and value in genomic and molecular 

biology research, advancements in genome-wide methods have allowed for the 

investigation of entire genomes within single or whole cell populations. Modern methods 

for defining genome-wide landscapes of histone modifications uses Next Generation 

Sequencing technologies to expand characterization past single loci. A groundbreaking 

study in 2002 by Dekker et al. described the first chromosome conformation capture (3C) 

based assay, which allows for the association of genome-wide contacts [110]. Some of 

the derivatives of 3C technologies include 4C and 5C. While there are differences in the 

number of targeted genomic regions, the fundamental principle of 3C is shared across the 

other derivatives. In short, the chromatin is fixed using a fixative such as formaldehyde 

which results in covalent linkage between DNA and protein interactions [111]. The 

crosslinked chromatin is then digested typically using a 6 bp restriction endonuclease and 

is followed by chromatin dilution and ligation, resulting in the ligation of intramolecular 

fragments. The advancements of 3C into 4C (circularized chromosome conformation 

capture) and 5C (chromosome conformation capture carbon copy) builds on the 

limitations from the given predecessor. Whereas 3C interactions represent a ‘one vs. one’ 
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interaction, 4C allows for the detection of ‘one vs. all’ interactions and 5C expands to 

‘many vs. many’.  

 The innovation of Next Generation Sequencing technologies permitted the 

development of methods determining all genome-wide interactions for any given loci. In 

2009, Lieberman et al. developed the first among these methods named Hi-C [47]. This 

methodology does not require the identification of target loci and rather identifies all 

chromosome interactions. The principles of Hi-C are shared with that of 3C and its 

derivatives; however, modifications include filling the digested ends with a biotin and 

generation of a Next Generation Sequencing library following ligation and isolation of 

biotinylated fragments post dilution, ligation and linearization. Paired-end massive 

parallel sequencing is then performed on the fragments to amplify and identify the 

junctions. This method was modified in 2011 by Kalhor et al. with the aim of improving 

the signal to noise ratio [112]. This method biotinylates the proteins after crosslinking 

and solubilization of the chromatin. After enzyme digestion, the fragments are tethered to 

magnetic streptavidin beads and selected through magnetization allowing for reduction of 

inappropriate intermolecular interactions. The ends of the DNA are then filled in, 

biotinylated, purified, exonuclease treated, sheared into smaller fragments and pulled 

down by magnetic streptavidin beads. Lastly, the Next Generation Sequencing libraries 

are prepared and sequenced as described for Hi-C. This technique is referred to as 

Tethered Chromatin Conformation Capture. These technologies have advanced our 

understanding of chromosome contacts due to the high resolution they provide at any 

given interaction loci across the genome.  
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1.4.2: Methods for post translational histone modifications 

           Next Generation Sequencing has also led to the development of novel methods for 

identifying the genome-wide landscape of histone modifications. These technologies 

have afforded an advantage for genome-wide analyses compared to prior methods that 

limited investigations to specific loci. This method pairs the traditional chromatin 

immunoprecipitation (ChIP) technique with massive parallel sequencing and is termed 

ChIP-seq. ChIP allows for the investigation of protein-DNA interactions within the 

nucleus [113, 114] and when paired with NGS, results in genome-wide binding sites of 

the protein of interest [115]. To perform the ChIP, proteins are first crosslinked with 

formaldehyde and the cells are lysed to release the DNA from the nuclei [116]. 

Sonication is then used to fragment the DNA into approximately 500 bp fragments, 

which can then be used to isolate protein-DNA complexes. The complexes are 

immunoprecipitated with an antibody against the protein target of interest and isolated 

using protein A/G magnetic bead selection with a series of washes. The chromatin bound 

to the protein is then eluted, the cross-links are reversed and the proteins are proteinase 

digested. After the DNA is purified, enrichment can be detected using quantitative 

polymerase chain reaction (qPCR) with primers designed against known target regions 

for the protein of interest. For some studies this is the endpoint of the investigation; 

however, when inquiring about whole genome targets either microarrays or high-

throughput sequencing can be used. Microarrays utilize a hybridization technique that 

allows for fluorescently labeled DNA fragments to hybridize to an array of genomic 

targets, when paired with ChIP this is referred to as ChIP-on-chip. In contrast, Next 

Generation Sequencing libraries can be built from the fragments and used in massive 
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parallel sequencing by synthesis to yield high throughput results of the proteins’ targets 

along the entire genome. The enrichment of these targets are determined when comparing 

the ChIP-seq data for the protein of interest relative to an input control.  

 

1.4.3: Evaluating gene expression  

 Many methods have been designed to quantify gene expression over the years. 

Quantitative reverse transcriptase PCR (qRT-PCR) can be used to determine expression 

of individual gene targets along the genome [117]. The development of two technologies, 

the microarray and RNA-sequencing, have advanced our capability of studying gene 

expression by allowing the investigation of thousands of genes. As mentioned above, 

microarray is a hybridization technique that utilizes a fluorescent dye for later 

quantification. The array is designed with fixed DNA probes against the RNAs of 

interest. The prepared cDNAs from the given experiment are passed over the microarray 

slide and any complementary sequences between the probes and cDNAs will have an 

affinity for hybridization. The fluorescent dyes are ultimately used for optimal 

measurements where relative amounts from each probe can be calculated, thereby 

correlating with expression quantification [118]. Next Generation Sequencing, described 

earlier, resulted in the development of RNA-sequencing. This technique was developed 

to investigate the quantity and presence of RNA at a given time. This method utilizes 

massive parallel sequencing to investigate the entire transcriptome.  
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1.5: Dynamics of chromatin structure 

 Chromatin accessibility is a dynamic process mediated by external stimuli and 

affects the capability of transcriptional regulators to bind their regulatory elements along 

the genome. The switch between open and closed chromatin states is referred to as 

chromatin-remodeling and is influenced by a variety of epigenetic mechanism. In 

addition to DNA methylation [29], posttranslational histone modifications [30] and non-

coding RNAs [31], environmental stimuli can also influence chromatin organization and 

accessibility. For example, cigarette smoke has been shown to remodel chromatin by 

altering histone acetylation patterns resulting in increased gene expression of pro-

inflammatory genes [119] and has recently been implicated in lung cancer phenotypes 

[120]. Moreover, chromatin-remodeling is a well-known facet underlying cancer 

phenotypes [121] and because of the reversibility of chromatin-remodeling, efforts have 

been made to target regulatory factors with the potential for therapeutic intervention. 

Therefore, elucidating chromatin-remodeling mechanisms underlying disease phenotypes 

is important for identifying agents capable of disease mitigation.  

 

1.5.1: Chromatin-remodeling in response to hormone signaling 

 Nuclear receptors have been shown to mediate chromatin-remodeling by 

recruiting regulatory proteins that alter downstream transcriptional programs [122]. These 

nuclear receptors are transcription factors that are activated by their coordinated ligand 

and contribute to epigenetic and gene expression changes in normal and disease 

phenotypes.  
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A clear example of this relationship is that of hormones and their corresponding 

receptors. St. John et al. studied the hormone Vitamin D3 in the transition between 

osteoblasts and osteocytes [123]. Through the integration of genome-wide histone 

modifications and gene expression datasets in response to hormone-stimulation, they 

identified temporal changes in chromatin-remodeling around osteocyte-relevant genes. 

Since Vitamin D3 hormone is involved in bone remodeling, this provided mechanistic 

context for this hormone in chromatin-remodeling during osteoblast differentiation. 

Another study in mammary epithelium during different cellular states investigated 

genome-wide H3K27me3 changes in response to two hormones, prolactin and progestin 

[124]. Ultimately, they determined hormone-regulated histone methylation patterns to be 

mediated by the chromatin remodeling complex EZH2 in mammary cell lineage 

specification.   

Aberrant nuclear hormone receptors are underlying phenotypes of several cancers 

and furthermore can be used to further classify cancer subtypes of breast cancers [125]. 

Among these prevalent cancers is the estrogen receptor (ER) positive subtype [126]. 

Other receptors linked to breast cancer are the progesterone (PR), androgen, thyroid and 

glucocorticoid receptors [127-129]. A study investigating chromatin-remodeling 

signatures in ER/PR positive breast cancer in response to temporal stimulation revealed 

structural transitions in topologically associated domains that coordinated with the 

hormones estrogen and progestin [130]. Furthermore, changes in genome-wide histone 

modification signatures were also observed that coordinated with hormone response and 

suggested unique and concordant hormone chromatin reorganization. Furthermore, 

changes in genome-wide compartments and histone modifications resulted in gene 
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expression differences in response to either hormone. In another study, alterations in 

long-range chromatin interactions and DNaseI hypersensitivity coordinated with changes 

in gene expression in response to glucocorticoid steroid hormone pulsations in a murine 

breast cancer model [131]. 

As nuclear receptors play a role in transcriptional processes and aberrant 

expression of nuclear receptors has been associated with disease phenotypes, elucidating 

mechanisms underlying their alterations in response to their given ligands is important. 

While there are many nuclear receptors whose downstream mechanisms result in distinct 

cellular phenotypes, among these are hormone nuclear receptors. Understanding the 

dynamic mechanisms within chromatin remodeling in regard to genome-wide chromatin 

architecture and histone modification alterations in cancer phenotypes will allow for 

elucidation of chromatin-mediated etiology of cancer and may provide insight into 

therapeutic targets. In Chapter 4 of this dissertation, I present high resolution chromatin 

dynamics in response to temporal stimulation of an estrogen derivative in ER positive 

breast cancer cell models.   

 

1.5.2: Chromatin-remodeling in response to small molecules 

 Changes in chromatin structure are often mediated by enzymes that communicate 

toward downstream transcriptional programs as discussed earlier. As research has 

continuously supported epigenetic mechanisms governing chromatin-remodeling to be 

reversible, there has been increased interest in modulating these processes in human 

disease. To this end, small molecule inhibitors have emerged as promising for altering 
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mechanisms involving chromatin-remodeling and a subset of the selective inhibitors have 

advanced to clinical trials.  

Some of the major overall classes of inhibitors that have been developed include: 

histone acetyltransferase inhibitors and histone deacetylase modulators [132], 

bromodomain inhibitors, DNA methyltransferase modulators and protein 

methyltransferase inhibitors [133]. HDAC inhibitors have been widely developed for 

cancer therapies [134]. Recently, an HDAC inhibitor was shown to increase expression of 

a tumor antigen and resulted in a decrease in immune suppressive cell types in non-small 

cell lung cancer cells [135]. 

 

1.6: Scope of Dissertation: 

            As discussed in the literature review portion of this chapter, aberrant chromatin 

based processes including higher order chromatin organization and post translational 

histone modifications are widely appreciated as contributing constituents to cancer 

development and maintenance. Elucidating these processes is important not only for 

gaining understanding regarding the molecular heterogeneity underlying this disease but 

targeting these mechanisms has also shown therapeutic promise. Here, I describe our 

work applying Next Generation Sequencing technologies to study functional genomics 

within the 3-dimensional and epigenetic landscape of two prevalent cancers.  

            Chapter 2 of this thesis embodies integrative genomic analyses revealing 

epigenetic plasticity in a pancreatic ductal adenocarcinoma cell-line model. The overall 

goal of this chapter was to reveal chromatin-based mechanisms in pancreatic ductal 

adenocarcinoma and to determine the effects of clinically relevant histone 
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acetyltransferase inhibitors on the cancer epigenome. This chapter builds on our study 

identifying the impact of ICG-001 and C646 on gene expression in pancreatic ductal 

adenocarcinoma and colorectal cancer cell-lines (highlighted in Appendix A). I define the 

3-dimensional chromatin landscape of pancreatic ductal adenocarcinoma and 

characterizes the distribution of post translational histone modifications within these 

interacting regions and correlate these regions with gene regulatory programs. I then 

determine the effects of histone acetyltransferase inhibitors on chromatin loops and gene 

expression in the widely used pancreatic ductal adenocarcinoma cell-line, PANC1. 

In Chapter 3, I characterize grade-specific broad H3K4me3 and H3K27ac regions 

in pancreatic ductal adenocarcinoma cell-lines and furthermore determine the influence 

of these histone acetyltransferase inhibitors on these broad epigenomic domains. Lastly, I 

propose genome-wide mechanisms mediated by these inhibitors within these regulatory 

regions.  

            In Chapter 4, I identified the dynamic reorganization of chromatin domains in 

estrogen receptor positive breast cancer cell models. The overall goal of this chapter was 

to elucidate chromatin-based mechanisms in response to temporal stimulation of the 

estrogen derivative, 17-β estradiol, in an estrogen receptor positive breast cancer cell-line 

and the tamoxifen resistant derivative of these cells. Furthermore, we aimed to establish 

the role of estrogen receptor alpha in mediating these dynamics and further linked these 

processes to gene expression. 

            This body of work focuses on the characterization of higher-order chromatin 

organization and histone-modification mechanisms of two deadly cancers. Furthermore, 
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we investigate the plasticity of these mechanisms in response to external stimuli to 

determine the dynamics of these mechanisms in regard to transcriptional outcomes.  
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CHAPTER 2 

 

Three-dimensional analysis reveals altered chromatin interaction by enhancer 

inhibitors harbors TCF7L2-regulated cancer gene signature 
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Abstract 

Distal regulatory elements influence the activity of gene promoters through 

chromatin looping. Chromosome conformation capture (3C) methods permit 

identification of chromatin contacts across different regions of the genome. However, due 

to limitations in the resolution of these methods, the detection of functional chromatin 

interactions remains a challenge. In the current study, we employ an integrated approach 

to define and characterize the functional chromatin contacts of human pancreatic cancer 

cells. We applied Tethered Chromatin Capture (TCC) to define classes of chromatin 

domains on a genome-wide scale. We identified three types of structural domains (TAD, 

boundary and gap) and investigated the functional relationships of these domains with 

respect to chromatin state and gene expression. We uncovered six distinct sub-domains 

associated with epigenetic states. Interestingly, specific epigenetically active domains are 

sensitive to treatment with histone acetyltransferase (HAT) inhibitors and decrease in 

H3K27 acetylation levels. To examine whether the subdomains that change upon drug 

treatment are functionally linked to transcription factor regulation, we compared TCF7L2 

chromatin binding and gene regulation to HAT inhibition. We identified a subset of 

coding RNA genes that together can stratify pancreatic cancer patients into distinct 

survival groups. Overall, this study describes a process to evaluate the functional features 

of chromosome architecture and reveals the impact of epigenetic inhibitors on 

chromosome architecture and identifies genes that may provide insight into disease 

outcome. 
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Introduction 

The compartmentalization of the eukaryotic genome into highly organized 

chromatin domains is central to the regulation of gene expression and to cellular 

homeostasis (Dekker & Mirny, 2016). Until recently, the genome and its structural 

organization has largely been studied as a unidimensional entity where local chromatin 

structure is regulated by epigenetic mechanisms such as post-translational histone 

modifications, DNA methylation and chromatin-binding proteins. However, advances in 

genome-wide chromatin conformation capture (3C) methods have enabled the study of 

the three-dimensional (3D) organization of the genome. Studies employing various 3C-

based methods, including 4C, 5C, ChIA-PET and Hi-C, have been developed to map 

long-range chromatin interactions, and have provided experimental evidence to explore 

the principles of 3D genomic architecture (Ramani, Shendure, & Duan, 2016). 

Collectively, these approaches support a model that interphase chromosomes occupy 

distinct chromosome territories and provide insight into how chromosomes fold within 

these territories (Duan et al., 2010; Heidari et al., 2014; Lieberman-Aiden et al., 2009; 

Sexton et al., 2012). However, the mechanisms that underlie the partitioning of the 

genome into these domains and their functional importance remains poorly defined. 

Analysis of Hi-C data has revealed characteristic structural features of the 

genome, including chromatin compartments, topologically associated domains (TADs), 

and chromatin loops (Dixon et al., 2012; Lieberman-Aiden et al., 2009; Rao et al., 2014; 

van Steensel & Dekker, 2010). These distinctive higher order chromatin structures are 

believed to frame long-range enhancer-promoter interactions for epigenetic gene 

regulation (de Laat & Duboule, 2013; Dekker, Marti-Renom, & Mirny, 2013; G. Li et al., 
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2012; Sanyal, Lajoie, Jain, & Dekker, 2012). However, large-scale structural studies 

generally provide little mechanistic detail regarding the functional relationships between 

higher order chromatin structure and cell-specific gene regulation. Recent computational 

and statistical approaches demonstrate that Hi-C data can be used to identify interacting 

genomic loci at a resolution of 8-20 kb (Ay, Bailey, & Noble, 2014; Jin et al., 2013; Lan 

et al., 2012), providing sufficient resolution to integrate higher order chromatin 

organization and gene expression data.  

In cancer, altered regulation of epigenetic networks plays a central role in 

tumorigenesis and metastasis. While DNA methylation and histone modification patterns 

are frequently associated with both solid and hematological malignancies, it remains to 

be determined if 3D chromatin states are characteristic to specific cancer types and their 

gene expression programs (de Laat & Duboule, 2013; Dowen et al., 2014; Gondor & 

Ohlsson, 2009). The reversibility of histone modifications makes them an attractive target 

for cancer therapy and thus defining the epigenetic landscape of specific cancer types 

may provide important insight into the development of new therapeutic targets. Small 

molecule inhibitors that target histone modifying enzymes to disrupt the cancer cell 

epigenome are being developed for the treatment of cancer (Perri et al., 2017). In 

particular, histone acetyltransferases (HATs) are emerging targets in drug discovery with 

potential applications in cancer and other disease models (Wapenaar & Dekker, 2016). 

HATs catalyze the acetylation of lysine residues on histones during the epigenetic 

regulation of gene transcription (Grunstein, 1997). In addition to histones, HATs mediate 

the lysine acetylation of transcription factors, which is important for their function 

(Farnham, 2009; Singh et al., 2010; Vaquerizas et al., 2009). However, currently the role 
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that HATs, histone acetylation and HDACs play in regulating higher order chromatin 

structure remains unknown.  

In this study, we investigate the relationship of higher order chromatin structure, 

histone modification and gene expression using the human pancreatic cancer cell line 

PANC1. We conducted Tethered Chromatin Capture (TCC), a modified Hi-C protocol 

(Kalhor et al., 2011), to identify and characterize chromosome interactions and domains 

in PANC1 cells. We integrated the interacting regions with chromatin state information 

(histone modifications, DNase hypersensitivity, and RNA Polymerase II binding) to 

uncover distinct types of subdomains associated with specific epigenetic states. We then 

determined the impact of two epigenetic inhibitors that target the histone 

acetyltransferases CBP (ICG-001) and EP300 (C646) on chromatin architecture (Bowers 

et al., 2010; Eguchi, Nguyen, Lee, & Kahn, 2005).  Finally, we incorporated chromatin 

binding and gene expression data for the transcription factor TCF7L2 to examine the 

association of chromosome architecture and TF-mediated gene regulation. Overall, our 

analysis highlights (1) a process for evaluating chromosome architecture and epigenetic 

states (2) the impact of two histone acetyltransferase inhibitors on chromosome 

architecture and (3) chromatin architecture associated with TCF7L2-mediated gene 

regulation. 
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Results 

Identification of chromosomal interacting regions in PANC1  

We conducted our studies of higher order chromatin structure in the human 

pancreatic ductal adenocarcinoma (PDAC) cell-line PANC1, which is a model used for a 

variety of mechanistic and functional studies of pancreatic cancer. We identified the 

interacting regions of chromatin via tethered conformation capture (TCC) using 2 

biological replicates (Kalhor et al., 2011). The TCC protocol decreases random 

intermolecular ligations between DNA fragments, particularly from interchromosomal 

interactions. We assessed the TCC data quality by comparison to available Encyclopedia 

of DNA Elements (ENCODE) HiC datasets for PANC1. Figure 2.1-A compares the 

genome-wide and chromosome 17 contacts for the TCC and HiC datasets binned at 1 Mb 

resolution, respectively, where the heatmap color indicates the contact frequency. Both 

interaction maps exhibit comparable patterns of the regional enrichment of long-range 

interactions. However, the TCC dataset has a notable depletion of interchromosomal 

interactions compared to the HiC dataset with a similar percentage of cis interactions 

greater than 20 kb (cis and trans interactions, respectively; Fig. 2.1-B). Pairwise 

comparison of TCC and Hi-C interaction matrices binned at 1 Mb have Pearson 

correlation coefficients greater than 0.9 (Fig. 2.1-C). The correlation of the TCC 

replicates for each chromosome binned at different resolutions (200 kb, 500 kb and 1 

Mb) also correlate well, except for chromosome 9. Poor correlation for chromosome 9 

has been found in other cell types (Rao et al., 2014). Further, the PANC1 TCC and HiC 

datasets have a comparable number of corresponding topological associated domains 

(TADs) and TAD boundaries (Appendix B-1). Overall, these results indicate a high 
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degree of similarity between the TCC and HiC datasets. Thus, TCC replicates were 

combined for downstream analyses of PANC1 chromatin structure. 

Using the merged TCC replicates, we defined a total of 1,371 TADs, 709 

boundary and 71 gap domains. Boundaries are interaction-sparse regions that lack inter-

domain chromosomal interactions with neighboring TAD regions, whereas gaps are 

regions that lack interactions and are located between two identified domains. Gaps 

occurred in gene deserts or centromeres and few boundaries or gaps were found between 

two adjacent TADs. This is consistent with other studies showing that the genome is 

partitioned into Mb-sized local chromatin interaction domains (Dekker et al., 2013; 

Dixon et al., 2012; Rao et al., 2014). 60% of genes are contained within TADs whereas 

boundaries and gaps contain 38% and 2% of genes, respectively.  

 

Classification of epigenetic marks 

We next characterized the epigenetic states associated with the different types of 

PANC1 structural domains (TADs, boundaries, and gaps). We applied a Hidden Markov 

Model (HMM) to segment the genome based on combinatorial epigenetic states using 

histone ChIP-seq data (Bonneville & Jin, 2013). A12-state HMM with a 1 kb bin size and 

an optimized emission probability matrix using the best Bayesian Information Criterion 

(BIC) scores was used (Fig. 2.2-A). The resulting 12 epigenetic states are referred to as 

S1-S12, and can be categorized by regulatory potential by the emission probability 

values. In particular, values greater than 0.1 are considered valid marks for that state and 

values larger than 0.5 represent dominant marks. S1 and S7 are one-mark states enriched 

with the repressive mark H3K27me3, whereas S9 is a two-mark state having both 
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H3K27me3 and H3K9me3. Both S2 and S11 represent regions that are depleted of any 

epigenetic marks (emission probabilities less than 0.015), thus are termed depleted states.  

We determined the proximity of the epigenetic states by evaluating their transition 

probabilities (Fig. 2.2-B). Three states (S1, S7, and S9) also have relatively high 

transition probabilities to each other, indicating a strong neighborhood of interspersed 

H3K36me3 and H3K9me3 repressive marks. The S6 state is a one-mark state enriched 

only with the repressive H3K9me3 and the S8 state enriched with both H3K36me3 and 

POLR2A. S3 and S4 are enriched with H3K27ac/H3K9ac/H3K4me1 and 

DNase/POLR2A. S10 is an intermediate active state, with a pattern similar to S3 and S4, 

but only enriched with H3K4me1. S5 and S12 are two mixture states showing enrichment 

of both active and repressed marks, as well as high POLR2A. 

 We categorized genomic regions into 8 different categories and determined the 

distribution of epigenetic states within each region (Fig. 2.2-C). Non-promoter regions, 

including 5’ and 3’ distal and gene body (intragenic) categories are enriched in repressive 

states (S1, S7 and S9). Active states are enriched in 5’ TSS and 3’ Proximal regions 

(states S4 and S5).  Figure 2.2-D shows a region that contains a gap, boundary and TAD, 

with the corresponding epigenetic state. The bulk of gaps are S2 domains and are 

depleted of any epigenetic mark (Fig. 2.2-E). Interestingly, there are subgroups of 

boundaries and TADs that have varied patterns of histone modifications. We therefore 

further divided these into different categories; S1/S7 dominant (repressive marks), 

S4/S5/S10 dominant (active marks, near a TSS), or a mixture (mixed percentage of active 

and repressive states). This characterization indicates distinct epigenetic states are 
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physically connected and certain domains contain interspersed repressive epigenetic 

patterns (Appendix B-2).  

Based on the association of epigenetic states, we classified adjacent or intra-

domain states by defining subdomains. These combinations of states resulted in six 

subdomains referred to as SD1 to SD6 (Fig. 2.2-F). The subdomains are on average 60 

kb. SD1 is a depleted subdomain (comprised of S2 and S11) and lacks marks, SD2 and 

SD3 are repressed subdomains (S6/S7 and S1/S7/S9, respectively) and SD4 is a gene 

body subdomain (S5/S8/S12). SD5 is an active enhancer subdomain (S4/S5/S10/S11 or 

only S10/S11), and SD6 is an active promoter subdomain (S3/S4/S5 states), which are 

centered by a promoter (S4) and extend up/downstream of the 5’ TSS (S3).  

 

Correlation of sub-domains and interacting peaks 

To explore the relationships between chromosomal loops epigenetic states and 

domains, the loci of interacting chromatin regions were determined at a 10 kb resolution 

in 40 kb overlapping windows (interaction peaks (IPs). We identified 30,297 significant 

IPs (FDR <0.1 with a peak pair distance >20 kb). 90% of IPs are intra-domain 

interactions, whereby the two different loci are located within the same domain. Nearly 

80% of the IPs are within a TAD, 19% of the IPs are in a boundary, and very few IPs are 

in gap regions. Since cancer cell-lines typically harbor chromosomal abnormalities, 

including chromosomal amplification, we investigated whether amplified regions 

contribute to the set of IPs. Only 0.72% of the IPs for PANC1 are in amplified regions of 

PANC1 cells, confirming that amplified regions are not enriched in the set of identified 

long-range interactions (Lan, Farnham, & Jin, 2012). Since the small number of IPs in the 
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amplified regions of PANC1 cells may play important roles in gene regulation, we 

included them in downstream analyses, which has been done previously (Fullwood et al., 

2009).  

The heatmap in Figure 2.3-A demonstrates that the specific subdomains of 

interacting loci tend to be the same on either end. For instance, an IP having SD4 at one 

end usually has a matched SD4 at the other end. This result is consistent with the 

hypothesis that the two ends of an IP are indeed physically close to or interacting with 

each other and thus have similar epigenetic states. We also found that many IPs have at 

least one locus in a depleted or repressed subdomain (SD1, SD2, or SD3) (summarized in 

Fig. 2.3-A, right panel).  

We annotated the IPs according to gene regions and defined six promoter-

centered and one non-promoter interaction groups (Fig. 2.3-B); Promoter (P; -5 to +1 kb 

of a TSS), Distal (D; 100 kb upstream or downstream of a TSS), and Far (F) regions 

(greater than 100 kb from a TSS). We defined promoters that interact with each other. 

Because the distance between two loci was calculated using the center of each locus (as 

opposed to the boundary), in certain cases, the two loci of one IP could actually overlap 

with each other. If this occurs, then it is possible that the same promoter is identified by 

both loci; these are designated PP1. There are also promoter-promoter (PP) IPs, where 

different promoters are at each loci (PP2). If one end of an IP is in the promoter region of 

one gene and the other end in the distal region of the same gene, this IP is categorized as 

PD1. PD2 is an IP that has one end in promoter region of Gene1 and the other end in 

distal region of Gene2. Similarly, if one end is in the promoter region of one gene and the 

other end in the far region of the same gene, this IP is categorized as PF1. PF2 is an IP 
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that has one end in the promoter region of Gene1 and the other end in far region of 

Gene2. If neither end is in the promoter region of any gene, that IP is classified as non-

promoter-related and given the designation O-O (total number is 19,035). 

In total, we obtained 11,262 IPs associated with at least one promoter, and thus 

referred them as P-centered IPs or looping. We found that approximately 26% of looping 

events represent promoter-promoter interactions with 951 PP1 and 2,059 PP2 

(interactions between the promoters of different genes), respectively. Further, 24% 

promoter IPs (2,724) occur with distal regions of the same gene (PD1; 2,898 genes), 

whereas 27% of IPs (3,045) are between the promoter and distal regions of different 

genes (PD2). The expression level of genes in PANC1 cells linked to each IP categories 

was determined (Fig. 2.3-C) (Gaddis et al., 2015). Interestingly, promoter-centered loops 

either contain genes that are in the repressed states (low expression and in SD1-3) or 

genes that are in the active states (higher expression and in SD4-6). Genes in IPs 

corresponding to SD5 and SD6 are more highly expressed as compared to any other types 

of subdomains. Overall, these results indicate that connecting epigenetic states to 

topological structure can identify epigenetic subdomains that have distinct patterns of 

gene expression. 

 

HAT inhibitors affect chromosomal organization in PANC1 cells 

We previously reported the impact of the histone acetyltransferase (HAT) 

inhibitors ICG-001 and C646 on global gene expression in PANC1 cells (Gaddis et al., 

2015). To examine whether PANC1 sub-domains are functionally linked to changes in 

gene expression, we treated cells with ICG-001 and C646 for 24 hours and performed 
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TCC on control and treated cells. The total number of TADs within each chromosome is 

equivalent between drug-treated and control-treated PANC1 cells (Appendix B-3). While 

a large proportion of the TADs, boundaries and gaps do not change with treatment (50%, 

40%, and 80%), we identified some of the chromatin domains to be sensitive to HAT 

inhibitor treatment. We therefore classified the domain changes (Fig. 2.4-A). The most 

frequent type of change occurred within TADs, whereby treatment increases the TAD 

length by a maximum of 300 kb (Fig. 2.4-B; conserved-expand category, yellow bar). In 

contrast, a TAD in treated cells that overlaps with a TAD in untreated cells but the 

position shifts by more than 300 kb occurs much less frequently (Fig. 2.4-B; the shift 

category, blue bar). The boundaries were most sensitive to treatment and were more 

prone to change than either gap or TADs (Fig. 2.4-B, purple bar). Pearson correlation 

showed that domain type changes are associated with boundaries and represent the active 

subdomains (SD4-6; Appendix B-4). This suggests that changes of a domain type, 

especially the transition of boundary to TADs are linked to epigenetically active regions. 

To examine how the HAT inhibition impacts histone acetylation within chromatin 

domains, we conducted ChIP-seq for H3K27ac in ICG001- and C646-treated PANC1 

cells. We calculated the log2 Fold Change (log2FC) of normalized and averaged 

H3K27ac read signals in 100 bp bins in drug-treated versus untreated PANC1 cells for 

each domain and sub-domain. We observed a minor decrease of H3K27ac at altered 

categorical domains (Shift/Split/Type-Change) and a slight increase of H3K27ac in the 

No Change category (Fig. 2.4-C, left panel). While we did not observe major alterations 

in these domain categories, there were significant differences in the sub-domains. 
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Specifically, all of the active subdomains (SD4-6) showed loss of H3K27ac signal 

in the treated cells (Fig. 2.4-C, right panel). H3K27ac is enriched at promoter and at 

distal regions. We found that the loss of H3K27ac is more profound at the promoter 

active subdomain SD6 than at the enhancer active subdomain SD5, suggesting that these 

inhibitors may affect HAT activity at promoters more than at enhancers. To assess how 

IPs are altered in drug-treated cells, we performed an Interaction Peak (IP) analysis 

(described above) and identified 10,787 IPs in ICG001-treated and 13,773 IPs in C646-

treated PANC1 cells. This represents an approximate 50% reduction in total IPs in treated 

PANC1 cells compared to the untreated control. Additionally, we identified that only 

approximately 50% of IPs in drug-treated cells were concordant with the control. Thus, 

treatment with ICG001 and C646 results in a decline in total IPs and also generation of 

new IPs (Fig. 2.4-D).  

We previously identified 2,029 differentially expressed genes (DEGs) in ICG001-

treated and 1,740 DEGs in C646-treated cells compared to control cells treated with 

DMSO (using a log2FC cutoff of 0.5 and a detection p-value < 0.05), with an overlap of 

754 DEGs common to both drugs (Gaddis et al., 2015). We integrated expression data 

with domains and found that approximately 70% of the genes that respond to drug 

treatment are located in conserved domains. Strikingly, the subdomains SD5 and SD6 

contain a large number of DEGs, regardless of the type of domain or domain change they 

are associated with (Fig. 2.4-E). After further associating DEGs with regions of 

differential H3K27ac enrichment and with looping events, we derived a list of 784 genes 

for ICG001-treated cells and 380 genes for C646-treated cells, for a combined total of 

992 DEGs that have altered chromatin domains. 
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TCF7L2-regulated genes are involved in altered chromatin interactions 

ICG001 and C646 inhibit the activity of CBP and P300 HATs and likely alter key 

signaling pathways. ICG001 was developed to be a specific inhibitor of the Wnt signaling 

pathway, which is important for developmental and disease processes (Eguchi et al., 

2005; Emami et al., 2004). A key transcription factor involved in this pathway is 

TCF7L2, which recruits CBP/P300 to its target gene regulatory elements. Our previous 

study assessed the impact of TCF7L2 and HAT inhibitors in PANC1 cells; however, the 

relationship between these processes and chromatin interactions and their epigenetic 

states remains unknown. TCF7L2 has been linked to a variety of human diseases such as 

type II diabetes and cancer (Blahnik et al., 2010; Cauchi & Froguel, 2008). In a previous 

study exploring cell type-specific binding patterns of TCF7L2, we showed that the 

majority of TCF7L2 sites co-localize with H3K4me1 and H3K27ac (Frietze et al., 2012). 

Given the relationship between TCF7L2 and H3K27ac marked distal regulatory 

elements, we hypothesized that drug treatment would affect TCF7L2-associated 

chromatin loops in PANC1 cells. We therefore identified promoter-distal (PD) IPs that 

were bound by TCF7L2 in PANC1 cells that are no longer classified as IPs in the drug-

treated cells. We isolated the genes associated with these IPs and compared them to genes 

differentially expressed upon drug treatment or upon TCF7L2 knockdown in PANC1 

cells, which we identified in a previous study (Fig. 2.5-A) (Gaddis et al., 2015). We 

found that the highest fraction of these IPs were those containing interactions between 

promoter and distal regions of different genes (PD2-D). We derived a list of 39 genes that 

are differentially expressed in drug-treated PANC1 cells and are also regulated by 

TCF7L2.  Pathway analysis using Gene Set Enrichment Analysis (GSEA) (Fig. 2.5-B) 
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(Subramanian et al., 2005) reveals enrichment in several cancer-related pathways, 

including Wnt signaling. We used SurvExpress (Aguirre-Gamboa et al., 2013) to 

determine if these genes can stratify survival risk of pancreatic cancer patients and found 

that this geneset predicts a significant survival correlation (Fig. 2.5-C, left panel, p-value 

2.5e-07), with high-risk patients displaying a probability of an overall worse survival rate 

(Aguirre-Gamboa et al., 2013). Specifically, 25 of the candidate genes showed 

differential gene expression between the high- versus low-risk patient groups (Fig. 2.5-C, 

right panel). Thus, our results demonstrate that the HAT inhibitors not only alter 

chromatin interactions but also distinguish TCF7L2-regulated genes for potentially useful 

clinical signatures.      

 

Discussion 

Despite advances in 3C-based chromatin interaction mapping (Dekker, Rippe, 

Dekker, & Kleckner, 2002; Libbrecht et al., 2015), there is a lack of understanding of 

how nuclear architecture affects gene expression and cellular function. In particular, our 

knowledge of how the 3D chromatin architecture of cancer cells contributes to cancer 

cell-specific gene expression programs is limited. Due to the limitation of sequencing 

depth and the use of 6-mer cut sites of restriction enzymes, most studies of 3D chromatin 

architecture thus far have focused on characterizing very large 0.7-2Mb TADs. Although 

such studies provide important insights into chromosomal architecture (Deng et al., 2014; 

Lan, Farnham, et al., 2012), studies of large domains do not address the challenge of 

associating chromosomal interactions with transcriptional control at the individual gene 

level. Recent advances in both the experimental and computational aspects of 
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chromosomal interaction analyses now enable the exploration of the 3D chromatin 

architecture of the human genome at a much higher resolution than previously possible, 

allowing for the construction of a detailed genome-wide interaction map (Ay et al., 2014; 

Jin et al., 2013; Lan, Farnham, et al., 2012). A recent study used an in situ Hi-C protocol 

to achieve 1-5 kb resolution of interacting genomic segments and linked chromatin loops 

with promoters, enhancers, and CTCF sites (Rao et al., 2014); however, it did not address 

the relationship between gene loops and gene regulation.  

 In this study, we demonstrated that the method of TCC can partition the PANC1 

genome into three types of structural domains termed gap, boundary and TAD. Our 

results are similar to previous studies of other cell types that used different experimental 

chromatin interaction methods (Dixon et al., 2012; Nora et al., 2012). Interestingly, we 

observed that both TAD and boundary domains (which are 1-5 Mb in length) were 

embedded with approximately 170,000 intra-domain chromatin interactions or interaction 

peaks. We found that these domains could be further categorized into six types of sub-

domains, each with distinct epigenetic characteristics. We note that similar types of sub-

compartments were defined in a previous study (Rao et al., 2014). However, there are 

notable differences between the method we present here and that of which was described 

in the previous study. The previous method divided each of two compartments with 

histone marks based on underlying interaction intensity and patterns. In contrast, we first 

used an unbiased training process in which we trained epigenetic states on the whole 

genome. We then associated the states with gene structure, expression, and other features 

resulting in the derivation of the six sub-domains. Using this approach, we found that 

promoter-centered looping genes within the three active subdomains (SD4-6) showed 
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much higher expression than those in the two repressed subdomains (SD2-3) (Fig. 2.3-

C), suggesting these newly defined subdomains have functional distinctions.   

 We further examined the relationship of histone acetylation in chromatin 

architecture. Although two histone acetyltransferase inhibitors, ICG001 and C646, have 

been previously shown to alter gene expression in cancer cells (Emami et al., 2004; 

Gaddis et al., 2015; Oike et al., 2014), their impact on the 3D genome and epigenome 

structure has not been studied. Therefore, we conducted TCC and ChIP-seq of H3K27ac 

in ICG001- and C646-treated PANC1 cells. Interestingly, we uncovered five major types 

of domain changes that occur upon treatment of PANC1 cells with ICG001 or C646 (Fig. 

2.4-A). In regards to Type-Change domains, we found that TADs are largely conserved 

and stable with drug treatment whereas boundary domains tend to switch to TADs. We 

also found that the drugs altered chromatin structures associated with positive regulatory 

elements. The H3K27ac enrichment is reduced predominantly within the active enhancer 

subdomains (SD6; Fig. 2.4-C) and the most significant gene expression changes occurred 

in the active-promoter subdomains (SD6; Fig. 2.4-E). We were able to link loops that are 

lost upon drug treatment with a list of 39 coding genes regulated by TCF7L2, a 

transcription factor important for developmental processes and implicated in human 

disease. This subset of genes is associated with cancer-related pathways and could 

separate pancreatic cancer patients into distinct survival groups. 

 In summary, we have developed a computational analytical approach for analysis 

of HiC/TCC data that can identify domains and subdomains and can classify chromatin 

looping events. Through the use of epigenetic inhibitors, our work also provides insights 

into the interdependence of 3D chromatin looping and transcriptional control. We 
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recognize that our current studies cannot determine if the enhancers that are affected by 

the epigenetic drugs are the same enhancers as identified by the chromosomal looping 

method. Future work using CRISPR/Cas9 to delete the TCF7L2-associated enhancers 

within the identified promoter-enhancer loops is needed to fully elucidate the mechanistic 

involvement of enhancer-mediated looping events in the regulation of drug-responsive 

genes. Nevertheless, our work provides genome-wide evidence that a strong association 

exists between a subset of enhancer-associated loops and enhancer-regulated genes. 

 

Methods 

Tethered Chromatin Capture (TCC)  

TCC was performed as described (Kalhor et al., 2011). Briefly, approximately 

5x107 PANC1 cells were crosslinked with 1% formaldehyde for 10 minutes at room 

temperature, crosslinking was quenched with 0.125M glycine for 5 minutes at room 

temperature and cell pellets were collected and stored at -80C. Nuclei were digested 

with 2000U HindIII prior to dilute solid-surface ligation reactions and TCC library 

preparation as described (Kalhor et al., 2011). For drug treatments, PANC1 cells were 

grown to 60% confluency before a 48-hour treatment with 10 μM ICG-001 (Tocris), 10 

μM C646 (Sigma-Aldrich) or DMSO and fixed and harvested as described above. 

 

Frequency contact matrix of TCC data 

Paired raw reads of TCC data for the PANC1 cell line were aligned to the human 

reference genome (hg19) by BWA (H. Li & Durbin, 2009) with default parameters. 

Reads were trimmed by 5 bp until 25 bp and aligned iteratively. Multiple aligned reads 
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and reads with a MAPQ less than 30 were removed. After performing fragment filtering 

(such as removing self-circles, error-pairs, and PCR duplicate reads), the reads were 

binned into either 500 kb or 1 Mb size bins, where the sum of interaction pairs within the 

bins was used for all bin-bin interactions. The construction of a frequency contact matrix 

was done as described previously (Bau et al., 2011; Wang et al., 2013). Briefly, binned 

data was first subjected to normalization and transformation into Z-scores, the 

distribution of chromosomal interaction frequencies of both cell lines was then examined 

using a 500 kb or 1 Mb resolution for intra-chromosomal and a 1 Mb resolution for 

whole-genome contact matrices. More specifically, for every 500 kb or 1 Mb bin of 

chromosome regions, the number of interactions (i.e., Z-scores not equal to zero) between 

each chromosome region and the rest of the chromosome regions was counted. The 

chromosomal interaction frequency of the region was then calculated as the counted 

number of interactions in the region divided by the total number of chromosome regions 

(e.g. with a 1 Mb resolution there are 3,029 chromosome regions in the human genome, 

and with a 500 kb resolution there are 498 chromosome regions in chr1). Z-scores of 

intra- or inter-chromosomal interaction matrices were then constructed as either a 

genome-wide contact heat map or a chromosome-specific intra-chromosomal contact 

heat map.  

 

Topological domains of TCC data 

A raw interaction contact matrix of each chromosome at 100 kb resolution was 

normalized using Hi-Corrector (W. Li, Gong, Li, Alber, & Zhou, 2015), which 

implements a set of scalable algorithms adapted from the original IC algorithm (Imakaev 
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et al., 2012)  for parallel computing. Domains were detected using TopDom (Shin et al., 

2016) based on the local minima of normalized contact matrix. For two consecutive local 

minima, if any bin does not show a significant difference between the contact frequencies 

of within interactions and between interactions, they are defined as being within a 

topological domain (TAD); otherwise, they are either a boundary or a gap. The boundary 

and gap regions represent TAD-free chromatin at the given sequencing resolution and 

current parameter settings. We note that a boundary does not refer to the left or right side 

of a TAD, but is a specific region that has low interactions within itself and also between 

neighboring regions. Thus, based on this definition, there is not always a boundary 

between two TADs. A Gap is a region depleted of interactions. 

 

HMM epigenetic states and subdomains 

Histone modification marks (H3K27ac, H3K4me1, H3K4me3, H3K36me3, 

H3K27me3, H3K9me3), RNA Polymerase II, DNase-seq and TCF7L2 datasets in 

PANC1 cell lines were obtained from the ENCODE Project (Consortium, 2012; Frietze 

et al., 2012).  

The data was trained by a univariate first-order Hidden Markov Model (HMM) 

(Heinz et al., 2010) to identify combinatorial epigenetic states. For each bin on the 

genome, the reads of each epigenetic mark were evaluated to determine if that mark is 

enriched in that bin (1) or not (0). We then used this binarized information of all 

epigenetic marks to train the HMM model for the default 300 iterations. For each 

combination of bin size (1 kb) and number of states (8, 10, 12, and 20), 5 trainings of the 

HMM model were performed and the best model was selected based on the Bayesian 
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information criterion (BIC). The outputs of emission and transition matrices or states 

were visualized using the commercial MATLAB program. Consecutive bins of the same 

HMM states were merged into a single region, given that the bins were within the same 

domain defined by TopDom. 

The emission probability of the HMM represents the distribution of the epigenetic 

marks in that particular bin, whereas the transition probability represents the possibility 

that a certain state should be assigned to a specific bin given the known state of the 

previous bin. If in a given state there were marks with an emission probability greater 

than 0.5, only these marks are considered as dominant marks for that state. For states 

without dominant marks, we used an emission probability cutoff of 0.1 for a mark to be 

considered as valid to identify a corresponding state. 

The transition matrix indicates which states are frequently neighbors. In addition, 

states that have very low values in the emission matrix, such as S2 and S11 in Figure 

2.2-A, may represent epigenetic mark-depleted states. Therefore, based on the transition 

and emission matrix, as well as the other genomic features, certain epigenetic states were 

merged together to a single region and biologically defined as a subdomain.  These 

subdomains reflect the epigenetic modification context over a chromatin structural 

domain. 

 

TCC data modeling using HOMER 

We use HOMER (Heinz et al., 2010) to find significant interactions or interaction 

peaks (IPs) in our TCC data. HOMER can search for pairs of loci that have a greater 
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number of reads in interaction data than would be expected by chance using a 

background model. HOMER defines the expected number of reads as 

𝒆𝒊𝒋 =
𝒇(𝒊 − 𝒋)(𝒏𝒊

∗)(𝒏𝒋
∗)

𝑵∗
 

where f is the expected frequency of reads, N* is estimated total number of reads, and n* 

is the estimated total number of interaction reads at each region. HOMER uses the actual 

number of interaction reads at each region as the initial value and then iteratively 

calculates the expected number of reads using the above model until the error between 

expected and observed reads totals per region is near zero. We examined genomic regions 

at 40 kb resolution to find significant interactions, using a minimum distance of 10 kb to 

consider an interaction between regions. The peaks were then further filtered using an 

FDR cutoff of 0.1 and distance cutoff of 20 kb between loci centers. 

In addition to the genomic location of the two interacting regions, HOMER also 

outputs a binomial p-value and FDR based on Benjamini correction. We further filtered 

the peaks using FDR<=0.1 and loci distance greater than 20 kb to isolate a more stringent 

set of IPs. 

 

Associating chromatin interactions with epigenetic subdomains 

For each IP, the subdomain overlaps (1 bp) with the two loci of the peaks were 

extracted. The average sizes of interaction peaks are longer than that of subdomains, so 

one peak locus may cover multiple subdomains. Changes in histone modifications in 

treated PANC1 cells were calculated by first extracting and averaging reads in the 
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subdomains in 100 bp bin, then dividing the averaged reads in drug-treated PANC1 cells 

by control PANC1 cells. 

 

Associating chromatin interactions with annotated genes  

For all annotated human RefSeq genes, we defined 5 genomic regions (Fig. 2.3-

B) relevant to transcription start sites (TSS), which are Promoter (-5 kb to +1 kb), Distal 

(±100 kb), and Far (beyond 100 kb). Then, we defined the following seven categories of 

IPs: 1) PP1—any IPs with both ends within the same Promoter; 2) PP2-- any IPs having 

two ends located in two different Promoters; 3) PD1-- any IPs between a Promoter and a 

Distal region, with the closest TSS to the Distal region being the same gene as for the 

Promoter end; 4) PD2-- any IPs between a Promoter and a Distal region, with the closest 

TSS to the Distal region NOT being the same gene as for the Promoter end; 5). PF1-- any 

IPs between a Promoter and a Far region, with the closest TSS to the Far region being the 

same gene as for the Promoter end; 6) PF2-- any IPs between a Promoter and a Far 

region, with the closest TSS to the Far region NOT being the same gene as for the 

Promoter end; and 7) Other-- any IPs that do not involve a Promoter.  

 

Integrating gene expression datasets 

All of our expression datasets were obtained from our previous study (Gaddis et 

al., 2015). Further details for each component of our analysis are described. For assessing 

the differential expression analysis for IP alterations within untreated and HAT-inhibitor 

treated PANC1 cells, total RNA was collected for untreated PANC1 cells and cells 

treated with either epigenetic inhibitor for 96 hours.  Total RNA was collected using 
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Trizol (Life Technologies). Ultimately, these RNAs were labeled, hybridized and 

analyzed with Illumina HT-12 v4 Expression BeadChips (catalog#: BD-103-0204) with 

the Direct Hybridization Assay and then scanned on an Illumina HiScan (catalog#: BD-

103-0604). We analyzed the data as described. For this analysis we used a log2FC cutoff 

of 0.5 and p-value <0.05 for further analyses.  

To incorporate TCF7L2 regulation we utilized our knockdown RNA-seq data. 

Total RNA after knockdown with 40nM siRNA targeting TCF7L2 or an siControl. We 

then performed RNA-sequencing on the polyA+ RNA selected True-Seq libraries using 

the Illumina HiSeq2000 platform and differential expression was determined as described 

(Gaddis et al., 2015). For this analysis we used a log2FC cutoff of 0.5 and p-value <0.05 

for further analyses. Lastly, for determining the expression levels of PANC1 genes within 

promoter-centeric IPs we used our control dataset from the RNAseq experiment.  

Ontology analyses were performed using GSEA (Subramanian et al., 2005) with 

default settings and survival analysis was done using SurvExpress (Aguirre-Gamboa et 

al., 2013). 
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Figures  

Figure 2.1: Characteristics of interacting chromatin regions in PANC1 cells 
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Figure 2.1: Characteristics of interacting chromatin regions in PANC1 cells. A, 

Genome-wide and chromosome 17 interaction matrices for PANC1 HiC (top) and TCC 

(bottom) datasets. The color intensity represents the normalized number of contacts 

between a pair of loci and the chromosome numbers are indicated on the outside of the 

matrix. B, The observed proportions of intra- and interchromosomal interactions in the 

valid HiC pairs using HiC or TCC (cis and trans, respectively). C, Histogram displaying 

the size distribution of TADs within each individual chromosome. TCC, tethered 

chromatin capture; TADs, topological associated domains 
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Figure 2.2. Classification of PANC1 domains with epigenetic marks  
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Figure 2.2. Classification of PANC1 domains with epigenetic marks. A, Emission 

probabilities of 12 epigenetic states trained by an HMM model on seven histone 

modifications, DNase and POLR2A. Marks containing emission probability values 

greater than 0.1 for a given state are considered to be valid and values greater than 0.5 are 

considered valid marks for that state and values larger than 0.5 represent dominant marks. 

B, Transition probabilities of the 12 epigenetic states mentioned in (A) with a high 

transition indicating a higher probability that a state is assigned to a given bin due to the 

state of the previous bin. C, Genome‐wide location analysis of the 12 epigenetic states 

defined in (A). D, Illustration of one genomic region along chromosome 7 displaying a 

TAD, boundary and gap domain with the corresponding IGV snapshots of 7 histone 

modifications, DNase and POLR2A. E, Heatmap displaying clustering of the 12 

epigenetic states within the corresponding domains. Each row corresponds to one domain 

and each column represents the percentage of each epigenetic state in each domain. 

Columns are clustered based on the TAD domains. F, We then categorized the 

12 epigenetic states based on their regulatory potential, these new categorizations are 

referred to as “sub‐domains.” We identified six sub‐domains (SD1‐6). The epigenetic 

mark‐depleted states S2 and S11 are merged into SD1, the interspersed S6‐S7 transition 

regions are merged into a repressed SD2, the interspersed S1‐S7‐S9 regions are merged 

into a repressed SD3, and the regions having active states are merged into a genebody 

SD4 and two active enhancer/active promoter SD5 and SD6. TADs, topological 

associated domains; HMM, Hidden Markov Model. 
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Figure 2.3: The relationship between interaction peaks and sub‐domains 
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Figure 2.3: The relationship between interaction peaks and sub‐domains. A, 

Subdomains at each locus of interaction peaks (IPs) (left). ‘Peak Loci 1′ and ‘Peak 

Loci 2′ represent the two ends of an IP. The table on the right summarizes the sub‐

domains identified in (Figure 2). B, Classification of promoter‐centric IPs based on 

nearest genes. We defined a promoter region (P) to include 5 kb upstream to 1 kb 

downstream of a TSS, a distal region (D) as 100 kb upstream or downstream of a TSS, 

and any region beyond 100 kb from a TSS as a far (F) region. IPs for which the same 

gene is the nearest gene to both ends are defined as PP1, PD1, and PF1 whereas loops in 

which the nearest gene is different for each end are denoted as PP2, PD2, and PF2. C, 

Boxplots of expression for genes associated with promoter‐centric IPs in PANC1 cells. 

For PD1 genes, only one gene is involved and that data is plotted in the PD1 panel, for 

PD2 genes, the expression of the gene at the promoter end is plotted in the PD2‐P panel 

and the expression of the gene at the other end is plotted in the PD2‐D panel. P‐P is PP1 

and PP2 combined. The expression of all other genes that are not involved in IPs in 

PANC1 cells are plotted in the Non‐IP panel. The genes are grouped by the type of 

subdomain where the promoter is located. PP, promoter‐promoter; TSS, transcription 

start sites. 
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Figure 2.4: Effects of histone acetyltransferase inhibitors on chromatin loops and gene 

expression in PANC1 cells 
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Figure 2.4: Effects of histone acetyltransferase inhibitors on chromatin loops and 

gene expression in PANC1 cells. A, Diagram of observed types of domain alterations 

after HAT inhibitor treatment. (1) No change – regions which match exactly between 

control and treated cells, (2) conserve‐expand – regions identified as a TAD in both 

control and treated cells, with the length of the TAD increasing by at most 300 kb in 

treated cells, (3) conserve‐shrink – regions identified as a TAD in both control and treated 

cells, with the length of the TAD decreasing by at most 300 kb in treated cells, (4) shift – 

a region identified as a TAD in treated cells that overlaps with a TAD in control cells, 

with the position shifting by more than 300 kb, (5) split – a region identified as one TAD 

in control cells but covers multiple TADs in treated cells, and (6) type‐change – a region 

identified as a TAD in control cells but has switched to a gap or boundary in treated cells. 

B, Percentage of domain changes after treatment for 96 hours with ICG001 (left) and 

C646 (right). C, Log2 fold change of H3K27ac levels after treatment, separated by type 

of domain changes described in (A) (left panels) and type of sub‐domains (right panels). 

D, Overlap between IPs identified in untreated and ICG001 treated (left) or C646 treated 

(right) PANC1. E, Number of differentially expressed genes after ICG001 (left) or C646 

(right) treatment, separated by type of domain change or sub‐domain. HAT, histone 

acetyltransferase; TADs, topological associated domains. 
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Figure 2.5: Effects of histone acetyltransferase inhibitors on TCF7L2‐mediated looping 

in PANC1 cells 
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Figure 2.5: Effects of histone acetyltransferase inhibitors on TCF7L2‐mediated 

looping in PANC1 cells. A, Number of differentially expressed genes within promoter‐

centric IPs that were bound by TCF7L2 in untreated PANC1 cells that are no longer 

classified as IPs in the drug treated cells. These differentially expressed genes were 

altered in siTCF7L2 knockdown cells as well as drug treated cells. PP2‐P1 and PP2‐P2 

are genes of which the promoters are associated with a PP2 IP, PP1 is the gene of which 

the promoter is associated with a PP1 IP, PP2‐D is the distal gene, while PP2‐P is the 

promoter gene that are associated with a PD2 IP and PD1 is the gene that is associated 

with PD1 IP. B, KEGG pathway analysis of the genes (n = 39) that are associated with 

promoter‐distal interactions and that are differentially expressed in drug treated PANC1 

cells that are regulated by TCF7L2. C, Survival analysis of 176 TCGA pancreatic 

adenocarcinoma patients of the 39 genes identified in (A). The red line is the survival of 

the High Risk group, and green line is the survival of the low risk group patients. “+” in 

the legend stands for the censored patients in each risk group (left). Boxplots displaying 

the expression of the 39 genes in the two risk groups (right). CI, confidence interval; HR, 

hazard ratio; P, P value 
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CHAPTER 3 

Disruption of broad epigenetic domains in PDAC cells by HAT inhibitors 
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Abstract 

The spreading of epigenetic domains has emerged as a distinguishing epigenomic 

phenotype for diverse cell types. In particular, clusters of H3K27ac- and H3K4me3-

marked elements, referred to as super-enhancers and broad H3K4me3 domains, 

respectively, have been linked to cell identity and disease states. Here, we characterized 

the broad domains from different pancreatic ductal adenocarcinoma (PDAC) cell lines 

that represent distinct histological grades. We find that distinct PDAC grades exhibit 

characteristic broad epigenetic features that are predictive of patient prognosis and 

provide insight into pancreatic cancer cell identity. In particular, we find that genes 

marked by overlapping Low-Grade broad domains correspond to epithelial phenotype 

and hold potential as a marker for patient stratification. We further used ChIP-seq to 

compare the effects of histone acetyltransferase (HAT) inhibitors to detect global changes 

in histone acetylation and methylation levels at broad domains. HAT inhibitors treatment 

influence subclasses of broad domains in pancreatic cancer cells, which are potentially 

reflective of therapeutic responses. Thus revealing imperative insight into nuclear signals. 

The results reveal potential roles for broad domains in cells from distinct PDAC grades 

and demonstrates domain-specific responses to epigenetic inhibition. 
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Background 

Cancer is a complex disease arising from both genetic and epigenetic alterations 

that impact changes in gene expression to drive and maintain the malignant phenotype. In 

recent years, epigenomic profiling has revealed that cancer progression involves a global 

reprogramming of networks of functional DNA regulatory elements including enhancers 

[1]. Enhancers are cis-acting elements that positively control the transcription of target 

genes and play central roles in regulating cell-type or tissue-type specific genes during 

development and differentiation [2]. Enhancer sequences are comprised of DNA 

sequence motifs that allow transcription factors to bind in a sequence-specific manner, 

and to recruit various histone writers to regulate transcriptional regulation. Recently, 

clusters of enhancer elements, referred to as super-enhancers have been linked to cell 

identity and disease states [3-7]. In addition, regions with widespread H3K4me3 

modification called broad H3K4me3 domains have also emerged as important domains 

linked to the expression of tumor suppressor and cell identity genes [8, 9]. Understanding 

the functional roles of these epigenomic domains in different cancer types has the 

potential to uncover new strategies for the development of new cancer therapies [10]. 

Pancreatic ductal adenocarcinoma (PDAC) is the most common form of 

pancreatic cancer and ranks as one of the deadliest diseases with a five-year survival rate 

of less than 5% [11, 12]. PDAC is associated with a number of genetic and epigenetic 

alterations, leading to the activation of growth promoting and cell survival pathways and 

the inactivation of apoptotic and tumor suppressor pathways [13]. Recent reports have 

demonstrated the PDAC enhancer landscape and have classified enhancers associated 
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with PDAC progression [14-16]. However, the genes regulated by broad epigenomic 

domains in PDAC cells remains unanswered.  

To increase our understanding of broad epigenomic domains and their association 

with PDAC gene regulation in cancer progression, we classified super-enhancer and broad 

H3K4me3 domains in human PDAC cell lines. We specifically defined groups of 

epigenomic domains that correspond to distinct histological grades and compared their 

enriched pathways and linked gene expression levels. We show that broad domains 

correlate with clinical features and hold potential as markers for patient stratification. As 

epigenetic inhibitors are promising avenues for cancer treatment, we also explored the 

ability of these compounds to target PDAC epigenomic domains.  

 

Results 

Classifying the broad domains of different PDAC cell lines 

We analyzed ChIP-seq data from different human PDAC cell lines to identify 

super-enhancer and broad H3K4me3 domains, respectively [14]. This data was derived 

from a panel of human PDAC cell lines that are representative of both Low and High PDAC 

tumor grades, based on genotypic and phenotypic characteristics [17-19]. For example, the 

‘High-Grade’ PANC1, MiaPaCa2 and PT45P1 cell lines all express mesenchymal genes 

[14, 19], show mesenchymal spindle-shaped cell morphology [20], and are considered to 

be poorly differentiated [17, 21, 22]. In contrast, the ‘Low-Grade’ PDAC cell lines 

CAPAN1, CAPAN2, CFPAC1 and HFPAC1 display epithelial-like features and are 

considered to be well-differentiated [23-26]. To determine the super-enhancer domains 

using these different PDAC datasets, we essentially followed the same procedures used in 
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Hnisz et al. [3] with some slight modifications. Briefly, H3K27ac peaks were called from 

ChIP-seq data against input and enriched peaks that clustered within 5 kb were stitched 

together. These stitched regions were then ranked to determine super-enhancers. Broad 

H3K4me3 domains were determined from enriched peaks identified from ChIP-seq, where 

the top 5% of peaks based on domain size were used to call broad H3K4me3 domains [27]. 

In total, we identified between 457 to 1,346 super-enhancers and 1,214 to 2,559 broad 

H3K4me3 domains in seven different PDAC cell lines that correspond to Low- and High-

Grade groups, respectively (Figure 3.1-A). We observed that many genes were 

differentially marked by broad domains according to the assigned PDAC Grade group. As 

an example, the VIM gene encoding VIMENTIN, which is central to metastasis and is 

highly expressed in poorly differentiated High-Grade cells, is bound by both types of broad 

epigenetic domains only in High-Grade cells (Figure 3.1-B). We inspected the profiles of 

other regulatory histone modifications within the broad epigenetic domains using 

ENCODE data from PANC1 cells [28, 29]. The PANC1 super-enhancers exhibit higher 

H3K4me3 and H3K4me1 signal compared to typical enhancers (Appendix C-1). Both 

typical and broad H3K4me3 domains display low H3K4me1 enrichment, whereas broad 

H3K4me3 domains display higher H3K27ac than typical H3K4me3 regions (Appendix C-

2). Comparison of the ChIP-seq signal of the different domains between cell lines reveals 

that the majority of super-enhancers and broad H3K4me3 domains are uniquely enriched 

in a given cell line (Figure 3.1-C and D).  

We hypothesized that cells in separate differentiation states exhibit characteristic 

broad epigenetic patterns. We therefore compared the regions between different PDAC cell 

lines to define Grade-specific broad domains. Altogether, 38 super-enhancers were 
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common to all PDAC cell lines, and 61 and 224 super-enhancers were unique to High-

Grade and unique to Low-Grade groups (HGU and LGU, respectively) (Figure 3.2-A). 

Similarly, we identified 228 common and 177 HGU and 302 LGU broad H3K4me3 

domains (Figure 3.2-B). We further compared the overlap of both types of broad domains 

for the different PDAC groups by clustering these regions. There were 87 overlapping 

super-enhancer and broad H3K4me3 domains for LGU, compared to the 34 overlapping 

HGU (Figure 3.2-C). In general, Low-Grade PDAC cells had an increased number of 

super-enhancer domains compared to High-Grade PDAC cells, whereas both groups have 

a similar number of broad H3K4me3 domains. Overall, this analysis revealed that 

distinctive PDAC Grades exhibit characteristic broad epigenomic domains. 

 

Broad epigenomic domains mark distinctive PDAC pathways 

Prior studies have demonstrated that broad domains are associated with 

developmental and cell identity genes and broad H3K4me3 domains in particular have 

been shown to mark tumor suppressor genes [8, 9, 30]. To explore the gene pathways 

associated with super-enhancers and broad H3K4me3 domains, we annotated genes 

marked by each type of domain and determined their functional classifications (Appendix 

C-3 and Figure 3.2-D). Interestingly, pathway enrichment analysis showed that the genes 

marked by overlapping domains are involved with a variety of signaling pathways that 

were either specific to LGU, HGU, or common to all PDAC cells. For example, pathways 

that enriched common to all PDAC cells included TGFB, microRNAs in cancer and cell 

cycle. Pathways specific to HGU included VEGF and Ras signaling pathways, whereas 

pathways specific to LGU were tight junction and Hippo signaling (Figure 3.2-D).  
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Broad regions predict poorer survival in PDAC patients 

Super-enhancers and broad H3K4me3 domains have been linked to increased gene 

expression in a variety of tissue types [31, 32]. We therefore inspected the relative 

expression levels of genes marked by  different broad domains across PDAC Grades using 

available RNA-seq data from the corresponding cell lines [14]. As expected, both super-

enhancer and broad H3K4me3 domains unique to each Grade group (LGU and HGU) 

showed appreciably elevated expression in the corresponding group compared to the 

contrasting group (Figure 3.2-E, Appendix C-4). For example, genes marked by HGU 

super-enhancers had significantly higher expression levels in High-Grade cells compared 

to Low-Grade cells.   

We next explored the clinical association of the gene expression for genes uniquely 

marked by different broad domains relative to patients’ overall survival using the TCGA 

PDAC dataset [33]. Kaplan-Meier survival analysis showed that gene expression marked 

by HGU super-enhancers as well as HGU broad H3K4me3 domains are strong predictors 

of poor survival (Figure 3.2-F). In contrast, gene expression linked to LGU domains do 

not predict a poorer survival rate. However, the expression levels of genes bound by both 

LGU super-enhancers and broad H3K4me3 domains are significantly associated with a 

worse overall survival in PDAC patients (Figure 3.2-F). Overall, these results reveal that 

genes uniquely bound by different domains are predictive of PDAC patient outcome.  
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Histone acetyltransferase inhibitors alter global H3K27ac and H3K4me3 levels 

Epigenetic modulation via small molecule inhibitors has been proposed as an 

approach for treating various malignancies, including pancreatic cancer [34, 35]. We have 

previously shown that the two HAT inhibitors ICG-001 and C646 differentially impair the 

global gene expression levels in human pancreatic and colorectal cancer cell lines [36]. 

However, the impact of HAT inhibitor treatment on histone acetylation remains unknown. 

To determine the effect of HAT inhibitors on genome-wide H3K27ac enrichment, we 

treated PANC1 cells with ICG-001, C646 or a vehicle control and performed H3K27ac 

ChIP-seq, each with biological replicates. As expected, HAT inhibitor treatment caused 

significant changes in genome-wide H3K27ac patterns compared to vehicle treatment 

(Figure 3.3-A). Differential H3K27ac analysis showed that 4,675 and 5,362 regions with 

reduced H3K27ac levels in ICG-001 and C646 treated cells, respectively (FDR <0.1). 

There were also 2,391 and 4,383 sites with elevated H3K27ac levels in ICG-001 or C646 

treated cells, respectively (Figure 3.3-B). Interestingly, for either treatment the majority of 

higher H3K27ac enrichment clustered within the gene body (intragenic regions), whereas 

the bulk of reduced H3K27ac enrichment corresponded to distal intergenic regions (Figure 

3.3-C). Examples of genes that display altered H3K27ac patterns for each treatment are 

shown in Figure 3.3-D. Pathway enrichment analysis indicated that HAT inhibitor 

treatments influence H3K27ac enrichment at genes that map to a variety of pathways 

(Figure 3.3-E). For example, both treatments decreased H3K27ac levels at genes that 

belong to pancreatic, glioma, breast and gastric cancers, whereas C646 decreased the 

H3K27ac at HIF-1 and phosphatidylinositol signaling gene pathways.   



 72 

We further investigated the impact of ICG-001 treatment on global H3K4me3 

levels in PANC1 cells. ChIP-seq for H3K4me3 showed global H3K4me3 enrichment 

alterations in ICG-001 treated PANC1 cells. In total there were 6,847 increased and 3,219 

decreased regions (Appendix C-5). PPP2R2C, a tumor suppressor gene [37], exhibited 

elevated H3K4me3 signal with ICG-001 treatment compared to control. In contrast 

NKIRAS1, encoding a RAS-like protein exhibited decreased H3K4me3 signal with ICG-

001 treatment (Appendix C-5).  

 

HAT inhibitors alter PDAC broad epigenomic domains 

We next determined the impact of HAT inhibitor treatment on H3K27ac signal at 

super-enhancers and found that both treatments specifically impact H3K27ac enrichment 

levels at many super-enhancers (Figure 3.4-A). In total, there were 136 and 128 super-

enhancers with reduced H3K27ac levels, whereas 121 and 117 super-enhancers showed 

significant gains in H3K27ac levels after ICG-001 and C646 treatments, respectively (FDR 

< 0.1). Notably, the majority of super-enhancers with decreased H3K27ac are the same 

between either treatment (~90%), whereas only ~50% of the domains with increased 

H3K27ac are the same between either treatment (Figure 3.4-B). Increases in H3K27ac 

signal at super-enhancers was associated with elevated gene expression levels and similarly 

decreased enrichment at super-enhancers corresponded to a reduced gene expression 

levels, but only with ICG-001 treatment (Figure 3.4-C). Pathway enrichment analysis 

showed that different pathways are linked to the super-enhancers targeted by HAT 

inhibitors (Figure 3.4-D). ICG-001 treatment targets super-enhancers that correspond to 

genes involved with AGE-RAGE signaling complications in diabetes. In addition to super-
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enhancers, ICG-001 treatment resulted in 4 decreased and 113 increased broad H3K4me3 

domains. A comparison of both domains targeted by ICG-001 treatment reveals an increase 

of H3K27ac and H3K4me3 enrichment at 24 distinct genomic regions (Appendix C-5). 

Overall, these results delineate the broad epigenomic domains that are sensitive to HAT 

inhibitor treatment in PANC1 cells.  

 

HAT inhibitor treatment targets broad domains that are enriched at TAD boundary regions  

Recently, super-enhancer domains that overlap with broad H3K4me3 domains 

were shown to be linked to higher-order chromatin interactions, signifying a unique spatial 

organization of chromatin around cell-specific epigenetic domains [8, 38]. We therefore 

examined the relationship between higher-order chromatin organization and broad 

epigenetic domains in PANC1 cells. Genome-wide chromatin contacts were determined 

by analyzing tethered-chromatin conformation capture (TCC) data in PANC1 [39]. 

Chromatin contacts were partitioned into topologically associated domains (TADs) and 

TAD boundary regions using a resolution of 40 kb (Figure 3.5-A and Appendix C-6). We 

examined TADs in relation to CTCF and PANC1 broad domains. As expected, CTCF was 

significantly enriched at TAD boundaries (Figure 3.5-B). Similarly, broad H3K4me3 

domains were significantly linked to TAD boundaries, however super-enhancers were not 

found to be enriched at TAD boundaries (Figures 3.5-C and 3.5-D). To study if HAT 

inhibitor-sensitive domains are linked to higher-order chromatin structures, we 

investigated the significance of association of both types of broad domains that are 

impacted by ICG-001 treatment with TAD boundaries. We found that the domains with 

increased H3K4me3 and H3K27ac enrichment were significantly associated with TAD 
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boundaries, whereas domains with decreased enrichment were not associated with TAD 

boundaries (Appendix C-7). Thus, these results show that broad domains that gain 

enrichment of either active histone modification are linked to TAD boundaries. Overall, 

this analysis demonstrates a global impact of drug treatment on the epigenome and shows 

that certain classes of broad domains within TAD boundaries are sensitive to epigenetic 

inhibitors. 

 

Discussion 

An improved understanding of PDAC tumor biology and tumor grading should 

leverage available therapies and data. Here we extend prior data that indicated HAT 

inhibitors elicit distinctive effects on cancer cell transcriptomes by exploring the 

susceptibility of broad domains to HAT inhibitor treatment [36]. While drugs that target 

epigenetic mediators are currently in development [40, 41], the downstream effects on the 

epigenome of existing drugs has not yet been thoroughly examined. In particular, 

epigenome-wide studies of their effects remains largely undetermined. In this study, we 

utilize ChIP-seq to compare the effects of treatment with C646, which is a competitive 

inhibitor of both p300 and CBP [42] to the effects of ICG-001, which prevents CBP 

interaction with the co-activator β-catenin [43, 44]. Indeed, following treatment with either 

drug we detect global changes in histone acetylation levels. Our results suggest that, in 

general, these two drugs have similar effects on the epigenome of PDAC cells; however, 

we were able to identify cell-specific and drug-specific responses after treatment.  

We observed dramatic effects on the epigenome upon treatment with either ICG-

001 or C646, with hundreds of regions showing differential enrichment of H3K27ac or 
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H3K4me3. Interestingly, both drugs targeted similar super-enhancers, causing a reduction 

in histone acetylation levels near genes involved in pancreatic cancer and other solid 

cancers (Figure 3.4). Since it is of current interest to target super-enhancers, we find that 

both super-enhancers and broad H3K4me3 domains are sensitive to epigenetic modulation. 

Thus, our results provide insight into the plasticity of these domains in response to 

epigenetic modulation. Future work could tailor these therapeutics to target such domains; 

thereby impacting specific cellular pathways involved with PDAC tumorigenesis. 

The extension of epigenetic regulatory domains has emerged as a diagnostic marker 

that can serve to distinguish cancer cell identity and disease state. Accordingly, we 

characterized the broad domains in several different cell lines that represent distinct PDAC 

histological grades. By clustering the domains from 7 different PDAC cell lines into High- 

and Low-Grade groups, we find that different PDAC grades exhibit characteristic 

epigenetic features that are predictive of PDAC prognosis and provide insight into 

pancreatic cancer cell identity. Of particular interest are the genes marked by both super-

enhancer and broad H3K4me3 domains in Low-Grade groups. Low-Grade groups 

demonstrate an enrichment for a greater number of unique gene pathways, which include 

several pathways significant to PDAC progression. Such pathways include tight junction, 

glycerophospholipid and Rap1 signaling pathways. We also provide evidence that genes 

marked by overlapping Low-Grade broad domains correspond to epithelial phenotype and 

hold potential as a marker for patient stratification (Figure 3.2). Thus, different PDAC 

grades exhibit characteristic pathways marked by broad epigenomic domains that provide 

insight into pancreatic cancer cell identity in the context of PDAC progression. 
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Pancreatic Ductal Adenocarcinoma (PDAC) broad domains span numerous 

distinctive loci including the HOX, SMAD, and FOX family of genes, proteins that have 

known roles in cell-type specific functions and are known factors in PDAC tumor cell 

biology [45-47]. After annotating the genes marked by different broad domains, we 

identified known PDAC signaling pathways including the TGFβ and MAPK pathways, 

which are downstream effectors of oncogenic KRAS. Oncogenic KRAS is an established 

driver of pancreatic cancer and several pathways that are known downstream effectors of 

KRAS signaling and play central roles in PDAC cancer cell growth and survival [48-50], 

were found to be marked by broad domains in domains common to all PDAC cells. Super-

enhancers common to all PDAC cell lines were significantly enriched with a variety of 

cancer signaling pathways including focal adhesion, PI3K-AKT, microRNAs and Hippo 

signaling. LGU super-enhancers were uniquely associated with several pathways that 

include tight junction, Rap1 signaling and glycerophospholipid metabolism. Aberrant lipid 

synthesis and the reprogramming of lipid metabolism has been associated with the 

development and progression of pancreatic cancer [51] and several phospholipids have 

been identified as potential biomarkers in different types of pancreatic cancers [52, 53]. 

MAPK signaling was the singular KEGG pathway enriched in HGU super-enhancers 

(Appendix C-3). Similarly, the broad H3K4me3 domains common to all PDAC groups 

were associated with distinctive pathways including transcription corepressor, protein 

kinase, cadherin binding and RNA binding pathways (Appendix C-3). Several enriched 

pathways linked to LGU broad H3K4me3 domains include SMAD, protein kinase C, TGF 

beta, and beta-catenin pathways, whereas the HGU broad H3K4me3 domains solely mark 

genes enriched in transcriptional corepressor pathways. Examples of broad PDAC 
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epigenomic domains encompassing disease-associated genes include SMADs and FOXC2 

for super-enhancer regions and MYC and CCND1 for broad H3K4me3 domains (Appendix 

C-1 and 2). 

Interestingly, our analysis indicates that Low-Grade unique broad H3K4me3 

domains are enriched for TGFβ signaling pathways. TGFβ acts as a tumor suppressor with 

growth-inhibitory activity in epithelial cells during early pancreatic tumorigenesis. 

However, TGFβ appears to promote tumor progression in advanced disease [54]. We also 

found broad epigenomic domains mark several others pathways with less well-

characterized roles in PDAC tumor biology, including microRNAs and proteoglycans in 

cancer.  

The histone modifications H3K4me3 has been widely recognized as a mark of 

active promoter regions [55]. Recent studies have correlated broad H3K4me3 domains 

with enhancer activity at tumor suppressor genes in normal and cancer cells to provide 

mutation-independent insight into tumor suppressor pathways of disease states [9]. Here, 

we found broad H3K4me3 domains span a number of genes including HOX, MYC and 

CCND1 genes. As super-enhancers and broad H3K4me3 domains have been shown to 

function coordinately through chromatin interactions [8, 38], we identified regions 

containing both domains in both High- and Low-Grade cells. As mentioned previously, the 

expression of genes marked by both domains is significantly associated with poor 

prognosis in pancreatic cancer patients.   

In summary, our data provides new perspective on the effect of HAT inhibitors on 

the epigenome and provides knowledge of the broad domains unique to different 

histological grades of pancreatic cancer. Our data show that epigenomic domains that 
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correlate with clinical features, that they are plastic and hold potential as markers for patient 

stratification.  

 

Methods 

Cell culture and epigenetic inhibitor experiments 

The human cell line PANC1 (ATCC #CRL-1469) was obtained from the American 

Type Culture Collection. The cells were cultured in Dulbecco’s modified Eagle’s medium 

supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. We obtained 

ICG-001 from Michael Kahn (University of Southern California) and C646 from VWR 

(catalog# 102516-240). Cells were grown to 70% confluency followed by treatment with 

10μM ICG-001 or 10μM C646 and were collected after 12hrs.  

 

ChIP-sequencing  

After 12-hour incubation with either ICG-001 or C646, cells were crosslinked with 

1% formaldehyde (Thermo Scientific #28908) for 10 minutes and quenched with 0.125M 

Glycine. The ChIP-seq experiments were further performed as described by O’Geen et al. 

[56] and the antibodies used for the given targets were as follows: H3K27ac (Abcam, 

Cambridge, MA, USA; Ab4729 lot#GR16377-1) and H3K4me3 (Abcam, Cambridge, MA, 

USA; Ab8580). We performed duplicate ChIP-seq experiments for each histone. For each 

histone ChIP-seq assay, 10μg of chromatin was incubated with (2.5-5μg) of antibody. To 

confirm enrichment of target sequences, we performed qPCR in ChIP versus input samples. 

DNA was quantified using Qubit (Invitrogen) and libraries were prepared using the 
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NEBNext ChIP-seq Illumina Sequencing library preparation kit (New England Biolabs, 

Ipswich, MA, USA). 

 

Tethered Chromatin Capture (TCC) 

Tethered chromatin capture (TCC) was performed as detailed by Kalhor et al. [57]. 

Briefly, approximately 5 x 107 PANC1 cells were crosslinked as described above for ChIP-

seq experiments and cell pellets were collected and stored at -80C. Nuclei were digested 

with 2000U HindIII prior to dilute solid-surface ligation reactions and TCC library 

preparation was performed as described [57].  

 

ChIP-sequencing analysis   

For all datasets raw sequencing reads were aligned to the human reference genome 

hg19 using bowtie2 with default parameters [58]. ENCODE ChIP-seq datasets were 

obtained from GSE31755. We determined binding sites of each ChIP-seq experiment using 

MACS2 with default parameters with the exception of using the flag ‘-broad’ for 

determining broad H3K4me3 binding sites [59]. Super-enhancer regions were identified 

over typical-enhancer regions using the Ranked Ordering of Super Enhancer (ROSE) tool 

[5, 60]. Briefly, peaks were called from the H3K27ac ChIP-seq data and stitched together 

in 12.5 kb windows, which were further used to identify super-enhancers (ranked cutoff 

score of 19701.68). Broad H3K4me3 regions were obtained via filtering for the top 5% of 

peaks (largest by domain size). Enrichment of signal within regions was plotted with the 

functions ‘plotProfile’ and ‘plotHeatmap’ within deepTools [61]. Overlapping binding 

regions were determined using peak interesectR. To determine peak locations relative to 
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gene regions, we utilized the ‘annotatePeaks.pl’ function within HOMER 

[62].  Visualization snapshots of ChIP-seq regions were obtained by building a signal track 

via the ‘bdgcompare’ utility in MACS [59]. Bigwigs were obtained by 

‘bedGraphToBigWig’ via UCSC tools [63] and further visualized using Integrated 

Genomic Viewer [64, 65].  

 

Coordination of Grade-Specific Broad Domains  

H3K4me3, H3K27ac and control ChIP-seq datasets for PDAC cell lines were 

obtained from GSE64557 and processed as described above. We utilized the Bioconductor 

package ‘seqsetvis’ [66] to visualize the distribution and overlap of genomic regions. 

 

Differential Binding Analysis of ChIP-seq datasets 

To determine differential typical and broad H3K27ac and H3K4me3 regions we 

used the DIffBind R package [67, 68] with an FDR cutoff of <0.1.  

 

Pathway Enrichment Analysis 

Annotation of enriched gene pathways was performed using either ClusterProfiler 

or the Stanford GREAT tool [69, 70].   

 

Integration of Gene Expression Datasets 

For integrating High- and Low-Grade gene expression for the different cell lines, 

we retrieved the corresponding RNA-sequencing expression datasets (GSE64558). We 

mapped these datasets to the human genome reference, hg19 and gene counts were 
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nomalized using DESeq2 [71]. The mean of the normalized counts between replicates of 

each cell line was used to generate expression heatmaps. ICG-001 and C646 Illumina 

beadchip expression datasets were obtained from our previous study (GSE64038). We 

overlapped these differentially expressed genes within treatments with our genes annotated 

within drug altered broad regions to demonstrate expression changes at these genes.  

 

Topological domains from TCC data  

Paired raw reads of TCC data for the PANC1 cell line was processed using the HiC-

Pro pipeline [72]. Briefly, these reads were aligned to the human reference genome hg19 

using bowtie2 with default parameters [58]. 25bp of the reads were trimmed and the reads 

were then aligned iteratively. Reads with a MAPQ score less than 30 were removed and 

the fragments were filtered for self-ligated fragments, duplicated reads from PCR and 

error-pairs. Domains were detected using TopDom based on the local minima of 

normalized contact matrix [73, 74]. To visualize the relationship between broad domains 

and TADs, we used HiCPlotter [75]. 

 

Feature Enrichment Analysis within TAD Boundary Regions 

To determine enrichment of broad domains within +/- 20 kb of the Boundary 

regions, we iteratively determined the expected distribution either CTCF, broad H3K4me3 

or super-enhancer regions within our TAD boundary domains within 8,354 randomly 

selected bins and iteratively repeated this 1,000 times. We then calculated our observed 

estimation of the given regions (either for CTCF, broad H3K4me3 or super-enhancers) 

within TAD Boundaries. 
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Figures 

Figure 3.1: Determination of super-enhancers and broad H3K4me3 domains in PDAC 

cell lines that correspond to different histological grades  
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Figure 3.1. Determination of super-enhancers and broad H3K4me3 domains in 

PDAC cell lines that correspond to different histological grades. A. The total number 

of super-enhancers and broad H3K4me3 domains found in different human PDAC cell 

lines that represent either High-Grade (purple) or Low-Grade (green) PDAC groups. B. 

Genome browser representation of the H3K27ac and H3K4me3 ChIP-seq signal, as well 

as the RNA-seq signal over an approximate 14 kb region surrounding the VIM locus. C. 

Heatmap displaying the classification of super-enhancer domains across 7 human PDAC 

cell lines. The color scale reflects the density of H3K27ac signal at super-enhancer regions. 

D. Heatmap displaying the classification of broad H3K4me3 domains across 7 human 

PDAC cell lines. The color scale reflects the density of H3K4me3 signal at broad 

H3K4me3 domains. 
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Figure 3.2: Broad domains mark distinctive pathways and are predictive of poorer 

patient survival 
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Figure 3.2: Broad domains mark distinctive pathways and are predictive of poorer 

PDAC patient survival. A. Clustering of genomic regions encompassing super-enhancers 

across seven human PDAC cell lines to define common, High- and Low-Grade unique 

super-enhancers. B. A similar analysis was performed on broad H3K4me3 domains to 

define common, High- and Low-Grade unique (HGU and LGU, respectively) broad 

H3K4me3 domains. C. A similar analysis was performed to look at overlapping domains, 

where ‘B’ represents Broad H3K4me3 domains and ‘S’ represents super-enhancers. D. 

Gene Ontology pathway enrichment profiles of genes marked by both domains that are 

common, HGU or LGU domains. E. Comparison of expression levels of genes marked by 

the indicated domains in High-Grade and Low-Grade PDAC cells. Data is derived from 

mean normalized expression counts of genes. F. Kaplan-Meier survival analysis of high- 

and low-risk groups (red and black, respectively) for genes marked High-Grade unique 

(HGU) and Low-Grade unique (LGU) domains for the indicated domain type. 
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Figure 3.3: Inhibitors of histone acetyltransferases impact global H3K27ac levels 
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Figure 3.3: Inhibitors of histone acetyltransferases impact global H3K27ac levels. A. 

Differential H3K27ac enrichment analysis reveals significantly altered genome-wide 

H3K27ac sites in response to ICG-001 (Top) or C646 (bottom) treatment (FDR <0.1), 

signal is represented as log2 normalized read count for the indicated condition. B. Signal 

heatmaps representing the H3K27ac within altered regions after ICG-001 or C646 

treatment identified from the differential analysis. C. Location analysis of increased or 

decreased H3K27ac signal after treatment relative to gene regions. D. Example of genes 

with increased or decreased H3K27ac signal after ICG-001 treatment, signal is represented 

as fold enrichment over input. E. KEGG pathway enrichment analysis of genes within 

altered regions after HAT inhibitor treatment.   
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Figure 3.4: HAT inhibitors influence the acetylation levels at super-enhancers 
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Figure 3.4. HAT inhibitors influence the acetylation levels at super-enhancers.  

A. Scatterplot displaying the differential enrichment of H3K27ac (log2 ChIP-seq read 

count) for ICG-001 (left) and C646 (right) compared to control, the blue diagonal line 

separates those of increasing or decreasing signal with the colored dots corresponding to 

regions with significant changes in treatment compared to control (FDR <0.1). B. Overlap 

analysis of regions comparing the increased or decreased H3K27ac regions after ICG-001 

and C646 treatment. C. Boxplots displaying log2 fold change of genes (treatment vs 

control) within the given differential domains identified in A. D. Pathway enrichment 

analysis of genes within altered super-enhancers after ICG-001 or C646 treatment.  
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Figure 3.5: Broad domains are linked to topological associated domain boundaries 
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Figure 3.5. Broad domains are linked to topological associated domain boundaries. 

A. Chromatin interaction matrix at 40 kb resolution showing broad domains contained 

within TAD regions. Statistical associations of TAD boundaries were performed for B. 

CTCF, C. super-enhancers and D. Broad H3K4me3 domains.  
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Temporal dynamic reorganization of 3D chromatin architecture in hormone-

induced breast cancer and endocrine resistance 
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Abstract 

Recent studies have demonstrated that chromatin architecture is linked to the 

progression of cancers. However, the roles of 3D structure and its dynamics in hormone-

dependent breast cancer and endocrine resistance are largely unknown. Here we report 

the dynamics of 3D chromatin structure across a time course of estradiol (E2) stimulation 

in human estrogen receptor α (ERα) positive breast cancer cells. We identified subsets of 

temporally highly dynamic compartments predominantly associated with active open 

chromatin and found that these highly dynamic compartments showed higher alteration in 

tamoxifen resistant breast cancer cells. Remarkably, these compartments are 

characterized by active chromatin states, and enhanced ERα binding but decreased 

transcription factor CCCTC-binding factor (CTCF) binding. Lastly, we identified a set of 

ERα-bound promoter-enhancer looping genes enclosed within altered domains that are 

enriched with cancer invasion, aggressiveness or metabolism signaling pathways. This 

large-scale analysis expands our understanding of higher order temporal chromatin 

reorganization underlying hormone-dependent breast cancer. 
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Introduction 

Numerous efforts have been devoted to revealing the basic principle of three 

dimensional (3D) chromatin architecture and genome organization inside the cell nucleus 

of various mammalian genomes1-8. One prominent structural feature of genome 

organization is the formation of various types of chromosomal domains9 defined as 

spatial compartments1,10, topologically association domains (TAD)3 or lamina-associated 

domains (LAD)11. The discrete TADs ranging from several hundreds of kilobases (kb) to 

several megabases (Mb) are usually stable in diverse cell types and are highly conserved 

across different mammalian species, suggesting that they are inherent and important 

functional units of mammalian genomes12,13. By contrast, spatial compartments 

comprised of two types, compartment A or B, form an alternating pattern of active and 

inactive domains along chromosomes. Their sizes usually range around 5 Mb and are 

characterized by genomic features associated with transcriptional activity, such as 

chromatin accessibility, active or repressive histone marks, gene density, GC content and 

repetitive regions14,15. Furthermore, A and B compartments show tissue- or cell-type 

specificity that are correlated with cell-type specific gene expression patterns16,17. 

However, a recent study found A or B compartments may be much smaller in size at a 

couple of hundred kb when using improved Hi-C protocols in higher resolution maps18. 

These maps are similar in size to the topologically constrained domains19. It is also 

increasingly recognized that spatial compartments and TADs are fundamentally two 

independent chromosomal organization modes20,21, thus disputing the common notion of 

a hierarchical folding principle that TADs are the building blocks of larger compartment 

domains. 
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Recent efforts have focused on understanding the relationship between higher-

order structures and human development and disease.22-24. For instance, new studies 

demonstrated that the reprogramming of high-order structures of both the paternal and 

maternal genomes gradually occurs during early mammalian development23,24. Another 

study showed that disorganization of prostate cancer 3D genome architecture occurs 

coincident with long-range epigenetically activated or silenced regions, which 

coordinated with gene transcription25. Despite the advances in our knowledge of 3D 

genome regulation, several critical questions remain to be answered in the field. For 

example: (1) how stable or dynamic are chromosome domains upon signaling stimuli as 

cells respond to external cues? (2) To what extent do these changes affect establishing or 

re-establishing the compartmentalized architecture? (3) What degree of impact do the 

master or key transcription factors in a particular cell system have on chromatin 

reorganization? (4) What are the roles of chromatin architecture in governing the 

progression of human diseases, such as cancers?  

Estrogen (E2) signaling plays a crucial role in driving estrogen receptor α positive 

(ERα+) breast cancer cell growth and proliferation26,27. The cellular response to E2 

induction is characterized by timed and coordinated transcriptional regulation primarily 

mediated by ERα. Thus, it has been frequently used as a model system to illustrate the 

mechanisms underlying transcriptional controls in cancer development and progression 

as well as in fundamental biological process28-32. Using genome-wide approaches, we and 

others demonstrated very little coincidence between ERα targeted genes in breast cancer 

cells versus acquired endocrine resistant breast cancer cells indicating distinct 

transcriptional regulatory mechanisms underlying endocrine resistance33-37. In a recent 
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study, we used a 3C-based high throughput protocol to identify two densely mapped 

distant estrogen response element (DERE) regions which were frequently amplified in 

ERα+ breast cancer38,39. Interestingly, these aberrantly amplified DEREs deregulated 

target gene expression linked to cancer development and tamoxifen resistance. However, 

the roles of 3D structure and its dynamics in hormone-dependent breast cancer and 

endocrine resistance are largely unknown. 

To establish a basis for data-driven learning and modeling of the temporal 

dynamics and 3D chromatin reorganization, we applied tethered chromatin conformation 

(TCC), a modified Hi-C protocol40 for high depth sequencing. We performed TCC in a 

time-series of E2-induction in the ERα+ breast cancer cell line, MCF7 as well as the 

tamoxifen resistant MCF7 (TamR) cell line. Here, we present a time-series of genome-

wide maps of chromatin contacts, identify the temporal dynamic patterns of chromatin 

compartments, compare the patterns between MCF7 and TamR cells and examine the 

enrichment of ERα and CTCF binding as well as five active and repressive histone marks 

in the patterns. We further identify ERα-bound promoter-enhancer (ERα-PE) looping 

genes enclosed within TamR altered dynamic compartments. This large 3D-scale of 

chromatin data provides a rich resource for studying the basic characteristics of hormone-

dependent breast cancers and provides further insight into the mechanisms of tamoxifen 

resistance.  
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Results 

Re-compartmentalization of chromatin at early E2 treatment 

Despite many studies demonstrating that E2 induces the highest levels of ERα 

binding and gene activity around 45min to 1hr28,30, little has been done to 

comprehensively characterize the changes of chromatin architecture in MCF7 cells in a 

genome-wide manner. In this study, we conducted TCC analysis in hormone-starved 

MCF7 cells (T0) and compared this to MCF7 cells treated with 1hr of E2 (T1). The 

Pearson correlation of chromatin interactions showed that biological replicates are largely 

correlated for each treatment at different resolutions (Figure 4.1-A), illustrating good 

quality TCC data. We thus combined two replicates at either time point to identify 

chromosome compartments with HiCLib10 (Figure 4.1-B). With a sequencing depth of 

around 200 million (75 million uniquely mapped) paired-end reads for each data set, we 

expect the resolution of compartments around 40-50kb41. Surprisingly, the genomic size 

of a majority of compartments is either smaller than 1Mb or between 1-2Mb, and very 

few are larger than 5Mb (Figure 4.1-C and D). Our data seems to contradict earlier 

studies that determine compartment sizes to be larger than 2Mb1,10; however, it is 

consistent with newly reported studies using improved Hi-C protocols in conjuction with 

a higher sequencing depth18. We found a similar number of compartments, 2,067 and 

2,039, in the untreated and E2-treated cells respectively, where approximately half 

consisted of compartment A (active chromosome domains) and half were compartment B 

(inactive chromosome domains) at each time point (Figure 4.1-E). We then compared 

the compartments between untreated and E2-treated cells, and found that the type of 

compartments drastically changes following E2 treatment. The number of common or 
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conserved compartments between treatments increases from 28%, 55%, 74% to 78% 

using different bin sizes of 100kb, 250kb, 500kb and 1Mb, respectively (Figure 4.1-F). 

Our results at lower resolution (500kb or 1Mb) are in-line with many other studies that 

report approximately 80% conserved domains among different conditions or cell 

types3,12. However, at a higher resolution of 100kb, we identified 576 Common 

compartments between untreated and E2-treated cells and 1,463 Transit compartments 

sensitive to E2 treatment that shifted in size or flipped between A/B compartments. Of 

Transit compartments, 743 (51%) of them shift only 100kb and 247 (17%) shift more 

than 400kb while 116 (8%) flipped between A/B compartments (Figure 4.1-G). These 

data demonstrate a re-compartmentalization of higher-order chromatin domains following 

1 hour of E2 treatment. 

 

Temporal dynamic chromatin along prolonged E2 treatments 

Several studies found that transcriptional responses to longer E2 treatments were 

dramatically different than responses to shorter treatments30,31. In order to understand the 

dynamics of chromatin structure in longer E2 treatment periods in MCF7 cells, we further 

conducted TCC analysis in three more time points, 4hr (T4), 16hr (T16) and 24hr (T24), 

each with biological replicates. In order to capture the dynamic patterns following a 

prolonged E2 treatment, we determined compartments at 100kb and compared the 

compartments among the five time points. As expected, the number of compartments was 

very similar among the five time points. We used the Common and Transit compartments 

obtained from the comparison of T1 vs. T0 and compared them to T4, T16 and T24 

respectively. We also separated the comparison of active open chromatin compartment A 
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(Figure 4.2-A, upper panel) from inactive closed chromatin compartment B (Figure 4.2-

A, lower panel). When re-examining these sets of Common or Transit compartments, we 

identified 15 patterns of changed compartments from 16 sets (Appendix D-1) and 9 

additional patterns from the last set (labeled X in Appendix D-1) based on the converted 

bins. We were able to categorize these 24 patterns of chromatin into six types of 

temporally dynamic re-compartmentalization (TDRC): Highly Common Compartments 

(HCC, patterns 1-4 with a FDR of 0.268), Early Transit Compartments (ETC, patterns 5-

8 with a FDR of 0.230), Late Transit Compartments (LTC, patterns 9-12 with a FDR of 

0.192), Lowly Dynamic Compartments (LDC, patterns 13-16 with a FDR of 0.178), 

Moderately Dynamic Compartments (MDC, patterns 17-20 with a FDR of 0.161), and 

Highly Dynamic Compartments (HDC, patterns 21-24 with a FDR of 0.201) (Figure 4.2-

B). There is also a statistically significant difference (p=7.6x10-11, Wilcoxon rank-sum 

test) between highly dynamic compartments (MDC and HDC) and lowly dynamic 

compartments (HCC, ETC, LTC and LDC) (Figure 4.2-C). Interestingly, the MDC and 

HDC are predominantly composed of compartment A mainly from Transit to Transit 

compartments along the time courses of E2 treatment (Figure 4.2-D and E), while the 

LDC has the most changed compartment B. This data suggests that active chromatin 

domains are more susceptible to change in response to E2 stimulation over time.  

 

Altered chromatin compartmentalization in resistant cells 

Increasing evidence suggests that ERα-mediated gene deregulation or epigenetic 

alterations may be key mechanisms underlying acquired tamoxifen resistant breast 

cancer42,43. However, the knowledge of endocrine resistant associated 3D regulation is 
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still limited. To delineate the altered 3D architectures, we further conducted TCC analysis 

in a tamoxifen resistant MCF7 cell line, MCF7-TamR44. At a resolution of 100kb, we 

identified 2,103 compartments including both A and B (Figure 4.3-A). We further 

defined a compartment to be a tamoxifen resistant altered compartment (TRAC) if it was 

a Transit compartment and if there was at least one converted bin between TDRC and a 

TamR compartment. As such, we obtained six corresponding types of TRACs: TA-HCC 

(FDR of 0.154), TA-ETC (FDR of 0.250), TA-LTC (FDR of 0.154), TA-LDC (FDR of 

0.165), TA-MDC (FDR of 0.139) and TA-HDC (FDR of 0.226). Patterns 17, 19, 21, 23, 

and 24 in TA-MDC and TA-HDC types showed higher alteration than other patterns, 

suggesting that the higher dynamics of the compartments in E2-induced MCF7 cells, the 

stronger alterations of the compartments in TamR cells (Figure 4.3-B). Further, we 

observed that the average size of TA-HDC and TA-ETC types were longer than those in 

unaltered compartments, while the size of TamR unaltered compartments (TRUCs) were 

longer than TA-HCC (Figure 4.3-C). Att a bird’s-eye-view, we identified three 

interesting types of TRACs: Shrunk, Expanded and Flipped (Figure 4.3-D-F). Our data 

suggest that a group of genes within the same domain may be concordantly regulated 

during acquired tamoxifen resistance.  

 

Epigenetic states in dynamic re-compartmentalization 

Epigenetic marks have been shown to classify genomic compartments and 

chromosomal domains into subcompartments or subdomains in diverse cell types18. 

There is little known about the structural roles of one-dimensional (1D) epigenetic states 

in E2-induced 3D chromatin structure. We performed ChIP-seq of three active marks, 
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H3K27ac, H3K4me1, and H3K4me3, and two repressive marks, H3K9me3 and 

H3K27me3 in a time course of E2 treatment in MCF7 cells as well as in asynchronous 

TamR cells, each with biological replicates. We first trained a total of 30 histone 

modification data by ChromHMM at various parameters45, and obtained ten HMM states 

(Figure 4.4-A and B). Through interpreting both HMM emission and transition 

probabilities, we inferred seven biologically meaningful epigenetic states, including two 

active states (S9 and S10), two bivalent states (S3 and S8) and three repressive states (S1, 

S4 and S6) (Figure 4.4-C). We were also able to map these states back into each of six 

types of E2-induced dynamic compartments and TamR altered compartments. Overall, 

we observed that more active states were distributed in compartment A and more 

repressive states in compartment B, while three types of dynamic changed compartments, 

i.e., LDC, MDC and HDC, have a higher percentage of active states than HCC does 

(Figure 4.4-D-G). Surprisingly, S1 showed a high percentage of distribution in 

compartment A despite that it is a repressive state.  

 

ERα and CTCF binding in dynamic re-compartmentalization  

Since ERα is a master transcription factor mainly in response to E2 stimulation in 

MCF7 cells and CTCF is a chromatin organizer known to regulate the 3D architecture, 

we wanted to understand their regulatory roles in mediating these 3D structural 

dynamics. We performed ChIP-seq of ERα and CTCF at five time points of E2-

stimulated MCF7 cells and in TamR cells, each with biological replicates. We used 

MACS46 to call ERα binding sites (peaks) in each of the 12 data sets and obtained 7,553 

peaks in untreated MCF7 cells (T0), and between 13,000-20,000 ERα peaks in E2-treated 
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MCF7 cells at four time points and untreated TamR cells respectively (Figure 4.5-A). 

Interestingly, we found Patterns 18 and 20 of MDC and Pattern 24 of HDC had the 

highest number of ERα binding sites in compartment A but not in compartment B in E2-

induced MCF7 cells as well as in TamR cells (Figure 4.5-B), illustrating that there are 

more ERα binding sites in higher dynamic active chromatin.  

Furthermore, we identified approximately 50,000 CTCF peaks in each of the five 

time points of E2-induced MCF7 cells and in TamR cells (Figure 4.5-C). On the 

switched domain boundary between two compartments, we observed generally lower 

averages of CTCF binding sites in three types of TDRCs (LDC, MDC, HDC), and three 

types of TRACs (TA-LDC, TA-MDC, TA-HDC) than other three types (Figure 4.5-D). 

When testing the correlation of ERα binding within the compartments vs CTCF binding 

on the boundary regions, Pattern 24 of HDC or TA-HDC was the only pattern having 

more than 80% ERα peaks and less than 0.4 CTCF peaks per compartment in E2-induced 

MCF7 cells (Figure 4.5-E—left panel) or in TamR cells (Figure 4.5-E—right panel). 

Collectively, our results indicate a reciprocal relationship to ERα binding and CTCF 

binding at highly dynamic changed compartments during the temporal response to E2 

stimulation which is also observed in cells with acquired tamoxifen resistance. 

 

Differentially expressed genes and putative loops 

We next examined the gene expression and loops within these TDRCs and 

TRACs. We utilized a publicly available time-series RNA-seq dataset47, profiled at 10 

time points of E2-treated MCF7 cells, to identify differentially expressed genes. By 

picking 5 time points close to this study (T0 = 0 min, T1 = 40 min, T4 = 160 min, T16 = 
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640 min, T24 = 1280 min), we identified 4,106 dynamic differentially expressed genes 

(DDEGs) across all time points. As expected, a majority of such genes were located in 

dynamically changed compartment A with most in the MDC and HDC types (Figure 4.6-

A). There seems to be minimal difference in the average of gene expression levels within 

each of the six types of TDRCs. However, the variance of DDEGs in LDC, MDC and 

HDC is higher than HCC, ETC and LTC (Figure 4.6-B). GSEA analysis48 showed 

ribosome, tight junction, endocytosis, lysosome, cell cycle, WNT signaling pathway, 

insulin signaling pathway, focal adhesion, and MAPK signaling pathway were among the 

top functional categories for the 1,396 DDEGs in MDC and HDC types (Figure 4.6-C). 

We further performed RNA-seq in parental MCF7 and TamR cells, each with three 

biological replicates and identified a total of 2,097 TamR-specific differentially 

expressed genes (TDEGs). More than half of them (1,188) were in the combined TA-

M&HDC types (Figure 4.6-D). We then identified 42,390 TamR-specific significant 

interaction pairs or putative loops from TamR TCC data by HOMER49 and using our T0 

TCC dataset as the contrast. 3C-qPCR validations further confirmed the differential 

looping intensity of seven randomly selected pairs between parental MCF7 and TamR 

cells (Appendix D-2). Of the 42,390 identified loops, 16,807 were overlapped with a 

promoter (-5kb/+1kb around the 5’TSS), 9,638 of them had either H3K27ac or H3K4me1 

peaks in the distal loci, 4,122 of them had at least one ERα binding site at either loci of 

the loop and were thus considered as ERα regulated promoter-enhancer (ERα-PE) loops 

(Figure 4.6-E). Finally, 396 TDEGs within 599 ERα-PE loops in the combined TA-

M&HDC types were identified as ERα dysregulated dynamic looping genes in resistant 

cells. Functional annotation and gene pathway analysis with GSEA showed these genes 
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were mapped to nine KEGG signaling pathways related to cancer invasion and 

aggressiveness, as well as glycolysis and metabolism (Figure 4.6-F). Taken together, our 

results demonstrate that these ERα-associated dynamically reorganized active domains 

regulating gene looping events may result in higher susceptibility to alterations in 

tamoxifen resistant cells. This prompts us to speculate that these genome domains and 

looping genes may be responsible for driving the acquired tamoxifen resistance. 

 

Discussion 

Despite the increasing developments of various 3C-derived high throughput 

sequencing techniques in which it advances our understanding of the principles of 3D 

genome architecture, several important questions remain to be answered in the field. One 

of the many aspects is to elucidate how stable or dynamic chromosome domains are in 

response to signaling stimuli and to what extent these changes affect establishing or re-

establishing the compartmentalized architecture. Our main goal of this study is to 

establish a basis for data-driven modeling of temporal dynamics and 3D chromatin 

reorganization given that such studies are very limited. While mega-sized TADs are 

conserved among different cell types and mammalian species3,5,12, 100-500kb size of 

subTADs or compartments are considered to be dynamic where the boundaries are non-

conserved18,50. Though our data showed the total number of compartment domains are 

quite similar among different time points, the changes in size (of at least 100kb) of 

compartments are very pronounced, particularly in these E2-induced highly dynamic 

compartments. With a very loose definition of dynamic changes requiring a minimum of 

100kb, we were able to unveil 24 temporal dynamic patterns upon E2-induction which 
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were further categorized into six major types. Indeed, the MDCs and HDCs were not only 

predominately of active compartment A but also contained dynamic differentially 

expressed genes enriched with biological process terms ribosome, tight junction, cell 

cycle and others (Figure 4.6-C). Many of them characterize known effects of estrogen on 

the MCF7 cell phenotype51. In contrast, there were no significant differences between E2-

induced early and late changed compartments in which both types were comprised of 

very few compartments. Our data implied that these moderate to high dynamic 

compartments may play an essential role in governing hormone-mediated luminal breast 

cancer development. 

Many studies including ours have demonstrated that E2 instructed dynamic 

transcriptional programs rewired or altered transcription regulatory networks in 

tamoxifen resistant breast cancer cells36,52,53; however, very few focused on examining 

3D regulatory roles in tamoxifen resistance. Our previous studies utilized a 3C-seq 

technique to identify two densely mapped DERE regions located on chromosomes 17q23 

and 20q13 frequently amplified in MCF7 cells and found their aberrantly amplified 

DEREs deregulated target genes were potentially linked to cancer development and 

tamoxifen resistance38. However, this study containd many limitations including the 

technique itself, smaller data volumes and fewer computational tools available for a 

thorough analysis. Our current work has significantly improved in the following aspects: 

1) we generated high quality TCC datasets with increased sequencing depth allowing for 

the detection at 40kb resolution; 2) we produced TCC datasets in an E2-induced time 

series in MCF7 cells and then compared it to TamR cells; and 3) we utilized many state-

of-art computational tools to process TCC and ChIP-seq datasets. Remarkably, our 
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integrative analyses uncovered many temporal dynamic patterns characterizing the 3D 

chromatin reorganization upon E2-induction. Interestingly, two types of temporal 

dynamic re-compartmentalization (TDRC), i.e., moderately and highly dynamic 

compartments (MDCs and HDCs), showed higher alteration in TamR cells (Figure 4.3-

B). Furthermore, the looping gene signatures enclosed in these two altered dynamic 

domains were highly enriched with GO terms cancer invasion and aggressiveness or 

metabolism. All of these biological processes captured the nature of acquired resistant 

breast cancer cells54. 

Our definition of 24 patterns or six types of dynamic changed compartments were 

based upon how re-compartmentalization in MCF7 cells respond to E2 induction. 

Interestingly, the resulted six types are identical to the analysis based on a mathematical 

calculation resulting in a total of 256 combinations of E2-induced time-dependent 

compartments (Appendix D-3) when using T0 as a contrast. Furthermore, we observed 

the same trends of E2-induced time-dependent compartments in both MCF7 and T47D 

cell lines, where the major trend are miscellaneous dynamic compartments in both MCF7 

and T47D cell lines. Moreover, the altered compartments of both MCF7-TamR and 

T47D-TamR have higher percentage of miscellaneous compartments. Our results suggest 

that our analytical strategy and observations are generalizable in various cell lines. 

Our findings further illustrated an anti-correlative trend of binding enrichments 

between intradomain ERα sites and boundary CTCF sites (Figure 4.4-D and E). 

Interestingly, the average of CTCF sites is generally lower regardless of its distance from 

the boundary in these highly dynamic changed domains. Although our result is not so 

surprising, it nevertheless implicates an underlying molecular event that ERα regulated 
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high re-compartmentalization may be required to loosen CTCF insulator at the domain 

boundary4,55. Furthermore, our data may support the higher-order chromatin architectural 

role of ERα signaling in mediating hormonal activity, expanding our current 

understanding of the molecular mechanism underlying the E2-induced breast 

carcinogenesis through ERα regulation.  

Collectively, our observations suggest a possible molecular mechanistic model 

(Figure 4.7-A-D). A constitutive estrogen stimulation in breast cancer cells enhances 

stronger ERα activity and further recruits its distal regulatory machinery including 

different co-regulators, mediators, cohesions and chromatin remodelers, and then 

mobilizes highly dynamic gene looping events which essentially expand to render a 3D 

genome re-compartmentalization accompanying with lower CTCF binding at the 

compartment boundary. In contrast, in breast cancer cells with the acquired resistance, 

increased crosstalk between ERα and other signal transduction pathways such as 

EGFR/HER256, IGF-IR53, and AKT/PTEN57 or altered expression of some key co-

regulators particularly reshuffle these highly dynamic gene looping resulting in altered 

chromatin reorganization. To substantiate this model, we propose further functional or 

mechanistic experiments in our follow up studies: 1) establishing genome-edited TamR 

sublines by editing out a handful ERα sites selected from 599 gene loops using the 

CRISPR/Cas9 technique58; in these sublines, examining the changes of ERα regulated 

looping using ChIP-3C-qPCR and determining if resistant cells are re-sensitized; and 2) 

establishing an in vivo model of TamR xenografts44; in this model, examining selected 

ERα regulated loops using ChIP-3C-qPCR by comparing untreated vs. treated Gefitinib, 
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an inhibitor to EGFR/HER2. With these results, we might expect to elucidate the detailed 

3D ERα regulatory role in mediating tamoxifen resistance.  

In summary, the high quality and large 3D chromatin data along with many ChIP-

seq and RNA-seq data provided a comprehensive resource for understanding how 

estrogen exposure drives genome-wide 3D chromatin reorganization in ERα positive 

breast cancer cells as well as how their alterations occur in hormone resistant cells. Our 

integrative analysis reveals temporal dynamic patterning and 3D chromatin 

reorganization of the breast cancer genome that occurs in response to E2 stimulation over 

time. Our work may give further insight into the effective treatment strategies to 

overcome tamoxifen resistance and discovery of novel epigenetic therapeutic targets. 

 

Methods 

Cell lines and reagents 

The human parental MCF7, T47D and Tamoxifen Resistant (TamR) cell lines 

were derived from Osborne et al. 199444. MCF7 cells were cultured in Dulbecco’s 

Modified Eagle’s Medium (DMEM) supplemented with 10% fetal bovine serum (FBS), 

2mM L-glutamine and 1% penicillin/streptomycin (pen/strep) until 90% confluent. For 

temporal estrogen responsiveness, MCF7 cells were hormone-starved for 72hrs followed 

by the addition of 100nM β-Estradiol (MP Biomedicals, Inc.) at 1hr, 4hr, 16hr and 24hr. 

To hormone starve MCF7 or T47D cells, these cells were grown to 80% confluency as 

described above. Once the desired confluency was reached, the cells were washed one 

time with Phosphate Buffered Saline and the media was replaced with phenol-red free 

DMEM supplemented with 5% charcoal-stripped FBS, 2mM (L-glutamine) and 1% 
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(pen/strep). For the 0hr time point, cells were immediately crosslinked following 72hrs of 

hormone starvation.  

TamR cells were cultured in phenol red free DMEM supplemented with 10% 

charcoal-stripped FBS, 2mM L-glutamine, 1% pen/strep, and 100nM Tamoxifen (Sigma-

Aldrich). Tamoxifen was replenished every 48hrs and cells were crosslinked at 90% 

confluency. 

 

Tethered chromatin capture (TCC) 

TCC was performed as Kalhor et al. described40. Approximately 50 million 

MCF7 or T47D cells (either parental hormone starved with temporal addition of β-

Estradiol (E2) or TamR cells as described above) were crosslinked with 1% 

formaldehyde for 10 minutes at room temperature, crosslinking was quenched with 0.125 

M glycine for 5 minutes at room temperature and cell pellets were collected and stored at 

-80oC. The crosslinked cells were lysed with 550μL of Cell Lysis Buffer (10mM HEPES 

pH 8.0, 10mM NaCl, 0.2% Igepal CA-630, containing 1X protease inhibitor cocktail 

(Thermo Scientific #88665) and 1X PMSF (Acros Organics #215740050). The cells were 

homogenized with a dounce homogenizer for 20 strokes with pestle A after incubation on 

ice for 15 minutes. The lysate was then centrifuged at 2,500 rcf for 5 minutes at room 

temperature. The supernatant was discarded and the remaining pellet containing the 

nuclei was washed twice with ice-cold wash buffer #1 (50mM Tris-HCl pH8, 50mM 

NaCl, 1mM EDTA) and resuspended in 250μL of wash buffer #1. The chromatin was 

then solubilized by the addition of 95μL of 2% SDS followed by an incubation at 65oC 

for 10 minutes. The cysteine residues were biotinylated by the addition of 105μL of 
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25mM EZlink Iodoacetyl-PEG2-Biotin (IPB) (Thermo Scientific #21334) and incubated 

at room temperature for 1 hour while rocking. The SDS was neutralized with 1300μL of 

1X NEBuffer 2 (NEB #B7002S) on ice for 5 minutes, followed by the addition of 225μL 

of 10% Triton X-100, which was then incubated on ice for 10 minutes followed by a final 

incubation at 37oC for 10 minutes. DNA was digested overnight at 37oC with the 

following reagents: 100μL of 10X NEBuffer 2, 5μL of 1M DTT, 430μL of water, and 

2000U of HindIII (100U μL-1; NEB #R0104M). To remove remaining IPB, the samples 

were then dialyzed for 4 hours at room temperature using a Slide-A-Lyzer Dialysis 

Cassette with a 20kD cutoff (Thermo Scientific #87735) in 1L of dialysis buffer (10mM 

Tris-HCl, pH 8.0 and 1mM EDTA). The biotinylated chromatin was then tethered using 

400μL of MyOne Streptavidin T1 beads (Invitrogen #65601) after washing the beads 

three times with PBST (1X PBS containing 0.01% Tween20) and re-suspending in 2mL 

of PBST. 400μL of washed Streptavidin T1 beads was then added into each of five equal 

aliquots of dialyzed sample. Binding occurred at room temperature for 30 minutes 

followed by the addition of 150μL of 25mM IPB neutralized with 25mM 2-

mercaptoethanol, which was then incubated at room temperature for 15 minutes. Non-

crosslinked DNA and non-biotinylated chromatin was removed by washing the beads 

once with 600μL PBST followed by one wash with 600μL wash buffer #2 (10mM Tris-

HCl, pH 8.0, 50mM NaCl, 0.4% Triton X-100). To wash the beads, we utilized a 

magnetic rack and ensured beads bound to the magnet before aspirating the buffer out. 

The beads were then resuspended in 100μL of wash buffer #2. The 5’ overhangs were 

filled with 63μL water, 1μL 1M MgCl2, 10μL 10X NEBuffer 2, 0.7μL 10mM dATP 

(NEB #N0440S), 0.7μL 10mM dTTP (NEB #N0443S), 0.7μL 10mM 2’-



 130 

Deoxyguanosine-5’-O(1-thiotriphosphate) sodium salt (dGTPαS) (Biolog Life Science 

Institute #D031-05), 15μL of 0.4mM Biotin-14-dCTP (Invitrogen #19518-018), 4μL of 

10% Triton X-100, and 25U Klenow-large fragment (NEB #M0210L) and rocked at 

room temperature for 40 minutes. 5μL of 0.5M EDTA was added to stop the reaction and 

the beads were washed twice with wash buffer #3 (50mM Tris-HCl pH7.4, 0.4% Triton 

X-100, 0.1mM EDTA) and resuspended in 500μL of wash buffer #3. The crosslinks were 

reversed with 400μL of extraction buffer (50mM Tris-HCl pH8, 0.2% SDS, 1mM EDTA, 

100mM NaCl) followed by the addition of 400μg of proteinase K (NEB #P8107S) and 

incubation for two hours at 65oC. The initial conformation capture library (the 

supernatant) was extracted twice with an equal volume of phenol:chloroform:isoamyl 

alcohol (25:24:1 v/v) and once with an equal volume of chloroform. NaCl was then 

added to a final concentration of 20mM and glycogen to 2ug μL-1 followed by 

precipitation of the DNA with the addition of 900μL of ethanol (200 proof) and 

incubation at -20oC overnight. The DNA was pelleted via centrifugation at 20,000 rcf at 

4oC for 20 minutes. The pellet was then immersed in 500μL of 80% ethanol and 

centrifuged at 20,000 rcf for 10 minutes. The ethanol was removed and the pellet was air 

dried until approximately 90% dry and resuspended in 20μL of 10mM Tris-HCl pH8. 

The five aliquots were combined and the RNA was removed via RNAseA digestion 

(10μg RNAseA) for 30 minutes at 37oC. The DNA was purified using the Invitrogen 

Purelink Quick PCR purification kit (Invitrogen #K310001). Biotin from non-ligated 

DNA was removed from 5μg of purified DNA using 300U EXOIII (NEB #M0206S), 

adjusting the total volume to 90μL with 10X NEBuffer 1 (NEB #B7001S). This reaction 

was incubated at 37oC for 1 hour. The reaction was stopped with 2μL of 0.5M EDTA and 
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2μL of 5M NaCl followed by incubation at 70oC for 20 minutes. A Covaris Focused-

ultrasonicator (Covaris S220) was used to shear the DNA, with a duty factor of 5%, peak 

power of 175W, and 200 cycles per burst. Each sample was sonicated for 180 seconds 

and purified using the Purelink Quick PCR purification kit and eluted in 50μL of elution 

buffer. Libraries were generated with the NEBNext Ultra II DNA Library Prep Kit for 

Illumina (NEB #E7645L). First, end-repair was performed after sonication. 1μg of DNA 

was used and the total volume of sample was brought up to 50μL with 0.1X TE. The end 

repair was carried out as outlined in the manufacturer’s protocol. After end repair, the 

biotinylated DNA was pulled down using 10μL of MyOne Streptavidin C1 beads 

(Invitrogen #65001). The beads were first washed twice with 500μL of 1X Binding and 

Wash buffer (for 2X Binding and Wash buffer: 10mM Tris-HCl pH7.5, 1mM EDTA, and 

2M NaCl) and resuspended in 2X Binding and Wash buffer, which was then added to the 

end-repaired DNA. Lo-bind tubes (Eppendorf #022431021) were used to prevent sticking 

of beads to the sides of the tubes. The samples were rocked for 30 minutes at room 

temperature. The beads were washed one time with 1X Binding and Wash buffer 

containing 0.1% Triton-X100 followed by one wash with 10mM Tris-HCl, pH8 and the 

beads were collected in 60μL of 10mM Tris-HCl, pH8. Next, adaptor ligation was 

performed as described in the NEBNext Ultra II DNA Library Prep protocol, following 

the instructions for 1μg of input DNA. After ligation of Illumina adaptors on the beads, 

the beads were washed twice with 1X Binding and Wash buffer and twice with 0.1X TE. 

The beads were resuspended in 30μL of 10mM Tris-HCl pH8. 15μL of the beads 

containing adaptor-ligated DNA was transferred to a new tube and we continued on to 

PCR enrichment of adaptor-ligated DNA on the beads. The remaining 15µL was saved 
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and stored it at 4oC. The PCR was carried out as outlined in the NEBNext Ultra II 

protocol, NEBNext Multiplex oligos for Illumina (NEB #E7335S and #E7500S) were 

used for the individual barcodes and the enrichment was performed using 10 cycles. 

45μL of the supernatant containing the PCR products was transferred to a new tube and 

were cleaned using a 0.8X bead cleanup of the PCR reaction with Agencourt AMPure XP 

beads (Beckman Coulter #A63881). The AMPure XP beads were brought to room 

temperature and resuspended. 36μL of the resuspended beads were added to the libraries 

and mixed by pipetting. The beads were incubated at room temperature for 5 minutes and 

the supernatant was discarded. The beads were washed twice while on the magnet with 

200μL of 80% 200 proof ethanol. After air-drying the beads, the library was eluted off 

the beads with 23μL of 0.1X TE and transferred to a new tube. The final library was 

quantified using a Qubit fluorometer (Applied Biosystems) and analyzed using a 

Bioanalyzer (Agilent Technologies). 

 

Chromatin immunoprecipitation sequencing (ChIP-seq) 

The antibodies used for ChIP-seq were: H3K27ac (Abcam, Cambridge, MA, 

USA; Ab4729 lot #GR238071-1), H3K27me3 (Abcam, Cambridge, MA, USA; Ab6002 

lot #GR137554-5), H3K4me3 (Abcam, Cambridge, MA, USA; Ab8580 lot #GR240214-

1), H3K4me1 (Abcam, Cambridge, MA, USA; Ab8895 lot #GR114265-2), H3K9me3 

(Abcam, Cambridge, MA, USA; Ab8898 lot #GR216368-1), ERα (Santa Cruz 

Biotechnology, Santa Cruz, CA, USA; sc-543X lot #J0313) and CTCF (Cell Signaling 

Technology, Danvers, MA, USA; D31H2 lot#1). We performed duplicate ChIP-seq 

experiments for each histone or factor using chromatin collected on different cell culture 
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dates. For each histone ChIP-seq assay, 10μg of chromatin was incubated with (2.5-5μg) 

of antibody. 150μg of chromatin was used for CTCF ChIP-seq (with 20μL of antibody) 

and 250μg of chromatin was used for ERα ChIP-seq (with 12 μg of antibody).  ChIP-seq 

samples were prepared as O’Geen et al. described59 with minor adjustments. The cells 

were crosslinked as described above for TCC experiments. The crosslinked cell pellets 

were washed twice with ice-cold 1X PBS and stored at -80oC until sonication. 

Crosslinked cell pellets were thawed on ice and resuspended in 1mL ice-cold cell lysis 

buffer (5mM PIPES pH8, 85mM KCl, Igepal 10μL mL-1) containing 1X protease 

inhibitor cocktail and 1X PMSF. After incubation on ice for 15 minutes the samples were 

then homogenized using a 2mL dounce homogenizer fitted with pestle ‘B’, using 20 

strokes. The samples were then centrifuged at 430 rcf for 5 minutes at 4oC. The 

supernatant was removed and the pelleted nuclei were lysed with 1mL ice-cold nuclei 

lysis buffer (50mM Tris-HCl pH8.1, 10mM EDTA, 1% SDS) containing protease 

inhibitors (1X protease inhibitor cocktail and 1X PMSF). The nuclei were lysed while 

incubating on ice for 30 minutes. Sonication was performed for 12 minutes using a 

Covaris Focused-ultrasonicator (Covaris S220) with a peak power of 140W, duty factor 

of 10%, and 200 cycles per burst. The sonicated material was then centrifuged at 20,000 

rcf for 15 minutes at 4oC and transferred to a new tube. To quantify the chromatin, 20μL 

of the sonicated chromatin was added to 80μL of ChIP elution buffer (50mM NaHCO3 

and 1%SDS) followed by the addition of 12μL of 5M NaCl. The samples were boiled at 

97oC for 15 minutes and 10μg of RNAseA was added to the tubes once the sample was 

cooled to room temperature. The sample was incubated at 37oC for 10 minutes to allow 

for RNA digestion. The reverse-crosslinked chromatin was then purified using the 
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Purelink Quick PCR purification kit and eluted in 20μL of nuclease free water. After 

quantification via a nanodrop (Thermo Scientific) the total chromatin yield in our 

sonicated material was calculated. To visualize the fragment sizes of the sonicated 

chromatin, we ran 1μg of purified chromatin on a 1.5% agarose gel. If the chromatin 

fragments were concentrated around the 300-500bp range, we continued onto 

immunoprecipitation. If under-sonicated, additional sonication was performed as needed. 

500ng of purified chromatin sample was saved as our input samples, these samples were 

brought to a total volume of 150μL with ChIP elution buffer and stored at -20oC. ChIP 

for each target was carried out using the quantities of chromatin and antibody above-

mentioned. The chromatin for each target was diluted with 5 times the volume of ice-cold 

1X IP dilution buffer (50mM Tris pH7.4, 150mM NaCl, 1% Igepal (v/v), 0.25% 

Deoxycholic acid, 1mM EDTA pH 8.0) containing protease inhibitors. The appropriate 

amount of antibody for each reaction was added and rotated overnight at 4oC. The 

antibody/chromatin complexes were captured by the addition of 150μL of protein A/G 

beads (Pierce #88803), which were first washed twice with 1X IP dilution buffer, for the 

transcription factor ChIPs and 15μL of protein A/G beads for the histone ChIPs. These 

complexes were rotated at 4oC for 2 hours. Following incubation, the beads were 

captured using a magnetic rack and washed twice with IP wash buffer #1 (50mM Tris-

HCl pH 7.4, 150mM NaCl, 1% Igepal (v/v) 0.25% Deoxycholic acid and 1mM EDTA, 

pH8). The beads were resuspended in the wash buffer for each wash and the supernatant 

was removed between each wash. The beads were washed three times with IP wash 

buffer #2 (100mM Tris-Cl pH9, 500mM LiCl, 1% Igepal, and 1% Deoxycholic acid). 

The beads were transferred to a new tube on the third wash. The complexes were then 
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eluted off of the beads by the addition of 75μL of ChIP elution buffer while vortexing at 

room-temperature for 30 minutes. The supernatant was transferred to a new tube and the 

elution step was repeated. The ChIP input samples were thawed and 20μL of 5M NaCl 

was added to the 150μL of final eluted complexes and to the input samples. Crosslinks 

were reversed overnight at 65oC and the ChIPs were purified using the Purelink Quick 

PCR purification kit and the samples were eluted in 35μL of elution buffer. We 

performed qPCR against targets enriched for each of the ChIPs. The ChIPs were diluted 

1:5 and the input samples were diluted to 1ng μL-1. 2μL of DNA was used for each PCR 

and 1ng was used for the input sample. Primers against GAPDH were positive for CTCF 

and H3K4me3; STX16 for CTCF; GREB1 for H3K4me1 and H3K27ac; TFF1 for 

H3K4me1, H3K4me3 and H3K27ac; ZNF180 and ZNF333 for H3K9me3; HOXB2 for 

H3K27me3; and HES3 for H3K27me3. ZNF333 and ZNF180 were negative targets for 

CTCF, ER-α, H3K4me1, H3K4me3, H3K27ac, and H3K27me3. TFF1 and SHISA5 were 

used as negative targets for H3K9me3. 

ChIP-seq libraries were generated using the NEBNext ChIP-seq Library Prep 

Master Mix Set for Illumina (NEB#E6240L) as per manufacturer’s protocol with size 

selection for the insert size of 300bp. Half of adaptor-ligated DNA was saved at 4oC 

before PCR enrichment of adaptor ligated DNA. PCR enrichment was done using 10 

cycles and cleaned with AMPure XP beads at 0.9X as outlined in the protocol. The final 

library was eluted off of the beads using 30μL of 0.1X TE and the quality was analyzed 

with a bioanalyzer (Agilent Technologies). 
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Chromosome conformation capture coupled with qPCR (3C-qPCR) 

Experiments using 3C-qPCR experiment were conducted as Hagège et al. 

described60. Ten million cells (MCF7 or TamR) were harvested and then fixed with 1% 

formaldehyde for 10 min at room temperature followed by 0.2M glycine to quench the 

reaction. Cells were lysed with 0.2% Igepal CA630 for 1hr on ice, then the pelleted 

nuclei were solubilized with 0.3% sodium dodecyl sulfate (SDS) for 1hr at 37oC and 

diluted with 2% Triton X-100 for 1 h at 37oC. The genomic DNA was digested with 400 

U HindIII overnight at 37 oC and the digestion was stopped with 1.6% SDS for 20 min at 

65oC. The digested nuclei were diluted with 1:1 volume of ligation buffer and then 

ligated with 100U T4 DNA ligase. The ligated DNA was de-crosslinked with 300µg 

proteinase K overnight at 65oC and purified by phenol–chloroform extraction. The 3C 

template was dissolved in 10mM Tris-HCl and analyzed with the quantitative PCR. 

 

Parental and TamR RNA sequencing (RNA-seq) sample preparation and processing  

Total RNA were extracted using the ZYMO Research Quick-RNA MiniPrep kit. 

Ten million MCF7 or MCF7-TamR cells were lysed in RNA Lysis Buffer followed by 

removing the majority of gDNA with a Spin-Away Filter. The mixture of RNA and 

ethanol were then loaded onto Zymo-Spin IIICG Column. Trace DNA was removed by 

DNase I on the column followed by washing twice with RNA Wash Buffer. The total 

RNA was eluted with 50 μl DNase/RNase-Free Water. RNA-seq libraries were prepared 

with Illumina TruSeq stranded mRNA kit. 4µg of total RNA of either parental MCF7 or 

MCF7-TamR cells was incubated with RNA purification beads and then washed with 

bead washing buffer. The mRNA was eluted with elution buffer and then reverse 
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transcribed with Superscript III reverse transcriptase. The first strand cDNA was 

synthesized with first strand synthesis act D mix and the second strand cDNA was 

synthesized with second strand marking master mix. After cDNA was synthesized, a 

single adenylate was added to the 3’ end with A-tailing mix and adapters were ligated 

with ligation mix. DNA fragments were enriched with PCR master mix and then purified 

to build the DNA library. The library was sequenced with Illumina HiSeq 2000. The 

differentially expressed genes were identified with CuffDiff61. The 50bp single end 

sequencing reads were aligned with the Tophat module, and then transcripts were 

assembled with Cufflinks. The transcript assemblies were compared to annotation using 

the Cuffcompare and two or more transcript assemblies were merged with Cuffmerge. 

Lastly, the differentially expressed genes and transcripts were found with Cuffdiff. 

 

Identification of compartment patterns and types 

All TCC data were analyzed with HiCLib python package10 to identify chromatin 

compartment A or B. Paired-end reads of TCC data were iteratively aligned to the human 

reference genome (hg19) by bowtie262 with the minimal sequencing length of 20bp and 

the length step of 5bp in the module of HiCLib mapping. The following reads were 

removed from the dataset in the HiCLib HiCdataset object: beginning with the 5bp range 

from the restriction enzyme cut site; the duplicate molecules; the fragment pairs separated 

by less than 2 restriction sites within the same chromosome; extremely large restriction 

fragments (more than 10,000bp) and extremely small restriction fragments (smaller than 

100 bp); both ends of the pairs starting at exactly the same positions; the top 0.5% most 

frequently identified restriction fragments. At this stage the self-circles, dangling ends 
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and PCR duplicate reads were removed and a maximum molecule length of 500bp was 

specified at the initiation of the object. The correlation of two replicates was computed as 

the following: the counts of mapped reads pairs were accumulated at the 1Mb bin, and 

then the correlation of these counts for each chromosome were calculated separately. 

After filtering the reads, the frequency contact matrices were constructed at a bin size of 

100kb with the HiCLib fragmentHiC module. The contacts between loci located within 

the same bin were then removed from the raw heatmap. The bins with less than half of a 

bin sequenced and the 1% of regions with low coverage were also removed. The top 

0.05% of interchromosomal counts as the possible PCR blowouts were truncated 

followed by iterative correction to get the ICE heatmap using the HiCLib binnedData 

module. All bins of the ICE heatmap on a diagonal were removed with the HiCLib 

binnedData module. The bins with less than half of a bin sequenced were also removed. 

All cis contacts were set to zero to obtain only the trans contacts. The cis contacts were 

forged in an interative way. After removing the bins with zero counts the eigenvector 

expansion was performed with the HiCLib binnedData module to get the first 

eigenvectors of compartments. The continuous genomic regions of positive first 

eigenvectors were defined as compartment A (active chromatin), and the continuous 

genomic regions of negative first eigenvectors were defined as compartment B (inactive 

chromatin) individually at the 100kb scale. The compartments of five time points (T0, 

T1, T4, T16, T24) were compared to identify the dynamic patterns (Appendix D-1). 

First, two kinds of compartments: T0 vs. T1 Common and T0 vs. T1 Transit were 

identified by comparing compartments of T0/T1. The Common compartments are the 

overlapping compartments and the Transit compartments are differential compartments, 
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which will be used in the following steps as well. Next, T0 vs. T1 Common and T0 vs. 

T1 transit were compared with T4, T16, T24 independently to generate the (a) T0 vs. T1 

Common vs. T4/T16/T24 Common, (b) T0 vs. T1 Common vs T4/T16/T24 Transit, (c) 

T0 vs. T1 transit vs T4/T16/T24 Common, (d) T0 vs. T1 transit vs T4/T16/T24 Transit. 

Thirdly the pattern 1-15 were produced by comparing the various time points (T4, T16 

and T24) of last step subsets a, b, c, and d, which are vs. T4, vs. T16, vs. T24. The rest 

subsets were divided into pattern 16-24 according to the numbers of converted bins. 

Finally, 24 patterns were identified from the intersection and difference among subsets a, 

b, c, and d. According to their biological meanings, these patterns were able to categorize 

into six types of dynamic changed compartments (DCCs): HCC (patterns 1-4), ETC 

(patterns 5-8), LTC (patterns 9-12), LDC (patterns 13-16), MDC (patterns 17-20), HDC 

(patterns 21-24). 

 

Computation of differential compartments 

The variance of first eigenvector values of compartments identified in T0, T1, T4, 

T16, T24 was computed at the 100kb scale. The difference of HCC/ETC/LTC/LDC with 

MDC/HDC was determined by two-sided Wilcoxon rank-sum test for their averaged 

variance of first eigenvector values. The estimate of False Discover Rate (FDR) of the 

differential compartment between any two compartments was conducted by a 

permutation-based test. In brief, the difference in Means of Eigenvector Values of each of 

two compartments: Compartment 1 and Compartment 2, was first calculated as the 

Observed Value. The Eigenvector Values of two compartments were then pooled 

together and randomly selected one half as randomized Compartment 1 and the other half 
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as randomized Compartment 2. This was done for a total of 1,000 rounds of permutation. 

In each round, the difference in means of Eigenvector Values of each of two randomized 

compartments was calculated as a Permutated Value. All permutated values were 

combined into a null distribution. The FDR is estimated based on how many permutated 

values are above the observed value and the permutated null. 

 

Epigenetic states 

ChIP-seq of H3K4me3, H3K27ac, H3K4me1, H3K27me3, and H3K9me3 data 

sets from five time points of E2-induced MCF7 cells and TamR cells were aligned to the 

human reference genome hg19. We then utilized the Java program ChromHMM v1.1745 

to characterize chromatin epigenetic states by integrating the histone modification ChIP-

seq datasets to identify de novo major re-occuring combinatorial and spatial patterns 

based on a multivariate Hidden Markov Model. The results of the model were then used 

to systematically annotate genome-wide maps of chromatin states. After the ChIP-seq 

data were mapped to the human genome, the BinarizeBam module was used to binarize 

uniquely mapped reads into 1kb bins for model learning. The binarized data were then 

trained with LearnModel and ten epigenetic states were finally identified with a minimum 

p-value after averaging five training rounds. The emission and transition matrices were 

visualized using R. The ten ChromHMM states were classified into three kinds of 

epigenetic states according to the combination of histone marks with the p-value cutoff of 

0.3 for emission matrices. The active states were defined by H3K4me3, H3K27ac and 

H3K4me1, repressive states defined by H3K27me3, H3K9me3 and bivalent states 

including both active and repressive states. 
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Identification of ERα and CTCF binding sites 

ChIP-seq data for ERα and CTCF were aligned to the human reference genome, 

hg19. We then determined binding sites by peaks calling with MACS v1.4.246. The 

identified peaks were coordinated to the various compartments and boundary regions to 

obtain the coincident sites. The peak summits generated by MACS were defined as 

binding sites for the subsequent analyses. 

 

Differential binding analysis of ERα 

We identified ERα differential peaks (DPs) with the R Bioconductor package 

DiffBind v2.6.663,64 using TamR vs. T0/T1/T4/T16/T24 as the contrast. Within the 

anlaysis, peaks were first enriched for genomic loci from ChIP-seq data and then read by 

DiffBind. Next, overlaps of peaks were examined to determine how well similar samples 

cluster together with the function dba.count. Then, overlapped reads in each interval for 

each unique sample were counted with the function dba.contrast. Lastly, a contrast was 

established and then the core analysis of DiffBind was executed by default using 

DESeq265 with the function dba.analyze. Finally, the results were reported and plotted 

with the function dba.report. 

 

Time-series RNA-seq data analysis 

Time-series RNA-seq data of E2-treated MCF7 cells47 were acquired from 

GSE62789. Five time points close to this study (T0 = 0 min, T1 = 40 min, T4 = 160 min, 

T16 = 640 min, T24 = 1280 min) were selected and mapped to the human genome using 

Tophat and gene expression was analyzed with Cuffdiff61. After gene expression values 
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were normalized with log2 transformation, the variances were calculated between the five 

time points. The normalized gene expression values of genes located at each 

compartment types in five time points were visualized with the R program. 

 

Significant Interaction Loops 

The uniquely mapped paired-end reads were inputted into HOMER v4.749 to 

generate the significant interaction loops. In brief, HOMER was originally developed for 

a de novo motif discovery program and is now able to identify significant loops. The 

HOMER analyzeHiC module was used to make interaction matrices, normalize 

interaction counts and identify the significant interaction loops. The loops were further 

filtered with a LogP cutoff of -6 and distance cutoff 20kb between loci centers. 

Tamoxifen resistant differential loops of MCF7-TamR were obtained via the analyeHiC 

module of HOMER using MCF7 T0 as the contrast with the cutoff of FDR<=0.1 and the 

distance of loci pair center at 40kb to 5Mb. 

 

Enrichment of KEGG pathway 

Differentially expressed genes in various compartments were analyzed using 

Gene Set Enrichment Analysis (GSEA) v3.048. Kyoto Encyclopedia of Genes and 

Genomes (KEGG) were selected as the geneset database. Gene ranking was determined 

by the ratio of log2 fold change to p-value of differential expression. 

 

 

 



 143 

Data availability 

Raw and processed TCC, ChIP-seq and RNA-seq data for MCF7 and TamR cells 

is deposited in GEO under the accession number GSE108787, and raw and processed 

TCC data for T47D and TamR cells is deposited in GEO under accession number 

GSE119890. The RNA-seq data of E2-treatment time series MCF7 is available at GEO 

accession number GSE62789. 
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Figures  

Figure 4.1: Identification of E2-induced compartments in MCF7 cells at T1 versus T0   

 

 

 

 

 



 145 

Figure 4.1: Identification of E2-induced compartments in MCF7 cells at T1 versus T0.  

(A) Pearson correlation of two biological replicates with the bin size of 1Mb, 500kb and 

200kb on individual chromosomes at T0 (Top) and T1 (Bottom). (B) Contact matrices of 

compartment A (Black) and B (Red) at T0 (Top) and T1 (Bottom) respectively. (C,D) 

Histograms of compartments with different sizes at T0 and T1 respectively. (E) 

Distribution of compartments A and B in T0 and T1 respectively. (F) The percentage of 

common and transit compartments at T1 vs T0 with various bin sizes. (G) The number of 

compartments of T1 vs. T0 with various shifted length when bin size is 100kb. 
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Figure 4.2: Defining E2-induced temporal dynamic re-compartmentalization (TDRC) in 

MCF7 cells 
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Figure 4.2: Defining E2-induced temporal dynamic re-compartmentalization (TDRC) in 

MCF7 cells. (A) An instructive tree displaying the comparisons of compartments A (Top) 

and B (Bottom) at E2-induced five time-points. T0: control, T1: 1 hour; T4: 4 hours; T16: 

16 hours; and T24: 24 hours. (B) Number of compartments at each of the 24 individual 

patterns categorized into six types of altered compartments: HCC including patterns 1-4; 

ETC including patterns 5-8; LTC including patterns 9-12; LDC including patterns 13-16; 

MDC including patterns 17-20; HDC including patterns 21-24. (C) The variance of first 

eigenvectors of compartment types in T0, T1, T4, T16, T24. The p value was determined 

by the Wilcoxon rank-sum test. (D,E) Snapshots displaying examples of compartment 

changes, MDC (D) and HDC (E) along five time-points of E2-induction. The 

compartment of interest is indicated between the green dashed lines. The blue dashed 

ovals highlight the dynamic region.  
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Figure 4.3: Identification of altered compartments in TamR cells 
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Figure 4.3: Identification of altered compartments in TamR cells. (A) The number of 

tamoxifen resistant compartments along chromosomes in MCF7 TamR cells. (B) The 

percentage of tamoxifen resistant altered compartments (TRACs), A (Top panel) and B 

(Bottom panel) in TamR cells. The x axis displays the identified compartments after 

comparison with the 24 states identified in responsive cells. (C) Genomic size of six 

types of TRACs and tamoxifen resistant unaltered compartments (TRUCs). (D-F) UCSC 

genome browser snapshots of TRACs and the enclosed genes within their loci. Dark: 

Compartment A; Gray: Compartment B. (D) contracted compartment. Blue lines 

represent the compartment boundary. (E) Expanded compartment. (F) Flipped 

compartment. 
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Figure 4.4: Epigenetic modifications within E2-induced TDRCs and TRACs 
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Figure 4.4: Epigenetic modifications on E2-induced TDRCs and TRACs. (A) Emission 

probabilities of ten epigenetic states trained by a HMM model on five histones. The 

enrichment of the corresponding mark is indicated by higher values and corresponds with 

a darker pink color. (B) Transition probabilities of ten epigenetic states trained by a HMM 

model on five histones. The enrichment of the corresponding mark is indicated by higher 

values and with a darker pink color. (C) The summary of the corresponding histone marks 

and each of the defined epigenetic states. (D) The percentage of epigenetic states on 

dynamic E2-induced compartment A. (E) The percentage of epigenetic states on altered 

TamR compartment A. (F) The percentage of epigenetic states on dynamic E2-induced 

compartment B. (G) The percentage of epigenetic states on altered TamR compartment B.  
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Figure 4.5: A distribution of ERα and CTCF peaks in E2-induced TDRCs and TRACs   
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Figure 4.5: A distribution of ERα and CTCF peaks in E2-induced TDRCs and TRACs.  

(A) The number of ERα (Left) and CTCF (Right) peaks within altered and unaltered TamR 

compartments. (B) Heatmap showing the percentage of altered TamR compartments A 

(Left) and B (Right) with ERα peaks. (C) The average number of CTCF peaks on altered 

TamR compartment boundary in E2-induced five time-points and TamR MCF7 cell lines. 

(D) The distribution of each of the 24 patterns (circled) of ERα peaks within compartments 

and CTCF peaks on compartment boundary.   
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Figure 4.6. Gene expression and looping in E2-induced TDRCs and TRACs 
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Figure 4.6. Gene expression and looping in E2-induced TDRCs and TRACs. (A) The 

number of dynamic DEGs located in each of six types of TDRCs-A. (B) A plot of gene 

expression values along five time-points in each of the six types of TDRCs-A. Each 

green line represents one gene, and blue line represents the average gene expression 

value. (C) The enrichment of KEGG pathways of 1,396 genes in MDC/HDCs-A. (D) The 

heatmap of DEGs of TamR versus MCF7 in each of six types of TRACs-A. (E) The 

number of loops defined by HOMER.  Putative: putative loops identified by HOMER. 

Promoter: one locus of putative loops within -5kb/+1kb of TSS. Enhancer: one locus of 

putative loops within -5kb/+1kb of TSS and the other with either H3K27ac/H3K4me1 

peaks. ERα: at least one locus of loops with an ERα peak located within a promoter-

enhancer region. Gene: genes associated with ERα-PE loops showing differentially 

expressed genes at TA-MDCs-A and TA-HDCs-A. (F) The enrichment of KEGG 

pathways of 396 genes associated 599 ERα-PE loops. 
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Figure 4.7: A proposed model for dynamic 3D chromatin architecture 
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Figure 4.7. A proposed model for dynamic 3D chromatin architecture. (A-C). 

Constitutive estrogen stimulation in breast cancer cells enhances stronger ERα activity 

and further recruits its distal regulatory machinery and then mobilizes highly dynamic 

gene looping which essentially expand to render a 3D genome re-compartmentalization 

meanwhile force CTCF eviction resulting in reduced insulation activity at the 

compartment boundary. (D). In acquired resistant breast cancer cells, increased crosstalk 

between ERα and other signal transduction pathways such as EGFR/HER2, IGF-IR, and 

AKT/PTEN or altered expression of some key co-regulators particularly reshuffle these 

highly dynamic gene looping resulting in altered chromatin reorganization. 
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Chapter 5.1: Summary 

Chromatin based-mechanisms involved in the establishment and maintenance of 

cellular phenotypes are mediated by higher-order chromatin organization and post 

translational histone modifications. These regulatory processes coordinate the recruitment 

of protein complexes to specific genomic targets that result in gene expression 

alterations. This dissertation seeks to employ integrative high-throughput methodologies 

to investigate dynamic epigenetic changes in cancer cell models. Presented here are new 

contributions to the field of cancer genomics where I investigate the effects of external 

stimuli on higher-order chromatin structure, post translational histone modifications and 

gene expression. In Chapters 2 and 3 I reveal dynamic epigenetic mechanisms in 

pancreatic cancer cell models in response to epigenetic inhibitors. In Chapter 4, I present 

my work in ER positive breast cancer cells where plasticity was observed during 

temporal estrogen stimulation in cell models sensitive or resistant to tamoxifen. Taken 

together, this dissertation reveals novel insight into dynamic epigenomic alterations that 

occur with external stimuli and provides insight into mechanisms underlying the 

therapeutic responses in cancer cells. 

 

Chapter 5.2: Implications of epigenetic plasticity in pancreatic cancer cell models   

 

5.2.1: Overall outlook and contributions to the field  

 The work presented in Chapters 2 and 3 ultimately present an analysis framework 

for investigating genome-wide histone modification landscapes in relation to 3D-

chromatin topology. Additionally, I provide characterization of broad epigenetic domains 
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corresponding to histological grade and give insight into genome-wide domain targets of 

epigenetic inhibitors.  Lastly, this work provides datasets in pancreatic cancer cell-lines 

that are now available for public use for studies desiring to investigate: (1) chromatin 

contacts and (2) epigenomic (histone modifications and 3D chromatin architecture) and 

transcriptomic alterations in response to ICG001 and C646. In section 5.2.4, I propose 

future directions that can build on the studies presented here.  

 

5.2.2: Defining chromatin contacts and chromatin states in PDAC cells  

The goal underlying the first part of this dissertation seeks to characterize 

genome-wide patterns of chromatin structure in pancreatic cancer cell-lines and to 

investigate the effects of two epigenomic inhibitors on these regions (Appendix A, 

Chapters 2 and 3). This work provides an important basis for future studies regarding 

epigenomic regulation and the effects of epigenomic inhibitors on the cancer genome.  

In Chapter 2 of this dissertation, I present the genome-wide interactions within a 

widely used pancreatic cancer cell-line and functionally characterize these regions by: (1) 

defining genome-wide chromatin contacts; (2) classifying the surrounding domains in 

relation to histone modifications; (3) determining how histone acetyltransferase inhibitors 

impact chromosomal organization; and (4) investigating these interactions in regard to 

chromatin regulation mediated by transcription factor binding. This chapter demonstrates 

a computational analytical approach to investigating higher-order chromatin regulation 

data relating to histone modifications and gene expression to classify chromatin looping 

events. For the first time in the literature, we present a genome-wide view of chromatin 

domains in the extensively studied pancreatic cancer cell-line, PANC1.  After classifying 
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these domains with epigenetic histone modifications, annotating these defined states to 

gene regions and correlating PANC1 gene expression with these classified domains, we 

found that domains coordinating with active epigenetic states contained increased gene 

expression patterns. Repressed epigenetic states corresponded with decreased expression, 

providing confidence in our domain classification pipeline as these epigenetic states are 

correlative of gene expression [1]. Modifications such as H3K4me1 are known to play a 

role in gene repression [2] but when co-marked with H3K27ac this signature typically 

corresponds to active enhancers [3]. While there are general trends between histone 

modifications and chromatin state, it is imperative to further investigate chromatin 

machinery within these mechanisms to gain further insight about underlying regulation.  

In the next part of Chapter 2, I investigated changes in interaction domain loci in 

response to two epigenetic inhibitors and associate these altered regions with gene 

expression. In our initial study (Appendix A), we investigated the effect of two histone 

acetyltransferase (HAT) inhibitors on the pancreatic cancer transcriptome and found 

shared and independent targets of ICG-001 and C646. Recent reports have identified 

C646 to help sensitize pancreatic cancer cell-lines to the canonical therapeutic agent used 

to treat pancreatic cancer [4] and has shown efficacy in other cancers [5, 6]. Additionally, 

the efficacy of ICG-001 has shown similar effect [7, 8] and has furthermore been 

promoted its advancement to clinical trials (NCT01764477; NCT01606579; 

NCT01302405). With the potential in reverting the cancer phenotype, little is known 

about the impact of these inhibitors genome-wide. Our study highlighted in Appendix A 

was the first study to characterize the effects of these inhibitors on the cancer 

transcriptome. Chapter 2 builds on this study by investigating potential chromatin-based 
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mechanisms that may be influencing the transcriptional targets of these inhibitors. While 

changes in 3D chromatin topology has been observed in response to temperature stress 

[9], the impact of epigenetic inhibitors on genome-wide contacts was not known. Our 

characterization identified shifts in domains that were correlated with transcription factor-

mediated regulation using TCF7L2. Ultimately, I suggest a potential mechanism by 

which transcription factor associated chromosome interactions containing an active 

epigenetic signature surrounding these regions are altered by epigenomic inhibition.  

 

5.2.3: HAT inhibitors on broad epigenomic domains in PDAC cells 

 In Chapter 3, I further investigate the active histone modification landscape by 

defining typical and broad H3K4me3 and H3K27ac domains in pancreatic cancer cell 

models corresponding to histological grade. I then determine the impact of histone 

acetyltransferase inhibitors on these histone modification domains in the high-grade 

PDAC cell-line, PANC1, the model in which we explore their impact on the 

transcriptome (Appendix A) and chromatin architecture (Chapter 2). Broad epigenomic 

domains have recently been linked to cancer-related genes programs [10, 11]. Our 

comprehensive analysis of super-enhancers and broad H3K4me3 domains in high- and 

low-grade pancreatic ductal adenocarcinoma cell-lines revealed, for the first time, that 

both of genome wide landscapes of these broad epigenomic domains have the ability to 

correspond to distinct high and low histological grades. When correlating annotated 

genes within the broad domains with gene expression in the given cell-lines, we find that 

gene expression correlates with predicted patient prognosis. We observed global 
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acetylation and methylation changes after histone acetyltransferase inhibitor treatment 

and furthermore, alteration in broad domains.  

 

5.2.4: Future Directions  

Cell-lines are important tools for investigating multiple facets of cellular 

mechanisms. However; performing these analyses in low-grade and additional high-grade 

samples would provide additional insight into the aggressive phenotype of PDAC and 

could also allow us to investigate potential mechanisms underlying the different cellular 

phenotype of the individual cell-lines. Recent reports have characterized the PDAC 

transcriptome, genome and epigenome in primary and metastatic PDAC samples as well 

as patient derived xenografts of PDAC of the classical and basal subtypes [12, 13]. 

Integrating the domain characterizations and gene targets from our studies could narrow 

down specific targets and candidates for further investigations. We examine the role of 

TCF7L2 and for the first time, correlate this transcription factor with chromatin 

architecture. However, its direct involvement in the aggressive phenotype in PDAC is not 

well understood. TCF7L2 is a downstream transcription factor of this pathway, there are 

other TCF/LEF family members that could be of importance. Furthermore, future studies 

could incorporate additional transcription factor regulation to determine other regulatory 

mechanisms and moreover the biology of PDAC. These could functionally be tested 

through perturbation experiments of the given transcription factor or chromatin regulator 

and the described experiments could be repeated and integrated with the current datasets 

to infer direct regulatory roles. Future studies modulating target regions within specific 

chromatin states would provide further insight into the functional significance of our 
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associations. For example, the advancements in CRISPR/Cas9 technologies provides 

tools for which we can edit the genome in order to explore molecular consequences. A 

future study could utilize this technology to create a double strand break at a super-

enhancer or broad H3K4me3 region containing a gene potentially contributing to the 

PDAC phenotype using a high- and low-grade cell model to determine the role these 

epigenetic regions are playing on gene expression of the gene of interest. Additionally, 

chromatin architecture data could be used to determine how the absence of this region 

alters chromatin interactions nearby and further phenotypic studies could be carried out to 

determine if targeting the broad region of interest provides clinical potential in reverting 

the cancer phenotype. Ultimately, exploring the relevance would be best determined by 

using human PDAC samples to interrogate these processes. In the realm of the genome-

wide effects of epigenetic inhibitors on chromatin regulation, additional cell models 

should be used to gain insight into more generalized and cell-type specific effects of these 

inhibitors genome-wide.  

 

Chapter 5.3: Implications of chromatin dynamics in breast cancer cell models 

5.3.1: Overall outlook and contributions to the field 

 The work presented in Chapter 4 of this dissertation provides a report of the 

dynamics of 3D chromatin structure across a time course of estradiol (E2) stimulation in 

human estrogen receptor α (ERα) positive breast cancer cells in tamoxifen sensitive and 

resistant cells. In addition to these new revelations regarding chromatin compartment 

regulated through temporal estradiol stimulation, we proved new high-throughput 

datasets available to the general public for further investigations. These datasets include: 
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(1) genome-wide 3D architecture, (2) ChIP-sequencing and (3) RNA-sequencing 

throughout temporal estradiol stimulation in tamoxifen sensitive and resistant cells.  

 

5.3.2: Dynamics during temporal estradiol stimulation  

 In Chapter 4, we present our study in estrogen receptor positive (ER+) breast 

cancer, where we investigate the dynamics of 3D chromatin reorganization. Our 

integrative genomic analyses using ER-α positive breast cell models provided new insight 

into epigenomic regulation of ER+ breast cancer mediated by ER-α. Also, we investigate 

epigenetic alterations in tamoxifen resistant derivatives. We observed genome-wide 

changes in chromatin compartments (open or closed) in breast cancer cells hormone 

starved followed by temporal stimulation of estradiol, an estrogen derivative. Moreover, 

we characterized the changes over five estradiol induction periods with respect to histone 

modifications and gene expression. Our results revealed coordinated changes in 

chromatin compartments in tamoxifen resistant cells, where frequently changed 

compartments were associated with increased ER-α activity. We identify ERα-bound 

promoter-enhancer loops within altered compartments that are linked to TamR 

differential gene expression. Ultimately, this large 3D-scale chromatin data provides a 

rich resource for studying the basic characteristics of hormone-dependent breast cancers 

and provides further insight into the mechanisms of tamoxifen resistance.  

 

5.3.3: Future Directions  

When identifying genome-wide compartmentalization changes, we used two 

different ER+ breast cancer cell-lines, MCF7 and T47D. Our goal in this Chapter was to 
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characterize these compartments and associate epigenetics and gene expression programs 

with these compartments using the MCF7 cell line; however, since these two breast 

cancer cell-lines are of the same classification and contain the same estrogen, 

progesterone and Her2 expression [14] we utilized T47D to confirm that the 

identification of estradiol-induced compartments were consistent between both cell-lines. 

Future studies using more cell-lines with diverse subtypes will provide additional insight 

into the biology of re-compartmentalization in breast cancer models. Additionally, 

carrying these investigations further into human primary samples with matched clinical 

controls will provide more clinical perspective into these dynamic mechanisms in 

tamoxifen resistance. Future studies incorporating high-throughput proteomics data for 

ER-α with our datasets can isolate specific candidates for additional functional studies 

regarding ER-α mediated chromatin regulation. Additionally, disrupting an ER-α region 

within the highly dynamic compartments will allow us to identify the potential 

implications of ER-α within these regulatory regions that are highly altered in response to 

estradiol and also largely changed in response to tamoxifen.  

 

Chapter 5.4: Concluding remarks 

 Chromatin-based mechanisms including higher-order chromatin organization and 

histone modifications have been identified to alter chromatin accessibility and directly 

influence transcriptional programs and furthermore biological outcomes. This dissertation 

seeks to characterize these domains in cell models for pancreatic and breast cancer and to 

ultimately investigate epigenetic plasticity in response to different conditions. We 

observed dynamic changes in chromatin structure in pancreatic cancer in response to 
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epigenetic inhibitors and in breast cancer in response to estrogen stimulation. Future 

work exploring the molecular consequences of these genome-wide alterations are needed 

and furthermore, studies in primary patient samples will provide direct insight into 

clinical importance and can help narrow down directed targets for phenotypic studies. 

Additionally, 3D-FISH experiments can be designed in these models to confirm our 3D-

chromatin findings. This dissertation ultimately provides insight into dynamic epigenetic 

processes. Importantly, this work contributes large genomic datasets that are publically 

available for the scientific community, which provides opportunities for new research 

projects. These datasets can be combined with other publically available data to 

investigate SNPS, other epigenomic modifications and additional DNA binding factors to 

conduct further meta-analyses for mechanistic perspectives.  
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Abstract 

Background: Due to the hyper-activation of WNT signaling in a variety of cancer types, 

there has been a strong drive to develop pathway-specific inhibitors with the eventual 

goal of providing a chemotherapeutic antagonist of WNT signaling to cancer patients. A 

new category of drugs, called epigenetic inhibitors, are being developed that hold high 

promise for inhibition of the WNT pathway. The canonical WNT signaling pathway 

initiates when WNT ligands bind to receptors, causing the nuclear localization of the co-

activator β-catenin (CTNNB1), which leads to an association of β-catenin with a member 

of the TCF transcription factor family at regulatory regions of WNT-responsive genes. 

The TCF/β-catenin complex then recruits CBP (CREBBP) or p300 (EP300), leading to 

histone acetylation and gene activation. A current model in the field is that CBP-driven 

expression of WNT target genes supports proliferation whereas p300-driven expression 

of WNT target genes supports differentiation. The small molecule inhibitor ICG-001 

binds to CBP, but not to p300, and competitively inhibits the interaction of CBP with β-

catenin. Upon treatment of cancer cells, this should reduce expression of CBP-regulated 

transcription, leading to reduced tumorigenicity and enhanced differentiation. 

Results: We have compared the genome-wide effects on the transcriptome after treatment 

with ICG-001 (the specific CBP inhibitor) versus C646, a compound that competes with 

acetyl-coA for the Lys-coA binding pocket of both CBP and p300. We found that both 

drugs cause large-scale changes in the transcriptome of HCT116 colon cancer cells and 

PANC1 pancreatic cancer cells and reverse some tumor-specific changes in gene 

expression. Interestingly, although the epigenetic inhibitors affect cell cycle pathways in 

both the colon and pancreatic cancer cell lines, the WNT signaling pathway was affected 
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only in the colon cancer cells. Notably, WNT target genes were similarly downregulated 

after treatment of HCT116 with C646 as with ICG-001. 

Conclusion: Our results suggest that treatment with a general HAT inhibitor causes 

similar effects on the transcriptome as does treatment with a CBP-specific inhibitor and 

that epigenetic inhibition affects the WNT pathway in HCT116 cells and the cholesterol 

biosynthesis pathway in PANC1 cells. 

 

Background  

Due to the hyper-activation of WNT signaling in a variety of cancer types (1,2), 

there has been a strong drive to develop antagonists of WNT signaling for cancer 

treatment. Standard inhibitors of the WNT signaling pathway include biologic inhibitors, 

such as small interfering RNAs, antibodies, and recombinant proteins, and chemical 

inhibitors, such as NSAIDs, vitamins, and polyphenols, that have fairly general (or 

unknown) targets (1,3,4). However, a new category of drugs to target the WNT pathway 

is being developed that holds high promise as chemotherapeutics. These drugs, called 

epigenetic inhibitors, function to modify chromatin structure. Chromatin is composed of 

nucleosomes, which are comprised of 146 bp of DNA wrapped around eight core histone 

proteins (two copies each of H2A, H2B, H3, and H4). The N terminal tails of the core 

histones that constitute the nucleosome are subject to various different types of 

modifications that can influence chromatin structure and either enhance or inhibit the 

ability of transcription factors to bind to and regulate their target genes. The pattern of 

histone modifications throughout the genome, in combination with the pattern of DNA 

methylation, is called the epigenome. Recent studies have revealed that different histone 
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modifications are associated with active vs. silenced chromatin, that different cell types 

show different epigenomic patterns of silenced vs. active chromatin, and that changes in 

chromatin structure can have a dramatic effect on cell proliferation, differentiation, and 

survival. One widely studied histone modification is acetylation; histone acetylation is a 

critical regulatory mechanism of gene expression and plays an important role in gene 

expression. In fact, acetylation of histone H3 on lysine 27 is the epigenetic modification 

that most precisely identifies distal regulatory regions that serve as active enhancers (5). 

Because cancer genomes show changes in histone acetylation patterns, there is great 

interest in the use of acetylation inhibitors that inhibit signaling pathways linked to 

human cancers for epigenetic therapy (6).  

Drugs that inhibit acetylation are particularly relevant for inhibition of the WNT 

pathway. The canonical WNT signaling pathway initiates when WNT ligands bind to 

receptors, resulting in the nuclear localization of the co-activator β-catenin (CTNNB1), 

which leads to an association of β-catenin with a member of the TCF/LEF transcription 

factor family at regulatory regions of WNT responsive genes (7,8). The TCF/β-catenin 

complex can interact with co-activators such as CBP (CREBBP) and p300 (EP300) 

which function in part through the acetylation of histone H3 on lysine 27 (5). Thus, it has 

been proposed that the initiation of the WNT signaling pathway ultimately ends with 

histone acetylation and a relaxing of the chromatin structure, a process necessary for gene 

activation. The small molecule inhibitor ICG-001 binds to CBP and competitively 

inhibits the interaction of CBP with β-catenin (9,10), with the expected result of loss of 

active histone at promoters and enhancers regulated by TCF/β-catenin/CBP complexes 

(Appendix A-1A). Importantly, ICG-001 does not bind to the highly related histone 
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acetyltransferase (HAT) p300 and should not affect the activity of promoters or 

enhancers bound by TCF/β-catenin/p300 complexes. Thus, ICG-001 is thought to 

specifically decrease the expression of only the subset of WNT target genes regulated by 

β-catenin/CBP interactions. These proposed effects of ICG-001 are in contrast to those of 

C646 an inhibitor that competes with acetyl-coA for the Lys-coA binding pocket of p300 

(Appendix A-1B). C646 is very selective for p300 versus six other unrelated histone 

acetyltransferases (11). Although no direct comparisons have been performed, due to the 

mode of action of C646 and because the HAT domains of p300 and CBP have greater 

than 90% similarity, it has been proposed that C646 is a general inhibitor for both CBP 

and p300 (11). Of importance for the role of ICG-001 as a chemotherapeutic drug, studies 

suggest that CBP-driven transcription helps to maintain pluripotency whereas p300-

driven transcription pushes cells toward a differentiated state (3,12-15); examples of 

genes thought to be regulated by CBP vs. p300 are shown in Appendix A-1C. However, 

the hypothesis that ICG-001 specifically downregulates only the subset of WNT target 

genes involved in proliferation (such as BIRC5 and CCND1) has not been tested on a 

genome-wide scale. Because a derivative of ICG-001 called PRI-724 is now in clinical 

trials (NCT01302405 and NCT01606579), it is critical to have a thorough understanding 

of the specificity and effectiveness of this drug. Therefore, we have compared the 

genome-wide effects on the transcriptome of ICG-001 versus C646 in two cancer cell 

lines that constitutively express the components of the transcription complex that 

mediates WNT signaling (Appendix A-1D). 
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Results 

ICG-001 and C646 have similar effects on the transcriptome of HCT116 colon cancer 

cells.  

Constitutive activation of WNT target genes via a TCF/β-catenin/CBP complex is 

thought to be a major driver of colorectal cancer. Therefore, it has been proposed that 

treatment of colon cancer cells with ICG-001 should specifically inhibit the WNT 

pathway (by preventing recruitment of the co-activator CBP to TCF/β-catenin target 

genes) and reduce the tumorigenicity of the cells. In support of this hypothesis, Emami et 

al. (10) have shown that ICG-001 reduces growth of colon carcinoma cells in culture and 

reduces the formation of colon and small intestinal polyps in a mouse model system. As 

noted above, CBP is highly related to another HAT called p300 and many studies have 

shown similar functions for p300 and CBP (16). In fact, a ChIP-seq analysis of p300 and 

CBP in T98G glioblastoma cells immediately after release from serum starvation arrest 

showed that almost all of the CBP genomic binding sites were also bound by p300 (17). 

However, under the tested conditions, a small set of genomic sites were preferentially 

bound by either CBP or p300, suggesting that there might be some specificity in their 

action. It is also possible that cell type plays a critical role in specifying CBP vs. p300 

contributions to regulating the transcriptome. For example, approximately 50% of 

Rubinstein-Taybi syndrome patients have mutations in CBP but only 3% of patients have 

mutations in p300 (18). Of course, functional specificity can also occur post-DNA 

binding because the two HATs only share extensive, but not complete, homology. If, for 

example, CBP and p300 recruit different interaction partners they could have opposite 

effects on transcription at a given promoter. In support of this hypothesis, Ma et al. have 
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shown that both CBP and p300 can bind to the BIRC5 promoter but they have opposite 

effects on transcription (19). 

To determine if the effects on the transcriptome after specifically inhibiting CBP 

are different than the effects after inhibiting both CBP and p300, we treated HCT116 

colon cancer cells with 0.05% DMSO, 10 μM ICG-001, or 10 μM C646 for 12 and 96 h. 

Samples were prepared in replicate and Illumina HumanHT-12 v4 expression arrays were 

used to detect changes in gene expression (Appendix A-2). Genes having a detection P 

value less than 0.01 in any of the control or treated cell populations were selected for 

further analysis; this constituted a total of 15,092 genes from HCT116 cells, of which 

3,689 showed differential expression in drug-treated cells (differential expression P value 

less than 0.05). After selecting the significant differentially expressed genes, the 

expression fold change was calculated for each gene and Euclidean distance was used for 

K-means clustering of expression fold change (Appendix A-3). We found that, contrary 

to our initial expectations, a very similar response was observed for both drugs. Genes 

that were downregulated by both drugs were involved in the cell cycle and WNT 

signaling (Appendix A-3). However, some genes did show drug-specific changes in 

HCT116 cells. According to the mechanism of action of each drug, genes with decreased 

levels of expression only after treatment with ICG-001 should be regulated by CBP but 

not by p300, whereas genes with decreased levels of expression only after treatment with 

C646 but not with ICG-001 should be regulated by p300 but not by CBP. A gene 

ontology analysis of the approximately 400 genes affected only by ICG-001 revealed a 

strong enrichment for genes controlling the cell cycle whereas the approximately 500 

genes only affected by C646 were not related to cell proliferation. Thus, in HCT116 cells, 
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both drugs have a broad effect on gene regulation that includes downregulation of genes 

involved in proliferation control. However, treatment of colorectal cancer cells with ICG-

001 alters the expression of a greater number of cell cycle-regulated genes than does 

treatment with C646. 

 

ICG-001 and C646 have similar effects on the transcriptome of PANC1 cells.  

As noted above, the WNT/TCF/β-catenin/CBP path- way has been proposed to be 

a major positive regulator of proliferation of colon cancer cells. Perhaps β-catenin/ CBP 

complexes play a prominent role in WNT-mediated gene expression in HCT116 cells 

(with little contribution by β-catenin/p300 complexes), explaining why the effects of 

ICG-001 were so widespread and why treatment with the two drugs elicited similar 

responses. To determine if ICG-001 has a similar widespread effect on other cancer cells, 

we also examined pancreatic cancer cells. Pancreatic ductal adenocarcinoma, the most 

common form of pancreatic cancer, displays activation of the WNT/β-catenin pathway 

(20-25) and is therefore predicted to respond to treatment with ICG-001. We treated 

PANC1 cells with ICG-001 or C646 and analyzed gene expression. Again, we found that 

ICG-001 and C646 have similar effects on PANC1 cells (Appendix A-4), with genes 

involved in cell cycle regulation being down-regulated by both drugs. However, in this 

case, cell proliferation-related genes were not enriched categories in gene sets 

downregulated specifically by either ICG-001 or C646. Interestingly, in PANC1 cells, the 

cholesterol biosynthesis pathway was highly enriched for genes specifically 

downregulated by ICG-001, suggesting that perhaps genes involved in cholesterol 

biosynthesis are specific CBP, but not p300, target genes. In contrast, p300-specific genes 
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(identified as those responsive only to C646) appear to be involved in various types of 

signaling pathways, including PI3K/AKT signaling which is linked to cell survival. To 

determine if gene responses to the drugs were cell type-specific, we compared the genes 

whose expression was altered by ICG-001 or C646 in both HCT116 and PANC1 cells (a 

total of 6,732 genes). Genes that were significantly detected in HCT116 or in PANC1 

cells (P value <0.01) and which had a differential P value <0.05 and a fold change 

greater than 1.2 (5,182 genes) were compared using hierarchical clustering with 

Euclidean distance and average linkage measures (Appendix A-5). We found that 

although some genes were altered in a cell type-specific manner, most genes were 

similarly affected in both cell types. A gene ontology analysis revealed that the top two 

categories of genes downregulated by ICG-001 or C646 in both HCT116 and PANC1 

cells were oxidative phosphorylation and mitochondrial dysfunction. Genes that were 

commonly upregulated by the drugs in both cell types are involved in pathways such as 

death receptor signaling and INOS signaling. 

 

Effectiveness of the epigenetic inhibitors in reverting a tumor cell phenotype.  

The ultimate goal of epigenetic therapy is to revert the transcriptome from a 

tumor-specific pattern of gene expression back to the expression patterns seen in nor- mal 

cells. To determine the extent to which the epigenetic inhibitors ICG-001 and C646 are 

effective in this goal, we obtained RNA-seq expression data for 41 normal and 274 tumor 

colon cells from the TCGA Consortium. Using this data, we identified 16,416 genes that 

were expressed in either normal or colon samples, using log2 (RSEM + 1) >2. Of these, 

11,824 genes were differentially expressed (adjusted differential P value <0.001) in the 
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tumor samples as compared to the normal tissues. To determine if the drugs were 

effective in reverting the expression of these genes back to normal levels, we compared 

the set of genes deregulated in the tumors with the set of genes responsive to the drug 

treatments, identifying a set of 2,028 common genes. If the drugs   are having an anti-

tumor effect, then genes that are up- regulated in tumors should be downregulated by the 

drugs and genes that are downregulated in tumors should be up- regulated by the drug. 

Using a log2(RSEM + 1) cutoff of 2, we identified 2,029 genes that showed expression 

changes (adjusted P value <0.05) in colon tumor cells, as compared to the normal tissues. 

An analysis of these expression patterns (Appendix A-6) shows that many genes had 

expression changes in the correct direction as a result of treatment with at least one drug 

(that is, a gene that is upregulated in tumors was down- regulated by a drug or a gene that 

is downregulated in tumors was upregulated by a drug). Analysis of four normal and 125 

pancreatic tumor samples revealed a much smaller set of genes showing expression 

changes in tumors. Using a log2(RSEM + 1) cutoff of 2, we identified only 167 genes 

that showed expression changes (adjusted P value <0.05) in pancreatic tumor cells, as 

compared to the normal tissues. It is unclear as to whether the small number of 

differentially expressed genes in the pancreatic tumors as compared to the colon tumors 

is due to real differences in cancer phenotypes, to the small number of normal pancreatic 

samples, or other possibilities such as tumor heterogeneity. To increase the number of 

analyzed genes, we also obtained a list of 596 genes that are differentially expressed in 

normal hTERT-HPNE pancreatic cells as compared to PANC1 cells (26). We examined 

the responses of the 167 genes that are differentially regulated in normal pancreatic tissue 

vs. tumors and the 596 genes that are differentially regulated in normal HPNE cells 
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grown in culture vs. PANC1 cells to drug treatment. We found that many of the genes 

whose expression is deregulated in pancreatic tumors or PANC1 cells showed 

appropriate responses to at least one drug (that is, genes upregulated in tumors or PANC1 

were downregulated by the drugs and genes downregulated in tumors or PANC1 were 

upregulated by the drugs) (Appendix A-6).  Thus, treatment with the epigenetic 

inhibitors is effective in reverting some of the tumor-specific transcriptome to a normal 

pattern. 

 

Direct targeting of a component of the transcription complex that mediates WNT 

signaling.  

As described above, ICG-001 was developed to be a specific inhibitor of the 

WNT pathway. We therefore directly analyzed the WNT pathway using a list of genes 

previously implicated as components of this pathway (http://www. 

stanford.edu/group/nusselab/cgi-bin/wnt/). We found that a subset of these proposed 

WNT target genes were expressed in HCT116 and/or PANC1 cells and were significantly 

affected by treatment with ICG-001 or C646 (Appendix A-7). The overall trend of the 

effects of ICG-001 and C646 on WNT targets was similar in a given cell line. However, 

the WNT pathway-related genes responded quite differently to the epigenetic inhibitors 

in the different cell lines. In general, the response of the genes listed in Appendix A-1C 

was more similar to what was predicted when HCT116 cells were treated with the 

epigenetic inhibitors than when PANC1 cells were treated with the drugs. For example, 

expression of the transcription factor JUN (which is involved in specifying differentiated 

phenotypes) is increased by both drugs in HCT116 but is decreased by both drugs in 



 236 

PANC1. Conversely, the expression of MYC, a transcription factor involved in cell 

proliferation, is reduced by both drugs in HCT116 but is increased by both drugs in 

PANC1 cells. The gene ontology results suggest that ICG-001 and C646 affect the WNT 

pathway in HCT116 cells but not in PANC1 cells. Of course, it is also possible that 

different downstream target genes mediate the WNT pathway in pancreatic cancer cells 

as compared to colon cancer cells. The HATs CBP and p300 are brought to genomic 

regulatory elements by the DNA binding protein TCF7L2 via interaction with the 

bridging protein β-catenin.  If ICG-001 and C646, which block the recruitment or 

function of the HAT activity of the co-activators CBP and p300, are specific inhibitors of 

the WNT signaling pathway in PANC1 cells, then targeting TCF7L2 should result in 

similar effects on the transcriptome as does drug treatment. In contrast, if the epigenetic 

inhibitors are in fact targeting a different pathway in PANC1 cells, then genes affected by 

reduction of TCF7L2 should be different than the set of genes affected by the drugs. To 

identify genes affected by direct targeting of a component of the transcriptional complex 

implicated in WNT regulation, we used siRNAs to knockdown TCF7L2 in PANC1 cells. 

Cells were treated with control siRNAs or siRNAs specific for TCF7L2 and RNA was 

analyzed by RNA-seq. We analyzed the top 1,000 genes that were affected by 

knockdown of TCF7L2 and the top 1,000 genes affected by treatment with ICG-001 

(Appendix A-8). Interestingly, there were very few genes affected by reduction of 

TCF7L2 that were also affected by ICG-001. Specifically, the WNT pathway was 

identified in the set of genes affected upon reduction of TCF7L2 but not by treatment 

with ICG-001 (Appendix A-4). These results suggest that in PANC1 cells co-activators 

other than CBP cooperate with TCF7L2 to regulate gene expression and support the 
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hypothesis that the anti-proliferative effects of ICG-001 in PANC1 cells are not due to 

inhibition of the WNT pathway.  

 

Discussion 

Recent studies have shown large changes in the epigenomic patterns in normal vs. 

cancer cells, suggesting that epigenetic therapy may be commonly applicable to 

treatments of various cancers. Drugs that target epigenetic regulators are being developed 

(27-29), some of which are moving into clinical trials.  However, the specificity of action 

of many of these drugs has not yet been thoroughly examined. In particular, genome-

wide analyses of their effects have not been determined. In our study, we compare the 

effects of treatment with C646, which   is thought to compete with acetyl-coA for the 

Lys-coA binding pocket of both p300 and CBP (11) to the effects of ICG-001, which 

specifically binds to CBP and prevents its interaction with the co-activator β-catenin. 

Theoretically, ICG-001 is expected to be of higher specificity than C646 because it 

should only affect β-catenin/ CBP-driven transcription whereas C646 should affect all 

genes regulated by either CBP or p300, regardless of whether β-catenin is involved. 

However, it is possible that ICG-001 has broader effects than anticipated if the drug 

affects the ability of CBP to interact with other as- of-yet unknown co-activators. In 

addition, we note that CBP and p300 can acetylate non-histone proteins (30); thus, both 

compounds could also have effects on non- chromatin bound proteins. Although we 

initially expected cells to respond differently to C646 and ICG-001, our results suggest 

that generally these two drugs have similar effects on the transcriptome of tumor cells. 
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However, we did identify some cell-specific and drug-specific responses after epigenetic 

inhibition.  

We observed dramatic effects on the transcriptome upon treatment of HCT116 

colon cancer cells with either ICG-001 or C646, with thousands of genes showing 

differential expression. Interestingly, the responses to the two drugs were quite similar 

overall, with both drugs causing a reduction in certain genes involved in the WNT 

pathway. Because ICG-001 affects only CBP-driven transcription and not p300-driven 

transcription, these results suggest that perhaps the majority of the WNT-related active 

regulatory elements in HCT116 cells are bound by β-catenin/CBP complexes. We did 

identify a set of approximately 500 genes whose expression was down- regulated by 

ICG-001 and not by C646 (these are potential CBP-specific target genes) and a set of 

approximately 500 genes whose expression was downregulated by C646 but not by ICG-

001 (these are potential p300-specific target genes). These results are similar to a 

previous study of CBP and p300 in T98G glioblastoma cells that found that the two 

factors bound mainly to the same sites but that some specific binding sites could be 

identified (17). Interestingly, the genes specifically responsive to ICG-001 but not to 

C646 in HCT116 cells showed enrichment for cell proliferation-related gene ontology 

categories. Taken together, these results suggest that thousands of genes are regulated 

both by p300 and CBP (many of which are involved in cell proliferation) and that CBP-

specific genes may also include additional genes that regulate cell proliferation whereas 

p300-specific genes are involved in other processes. In general, our results in HCT116 

cells support the current model implicating WNT-mediated cell signaling as a critical 

regulator of cancer cell proliferation. 
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Although the WNT pathway has been implicated in the development of pancreatic 

cancer, the studies are not as extensive as those related to WNT’s role in colon cancer 

(20-25). We show that, in general, the effects of ICG-001 and C646 on the transcriptome 

of PANC1 cells are similar to those observed upon treatment of HCT116 cells. For 

example, a set of genes involved in cell proliferation show reduced expression upon 

treatment of PANC1 with either ICG-001 or C646. However, we did observe several 

differences in the response of PANC1 cells to the epigenetic inhibitors, as compared to 

HCT116 cells. First, we found that many of the enriched gene categories that responded 

specifically to ICG-001 treatment of PANC1 cells are involved in cholesterol 

biosynthesis. Interestingly, many cancers have a high dependency on accelerated 

biogenesis and uptake of lipids and cholesterol and inhibition of these pathways has been 

proposed to be a therapeutic opportunity for metabolic targeting of cancer growth 

(31,32).  Cholesterol homeostasis in mammalian cells is maintained in part by a basic-

helix-loop-helix family of transcription factors called the sterol regulatory element 

binding proteins (SREBPs) (33,34). The SREBP family members activate a number of 

target genes involved in cholesterol and fatty acid metabolism through binding to sterol 

regulatory elements in the promoters of target genes. In fact, SREBP transcription factors 

have been suggested to be novel therapeutic targets (35). Interestingly, SREBP proteins 

require interaction with CBP to mediate transcriptional activation (36). Thus, the 

treatment of PANC1 cells with ICG-001 likely disrupts a functional interaction between 

CBP and a SREBP family member, causing downregulation of genes involved in the 

cholesterol biosynthetic pathway (Appendix A-9). Second, in PANC1 cells the WNT 

pathway was not enriched in downregulated genes after treatment with either drug and 
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several critical WNT target genes showed unexpected transcriptional responses. Notably, 

expression of JUN (which promotes differentiation) was predicted to be increased upon 

treatment but in PANC1 cells JUN expression was decreased (JUN did show the 

expected response in HCT116 cells). Similarly, expression of MYC (which promotes 

proliferation) was predicted to be de- creased upon treatment but in PANC1 cells MYC 

expression was increased (MYC did show the expected response in HCT116 cells). The 

transcriptional response of the MYC gene was particularly surprising because it is 

considered to be a critical mediator of WNT signaling. Upregulation of MYC in PANC1 

suggests that the drugs do not inhibit the WNT pathway in these cells.  This hypothesis is 

supported by our finding that in PANC1 cells knockdown of TCF7L2, the transcription 

factor that brings β-catenin and CBP to regulatory elements to regulate WNT-responsive 

genes, does not affect expression of the same genes as are affected by treatment with 

ICG-001. While our work was in progress, another group reported treatment of pancreatic 

cancer cells with ICG- 001 (37). They showed that treatment of PANC1 cells with 10uM 

ICG-001 was effective at reducing cell proliferation in culture and reducing colony 

formation in soft agar. Al- though global effects on the PANC1 transcriptome were not 

examined in that study, the noted effects on proliferation are consistent with our finding 

that cell cycle-related genes are downregulated in response to ICG-001 and C646. That 

study did, however, perform microarray expression analysis after treatment of a different 

pancreatic cancer cell line (AsPC-1) with ICG-001 and found that 569 transcripts were 

upregulated and 150 transcripts were downregulated. Because only 117 of the 719 drug- 

responsive genes were altered in β-catenin knockdown cells, they concluded that ICG-
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001 had a broader effect than simply as a disrupter of WNT/β-catenin signaling in AsPC-

1 cells. 

As noted above, epigenetic inhibitors are considered promising new drugs for 

cancer treatment. One current clinical trial employs PRI-724, a derivative of ICG-001, in 

combination with gemcitabine in patients with advanced or metastatic pancreatic 

adenocarcinoma (NCT01764477). Gemcitabine is considered a first-line treatment for 

pancreatic adenocarcinoma but has poor overall efficacy because pancreatic cancer cells 

develop resistance to the drug (38). While investigating the pathways that lead to drug 

resistance, the transcriptional regulator NUPR1 (also known as anti-apoptotic protein p8 

or Candidate of Metastasis-1) was identified as being involved in the acquisition of 

gemcitabine resistance by pancreatic cancer cells (39). NUPR1 normally functions as a 

stress response gene in the pancreas, but it has been shown to contribute to metastasis, 

anti-apoptotic activity and pancreatic cancer development (40,41). Interestingly, our 

genome-wide analyses identified NUPR1 as one of the top upregulated genes after 

treatment of PANC1 cells with ICG-001. The upregulation of NUPR1 by ICG-001 may 

explain why ICG-001 plus gemcitabine did not increase overall lifespan in an in vivo 

pancreatic cancer cell xenograft model (37). Although the mechanism by which NUPR1 

promotes oncogenesis and/or drug resistance in pancreatic cells is not yet known, NUPR1 

has been shown to form a complex with p300 and TP53 to upregulate and promote 

cytoplasmic translocation of CDKN1A (p21) in breast cancer cells (42). Although 

nuclear p21 is a negative regulator of cell cycle progression, studies have associated 

cytoplasmic p21 with drug resistance and oncogenic activity in breast and testicular 

cancer (43-45). Vincent et al. (44) showed that treatment of NUPR1-expressing cells with 
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PI3K-AKT inhibitors could reverse cytoplasmic p21 localization and re-sensitize cells to 

doxorubicin. Importantly, studies have also shown that inhibition of the PI3K-AKT 

pathway in pancreatic cancer helps re-sensitize cells to gemcitabine (46,47). Thus, adding 

a PI3K-AKT inhibitor to the combined usage of ICG-001 plus gemcitabine may be the 

most effective treatment combination. However, it should also be noted that C646 caused 

only a modest increase in NUPR1 in PANC1 cells and that C646, but not ICG- 001, 

specifically inhibited the PI3K-AKT pathway (see Figure 4). Taken together, these 

results suggest that per- haps C646 plus gemcitabine would be more effective than ICG-

001 plus gemcitabine in the treatment of pancreatic cancer.  

 

Conclusions  

We have compared the genome-wide effects on the transcriptome of ICG-001 (a 

specific CBP inhibitor) versus C646 (a compound that competes with acetyl-coA for the 

Lys-coA binding pocket of both CBP and p300). We found that ICG-001 has a similar 

broad specificity as C646 in HCT116 colon cancer, with both drugs decreasing the 

expression of cell cycle-related and WNT pathway genes. In contrast, ICG-001 and C646 

affect cell cycle- related genes but do not result in appropriate responses of critical WNT 

target genes in PANC1 cancer cells. The effects of ICG-001 on PANC1 cells and 

comparison to gene expression patterns in TCF7L2 knockdown cells suggests that ICG-

001 inhibits proliferation of pancreatic cancer cells via a mechanism different than the 

WNT pathway. Gene ontology analyses point toward disruption of SREBP-CBP 

functional interactions as a possible cause of the anti-proliferative function of ICG-001 in 

pancreatic cancer cells. Importantly, both epigenetic inhibitors are effective at reversing 
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some tumor-specific changes in gene expression that are observed in colon or pancreatic 

tumor cells. 

 

Methods 

Cell growth conditions 

The human cell lines HCT116 (ATCC #CCL-247) and PANC1 (ATCC #CRL-

1469) were obtained from the American Type Culture Collection. HCT116 and PANC1 

cells were grown in Dulbecco’s modified Eagle’s medium supplemented with 10% fetal 

bovine serum and 1% penicillin/streptomycin. Michael Kahn (University of Southern 

California) provided ICG-001 and C646 was obtained from VWR (catalog # 102516–

240). Cells were treated with 10 μM ICG-001, 10 μM C646, or 0.05% DMSO and 

collected after 12 or 96 h. Cells for the 12-h treatments were grown to 70% confluency 

before addition of the drugs or DMSO. Cells for the 96-h treatments were grown at 40% 

to 50% confluency before addition of the drugs or DMSO and were passaged before they 

could reach 90% confluency. New media and drugs were added every 24 h. After 

treatment, gene expression was analyzed using Illumina BeadChips. 

 

Microarray RNA expression 

Total RNA was collected using Trizol according to the manufacturer’s 

instructions (Life Technologies). To confirm RNA samples were not degraded, RNA 

quality was checked with the Experion StdSens kit (Bio-Rad) prior to amplification and 

labeling. The Illumina TotalPrep RNA Amplification Kit (Life Technologies catalog # 

AMIL1791) was used according to the manufacturer’s instructions to amplify and label 
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RNA samples for Illumina array hybridization. Labeled RNAs were analyzed with 

Illumina HT-12 v4 Expression BeadChips (Catalog #: BD-103-0204) with the Direct 

Hybridization Assay and then scanned on an Illumina HiScan (catalog # BD-103- 0604). 

The data were analyzed and exported from Illumina’s GenomeStudio software using 

quantile normalization with- out background subtraction. Each drug/DMSO treatment 

and time point was performed using two independent bio- logical replicates. The 

correlation between replicates was calculated to ensure that the data were reproducible, 

replicate samples were averaged together and genes with a detection P value <0.01 were 

considered for further analysis. Differential expression analysis was performed using 

Illumina’s custom differential expression error model, which assumes a normal 

distribution of the target signal intensity and takes into account biological variation, non-

specific biological variation, and technical error. For more detail on Illumina’s custom 

error model, see GenomeStudio Gene Expression Module v1.0 User Guide (pages 103 

and 104).  Genes with a differential expression P value <0.05 were considered to be 

significantly differentially expressed. 

 

TCF7L2 knockdown 

TCF7L2 knockdown was performed in triplicate by siRNA transfection. 

Transfections were performed using Lipofectamine RNAiMax (Life Technologies) 

according to manufacturer’s instructions. A final concentration of 40nM siRNAs 

targeting either TCF7L2 (catalog # 4392420, Life Technologies) or a non-specific 

negative control siRNA (catalog # AM4611, Life Technologies) were used using reduced 

serum OptiMEM media (Life Technologies). Media was changed 12 h post transfection 
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and total RNA was collected 48 h post transfection using Trizol according to 

manufacturer’s instructions (Life Technologies). Knockdown efficiency was detected 

using RT-qPCR and then samples were analyzed by RNA-seq. 

 

RNA-Seq 

Total RNA was used for polyA+ RNA selection using oligo-dT beads and 

subjected to library construction by True-Seq library preparation kits (Illumina), followed 

by Illumina HiSeq2000 sequencing. The RNA-seq reads were aligned to the human 

genome hg19 using Bowtie2 with ultrasensitive parameters. The RNA-seq reads were 

counted over gene exons using HTSeq (48). EdgeR was used for statistical analyses of 

siControl and siTCF7L2 samples, and a fold change of 2 was used to call the 

differentially expressed genes (49). 

 

Ingenuity pathway analysis 

Gene network diagrams in Appendix A-9 were created through use of IPA. The 

expression data were analyzed through the use of QIAGEN’s Ingenuity® Pathway Ana- 

lysis (IPA®, QIAGEN Redwood City, www.qiagen.com/ingenuity). For each subset of 

genes, a core analysis was run with parameters set to consider only direct relationships 

and relationships between molecules that have been experimentally observed. The 

reference gene set used for P value calculations was the Ingenuity Knowledge Base 

(genes only). 
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Data access 

Expression array analyses for control and treated cells and RNA-seq datasets for 

TCF7L2 knockdown experiments have been deposited in GEO (GSE64039 and 

GSE63776). The TCGA RNA-seq can be downloaded at https://tcga- 

data.nci.nih.gov/tcga/tcgaDownload.jsp. 
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Figures  

Appendix A-1: Targeting the WNT pathway using epigenetic inhibitors 

 

 

 
 

 

 



 248 

Appendix A-1. Targeting the WNT pathway using epigenetic inhibitors. WNT 

signaling culminates when, upon recruitment of β-catenin/CBP or β-catenin/p300 

complexes to the DNA via a TCF/LEF family member, CBP and p300 activate 

transcription by acetylating histone H3.  (A) Treatment with ICG-001 disrupts the 

interaction of CBP with β-catenin, blocking CBP-driven, but not p300-driven 

transcription. (B) In contrast to the effects of ICG-001, C646 competes with acetyl-coA 

for the Lys-coA binding pocket of both CBP and p300, preventing HAT activity of both 

complexes. (C) Examples of predicted gene expression differences mediated by β-

catenin/CBP vs. β-catenin/p300 complexes (15). (D) RNA levels in HCT116 and PANC1 

cells of the various components of the WNT signaling model. 
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Appendix A-2. The effects of epigenetic inhibitors on the transcriptome of HCT116 and 

PANC1 cells 

 

 

 

 

 

 

 

 

Appendix A-2. The effects of epigenetic inhibitors on the transcriptome of HCT116 

and PANC1 cells. HCT116 colon cancer cells and PANC1 pancreatic adenocarcinoma 

cells were treated in duplicate with DMSO or 10 μM ICG-001 or C646 for 12 or 96 h (12 

samples per cell line). Cells were harvested and RNA was analyzed using Illumina 

HumanHT-12 v4 expression arrays. Any gene having a detection P value <0.01 in any of 

the samples was selected for differential gene analysis; genes having a differential P 

value <0.05 were further analyzed. The number of upregulated (red) and downregulated 

(green) genes under each condition for each cell line is shown. 
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Appendix A-3. Effects of epigenetic inhibitors on gene expression in HCT116 cells 
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Appendix A-3. Effects of epigenetic inhibitors on gene expression in HCT116 cells.  

(A) Genes differentially expressed after treatment of HCT116 cells with ICG-001 or 

C646 (see Figure 2) were analyzed using Euclidean distance and K-means clustering of 

expression fold change. (B) Gene ontology analyses are shown for the genes commonly 

up- and downregulated by both drugs and for the genes that are downregulated only by 

one of the drugs in HCT116 cells. Terms related to the cell cycle are shown in red and 

terms related to WNT signaling are shown in blue. The numbers 1 to 6 in the brackets in 

panel A refer to different clusters that were used in the gene ontology analyses shown in 

panel B. 
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Appendix A-4. Effects of epigenetic inhibitors on gene expression in PANC1 cells 
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Appendix A-4. Effects of epigenetic inhibitors on gene expression in PANC1 cells.  

(A) Genes differentially expressed after treatment of PANC1 cells with ICG-001 or C646 

(see Figure 2) were analyzed using Euclidean distance and K-means clustering of 

expression fold change. (B) Gene ontology analyses are shown for the genes commonly 

up- and downregulated by both drugs and for the genes that are downregulated only by 

one of the drugs in PANC1 cells. Terms related to the cell cycle are shown in red. The 

numbers 1 to 6 in the brackets in panel A refer to different clusters that were used in the 

gene ontology analyses shown in Panel B. 
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Appendix A-5. ICG-001 and C646 affect many of the same genes in HCT116 and PANC1 

cells 
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Appendix A-5. ICG-001 and C646 affect many of the same genes in HCT116 and 

PANC1 cells. (A) Genes that were significantly detected in both HCT116 or in PANC1 

cells (P value <0.01) were analyzed for expression differences caused by drug treatment. 

All genes having a differential P value <0.05 and a fold change greater than 1.2 were 

analyzed using Euclidean distance and hierarchical clustering. (B) Gene ontology 

analyses are shown for the genes commonly up- or downregulated in HCT116 and 

PANC1 cells by the drugs. Terms related to the cell cycle are shown in red.  
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Appendix A-6. Epigenetic inhibitors can partially restore a normal expression pattern to 

tumor cells  

 

Appendix A-6. Epigenetic inhibitors can partially restore a normal expression pattern to 

tumor cells. Genes that showed tumor-specific changes in expression in TCGA colon 

RNA-seq samples (left), TCGA pancreatic RNA-seq samples (right, top), plus 

differentially expressed genes identified by comparison of normal to tumor pancreatic 

cell lines (right bottom) were analyzed for responses to drug treatments. In the T/N 

columns, green indicates that the gene was downregulated in the tumor cells whereas red 

indicates the gene was upregulated in the tumor cells. The blue brackets indicate genes 

that were downregulated in the tumor cells and upregulated by the drugs (resulting in an 

expression level closer to that in normal cells) whereas the black brackets represent the 

genes that were upregulated in the tumor cells and downregulated by the drugs (resulting 

in an expression level closer to that in normal cells). The color scale indicates the fold 

change of gene expression in HCT116 or PANC1 cells after treatment with ICG-001 

(ICG) or C646. 
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Appendix A-7. Effects of drug treatments on WNT pathway genes 
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Appendix A-7. Effects of drug treatments on WNT pathway genes. (A) Shown are the 

expression changes in previously identified WNT pathway genes 

(http://www.stanford.edu/group/nusselab/cgi-bin/wnt/) that have a detection P value 

<0.01 and a differential P value <0.05 after 96 h of treatment of HCT116 or PANC1 cells 

with either ICG-001 (ICG) or C646. (B) Shown are the predicted results (based on the 

model shown in Figure 1) and the actual responses to the drugs after treatment of 

HCT116 or PANC1 cells for a set of WNT target genes. In the prediction column, a red 

arrow indicates that the gene should have been upregulated by ICG-001and the green 

arrow indicates that the gene should have been downregulated by ICG-001, according to 

the model. For each cell type, the actual response is shown for both drugs: a red arrow 

indicates that expression was increased as predicted by the model, a green arrow indicates 

expression was decreased as predicted by the model, a gray arrow indicates that the 

expression pattern upon treatment did not correspond to the prediction, and an x indicates 

that the gene was not expressed in that cell line. 
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Appendix A-8. In PANC1 cells, treatment with ICG-001 does not affect the same genes as 

does reduction in levels of TCF7L2 
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Appendix A-8. In PANC1 cells, treatment with ICG-001 does not affect the same genes 

as does reduction in levels of TCF7L2. (A) PANC1 cells were treated with siRNAs to 

TCF7L2 and RNA-seq was performed. The top 1,000 differentially expressed genes after 

knockdown of TCF7L2 were compared to the top 1,000 genes identified to be responsive 

to ICG-001 in PANC1 cells. (B) Gene ontology analyses are shown for the genes 

commonly up- and downregulated by knockdown of TCF7L2 and treatment with ICG-

001 and genes that are only affected by knockdown of TCF7L2. Terms related to the cell 

cycle are shown in red and terms related to the WNT pathway are shown in blue.  
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Appendix A-9: ICG-001 negatively regulates the cholesterol biosynthesis network 

 

 
 

 

 

Appendix A-9: ICG-001 negatively regulates the cholesterol biosynthesis network.  

IPA was used to show the rela0onships between SREBF1 and other genes involved in 

cholesterol biosynthesis that are affected by treatment of PANC1 cells with ICG-001 or 

C646. The arrows indicate direction interactions between the SREBF1 transcription 

factor and the other genes. Each of the indicated genes was down-‐regulated (indicated by 

the green color) by ICG-001 but up-regulated or unaffected by C646 (indicated by the red 

color); fold change for each gene is shown in the table.  

 

 

 

 

 

 

 

 

 

 

 

 



 262 

References 

1. Luu HH, Zhang R, Haydon RC, Rayburn E, Kang Q, Si W, et al. Wnt/beta-

catenin signaling pathway as a novel cancer drug target. Curr Cancer Drug 

Targets. 2004;4:653–71. 

2. Polakis P. Wnt signaling in cancer. Cold Spring Harb Perspect Biol. 

2012;4:a008052. 

3. Takahashi-Yanaga F, Kahn M. Targeting Wnt signaling: can we safely eradicate 

cancer stem cells? Clin Cancer Res. 2010;16:3153–62. 

4. Tian W, Han X, Yan M, Xu Y, Duggineni S, Lin N, et al. Structure-based 

discovery of a novel inhibitor targeting the beta-Catenin/Tcf4 interaction. 

Biochemistry. 2012;51:724–31. 

5. Calo E, Wysocka J. Modification of enhancer chromatin: what, how, and why? 

Mol Cell. 2013;49:825–37. 

6. Portela A, Esteller M. Epigenetic modifications and human disease. Nat 

Biotechnol. 2010;28:1057–68. 

7. Clevers H. Wnt/beta-catenin signaling in development and disease. Cell. 

2006;127:469–80. 

8. Shitashige M, Hirohashi S, Yamada T. Wnt signaling inside the nucleus. Cancer 

Sci. 2008;99:631–7. 

9. Eguchi M, Nguyen C, Lee SC, Kahn M. ICG-001, a novel small molecule 

regulator of TCF/beta-catenin transcription. Med Chem. 2005;1:467–72. 



 263 

10. Emami KH, Nguyen C, Ma H, Kim DH, Jeong KW, Eguchi M, et al. A small 

molecule inhibitor of beta-catenin/CREB-binding protein transcription 

[corrected]. Proc Natl Acad Sci U S A. 2004;101:12682–7. 

11. Bowers EM, Yan G, Mukherjee C, Orry A, Wang L, Holbert MA, et al. Virtual 

ligand screening of the p300/CBP histone acetyltransferase: identification of a 

selective small molecule inhibitor. Chem Biol. 2010;17:471–82. 

12. Miki T, Yasuda SY, Kahn M. Wnt/beta-catenin signaling in embryonic stem cell 

self-renewal and somatic cell reprogramming. Stem Cell Rev. 2011;7:836–46. 

13. Rebel VI, Kung AL, Tanner EA, Yang H, Bronson RT, Livingston DM. Distinct 

roles for CREB-binding protein and p300 in hematopoietic stem cell self- 

renewal. Proc Natl Acad Sci U S A. 2002;99:14789–94. 

14. Ugai H, Uchida K, Kawasaki H, Yokoyama KK. The coactivators p300 and CBP 

have different functions during the differentiation of F9 cells. J Mol Med (Berl). 

1999;77:481–94. 

15. Teo JL, Kahn M. The Wnt signaling pathway in cellular proliferation and 

differentiation: a tale of two coactivators. Adv Drug Deliv Rev. 2010;62:1149–55. 

16. Kalkhoven E. CBP and p300: HATs for different occasions. Biochem Pharmacol. 

2004;68:1145–55. 

17. Ramos YF, Hestand MS, Verlaan M, Krabbendam E, Ariyurek Y, van Galen M, 

et al. Genome-wide assessment of differential roles for p300 and CBP in 

transcription regulation. Nucleic Acids Res. 2010;38:5396–408. 



 264 

18. Foley P, Bunyan D, Stratton J, Dillon M, Lynch SA. Further case of Rubinstein-

Taybi syndrome due to a deletion in EP300. Am J Med Genet A. 2009;149A:997–

1000. 

19. Ma H, Nguyen C, Lee KS, Kahn M. Differential roles for the coactivators CBP 

and p300 on TCF/beta-catenin-mediated survivin gene expression. Oncogene. 

2005;24:3619–31. 

20. Morris JP, Wang SC, Hebrok M. KRAS, Hedgehog, Wnt and the twisted 

developmental biology of pancreatic ductal adenocarcinoma. Nat Rev Cancer. 

2010;10:683–95. 

21. Zavoral M, Minarikova P, Zavada F, Salek C, Minarik M. Molecular biology of 

pancreatic cancer. World J Gastroenterol. 2011;17:2897–908. 

22. Zhang Y, Morris JP, Yan W, Schofield HK, Gurney A, Simeone DM, et al. 

Canonical wnt signaling is required for pancreatic carcinogenesis. Cancer Res. 

2013;73:4909–22. 

23. Nakamoto M, Matsuyama A, Shiba E, Shibuya R, Kasai T, Yamaguchi K, et al. 

Prognostic significance of WNT signaling in pancreatic ductal adenocarcinoma. 

Virchows Arch. 2014;465:401–8. 

24. Wall I, Schmidt-Wolf IG. Effect of Wnt inhibitors in pancreatic cancer. 

Anticancer Res. 2014;34:5375–80. 

25. Xu W, Wang Z, Zhang W, Qian K, Li H, Kong D, et al. Mutated K-ras activates 

CDK8 to stimulate the epithelial-to-mesenchymal transition in pancreatic cancer 

in part via the Wnt/beta-catenin signaling pathway. Cancer Lett. 2015;356:613–

27. 



 265 

26. Jia J, Parikh H, Xiao W, Hoskins JW, Pflicke H, Liu X, et al. An integrated 

transcriptome and epigenome analysis identifies a novel candidate gene for 

pancreatic cancer. BMC Med Genomics. 2013;6:33. 

27. Dekker FJ, Haisma HJ. Histone acetyl transferases as emerging drug targets. Drug 

Discov Today. 2009;14:942–8. 

28. Geutjes EJ, Bajpe PK, Bernards R. Targeting the epigenome for treatment of 

cancer. Oncogene. 2012;31:3827–44. 

29. Helin K, Dhanak D. Chromatin proteins and modifications as drug targets. 

Nature. 2013;502:480–8. 

30. Wang L, Tang Y, Cole PA, Marmorstein R. Structure and chemistry of the 

p300/CBP and Rtt109 histone acetyltransferases: implications for histone 

acetyltransferase evolution and function. Curr Opin Struct Biol. 2008;18:741–7. 

31. Gorin A, Gabitova L, Astsaturov I. Regulation of cholesterol biosynthesis and 

cancer signaling. Curr Opin Pharmacol. 2012;12:710–6. 

32. Gabitova L, Gorin A, Astsaturov I. Molecular pathways: sterols and receptor 

signaling in cancer. Clin Cancer Res. 2014;20:28–34. 

33. Brown MS, Goldstein JL. The SREBP pathway: regulation of cholesterol 

metabolism by proteolysis of a membrane-bound transcription factor. Cell. 

1997;89:331–40. 

34. Shimano H. Sterol regulatory element-binding proteins (SREBPs): transcriptional 

regulators of lipid synthetic genes. Prog Lipid Res. 2001;40:439–52. 

35. Xiao X, Song BL. SREBP: a novel therapeutic target. Acta Biochim Biophys Sin 

(Shanghai). 2013;45:2–10. 



 266 

36. Oliner JD, Andresen JM, Hansen SK, Zhou S, Tjian R. SREBP transcriptional 

activity is mediated through an interaction with the CREB-binding protein. Genes 

Dev. 1996;10:2903–11. 

37. Arensman MD, Telesca D, Lay AR, Kershaw KM, Wu N, Donahue TR, et al. The 

CREB-binding protein inhibitor ICG-001 suppresses pancreatic cancer growth. 

Mol Cancer Ther. 2014;13:2303–14. 

38. Ciliberto D, Botta C, Correale P, Rossi M, Caraglia M, Tassone P, et al. Role of 

gemcitabine-based combination therapy in the management of advanced 

pancreatic cancer: a meta-analysis of randomised trials. Eur J Cancer. 

2013;49:593–603. 

39. Giroux V, Malicet C, Barthet M, Gironella M, Archange C, Dagorn JC, et al. p8 is 

a new target of gemcitabine in pancreatic cancer cells. Clin Cancer Res. 

2006;12:235–41. 

40. Hamidi T, Algul H, Cano CE, Sandi MJ, Molejon MI, Riemann M, et al. Nuclear 

protein 1 promotes pancreatic cancer development and protects cells from stress 

by inhibiting apoptosis. J Clin Invest. 2012;122:2092–103. 

41. Sandi MJ, Hamidi T, Malicet C, Cano C, Loncle C, Pierres A, et al. p8 expression 

controls pancreatic cancer cell migration, invasion, adhesion, and tumorigenesis. J 

Cell Physiol. 2011;226:3442–51. 

42. Clark DW, Mitra A, Fillmore RA, Jiang WG, Samant RS, Fodstad O, et al. 

NUPR1 interacts with p53, transcriptionally regulates p21 and rescues breast 

epithelial cells from doxorubicin-induced genotoxic stress. Curr Cancer Drug 

Targets. 2008;8:421–30. 



 267 

43. Koster R, di Pietro A, Timmer-Bosscha H, Gibcus JH, van den Berg A, 

Suurmeijer AJ, et al. Cytoplasmic p21 expression levels determine cisplatin 

resistance in human testicular cancer. J Clin Invest. 2010;120:3594–605. 

44. Vincent AJ, Ren S, Harris LG, Devine DJ, Samant RS, Fodstad O, et al. 

Cytoplasmic translocation of p21 mediates NUPR1-induced chemoresistance: 

NUPR1 and p21 in chemoresistance. FEBS Lett. 2012;586:3429–34. 

45. Weiss RH. p21Waf1/Cip1 as a therapeutic target in breast and other cancers. 

Cancer Cell. 2003;4:425–9. 

46. Chen D, Niu M, Jiao X, Zhang K, Liang J, Zhang D. Inhibition of AKT2 

enhances sensitivity to gemcitabine via regulating PUMA and NF-kappaB 

signaling pathway in human pancreatic ductal adenocarcinoma. Int J Mol Sci. 

2012;13:1186–208. 

47. Mu GG, Zhang LL, Li HY, Liao Y, Yu HG. Thymoquinone pretreatment 

overcomes the insensitivity and potentiates the antitumor effect of gemcitabine 

through abrogation of notch1, PI3K/Akt/mTOR regulated signaling pathways in 

pancreatic cancer. Dig Dis Sci. 2014. doi:10.1007/s10620-014-3394-x. 

48. Anders S, Pyl PT, Huber W. HTSeq-a Python framework to work with high-

throughput sequencing data. Bioinformatics. 2015;31:166–9. 

49. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for 

differential expression analysis of digital gene expression data. Bioinformatics. 

2010;26:139–40. 



 268 

Appendix B 

 

Supplemental Materials for Chapter 2 
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Appendix B-1: Comparison of TCC and HiC TADs and boundaries 

 

 

 

 

 

 

Appendix B-1: Comparison of TCC and HiC TADs and boundaries. A comparison of 

the number of topological associated domains and TAD boundaries between PANC1 TCC 

and HiC datasets. 
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Appendix B-2: Visualization of Repeated HMM state S1/S7/S9 

 

 

 

 

Appendix B-2: Visualization of Repeated HMM state S1/S7/S9. IGV snapshot of 

S1/S7/S9 state.  
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Appendix B-3: Length distribution of topological domains in drug treated PANC1 

 

 

Appendix B-3: Length distribution of topological domains in drug-treated PANC1. 

Distribution of TAD length by chromosome for ICG001 (A) and C646 (B) treated PANC1 

cells.  
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Appendix B-4: Pearson correlation between sub-domain and change of sub-domain 

 

 

Appendix B-4: Pearson correlation between sub-domain and change of sub-domain. 

Heatmap displaying the Pearson correlation scores for different domains and domain 

changes.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Gap

Boundary

Domain

SD1%

SD2%

SD3%

SD4%

SD5%

SD6%

ICG001 TAD Change

C646 TAD Change

G
a

p

B
o

u
n

d
a

ry

D
o

m
a

in

S
D

1
%

S
D

2
%

S
D

3
%

S
D

4
%

S
D

5
%

S
D

6
%

IC
G

0
0

1
 T

A
D

 C
h

a
n

g
e

C
6

4
6

 T
A

D
 C

h
a

n
g

e

Supplemental Figure S6



 273 

Appendix C 

 

Supplemental Materials for Chapter 3 
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Appendix C-1: Identification of super-enhancers in PANC1 cells 
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Appendix C-1. Identification of super-enhancers in PANC1 cells. A. Super-enhancers 

were identified using Ranked Ordering of Super-Enhancers (ROSE) [5, 60], where 

H3K27ac signal relative to input is ranked and visualized. The dashed line distinguishes 

between typical-enhancers and super-enhancers. B. We visualized the signal of core 

histone modifications including: H3K27ac, H3K4me1 and H3K4me3 within typical- or 

super-enhancers relative to gene regions (proximal <5 kb and distal >5 kb from the TSS). 

The signal is represented as log2 fold enrichment over input signal. C. Genome snapshots 

of representative gene regions marked by super-enhancers in PANC1. D. Gene ontology 

analysis for ‘Biological Process’ was performed for typical- and super-enhancers. 
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Appendix C-2: Identifying Broad H3K4me3 domains in PANC1 cells 
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Appendix C-2. Identifying Broad H3K4me3 domains in PANC1 cells. A. Broad 

H3K4me3 domains were determined by MACS2 with the –broad flag activated. We then 

ranked the size of the domains and visualized them. The dashed line represents the cutoff 

of the top 5% of H3K4me3, which are defined as broad H3K4me3 domains. B. We then 

investigated the signal of core histone modifications including: H3K27ac, H3K4me1 and 

H3K4me3 within typical- and broad- H3K4me3 regions proximal (<5 kb) or distal (>5 

kb) to TSS. C. Representative genome snapshots of regions containing broad H3K4me3 

marks. 
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Appendix C-3: Pathway analysis of super-enhancers and broad H3K4me3 domains in 

different PDAC grade groups 
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Appendix C-3. Pathway analysis of super-enhancers and broad H3K4me3 domains 

in different PDAC grade groups. Gene ontology for PDAC grade groups within broad 

regions. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 281 

 

Appendix C-4: Gene expression relative to broad domains 
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Appendix C-4. Gene expression relative to broad domains. Heatmaps showing the 

relative expression levels of genes marked by A. super-enhancers, B. broad H3K4me3, or 

C. both broad domains across 7 human PDAC cell lines. The number of genes belonging 

to each domain type is indicated. HGU corresponds to High-Grade Unique and LGU 

corresponds to Low-Grade Unique. 
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Appendix C-5: The impact of ICG-001 treatment on broad H3K4me3 domains 
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Appendix C-5. The impact of ICG-001 treatment on broad H3K4me3 domains. A. 

Differential analysis of H3K4me3 genome-wide enrichment in PANC1 cells treated with 

ICG-001. Significantly altered regions are indicated by the colored dots (FDR <0.1). B. 

Genome browser snapshots of altered H3K4me3 regions. C. Differential binding analysis 

of broad H3K4me3 regions. D. Venn diagrams showing overlap of super-enhancers and 

broad H3K4me3 regions with increased histone modification levels. 

 

 

 

 

 

 

 

 

 



 286 

Appendix C-6: Chromatin-interacting domains in PANC1 cells 
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Appendix C-6: Chromatin-interacting domains in PANC1 cells. A. Genome-wide 

interaction matrix of chromosome contacts identified from TCC. B. Distribution of 

identified domain types using TopDom (40 kb resolution). 
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Appendix C-7: Domains with increased ChIP-seq signal after HAT inhibitor treatment 

are enriched in boundary regions 

 

 

 

 

Appendix C-7: Domains with increased ChIP-seq signal after HAT inhibitor 

treatment are enriched in boundary regions. Feature enrichment analysis of super-

enhancers (A) and broad H3K4me3 domains (B) increasing or decreasing in signal. 
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Appendix D 

 

Supplemental Figures for Chapter 4 
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Appendix D-1: Identification of 24 patterns of dynamic compartments 
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Appendix D-1. Identification of 24 patterns of dynamic compartments. The 

continuous genomic regions of positive first eigenvector were defined as compartment A 

(open chromatin) and the coutinuous genomic regions of negative first eigenvector was 

defined as compartment B (close chromatin). The time series compartments (A or B 

individually) were compared as follows: First, two kinds of compartments: T0 vs T1 

Common and T0 vs T1 Transit were identified by comparing compartments T0/T1. The 

“Common” compartments are the overlapping compartments and the “Transit” 

compartments are differential compartments, which were used in the following steps as 

well. Next, the common compartments  identified from T0 vs T1 and Transit 

compartments identified from T0 vs T1 were compared with T4, T16, T24 independently 

to generate the (a) T0 vs T1 Common vs T4/T16/T24 Common, (b) T0 vs T1 Common vs 

T4/T16/T24 Transit, (c) T0 vs T1 Transit vs T4/T16/T24 Common, (d) T0 vs T1 Transit 

vs T4/T16/T24 Transit.Lastly, the patterns denoted as 1-15 were produced by comparing 

the various time points (T4, T16 and T24) of subsets (a, b, c, and d) identified from the 

previous step, which we refer to as “vs T4”, “vs T16”, “vs T24” as shown in the Venn 

diagram. The rest of the subsets (X shown in Venn diagram) were divided into patterns 

16-24 according to the numbers of converted bins (Suppl. Figure S15). Left column: 

compartment A, right column: compartment B. In the Venn diagram, numbers without 

parentheses are the numbers of compartments, numbers with parenthases are the patterns. 
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Appendix D-2. Validation of 3C-qPCR for HOMER loops 

 

 

 

MCF7: MCF7 cell lines 

MCF7Lp: MCF7L parental cells 

MCF7L TamR: MCF7L Tamoxifen resistant cells 

*: p < 0.05; **: p < 0.01, t-test 

 

 

Appendix D-2. Validation of 3C-qPCR for HOMER loops. HOMER interaction loops 

are named as genes located at the interaction loops. Three 3C-qPCRs were performed for 

each loop. The MCF7L TamR group was compared with MCF7 or MCF7Lp by ANOVA 

analysis. 
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Appendix D-3. False Discovery Rate (FDR) and percentage of compartments 

 

 

 

 

Appendix D-3. For each 100 kb bin, the p values of first eigenvectors of compartments 

of T0 vs TamR, T1 vs TamR, T4 vs TamR, T16 vs TamR, T24 vs TamR were computed 

by Wilcoxon rank-sum test. Then False Discovery Rate (FDR) was determined by the 

adjustment methods of the Benjamini–Hochberg procedure. 

 

 

 



 294 

 

Appendix E 

 

Transcriptomic Signatures of Tacaribe Virus-Infected Jamaican Fruit Bats 
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Abstract 

Tacaribe virus (TCRV) is a mammalian arenavirus that was first isolated from 

artibeus bats in the 1950s. Subsequent experimental infection of Jamaican fruit bats 

(Artibeus jamaicensis) caused a disease similar to that of naturally infected bats. 

Although substantial attention has focused on bats as reservoir hosts of viruses that cause 

human disease, little is known about the interactions between bats and their pathogens. 

We performed a transcriptome-wide study to illuminate the response of Jamaican fruit 

bats experimentally infected with TCRV. Differential gene expression analysis of 

multiple tissues revealed global and organ-specific responses associated with innate 

antiviral responses, including interferon alpha/beta and Toll-like receptor signaling, 

activation of complement cascades, and cytokine signaling, among others. Genes 

encoding proteins involved in adaptive immune responses, such as gamma interferon 

signaling and co-stimulation of T cells by the CD28 family, were also altered in response 

to TCRV infection. Immunoglobulin gene expression was also elevated in the spleens of 

infected bats, including IgG, IgA, and IgE isotypes. These results indicate an active 

innate and adaptive immune response to TCRV infection occurred but did not prevent 

fatal disease. This de novo assembly provides a high-throughput data set of the Jamaican 

fruit bat and its host response to TCRV infection, which remains a valuable tool to 

understand the molecular signatures involved in antiviral responses in bats.  

 

Importance 

As reservoir hosts of viruses associated with human disease, little is known about 

the interactions between bats and viruses. Using Jamaican fruit bats infected with 
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Tacaribe virus (TCRV) as a model, we characterized the gene expression responses to 

infection in different tissues and identified pathways involved with the response to 

infection. This report is the most detailed gene discovery work in the species to date and 

the first to describe immune gene expression responses in bats during a pathogenic viral 

infection. 

 

Introduction  

Bats are a phylogenetically and geographically diverse group of mammals, with 

about 1,150 species (1, 2). Certain bat species have been identified as reservoir hosts of 

zoonotic viruses associated with significant human morbidity and mortality, including 

rabies virus and other lyssaviruses, Marburg virus, Nipah virus, and Hendra virus (3). 

They also are suspected reservoirs of other viruses, such as the ebolaviruses, and Middle 

East respiratory syndrome (MERS) and severe acute respiratory syndrome (SARS) 

coronaviruses (CoVs) (4–6). Each of these viruses can cause severe disease in humans 

but are not known to cause disease in their reservoir hosts (3, 7). Although nearly 200 

viruses have been associated with bats, there are likely many more (8). As non-model 

organisms, virtually nothing is known about bat immune responses. Although bats appear 

to have small genomes relative to other mammals (9), genomic analyses suggest that bats 

share most features of other mammals (8, 10–12).  

Despite serving as reservoir hosts of several zoonotic viruses, some bats are also 

susceptible to infectious diseases. White nose syndrome, which has caused the deaths of 

millions of bats in North America, is a fungal disease threatening some species with 

extinction (13–16). Bats can shed rabies virus and other lyssaviruses for prolonged 
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periods, but the infection is always fatal (3, 17–21). Because bats are important members 

of their ecosystems, a better understanding of the immune responses and subsequent 

pathogenesis to infectious agents is essential. To this end, we developed a laboratory 

model for the study of infection of Jamaican fruit bats (Artibeus jamaicensis) by a natural 

bat pathogen, Tacaribe virus (TCRV) (11, 21, 22).  

TCRV is a mammarenavirus first isolated from two species of diseased artibeus 

bats in the late 1950s near Port-of-Spain, Trinidad, and is most closely related to Junïn 

and Machupo viruses, which cause Argentine and Bolivian hemorrhagic fevers, 

respectively (23–25). Each arenavirus is associated with a specific host species, and the 

distribution of the host therefore dictates the distribution of the virus. All known reservoir 

hosts of mammarenaviruses are rodents; however, the reservoir host of TCRV remains 

unclear. It was suspected that artibeus bats were reservoirs of TCRV given its original 

isolation from multiple artibeus bats and the inability to detect it in other mammals (25–

27). Interestingly, TCRV was isolated from lone star ticks collected in Florida in 2012 

(28). The tick-derived isolate was nearly identical to the TCRV isolate from Trinidad 

(TRVL-11573), with 99.6% nucleotide identity across its genome (28). Recent studies by 

our group found that TCRV causes fatal disease or is cleared without pathology in 

Jamaican fruit bats, features that are inconsistent for a reservoir host (22). In many of 

these bats, substantial neutrophil and lymphocytic infiltration into tissues occurred, which 

suggests a role for these cells in the host response to TCRV (22). 

The present study was designed to characterize the transcriptional responses of 

bats with TCRV disease. Accordingly, we performed RNA sequencing of spleens and 
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liver and kidney samples from experimentally infected bats and generated a broad bat 

transcriptome rich in annotated genes. These target tissues were chosen because they 

represent the organs with the most significant pathology in our previous report (8). This 

report is the most comprehensive gene discovery work in the species to date and the 

first to describe immune gene expression responses in bats during an arenavirus 

infection. 

  

Results 

High-quality de novo assembly and annotation of the Jamaican fruit bat transcriptome 

We previously reported a high mortality rate in Jamaican fruit bats experimentally 

infected with TCRV, in which high-dose inoculations (106 50% tissue culture infective 

doses [TCID50]) caused significant and fatal disease as early as 10 days post infection 

(22). Histopathologic findings revealed multiple organ involvement in TCRV disease, 

including acute neutrophilic splenitis and white pulp hyperplasia, as well as plasmacytic 

and histiocytic splenitis. To profile the host pathogenic transcriptional response, we 

generated stranded poly(A) Illumina RNA-Seq (transcriptome sequencing) libraries using 

RNA extracted from the organs of experimentally infected bats. For this analysis, we 

harvested the livers, kidneys, and spleens from 2 control bats (Dulbecco’s phosphate-

buffered saline [DPBS] treated) and 2 TCRV-infected bats with fatal disease (Appendix 

E-1). Our previous analysis indicated TCRV RNA was present in each of these tissues at 

time of collection (22). A total of 12 pooled samples were sequenced, generating 

693,106,150 raw 100-bp paired-end reads. After demultiplexing, trimming of poor-

quality reads and adapter sequences, and removing duplicate reads, 691,108,820 
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nonredundant reads per sample were used for the transcriptome assembly. De novo 

assembly of the global transcriptome was performed using Trinity, resulting in 349,855 

assembled transcripts of greater than or equal to 300 bp (mean length of 997 bp) with an 

N50 of 3,419 bases that were clustered into 175,144 nonredundant clustered transcripts 

(unigenes) (Appendix E-2A) (29). Inspection of these unigenes identified from the 

combined transcriptome showed that 35% of the contigs (12,600) are expressed in each 

of the three different tissues (fragments per kilobase per million [FPKM]), whereas the 

expression of many tissue-specific contigs was identified in the spleen, liver, and kidney 

(Appendix E-2B).  

The combined Jamaican fruit bat transcriptome was systematically annotated 

using the Trinotate pipeline, a software suite that automates the functional annotation of 

the assembled contigs (30). The annotation report for the combined assembly from the 

Trinotate pipeline represents the predicted coding sequences of Jamaican fruit bat genes 

and the results of homology searches against the databases listed in Data Set S1. Among 

the 227,656 transcripts containing complete open reading frame (ORF) sequences, 

124,204 non-redundant ORFs (54%) were associated with high-confidence coding 

predictions, BLAST homology and PFAM domain content. We compared this combined 

Jamaican fruit bat transcriptome assembly to those of other mammals through BLASTX 

analysis. The bat Brandt’s myotis (Myotis brandtii) had the highest number of related 

sequences (8,060 similar sequences). Among other mammals were the big brown bat 

(Eptesicus fuscus) and the black flying fox (Pteropus alecto) (with 7,947 and 6,955 

similar sequences, respectively) (Appendix E-2C). 
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Differential gene expression following TCRV infection  

To investigate the molecular response of bats to TCRV infection, differential gene 

expression analysis was performed. We used a pairwise comparison of TCRV-infected 

samples against the corresponding controls and found that the expression levels of 

hundreds of different genes were altered during TCRV infection (Appendix E-3A). The 

spleen had the largest number of differentially expressed genes (DEGs); among these 

1,912 DEGs, 1,187 were upregulated and 725 were downregulated following infection 

(Appendix E-3C; false discovery rate [FDR], =0.01; log2 fold change =2). We also 

determined that the kidney and liver each had a greater number of upregulated genes (251 

and 188, respectively) compared to the number of downregulated genes in these tissues 

following TCRV infection (123 and 72, respectively). A comparison of all TCRV-

infected tissues against all of the uninfected controls revealed 62 upregulated and 16 

downregulated genes (Appendix E-3B and C).  

 

Immune gene expression profile in response to TCRV infection  

To gain specific insight into the immune-related gene expression altered in 

response to TCRV infection, we utilized the ImmPort database to identify those TCRV-

altered genes that relate to immune-system functions (31). Approximately 23% of the 

4,723 genes available in the database corresponded to the differentially expressed genes 

annotated in our analysis. The coordinating transcript expression values of these 

identified immune genes were used to evaluate the relationship between the specific 

uninfected and infected tissues (Appendix E-4A). While all three tissue types studied 

had unique expression profiles in the infected samples, we further analyzed the 
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transcripts contained in cluster 3, which represent sequences with overall shared 

expression patterns and found that these corresponding genes map to pathways identified 

to be affected in response to viral infection (Appendix E-4B). Notably, with the use of 

Ingenuity Pathway Analysis (IPA [Qiagen]), we identified the interferon (IFN) signaling 

pathway to be among the top pathways altered upon TCRV infection. IFNs are a family 

of cytokines secreted by host cells in response to viruses and other pathogens to confer 

antiviral states upon uninfected neighboring cells in an effort to prevent spread of 

infection (32). Given that the IFN response has been explored in bats in regard to 

pathogen-host response (33), we then further examined the relationship between these 

factors within the spleen, kidney, and liver in response to TCRV infection and found that 

while most of the identified IFN pathway-related genes were upregulated, all of the 

factors identified in this pathway had statistically significant differential expression (log2 

fold change =2; FDR=0.01) in the spleen (Appendix E-4C). We validated differential 

expression of select immune genes via reverse transcription-quantitative PCR (RT-qPCR) 

and confirmed upregulation of ISG15 and IRF7 in the spleen and kidney tissues and 

downregulation of HLA-DRA in the kidney.  

In addition to the IFN-signaling pathway, we identified signaling pathways for 

Toll-like receptors (TLRs) and interleukin-6 (IL-6) (among other cytokines), as well as 

pathways for T-helper cell differentiation and the Th1 pathway (Appendix E-4B). 

Further analysis of all DEGs via the Reactome plugin (Cytoscape) identified additional 

key pathways involved in the immune response. Specifically, we identified increased 

transcript levels of several cytokine genes (IL6, IL8, IL1A, IL1B, and IFNG) and 

chemokine genes (CXCL1, CXCL2, CXCL3, CXCL5, and CXCL6). To highlight 
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markers associated with circulating immune cells, we focused on those DEGs that were 

common to two or more tissues, and the data are consistent with increased infiltration of 

neutrophils into the infected tissues. In kidneys, neutrophil infiltration can cause hyper-

inflammation and kidney damage (34). This is further supported by the presence of 

enriched expression levels of neutrophil gelatinase-associated lipocalin (NGALl) in all 

three tissues, which is a biomarker for renal damage in humans (35). 

Transcripts for IgG, IgM, IgA, and IgE were identified in the spleen data, and the 

level of each was significantly elevated in the infected bats. Six transcripts of IgG heavy 

chains were identified, including 5 with complete and distinct V regions. The six IgG 

constant regions were identical, other than one that contained a Thr in place of an Ala, 

which could represent an allele or a sequencing error. The hinge regions, which are 

frequently different between IgG subclasses within a species, were identical in all 6 

transcripts. These two features suggest that Jamaican fruit bats have a single IgG isotype. 

The 5 V regions contain the canonical mammalian Ig sequences, including 4 framework 

regions (FR) and 3 complementarity-determining regions (CDRs) (Appendix E-5). Three 

distinct CDR3 sequences were present in these 5 transcripts. Two had 2 tyrosine residues, 

whereas the three that were identical had 6, substantially more than what has been 

reported in the CDR3s of other bat species (36, 37). Sequences for T-cell receptor alpha 

constant region domains were present in the assembly, although none had complete V 

regions. Expression of TCR-α was identified in all uninfected and infected tissues, TCR-

β in all spleen and liver tissues, TCR-γ in all spleen and liver tissues, and TCR-δ in all 

spleen and uninfected liver tissues.  
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Gene ontology of annotated differentially expressed genes in TCRV-infected tissues 

To characterize the overall transcriptome in response to TCRV infection, we 

performed an unbiased evaluation of the top 10 Reactome pathways (ranked by 

P value) associated with DEGs in various organs. In all three tissues, genes controlling 

cell cycle progression were elevated, including many associated with hypoxia, cell stress, 

senescence, and chromatin organization. 

Spleen differential expression analysis indicated that immune system pathways 

were significantly elevated, including type I and II IFN signaling, antiviral IFN-

stimulated genes (ISGs), interleukin signaling, and T and B cell activation pathways. 

Interestingly, genes involved in the complement cascade were repressed, including the 

genes for phosphatidylinositol 3-kinase and complement receptor 1. SH2B1, a gene 

encoding an important signal transduction adaptor in several pathways, including JAK, 

prolactin, platelet-derived growth factor, and nerve growth factor signaling, was also 

significantly downregulated in the spleen (38). We also identified repression of pro-

apoptotic genes BMP and PMAIP1 as well as repression of genes involved in calcium 

mobilization following TCRV infection (39). 

In the liver, Reactome analysis revealed strong immune activation signatures, 

including T-cell receptor and CD28 costimulatory signaling. No evidence of B-cell or 

NK cell activities was present. TLR and RIG-I/MDA5 signaling for type I IFN responses 

was also elevated, despite no evidence of differentially expressed type I IFN genes. 

Unlike the spleen, complement pathways were also enriched. The IFN-γ signaling 

pathway was also identified, although IFNG itself was not differentially expressed. 

Despite these findings, further indications of apoptotic activation were not differentially 
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expressed in the livers. As in the spleen, many metabolic genes were elevated, whereas 

genes involved in calcium mobilization were repressed. In the kidneys, Reactome 

analysis suggested that platelet calcium-associated degranulation may occur; the genes 

F13A1 and TMSB4X were elevated along with other genes involved in calcium 

mobilization. As in the other tissues, evidence of innate antiviral responses was present, 

including TLR signaling, RIG-I/MDA5 activity, and type I IFN signaling genes. 

Interleukin and IFN-γ signaling were also among the pathways characterized secondary 

to gene upregulation in the kidneys. 

 

Discussion  

Our previous work demonstrated that TCRV is pathogenic to Jamaican fruit bats 

and has allowed us to perform the most complete examination to date of a pathogenic 

virus infection in a bat species (22). Despite their importance to human health as 

reservoirs of emerging viruses, the characterization of infections in bats at the cellular 

and molecular levels has been limited relative to other model organisms, such as 

rodents. Fortunately, the emerging advantage of next-generation sequencing technologies 

has been fundamental to our understanding of disease responses; however, minimal 

reference data sets are available for bats. To this end, our group was among the first to 

perform next-generation sequencing on bats with a small-scale Illumina sequencing of 

kidney and lung tissues in a single library from the Jamaican fruit bat (8,11). 

Furthermore, in the present study we generated a high-quality transcriptomic data 

set for the Jamaican fruit bat and comprehensively profiled the altered immune genes 

in response to TCRV infection.  
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To gain insight into the pathogenic infection of Jamaican fruit bats, we performed 

high-throughput RNA sequencing of TCRV-infected spleen, liver, and kidney tissues and 

corresponding sham-inoculated controls. We produced high-quality non-redundant reads, 

and our Trinity de novo assembly resulted in 349,855 transcripts, which were further 

assembled into 124,204 contigs. The number of non-redundant contigs we identified is 

similar to those from other transcriptome assemblies reported for the black flying fox 

(126,378) (10), Rickett’s big-footed bat (104,987), and the greater short-nosed fruit bat 

(171,394) (40). 

We employed a pairwise comparison of all infected tissues versus sham-

inoculated controls to identify altered gene expression levels upon pathogenic TCRV 

infection. We utilized a log2 fold change cutoff of >2 with an FDR of <0.01. We chose a 

stringent cutoff because of our small sample size (n = 2) for each tissue type under each 

condition. This revealed approximately 25% more genes upregulated than 

downregulated. The spleen is instrumental in systemic and local immune responses and 

has been used to study viral responses in many organisms, including bats (3, 41). We 

observed the greatest number of differentially expressed genes in spleen tissues compared 

to the liver and kidneys. Further analysis revealed that the majority of these differentially 

expressed genes identified in the spleen belonged to immune-related pathways. 

Ingenuity Pathway Analysis identified enrichment of the helper T cell 

differentiation and Th1 pathway (Appendix E-4B) genes IFNG, IFNGR2, IL12RB2, 

IL6ST, SOCS1, and SOCS2, supporting a role for mobilization of a Th1 response. 

Despite this, levels of helper T cell genes, such as CD4 or T-cell receptor (TCR) genes, 

were not statistically different in infected bats. CD4 sequences were not in the assembly, 
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suggesting the CD4 level was below the threshold of depth of RNA-Seq. TCR-α, TCR-β, 

TCR-γ, and TCR-δ sequences were present in the assembly, and they appear to share 

features found in TCRs of other species. There was insufficient sequence data to evaluate 

TCR variable, diversity, or joining segments for T-cell receptors. Further studies using 

next-generation repertoire sequencing will be required to fully examine the TCR loci. 

Unfortunately, without monoclonal antibodies to identify CD4+ or CD8- cells by flow 

cytometry, it is difficult to determine whether T cells are expanding in response to 

infection. Other indicators of T-cell activation include the elevated expression of 

granzyme A and B genes (GZMA, GZMB), IL-12 and CCL5 (RANTES), and the 

activated T-cell chemotactic factor gene CXCL1 in the spleens of infected bats. 

Transcripts for IgG, IgM, IgA, and, interestingly, IgE were significantly higher in 

the infected bats. IgE is not typically associated with viral infections, but has been 

associated with anaphylaxis after influenza vaccinations (42–44). No transcripts for IgD 

were present in the transcriptome, similar to what has been observed for other microbats 

(45). Alignments of the 6 IgG transcripts were identical, except for one transcript that 

had a Thr instead of Ala at position 395, which likely represents an allele or sequencing 

error. Only one IgG transcript has been found in Seba’s fruit bat (Carollia perspicillata) 

(45); thus, it is not unexpected that Jamaican fruit bats may only have a single IgG 

isotype. The Jamaican fruit bat IgG shares 94% identity and 96% similarity with the 

Seba’s fruit bat IgG constant region. The hinge regions of all IgG transcripts were also 

identical and distinct from those of Seba’s fruit bat IgG. Hinge regions are generally 

considered hallmark indicators of IgG subclasses (46). It is possible that Jamaican fruit 

bats have IgG subclasses but without a genome or transcriptome profiling of Ig 
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transcripts this question could be difficult to address. 

The heavy-chain variable regions of the 5 Jamaican fruit bat transcripts showed 

many differences, suggesting they represent distinct segments and multiple V region 

gene families. The limited number of V regions makes it difficult to assign Jamaican fruit 

bat sequences to gene families. We are unable to estimate the number of V, D, or J 

segments with the transcriptome data; however, bats appear to have much larger 

numbers of these segments than most mammals (36, 37). It is noteworthy that the 

three CDR3 regions have more tyrosine residues than are found in most other bat 

species immunoglobulins. The presence of tyrosines is thought to contribute to antibody 

interactions with a spectrum of epitopes (47–49), and the lack of these in bat 

antibodies has been postulated to account for why bats have generally poorer responses 

to infectious agents (50, 51). 

Only a single variable region light-chain sequence was significantly elevated in 

the infected bats, which had most similarity to the IgLV7 variable gene family. Studies of 

big brown bats (Eptisicus fuscus) suggest they express predominantly, if not exclusively, 

λ light chains; thus our findings are similar (52). Considering that a single light chain was 

elevated in infected bats, it may be possible to clone this cDNA and co-express it with 

each of the 5 heavy-chain sequences described herein to determine if the antibodies 

are reactive to TCRV antigens. 

We also detected elevated expression of polymeric immunoglobulin receptor 

(PIGR), which exports IgA antibodies across the epithelium into mucosa (53), in the 

spleens of infected bats. Considering the presence of TCRV in oral and rectal swabs and 
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in the lungs (22), it is likely that virus-specific IgA is present at these sites. The 

development of antibodies to artibeus IgA will be necessary to verify this. 

The principal gene for somatic hypermutation (SHM) that leads to affinity 

maturation is activation-induced cytidine deaminase (AID) (54); however, despite its 

presence in all four bats in this study, its expression was not significantly elevated in the 

spleens. Other genes involved in SHM (54) were elevated, including those coding for 

DNA polymerase θ (POLQ), polymerase (POLN), and replication protein A (RPA). The 

level of APOBEC3, coding for another RNA-editing enzyme with lower SHM activity 

(55), was not elevated. Examination of little brown bat (Myotis lucifugus) antibody 

cDNA sequences suggests bats do not use SHM to a great extent (36), and our findings 

are congruent with this observation. In our previous work with TCRV and MERS 

coronavirus (CoV) infection of Jamaican fruit bats (22, 56), antibody responses were 

poor, suggesting that affinity maturation is limited in bats. 

Global differential expression evaluation of TCRV-infected tissues revealed 

alterations in calcium mobilization, a characteristic mechanism of host response to 

infection by viruses, including arenaviruses (57). Additionally, our analysis revealed few 

indications of NK cell activation and minimal expression of genes that are associated 

with T-cell exhaustion (i.e., Ly6e and Fcgr3). It is noteworthy that bats appear to be 

missing many NK cell-associated genes (10, 58, 59); thus it may be that the functions of 

bat NK cells are substantially different from those of human or mouse NK cells. We 

detected increased IFNG, GZMA, and GZMB expression in the spleen infected tissues, 

and while these proteins are produced by both NK cells and T cells, we believe their 

presence correlates more strongly with a T-cell origin due to the increased number of T-
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cell associated genes upregulated relative to NK cell genes. Moreover, the bats in this 

report were euthanized on days 10 and 11, a time point at which T-cell activation should 

be occurring. Thus, T-cell exhaustion, a feature of some lymphocytic choriomeningitis 

virus (LCMV) isolates, is likely not occurring in bats infected with TCRV (60, 61). 

We identified several genes associated with neutrophil activation. These results 

areconsistent with our previous histopathological findings in this species, where we noted 

neutrophilic infiltration that was likely a result of proliferating lymphocytes (22). 

Additionally, our results are also consistent with a recent Lassa virus isolate from Mali 

that similarly induces neutrophil infiltration in nonhuman primates (62). The abundant 

expression of NGAL may provide a diagnostic tool; its protein, neutrophil gelatinase 

associated lipocalin, is secreted in the urine, which is detectable with commercially 

available diagnostic kits (e.g., Pacific Biomarkers, Seattle, WA). 

A recent study looked at differential gene expression in an embryonic cell line 

from Egyptian fruit bats infected with Marburg virus (63). In contrast to the observed 

host responses in the Egyptian fruit bat cells, we identified the JAK/STAT signaling 

pathway as one of the immune-related pathways upregulated in response to pathogenic 

TCRV infection, suggesting a contributory role for this pathway in pathogenesis. 

Additionally, a study exploring the innate immune response to Newcastle disease virus in 

large flying fox cells, a newly characterized a subset of antiviral factors was found (64). 

Among these factors was the CHAC1 gene, which we identified to be 4-fold upregulated 

in spleen and kidney tissues. Together, this evidence along with our previous 

pathogenicity studies shows that a typical antiviral response occurs to TCRV in Jamaican 

fruit bats. 
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We focused additional analyses on immune genes with similar expression in all 

tissues (cluster 3 [Appendix E-4A]). Among the top pathways identified was the IFN 

signaling pathway. The signaling factors in this pathway exert their antiviral activities 

through the induction of other antiviral proteins (32). The IFN response has been 

explored in bat cells (33), and in all bat species examined, the type I IFN locus has 

undergone substantial contraction, with only three functional IFN-α genes but with 

constitutive IFN-α expression in at least one species (65). Specifically, recent discoveries 

have revealed enhanced IFN signaling in antiviral immunity and have identified its 

involvement in arenavirus response mechanisms. We therefore furthered our analysis 

regarding these pathways (51, 66). We found that most IFN signaling genes identified in 

this subset were upregulated in all tissues; however, 5 of these genes had no significant 

differential expression identified in the kidney and 2 had none in the liver. Notably, of the 

differentially expressed factors, the IFNAR1 gene was downregulated in the spleen and 

BCL2 was downregulated in the kidney. Apoptotic pathways play a critical role as 

defense mechanisms for a host when infected by a viral pathogen; BCL2 encodes an anti-

apoptotic protein that is known to be involved in a typical antiviral response (67), and the 

observed downregulation of BCL2 in the kidneys upon TCRV infection suggests 

promotion of apoptotic pathways stimulated by IFN signaling in response to infection. 

In contrast, BCL2 was determined to be upregulated in spleen and liver tissues. 

Additionally, another anti-apoptotic factor gene, Mcl-1, was also upregulated in these 

tissues. Recent work with mice infected with LCMV, as well as other studies, has 

demonstrated the involvement of these factors in promoting naive T-cell survival and 

memory T cell activation (68, 69). Together, these results support congruency of our 
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annotated transcriptome given what is known about the coordination of immune genes 

altered in response to viral infection as well as the identification of genes specific to the 

antiviral response in bats (61). 

As might be expected during an acute antiviral response, IFN-stimulated gene 15 

(ISG15) was elevated in infected tissues. Reactome pathway analysis identified ISG15 in 

several immune pathways, including the innate immune response, cytokine signaling, 

IFN-α/β signaling, and RIG-I/MDA5-mediated induction of IFN-α/β pathways, which 

has also been previously identified in a bat pathogenic viral response (64). ISG15 is an 

important gene in the innate immune response, particularly the type I IFN antiviral 

response; however, the ISG15-encoded protein has recently been demonstrated to have 

additional functions as a ubiquitin-like modifier that covalently conjugates to other 

cellular proteins to form an “ISGylated” complex (70). Various roles of ISG15 have been 

identified in immune responses; when secreted extracellularly, ISG15 can act to drive 

expression of IFN-γ, which was elevated in the spleen. Alternatively, intracellular 

expression can modulate type I IFN signaling (71). 

Although IFN-α, IFNB, IFNL, and IFNG transcripts were present in all of the 

tissues analyzed, the only differentially expressed transcript was IFNG in the spleen. In 

contrast, indications of downstream signaling initiated by IFN type I and type II were 

present, suggesting either transcript turnover prior to the time of sample collections or the 

potential for alternative routes of pathway activation. Previous work examining in vitro 

infection of the black flying fox with Tioman virus suggests a prominent role for IFN-γ 

(72). To this end, there are potential differences between bat species in terms of their 

responses to viruses that may account for apathogenic infections (e.g., reservoir hosts) or 
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disease. Future work with cell culture from our model system may help to clarify these 

points. Furthermore, the DEGs involved in IFN-α/β signaling suggest that a typical 

antiviral innate immune response occurred in the bats. Within the spleen, expression of 

36% of the genes was upregulated in the IFN-α/β signaling pathway, whereas the 

kidneys and livers had approximately 16% and 34% elevated expression of these same 

genes, respectively. This indicates a more robust type I IFN response in the spleen. 

Together, de novo transcriptome analysis of our high-throughput RNA-Seq data 

from Jamaican fruit bats infected with TCRV provides a high-quality data set and also 

a comprehensive gene expression analysis of immune gene expression responses in 

bats during a pathogenic infection. This data set will provide a strong basis for additional 

analyses. Further investigation of our identified pathways in vitro and in vivo will 

significantly contribute to our understanding of pathogenic viral infections in bats. 

Moreover, the data here will facilitate future experimental studies of artibeus bats and 

their cells, which have been used as models for MERS CoV and Zaire Ebola virus and 

which are suspected reservoirs of the recently discovered bat influenza viruses (56,73, 

74). 

 

Conclusion 

This study provides a comprehensive analysis of the transcriptional landscape of 

Jamaican fruit bats during infection with Tacaribe virus. This natural pathogen of artibeus 

bats causes high-mortality disease with similar clinical manifestations to the South 

American hemorrhagic fevers and Lassa fever. In summary, this analysis identified the 

global response to TCRV infection. Our results suggest diverse immune responses, 
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including alterations in neutrophil activation, interferon signaling, markers for 

lymphocytes, and antibodies. We found substantial signatures of neutrophil activation in 

the spleen, kidney, and liver of bats with fatal disease. The innate and adaptive immune 

response appeared to be functional and typical of the canonical antiviral response. Many 

activation markers of T and B lymphocytes were also found; however, few indications of 

NK cell activity or T-cell exhaustion were apparent. IgG, IgM, IgA, and IgE sequences 

were abundantly expressed in the spleens of infected bats, and five immunoglobulin 

heavy-chain V segments were identified. Despite the clear evidence of antibody synthesis 

during infection, AID expression was not elevated, suggesting somatic hypermutation 

and affinity maturation were absent or minimal. Analysis of immunoglobulin heavy-

chain and TCR V regions suggests that Jamaican fruit bats have canonical 

immunoglobulin and TCR genes found in most mammals. Moreover, the species appears 

to have a single IgG subclass. These results are the most extensive gene discovery work 

completed in Jamaican fruit bats to date and the first to describe differential immune gene 

expression in bats during a pathogenic virus infection. 

 

Materials and Methods 

Experimental TCRV infection in bats, sample collection, and RNA extraction  

Experimental infections of Jamaican fruit bats were previously reported (22). 

Briefly, two Jamaican fruit bats were inoculated with 100 μl of sterile Dulbecco’s 

phosphate-buffered saline (DPBS) as negative controls (bat IDs 688 and 689), and two 

bats were inoculated with 100 μl containing 106 TCID50 TCRV (bat IDs 714 and 729). 

Negative control bats were euthanized at the end of the experimental period (45 days), 
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whereas TCRV-infected bats were euthanized as they became moribund (days 11 and 18, 

respectively). Necropsies were performed directly following euthanasia, and organs were 

harvested and collected in RNAlater stabilization reagent (Qiagen). RNA was extracted 

from flash-frozen tissues by homogenization with a Mini Bead Beater (BioSpec Products, 

Inc.), using QiaShredder columns with the RNeasy kit (Qiagen). 

 

RNA-Seq 

Stranded Illumina libraries for each tissue were prepared from total RNA using 

the NEB Ultra Directional RNA library prep kit with poly(A) selection. Sequencing 

(paired-end 100 bp) was performed on the Illumina HiSeq-2000 platform at the UC 

Denver Genomics core. 

 

Read processing and assembly 

For transcriptome assembly, raw reads were filtered for adapter sequences and 

low-quality reads, and assembly was performed using Trinity (30) with the following 

parameters: —min_contig_length 300 —min_glue 3—min_kmer_cov 2. Resulting 

contigs were processed for read alignment and abundance estimation with Bowtie and 

RSEM (75, 76). Differential expression was performed using the edgeR package within 

the Trinity differential analysis pipeline using default parameters (77). A pairwise 

comparison was made between TCRV-infected samples and control uninfected samples. 

Genes were considered differentially expressed with an FDR of <0.01 and a log2 fold 

change > 2. 
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Gene ontology and pathway analysis 

BLAST alignments and functional annotations were performed using Blast2GO 

Pro or Ingenuity Pathway Analysis (78, 79). Direct pathway analysis for immune-related 

genes was performed using the gene list from the ImmPort database (31). 

 

Immunoglobulin sequence analysis 

Contigs for immunoglobulins were translated using the default translation table of 

MacVector software. MUSCLE alignments were made to identify leader, framework 

regions, and complementarity-determining regions of the V segments using a black flying 

fox sequence as a reference (NCBI GenBank accession no. ADD71702.1) (50). Heavy 

chains and hinge regions were identified by BLAST against other Chiroptera. 

 

RT-qPCR validation of RNA-Seq data 

The experimental primer sequences used in RT-qPCR analysis are listed in Fig. 

S2. cDNA was generated using SuperScript III reverse transcriptase (Thermo Scientific) 

and SYBR Select master mix for CFX (Applied Biosystems). The same two Jamaican 

fruit bats that were used for uninfected samples in RNA-Seq were also used as uninfected 

samples for RT-qPCR. 

 

Accession number(s) 

Raw reads have been deposited into GenBank under GenBank accession no. 

GSE75771. 
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Figures 

Appendix E-1: Transcriptomic analysis of Jamaican fruit bats infected with Tacaribe 

virus (TCRV) 

 

 

 

 

Appendix E-1: Transcriptomic analysis of Jamaican fruit bats infected with Tacaribe 

virus (TCRV). Jamaican fruit bats were inoculated with either TCRV or DPBS (n=2 for 

each condition). De novo assembly of the Jamaican fruit bat transcriptome was 

performed using RNA-Seq data from kidney, liver, and spleen tissues. Differentially 

expressed genes were then identified in the uninfected and infected tissues using edgeR. 
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Appendix E-2: De novo assembly of the Jamaican fruit bat transcriptome 

 

Appendix E-2: De novo assembly of the Jamaican fruit bat transcriptome. (A) 

Trinity assembly resulted in the construction of the de novo-assembled Jamaican fruit bat 

transcriptome with 644,933,364 assembled bases. (B) Examination of the identified 

contigs from the transcriptome assembly showed that 35% (12,600) are expressed in the 

spleen, kidney, and liver tissues (FRKM, greater than 1). (C) We compared this 

transcriptome assembly to those of other mammals through BLASTX analysis and 

identified transcripts similar to those present in other bat species. 



 318 

Appendix E-3: Differential gene expression analysis following TCRV infection in 

Jamaican fruit bats 

 

Appendix E-3: Differential gene expression analysis following TCRV infection in 

Jamaican fruit bats. We used a pairwise comparison of TCRV-infected samples against 

the corresponding control uninfected samples and found that the expression levels of 

hundreds of genes were altered with TCRV infection in the different tissues. (A) 

Differential expression analysis revealed upregulated genes (green) and downregulated 

genes (orange) defined by edgeR (log2 fold change > 2 and FDR < 0.01). (B) Inspection 

of altered genes in all infected tissues versus control tissues showed fewer changed genes 

common to all tissues. (C) Quantification of differentially expressed genes from panels A 

and B. 
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Appendix E-4: Immune-specific expression analysis of TCRV-infected Artibeus 

jamaicensis bats 

 

Appendix E-4: Immune-specific expression analysis of TCRV-infected Artibeus 

jamaicensis bats. (A) Immport database immune-related genes and their expression 

values (FPKM) were clustered (k-means = 6) to investigate the relationship between 

uninfected and infected tissues. (B) We performed Ingenuity Pathway Analysis to 

characterize the specific immune pathways for those genes identified in cluster 3 (n = 

117) from panel A. (C) Interferon signaling was among the top pathways identified to be 

altered after TCRV infection. We then identified these specific genes involved in 

interferon signaling and explored their alterations in the different tissues in response to 

TCRV infection. Green corresponds to upregulated and orange to downregulated (FDR, 

<0.01; log2 fold change, >2); gray indicates no significant differential expression. 
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Appendix E-5: Amino acid alignment of Jamaican fruit bat IgG V regions  

 

 

Appendix E-5: Amino acid alignment of Jamaican fruit bat IgG V regions. Five V 

region transcripts were identified in the Jamaican fruit bat spleen transcriptomes and 

aligned with a V region of an annotated black flying fox V region (50). Framework 

regions (FR1 to FR4) and complementarity-determining regions (CDR1 to CDR3) were 

identified and exhibited differences between each transcript. 
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The following tables contain data access information for publically available datasets 

discussed in this dissertation. 

 

Table 1: Data accession corresponding to publically available datasets (abbreviations: 

Ch=Chapter; Rep=Replicate) 

Ch Type Cell line Sample Target Rep Database Accession 

2 

ChIP-

seq 

PANC1 parental TCF7L2 1 ENCODE ENCLB828OGC 

2 

ChIP-

seq 

PANC1 parental TCF7L2 2 ENCODE ENCLB718WRS 

2,3 

ChIP-

seq 

PANC1 parental H3K27ac 1 ENCODE ENCLB737KTI 

2,3 

ChIP-

seq 

PANC1 parental H3K27ac 2 ENCODE ENCLB797ODR 

2,3 

ChIP-

seq 

PANC1 parental H3K4me1 1 ENCODE ENCLB482XLE 

2,3 

ChIP-

seq 

PANC1 parental H3K4me1 2 ENCODE ENCLB346ZDV 

2,3 

ChIP-

seq 

PANC1 parental H3K4me3 1 ENCODE ENCLB792WMR 

2,3 

ChIP-

seq 

PANC1 parental H3K4me3 2 ENCODE ENCLB135CDR 

2 

ChIP-

seq 

PANC1 parental H3K36me3 1 ENCODE ENCLB555ABM 

2 

ChIP-

seq 

PANC1 parental H3K36me3 2 ENCODE ENCLB555ABN 
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2 

ChIP-

seq 

PANC1 parental H3K27me3 1 ENCODE ENCLB555ABQ 

2 

ChIP-

seq 

PANC1 parental H3K27me3 2 ENCODE ENCLB555ABR 

2 

ChIP-

seq 

PANC1 parental H3K9me3 1 ENCODE ENCLB555ABO 

2 

ChIP-

seq 

PANC1 parental H3K9me3 2 ENCODE ENCLB555ABP 

2,3 

ChIP-

seq 

PANC1 parental Input 1,2 ENCODE ENCLB499BUK 

3 

ChIP-

seq 

PANC1 parental  1 ENCODE ENCLB941MSL 

3 

ChIP-

seq 

PANC1 parental  2 ENCODE ENCLB342MOC 

3 

ChIP-

seq 

CAPAN1 parental H3K27ac 1,2 GEO GSM1574235 

3 

ChIP-

seq 

CAPAN2 parental H3K27ac 1,2 GEO GSM1574236 

3 

ChIP-

seq 

CFPAC1 parental H3K27ac 1,2 GEO GSM1574237 

3 

ChIP-

seq 

HPAF2 parental H3K27ac 1,2 GEO GSM1574238 

3 

ChIP-

seq 

MiaPaca2 parental H3K27ac 1,2 GEO GSM1574239 

3 

ChIP-

seq 

PANC1 parental H3K27ac 1,2 GEO GSM1574240 
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3 

ChIP-

seq 

PT45P1 parental H3K27ac 1,2 GEO GSM1574241 

3 

ChIP-

seq 

CAPAN1 parental H3K4me3 1,2 GEO GSM1574256 

3 

ChIP-

seq 

CAPAN2 parental H3K4me3 1,2 GEO GSM1574258 

3 

ChIP-

seq 

CFPAC1 parental H3K4me3 1,2 GEO GSM1574259 

3 

ChIP-

seq 

HPAF2 parental H3K4me3 1,2 GEO GSM1574260 

3 

ChIP-

seq 

MiaPaca2 parental H3K4me3 1,2 GEO GSM1574261 

3 

ChIP-

seq 

PANC1 parental H3K4me3 1,2 GEO GSM1574262 

3 

ChIP-

seq 

PT45P1 parental H3K4me3 1,2 GEO GSM1574263 

3 

ChIP-

seq 

CAPAN1 parental Input 1,2 GEO GSM1574271 

3 

ChIP-

seq 

MiaPaca2 parental Input 1,2 GEO GSM1574272 

4 

ChIP-

seq 

MCF7 parental/0hr Input 1,2 GEO GSM2913215 

4 

ChIP-

seq 

MCF7 parental/0hr H3K4me3 1,2 GEO GSM2913216 

4 

ChIP-

seq 

MCF7 parental/0hr H3K27ac 1,2 GEO GSM2913217 
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4 

ChIP-

seq 

MCF7 parental/0hr H3K4me1 1,2 GEO GSM2913218 

4 

ChIP-

seq 

MCF7 parental/0hr H3K27me3 1,2 GEO GSM2913219 

4 

ChIP-

seq 

MCF7 parental/0hr H3K9me3 1,2 GEO GSM2913220 

4 

ChIP-

seq 

MCF7 parental/0hr ER-alpha 1,2 GEO GSM2913221 

4 

ChIP-

seq 

MCF7 parental/0hr CTCF 1,2 GEO GSM2913222 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/1hr 

Input 1,2 GEO GSM2913223 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/1hr 

H3K4me3 1,2 GEO GSM2913224 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/1hr 

H3K27ac 1,2 GEO GSM2913225 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/1hr 

H3K4me1 1,2 GEO GSM2913226 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/1hr 

H3K27me3 1,2 GEO GSM2913227 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/1hr 

H3K9me3 1,2 GEO GSM2913228 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/1hr 

ER-alpha 1,2 GEO GSM2913229 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/1hr 

CTCF 1,2 GEO GSM2913230 
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4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/4hr 

Input 1,2 GEO GSM2913231 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/4hr 

H3K4me3 1,2 GEO GSM2913232 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/4hr 

H3K27ac 1,2 GEO GSM2913233 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/4hr 

H3K4me1 1,2 GEO GSM2913234 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/4hr 

H3K27me3 1,2 GEO GSM2913235 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/4hr 

H3K9me3 1,2 GEO GSM2913236 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/4hr 

ER-alpha 1,2 GEO GSM2913237 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/4hr 

CTCF 1,2 GEO GSM2913238 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/16hr 

Input 1,2 GEO GSM2913239 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/16hr 

H3K4me3 1,2 GEO GSM2913240 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/16hr 

H3K27ac 1,2 GEO GSM2913241 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/16hr 

H3K4me1 1,2 GEO GSM2913242 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/16hr 

H3K27me3 1,2 GEO GSM2913243 



 341 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/16hr 

H3K9me3 1,2 GEO GSM2913244 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/16hr 

ER-alpha 1,2 GEO GSM2913245 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/16hr 

CTCF 1,2 GEO GSM2913246 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/24hr 

Input 1,2 GEO GSM2913247 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/24hr 

H3K4me3 1,2 GEO GSM2913248 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/24hr 

H3K27ac 1,2 GEO GSM2913249 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/24hr 

H3K4me1 1,2 GEO GSM2913250 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/24hr 

H3K27me3 1,2 GEO GSM2913251 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/24hr 

H3K9me3 1,2 GEO GSM2913252 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/24hr 

ER-alpha 1,2 GEO GSM2913253 

4 

ChIP-

seq 

MCF7 

100nM 

Estradiol/24hr 

CTCF 1,2 GEO GSM2913254 

2 DNase-

seq 

PANC1 parental DNase 1 ENCOD

E 

ENCLB574ZZZ 

2 DNase-

seq 

PANC1 parental DNase 2 ENCOD

E 

ENCLB573ZZZ 

A express

ion 

PANC1 10μM ICG-

001 

12hr 1,2

,3 

GEO GSM1563237 
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beadch

ip 

2,A express

ion 

beadch

ip 

PANC1 10μM ICG-

001 

96hr 1,2 GEO GSM1563238   

A express

ion 

beadch

ip 

PANC1 10μM C646 12hr 1,2 GEO GSM1563239 

2,A express

ion 

beadch

ip 

PANC1 10μM C646 96hr 1,2 GEO GSM1563240 

A express

ion 

beadch

ip 

PANC1 0.05% 

DMSO 

12hr 1,2 GEO GSM1563235   

2,A express

ion 

beadch

ip 

PANC1 0.05% 

DMSO 

96hr 1,2 GEO GSM1563236 

2 HiC PANC1 parental 
 

1 GEO GSM2827313 

2 HiC PANC1 parental 
 

2 GEO GSM2827314 

2,A RNA-

seq 

PANC1 siTCF7L2 48hr 1 GEO GSM1556985 

2,A RNA-

seq 

PANC1 siTCF7L2 48hr 2 GEO GSM1556986   

2,A RNA-

seq 

PANC1 siTCF7L2 48hr 3 GEO GSM1556987   

2,A RNA-

seq 

PANC1 siControl 48hr 1 GEO GSM1556982 

2,A RNA-

seq 

PANC1 siControl 48hr 2 GEO GSM1556983   

2,A RNA-

seq 

PANC1 siControl 48hr 3 GEO GSM1556984   

3 RNA-

seq 

CAPAN1 parental 
 

1 GEO GSM1574297   

3 RNA-

seq 

CAPAN1 parental 
 

2 GEO GSM1574298 

3 RNA-

seq 

CAPAN2 parental 
 

1 GEO GSM1574299 

3 RNA-

seq 

CAPAN2 parental 
 

2 GEO GSM1574300 

3 RNA-

seq 

CFPAC1 parental 
 

1 GEO GSM1574301 
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3 RNA-

seq 

CFPAC1 parental 
 

2 GEO GSM1574302 

3 RNA-

seq 

HPAF2 parental 
 

1 GEO GSM1574303   

3 RNA-

seq 

HPAF2 parental 
 

2 GEO GSM1574304 

3 RNA-

seq 

MiaPaca

2 

parental 
 

1 GEO GSM1574305 

3 RNA-

seq 

MiaPaca

2 

parental 
 

2 GEO GSM1574306 

3 RNA-

seq 

PANC1 parental 
 

1 GEO GSM1574307 

3 RNA-

seq 

PANC1 parental 
 

2 GEO GSM1574308   

3 RNA-

seq 

PT45P1 parental 
 

1 GEO GSM1574309 

3 RNA-

seq 

PT45P1 parental 
 

2 GEO GSM1574310 

4 RNA-

seq 

MCF7 Parental 
 

1 GEO GSM2913255 

4 RNA-

seq 

MCF7 Parental 
 

2 GEO GSM2913256 

4 RNA-

seq 

MCF7 Parental 
 

3 GEO GSM2913257 

4 RNA-

seq 

MCF7 TamR 
 

1 GEO GSM2913267 

4 RNA-

seq 

MCF7 TamR 
 

2 GEO GSM2913268 

4 RNA-

seq 

MCF7 TamR 
 

3 GEO GSM2913269 

2,3 TCC PANC1 parental 
 

1,2 GEO GSM1684570   

4 TCC MCF7 parental  0hr 1 GEO GSM2913210 

4 TCC MCF7 100nM 

Estradiol 

1hr 1 GEO GSM2913211 

4 TCC MCF7 100nM 

Estradiol 

4hr 1 GEO GSM2913212 

4 TCC MCF7 100nM 

Estradiol 

16hr 1 GEO GSM2913213 

4 TCC MCF7 100nM 

Estradiol 

24hr 1 GEO GSM2913214 

4 TCC MCF7 TamR 
 

1 GEO GSM2913258 

4 TCC MCF7 TamR Input 1,2 GEO GSM2913259 

4 TCC MCF7 TamR H3K4me3 1,2 GEO GSM2913260 

4 TCC MCF7 TamR H3K27ac 1,2 GEO GSM2913261 

4 TCC MCF7 TamR H3K4me1 1,2 GEO GSM2913262 

4 TCC MCF7 TamR H3K27me3 1,2 GEO GSM2913263 
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4 TCC MCF7 TamR H3K9me3 1,2 GEO GSM2913264 

4 TCC MCF7 TamR ER-alpha 1,2 GEO GSM2913265 

4 TCC MCF7 TamR CTCF 1,2 GEO GSM2913266 

4 TCC T47D parental 0hr 1,2 GEO GSM3386607 

4 TCC T47D 100nM 

Estradiol 

1hr 1,2 GEO GSM3386608 

4 TCC T47D 100nM 

Estradiol 

4hr 1,2 GEO GSM3386609 

4 TCC T47D 100nM 

Estradiol 

16hr 1,2 GEO GSM3386610 

4 TCC T47D 100nM 

Estradiol 

24hr 1,2 GEO GSM3386611 

4 TCC T47D TamR 
 

1,2 GEO GSM3386612 

E RNA-

seq 

Jamaican 

fruit bat 

Spleen Control 1 GEO GSM1967338 

E RNA-

seq 

Jamaican 

fruit bat 

Spleen Control 2 GEO GSM1967339 

E RNA-

seq 

Jamaican 

fruit bat 

Spleen Infected 1 GEO GSM1967340 

E RNA-

seq 

Jamaican 

fruit bat 

Spleen Infected 2 GEO GSM1967341 

E RNA-

seq 

Jamaican 

fruit bat 

Kidney Control 1 GEO GSM1967342 

E RNA-

seq 

Jamaican 

fruit bat 

Kidney Control 2 GEO GSM1967343 

E RNA-

seq 

Jamaican 

fruit bat 

Kidney Infected 1 GEO GSM1967344 

E RNA-

seq 

Jamaican 

fruit bat 

Kidney Infected 2 GEO GSM1967345 

E RNA-

seq 

Jamaican 

fruit bat 

Liver Control 1 GEO GSM1967346 

E RNA-

seq 

Jamaican 

fruit bat 

Liver Control 2 GEO GSM1967347 

E RNA-

seq 

Jamaican 

fruit bat 

Liver Infected 1 GEO GSM1967348 

E RNA-

seq 

Jamaican 

Fruit bat 

Liver Infected 2 GEO GSM1967349 
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