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Abstract

In the first part of this dissertation, we produce and study a generalized mathematical
model of solid combustion. Our generalized model encompasses two special cases from
the literature: a case of negligible heat diffusion in the product, for example, when
the burnt product is a foam-like substance; and another case in which diffusivities
in the reactant and product are assumed equal. In addition to that, our model
pinpoints the dynamics in a range of settings, in which the diffusivity ratio between the
burned and unburned materials varies between 0 and 1. The dynamics of temperature
distribution and interfacial front propagation in this generalized solid combustion
model are studied through both asymptotic and numerical analyses. For asymptotic
analysis, we first analyze the linear instability of a basic solution to the generalized
model. We then focus on the weakly nonlinear case where a small perturbation of
a neutrally stable parameter is taken so that the linearized problem is marginally
unstable. Multiple scale expansion method is used to obtain an asymptotic solution
for large time by modulating the most linearly unstable mode. On the other hand,
we integrate numerically the exact problem by the Crank-Nicolson method. Since the
numerical solutions are very sensitive to the derivative interfacial jump condition, we
integrate the partial differential equation to obtain an integral-differential equation
as an alternative condition. The result system of nonlinear algebraic equations is
then solved by the Newton’s method, taking advantage of the sparse structure of
the Jacobian matrix. By a comparison of our asymptotic and numerical solutions,
we show that our asymptotic solution captures the marginally unstable behaviors of
the solution for a range of model parameters. Using the numerical solutions, we also
delineate the role of the diffusivity ratio between the burned and unburned materials.

In the second part, we study the existence and decay rate of a transmission prob-
lem for the plate vibration equation with a memory condition on one part of the
boundary. From the physical point of view, the memory effect described by our inte-
gral boundary condition can be caused by the interaction of our domain with another
viscoelastic element on one part of the boundary. For our mathematical analysis, we
first prove the global existence of weak solution by using Faedo-Galerkin’s method and
compactness arguments. Then, without imposing zero initial conditions on one part
of the boundary, two explicit decay rate results are established under two different
assumptions of the resolvent kernels. Both of these decay results allow a wider class
of relaxation functions and initial data, and thus generalize some previous results
existing in the literature.
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Chapter 1

INTRODUCTION

1.1 A Brief Historical Overview

Flame propagation is a very complex area of study which combines various physical

and chemical disciplines. Recently, with the development of our technologies, more

and more experiments were designed and carried out in different types of combus-

tions. However, it is still extremely hard to mathematically describe these observed

phenomena. The situation is relatively simpler for condensed phase or solid fuel

combustion. For this kind of combustion, a chemical reaction converts a solid fuel

directly into solid products without intermediate gas phase formation. In this case,

the development and propagation of flame is mainly controlled by the competition

between the heat generation by the chemical reactions and heat diffusion in burned

and unburned regions, while the complicated gas and liquid dynamical issues can be

essentially ignored. A balance exists between the two in some parametric regimes,

producing a constant burning rate. In most cases, competition between the reaction

and the diffusion results in rich nonuniform behaviors, some leading to chaos.
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This condensed phase combustion is a basis for many technological applications.

For example, in self-propagating high-temperature synthesis (SHS), a flame wave

advances through powdered ingredients, leaving high-quality ceramic materials or

metallic alloys in its wake (See, for instance, [16], [38], [40], [61]). The SHS process

has many advantages over traditional manufacturing in which mixture is baked in a

furnace. The synthesis times are much shorter, the equipment is cheaper and costs

less energy. Most importantly, the desired products are more uniform and pure. The

SHS technique was first proposed and studied in Soviet Union in late 1960’s and

early 1970’s. Later, these extensive Russian-language literature were translated and

collated by Frankhauser and many other researchers. Since then, SHS started to

attract researchers’ attention in Japan, the USA and elsewhere in the world. For

more detailed history of SHS, we refer the readers to [54] and the reference therein.

Today, SHS process still remains its popularity in producing advanced materials.

Other frontal phonemena include, for example, frontal polymerization [12], [13], [14]

and the combustion of degraded energetic materials involves multi-phase flow because

of the porosity in the propellant. (See, for instance, [8], [60].)

Experiments have promoted an understanding of the kinds of reaction propaga-

tion that result from the interplay between heat generation and heat diffusion in the

medium. In some physical contexts, these effects balance to produce a constant burn-

ing rate, leading to a more uniform composition of the product. In other cases, the

interactions between the reaction and diffusion result in a wide variety of nonuniform

behaviors, including chaos (see, for example, [17]). In media containing interstices

between explosive particles, convection can play an important and in some cases a

dominant role [8].
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Numerical simulations have also captured these dynamics. Models have included

reaction-diffusion with full Arrhenius kinetics [58], Arrhenius kinetics with a cutoff [5],

and concentrated kinetics with large activation energy [9], [33]. See [60], [64] for a

review of models and physical experiments.

In this dissertation, we address a broad class of physical problems via a generalized

model of solid combustion, encompassing both a case of negligible heat diffusion in

the product, for example when the burnt product is a foam-like substance, and a case

in which diffusivities in the reactant and product are assumed equal. A free-boundary

(“one-sided”) model had been applied to the former case and a free-interface (“two-

sided”) model to the latter. (See, for examples, [24] and [64].) We note that effects

of variable material parameters are also analyzed in oscillatory burning in [8], [60] in

the context of a solid reactant with pores.

We give a linear stability analysis, carry out a multiple scale expansion and per-

form simulations on the generalized model, which pinpoint the dynamics in a range

of settings. Our numerical study quantitatively predicts the behavior of exothermic

reaction fronts in this spectrum of material contexts. The dynamics involve an inter-

play of competing effects as the diffusivity ratio is tuned to capture different physical

systems.

In particular, we take ap = κb/κu as the ratio of the diffusivities κb and κu in the

burned and unburned regions, respectively. The dimensionless parameter, ap tunes

the thermal diffusivity in the product zone from zero—no heat conduction (the one-

sided model)—to a maximum of ap = 1, where the diffusivities are the same in the

product and fresh mixtures (the two-sided model).

The quality of the product, which is associated with the stability of the uniformly
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propagating combustion front, has a significant dependence on the diffusivity ratio

ap. In the linear stability analysis we identify the critical value νc of a parameter ν

related to the activation energy at which a travelling-wave solution is neutrally stable.

Our result gives the precise critical value νc for the range of physical settings captured

by the diffusivity ratio; it depends on ap. Prediction of loss of stability at this level of

detail is valuable; the relative error between the stability thresholds associated with

the one- and two-sided models is approximately 30 percent (see chapter two ).

We also identify nonlinear instability using Fourier spectra of numerical solutions

to show how period-doubling bifurcations arise, as a parameter σ related to the Arrhe-

nius kinetics decreases. We illustrate that to see a period-doubling cascade in σ in the

two-sided model in [64] , the parameter ν must deviate by a somewhat larger amount,

denoted ε2, from its critical value than is required in the case of the free-boundary

model. The nonlinear dynamical behaviors in these two settings are qualitatively

similar. The generalized model gives a clear understanding of the quantitative details

for how nonlinearities set in for the “intermediate” physical problems.

1.2 Derivation of Mathematical Model

Matkowsky and Sivashinsky [33] consider a system of reaction-diffusion equations

∂T

∂t
= κ

∂2T

∂x2 +QW (C, T ), ∂C

∂t
= −W (C, T ) (1.2.1)

as a mathematical model of gasless combustion. Here T is the temperature. The fuel

concentration C evolves from C0 in the fresh mixture to zero as the reaction proceeds

to completion. The parameter κ is the heat diffusivity;W > 0 is the chemical reaction

5



rate; and Q is the heat release.

We assume that the reaction is one-step. It is also first-order: proportional to

the concentration. In particular, W = ZCw(T ), where Z is a constant, and w(T )

is a temperature-dependent factor. We also assume that the mixture does not burn

without sufficient heating, namely that at “the cold boundary” w(T0) = 0, where

T0 is the temperature of the fresh mixture. Later in this dissertation, we will show

that, under these (as well as under much weaker) assumptions, the system in (1.2.1)

supports a traveling wave solution.

We will give the solution explicitly in the case of a free boundary x = g(t), where

we effectively replace the reaction rate by a point source, treating W as a δ-function.

In particular, we take the reaction rate

W = K(T )δ(x− g(t)).

Then the system in (1.2.1) becomes

∂T

∂t
= κ

∂2T

∂x2 +QK(T )δ(x− g(t)), ∂C

∂t
= −K(T )δ(x− g(t)). (1.2.2)

As usual, the system in (1.2.2) should be satisfied in the sense of distributions; i.e., the

equations are satisfied when sampled with any smooth test function. The boundary

conditions far ahead and far behind the front are

lim
x→−∞

|T (x, t)| <∞, lim
x→∞

T (x, t) = T0, (1.2.3)

lim
x→−∞

C(x, t) = 0, lim
x→∞

C(x, t) = C0.

6



The homogeneous version of the partial differential equation in T in (1.2.2) holds on

each side of the interface as

∂T

∂t
= κb

∂2T

∂x2 on x < g(t); ∂T

∂t
= κu

∂2T

∂x2 on x > g(t), (1.2.4)

subject to the following jump conditions

[T ] = 0,
[
κ
∂T

∂x

]
= −QK, dg

dt [C] = K(Tf ) (1.2.5)

obtained by integrating equations (1.2.2) across the interface with respect to x. Here

κu is the diffusivity in the unburned region; κb is the diffusivity in the burned region;

the square brackets indicate a jump across the interface; and Tf = T (g(t); t) is the

front temperature.

As such, the first condition in (1.2.5) is the continuity of T across the front:

T |Γ+ = T |Γ− = Tf (1.2.6)

and the second condition is

(
κ
∂T

∂x

)∣∣∣∣∣
Γ+
−
(
κ
∂T

∂x

)∣∣∣∣∣
Γ−

= −QK(Tf ),

where Γ is the interface given by x = g(t). In particular,

(
κu
∂T

∂x

)∣∣∣∣∣
Γ+
−
(
κb
∂T

∂x

)∣∣∣∣∣
Γ−

= −QK(Tf ). (1.2.7)
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Initial data may be chosen so that the concentration is given by

C(x, t) =


0 for x < g(t),

C0 for x > g(t).

Then the concentration equation Ct = 0 is satisfied automatically for both x < g(t)

and x > g(t). Thus, the concentration variable can be eliminated from the problem.

In addition, [C] = C0 and the last jump condition in (1.2.5) becomes

C0
dg
dt = K(Tf ). (1.2.8)

The form of K(Tf ) depends on the details of the kinetic mechanism of reaction.

We use Arrhenius kinetics modified for gasless combustion as in [9]:

K(Tf ) = UC0 exp
[
Ta
2Tb

(
1− Tb

Tf

)]
, (1.2.9)

where U is the traveling-wave velocity; Ta is the activation temperature;

Tb = T0 +QC0 (1.2.10)

is the adiabatic temperature of the combustion products.

Next, we make a change of variables to introduce the dimensionless quantities

x̃ = U

κu
x, t̃ = U2

κu
t, u = T − T0

Tb − T0
, V = 1

U

dg
dt . (1.2.11)

Note that dg/dt can be replaced by UV in (1.2.8) and the resulting expression for
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K(Tf ) can be substituted into (1.2.7) and (1.2.9). Then nondimensionalizing equa-

tions (1.2.3), (1.2.4), (1.2.6), (1.2.7) and (1.2.9), gives a system for the dimensionless

temperature u and dimensionless front position f(t̃) = U
κu
g(t(t̃)). Dropping the tildes

we get, for u(x, t), f(t), t > 0:

∂u

∂t
= ap

∂2u

∂x2 on x < f(t), ∂u

∂t
= ∂2u

∂x2 on x > f(t), (1.2.12)

lim
x→−∞

|u(x, t)| <∞, lim
x→∞

u(x, t) = 0, (1.2.13)

u|Γ = u|Γ− = u|Γ+ (1.2.14)

V = exp
[(1
ν

)
u|Γ − 1

σ + (1− σ) u|Γ

]
, (1.2.15)

∂u

∂x

∣∣∣∣∣
Γ+
− ap

∂u

∂x

∣∣∣∣∣
Γ−

= −V, (1.2.16)

where V = df
dt̃ ; σ is the temperature ratio

σ = T0

Tb
;

ν is the inverse Zel’dovich number, where

1
ν

= Ta
2Tb

(1− σ) ;

and ap is the ratio of diffusitivies in the product and fresh mixtures

ap = κb
κu
.
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Lastly, the problem (1.2.12)–(1.2.16) in a front-attached coordinate frame

η = x− f (t) , τ = t

becomes

∂u

∂τ
= ∂2u

∂η2 + df(τ)
dτ

∂u

∂η
, η > 0, ∂u

∂τ
= ap

∂2u

∂η2 + df(τ)
dτ

∂u

∂η
, η < 0, (1.2.17)

u|η=0− = u|η=0+ = u|η=0 , (1.2.18)

V = exp
[(1
ν

) u|η=0 − 1
σ + (1− σ) u|η=0

]
, (1.2.19)

∂u

∂η

∣∣∣∣∣
η=0+

− ap
∂u

∂η

∣∣∣∣∣
η=0−

= −V, (1.2.20)

lim
η→−∞

|u(η, τ)| <∞, lim
η→∞

u(η, τ) = 0. (1.2.21)

Equations (1.2.17)-(1.2.21), together with initial conditions for the temperature and

the free interface position, form an initial-boundary value problem. Examples of these

initial conditions are given when we solve the problem numerically.

10



Chapter 2

LINEAR STABILITY ANALYSIS

2.1 Basic Solution and Linearized Equa-

tions

We start our analysis by noticing that a basic solution to equations (1.2.17)-(1.2.21)

is

ubasic (η, τ) =


e−η if η ≥ 0

1 if η < 0
, fbasic (τ) = τ. (2.1.1)

And the corresponding basic velocity is

Vbasic = 1.

We now wish to study the form of small perturbation about the above basic solution.

First, we introduce a small, positive, non-dimensional parameter ε � 1. Then to
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linearize the problem about the basic solution, we make the following substitution

u = ubasic + εw,

f = fbasic + εφ

for u and f in (1.2.17)-(1.2.21). We also expand K(V ) in a Taylor series about V = 1,

and recall that K(1) = 0 and K ′(1) = 1. Moving all terms to one side of the equation

and retaining only terms at order of O(ε), we obtain the following partial differential

equations
∂w

∂τ
+ L(w, φ) = 0

subject to the linear boundary conditions

M(w, φ) = 0,

N (w, φ) = 0,

w|η=0+ = w|η=0− = w|η=0,

lim
η→−∞

|w(η, τ)| <∞, lim
η→∞
|w(η, τ)| = 0,

where

L(w, φ) =


L1(w, φ) = −∂

2w

∂η2 −
∂w

∂η
+ e−η

∂φ

∂τ
, if η > 0,

L2(w, φ) = −ap
∂2w

∂η2 −
∂w

∂η
, if η < 0,

(2.1.2)

M(w, φ) = w|η=0 − ν
∂φ

∂τ
, (2.1.3)
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N (w, φ) = ∂w

∂η

∣∣∣∣∣
η=0+

− ap
∂w

∂η

∣∣∣∣∣
η=0−

+ ∂φ

∂τ
. (2.1.4)

We note here that the above perturbation expansion can be generalized to higher

orders later in our weakly nonlinear analysis.

2.2 Eigenvalue Problem

In this section, we derive the normal-mode solutions using a separation of variables

for the equations (1.2.17)–(1.2.21). Let us assume

w = eλτg(η) =


eλτg1(η), if η > 0

eλτg2(η), if η < 0
, φ = eλτ . (2.2.1)

Substituting (2.2.1) into the linearized problem in previous section gives the eigen-

value problem

g′′1 + g′1 − λg1 = λe−η, η > 0, (2.2.2)

apg
′′
2 + g′2 − λg2 = 0, η < 0, (2.2.3)

g1(0) = g2(0) = νλ, (2.2.4)

g′1|η=0+ − apg
′
2|η=0− = −λ, (2.2.5)

lim
η→−∞

g2(η) <∞, lim
η→∞

g1(η) = 0. (2.2.6)
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The general solution to the differential equations (2.2.2–2.2.3) is

g(η) =


g1(η) = c1 exp

(
−1+

√
1+4λ

2 η
)

+ c2 exp
(
−1−

√
1+4λ

2 η
)
− exp(−η), η > 0,

g2(η)k1 exp
(
−1+
√

1+4apλ
2ap η

)
+ k2 exp

(
−1−
√

1+4apλ
2ap η

)
, η < 0.

(2.2.7)

2.3 Discrete Spectrum

Now the general solution (2.2.7) needs to satisfy the boundary conditions (2.2.4)–

(2.2.6) of the eigenvalue problem. We first select c1 = k2 = 0, which implies that the

condition (2.2.6) at infinity holds. Next, condition (2.2.4) dictates that c2 = 1 + νλ

and k1 = νλ. Lastly, applying (2.2.5) yields the dispersion relation

f(ap, ν, λ) = 0, (2.3.1)

where

f(ap, ν, λ) = ν (2λ+ 1)
√

1 + 4apλ+ 2ν2 (1− ap)λ2 + (4ν − 2)λ+ ν.

Thus the eigenfunction is

g(η) =


g1(η) = (1 + νλ) exp

(
−1−

√
1+4λ

2 η
)
− exp(−η), η > 0,

g2(η) = νλ exp
(
−1+
√

1+4apλ
2ap η

)
, η < 0.

(2.3.2)

where the eigenvalue λ satisfies the dispersion relation (2.3.1).

If <(λ) = 0, then the basic solution ubasic and fbasic in (2.1.1) ( also known as
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the traveling-wave solution) is neutrally stable with respect to the small temperature

perturbation εw and small front perturbation εφ. Here, w and φ are normal modes of

the forms (2.2.1). To examine neutral stability, we set λ to be the purely imaginary

value iω in (2.3.1). The complex equation (2.3.1) is equivalent to two real equations.

These can be solved simultaneously for ω and the critical value

νc = νc(ap).

Notice that the critical value, νc, is a function of the diffusivity ratio, ap. Therefore,

this is the value below which the travelling-wave solution loses stability for the range

of physical setting captured by ap. See Figure 2.1.

Figure 2.1: Neutral stability curve in the ap − νc plane.
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In the case of negligible heat diffusion behind the front, we set ap = 0 and find

νc = νc(0) = 1/3.

This is the case modeled on a semi-infinite domain with the one-sided model.

In the case of essentially uniform heat diffusion behind and ahead of the front, we

set ap = 1 and find

νc = νc(1) =
√

5− 2.

This is the case modeled on the whole real line with the two-sided model. These two

values for limiting cases agree with stability thresholds reported in the literature, for

examples, [15], [19] and [66].

For these two physical settings, the two critical values differ considerably. For

example, if we used the two-sided model where the one-sided model would be more

appropriate, the relative error would be

νc(0)− νc(1)
νc(0) ≈ 0.29.

If we used the one-sided model where the two-sided model would be more appropriate,

the relative error would be
νc(0)− νc(1)

νc(1) ≈ 0.41.

Rather than choosing ap = 0 or ap = 1 in all cases, we get a substantially more

accurate stability threshold by using the value of the diffusivity ratio ap on the interval

(0, 1), as appropriate to the physical setting.

If ν < νc(ap), then <λ > 0, and the basic solution in (2.1.1) is linearly unstable. As
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such, the solution to the linearized equations grows exponentially in time. However,

the nonlinear solution is bounded. (See [19].)

In this work, we perform both asymptotic and numerical analysis of the complex

nonlinear dynamics for the generalized model. We take

ν = νc(ap)− ε2,

which is used in our weakly nonlinear analysis. We show in Section (4.5) that in the

appropriate regimes, the asymptotic results agree well with the numerical solutions.

Moreover, to obtain our numerical solutions, we use the Crank-Nicholson method in

Section (4.2) to solve the generalized model in a front-attached coordinate frame.
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Chapter 3

WEAKLY NONLINEAR ANALYSIS

3.1 Introduction

After obtaining normal mode solution and the condition for neutral stability in the

previous chapter, we are now ready to proceed with the weakly nonlinear analysis.

Our goal is to study the evolution of perturbations to the basic solution in the case

where ν(ap) lies in the weakly unstable region ( i.e. set ν(ap) = νc(ap) − ε2). The

evolution of a weakly unstable mode in this parameter regime might be modeled well

by the neutrally stable linear solution with modulated amplitudes. To seek such a

solution which can model the behavior of a perturbation to the basic solution for

large times, we employ the method of multiple scale expansion in this chapter. Af-

ter introducing the multiple time scales: t0 = τ, t1 = ετ, t2 = ε2τ , we assume the

amplitudes of the modulated eigenmodes depend on t1 and t2 ( see A(t1, t2), B(t1, t2)

in the following section). Then we show that these amplitude functions A(t1, t2)

and B(t1, t2) can be obtained by satisfying the solvability conditions to our original

equations (1.2.17)-(1.2.21). In the following sections, we provide the details, includ-
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ing adjoint eigenvalue problem, introduction of small parameter and the method of

multiple scales.

3.2 Adjoint Eigenvalue Problem

Here we define inner product and then use the integration by parts to derive an

adjoint eigenvalue problem. The solutions of the adjoint problem will be used later to

ensure the solvability of the inhomogeneous equations when applying the perturbation

theory. First, the inner product of two functions is defined as

(u, v) = lim
T→∞

1
T

∫ T

0

∫ +∞

−∞
u(η, τ)v(η, τ) dηdτ,

where u and v are bounded measurable functions of η and τ with values in

L2 ((−∞,+∞)× (0,+∞)) .

Definition 3.2.1 A function u is in the null space of the adjoint operator if

(
∂v

∂t
+ L(v, φ), u

)
= 0

for all v such that

M(v, φ) = v|η=0 − ν
∂φ

∂τ
= 0, (3.2.1)

N (v, φ) = ∂v

∂η

∣∣∣∣∣
η=0+

− ap
∂v

∂η

∣∣∣∣∣
η=0−

+ ∂φ

∂τ
= 0. (3.2.2)
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for L defined as in §2.

Integration by parts shows that the inner product in Definition 3.2.1 can be written

as

(
∂v

∂t
+ L(v, φ), u

)
= lim

T→∞

1
T

∫ T

0

{
−
∫ +∞

0+

[
v(ūτ + ūηη − ūη)− e−ηφτ ū

]
dη

+vηū |η=0+ − vūη |η=0+ + vū |η=0+

}
dτ.

+ lim
T→∞

1
T

∫ T

0

{
−
∫ 0−

−∞
[v(ūτ + apūηη − ūη)] dη

−apvηū |η=0− + apvūη |η=0− − vū |η=0−

}
dτ.

+bounday term.

The boundary terms vanish as T approaches infinity. Using the definition of the inner

product and the conditions (3.2.1) and (3.2.2), the above equation becomes

(
∂v

∂t
+ L(v, φ), u

)
=

(
v,−∂u

∂t
+ L?u

)
+ lim

T→∞

1
T
B(φτ , ap, u, uη), (3.2.3)

where

L?u =


L?1u = −∂

2u

∂η2 + ∂u

∂η
, if η > 0

L?2u = −ap
∂2u

∂η2 + ∂u

∂η
, if η < 0

and

B(φτ , ap, u, uη) =
∫ T

0

[ ∫ ∞
0+

e−ηφτ ū dη − φτ ū|η=0+ − νφτ ūη|η=0+ + apνφτ ū|η=0−

]
dτ.

20



The operator −∂t + L? is adjoint to ∂t + L if its domain is defined by the relation

lim
T→∞

1
T
B(φτ , ap, u, uη) = 0. (3.2.4)

Only the null space of the adjoint operator is of interest for obtaining solvability

conditions. For functions with separated variables

u = eµτg(η) =


eµτh1(η), if η > 0

eµτh2(η), if η < 0
(3.2.5)

that belong to the null space of the adjoint operator, it is possible to translate (3.2.4)

into a boundary condition. To do so, we substitute u into the expression for B. Using

the fact that every term has a φτ , we integrate by parts with respect to τ to obtain

B(φτ , u, uη) = B(h1, h2, µ, ap)
∫ T

0
φ(τ)eµ̄τ dτ + boundary terms,

where

B(h1, h2, µ, ap)

=
[
µ̄h̄1(0+) + νµ̄h̄′1(0+)− apνµ̄h̄′2(0−)−

∫ +∞

0+
µ̄h̄1(η)e−η dη

]
. (3.2.6)

Since we require B(h1, h2, µ, ap) to equal zero, (3.2.3) shows that Definition (3.2.1)

can be restated as: A function u is in the null space of the adjoint operator if and

only if (
v,−∂u

∂t
+ L?u

)
= 0

for all v satisfying the boundary conditions in Definition 3.2.1. Therefore u is in the
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null space of the adjoint operator if and only if

−∂u
∂t

+ L?u = 0

for all v satisfying the boundary conditions. Substituting

u(η, τ) = eµτh(η) =


eµτh1(η), if η > 0

eµτh2(η), if η < 0
(3.2.7)

into the above equation gives

h′′1 − h′1 + µh1 = 0, (3.2.8)

aph
′′
2 − h′2 + µh2 = 0. (3.2.9)

To evaluate the integral in (3.2.6), we perform inner product of e−η with equation

(3.2.8). Using the integration by parts and requiring that h1(η) and h′1(η) tend to

zero as η tends to infinity, we obtain

∫ ∞
0+

µ̄h̄(η)e−η dη = −h̄′1(0+)

and equation (3.2.6) becomes

[
µ̄h̄1(0+) + νµ̄h̄′1(0+)− apνµ̄h̄′2(0−)− h̄′1(0+)

]
= 0. (3.2.10)

This condition, together with the differential equation (3.2.8), (3.2.9) and the require-

22



ment that

lim
η→−∞

h2(η) <∞, lim
η→∞

h1(η) = 0, (3.2.11)

constitute the adjoint eigenvalue problem. We look for h(η) in the form

h(η) =


h1(η) = Aeλ

+η, if η > 0,

h2(η) = Aeλ
−η, if η < 0,

(3.2.12)

where A is an arbitrary constant. The condition

h(η)|η=0+

η=0− = h1(0+)− h2(0−) = 0,

is automatically satisfied. Upon substitution of (3.2.12) into the ordinary differential

equations (3.2.8) and (3.2.9), we find that λ+ and λ− satisfy the equations

(λ+)2 − λ+ + µλ+ = 0, (3.2.13)

ap(λ−)2 − λ− + µλ− = 0. (3.2.14)

We choose the following roots from the above two equations

λ+ = 1−
√

1− 4µ
2 , (3.2.15)

λ− = 1 +√1− 4apµ
2ap

, (3.2.16)

by enforcing boundedness of solution (3.2.12) as η → ±∞. If we choose µ = −λ̄, i.e.

23



µ̄ = −λ, then we obtain from (3.2.10) that

−λ− νλ1−
√

1 + 4λ
2 + apνλ

1 +
√

1 + 4apλ
2ap

− 1−
√

1 + 4λ
2 = 0.

After simplifying the above equation we end up with

ν (2λ+ 1)
√

1 + 4apλ+ 2ν2 (1− ap)λ2 + (4ν − 2)λ+ ν = 0.

which is the same dispersion relation (2.3.1) given in the linear stability analysis of

the original linearized problem! Therefore, from (3.2.7) we find that the solutions to

the adjoint problem is

u(η, τ) = eµτh(η) =


e−λ̄τh1(η), if η > 0,

e−λ̄τh2(η), if η < 0,
(3.2.17)

where h1(x) and h2(x) are given in (3.2.12), (3.2.15) and (3.2.16). Finally, we note

that

µ = 0, h(η) =


1, if η > 0

e
1
ap
η
, if η < 0

(3.2.18)

also satisfies the adjoint eigenvalue problem (3.2.8)-(3.2.10). Thus

u(η, τ) =


1, if η > 0

e
1
ap
η
, if η < 0

(3.2.19)

is also an adjoint solution.

Lastly, we give an important lemma which will be used later.
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Lemma 3.2.1 (Fredholm Alternative Theorem) Let X and Y be normed linear spaces

and B(X, Y ) be the space of bounded linear operators from X to Y with the usual

operator norm. Then for T ∈ B(X, Y ),

R̄T = N ⊥
T ∗

where

R̄T = the closure of the range of T ,

T ∗ = the adjoint of T ,

N ⊥
T ∗ = the space orthogonal to the null space of T ∗.

In our present work, we define T as the following linear differential operator:

T (u, φ) = ∂u

∂t
+ L(u, φ) =


∂u
∂t
− ∂2u

∂η2 − ∂u
∂η

+ e−η ∂φ
∂τ
, if η > 0,

∂u
∂t
− ap ∂

2u
∂η2 − ∂u

∂η
, if η < 0.

(3.2.20)

Here we assume the differential operator T is bounded and its range is closed (see

[24], [31] and [39] for other applications on PDEs of this theorem making these as-

sumptions). One way to try to prove these assumption is to convert the related

partial differential equation into an integral equation. Then it can be shown that the

associated integral operator is bounded and the kernel of the corresponding integral

operator is a Hilbert-Schmidt kernel. Examples of the application of integral methods

to the solution of a solid combustion problem can be found in [16] and [17].
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3.3 Introduction of Small Parameter

In this study we consider only small deviations from the neutral stability curve in the

unstable direction. In particular, define a small parameter ε such that

ε2 = νc(ap)− ν(ap) i.e. ν(ap) = νc(ap)− ε2. (3.3.1)

This choice of the parameter allows for the possibility of a Hopf bifurcation where

the magnitude of the solution is on the order of the square root of the bifurcation

parameter.

From now on, without ambiguity, we use νc and ν to represent νc(ap) and ν(ap),

respectively. To find the form of the eigenvalues in the weakly unstable regime,

substitute ν = νc − ε2 into the dispersion relation (2.3.1) to get

f(ap, νc − ε2, λ) = 0.

Then we seek eigenvalues of the form

λ = λ0 + ε2χ+O(ε3),

so

f(ap, νc − ε2, λ0 + ε2χ) = 0. (3.3.2)

Equating O(1) terms gives the equation

f(ap, νc, λ0) = 0,
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which is the dispersion relation with the critical ν. Therefore, by the definition of

critical value, λ0 is the pure imaginary iω. Setting λ0 = iω and equating the O(ε2)

terms in (3.3.2) gives the equation

χ =
(1 + 4apiω)(1 + 2iω) + [(1 + 4iω)− 4νc(1− ap)ω2]

√
1 + 4apiω

2νc(1 + 4apiω) + 4apνc(1 + 2iω) + [4ν2
c (1− ap)iω + 4νc − 2]

√
1 + 4apiω

(3.3.3)

So we know the eigenvalue up to O(ε2) and we can write the eignenvalues as

λ = iω + α, (3.3.4)

where α = ε2χ+O(ε3).

3.4 Method of Multiple Scales

We first introduce the multiple time scales

t0 = τ, t1 = ετ, t2 = ε2τ, (3.4.1)

where ε is given by (3.3.1).

Let us seek a solution to the problem (1.2.17)–(1.2.21) as a perturbation about

the basic solution, similar to the linearization done in §2, but with O(ε2) and O(ε3)

terms included as follows:

u ∼ ubasic + εw1 + ε2w2 + ε3w3 + · · · , (3.4.2)

f ∼ fbasic + εφ1 + ε2φ2 + ε3φ3 + · · · . (3.4.3)
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We substitute the expansions (3.4.2) and (3.4.3) into the problem in the front-attached

coordinates (1.2.17)–(1.2.21) and due to (3.4.1), we rewrite ∂/∂τ as

∂

∂τ
= ∂

∂t0
+ ε

∂

∂t1
+ ε2

∂

∂t2
.

We also expand K(V ) in a Taylor series about V = 1, replace ν by νc − ε2 and use

(3.3.4). Note that the O(1) terms drop out because (ubasic, fbasic) is a solution to the

original problem. Then equating like terms in the problem under consideration, we

obtain O(ε), O(ε2), and O(ε3) problems.

3.4.1 The O(ε) Problem

The O(ε) problem is the linear problem in §2 with w = w1, φ = φ1, and τ = t0. A

solution is of the form

w1 =


A(t1, t2)eiwt0g1(η) + CC, η > 0,

A(t1, t2)eiwt0g2(η) + CC, η < 0,
(3.4.4)

φ1 =
{
A(t1, t2)eiωt0 + CC

}
+B(t1, t2), (3.4.5)

where we assume that the amplitudes of the modulated eigenmodes depend on t1 and

t2 and CC are the complex-conjugate terms. In general the time dependent adjoint

solutions will be utilized in weakly nonlinear analysis to obtain conditions on the slow

time amplitude functions A(t1, t2) while the time-independent solution will be used to

obtain conditions on the evolution of B(t1, t2). From now on we will use the notation

A and B to mean A(t1, t2) and B(t1, t2).

We note here that the functions w1 and φ1 above “almost” satisfy the eigenvalue
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problem in §2. There are now small remainder terms that will contribute to the O(ε3)

problem (See Appendix A.1 for detailed derivations).

3.4.2 The O(ε2) Problem

The O(ε2) problem will show that the complex amplitude A depends on t2 only. We

also obtain expressions for B, w2 and φ2 in terms of A. Now let us derive these results!

The O(ε2) problem consists of the partial differential equation

∂w2

∂t0
+ L(w2, φ2) =


−∂w1

∂t1
+ ∂w1

∂η

∂φ1

∂t0
− e−η ∂φ1

∂t1
, η > 0

−∂w1

∂t1
+ ∂w1

∂η

∂φ1

∂t0
. η < 0

(3.4.6)

subject to the boundary conditions

M(w2, φ2) = νc

∂φ1

∂t1
+ K ′′(1)

2

(
∂φ1

∂t0

)2
 , (3.4.7)

N (w2, φ2) = −∂φ1

∂t1
, (3.4.8)

w2|η=0+ = w2|η=0− = w2|η=0,

lim
η→−∞

w2 <∞, lim
η→∞

w2 = 0. (3.4.9)

Recall that §2 defines L, M, and N . Given that w1 and φ1 have the forms (3.4.4)

and (3.4.5), we can rewrite the partial differential equation as

∂w2

∂t0
+ L(w2, φ2) = R2(η, t), (3.4.10)
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where t = (t0, t1, t2) and

R2(η, t) =
(
− ∂A
∂t1
eiωt0 (g1(η) + e−η) + iωA2e2iωt0g′1(η)− AĀg′1(η)iω + CC

)
− ∂B

∂t1
e−η, η > 0,(

− ∂A
∂t1
eiωt0g2(η) + iωA2e2iωt0g′2(η)− AĀg′2(η)iω + CC

)
, η < 0.

Similarly, the conditions at η = 0 become

M(w2, φ2) = a2(t), (3.4.11)

N (w2, φ2) = b2(t), (3.4.12)

where

a2(t) =
(
∂A

∂t1
eiωt0νc −

1
2K

′′(1)νcA2e2iωt0 + 1
2K

′′(1)νcAĀω2 + CC
)

+ ∂B

∂t1
νc,

b2(t) =
(
−∂A
∂t1

eiωt0 + CC
)
− ∂B

∂t1
.

Substituting the asymptotic expansion (3.3.4) of λ into the eigenfunction g(η) shows

g(η) ∼ g(η) |λ=iω +O(ε2).

Starting in this section, the notation g(η) will always indicate the eigenfunction eval-

uated at λ = iω.

We will show that the solvability conditions for theO(ε2) problem (3.4.10), (3.4.11),
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and (3.4.11) lead to
∂A

∂t1
= 0 (3.4.13)

and
∂B

∂t1
= AĀ r0, (3.4.14)

where

r0 = −ω2

 4√
1 + 4apiω +

√
1− 4apiω

+K ′′(1)
 . (3.4.15)

To derive these conditions, we first change w2 into a new variable v2 such that

M(v2, φ2) = N (v2, φ2) = 0, (3.4.16)

i.e. v2 satisfies the homogenous boundary conditions that define the linearized oper-

ator of §2.2. In particular, we set

v2 = w2 − a2S(η)− b2T (η),

where a2 and b2 are the inhomogeneities in the boundary conditions (3.4.11) and

(3.4.12), and S and T are functions with the properties that

S|η=0+

η=0− = 0, T |η=0+

η=0− = 0,

S(0) = 1, T (0) = 0,

S ′(0+)− apS ′(0−) = 0, T ′(0+)− apT ′(0−) = 1. (3.4.17)
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Also

lim
η→±∞

S(η) = lim
η→±∞

T (η) = 0.

We could, for example, take

S(η) =


e−apη, η > 0,

(1− 2η) eη, η < 0.

T (η) =


1
2ηe

−η, η > 0,

− η
2ap e

η, η < 0.

Substituting for w2 with v2 in equation (3.4.10), we obtain

∂v2

∂t0
+ L(v2, φ2) = R2(η, t)−

∂a2

∂t0
S(η)

+∂b2

∂t0
T (η) + L(a2S(η), 0) + L(b2T (η), 0)

. (3.4.18)

Then according to the Fredholm Alternative Theorem (see Lemma 3.2.1), the partial

differential equation (3.4.18) together with the boundary conditions (3.4.16) has a

nonsecular solution (a solution that does not grow in time without bound) if and

only if the inhomogeneity is orthogonal to the null space of the adjoint operator.

Therefore, the right-hand side RHS of the partial differential equation (3.4.18) must

be orthogonal to the adjoint solution

u(η, τ) =


e−λ̄t0h1(η), η > 0,

e−λ̄t0h2(η), η < 0.
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By the definition of the inner product given in §3.2, we require

lim
T→∞

1
T

∫ T

0

∫ +∞

−∞
RHS u(η, τ) dηdτ = 0. (3.4.19)

To simplify the integral in condition (3.4.19), we note that −λ+iω = −ε2χ+O(ε3)

by (3.3.4), so that (−λ+ iω)τ = −χt2 +O(ε3). Thus we obtain

lim
T→∞

1
T

∫ T

0
e(−λ+ijω)τ dτ =


e−χt2 6= 0 if j = 1,

lim
T→∞

e−χt2

Tiω(j − 1)(eiω(j−1)T − 1) = 0 otherwise.

(3.4.20)

Integrating by parts and exploiting our knowledge of the initial and limiting values

of S(η) and T (η) shows that

∫ +∞

0+
(S ′′(η) + S ′(η)− iωS(η)) h̄1(η)dη = −h̄1(0+)S ′(0+)+h̄′1(0+)S(0+)−h̄1(0+)S(0+)

and

∫ 0−

−∞
(S ′′(η) + S ′(η)− iωS(η)) h̄2(η)dη = aph̄2(0−)S ′(0−)−aph̄′2(0−)S(0−)+h̄2(0−)S(0−).

Therefore, we have

∫ +∞

−∞
(S ′′(η) + S ′(η)− iωS(η)) h̄(η) dη = h̄′1(0+)− aph̄′2(0−)

Similarly, we obtain

∫ +∞

−∞
(T ′′(η) + T ′(η)− iωT (η)) h̄(η) dη = −h̄1(0+)
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Then condition (3.4.19) reduces to

dA

dt1

{∫ +∞

0+

(
g1(η) + e−η

)
h̄1(η) dη

+
∫ 0−

−∞
g2(η)h̄2(η) dη + νc

(
h̄′1(0+)− aph̄′2(0−)

)
+ h̄1(0+)

}
= 0. (3.4.21)

Because the second factor is nonzero, we obtain

∂A

∂t1
= 0.

This is equation (3.4.13), which we set out to derive. Note the equation states that

the slowly-varying amplitude A depends only on the slowest time scale t2.

To derive the second condition (3.4.14), the Fredholm Alternative Theorem implies

that the right-hand side RHS of the partial differential equation (3.4.18) must be

orthogonal also to the adjoint solution (3.2.19) u(η, τ) = 1, i.e.

lim
T→∞

1
T

∫ T

0

∫ ∞
0

RHS dηdτ = 0. (3.4.22)

To simplify the integral, we note that

lim
T→∞

1
T

∫ T

0
eijωτdτ =


1, j = 0,

0, j = ±1,±2,

and ∫ +∞

−∞
(S ′′(η) + S ′(η)) dη =

∫ +∞

−∞
(T ′′(η) + T ′(η)) dη = −1.
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Then condition (3.4.22) becomes

∂B

∂t1
= AĀr0 = −ω2

1−
√

1 + 4apiω
2apω

i+ 1
2K

′′(1) + CC
AĀ

= −ω2

 4√
1 + 4apiω +

√
1− 4apiω

+K ′′(1)
AĀ (3.4.23)

as desired.

Apply conditions (3.4.13) and (3.4.14), we rewrite the O(ε2) partial differential

equation with “legitimate” right-hand side as

∂w2

∂t0
+ L(w2, φ2) =


(
A2e2iωt0iωg′1(η)− AĀg′1(η)iw + CC

)
− AĀr0e

−η, η > 0,

A2e2iωt0iωg′2(η)− AĀg′2(η)iw + CC, η < 0.

Similarly, the boundary conditions subject to conditions (3.4.13) and (3.4.14) become

M(w2, φ2) =
(
−1

2K
′′(1)νcA2ω2e2iωt0 + 1

2K
′′(1)ννcAĀω2 + CC

)
+ AĀr0νc, (3.4.24)

N (w2, φ2) = −AĀr0. (3.4.25)

Let us seek a solution of the same form as the inhomogeneities; namely, let

w2 =


A2e2iωt0k+

2 (η) + AĀk+
0 (η) + CC, η > 0,

A2e2iωt0k−2 (η) + AĀk−0 (η) + CC, η < 0.
(3.4.26)

φ2 = A2e2iωt0C2 + AĀC0 + CC. (3.4.27)

Substituting these expressions into the partial differential equation and the boundary

conditions (3.4.24) and (3.4.25) and collecting like terms yields the following initial-
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value problems:



k
′′+
0 (η) + k

′+
0 (η) = r0e

−η + iωg
′

1(η),

apk
′′−
0 + k

′−
0 = iωg

′
2(η),

k+
0 (0) = k−0 (0) = 1

2K
′′(1)νcω2 + r0νc,

k
′+
0 (0+)− apk

′−
0 (0−) = −r0,

limη→∞ k
+
0 (η) = 0, limη→−∞ k

−
0 (η) <∞

(3.4.28)

and 

k
′′+
2 (η) + k

′+
2 (η)− 2iω(k2

2(η) + C2e
−η) = −iωg′1(η),

apk
′′−
2 + k

′−
2 − 2iωk−2 (η) = −iωg′2(η),

k+
2 (0) = k−2 (0) = −1

2K
′′(1)νcω2 + 2iωr0νc,

k
′+
2 (0+)− apk

′−
2 (0−) = −2iωC2,

limη→∞ k
+
2 (η) = 0, limη→−∞ k

−
2 (η) <∞.

(3.4.29)

The solution to problem (3.4.28) and (3.4.29) are given in Appendix A (see A.2).

3.4.3 The O(ε3) Problem

This section is devoted to deriving the Landau-Stuart equation. The O(ε3) problem

consists of the partial differential equation

∂w3

∂t0
+ L+(w3, φ3) = −∂w1

∂t2
− ∂w2

∂t1
+ ∂w1

∂η

(
∂φ2

∂t0
+ ∂φ1

∂t1

)

+∂w2

∂η

∂φ1

∂t0
− e−η ∂φ1

∂t2
− e−η ∂φ2

∂t1
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+contribution from the O(ε) problem,
∂w3

∂t0
+ L−(w3, φ3) = −∂w1

∂t2
− ∂w2

∂t1
+ ∂w1

∂η

(
∂φ2

∂t0
+ ∂φ1

∂t1

)
+ ∂w2

∂η

∂φ1

∂t0

+contribution from the O(ε) problem,

subject to the boundary conditions

M(w3, φ3) = νc

∂φ1

∂t2
+ ∂φ2

∂t1
+K ′′(1)∂φ1

∂t0

(
∂φ2

∂t0
+ ∂φ1

∂t1

)
+ K ′′′(1)

6

(
∂φ1

∂t0

)3


−∂φ1

∂t0
+ contributions from the O(ε) problem,

N (w3, φ3) = −∂φ1

∂t2
− ∂φ2

∂t1
+ contributions from the O(ε) problem,

w3|η=0+ = w3|η=0− = w3|η=0,

lim
η→−∞

w3 <∞, lim
η→∞

w3 = 0.

The contribution from the O(ε) problem to the right-hand side of the partial differen-

tial equation is −∂w1/∂t0 − L(w1, φ1), which equals (A.1.3). Substituting the forms

of w1, φ1, w2 and φ2 from equations (3.4.4), (3.4.5), (3.4.26), and (3.4.27) into the

partial differential equation allows us to rewrite the equation as

∂w3

dt0
+ L(w3, φ3) = R3(η, t), (3.4.30)

where

R3(η, t)
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=


(
−∂A
∂t2

+ χA

)(
g1(η) + e−η

)
eiωt0 + A3e3iωt0P+

3 (η) + A2Āeiωt0P+
1 (η) + CC


−∂B
∂t2

e−η, η > 0,

R3(η, t)

=


(
−∂A
∂t2

+ χA

)
g2(η)eiωt0 + A3e3iωt0P−3 (η) + A2Āeiωt0P−1 (η) + CC

, η < 0,

where P+
3 and P−3 are not important and

P+
1 (η) = r0g

′
1(η) + 2iωC2ḡ

′
1(η) + iω

(
k
′+
0 (η)− k′+2 (η)

)
,

P−1 (η) = r0g
′
2(η) + 2iωC2ḡ

′
2(η) + iω

(
k
′−
0 (η)− k′−2 (η)

)
,

Similarly, the boundary conditions become

M(w3, φ3) = a3(t), (3.4.31)

N (w3, φ3) = b3(t), (3.4.32)

where

a3(ξ, t) =
(
∂A

∂t2
− χA− iωA

)
eiωt0νc + A3e3iωt0F3 + A2Āeiωt0F1 + CC

+ νc
∂B

∂t2
,
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where F3 is not important and

F1 = K ′′(1)νc
(
2ω2C2 + ir0ω

)
+ K ′′′(1)

2 iνcω
3

and

b3(ξ, t) =


(
−∂A
∂t2

+ χA

)
eiωt0 + A3e3iωt0G3 + CC

− ∂B

∂t2
.

where G3 is not important.

Proceeding as in previous section, we impose Fredholm Alternative Theorem

and obtain the following solvability condition for O(ε3) problem, which satisfies the

Landau-Stuart equation:
dA

dt2
= κA+ βA2Ā, (3.4.33)

where

κ = χ+ S1

S3
, (3.4.34)

and

β = S2

S3
(3.4.35)

for

S1 = −iω U ,

S2 =
∫ ∞

0+
P+

1 (η)h̄1(η) dη +
∫ 0−

−∞
P−1 (η)h̄2(η) dη + F1U

and

S3 =
∫ ∞

0+
(g1(η) + eη) h̄1(η) dη +

∫ 0−

−∞
g2(η) dη + νcU − V .
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where

U = h̄′1(0+)− aph̄′2(0−), V = −h̄1(0+),

P+
1 = r0g

′
1(η) + 2iωC2ḡ

′
1(η) + iωk

′+
0 (η)− iωk′+2 (η),

P−1 = r0g
′
2(η) + 2iωC2ḡ

′
2(η) + iωk

′−
0 (η)− iωk′−2 (η),

F1 = K ′′(1)νc(2ω2C2 + r0iω) + K
′′′(1)
2 iνcω

3.

Finally, to find A(t2), we integrate the ordinary differential equation (3.4.33) using a

fourth-order Runge-Kutta method in next Section.

Similarly, we obtain that ∂B
∂t2

= 0, which means B is independent of t2.
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Chapter 4

NUMERICAL METHOD

4.1 Introduction to Numerical Method

There are many options for numerically solving PDEs, in this chapter we outline the

methods used to obtain the numerical results which are compared to the analytical

predictions on the evolution of a perturbed combustion wave.

In this work, we adopt Crank-Nicolson method to numerically solve the exact

problem (1.2.17)–(1.2.21). Since the numerical solutions are very sensitive to the

derivative interfacial jump condition, we integrate the partial differential equation

to obtain an integral-differential equation as an alternative condition. The result

system of nonlinear algebraic equations is then solved by the Newton’s method, taking

advantage of the sparse structure of the Jacobian matrix. Finally, we show that our

asymptotic solution captures the marginally unstable behaviors of the solution for a

range of model parameters.

Besides, we also apply the fourth-order Runge-Kutta method to obtain our asymp-

totic solution.
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4.2 The Crank-Nicolson Method

The Crank Nicolson finite difference scheme was invented by John Crank and Phyllis

Nicolson. They originally applied it to the heat equation and they approximated the

solution of the heat equation on some finite grid by approximating the derivatives

in space x and time t by finite differences. Much earlier, Richardson devised a finite

difference scheme that was easy to compute but was numerically unstable and thus

useless. The instability was not recognized until Crank, Nicolson and others carried

out lengthy numerical calculations.

The C-N method is known to be unconditionally stable in solving diffusion equa-

tions. The basic idea underlying the C-N scheme involves the approximation of second

spatial derivatives via the central difference while first spatial and temporal deriva-

tives are approximated via the center difference. The truncation error is then second

order in space and time ( about an imaginary n + 1/2 node). The application of

the C-N scheme to our particular problem is described in the following sections. In

Appendix C, we provide the numerical code.

4.3 The Discretized Model Equations

In this part, we derive the discretized model equations for the exact problem as given

by (1.2.17)–(1.2.21). We first introduce perturbation variables u∗ and φ∗ defined by

u =


e−η + εu∗ if η ≥ 0

1 + εu∗ if η < 0
, V = df(τ)

dτ = 1 + εφ∗. (4.3.1)
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Substitute them into equation (1.2.17)–(1.2.21), we get

u∗τ =


u∗ηη + (1 + εφ∗)u∗η − φ∗e−η if η > 0,

apu
∗
ηη + (1 + εφ∗)u∗η if η < 0,

(4.3.2)

u∗|η=0 = νK(1 + εφ∗)
ε

. (4.3.3)

As was pointed out in [17], numerical solutions of (1.2.17)–(1.2.21) are very sensitive

to the boundary condition (1.2.20). In order to obtain an alternative condition, we

integrate (1.2.17) with respect to η from −∞ to ∞ and apply conditions (1.2.18)–

(1.2.21), subsequently. The result equation is

d
dt

∫ ∞
−∞

u∗dη = u∗η
∣∣∣
∞
− ap u∗η

∣∣∣
−∞
− u∗|−∞ − εφ

∗ u∗|−∞ . (4.3.4)

We use condition (4.3.4) to replace (1.2.20).

To apply the C-N method, for the first partial η derivative terms, we use the center

difference formula to get

(1 + εφ∗)u∗η = (1 + εφn+1)(Un+1
i+1 − Un+1

i−1 ) + (1 + εφn)(Un
i+1 − Un

i−1)
4∆η . (4.3.5)

And the second η derivative terms are discretized by using the following central

difference formula

u∗ηη = (Un+1
i+1 − 2Un+1

i + Un+1
i−1 ) + (Un

i+1 − 2Un
i + Un

i−1)
2(∆η)2 . (4.3.6)

In this way, each will contribute O((∆η)2) to the local truncation error. For the first
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partial time derivative, we apply the center difference formula about an imaginary

n+ 1/2 node to get

u∗τ = Un+1
i − Un

i

∆τ . (4.3.7)

Here we note that the truncation error in time is also O((∆τ)2) about an imaginary

n+ 1/2 node. Finally, we approximate the integral on the left-hand side of condition

(4.3.4) by a composite trapezoidal rule. The computation domain for η is [−10, 10]

with ∆τ = ∆η = 0.025. This produces a nonlinear system of m (= 800) equations.

We solve the nonlinear system of equations using the Newton’s method. At each

iterating step of the Newton’s method, we solve a linear system of equations with
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Jacobian matrix that has the following sparse structure:



# # # # # . . . # # # # . . . # #

# # # 0 0 . . . 0 0 0 0 . . . 0 0

# # # # 0 . . . 0 0 0 0 . . . 0 0

# 0 # # # . . . 0 0 0 0 . . . 0 0
... ... . . . . . . . . . ... ... ... ... . . .

... ...

# 0 0 . . . # # # 0 0 0 . . . 0 0

# 0 0 . . . . . . # # # 0 0 . . . 0 0

# 0 0 . . . . . . . . . 0 # 0 0 . . . 0 0

# 0 0 . . . . . . . . . 0 # # # . . . 0 0
... ... ... . . . . . . . . . . . . . . .

. . . . . . . . . ... ...

# 0 0 . . . . . . . . . . . . . . . . . . # # # 0

# 0 0 . . . . . . . . . . . . . . . . . . 0 # # #

# 0 0 . . . . . . . . . . . . . . . . . . 0 0 # #



(4.3.8)

where # denotes a nonzero element. We take advantage of this sparse structure and

apply Gaussian elimination from bottom-up, eliminating the two nonzero elements at

(m− 1,m) and (1,m) positions first; then the two at (m− 2,m− 1) and (1,m− 1)

second; and so on. This reduces the matrix to a lower triangular form. Finally, the

solution of the linear system of equations can be obtained by a forward substitution

from top-down.
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4.4 The Runge-Kutta Method

To calculate the asymptotic solutions, let’s first recall the following results from O(ε),

O(ε2) and O(ε3) problems. For O(ε) problem, we have

w1 =


A(t1, t2)eiωt0g1(η) + CC, η > 0,

A(t1, t2)eiωt0g2(η) + CC, η < 0,

φ1 =
{
A(t1, t2)eiωt0 + CC

}
+B(t1, t2),

where g1(η), g2(η) are solutions to the related linear problem and CC represents the

complex-conjugate terms. A, B can be determined from O(ε2) and O(ε3) problems.

For O(ε2) problem, we find that the solvability conditions for this problem are

∂A

∂t1
= 0

and
∂B

∂t1
= AĀ r0,

where

r0 = −ω2

 4√
1− 4apiω +

√
1 + 4apiω

+K ′′(1)
 .

For O(ε3) problem, we obtain the following Landau–Stuart equation for the complex

amplitude A(t2)
dA

dt2
= κA+ βA2Ā, (4.4.1)
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where

κ = χ+ S1

S3
,

β = S2

S3
,

S1 = −iω U ,

S2 =
∫ ∞

0+
P+

1 (η)h̄1(η) dη +
∫ 0−

−∞
P−1 h̄2(η) dη + F1U ,

S3 =
∫ ∞

0+
(g1(η) + eη) h̄1(η) dη +

∫ 0−

−∞
g2(η) dη − νcU + V ,

and

U = h̄′1(0+)− aph̄′2(0−), V = −h̄1(0+).

To find A(t2), we still need to solve the related Landau-Stuart equation (4.4.1). This

equation can be numerically solved by using the Runge-Kutta methods.

In numerical analysis, the Runge-Kutta methods are a family of implicit and

explicit iterative methods, which include the well-known routine called the Euler

Method, used in temporal discretization for the approximate solutions of ordinary

differential equations (see [56]). These methods were developed around 1900 by the

German mathematicians Carl Runge and Martin Kutta. The most widely known

member of the Runge-Kutta family is generally referred to as “RK4”, “classical Runge-

Kutta method” or simply as “the Runge-Kutta method”.

The formula for the fourth order Runge-Kutta method (RK4) is given below. We

take the following problem as an example:


y′ = f(t, y),

y(t0) = y0.
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Define h to be the time step size and ti = t0 + ih. Then the following formula



w0 = y0,

k1 = hf(ti, wi),

k2 = hf
(
ti + h

2 , wi + k1
2

)
,

k3 = hf(ti + h
2 , wi + k2

2 ),

k4 = hf(ti + h,wi + k3),

wi+1 = wi + 1
6(k1 + 2k2 + 2k3 + k4),

computes an approximate solution, that is y(ti) ≈ wi. To solve our problem, we just

need set y(t) = A(t2), f(t, y) = κA+βA2Ā and y(t0) = A0 in the above scheme. (For

related MATLAB code, see Appendix C)

4.5 Comparison between Asymptotics and

Numerics

For initial conditions, we use perturbations of the basic solution by linearized solu-

tions, modulated by an amplitude factor A:

u(η, 0) = e−η + εA(1 + νciω) exp
(
−1−

√
1 + 4iω

2 η

)
+ CC, η ≥ 0,

u(η, 0) = 1 + εAνciω exp
−1 +

√
1 + 4apiω

2ap
η

+ CC, η < 0,

V (0) = 1 + εAiω + CC,
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where CC are complex-conjugate terms.

To start, take σ = 0.46 in the kinetics function (1.2.15). Throughout this paper,

the amplitude A is taken to be 0.1.

0 10 20 30 40 50 60 70 80 90 100

time
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-4

-2

0

2
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V

Velocity Perturbation (a
p
=0.5)

Asymptotic

Numerical

Figure 4.1: Comparison between numerical (solid line) and asymptotic (dashed line) for
Arrhenius kinetics: ap = 0.5, σ = 0.46, ε = 0.1, A(0) = 0.1, νc ≈ 0.2703.

For ap = 0.5, Figure 4.1 reveals that from t = 0 to about t = 30, the small front

speed perturbation is linearly unstable, and its amplitude grows exponentially in time.

As this amplitude becomes large, nonlinearity takes effect. At around t = 30, the front

speed perturbation has reached steady oscillation. The two solutions are slightly out

of phase, and the asymptotic solution oscillates symmetrically about the time axis,

while the numerical solution has spiky peaks. The asymptotic solution accurately

captures the period in both transient behavior for t = 0 to 30 and the long-time

behavior after t = 30. This is an example in which the weakly nonlinear approach

describes rather well the marginally unstable large-time behavior: A single modulated

temporal mode captures the period of fluctuations (at frequency ω = 1.1406 for

ap = 0.5) in velocity perturbation. Similar results for ap = 1 and ap = 0.2 are

49



obtained in Appendix B ( See Figure B.1 and Figure B.2 ).

We then numerically calculated the velocity perturbation data on the time interval

50 < t < 100, using the parameter values as in Figure 4.1. As shown in Figure

4.2, the discrete Fourier transform of the data reveals the dominance of one mode.

However, the subsequent modes do contribute to the solution as well. The second

spike in Figure 4.2 is about 4/9 the height of the first, and the third is less than

1/2 the height of the second. Contributions of higher-order modes may explain some

quantitative discrepancies between the numerical and asymptotic solutions in Figure

4.1.

For ε = 0.1 and ap = 0.5, Figure 4.3 summarizes the Fourier transformed velocity

data for all physical values of σ ∈ (0, 1). For each σ value and each frequency, the color

indicates the corresponding amplitude, with the red end of the spectrum standing for

larger numbers than the violet end, as the legend to the right of the figure illustrates.

As predicted by weakly nonlinear analysis, Figure 4.3 shows that one mode dominates

strongly for all physical values of σ ∈ (0, 1) when ν = νc − ε2 is sufficiently close to

the neutrally stable value.

We have done both asymptotic and numerical analyses for a generalized solid

combustion model. For the chosen parameters (e.g., σ = 4.6, ε = 0.1 and etc.),

our asymptotic solution with a single modulated temporal mode describes well the

marginally unstable solution behavior. The Crank-Nicolson finite difference method

with the Newton’s method, using the sparse structure of the Jacobian matrix, provides

an efficient numerical solver for the nonlinear free boundary problem.
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Figure 4.2: Fourier amplitude of the numerical steady-state velocity perturbation: ap = 0.5,
σ = 0.46, ε = 0.1, A(0) = 0.1, 50 < t < 100, νc ≈ 0.2703.
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Figure 4.3: Amplitudes corresponding to each frequency of the Fourier transformed velocity
perturbation data for the Arrhenius kinetics parameter: ap = 0.5, σ ∈ (0, 1), ε = 0.1,
A(0) = 0.1, νc ≈ 0.2703 and 1000 < t < 1500.
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Chapter 5

RESULTS AND DISCUSSION

5.1 Discussion

In this section, we summarize more interesting results obtained from our numerical

solutions and delineate the role of the diffusivity ratio between the burned and un-

burned materials. First, let’s look at the dynamics associated with the model include

a cascade of period-doubling bifurcations. For example, for a given value of ε and ap,

we observe period doubling, quadrupling, and octupling as we decrease σ. Figures

5.1 and 5.2 illustrate these dynamics as time plots and phase portraits, respectively,

for the case ε = 0.2, ap = 0.5 on the time scale 1350 < t < 1500.

Figure 5.3 depicts the amplitudes corresponding to each frequency of the Fourier

transformed velocity perturbation data in this case (ε = 0.2, ap = 0.5). It confirms

that a period-doubling bifurcation occurs at approximately σ = 0.72.

We see similar dynamics for other choices of the thermal diffusivity ratio ap (see

Appendix B). Figures 5.4 and 5.5 depict the amplitudes corresponding to each fre-

quency of the Fourier transformed velocity perturbation data for the cases ap = 0.2
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Figure 5.1: Velocity perturbations versus time (ε = 0.2, ap = 0.5, A(0) = 0.1, ν = νc − ε2)
upper left: quasi-periodic solution for σ = 0.78, upper right: period doubling (σ = 0.72);
lower left: period quadrupling (σ = 0.030), lower right: period octupling (σ = 0.027)

and ap = 0.8, respectively, when ε = 0.2 (for more cases, see Appendix B). Note

the period-doubling bifurcations occur at approximately σ = 0.80 in Figure 5.4 for

the case ap = 0.2 and at approximately σ = 0.62 in Figure 5.5 for the case ap = 0.8.

The early stages of the period doubling can be used to identify the onset of nonlinear

dynamics. We also look at the analogous stage of bifurcation for two additional values

of ap, namely 0.35 and 0.65. Table 5.1 provides a summary. Pairs in Table 5.1 are

captured in Figure 5.6.

Note that the curve corresponding to ap = 0.2 contains the point (σ, ε) = (0.8, 0.2);

the curve corresponding to ap = 0.35 contains the point (σ, ε) = (0.77, 0.2); etc.

In Figure 5.6 , the diffusivity ratio ap varies from 0 to 1. Analysis of the limiting

cases of 0 and 1 are described in the one-sided and two-sided models in the literature,

respectively, see [19], [64] and [67]. While the evolution of the critical values of ν
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Figure 5.2: Phase plots of the four solutions of Figure 5.1 for ap = 0.5, 1350 < t < 1500:
velocity perturbations v(t) versus dv/dt.

changes in an unsurprising way (Figure 2.1), there is significant nonlinear behavior

in the evolution of period-doubling bifurcations. The profiles in Figure 5.6 show

significant change as the thermal diffusivity varies from 0 to 1.

There is some consistency. For example, all the curves in Figure 5.6 are increasing

on 0 < σ < 1. As

σ = T0

Tb
= T0

T0 +QC0

gets larger, we must increase ε to get period doubling: We have to go deeper into

the instability region to get a period-doubling bifurcation. This phenomenon is the

stabilizing effect associated with less discrepancy between the burned temperature Tb

and the fresh temperature T0. Such scenarios arise when QC0, the product of the

heat release Q and concentration of reactant C0, is small. All the curves in Figure

5.6 show this stabilization as σ increases.
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Figure 5.3: Amplitudes corresponding to each frequency of the Fourier transformed velocity
perturbation data for ap = 0.5, the Arrhenius kinetics parameter σ in the interval (0.4, 1),
ε = 0.2, A(0) = 0.1, 1000 < t < 1500 (ν = νc − ε2)

One might expect that increasing ap would have a stabilizing effect, as well. With

less discrepancy between the diffusivity κb in the product and the diffusivity κu in

the unburned mixture, the heat equilibrates more readily across the interface.

As κb approaches κu, we do see the stabilizing effect of the decreasing discrepancy

in diffusivities across the interface for σ values smaller than about 0.2. In this regime,

the graphs do shift higher, perhaps with reduced slope, as ap increases. (See Figure

5.6.)

That is, for σ values smaller than about 0.2, Figure 5.6 shows that as ap = κb
κu

increases, period-doubling bifurcations occur at increasing values of ε: We have to go

deeper into the instability region to get a period-doubling bifurcation. For example,

for σ = 0.15, the period-doubling bifurcations occur at the approximate parameter

values shown in Table 5.2.
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Table 5.1: Approximate values at which period-doubling bifurcations occur for simulations
with ε = 0.2 and A(0) = 0.1

ap σ ε

0.1 0.9 0.2
0.15 0.84 0.2
0.2 0.8 0.2
0.25 0.79 0.2
0.3 0.78 0.2
0.35 0.77 0.2
0.5 0.72 0.2
0.65 0.67 0.2
0.8 0.62 0.2
1.0 0.57 0.2

Table 5.2: Approximate values at which period-doubling bifurcations occur for simulations
with σ = 0.15 and A(0) = 0.1

ap σ ε

0 0.15 0.088
0.05 0.15 0.107
0.1 0.15 0.117
0.15 0.15 0.125
0.2 0.15 0.132
0.25 0.15 0.137
0.3 0.15 0.142
0.35 0.15 0.146
0.5 0.15 0.152
0.65 0.15 0.154
0.8 0.15 0.155
1.0 0.15 0.155
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Figure 5.4: Amplitudes corresponding to each frequency of the Fourier transformed velocity
perturbation data for ap = 0.2, the Arrhenius kinetics parameter σ in the interval (0.5, 1),
ε = 0.2, A(0) = 0.1, 1000 < t < 1500 (ν = νc − ε2)

Figure 5.6 also shows that stabilization slows down as we continue to increase

ap from 0. That is the gap between the curves decrease, as ap increase from 0, and

eventually the curves pile up closely for lager ap.

The stabilizing effect of increasing ap does not persist as we increase σ. Figure

5.6 shows “cross-over" of the curves as σ increases beyond about 0.2. There seems to

be a subtle interplay among the nonlinear effects in the problem.

In particular, one does not see a simple translation of curves in the σε-plane

upward on the whole interval 0 < σ < 1 as ap increases, given the nonlinearity of the

curves and the nonlinearity in the problem. The rate of change of ε with respect to σ

is non-constant for each choice of ap. Depending on the curve in question, the slopes

in Figure 5.6 may decrease and increase as σ increases.

We also examine this nonlinear behavior by focusing closely on the interval 0.2 <
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Figure 5.5: Amplitudes corresponding to each frequency of the Fourier transformed velocity
perturbation data for ap = 0.8, the Arrhenius kinetics parameter σ in the interval (0.2, 1),
ε = 0.2, A(0) = 0.1, 1000 < t < 1500 (ν = νc − ε2)

σ < 0.8. Figure 5.7 shows the region of overlapping profiles parameter space with

three new points between every pair of points used in the previous Figure. This

Figure reveals the evolution of a possible point of inflection as ap changes. The

curves may change from concave down to concave up, and this phenomenon becomes

more pronounced as ap increases.

5.2 Summary and Future Work

In summary, we have developed a generalized model of solid combustion in the first

part of this dissertation. Our generalized model pinpoints the dynamics in a range

of settings, in which the diffusivity ratio between the burned and unburned materials

varies between 0 and 1. The dynamics involve an interplay of competing effects as
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Figure 5.6: Approximate locations of pairs (σ, ε) at which period-doubling bifurcations oc-
cur for ap = 0, 0.05, 0.1, 0.15, 0.2, 0.25, 0.3, 0.35, 0.5, 0.65, 0.8 and 1.0 (for simulations with
A(0) = 0.1, ν = νc − ε2).

the diffusivity ratio is tuned to capture different physical systems. Here we first

analyze the linear instability of a basic solution to the generalized model. Then

multiple scale expansions are utilized to describe changes in the amplitude and phase

of perturbations to the basic solution in slow-time when the physical parameters are

set in the weakly nonlinear regime. We have considered an inverse Zel’dovich number

ν that deviates by a relatively small number ε2 from the neutrally stable value into

the unstable regime and simulated complex nonlinear dynamics for the generalized

model. We have delineated the roles of various parameters.

In particular, Figure 5.6 shows that as the temperature ratio σ increases, ε in-

creases for solutions to reach the same stage of period doubling. This stabilizing

effect in σ is quite linear when ε is less than about 0.16. For larger values of ε, the

behavior is more nonlinear, as expected. (See Figure 5.6.)

Increasing the diffusivity ratio ap has a varying effect in different regimes. For σ
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Figure 5.7: Approximate locations of pairs (σ, ε) at which period-doubling bifurcations occur
for ap = 0, 0.2, 0.35, 0.5, 0.65, 0.8 and 1.0 (for simulations with A(0) = 0.1, ν = νc − ε2).

values smaller than about 0.2, increasing ap has a stabilizing effect. For larger values

of σ, the graphs in Figure 5.6 evolve in a complex way as ap increases, developing

points of inflection and manifesting increasingly sharp stabilization in σ. The various

competing effects produce the “cross-over" phenomenon that we see in Figure 5.6 as

σ increases beyond about 0.2.

Future work will include:

1) Use more modes of linear solution in the asymptotic procedure in order to cover

more variabilities in the nonlinear solution.

2) Extend the present work to 2D and 3D combustion models.

3) Develop new and more accurate combustion models, for example, the solid

propellant combustion model as in [32] and [51].

60



PART II

TRANSMISSION PROBLEM OF

THE PLATE
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Chapter 6

INTRODUCTION

6.1 A Brief Historical Overview

Let Ω ⊂ R2 be a bounded domain with sufficiently smooth boundary Γ = Γ0 ∪ Γ2 for

Γ0 and Γ2 are closed, nonnull and disjoint, Γ0 is the boundary of a small circle C(x0)

containing x0 ∈ R2, Ω2 ⊂ Ω is a subdomain with smooth boundary Γ0 ∪ Γ1 in the

outside of C(x0), Ω1 = Ω\(Ω̄2∪C(x0)) is a subdomain with smooth boundary Γ1∪Γ2,

ν = (ν1, ν2) represents the outward unit normal vector to ∂Ω and τ = (−ν2, ν1) is the

corresponding unit tangent vector, in cases of common boundary Γ1 the vector ν is

outward for Ω1 (see Figure 6.1). We investigate the following transmission problem
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for the plate equation :



K(x)utt + ∆2u+ f1(u) = 0, (x, t) ∈ Ω1 × (0,∞),

K(x)vtt + ∆2v + f2(v) = 0, (x, t) ∈ Ω2 × (0,∞),

v = ∂v
∂ν

= 0, (x, t) ∈ Γ0 × [0,∞),

u = v, ∂u
∂ν

= ∂v
∂ν
, B1u = B1v, B2u = B2v, (x, t) ∈ Γ1 × [0,∞),

−u+
∫ t

0 g1(t− s)B2u(s)ds = ∂u
∂ν

+
∫ t

0 g2(t− s)B1u(s)ds = 0, (x, t) ∈ Γ2 × [0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω1,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω2,

(6.1.1)

where K(x) ∈ C1(Ω̄) and K(x) ≥ 0 for all x ∈ Ω which satisfies some appropri-

ate conditions. The relaxation functions g1, g2 are positive and nonincreasing, the

function f1, f2 ∈ C1(R) and

B1u = ∆u+ (1− µ)B1u, B2u = ∂∆u
∂ν

+ (1− µ)∂B2u

∂τ
(6.1.2)

with

B1u = 2ν1ν2uxy − ν2
1uyy − ν2

2uxx, B2u = (ν2
1 − ν2

2)uxy + ν1ν2(uyy − uxx),

and the constant µ ∈
(
0, 1

2

)
, represents Poisson’s ratio.

From the physical point of view, we know that the memory effect described in

integral equation (6.1.1)5 can be caused by the interaction with another viscoelastic

element. In fact, the boundary conditions (6.1.1)3 − (6.1.1)5 mean that Ω is com-
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Figure 6.1: The configuration.

posed of two different materials with different boundary conditions on Γ2 and Γ0,

respectively. Transmission problems related to (6.1.1) are interesting not only from

the point of view of PDE general theory, but also due to its application in mechanics.

Recently, various decay results for classical wave equations were studied by many

authors (see [6,10,11,21,26–29,34,46–49,59,62,63,65]). Messaoudi and Soufyane [36]

considered the following wave equation with a boundary condition of memory type:



utt −∆u+ f(u) = 0, (x, t) ∈ Ω× (0,∞),

u = 0, (x, t) ∈ Γ0 × [0,∞),

u+
∫ t

0
g(t− s)∂u

∂ν
ds = 0, (x, t) ∈ Γ1 × [0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.

(6.1.3)

By establishing some relations between the relaxation function g and the correspond-

ing resolvent kernel, they proved a general decay result, which is more general than

those usually found in the literature. In [57], Shin and Kang considered the following
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plate equation with a memory condition on the boundary:



K(x)utt + ∆2u+ f(u) = 0, (x, t) ∈ Ω× (0,∞),

u = ∂u
∂ν

= 0, (x, t) ∈ Γ0 × [0,∞),

−u+
∫ t

0 g1(t− s)B2u(s)ds = ∂u
∂ν

+
∫ t

0 g2(t− s)B1u(s)ds = 0, (x, t) ∈ Γ1 × [0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω.
(6.1.4)

If ki denote the resolvent kernels of − g′i
gi(0) , i = 1, 2 and satisfy

ki(0) > 0, lim
t→∞

ki(t) = 0, k′i(t) ≤ 0, k′′i (t) ≥ −ζi(t)k′i(t), ∀ t ≥ 0, i = 1, 2,

(6.1.5)

where ζi : R+ → R+ are nonincreasing continuous functions, a general decay result

was established in their work, from which the usual exponential and polynomial decay

rates are only special cases. More recently, Mustafa and Abusharkh [43] studied

system (6.1.4) with K(x) = 1, f(u) = 0 and ki satisfying

ki(0) > 0, lim
t→∞

ki(t) = 0, k′i(t) ≤ 0, k′′i (t) ≥ H(−k′i(t)), ∀ t > 0, i = 1, 2,

(6.1.6)

where H is a positive function, which is linear or strictly increasing and strictly

convex of class C2 on (0, r], r < 1, and H(0) = 0. Under the assumption that

u0 = ∂u0
∂ν

= 0 on Γ1, they obtained an explicit energy decay formula, which is not

necessarily of exponential-type or polynomial-type. For more general decay results

related to condition (6.1.6), we refer the readers to [7,42] and the references therein.

On the other hand, the existence, regularity and decay results for transmission
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problems were studied by many authors recently [1,2,4,22,35]. In [1], Andrade et al.

considered the following transmission problem:



ρ1utt − γ1∆u+ f1(u) = 0, (x, t) ∈ Ω1 × (0,∞),

ρ2vtt − γ2∆v + f2(v) = 0, (x, t) ∈ Ω2 × (0,∞),

v = 0, (x, t) ∈ Γ0 × [0,∞),

u = v, γ1
∂u

∂ν
= γ2

∂v

∂ν
, (x, t) ∈ Γ1 × [0,∞),

u+
∫ t

0
g(t− s)∂u

∂ν
ds = 0, (x, t) ∈ Γ2 × [0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω1,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω2.

(6.1.7)

They proved the existence of the global solution and showed that its solution decays

exponentially when the relaxation function decays exponentially. Bae [4] studied the

transmission problem for wave equation with boundary condition



utt − ‖∇u‖2
Ω1∆u+ f1(u) = 0, (x, t) ∈ Ω1 × (0,∞),

vtt − ‖∇v‖2
Ω2∆v + f2(v) = 0, (x, t) ∈ Ω2 × (0,∞),

v = 0, (x, t) ∈ Γ0 × [0,∞),

u = v, ‖∇u‖2
Ω1

∂u

∂ν
= ‖∇v‖2

Ω2

∂v

∂ν
, (x, t) ∈ Γ1 × [0,∞),

u+
∫ t

0
g(t− s)‖∇u‖2

Ω1

∂u

∂ν
ds = 0, (x, t) ∈ Γ2 × [0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω1,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω2

(6.1.8)
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and proved the exponential and polynomial decay rates when the kernel function

decays exponentially and polynomially, respectively. More recently, Park [44] inves-

tigated the decay rate of the solution for the following transmission problem:



utt −
(
1 + ‖∇u‖2

Ω1

)
∆u = 0, (x, t) ∈ Ω1 × (0,∞),

vtt −
(
1 + ‖∇v‖2

Ω2

)
∆v = 0, (x, t) ∈ Ω2 × (0,∞),

v = 0, (x, t) ∈ Γ0 × [0,∞),

u = v,
(
1 + ‖∇u‖2

Ω1

) ∂u
∂ν

=
(
1 + ‖∇v‖2

Ω2

) ∂v
∂ν
, (x, t) ∈ Γ1 × [0,∞),

u+
∫ t

0
g(t− s)

(
1 + ‖∇u‖2

Ω1

) ∂u
∂ν

ds = 0, (x, t) ∈ Γ2 × [0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω1,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω2.

(6.1.9)

They established a general decay rate of the solution for the above transmission

problem, which generalized the earlier decay results of the solution to problem (6.1.9).

Motivated by these results, in the present work we investigate the existence and

decay of the solution for the transmission problem (6.1.1) by combining the frame-

works of Guesmia [20], Shin and Kang [57], Park [44,45], Mustafa and Abusharkh [43]

and Boulanouar and Drabla [7] with some necessary modifications due to the nature

of the problem treated here. More precisely, firstly, to overcome the technical diffi-

culties in dealing with (6.1.1)3, we use the idea in [50,57] to transform it into a more

general condition (see (6.2.4) and (6.2.5) below) by using the inverse Volterra’s oper-

ator. Then, by using Faedo-Galerkin’s method and compactness arguments as used

in [45], we prove the global existence of weak solution. After that, for the resolvent
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kernels satisfy (6.1.5), by introducing suitable energy and Lyapunov functionals, we

show that the energy decays at the rate similar to the relaxation functions, which are

not necessarily decaying like polynomial or exponential functions; while for the resol-

vent kernels satisfy (6.1.6), due to there is no restriction of u0 = ∂u0
∂ν

= 0 on Γ2, the

energy E defined by (6.2.13) not necessarily dissipative, see (7.2.2) below. In order

to overcome this difficult to obtain general energy decay estimate, we shall use the

multiplier method and construct suitable perturbed Lyapunov functionals, combing

the frameworks of [7] with necessary modifications. This general decay result also

allows a larger class of relaxation functions and initial data, and hence generalizes

some previous results existing in the literature.

6.2 Preliminaries and Main Results

In this section, we present some materials needed in the proof of our results. To begin

with, let’s recall some useful definitions.

Definition 6.2.1 Let X be a measurable set of Rn, we say a function f is in Lp(X)

(Lebesgue spces) if f is measurable and
∫
X
|f |pdx <∞.

Remark 1 The integral here is in the Lebsegue sense and 0 < p < +∞. Also, we

equip Lp(X) with the following norm

||f ||p =
(∫

X
|f |pdx

) 1
p

, 1 ≤ p < +∞

Definition 6.2.2 Let X be a measurable set of Rn, we call L∞(X) the set of all

functions which are bounded on X, except maybe on a subset of measure zero.

68



Remark 2 The norm for L∞(X) is defined by

||f ||∞ = ess sup |f |.

Remark 3 The Lp(X), 1 ≤ p ≤ ∞, equipped with the above norms is complete

(Banach space).

Remark 4 The L2(X) equipped with the following inner product

< f, g >=
∫
X
fgdx.

is a Hilbert space.

Definition 6.2.3 (Weak derivative) Let f and g are in space L1
loc(X) of locally in-

tegrable functions for some open set X ∈ Rn and if α is a multi-index, we say that g

is the αth-weak derivative of f if

∫
X
f ·Dαφdx = (−1)α

∫
X
g · φdx,

for all φ ∈ C∞c (X), that is, for all infinitely differentiable functions φ with compact

support in X. Here Dαφ is defined as

Dαφ = ∂|α|φ

∂xα1
1 . . . ∂xαnn

.

Definition 6.2.4 (Sobolev space) The Sobolev space W k,p(X), 1 ≤ p ≤ ∞ is the

space of all locally summable functions f : X −→ R such that, for every multi-index

α with |α| ≤ k, the weak derivative Dαf exists and belongs to Lp(X).
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Remark 5 If for any f ∈ W k,p(X), 1 ≤ p < ∞ we equip the above Sobolev space

with the following norm:

‖f‖k,p =
(

k∑
i=0

∥∥∥f (i)
∥∥∥p
p

) 1
p

=
(

k∑
i=0

∫ ∣∣∣f (i)(t)
∣∣∣p dt)

1
p

.

then W k,p becomes a Banach space. It turns out that the norm defined by

∥∥∥f (k)
∥∥∥
p

+ ‖f‖p

is equivalent to the norm above.

Remark 6 If k = 0, then W 0,p(X) = Lp(X).

Remark 7 Sobolev spaces with p = 2 are especially important because they form a

Hilbert space (equipped with normal inner product). A special notation has arisen to

cover this case, since the space is a Hilbert space:

Hk(X) = W k,2(X).

Next, we list several important inequalities that are frequently used in our proofs.

Lemma 6.2.1 (Jensen′s inequality) If F is a convex function on [a, b], f : Ω →

[a, b] and h are integrable functions on Ω, h(x) ≥ 0, and
∫

Ω
h(x)dx = p > 0, then

Jensen’s inequality sates that

F

[
1
p

∫
Ω
f(x)h(x)dx

]
≤ 1
p

∫
Ω
F [f(x)]h(x)dx.
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Lemma 6.2.2 (Hölder′s inequality) Let p and q be nonnegative real numbers such

that 1
p

+ 1
q

= 1. If f ∈ Lp(X) and g ∈ Lq(X), then fg ∈ L1(X) and

∫
X
|fg|dx ≤ ||f ||p||g||q.

Lemma 6.2.3 (Y oung′s inequality) Let a, b be positive real numbers and p > 1 and

q > 1 be real numbers such that 1
p

+ 1
q

= 1, then

ab ≤ ap

p
+ bq

q
≤ ap + bq.

More generally, for some small value ε > 0, we have,

ab ≤ εap + C(ε)bq.

Remark 8 The special case p = q = 2 is known as Cauchy’s inequality.

For our purpose, throughout this dissertation, we define

W =
{
φ ∈ H2(Ω2) : φ = ∂φ

∂ν
= 0 on Γ0

}
,

V =
{

(ϕ, φ) ∈ H2(Ω1)×W (Ω2) : ϕ = φ,
∂ϕ

∂ν
= ∂φ

∂ν
on Γ1

}
,

and

(ϕ, φ)Ωi =
∫

Ωi
ϕ(x)φ(x)dx for i = 1, 2, (ϕ, φ)Γj =

∫
Γj
ϕ(x)φ(x)dΓ for j = 0, 1, 2.
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As in [50,57], let us define the bilinear form ai(·, ·) (i = 1, 2) as follows:

ai(ϕ, φ) =
∫

Ωi
{ϕxxφxx + ϕyyφyy + µ (ϕxxφyy + ϕyyφxx) + 2(1− µ)ϕxyφxy} dxdy,

and we know that ai(ϕ, ϕ) are equivalent to the H2(Ω) norm; that is

c‖ϕ‖2
H2(Ωi) ≤ ai(ϕ, ϕ) ≤ C‖ϕ‖2

H2(Ωi), i = 1, 2, (6.2.1)

where c and C are positive constants. As in [57], a simple calculation, based on the

integration by parts formula, yields

(∆2ϕ, φ)Ωi = ai(ϕ, φ) + (B2ϕ, φ)∂Ωi −
(
B1ϕ,

∂φ

∂ν

)
∂Ωi

, i = 1, 2. (6.2.2)

Besides, set x0 be a fixed point in R2, m = x− x0 and R = max{| x− x0 |: x ∈ Ω̄}.

Assume that there exists a small positive constant δ such that

Γ2 = {x ∈ Γ : m · ν ≥ δ > 0} and Γ0 = {x ∈ Γ : m · ν ≤ 0}. (6.2.3)

First, following the idea in [50,57], we shall use (6.1.1)3 to estimate the values B1

and B2 on Γ2. Denoting by

(g ∗ ϕ)(t) :=
∫ t

0
g(t− s)ϕ(s)ds,

the convolution product operator, and differentiating (6.1.1)5 with respect to t, we
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obtain the following Volterra equations:

B2u+ 1
g1(0)g

′
1 ∗B2u = 1

g1(0)ut,

B1u+ 1
g2(0)g

′
2 ∗B1u = − 1

g2(0)
∂ut
∂ν

.

Then using the Volterra’s inverse operator, we get

B2u = 1
g1(0){ut + k1 ∗ ut},

B1u = − 1
g2(0)

{
∂ut
∂ν

+ k2 ∗
∂ut
∂ν

}
,

where the resolvent kernels satisfy

ki + 1
gi(0)g

′
i ∗ ki = − 1

gi(0)g
′
i, i = 1, 2.

Denoting by τ1 = 1
g1(0) and τ2 = 1

g2(0) , we obtain

B2u = τ1{ut + k1(0)u− k1(t)u0 + k′1 ∗ u}, (6.2.4)

and

B1u = −τ2

{
∂ut
∂ν

+ k2(0)∂u
∂ν
− k2(t)∂u0

∂ν
+ k′2 ∗

∂u

∂ν

}
. (6.2.5)

Reciprocally, considering that the initial data satisfies u0 = ∂u0
∂ν

= 0 on Γ2, (6.2.4)

and (6.2.5) imply (6.1.1)5. Therefore, we use equation (6.2.4) and (6.2.5) instead of
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the boundary conditions (6.1.1)5. Then, we get the following more broader problem:



K(x)utt + ∆2u+ f1(u) = 0, (x, t) ∈ Ω1 × (0,∞),

K(x)vtt + ∆2v + f2(v) = 0, (x, t) ∈ Ω2 × (0,∞),

v = ∂v

∂ν
= 0, (x, t) ∈ Γ0 × [0,∞),

u = v,
∂u

∂ν
= ∂v

∂ν
, B1u = B1v, B2u = B2v, (x, t) ∈ Γ1 × [0,∞),

B2u = τ1{ut + k1(0)u− k1(t)u0 + k′1 ∗ u}, (x, t) ∈ Γ2 × [0,∞),

B1u = −τ2

{
∂ut
∂ν

+ k2(0)∂u
∂ν
− k2(t)∂u0

∂ν
+ k′2 ∗

∂u

∂ν

}
, (x, t) ∈ Γ2 × [0,∞),

u(x, 0) = u0(x), ut(x, 0) = u1(x), x ∈ Ω1,

v(x, 0) = v0(x), vt(x, 0) = v1(x), x ∈ Ω2.

(6.2.6)

We note that when u0 = ∂u0

∂ν
= 0 on Γ2, problem (6.2.6) is equivalent to problem

(6.1.1).

Let us denote

(g�ϕ)(t) :=
∫ t

0
g(t− s)|ϕ(t)− ϕ(s)|2ds.

The following lemma gives an important property of the convolution operator.

Lemma 6.2.4 [41] For g, ϕ ∈ C1([0,∞) : R), we have

(g ∗ ϕ)ϕt = −1
2g(t)|ϕ(t)|2 + 1

2g
′�ϕ− 1

2
d
dt

[
g�ϕ−

(∫ t

0
g(s)ds

)
|ϕ|2

]
.

The proof of this lemma follows by differentiating the term g�ϕ.

Lemma 6.2.5 [23] Suppose that f ∈ L2(Ω), g ∈ H1/2(Γ) and h ∈ H3/2(Γ), then
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any solution of

a(ϕ,w) =
∫

Ω
fwdx+

∫
Γ
gwdΓ +

∫
Γ
h
∂w

∂ν
dΓ, ∀w ∈ W

satisfies ϕ ∈ H4(Ω).

Now, we state our main assumptions:

(A1) Let fi ∈ C1(R) satisfy

fi(s)s ≥ 0, ∀ s ∈ R, i = 1, 2.

Additionally, we suppose that f1 = f2 on Γ1 and fi are superlinear, that is,

fi(s)s ≥ (2 + ηi)Fi(s), Fi(z) =
∫ z

0
fi(s)ds, ∀ s ∈ R, i = 1, 2, (6.2.7)

for some ηi > 0 with the following growth condition:

|fi(x)− fi(y)| ≤ c
(
1 + |x|ρ−1 + |y|ρ−1

)
|x− y|, ∀ x, y ∈ R,

for some c > 0 and ρ ≥ 1 such that (n− 2)ρ ≤ n.

(A2) K ∈ C1(Ω̄); H2
0 (Ω) ∩ L∞(Ω) with K(x) ≥ 0, for all x ∈ Ω, and satisfies the

following condition:

∇K ·m ≥ 0, x ∈ Ω. (6.2.8)

(A3) ki : R+ → R+, for i = 1, 2, are C2 functions such that

ki(0) > 0, lim
t→∞

ki(t) = 0, k′i(t) ≤ 0,
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and there exist nonincreasing continuous functions ζi : R+ → R+, satisfying

k′′i (t) ≥ −ζi(t)k′i(t), ∀ t ≥ 0, i = 1, 2. (6.2.9)

(A4) ki : R+ → R+, for i = 1, 2, are C2 functions such that

ki(0) > 0, lim
t→∞

ki(t) = 0, k′i(t) ≤ 0,

and there exists a positive function H ∈ C1(R+), where H is linear or strictly in-

creasing and strictly convex C2 function on (0, r], r < 1, with H(0) = H ′(0) = 0,

such that

k′′i (t) ≥ H(−k′i(t)), ∀ t > 0, i = 1, 2. (6.2.10)

According to previous results in the literature (see e.g. [45, 57]), we can state the

following well-posedness.

Theorem 6.2.6 Consider assumptions (A1)-(A2) and let ki ∈ C2(R+) be such that

ki, −k′i, k′′i ≥ 0, i = 1, 2. (6.2.11)

If (u0, v0) ∈ H4(Ω1)× (W ∩H4(Ω2)), (u1, v1) ∈ V , satisfying the compatibility condi-

tion

B1u0 = −τ2
∂u1

∂ν
, B2u0 = τ1u1 on Γ2, (6.2.12)

then problem (6.2.6) has a unique solution in the class:

(u, v) ∈ L∞
(
0, T ;H4(Ω1)×

(
W ∩H4(Ω2)

))
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To state our decay result, we introduce the following energy functional:

E(t) = 1
2

∫
Ω1
K(x)|ut|2dx+ 1

2

∫
Ω2
K(x)|vt|2dx+ 1

2a1(u, u) + 1
2a2(v, v)

+
∫

Ω1
F1(u)dx+

∫
Ω2
F2(v)dx+ τ1

2

∫
Γ2

(
k1(t)|u|2 − k′1�u

)
dΓ

+τ2

2

∫
Γ2

k2(t)
∣∣∣∣∣∂u∂ν

∣∣∣∣∣
2

− k′2�
∂u

∂ν

 dΓ. (6.2.13)

If the resolvent kernels satisfy (A3) and (A4), respectively, then we have the fol-

lowing two general decay results for problem (6.2.6):

Theorem 6.2.7 Suppose that (A1), (A2) and (A3) hold. Then, for some t0 large

enough, there exist constants ω,C > 0 such that:

(i) If u0 = ∂u0

∂ν
= 0 on Γ2, then

E(t) ≤ CE(0)e−ω
∫ t

0 ζ(s)ds,∀ t ≥ t0. (6.2.14)

(ii) Otherwise,

E(t) ≤ C
(
E(0) +

∫ t

0
k0(s)eω

∫ s
0 ζ(τ)dτds

)
e−ω

∫ t
0 ζ(s)ds,∀ t ≥ t0, (6.2.15)

where

ζ(t) = min{ζ1(t), ζ2(t)}, k0(t) =
∫

Γ2
k2

1(t)|u0|2dΓ +
∫

Γ2
k2

2(t)
∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ.

Remark 9 We note that the exponential and the polynomial decay estimates are only

particular cases of (6.2.14). In fact, we obtain exponential decay for ζ(t) ≡ a and

polynomial decay for ζ(t) = a(1 + t)−1, where a is a constant.
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Theorem 6.2.8 Suppose that (A1), (A2) and (A4) hold. Then, for some t1 large

enough, there exist some positive constants c0, c1, c2 and C such that:

(i) In the special case of H(t) = ctp, where c is a positive constant and 1 ≤ p < 3
2 ,

the solution of (6.2.6) satisfies

E(t)

≤


c0 + c1

∫ t

t1

[
k1(s)

∫
Γ2
|u0|2dΓ

]2p−1
ds+ c2

∫ t

t1

k2(s)
∫

Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
2p−1

ds

t



1
2p−1

−τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds− τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds, ∀ t ≥ t1.

(6.2.16)

(ii) In the general case, the solution of (6.2.6) satisfies

E(t)

≤ CH−1
1


c0 + c1

∫
Γ2
|u0|2dΓ

∫ t

t1
H0(k1(s))ds+ c2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ t

t1
H0(k2(s))ds

t


−τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds− τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds, ∀ t ≥ t1.

(6.2.17)

where

H1(t) = tH ′0(ε0t), H0(t) = H(D(t)),

78



D is a positive C1 function with D(0) = 0, and H0 is a strictly increasing and strictly

convex C2 function on (0, r] satisfying

∫ ∞
0

−k′i(s)
H−1

0 (k′′i (s))
ds < +∞, i = 1, 2. (6.2.18)

Remark 10 (1) If u0 = ∂u0
∂ν

= 0 on Γ2, then we have

(i) In the special case of H(t) = ctp, where c is a positive constant and 1 ≤ p < 3
2 ,

then the solution of (6.2.6) satisfies

E(t) ≤
(
c0

t

) 1
2p−1

, ∀ t ≥ 0.

(ii) In the general case, the solution of (6.2.6) satisfies

E(t) ≤ CH−1
1

(
c0

t

)
, ∀ t ≥ 0.

These results are similar to [43].

(2) If
∫ ∞

0
H0(ki(s))ds < +∞, i = 1, 2, then from (6.2.17), we have

E(t) ≤ CH−1
1

(
c

t

)
− τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds− τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds,

which clearly shows that lim
t→∞

E(t) = 0.

(3) The usual exponential and polynomial decay rate estimates, which have already

been proved for ki satisfying k′′i ≥ d(−k′i)p, i = 1, 2 and 1 ≤ p < 3
2 , are special

cases of our result. The above condition assumes that −k′i(t) ≤ ωe−dt for p = 1, and

−k′i(t) ≤ ω

t
1
p−1

for 1 < p < 3
2 . Our result allows resolvent kernels whose derivatives are
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not necessarily of exponential or polynomial decay. We give an example in Appendix

A (see A.2).

(4) As in [7,43], for i = 1, 2, since lim
t→+∞

ki(t) = 0 and −k′i(t) are nonnegative and

nonincreasing, then we can easily deduce that lim
t→+∞

(−k′i(t)) = 0. Similarly, assuming

the existence of the limit, we find that lim
t→+∞

k′′i (t) = 0. Hence, there exists t1 > 0

large enough such that k′i(t1) < 0 and

max{ki(t),−k′i(t), k′′i (t)} < min{r,H(r), H0(r)}, ∀ t ≥ t1, i = 1, 2. (6.2.19)

Noting that k′i are nondecreasing, k′i(0) < 0 and k′i(t1) < 0, then k′i(t) < 0 for any

t ∈ [0, t1] and

0 < −k′i(t1) ≤ −k′i(t) ≤ k′i(0), ∀ t ∈ [0, t1], i = 1, 2.

Also, since H is a positive continuous function, then

a ≤ H(−k′i(t)) ≤ b, ∀ t ∈ [0, t1], i = 1, 2

for some positive constants a and b. Therefore, we have

k′′i (t) ≥ H(−k′i(t)) ≥ a = a

k′i(0)k
′
i(0) ≥ a

k′i(0)k
′
i(t), ∀ t ∈ [0, t1], i = 1, 2,

which implies, for some positive constant d,

k′′i (t) ≥ d(−k′i(t)), ∀ t ∈ [0, t1], i = 1, 2 (6.2.20)
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Chapter 7

PROOF OF MAIN THEOREMS

7.1 Existence: Proof of Theorem 6.2.6

In this section we, briefly prove the existence of global weak solution to problem

(6.2.6). For convenience, from now on, we shall omit x and t in some functions

if there is no ambiguity, C denotes an arbitrary positive constant, which may be

different from line to line.

Since K ≥ 0, before applying directly the Faedo-Galerkin’s method, we first need

to perturb problem (6.2.6) with terms εu′′ and εv′′ (0 < ε < 1).

Let {wj}j∈N be the basis of W which is orthogonal and normalized in L2(Ω).

For each m ∈ N, let Um = span{w1, w2, ..., wm}. For each ε ∈ (0, 1), m ∈ N and

any T > 0, standard results on ordinary differential equations guarantee that, for

0 < Tm ≤ T , there exists only one local solution

umε(x, t) =
m∑
j=1

αjm(t)wj(x), x ∈ Ω1 and t ∈ [0, Tm],
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vmε(x, t) =
m∑
j=1

βjm(t)wj(x), x ∈ Ω2 and t ∈ [0, Tm]

satisfy the approximate perturbed problem



((K + ε)u′′mε(t), w)Ω1 + a1(umε(t)), w) + (f1(umε), w)Ω1

= (B2umε, w)Γ1 − (B1umε, w)Γ1 − (B2umε, w)Γ2 + (B1umε, w)Γ2

((K + ε)v′′mε(t), w)Ω2 + a2(vmε(t)), w) + (f2(vmε), w)Ω2

= −(B2vmε, w)Γ1 + (B1vmε, w)Γ1

(7.1.1)

for all w ∈ Um, where



(B2umε, w)Γ1 = τ1 (u′mε + k1(0)umε − k1(t)umε(0) + k′1 ∗ umε, w)Γ1

(B1umε, w)Γ1 = −τ2

(
∂u′mε
∂ν

+ k2(0)∂umε
∂ν
− k2(t)∂u

′
mε(0)
∂ν

+ k′2 ∗
∂umε
∂ν

,
∂w

∂ν

)
Γ1

(B2umε, w)Γ2 = τ1 (u′mε + k1(0)umε − k1(t)umε(0) + k′1 ∗ umε, w)Γ2

(B1umε, w)Γ2 = −τ2

(
∂u′mε
∂ν

+ k2(0)∂umε
∂ν
− k2(t)∂u

′
mε(0)
∂ν

+ k′2 ∗
∂umε
∂ν

,
∂w

∂ν

)
Γ2

(B2vmε, w)Γ1 = τ1 (v′mε + k1(0)vmε − k1(t)vmε(0) + k′1 ∗ vmε, w)Γ1

(B1vmε, w)Γ1 = −τ2

(
∂v′mε
∂ν

+ k2(0)∂vmε
∂ν
− k2(t)∂v

′
mε(0)
∂ν

+ k′2 ∗
∂vmε
∂ν

,
∂w

∂ν

)
Γ1
(7.1.2)

with the transmission conditions

umε = vmε,
∂umε
∂ν

= ∂vmε
∂ν

,

B1umε = B1vmε, B2umε = B2vmε, (x, t) ∈ Γ1 × [0,∞)
(7.1.3)
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with initial data

(umε(0), vmε(0)) = (um0, vm0) strongly in H4(Ω1)×
(
W ∩H4(Ω2)

)
,

(u′mε(0), v′mε(0)) = (um1, vm1) strongly in V.

(7.1.4)

Now we need estimates which allow us to extend the solutions to the whole interval

[0, T ] and pass to limit as m → ∞ and ε → 0. Therefore, uniform estimates with

respect to m and ε are needed.

The First Estimate: Letting w = u′mε(t) in equation (7.1.1)1 and w = v′mε(t)

in equation (7.1.1)2, respectively and integrating over (0, t), we get by using the

transmission condition (7.1.3) that

1
2

d
dt

{∫
Ω1

(K(x) + ε)|u′mε|2dx+
∫

Ω2
(K(x) + ε)|v′mε|2dx+ a1(umε, umε)

+a2(vmε, vmε) + 2
∫

Ω1
F1(umε)dx+ 2

∫
Ω2
F2(vmε)dx

}
= −

∫
Γ1

(B2umε)u′mεdΓ +
∫

Γ1
(B1umε)

∂u′mε
∂ν

dΓ +
∫

Γ1
(B2vmε)v′mεdΓ

−
∫

Γ1
(B1vmε)

∂v′mε
∂ν

dΓ−
∫

Γ2
(B2umε)u′mεdΓ +

∫
Γ2

(B1umε)
∂u′mε
∂ν

dΓ

= −
∫

Γ2
(B2umε)u′mεdΓ +

∫
Γ2

(B1umε)
∂u′mε
∂ν

dΓ. (7.1.5)

By using (7.1.2), we get from Lemma 6.2.4 that

1
2

d
dt

{∫
Ω1

(K(x) + ε)|u′mε|2dx+
∫

Ω2
(K(x) + ε)|v′mε|2dx+ a1(umε, umε)

+a2(vmε, vmε) + 2
∫

Ω1
F1(umε)dx+ 2

∫
Ω2
F2(vmε)dx+ τ1k1(t)

∫
Γ2
|umε|2dΓ

−τ1

∫
Γ2
k′1�umεdΓ + τ2k2(t)

∫
Γ2

∣∣∣∣∣∂umε∂ν

∣∣∣∣∣
2

dΓ− τ2

∫
Γ2
k′2�

∂umε
∂ν

dΓ


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= −τ1

∫
Γ2
|u′mε|2dΓ + τ1k1(t)

∫
Γ2
um0u

′
mεdΓ + τ1

2 k
′
1(t)

∫
Γ1
|umε|2dΓ

−τ1

2

∫
Γ2
k′′1�umεdΓ− τ2

∫
Γ2

∣∣∣∣∣∂umε∂ν

∣∣∣∣∣
2

dΓ + τ2k2(t)
∫

Γ2

∂um0

∂ν

∂u′mε
∂ν

dΓ

+τ2

2 k
′
2(t)

∫
Γ2

∣∣∣∣∣∂umε∂ν

∣∣∣∣∣
2

dΓ− τ2

2

∫
Γ2
k′′2�

∂umε
∂ν

dΓ. (7.1.6)

Integrating (7.1.6) over (0, t), using the assumption (A1), (A2) and (6.2.11), and

taking the convergence in (7.1.4) into consideration, we have

∫
Ω1
K(x)|u′mε(x)|2dx+

∫
Ω2
K(x)|v′mε(x)|2dx+

∫
Ω1
ε|u′mε|2dx+

∫
Ω2
ε|v′mε|2dx

+a1(umε, umε) + a2(vmε, vmε) ≤ C1, (7.1.7)

where C1 is constant independent on m, ε, and t ∈ [0, T ].

The Second Estimate: First, we estimate the initial data ‖u′′mε(0)‖2 and

‖v′′mε(0)‖2 in the L2 norm. Taking t = 0 in (7.1.1), and using the compatibility

conditions (6.2.12), we get

(K(0) + ε)(‖u′′mε(0)‖2 + ‖v′′mε(0)‖2)

≤ ‖∆2umε(0)‖2‖u′′mε(0)‖2 + ‖∆2vmε(0)‖2‖v′′mε(0)‖2

≤ ‖f1(umε)(0)‖2‖u′′mε(0)‖2 + ‖f2(umε)(0)‖2‖v′′mε(0)‖2. (7.1.8)

Using the definition of the initial condition (7.1.4), we conclude that

(K(0) + ε)(‖u′′mε(0)‖2 + ‖v′′mε(0)‖2) ≤ C2, (7.1.9)

where C2 is independent of m and ε.
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Differentiating (7.1.1) with respect to t and Letting w = u′′mε(t) in equation (7.1.1)1

and w = v′′mε(t) in equation (7.1.1)2, respectively, we obtain

1
2

d
dt

{∫
Ω1

(K(x) + ε)|u′′mε|2dx+
∫

Ω2
(K(x) + ε)|v′′mε|2dx

+a1(u′mε, u′mε) + a2(v′mε, v′mε)}

= −
∫

Ω1
f ′1(umε)u′mεu′′mεdΓ−

∫
Ω1
f ′2(vmε)v′mεv′′mεdΓ− τ1

∫
Ω1
|u′mε|2dΓ

−τ1

∫
Γ1
k1(0)u′mεu′′mεdΓ + τ1k

′
1(t)

∫
Γ1
umε(0)u′′mεdΓ− τ1

∫
Γ1

(k′1 ∗ umε)′u′′mεdΓ

−τ2

∫
Γ2

∣∣∣∣∣∂u′′mε∂ν

∣∣∣∣∣
2

dΓ− τ2

∫
Γ2
k2(0)∂u

′
mε

∂ν

∂u′′mε
∂ν

dΓ + τ2k
′
2(t)

∫
Γ2

∂umε(0)
∂ν

∂u′′mε
∂ν

dΓ

−τ2

∫
Γ2

(
k′2 ∗

∂umε
∂ν

)′
∂u′′mε(0)
∂ν

dΓ. (7.1.10)

Using Lemma 6.2.4 and noting that

(k′i ∗ umε)′ = k′i(t)um0 +
∫ t

0
k′i(t− s)u′mε(s)ds,

we have

1
2

d
dt

{∫
Ω1

(K(x) + ε)|u′′mε|2dx+
∫

Ω2
(K(x) + ε)|v′′mε|2dx

+a1(u′mε, u′mε) + a2(v′mε, v′mε) + τ1k1(t)
∫

Γ2
|u′mε|2dΓ

−τ1

∫
Γ2
k′1�u

′
mεdΓ + τ2k2(t)

∫
Γ2

∣∣∣∣∣∂u′mε∂ν

∣∣∣∣∣
2

dΓ− τ2

∫
Γ2
k′2�

∂u′mε
∂ν

dΓ


= −

∫
Ω1
f ′1(umε)u′mεu′′mεdΓ−

∫
Ω1
f ′2(vmε)v′mεv′′mεdΓ− τ1

∫
Γ2
|u′′mε|2dΓ

+τ1k1(t)
∫

Γ2
u′m0u

′
mεdΓ + τ1

2 k
′
1(t)

∫
Γ1
|u′mε|2dΓ− τ1

2

∫
Γ2
k′′1�u

′
mεdΓ

−τ2

∫
Γ2

∣∣∣∣∣∂u′′mε∂ν

∣∣∣∣∣
2

dΓ + τ2k2(t)
∫

Γ2

∂u′m0
∂ν

∂u′mε
∂ν

dΓ
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+τ2

2 k
′
2(t)

∫
Γ2

∣∣∣∣∣∂u′mε∂ν

∣∣∣∣∣
2

dΓ− τ2

2

∫
Γ2
k′′2�

∂u′mε
∂ν

dΓ. (7.1.11)

Letting pn = 2n
n−2 , from the assumption (A1) and using Sobolev imbedding, we get

∫
Ω1
f ′1(umε)u′mεu′′mεdΓ

≤ c
∫

Ω1
(1 + 2|umε|ρ−1)|u′mε||u′′mε|dx

≤ c
[∫

Ω1
(1 + 2|umε|ρ−1)ndx

] 1
n
[∫

Ω1
|u′mε|pndx

] 1
pn
[∫

Ω1
|u′′mε|2dx

] 1
2

≤ c
[∫

Ω1
(1 + |∆umε|2)ndx

] ρ−1
2
[∫

Ω1
|∆u′mε|2dx

] 1
2
[∫

Ω1
|u′′mε|2dx

] 1
2
.

(7.1.12)

Taking into the first estimate (7.1.7) we get

∫
Ω1
f ′1(umε)u′mεu′′mεdΓ ≤ c

[∫
Ω1
‖∆u′mε‖2dx

] 1
2
[∫

Ω2
|u′′mε|2dx

] 1
2

≤ c
{∫

Ω1
‖∆u′mε‖2dx+

∫
Ω2
|u′′mε|2dx

}
. (7.1.13)

Similarly, we have

∫
Ω2
f ′2(vmε)v′mεv′′mεdΓ ≤ c

[∫
Ω1
‖∆v′mε‖2dx

] 1
2
[∫

Ω2
|v′′mε|2dx

] 1
2

≤ c
{∫

Ω1
‖∆v′mε‖2dx+

∫
Ω2
|v′′mε|2dx

}
. (7.1.14)

Integrating (7.1.11) over (0, t), using the above inequalities and employing Gronwall’s

inequality we get

∫
Ω1
K(x)|u′′mε(x)|2dx+

∫
Ω2
K(x)|v′′mε(x)|2dx+

∫
Ω1
ε|u′′mε|2dx+

∫
Ω2
ε|v′′mε|2dx
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+a1(u′mε, u′mε) + a2(v′mε, v′mε) ≤ C3, (7.1.15)

where C3 is constant independent on m, ε, and t ∈ [0, T ].

Making use of Aubin-Loins theorem [25], we deduce that there exists a subsequence

of {(umε, vmε)} such that

(umε, vmε)→ (uε, vε) strongly in L2(0, T ;W (Ω1)×W (Ω2)).

Then from the estimates (7.1.7) and (7.1.15), there exists a subsequence {(umε, vmε)}

which we also denote as {(umε, vmε)} such that

(umε, vmε)→ (u, v) weak star in L∞(0, T ;W (Ω1)×W (Ω2)),

(u′mε, v′mε)→ (u′, v′) weak star in L∞(0, T ;H2(Ω1)×H2(Ω2)),

(u′′mε, v′′mε)→ (u′′, v′′) weak star in L2(0, T ;L2(Ω1)× L2(Ω2)),

(Ku′′mε, Kv′′mε)→ (Ku′′, Kv′′) weak star in L∞(0, T ;L2(Ω1)× L2(Ω2)).

(7.1.16)

The above convergences are sufficient to pass to the limit in (7.1.1). Then from

Lemma 6.2.5, we get

(u, v) ∈ L∞(0, T ;H4(Ω1)×
(
W ∩H4(Ω2)

)
).

The proof of the uniqueness is a routine, here we omit it. �
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7.2 General Decay I: Proof of Theorem

6.2.7

In this section, we shall prove the general decay rate of problem (6.2.6) as stated in

Theorem 6.2.7. For convenience, from now on, we shall omit x and t in some functions

if there is no ambiguity and let c be an arbitrary positive constant, which may be

different from line to line. First, we prove some useful lemmas.

Lemma 7.2.1 For every v ∈ H4(Ω) and for every µ ∈ R, one has

∫
Ω

(m · ∇v)∆2vdx = a(v, v) +
∫

Γ

[
(B2v)m · ∇v − (B1v) ∂

∂ν
(m · ∇v)

]
dΓ

+1
2

∫
Γ
m · ν

[
v2
xx + v2

yy + 2µvxxvyy + 2(1− µ)v2
xy

]
dΓ.(7.2.1)

For the proof of this lemma, we refer the readers to [23].

Lemma 7.2.2 Let (u, v) be the solution of (6.2.6). Then the energy functional E(t)

satisfies

E ′(t) ≤ −τ1

2

∫
Γ2

(
|ut|2 − k2

1(t)|u0|2 − k′1(t)|u|2 + k′′1 ◦ u
)

dΓ

−τ2

2

∫
Γ2

∣∣∣∣∣∂ut∂ν

∣∣∣∣∣
2

− k2
2(t)

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

− k′2(t)
∣∣∣∣∣∂u∂ν

∣∣∣∣∣
2

+ k′′2 ◦
∂u

∂ν

 dΓ. (7.2.2)

Proof. Multiplying (6.2.6)1 by ut, (6.2.6)2 by vt and integrating over Ω1 and Ω2,

respectively, using (6.2.6)3-(6.2.6)6, we get

1
2

d
dt

{∫
Ω1
K(x)|ut|2dx+

∫
Ω2
K(x)|vt|2dx+ a1(u, u) + a2(v, v)
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+2
∫

Ω1
F1(u)dx+ 2

∫
Ω2
F2(v)dx

}
= −

∫
Γ1

(B2u)utdΓ +
∫

Γ1
(B1u)∂ut

∂ν
dΓ +

∫
Γ1

(B2v)vtdΓ−
∫

Γ1
(B1v)∂vt

∂ν
dΓ

−
∫

Γ2
(B2u)utdΓ +

∫
Γ2

(B1u)∂ut
∂ν

dΓ

= −
∫

Γ2
(B2u)utdΓ +

∫
Γ2

(B1u)∂ut
∂ν

dΓ. (7.2.3)

Substituting the boundary terms by (6.2.4) and (6.2.5) and using Lemma 6.2.4 and

Young’s inequality, our conclusion follows. �

Let us consider the following binary operator:

(k � ϕ)(t) :=
∫ t

0
k(t− s)(ϕ(t)− ϕ(s))ds.

Applying the Hölder’s inequality for 0 ≤ σ ≤ 1, we have

|(k � ϕ)(t)|2 ≤
[∫ t

0
|k(s)|2(1−σ)ds

] (
|k|2σ ◦ ϕ

)
(t). (7.2.4)

The following lemma plays an important role in constructing the Lyapunov functional.

Lemma 7.2.3 The functional

Φ(t) :=
∫

Ω1

{
m · ∇u+

(
n

2 − θ
)
u
}
Kutdx+

∫
Ω2

{
m · ∇v +

(
n

2 − θ
)
v
}
Kvtdx

(7.2.5)

satisfies, along the solution of problem (6.2.6), for any ε > 0,

Φ′(t) ≤ 1
2

∫
Γ2
m · νK|ut|2dΓ−

(
1 + n

2 − θ − ελ0

)
a1(u, u)−

(
1 + n

2 − θ
)
a2(v, v)

−
(
nη1

2 − 2θ − η1θ
) ∫

Ω1
F1(u)dx−

(
nη2

2 − 2θ − η2θ
) ∫

Ω2
F2(v)dx
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−
(

1
2 −

ελ0

δ

)∫
Γ2
m · ν

[
u2
xx + u2

yy + 2µuxxuyy + 2(1− µ)u2
xy

]
dΓ

+2τ 2
2
ε

∫
Γ2


∣∣∣∣∣∂ut∂ν

∣∣∣∣∣
2

+ k2
2(t)

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

+ k2
2(t)

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

+
∣∣∣∣∣k′2 � ∂u∂ν

∣∣∣∣∣
2
 dΓ

+2τ 2
1
ε

∫
Γ2

{
|ut|2 + k2

1(t)|u|2 + k2
1(t)|u0|2 + |k′1 � u|2

}
dΓ, (7.2.6)

where θ, τ1, τ2, η1 and η2 are positive constants.

Proof. Using (6.2.6) and Lemma 7.2.1, we get

d
dt

{∫
Ω1

{
m · ∇u+

(
n

2 − θ
)
u
}
Kutdx

}
=

∫
Ω1

{
m · ∇ut +

(
n

2 − θ
)
ut

}
Kutdx+

∫
Ω1

{
m · ∇u+

(
n

2 − θ
)
u
}
Kuttdx

= 1
2

∫
Γ1
m · νK|ut|2dΓ + 1

2

∫
Γ2
m · νK|ut|2dΓ− θ

∫
Ω1
K|ut|2dx

−1
2

∫
Ω1
∇K ·m|ut|2dx−

(
1 + n

2 − θ
)
a1(u, u)

+n
∫

Ω1
F1(u)dx−

(
n

2 − θ
) ∫

Ω1
f1(u)udx

+
∫

Γ1
(B1u)

[
∂

∂ν
(m · ∇u) +

(
n

2 − θ
)
∂u

∂ν

]
dΓ

−
∫

Γ1
(B2u)

[
(m · ∇u) +

(
n

2 − θ
)
u
]

dΓ

+
∫

Γ2
(B1u)

[
∂

∂ν
(m · ∇u) +

(
n

2 − θ
)
∂u

∂ν

]
dΓ

−
∫

Γ2
(B2u)

[
(m · ∇u) +

(
n

2 − θ
)
u
]

dΓ

−1
2

∫
Γ1
m · ν

[
u2
xx + u2

yy + 2µuxxuyy + 2(1− µ)u2
xy

]
dΓ

−1
2

∫
Γ2
m · ν

[
u2
xx + u2

yy + 2µuxxuyy + 2(1− µ)u2
xy

]
dΓ. (7.2.7)
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Similarly, we have

d
dt

{∫
Ω2

{
m · ∇v +

(
n

2 − θ
)
v
}
Kvtdx

}
= −1

2

∫
Γ1
m · νK|vt|2dΓ + 1

2

∫
Γ0
m · νK|vt|2dΓ− θ

∫
Ω2
K|vt|2dx

−1
2

∫
Ω2
∇K ·m|vt|2dx−

(
1 + n

2 − θ
)
a2(v, v)

+n
∫

Ω2
F2(v)dx−

(
n

2 − θ
) ∫

Ω2
f2(v)vdx

−
∫

Γ1
(B1v)

[
∂

∂ν
(m · ∇v) +

(
n

2 − θ
)
∂v

∂ν

]
dΓ

+
∫

Γ1
(B2v)

[
(m · ∇v) +

(
n

2 − θ
)
v
]

dΓ

+
∫

Γ0
(B1v)

[
∂

∂ν
(m · ∇v) +

(
n

2 − θ
)
∂v

∂ν

]
dΓ

−
∫

Γ0
(B2v)

[
(m · ∇v) +

(
n

2 − θ
)
v
]

dΓ

+1
2

∫
Γ1
m · ν

[
v2
xx + v2

yy + 2µvxxvyy + 2(1− µ)v2
xy

]
dΓ

−1
2

∫
Γ0
m · ν

[
v2
xx + v2

yy + 2µvxxvyy + 2(1− µ)v2
xy

]
dΓ. (7.2.8)

Noting that v = ∂v

∂ν
= 0 on Γ0, we have B1v = B2v = 0 on Γ0. Therefore, we rewrite

(7.2.8) as

d
dt

{∫
Ω2

{
m · ∇v +

(
n

2 − θ
)
v
}
Kvtdx

}
=

∫
Ω2

{
m · ∇vt +

(
n

2 − θ
)
vt

}
Kvtdx+

∫
Ω2

{
m · ∇v +

(
n

2 − θ
)
v
}
Kvttdx

= −1
2

∫
Γ1
m · νK|vt|2dΓ− θ

∫
Ω2
K|vt|2dx− 1

2

∫
Ω2
∇K ·m|vt|2dx

−
(

1 + n

2 − θ
)
a2(v, v) + n

∫
Ω2
F2(v)dx−

(
n

2 − θ
) ∫

Ω2
f2(v)vdx

−
∫

Γ1
(B1v)

[
∂

∂ν
(m · ∇v) +

(
n

2 − θ
)
∂v

∂ν

]
dΓ
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+
∫

Γ1
(B2v)

[
(m · ∇v) +

(
n

2 − θ
)
v
]

dΓ

+1
2

∫
Γ1
m · ν

[
v2
xx + v2

yy + 2µvxxvyy + 2(1− µ)v2
xy

]
dΓ. (7.2.9)

From (7.2.7) and (7.2.9), and noticing that f1 = f2 on Γ1, we have

Φ′(t) =
∫

Ω1

{
m · ∇ut +

(
n

2 − θ
)
ut

}
Kutdx+

∫
Ω1

{
m · ∇u+

(
n

2 − θ
)
u
}
Kuttdx

+
∫

Ω2

{
m · ∇vt +

(
n

2 − θ
)
vt

}
Kvtdx+

∫
Ω2

{
m · ∇v +

(
n

2 − θ
)
v
}
Kvttdx

= 1
2

∫
Γ2
m · νK|ut|2dΓ− θ

∫
Ω1
K|ut|2dx− θ

∫
Ω2
K|vt|2dx

−1
2

∫
Ω1
∇K ·m|ut|2dx− 1

2

∫
Ω2
∇K ·m|vt|2dx−

(
1 + n

2 − θ
)
a1(u, u)

−
(

1 + n

2 − θ
)
a2(v, v) + n

∫
Ω1
F1(u)dx+ n

∫
Ω2
F2(v)dx

−
(
n

2 − θ
) ∫

Ω1
f1(u)udx−

(
n

2 − θ
) ∫

Ω2
f2(v)vdx

+
∫

Γ2
(B1u)

[
∂

∂ν
(m · ∇u) +

(
n

2 − θ
)
∂u

∂ν

]
dΓ

−
∫

Γ2
(B2u)

[
(m · ∇u) +

(
n

2 − θ
)
u
]

dΓ

−1
2

∫
Γ2
m · ν

[
u2
xx + u2

yy + 2µuxxuyy + 2(1− µ)u2
xy

]
dΓ. (7.2.10)

Using Young’s inequality, we get

∣∣∣∣∫
Γ2

(B2u)
[
(m · ∇u) +

(
n

2 − θ
)
u
]

dΓ
∣∣∣∣

≤ 1
2ε

∫
Γ2
|B2u|2dΓ + ε

∫
Γ2

(
|m · ∇u|2 +

(
n

2 − θ
)2
|u|2

)
dΓ, (7.2.11)

and

∣∣∣∣∣
∫

Γ2
(B1u)

[
∂

∂ν
(m · ∇u) +

(
n

2 − θ
)
∂u

∂ν

]
dΓ
∣∣∣∣∣
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≤ 1
2ε

∫
Γ2
|B1u|2dΓ + ε

∫
Γ2

∣∣∣∣∣ ∂∂ν (m · ∇u)
∣∣∣∣∣
2

+
(
n

2 − θ
)2
∣∣∣∣∣∂u∂ν

∣∣∣∣∣
2
 dΓ, (7.2.12)

where ε is a positive constant. Since the bilinear form a1(u, u) is strictly coercive on

H2(Ω), using the trace theory, we obtain

∫
Γ2

(
|m · ∇u|2 +

(
n

2 − θ
)2
|u|2

)
dΓ +

∫
Γ2

∣∣∣∣∣ ∂∂ν (m · ∇u)
∣∣∣∣∣
2

+
(
n

2 − θ
)2
∣∣∣∣∣∂u∂ν

∣∣∣∣∣
2
 dΓ

≤ λ0a1(u, u) + λ0

δ

∫
Γ2
m · ν

[
u2
xx + u2

yy + 2µuxxuyy + 2(1− µ)u2
xy

]
dΓ, (7.2.13)

where λ0 is a constant depending on Ω1, µ, θ and n. Substituting inequalities (7.2.11)-

(7.2.13) into (7.2.10) and taking into account that m · ν ≤ 0 on Γ0, as well as (A1)

and (A2), we have

Φ′(t)

≤ 1
2

∫
Γ2
m · νK|ut|2dΓ− θ

∫
Ω1
K|ut|2dx− θ

∫
Ω2
K|vt|2dx− 1

2

∫
Ω1
∇K ·m|ut|2dx

−1
2

∫
Ω2
∇K ·m|vt|2dx−

(
1 + n

2 − θ − ελ0

)
a1(u, u)−

(
1 + n

2 − θ
)
a2(v, v)

−
(
nη1

2 − 2θ − η1θ
) ∫

Ω1
F1(u)dx−

(
nη2

2 − 2θ − η2θ
) ∫

Ω2
F2(v)dx

−
(

1
2 −

ελ0

δ

)∫
Γ2
m · ν

[
u2
xx + u2

yy + 2µuxxuyy + 2(1− µ)u2
xy

]
dΓ

+ 1
2ε

∫
Γ2

(
|B1u|2 + |B2u|2

)
dΓ. (7.2.14)

Noticing that the boundary conditions (6.2.4) and (6.2.5) can be written as

B2u = τ1{ut + k1(t)u− k1(t)u0 − k′1 � u},
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and

B1u = −τ2

{
∂ut
∂ν

+ k2(t)∂u
∂ν
− k2(t)∂u0

∂ν
− k′2 �

∂u

∂ν

}
,

our conclusion follows. �

Now, let us define the perturbed energy functional

G(t) = NE(t) + Φ(t).

It is easy to check that

G(t) ∼ E(t) for appropriately large N > 0. (7.2.15)

Lemma 7.2.4 If N > 0 is appropriately large, for some large t1, there exist positive

constants θ0, θ1, θ2, θ3, θ4 verifying

G′(t) ≤ −θ0E(t) + θ1

∫
Γ2
k2

1(t)|u0|2dΓ + θ2

∫
Γ2
k2

2(t)
∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ

−θ3

∫
Γ2
k′1 ◦ udΓ− θ4

∫
Γ2
k′2 ◦

∂u

∂ν
dΓ, ∀ t ≥ t1. (7.2.16)

Proof. From (7.2.2) and (7.2.6) and applying (7.2.4) with σ = 1/2, we get

G′(t) ≤ 1
2

∫
Γ2
m · νK|ut|2dΓ−

(
1 + n

2 − θ − ελ0

)
a1(u, u)−

(
1 + n

2 − θ
)
a2(v, v)

−
(
nη1

2 − 2θ − η1θ
) ∫

Ω1
F1(u)dx−

(
nη2

2 − 2θ − η2θ
) ∫

Ω2
F2(v)dx

−
(

1
2 −

ελ0

δ

)∫
Γ2
m · ν

[
u2
xx + u2

yy + 2µuxxuyy + 2(1− µ)u2
xy

]
dΓ

+2τ 2
2
ε

∫
Γ2


∣∣∣∣∣∂ut∂ν

∣∣∣∣∣
2

+ k2
2(t)

∣∣∣∣∣∂u∂ν
∣∣∣∣∣
2

+ k2
2(t)

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

− k2(0)k′2 ◦
∂u

∂ν

 dΓ
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−τ2N

2

∫
Γ2

∣∣∣∣∣∂ut∂ν

∣∣∣∣∣
2

− k2
2(t)

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

− k′2(t)
∣∣∣∣∣∂u∂ν

∣∣∣∣∣
2

+ k′′2 ◦
∂u

∂ν

 dΓ

+2τ 2
1
ε

∫
Γ2

{
|ut|2 + k2

1(t)|u|2 + k2
1(t)|u0|2 − k1(0)k′1(t) ◦ u

}
dΓ

−τ1N

2

∫
Γ2

(
|ut|2 − k2

1(t)|u0|2 − k′1(t)|u|2 + k′′1 ◦ u
)

dΓ. (7.2.17)

First, we take θ and ε so small such that

1 + n

2 − θ > 0, 1 + n

2 − θ − ελ0 > 0,

nη1

2 − 2θ − η1θ > 0, nη2

2 − 2θ − η2θ > 0, 1
2 −

ελ0

δ
> 0.

Noticing that K(x) ≥ 0, K ∈ L∞(Ω) and lim
t→∞

ki(t) = 0, for i = 1, 2, then for large t1,

by choosing N large enough, our conclusion follows. �

Continuity of the proof of Theorem 6.2.7. Let ζ(t) = min{ζ1(t), ζ2(t)}, t ≥ t0,

then, using (A3) and (7.2.2), we get

ζ(t) d
dtG(t) ≤ −θ0ζ(t)E(t) + θ1ζ(t)

∫
Γ2
k2

1(t)|u0|2dΓ + θ2ζ(t)
∫

Γ2
k2

2(t)
∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ

−θ3ζ(t)
∫

Γ2
k′1 ◦ udΓ− θ4ζ(t)

∫
Γ2
k′2 ◦

∂u

∂ν
dΓ

≤ −θ0ζ(t)E(t) + θ1ζ(t)
∫

Γ2
k2

1(t)|u0|2dΓ + θ2ζ(t)
∫

Γ2
k2

2(t)
∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ

+θ3

∫
Γ2
k′′1 ◦ udΓ + θ4

∫
Γ2
k′′2 ◦

∂u

∂ν
dΓ

≤ −θ0ζ(t)E(t) + θ1ζ(t)
∫

Γ2
k2

1(t)|u0|2dΓ + θ2ζ(t)
∫

Γ2
k2

2(t)
∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ

−c d
dtE(t), ∀ t ≥ t0, (7.2.18)

where c is a positive constant. Noting that ζ is a nonincreasing continuous function
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as ζ1 and ζ2 are nonincreasing, and so ζ is differentiable with ζ ′(t) ≤ 0 for a.e. t, then

we obtain that

d
dt (ζ(t)G(t) + cE(t))

≤ −θ0ζ(t)E(t) + θ1ζ(t)
∫

Γ2
k2

1(t)|u0|2dΓ + θ2ζ(t)
∫

Γ2
k2

2(t)
∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ, ∀ t ≥ t0.

(7.2.19)

We define

G(t) = ζ(t)G(t) + cE(t). (7.2.20)

Since ζ(t) is a nonincreasing positive function, we can easily observe that G(t) is

equivalent to E(t) by using (7.2.15). Thus, for some positive constants ω, C1 and C2,

we have

d
dtG(t) ≤ −ωζ(t)E(t)+C1

∫
Γ2
k2

1(t)|u0|2dΓ+C2

∫
Γ2
k2

2(t)
∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ, ∀ t ≥ t0. (7.2.21)

Case (i): If u0 = ∂u0

∂ν
= 0 on Γ2, (7.2.21) becomes

d
dtG(t) ≤ −ωζ(t)G(t), ∀ t ≥ t0.

Integration this over (t0, t) gives

G(t) ≤ G(t0)e−ω
∫ t
t0
ζ(s)ds

, ∀ t ≥ t0. (7.2.22)
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By using (7.2.2) and (7.2.20), we then obtain that, for some positive constant C,

E(t) ≤ CE(0)e−ω
∫ t

0 ζ(s)ds,∀ t ≥ t0. (7.2.23)

Case (ii): If
(
u0,

∂u0

∂ν

)
6= (0, 0) on Γ2, we set

F(t) := G(t)− Ce−ω
∫ t

0 ζ(s)ds
∫ t

0
k0(s)eω

∫ s
0 ζ(τ)dτds, ∀ t ≥ t0,

where

k0(t) =
∫

Γ2
k2

1(t)|u0|2dΓ +
∫

Γ2
k2

2(t)
∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ.

Then, with suitable choice of C, it holds that

d
dtF(t) ≤ −ωζ(t)F(t), ∀ t ≥ t0,

and hence

F(t) ≤ F(t0)e−ω
∫ t
t0
ζ(s)ds

.

This yields that

G(t) ≤
[
G(t0) + C

∫ t

t0
k0(s)eω

∫ s
t0
ζ(τ)dτds

]
e
−ω
∫ t
t0
ζ(s)ds

. (7.2.24)

Hence, from (7.2.20), we deduce

E(t) ≤ C
(
E(0) +

∫ t

0
k0(s)eω

∫ s
0 ζ(τ)dτds

)
e−ω

∫ t
0 ζ(s)ds,∀ t ≥ t0. (7.2.25)

This completes the proof of Theorem 6.2.7. �

97



7.3 General Decay II: Proof of Theo-

rem 6.2.8

In this section, we shall prove the general decay rate of problem (6.2.6) as stated in

Theorem 6.2.8. Now by using (6.2.20) and (7.2.2), we deduce that, for some positive

constant c and all t ≥ t1,

−
∫ t1

0
k′1(s)

∫
Γ2
|u(t)− u(t− s)|2dΓds

≤ 1
d

∫ t1

0
k′′1(s)

∫
Γ2
|u(t)− u(t− s)|2dΓds

≤ −c

E ′(t)− τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ− τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 (7.3.1)

and

−
∫ t1

0
k′2(s)

∫
Γ2

∣∣∣∣∣∂u(t)
∂ν

− ∂u(t− s)
∂ν

∣∣∣∣∣
2

dΓds

≤ 1
d

∫ t1

0
k′′2(s)

∫
Γ2

∣∣∣∣∣∂u(t)
∂ν

− ∂u(t− s)
∂ν

∣∣∣∣∣
2

dΓds

≤ −c

E ′(t)− τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ− τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 . (7.3.2)

Next, we take F (t) = G(t) + cE(t), we easily observe that F (t) is equivalent to E(t)

by using (7.2.15). Then using (7.3.1) and (7.3.2), we obtain that, for all t ≥ t1,

F ′(t) ≤ −θ0E(t) + c1k
2
1(t)

∫
Γ2
|u0|2dΓ + c2k

2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ

−c3

∫ t

t1
k′1(s)

∫
Γ2
|u(t)− u(t− s)|2dΓds
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−c4

∫ t

t1
k′2(t)

∫
Γ2

∣∣∣∣∣∂u(t)
∂ν

− ∂u(t− s)
∂ν

∣∣∣∣∣
2

dΓds. (7.3.3)

where θ0, c1, c2, c3 and c4 are some positive constants.

Similarly to [43], we consider the following two cases:

Case I: H(t) = ctp, c is a positive constant and 1 ≤ p <
3
2.

If 1 < p <
3
2, one can easily verify that

∫ ∞
0

[−k′i(s)]1−δ0ds < +∞ for all δ0 < 2− p

and i = 1, 2. Using this fact, (7.2.2), the trace theory and noting that

E(t) ≤ E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ t

0
k2

1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ t

0
k2

2(s)ds ≤M,

(7.3.4)

for some M > 0, we obtain that, for all t ≥ t1 (choosing t1 even large if needed),

ξ(t) :=
∫ t

t1
[−k′1(s)]1−δ0

∫
Γ2
|u(t)− u(t− s)|2dΓds

≤ 2
∫ t

t1
[−k′1(s)]1−δ0

∫
Γ2

(
|u(t)|2 + |u(t− s)|2

)
dΓds

≤ cM
∫ ∞

0
[−k′1(s)]1−δ0ds < 1 (7.3.5)

and

γ(t) :=
∫ t

t1
[−k′2(s)]1−δ0

∫
Γ2

∣∣∣∣∣∂u(t)
∂ν

− ∂u(t− s)
∂ν

∣∣∣∣∣
2

dΓds

≤ 2
∫ t

t1
[−k′2(s)]1−δ0

∫
Γ2

∣∣∣∣∣∂u(t)
∂ν

∣∣∣∣∣
2

+
∣∣∣∣∣∂u(t− s)

∂ν

∣∣∣∣∣
2
 dΓds

≤ cM
∫ ∞

0
[−k′2(s)]1−δ0ds < 1. (7.3.6)
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Then, using Jensen’s inequality, (7.2.2), (7.3.5) and hypothesise (A4), we deduce that

−
∫ t

t1
k′1(s)

∫
Γ2
|u(t)− u(t− s)|2dΓds

=
∫ t

t1
[−k′1(s)]δ0 [−k′1(s)]1−δ0

∫
Γ2
|u(t)− u(t− s)|2dΓds

=
∫ t

t1
[−k′1(s)](p−1+δ0)

(
δ0

p−1+δ0

)
[−k′1(s)]1−δ0

∫
Γ2
|u(t)− u(t− s)|2dΓds

≤ ξ(t)
[

1
ξ(t)

∫ t

t1
[−k′1(s)]p−1+δ0 [−k′1(s)]1−δ0

∫
Γ2
|u(t)− u(t− s)|2dΓds

] δ0
p−1+δ0

≤
[∫ t

t1
[−k′1(s)]p

∫
Γ2
|u(t)− u(t− s)|2dΓds

] δ0
p−1+δ0

≤ c
[∫ t

t1
k′′1(s)

∫
Γ2
|u(t)− u(t− s)|2dΓds

] δ0
p−1+δ0

≤ c

−E ′(t) + τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ + τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ


δ0
p−1+δ0

. (7.3.7)

Similarly, we have

−
∫ t

t1
k′2(s)

∫
Γ2

∣∣∣∣∣∂u(t)
∂ν

− ∂u(t− s)
∂ν

∣∣∣∣∣
2

dΓds

≤ c

−E ′(t) + τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ + τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ


δ0
p−1+δ0

. (7.3.8)

Using (7.3.7), (7.3.8) and choosing δ0 = 1
2 in particular, (7.3.3) becomes

F ′(t) ≤ −θ0E(t) + c

−E ′(t) + τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ + τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 1

2p−1

+c1k
2
1(t)

∫
Γ2
|u0|2dΓ + c2k

2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ, (7.3.9)
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for all t ≥ t1. On the other side, we have

F (t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
′

≤ F ′(t)

≤ −θ0E(t) + c

−E ′(t) + τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ + τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 1

2p−1

+c1k
2
1(t)

∫
Γ2
|u0|2dΓ + c2k

2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ. (7.3.10)

Thus, for all t ≥ t1, we have

F (t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
′

≤ −θ0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds


+θ0
τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ θ0

τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

+c
−E ′(t) + τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ + τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 1

2p−1

+c1k
2
1(t)

∫
Γ2
|u0|2dΓ + c2k

2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ. (7.3.11)

Using the hypothesis (A4), for all t ≥ t1, we have

∫ ∞
t

k2
i (s)ds ≤ ki(t)

∫ ∞
t

ki(s)ds ≤ ki(t)
∫ ∞

0
ki(s)ds and k2

i (t) ≤ cki(t), i = 1, 2.

(7.3.12)
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Then, (7.3.11) becomes, for some new positive constants c1 and c2

F (t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
′

≤ −θ0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds


+c
−E ′(t) + τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ + τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 1

2p−1

+c1k1(t)
∫

Γ2
|u0|2dΓ + c2k2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ. (7.3.13)

Multiplied by

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−2

,

and noting that

E ′(t) ≤ τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ + τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ, (7.3.14)

we get

F (t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds


×

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−2


′

≤

F (t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
′
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E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−2

≤ −θ0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−1

+c
E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−2

×

−E ′(t) + τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ + τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 1

2p−1

+
c1k1(t)

∫
Γ2
|u0|2dΓ + c2k2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ


×

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−2

.(7.3.15)

Using Young’s inequality with λ = 2p − 1 and λ′ = 2p−1
2p−2 , we have, for some new

positive constants c1 and c2

F (t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds


×

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−2


′

≤ −θ0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−1

+2ε
E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−1

+cε

−E ′(t) + τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ + τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ


+
c1k1(t)

∫
Γ2
|u0|2dΓ + c2k2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
2p−1

. (7.3.16)
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Consequently, for 2ε < θ0, we have

F ′0(t)

≤ −θ̃

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−1

+
c1k1(t)

∫
Γ2
|u0|2dΓ + c2k2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
2p−1

. (7.3.17)

where θ̃ is a positive constant and

F0(t)

=
F (t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds


×

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−2

+cε

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
 .

(7.3.18)

Also, it is easy to show that inequality (7.3.17) is true for p = 1. Once again, we use

(7.3.14) to deduce that, for all t ≥ t1,

t
E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−1


′

≤

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−1

≤ −1
θ̃
F ′0(t) + 1

θ̃

c1k1(t)
∫

Γ2
|u0|2dΓ + c2k2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
2p−1

. (7.3.19)
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A simple integration over (t1, t) yields

t

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−1

≤ 1
θ̃
F0(t1) + 1

θ̃

∫ t

t1

c1k1(s)
∫

Γ2
|u0|2dΓ + c2k2(s)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
2p−1

ds+ t1 ×

E1(t1) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t1

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t1
k2

2(s)ds
2p−1

≤ c0 + 1
θ̃

∫ t

t1

c1k1(s)
∫

Γ2
|u0|2dΓ + c2k2(s)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
2p−1

ds, (7.3.20)

where c0 is a positive constant. Hence, for some new positive constants c1 and c2, we

get

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds
2p−1

≤ c0

t
+ c1

t

∫ t

t1

[
k1(s)

∫
Γ2
|u0|2dΓ

]2p−1
ds+ c2

t

∫ t

t1

k2(s)
∫

Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
2p−1

ds.

(7.3.21)

Therefore, we have

E(t)

≤


c0 + c1

∫ t

t1

[
k1(s)

∫
Γ2
|u0|2dΓ

]2p−1
ds+ c2

∫ t

t1

k2(s)
∫

Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
2p−1

ds

t



1
2p−1

−τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds− τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds, ∀ t ≥ t1.
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(7.3.22)

Case II: The general case. As in [43], we define

I(t) :=
∫ t

t1

−k′1(s)
H−1

0 (k′′1(s))

∫
Γ2
|u(t)− u(t− s)|2dΓds, (7.3.23)

where H0 is such that (6.2.18) is satisfied. From (7.3.5), we have, for all t ≥ t1, I(t)

satisfies

I(t) < 1. (7.3.24)

We also assume, without loss of generality that I(t) ≥ β0 > 0, for all t ≥ t1, otherwise

(7.3.3) yields an explicit decay. In addition, we define ψ(t) by

ψ(t) :=
∫ t

t1
k′′1(s) −k′1(s)

H−1
0 (k′′1(s))

∫
Γ2
|u(t)− u(t− s)|2dΓds, (7.3.25)

and infer from (A4) and the properties of H0 and D that

−k′1(s)
H−1

0 (k′′1(s))
≤ −k′1(s)
H−1

0 (H(−k′1(s)))
= −k′1(s)
D−1(−k′1(s)) ≤ k0, (7.3.26)

for some positive constant k0. Then, using (6.2.19), (7.2.2) and (7.3.4), one can easily

see that ψ(t) satisfies, for all t ≥ t1,

ψ(t) ≤ k0

∫ t

t1
k′′1(s)

∫
Γ2
|u(t)− u(t− s)|2dΓds

≤ cM
∫ t

t1
k′′1(s)ds ≤ cM(−k′1(t1)) < min{r,H(r), H0(r)}, (7.3.27)
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for t1 even larger if needed. In addition, we can easily prove that

ψ(t) ≤ −c
E ′(t)− τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ− τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 , ∀ t ≥ t1. (7.3.28)

Since H0 is strictly convex on (0, r], and H0(0) = 0, we have

H0(αx) ≤ αH0(x), (7.3.29)

provided that 0 ≤ α ≤ 1, and x ∈ (0, r]. Using (7.3.24), (7.3.27), (7.3.29) and

Jensen’s inequality, we obtain that

ψ(t) = 1
I(t)

∫ t

t1
I(t)H0[H−1

0 (k′′1(s))] −k
′
1(s)

H−1
0 (k′′1(s))

∫
Γ2
|u(t)− u(t− s)|2dΓds

≥ 1
I(t)

∫ t

t1
H0[I(t)H−1

0 (k′′1(s))] −k
′
1(s)

H−1
0 (k′′1(s))

∫
Γ2
|u(t)− u(t− s)|2dΓds

≥ H0

(
1
I(t)

∫ t

t1
I(t)H−1

0 (k′′1(s)) −k′1(s)
H−1

0 (k′′1(s))

∫
Γ2
|u(t)− u(t− s)|2dΓds

)

= H0

(
−
∫ t

t1
k′1(s)

∫
Γ2
|u(t)− u(t− s)|2dΓds

)
, ∀ t ≥ t1. (7.3.30)

This implies that

−
∫ t

t1
k′1(s)

∫
Γ2
|u(t)− u(t− s)|2dΓds ≤ H−1

0 (ψ(t)), ∀ t ≥ t1.

Also, we define

$(t) :=
∫ t

t1

−k′2(s)
H−1

0 (k′′2(s))

∫
Γ2

∣∣∣∣∣∂u(t)
∂ν

− ∂u(t− s)
∂ν

∣∣∣∣∣
2

dΓds,
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and

χ(t) :=
∫ t

t1
k′′2(s) −k′2(s)

H−1
0 (k′′2(s))

∫
Γ2

∣∣∣∣∣∂u(t)
∂ν

− ∂u(t− s)
∂ν

∣∣∣∣∣
2

dΓds.

Similarly, we deduce that, for all t ≥ t1,

$(t) ≤ 1, (7.3.31)

and

χ(t) < min{r,H(r), H0(r)}. (7.3.32)

It is also easy to see that

χ(t) ≤ −c
E ′(t)− τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ− τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 , ∀ t ≥ t1. (7.3.33)

Repeating the above steps, we arrive at

−
∫ t

t1
k′2(s)

∫
Γ2

∣∣∣∣∣∂u(t)
∂ν

− ∂u(t− s)
∂ν

∣∣∣∣∣
2

dΓds ≤ H−1
0 (χ(t)). (7.3.34)

Therefore, (7.3.3) becomes, for some new positive constants c, c1 and c2,

F ′(t)

≤ −θ0E(t) + c1k
2
1(t)

∫
Γ2
|u0|2dΓ + c2k

2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ + cH−1
0 (ψ(t)) + cH−1

0 (χ(t))

≤ −θ0E(t) + c1k
2
1(t)

∫
Γ2
|u0|2dΓ + c2k

2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ + cH−1
0 (Λ(t)), (7.3.35)

where

Λ(t) = max
t≥t1
{ψ(t), χ(t)} < min{r,H(r), H0(r)}. (7.3.36)
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Also, we have

Λ(t) ≤ −c
E ′(t)− τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ− τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 , ∀ t ≥ t1. (7.3.37)

Now, for ε0 < r, C0 > 0, using the fact that H ′0 > 0, H ′′0 > 0 and (7.3.14), we obtain

that the functional

F1(t) = F (t)×

H ′0

ε0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds


+C0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds


(7.3.38)

satisfies

F ′1(t)

=

ε0

E ′(t)− τ1
2

(∫
Γ2
|u0|2dΓ

)
k2

1(t)− τ2
2

(∫
Γ2

∣∣∣∂u0
∂ν

∣∣∣2 dΓ
)
k2

2(t)

E(0) + τ1
2

(∫
Γ2
|u0|2dΓ

) ∫∞
0 k2

1(s)ds+ τ2
2

(∫
Γ2

∣∣∣∂u0
∂ν

∣∣∣2 dΓ
) ∫∞

0 k2
2(s)ds

F (t)

× H ′′0

ε0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds



+ H ′0

ε0

E(t) + τ1
2

(∫
Γ2
|u0|2dΓ

) ∫∞
t k2

1(s)ds+ τ2
2

(∫
Γ2

∣∣∣∂u0
∂ν

∣∣∣2 dΓ
) ∫∞

t k2
2(s)ds

E(0) + τ1
2

(∫
Γ2
|u0|2dΓ

) ∫∞
0 k2

1(s)ds+ τ2
2

(∫
Γ2

∣∣∣∂u0
∂ν

∣∣∣2 dΓ
) ∫∞

0 k2
2(s)ds

F ′(t)
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+C0

E ′(t)− τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ− τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ


≤ F ′(t)×

H ′0

ε0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds


+C0

E ′(t)− τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ− τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 , ∀ t ≥ t1. (7.3.39)

Hence, using (7.3.35), we obtain, for all t ≥ t1,

F ′1(t) ≤ +cH−1
0 (Λ(t))− θ0E(t)

×H ′0

ε0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds



×H ′0

ε0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds



+H ′0

ε0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds


×

c1k
2
1(t)

∫
Γ2
|u0|2dΓ + c2k

2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ


+C0

E ′(t)− τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ− τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
 , ∀ t ≥ t1. (7.3.40)
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Let H∗0 be the convex conjugate of H0 in the sense of Young (see [3], pp.61-64), then

H∗0 (s) = s(H ′0)−1(s)−H0[(H ′0)−1(s)], if s ∈ (0, H ′0(r)], (7.3.41)

and H∗0 satisfies the following Young’s inequality:

AB ≤ H∗0 (A) +H0(B), if A ∈ (0, H ′0(r)], B ∈ (0, r] (7.3.42)

with

A = H ′0

ε0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds

 ,

B = H−1
0 (Λ(t)).

Using (7.3.36), (7.3.37) and (7.3.40)-(7.3.42), we obtain that, for all t ≥ t1,

F ′1(t) ≤ −θ0E(t)A+ cH∗0 (A)

+A
c1k

2
1(t)

∫
Γ2
|u0|2dΓ + c2k

2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
+ cΛ(t)

+C0

E ′(t)− τ1

2 k
2
1(t)

∫
Γ2
|u0|2dΓ− τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ


≤ −θ0E(t)

×H ′0

ε0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds


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+H ′0

ε0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds



×c

ε0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds



+H ′0

ε0

E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds


×

c1k
2
1(t)

∫
Γ2
|u0|2dΓ + c2k

2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ


−c

E ′(t)− τ1

2 k
2
1(t)

∫
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|u0|2dΓ− τ2

2 k
2
2(t)

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
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Consequently, with a suitable choice of C0, we have, for all t ≥ t1,
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Using (7.3.12), for some new positive constants c1 and c2, we have
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Similarly, using (7.3.41) and (7.3.42), we find that, for all t ≥ t1 (t1 could be even

large if needed),
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Therefore, with suitable choice of ε0, (7.3.45) becomes
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where H1(t) = tH ′0(ε0t) and θ′ is a positive constant.

Noting that H ′1(t) = H ′0(ε0t)+ε0tH
′′
0 (ε0t), then using the strict convexity of H0 on

(0, r], we find that H ′1(t) > 0, H1(t) > 0, on (0, 1]. Thus, from (7.3.14) and (7.3.44),

we obtain that, for all t ≥ t1,
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A simple integration over (t1, t) yields
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∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds


+ 1
θ′
F1(t1) + c1

θ′

∫
Γ2
|u0|2dΓ

∫ t

t1
H0(k1(s))ds+ c2

θ′

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ t

t1
H0(k2(s))ds.

(7.3.48)
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This gives, for some new positive constants c0, c1 and c2, and for all t ≥ t1

H1


E(t) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds

E(0) + τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
0

k2
1(s)ds+ τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

0
k2

2(s)ds


≤ c0

t
F1(t1) + c1

t

∫
Γ2
|u0|2dΓ

∫ t

t1
H0(k1(s))ds+ c2

t

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ t

t1
H0(k2(s))ds.

(7.3.49)

Therefore, we obtain, for some positive constant C,

E(t) ≤

CH−1
1


c0 + c1

∫
Γ2
|u0|2dΓ

∫ t

t1
H0(k1(s))ds+ c2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ t

t1
H0(k2(s))ds

t


−τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds− τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds. (7.3.50)

This completes the proof of Theorem 6.2.8.
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Appendix A

SELECTED DERIVATION

A.1 Some Derivations in O(ε) Problem

The O(ε) problem is the linear problem in §2 with w = w1, φ = φ1, and τ = t0. A

solution is

w1 =


Aeλt0g1(η), η > 0

Aeλt0g2(η), η < 0
,

φ1 = Aeλt0 +B,

where A and B are constants. Because pure imaginary eigenvalues mark a transition

from a stable to an unstable regime, we are interested in λ expands at iω. Also, we

will try to produce a solution with the same structure to the nonlinear problem by

allowing A and B to vary slowly. In other words, let us modulate the amplitudes of

the linearly unstable modes by functions that depend only on t1 and t2. Then we are
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considering functions of the form

w1 =


A(t1, t2)eiwt0g1(η) + CC, η > 0,

A(t1, t2)eiwt0g2(η) + CC, η < 0,
(A.1.1)

φ1 =
{
A(t1, t2)eiωt0 + CC

}
+B(t1, t2), (A.1.2)

where CC are the complex-conjugate terms. From now on we will use the notation A

and B to mean A(t1, t2) and B(t1, t2).

The functions w1 and φ1 above “almost” satisfy the eigenvalue problem in §2. In

particular,

∂w1

∂t0
+ L(w1, φ1) =


−Aeiωt0(g′′1 + g′1 − iωg1 − iωe−η) + CC, η > 0

−Aeiωt0(apg′′2 + g′2 − iωg2) + CC. η < 0

∂w1

∂t0
+ L(w1, φ1) =


−Aeiωt0(g′′1 + g′1 − iωg1 − iωe−η) + CC, η > 0,

−Aeiωt0(apg′′2 + g′2 − iωg2) + CC. η < 0.

Recalling that the eigenvalue λ = α + iω, add and subtract α terms to rewrite the

right-hand side above as


−Aeiωt0 (g′′1 + g′1 − (α + iω)g1 − (α + iω)e−η)− Aαeiωt0(g1 + e−η) + CC, η > 0,

−Aeiωt0 (apg′′2 + g′2 − (α + iω)g2)− Aαeiωt0g2 + CC, η < 0,

which equals 
−Aαeiωt0(g1 + e−η) + CC, η > 0,

−Aαeiωt0g2 + CC, η < 0,
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because λ = α + iω is an exact eigenvalue. Therefore by (3.3.4), we obtain

∂w1

∂t0
+ L(w1, φ1) =


−ε2χAeiωt0(g1 + e−η) + CC +O(ε3), η > 0,

−ε2χAeiωt0g2 + CC +O(ε3), η < 0.
(A.1.3)

Similarly, substituting w1 and φ1 into the boundary conditions, we find

M(w1, φ1) = ε2χAeiωt0νc + CC +O(ε3) (A.1.4)

and

N (w1, φ1) = −ε2χAeiωt0 + CC +O(ε3). (A.1.5)

The right-hand sides of (A.1.3)–(A.1.5) will contribute to the O(ε3) problem.

A.2 Some Derivations in O(ε2) Problem

The solution to problem (3.4.28) and (3.4.29) are given as follows:

g1(η) = (1 + νcλ) exp
(
−1−

√
1 + 4λ

2 η

)
− e−η,

g2(η) = νcλ exp
−1 +

√
1 + 4apλ

2ap
η

,
k+

0 (η) = (c∗1 − r0η) e−η + g′1(η),

k−0 (η) = c∗2e
− η
ap + g′2 + c∗3,
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where

c∗1 = 1
2K

′′(1)νcω2 + r0νc − g′1(0),

c∗2 = − (g′′1(0)− c∗1 − apg′′2(0)) ,

c∗3 = 1
2K

′′(1)νcω2 + r0νc − c∗2 − g′2(0).

And

k+
2 (η) = c∗4 exp

(
−1−

√
1 + 8iω

2 η

)
+ g′1(η)−

(1
2 + c2

)
e−η,

k−2 (η) = c∗5 exp
−1 +

√
1 + 8apiω

2ap
η

+ g′2(η),

where

c∗4 =
(
−1

2K
′′(1)νcω2 − g′1(0) + 1

2

)
+ (1 + 2νciω)C2,

c∗5 =
(
−1

2K
′′(1)νcω2 − g′2(0)

)
+ 2νciωC2,

C2 = Top
Bottom ,

Top =
(1

2K
′′(1)νcω2 + g′1(0)− 1

2

) −1−
√

1 + 8iω
2 − 1

2 − (g′′1(0)− apg′′2(0))

−
(1

2K
′′(1)νcω2 + g′2(0)

) −1 +
√

1 + 8apiω
2 ,

Bottom = (1 + 2νciω) −1−
√

1 + 8iω
2 − 2νciω

−1 +
√

1 + 8apiω
2 + 2iω + 1.
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A.3 Example

For instance as in [43], if

k′i(t) = −exp(−tq), i = 1, 2, where 0 < q < 1

then

k′′i (t) = H(−k′i(t)), i = 1, 2, where H(t) = qt

[ln
(

1
t

)
]

1
q
−1
, for t ∈ (0, r], r < 1.

Since

H ′(t) =
(1− q) + q ln

(
1
t

)
[ln
(

1
t

)
]

1
q

and H ′′(t) =
(1− q)

[
ln
(

1
t

)
+ 1

q

]
[ln
(

1
t

)
]

1
q

+1
,

the function H satisfies hypothesis (A4) on the interval (0, r] for any 0 < r < 1. Also,

we can easily verify that (6.2.18) is satisfied for any α > 1 by talking D(t) = tα.

Thus, we can obtain an explicit rate of decay as stated in Theorem 6.2.8. Noting that

the function H0(t) = H(tα) has the following derivative:

H ′0(t) =
qαtα−1

[
1
q
− 1 + ln

(
1
tα

)]
[ln
(

1
tα

)
]

1
q

.

Then, we do some direct calculations and use (6.2.17) to obtain that

E(t) ≤ C

c0 + c1
∫
Γ2
|u0|2dΓ

∫ t
t1
H0(k1(s))ds+ c2

∫
Γ2

∣∣∣∂u0
∂ν

∣∣∣2 dΓ
∫ t
t1
H0(k2(s))ds

t


1/(2α)

−τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds− τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds, ∀ t ≥ t1,
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(A.3.1)

for any α > 1, where

H0(ki(s)) = q(ki(s))α

ln
(

1
(ki(s))α

) , i = 1, 2.

Therefore, taking α→ 1, the energy decays at the following rate:

E(t) ≤ C


c0 + c1

∫
Γ2
|u0|2dΓ

∫ t

t1
H0(k1(s))ds+ c2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ t

t1
H0(k2(s))ds

t


1/2

−τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds− τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds, ∀ t ≥ t1.

(A.3.2)

If
∫ ∞

0
H(ki(s))ds < +∞, i = 1, 2, then for all t ≥ t1, equation (A.3.2) is reduced to

E(t) ≤ C

t
1
2
− τ1

2

(∫
Γ2
|u0|2dΓ

) ∫ ∞
t

k2
1(s)ds− τ2

2

∫
Γ2

∣∣∣∣∣∂u0

∂ν

∣∣∣∣∣
2

dΓ
∫ ∞

t
k2

2(s)ds, ∀ t ≥ t1.

129



Appendix B

SELECTED FIGURES

B.1 Figure for Numerical and Asymp-

totic Solutions (ap = 1)
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Figure B.1: Comparison between numerical (solid line) and asymptotic (dashed line) for
Arrhenius kinetics: ap = 1, σ = 0.46, ε = 0.1, A(0) = 0.1, νc ≈ 0.2361.

130



B.2 Figure for Numerical and Asymp-

totic Solutions (ap = 0.2)
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Figure B.2: Comparison between numerical (solid line) and asymptotic (dashed line) for
Arrhenius kinetics: ap = 0.2, σ = 0.46, ε = 0.1, A(0) = 0.1, νc ≈ 0.3041.

B.3 Figure for Velocity (ap = 0.2)

Figure B.3: Velocity perturbations versus time (ε = 0.2, ap = 0.2, A(0) = 0.1, ν = νc − ε2),
for different σ, we get: upper left: quasi-periodic solution, upper right: period doubling;
lower left: period quadrupling, lower right: period octupling
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B.4 Figure for Phase Plots (ap = 0.2)

Figure B.4: Phase plots of the four solutions of Figure B.3 for ap = 0.2, 1350 < t < 1500:
velocity perturbations v(t) versus dv/dt.

B.5 Figure for Velocity (ap = 0.8)

Figure B.5: Velocity perturbations versus time (ε = 0.2, ap = 0.8, A(0) = 0.1, ν = νc − ε2)
for different σ, we get: upper left: quasi-periodic solution, upper right: period doubling;
lower left: period quadrupling, lower right: period octupling
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B.6 Figure for Phase Plots (ap = 0.8)

Figure B.6: Phase plots of the four solutions of Figure B.5 for ap = 0.8, 1350 < t < 1500:
velocity perturbations v(t) versus dv/dt.

B.7 Figure for Fourier Plots (ap = 1)

Figure B.7: Fourier amplitude for ap = 1.
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B.8 Figure for Fourier Plots (ap = 0.8)

Figure B.8: Fourier amplitude for ap = 0.8.

B.9 Figure for Fourier Plots (ap = 0.6)

Figure B.9: Fourier amplitude for ap = 0.6. 0 < σ < 1
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Appendix C

SELECTED NUMERICAL CODE

C.1 MATLAB Code for Numerical So-

lution
1 % Kewang -- Numerical solution / update: 03/05/2018
2 %equatiions:
3 %partial_u/partial_t-V*partial_u/partial_x
4 % =a_b*partial^2_u/partial_x^2, for x<0, (1)
5 %%partial_u/partial_t-V*partial_u/partial_x
6 % =partial^2_u/partial_x^2, for x>0, (2)
7 %boundary conditions:
8 %partial_u(0+,t)/parti_x-a_b*partial_u(0-,t)/parti_x=-V(t), (3)
9 %u(0+,t)=u(0-,t)=u_0(t)=1+neo*K(V(t)), (4)

10 %u(L,t)=0, (5)
11 %partial_u(-L,t)/partial_x=0, (6)
12 % where
13 %K(V)=log(V)/(1-(1-sigma)*neo*ln(V)), (7)
14 %0<=a_b<=1, 0<=sigma<=1 (8)
15 %neo=neo_c-ep*ep (9)
16 %with neo_c determined by
17 %(1-a_b)^2*(3+a_b)*(neo_c)^4-(1-a_b)*(19a_b-11)*(neo_c)^3
18 %+2*(4*a_b*a_b+9*a_b-11)*(neo_c)^2+4*(3+a_b)*neo_c-2*(1+a_b)=0, (10)
19 %initial condition
20 %V(0)=1+ep*ap, (11)
21 %u(x>=0,0)=exp(-x)+ep*ap*2*real(Gn*exp(miu_n*x)-exp(-x)), (12)
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22 %u(x<=0,0)=1+Gp*ep*ap*2*real(exp(miu_p*x)), (13)
23 %where
24 %Gn=(neo_c*(1+a_b*miu_p)-1)/(neo_c*(a_b*miu_p-miu_n)-1), (14)
25 %Gp=neo_c*(1+miu_n)/(neo_c*(a_b*miu_p-miu_n)-1), (15)
26 %miu_p=2.0*omega_c*1.0i/(1+sqrt(1+4.0*a_b*omega_c*1.0i)), (16)
27 %miu_n=(-1-sqrt(1+4.0*omega_c*1.0i))/2.0, (17)
28 %omega_c^2=((1-a_b)*neo_c-1)/(2*neo_c*(2*(1-a_b)*neo_c-1-a_b)). (18)
29 clear;clc
30 a_p=0.2;
31 %a_p=1;
32 %a_p=0.8;
33 sigma=0.46;ep=0.1;
34 dt=0.005; tmax=100; t=(0:0.005:tmax); n=length(t);
35 % Perturbate Velocity
36 % calculate neo_c and omega
37 coe_neo=zeros(1,5);
38 coe_neo(1)=(1-a_p)^2;
39 coe_neo(2)=(1-a_p)*(11-19*a_p)/(3+a_p);
40 coe_neo(3)=2*(-11+9*a_p+4*a_p*a_p)/(3+a_p);
41 coe_neo(4)=4;
42 coe_neo(5)=-2*(1+a_p)/(3+a_p);
43 x_neo_c=roots(coe_neo);
44

45 I_neo_c=0;
46 for i_x=1:length(x_neo_c)
47 if imag(x_neo_c(i_x))<=1.0e-6
48 % neo_c value
49 neo_c=real(x_neo_c(i_x));
50 %omega_c value
51 omega_c_sq=((1-a_p)*neo_c-1)/(2*neo_c*(2*(1-a_p)*neo_c-1-a_p));
52 if omega_c_sq>1.0e-6
53 omega_c=sqrt(omega_c_sq);
54 miu_n=-(1+sqrt(1+4.0*omega_c*1.0i))/2.0;
55 miu_p=2.0*omega_c*1.0i/(1+sqrt(1+4.0*a_p*omega_c*1.0i));
56 %check non-trivial solution condition
57 non_trival=(1.0i*omega_c*neo_c*miu_n+1.0i*omega_c+miu_n+1)...
58 *(neo_c+neo_c*a_p*miu_p-1)...
59 -(1.0i*omega_c*neo_c+1)*a_p*miu_p*neo_c*(miu_n+1);
60 if abs(non_trival)<1.0e-6
61 I_neo_c=I_neo_c+1;
62 end
63 end
64 end
65 end
66 if abs(I_neo_c-1)>0.1
67 disp('problem for solving critical value neo_c')
68 pause
69 end
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70 omega=omega_c;
71 disp('a_p, neo_c, omega')
72 disp([a_p neo_c omega])
73 %%%%%%%%%%%%%%%--genealized model %%%%%%%%%%%%
74 % let \eta be x
75 dx=0.025; %step for x
76 x_neg=-10+dx:0.025:0-dx;
77 x_pos=0+dx:0.025:10-dx;
78 %\exp(-\eta)
79 E=exp(-(0:0.025:10-dx));
80 % initial amplitude
81 A_0=0.1;
82 g1=2*real((1+neo_c*1i*omega)*exp((-1-sqrt(1+4*1i*omega))...
83 /2*x_pos)-exp(-x_pos));
84 g2=2*real(neo_c*1i*omega*exp((-1+sqrt(1+4*a_p*1i*omega))/(2*a_p)*x_neg));
85

86 % U_0 is the initial values for [\phi,u_2,....,u_m0_...u_M-1]
87 U_0=[0,A_0*g2,0,A_0*g1];
88 size_n=size(U_0);
89 %solution
90 % Initial guess for Newton's method.
91 %U=zeros(size_n);
92 U_initial=U_0;
93 % d is the first column of Df(x); r is the first row of Df(x)
94 % a is the main digonal; c is the upper digonal
95 % b is the lower digonal; f is nonhomogenious terms
96 % initialize
97 d=zeros(size_n);r=zeros(size_n);a=zeros(size_n);b=zeros(size_n-1);
98 c=zeros(size_n-1);f=ones(size_n);udif=ones(size_n);inf=1;
99 V=zeros(1,n); V(1)=0;

100 for k=1:n-1
101

102 while inf<=100 && (norm(udif)>0.0000001 || norm(f)>0.0000001)
103 inf=inf+1;
104 r(1)=ep*U_0(2);r(2)=(dx/dt+(1+ep*U_0(1))-a_p/dx);r(3)=dx/dt...
105 +a_p/dx; r(4:798)=dx/dt;r(799)=dx/dt+1/dx;r(800)=dx/dt-1/dx;
106

107 a(1)=0;a(2:400)=-(1+dt/(dx)^2*a_p);a(401)=1;a(402:800)=-(1+dt/(dx)^2);
108

109 c(1)=r(2);c(2:400)=(dt/(2*(dx)^2)*a_p+dt/(4*dx)*(1+ep*U_initial(1)));
110 c(401)=0;c(402:799)=(dt/(2*(dx)^2)+dt/(4*dx)*(1+ep*U_initial(1)));
111

112 d(1)=ep*U_0(2);d(2)=ep*dt/(4*dx)*U_initial(3);
113 b(1)=d(2);b(2:399)=dt/(2*(dx)^2)*a_p-dt/(4*dx)*(1+ep*U_initial(1));
114 b(400)=0;b(401:799)=dt/(2*(dx)^2)-dt/(4*dx)*(1+ep*U_initial(1));
115 f(1)=-(dx/dt*(sum(U_initial(2:800)))-dx/dt*(sum(U_0(2:800))));
116 Part1_A=-((1+dt/(dx)^2*a_p)*U_initial(2)+(dt/(2*(dx)^2)*a_p...
117 +dt/(4*dx)*(1+ep*U_initial(1)))*U_initial(3));

137



118 Part1_B=(1-dt/(dx)^2*a_p)*U_0(2)+(dt/(2*(dx)^2)*a_p...
119 +dt/(4*dx)*(1+ep*U_0(1)))*U_0(3);
120 f(2)=-(Part1_A+Part1_B);
121

122 for i=3:400
123 d(i)=ep*dt/(4*dx)*(U_initial(i+1)-U_initial(i-1));
124 Part2_A=(dt/(2*(dx)^2)*a_p-dt/(4*dx)...
125 *(1+ep*U_initial(1)))*U_initial(i-1)...
126 -(1+dt/(dx)^2*a_p)*U_initial(i)...
127 +(dt/(2*(dx)^2)*a_p+dt/(4*dx)...
128 *(1+ep*U_initial(1)))*U_initial(i+1);
129 Part2_B=(dt/(2*(dx)^2)*a_p-dt/(4*dx)*(1+ep*U_0(1)))...
130 *U_0(i-1)+(1-dt/(dx)^2*a_p)*U_0(i)...
131 +(dt/(2*(dx)^2)*a_p+dt/(4*dx)*(1+ep*U_0(1)))*U_0(i+1);
132 f(i)=-(Part2_A+Part2_B);
133 end
134 d(401)=(-neo_c*1/((1+ep*U_initial(1))*(1-neo_c*(1-sigma)...
135 *log(1+ep*U_initial(1)))^2));
136 f(401)=-(U_initial(401)-(neo_c*log(1+ep*U_initial(1))...
137 /(1-neo_c*(1-sigma)*log(1+ep*U_initial(1))))/ep);
138 for i=402:799
139 d(i)=ep*dt/dx/4*(U_initial(i+1)-U_initial(i-1))-dt*E(i-400)/2;
140 Part3_A=(dt/(2*(dx)^2)-dt/(4*dx)*(1+ep*U_initial(1)))...
141 *U_initial(i-1)-(1+dt/(dx)^2)*U_initial(i)...
142 +(dt/(2*(dx)^2)+dt/(4*dx)*(1+ep*U_initial(1)))*U_initial(i+1);
143 Part3_B=(dt/(2*(dx)^2)-dt/(4*dx)*(1+ep*U_0(1)))...
144 *U_0(i-1)+(1-dt/(dx)^2)*U_0(i)...
145 +(dt/(2*(dx)^2)+dt/(4*dx)*(1+ep*U_0(1)))*U_0(i+1);
146 Part3_C=(U_initial(1)+U_0(1))*dt/2*E(i-400);
147 f(i)=-(Part3_A+Part3_B-Part3_C);
148 end
149 d(800)=-ep*dt/dx/4*U_initial(798)-dt*E(400)/2;
150 Part4_A=(dt/(2*(dx)^2)-dt/(4*dx)*(1+ep*U_initial(1)))...
151 *U_initial(799)-(1+dt/(dx)^2)*U_initial(800);
152 Part4_B=(dt/(2*(dx)^2)-dt/(4*dx)*(1+ep*U_0(1)))...
153 *U_0(799)+(1-dt/(dx)^2)*U_0(800);
154 Part4_C=(U_initial(1)+U_0(1))*dt/2*E(400);
155 f(800)=-(Part4_A+Part4_B-Part4_C);
156

157

158 for j=800:-1:3
159 a(j-1)=a(j-1)-b(j-1)*c(j-1)/a(j);
160 d(j-1)=d(j-1)-d(j)*c(j-1)/a(j);
161 f(j-1)=f(j-1)-f(j)*c(j-1)/a(j);
162

163 r(j-1)=r(j-1)-b(j-1)*r(j)/a(j);
164 f(1)=f(1)-f(j)*r(j)/a(j);
165 d(1)=d(1)-d(j)*r(j)/a(j); a(1)=d(1);

138



166 r(1)=d(1);
167 c(j-1)=0;r(j)=0;
168 end
169 a(1)=a(1)-d(2)*c(1)/a(2);
170 f(1)=f(1)-f(2)*c(1)/a(2);
171 c(1)=0;r(2)=c(1);
172 b(1)=d(2);r(1)=a(1);d(1)=a(1);
173

174 udif(1)=f(1)/a(1);udif(2)=(f(2)-d(2)*udif(1))/a(2);
175 for i=3:800
176 j=i-1;
177 udif(i)=(f(i)-d(i)*udif(1)-b(j)*udif(j))/a(i);
178 end
179 U_initial=U_initial+udif;
180 end
181 udif=ones(size_n);f=ones(size_n);
182 clear a b c d f r
183 clear Part1_A Part2_A Part3_A Part4_A Part1_B Part2_B ...
184 Part3_B Part4_B Part3_C Part4_C
185 U_0=U_initial;
186 %U_initial=U;
187 V(k+1)=U_0(1);
188 inf=1;
189 end
190 tp=(0:dt:tmax);
191 plot(tp,V);

C.2 MATLAB Code for Asymptotic So-

lution
1 % Kewang : asymptotic solution/ update: 03/05/2018
2 %a_p=1;
3 %a_p=0.2;
4 a_p=0.5;
5 %a_p=0.8;
6 sigma=0.46;ep=0.1;
7 dt=0.00025; tmax=1; t=(0:0.00025:tmax); n=length(t);
8

9 % calculate neo_c and omega
10 coe_neo=zeros(1,5);
11 coe_neo(1)=(1-a_p)^2;
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12 coe_neo(2)=(1-a_p)*(11-19*a_p)/(3+a_p);
13 coe_neo(3)=2*(-11+9*a_p+4*a_p*a_p)/(3+a_p);
14 coe_neo(4)=4;
15 coe_neo(5)=-2*(1+a_p)/(3+a_p);
16 x_neo_c=roots(coe_neo);
17

18 I_neo_c=0;
19 for i_x=1:length(x_neo_c)
20 if imag(x_neo_c(i_x))<=1.0e-6
21 % neo_c value
22 neo_c=real(x_neo_c(i_x));
23 %omega_c value
24 omega_c_sq=((1-a_p)*neo_c-1)/(2*neo_c*(2*(1-a_p)*neo_c-1-a_p));
25 if omega_c_sq>1.0e-6
26

27 omega_c=sqrt(omega_c_sq);
28 miu_n=-(1+sqrt(1+4.0*omega_c*1.0i))/2.0;
29 miu_p=2.0*omega_c*1.0i/(1+sqrt(1+4.0*a_p*omega_c*1.0i));
30 %check non-trivial solution condition
31 non_trival=(1.0i*omega_c*neo_c*miu_n+1.0i*omega_c+miu_n+1)...
32 *(neo_c+neo_c*a_p*miu_p-1)...
33 -(1.0i*omega_c*neo_c+1)*a_p*miu_p*neo_c*(miu_n+1);
34 if abs(non_trival)<1.0e-6
35 I_neo_c=I_neo_c+1;
36 end
37 end
38 end
39 end
40

41 if abs(I_neo_c-1)>0.1
42 disp('problem for solving critical value neo_c')
43 pause
44 end
45 omega=omega_c;
46 disp('a_p, neo_c, omega')
47 disp([a_p neo_c omega])
48 %%%%%%%%%%%%%%%-Kewang--genealized model %%%%%%%%%%%%
49 % let \eta be x
50 syms x
51 %K(x)=\ln(V)/(1-neo_c(1-sigma)\ln(V))
52 %K_2 is the second order derivative,K_3 third order derivative at V=1
53 K_2=-1+2*neo_c*(1-sigma);
54 K_3=6*neo_c^2*(1-sigma)^2-6*neo_c*(1-sigma)+2;
55 %r0
56 %r0=-omega^2*(4/(sqrt(1-4*a_p*1i*omega)+sqrt(1+4*a_p*1i*omega))+K_2);
57 r0=-omega^2*((1-sqrt(1+4*a_p*1i*omega))/(2*a_p*omega)*1i-1/2*K_2);
58

59 % let x=\eta y=sigma
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60 N_Big_kai=((1+4*a_p*1i*omega)*(2*1i*omega+1)-4*neo_c*(1-a_p)...
61 *omega^2*sqrt(1+4*a_p*1i*omega)+(1+4*1i*omega)*sqrt(1+4*a_p*1i*omega));
62 D_Big_kai=(4*a_p*neo_c*(1+2*1i*omega)+2*neo_c*(1+4*a_p*1i*omega)...
63 +(4*(1-a_p)*neo_c^2*1i*omega+4*neo_c-2)*sqrt(1+4*a_p*1i*omega));
64 Big_kai=N_Big_kai/D_Big_kai;
65

66 %%%%% g1, g2, g1' and g2'
67 g1=(1+neo_c*1i*omega)*exp((-1-sqrt(1+4*1i*omega))/2*x)-exp(-x);
68 g2=neo_c*1i*omega*exp((-1+sqrt(1+4*a_p*1i*omega))/(2*a_p)*x);
69

70 %g1_1 is the value of the first derivative of g1 at zero; g1_2 --second
71 %derivative at zero
72 g1_1=subs(diff(g1),0);
73 g1_2=subs(diff(diff(g1)),0);
74 g2_1=subs(diff(g2),0);
75 g2_2=subs(diff(diff(g2)),0);
76

77 % coeficents for k0_1(x) and k0_2(x); x is \eta
78 c=a_p+2/3;
79 c1=(g1_2-1i*omega-a_p*g2_2);
80 c2=1/2*K_2*neo_c*omega^2+1/2*r0*neo_c-g1_1-c1;
81 c3=1/2*K_2*neo_c*omega^2+1/2*r0*neo_c-g2_1;
82

83 % k0_1(x) and k0_2(x)
84 k0_1=(c1-(1/2*r0+1i*omega)*x)*exp(-x)+diff(g1)+c2;
85 k0_2=diff(g2)+c3;
86

87 % C_2, c4,c5 are coeficents for k2_1(x) and k2_2(x)
88 % C_2, see the paper.
89 N_C_2=(1/2*K_2*neo_c*omega^2+g1_1-1/2)*(-1-sqrt(1+8*1i*omega))...
90 /2-(1/2*K_2*neo_c*omega^2-g2_1)...
91 *(-1+sqrt(1+8*1i*omega))/2-(g1_2-a_p*g2_2)-1/2;
92 D_C_2=(1+2*neo_c*1i*omega)*(-1-sqrt(1+8*1i*omega))...
93 /2-2*neo_c*1i*omega*(-1+sqrt(1+8*a_p*1i*omega))/2+2*1i*omega+1;
94 C_2=N_C_2/D_C_2;
95

96 c4=(-1/2*K_2*neo_c*omega^2-g1_1)+(1+2*neo_c*1i*omega)*C_2;
97 c5=(-1/2*K_2*neo_c*omega^2-g2_1)+2*neo_c*1i*omega*C_2;
98

99 % k2_1(x) and k2_2(x)
100 k2_1=c4*exp((-1-sqrt(1+8*1i*omega))/2*x)+diff(g1)-(1/2+C_2)*exp(-x);
101 k2_2=c5*exp((-1+sqrt(1+8*1i*a_p*omega))/(2*a_p)*x)+diff(g2);
102

103 % F1, P1 is P1_+ ; P2 is P1_-
104 F1=K_2*neo_c*(2*omega^2*C_2+1i*r0*omega)+K_3/2*1i*neo_c*omega^3;
105 P1=r0*diff(g1)+2*1i*omega*C_2*conj(diff(g1))...
106 +1i*omega*real(diff(k0_1))-1i*omega*real(diff(k2_1));
107 P2=r0*diff(g2)+2*1i*omega*C_2*conj(diff(g2))...
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108 +1i*omega*real(diff(k0_2))-1i*omega*real(diff(k2_2));
109 % h1, h2
110 h1=exp((1-sqrt(1+4*1i*omega))/2*x);
111 h2=exp((1+sqrt(1+4*a_p*1i*omega))/(2*a_p)*x);
112

113 %U, V
114 U=-subs(conj(diff(h1)),0)-a_p*subs(conj(diff(h2)),0);
115 V=-subs(conj(h1),0);
116

117 % calcualte Small_kai and Beta_0 in Landau?Stuart equation
118 N_Beta_0=int(P1*conj(h1),0,inf)+int(P2*conj(h2),-inf,0)+F1*U;
119 D_Beta_0=int((g1+exp(-x))*conj(h1),0,inf)...
120 +int(g2*conj(h2),-inf,0)-neo_c*U+V;
121 Beta_0=N_Beta_0/D_Beta_0;
122 Small_kai=Big_kai-1i*omega*U/(D_Beta_0);
123 %%%%%%%%%%%%%%%%%%%% Runge kutta Method
124 y0=0.1;ay=t;alp=1;
125 bea=double(Small_kai);beb=double(Beta_0);
126 y=y0; ay(1)=y;
127 for k=1:n-1
128 tk1=dt*y*(alp*bea+beb*y*conj(y));
129 y1=y+tk1/2;
130 tk2=dt*y1*(alp*bea+beb*y1*conj(y1));
131 y1=y+tk2/2;
132 tk3=dt*y1*(alp*bea+beb*y1*conj(y1));
133 y1=y+tk3;
134 tk4=dt*y1*(alp*bea+beb*y1*conj(y1));
135 y=y+(tk1+2*tk2+2*tk3+tk4)/6;
136 ay(k+1)=y;
137 end
138 vvlin=(1i*omega*c)*exp((1i*omega)*t/ep/ep);
139 vvlin=real(ay.*vvlin+conj(ay.*vvlin));
140 % Plot the solution
141 plot(t/ep/ep,vvlin,'--')
142 title('Asymptotic solution for the velocity')
143 xlabel(['time'],'fontsize',15)
144 ylabel(['V'],'fontsize',15)
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