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Abstract

The future of the electric grid requires advanced control technologies to reliably integrate high
level of renewable generation and residential and small commercial distributed energy resources
(DERs). Flexible loads are known as a vital component of future power systems with the potential
to boost the overall system efficiency. Recent work has expanded the role of flexible and controllable
energy resources, such as energy storage and dispatchable demand, to regulate power imbalances
and stabilize grid frequency. This leads to the DER aggregators to develop concepts such as the
virtual energy storage system (VESS). VESSs aggregate the flexible loads and energy resources
and dispatch them akin to a grid-scale battery to provide flexibility to the system operator. Since
the level of flexibility from aggregated DERs is uncertain and time varying, the VESSs’ dispatch
can be challenging. To optimally dispatch uncertain, energy-constrained reserves, model predictive
control offers a viable tool to develop an appropriate trade-off between closed-loop performance and
robustness of the dispatch. To improve the system operation, flexible VESSs can be formulated
probabilistically and can be realized with chance-constrained model predictive control.

The large-scale deployment of flexible loads needs to carefully consider the existing regulation
schemes in power systems, i.e., generator droop control. In this work first, we investigate the complex
nature of system-wide frequency stability from time-delays in actuation of dispatchable loads. Then,
we studied the robustness and performance trade-offs in receding horizon control with uncertain
energy resources. The uncertainty studied herein is associated with estimating the capacity of and
the estimated state of charge from an aggregation of DERs.

The concept of uncertain flexible resources in markets leads to maximizing capacity bids or con-
trol authority which leads to dynamic capacity saturation (DCS) of flexible resources. We show
there exists a sensitive trade-off between robustness of the optimized dispatch and closed-loop sys-
tem performance and sacrificing some robustness in the dispatch of the uncertain energy capacity
can significantly improve system performance. We proposed and formulated a risk-based chance
constrained MPC (RB-CC-MPC) to co-optimize the operational risk of prematurely saturating the
virtual energy storage system against deviating generators from their scheduled set-point. On a fast
minutely timescale, the RB-CC-MPC coordinates energy-constrained virtual resources to minimize
unscheduled participation of ramp-rate limited generators for balancing variability from renewable
generation, while taking into account grid conditions. We show under the proposed method it is pos-
sible to improve the performance of the controller over conventional distributionally robust methods
by more than 20%.

Moreover, a hardware-in-the-loop (HIL) simulation of a cyber-physical system consisting of pack-
etized energy management (PEM) enabled DERs, flexible VESSs and transmission grid is developed
in this work. A predictive, energy-constrained dispatch of aggregated PEM-enabled DERs is for-
mulated, implemented, and validated on the HIL cyber-physical platform. The experimental results
demonstrate that the existing control schemes, such as AGC, dispatch VESSs without regard to
their energy state, which leads to unexpected capacity saturation. By accounting for the energy
states of VESSs, model-predictive control (MPC) can optimally dispatch conventional generators
and VESSs to overcome disturbances while avoiding undesired capacity saturation. The results
show the improvement in dynamics by using MPC over conventional AGC and droop for a system
with energy-constrained resources.
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1 Chapter I: Introduction

1.1 Motivation and overview

The quality of delivered electrical power and safety of electrical facilities are related to the nominal

system frequency (e.g., 60 Hz in the U.S.). If the balance between supply and demand is not reached

the system frequency will deviate from its nominal at a rate determined by the inertia of the total

system. In the standard appertain of a power system, the imbalances are regulated by fast acting

reserves from generators, such as gas turbines or hydro storage power plants. However, in recent

years, due to environmental and energy concerns and decrease in the cost of renewable generation

such as solar photovoltaic and wind generation, integration of renewables into the grid has became

a growing trend in the world [6]. The capacity of solar photovoltaic generation increased by 25%

and capacity of wind generation increased by 10% in 2018 compared to the previous year [7]. This

faces grid operator both opportunity and challenges.

In contrast to the dispatchable conventional generators which can be precisely scheduled and

controlled, the intermittent renewables resources needs to be forcasted which are involved significant

forecasting errors. These forecast errors can be quite considerable with substantial change over

relatively short duration of time. Figure. 1.1 illustrates wind and solar PV generation variability for

normalized measured Belgian data for a 14 days period.

To enable reliable operation of the power system, supply and demand must always match con-

tinuously. Any supply-demand imbalances leads to frequency variation where the rate of variation

is determined by the total inertia of the power system. Traditionally, the power system inertia is de-

termined as the combined inertia of the conventional generators and loads. Because the distributed

energy resources (DERs) are electrically connected to the power system, these resources typically

do not provide any rotational inertia and power systems, resulting in an overall lower inertia in

the power system. This makes frequency dynamics much faster in power system and traditional

frequency control scheme becomes too slow regarding the disturbance dynamics [8, 9]. Figure 1.2

illustrates the effect of declining inertia, caused in particularly by high shares of wind generation in

the power system.
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Figure 1.1: Normalized hourly measured data of wind and solar PV generation for a 14 days period [1]

In most power systems, a control system operator, or balancing authority controlled the power

plants to match the electrical demand which has been always variable. However, the intermittent

of renewable energy sources as well as forecast uncertainties in renewable in-feed profiles, makes

matching electrical demand and generation more challenging. This calls for more conventional

generators become online which leads to more generators idling, more fuel consumption, and more

pollution. Therefore, the traditional form of ensuring reliability should be shifted toward active

participation of the controllable and flexible energy resources at the consumer level. Flexible loads are

expected to support the system stability according to their characteristic and technical capabilities.

Current DR programs are typically limited to traditional peak shaving or indirect peak pricing

schemes. However, appropriate control schemes can be employed to exploit the DERs’ full flexibility.
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Figure 1.2: Effect of declining system inertia due to increased penetration of renewables on the
frequency responses of the power system following a frequency event of 2750 MW generation trip [2].

Since they can be dispatched very quickly to provide wide range of operation time from a few seconds

to several minutes, they are considered as an alternative to the conventional spinning reserves. While

the concept of DR have been proposed decades ago [10, 11], the DR technology available today is

still in its early stages, but maturing rapidly [12–14].

This dissertation expands upon the UVM project ”Packetized energy management: coordinating

transmission and distribution” which focused on aggregating and coordinating flexible resources to

provide required reserves for integrating renewable into the power grid. The Virtual Power Plants

(VPPs) as a novel technology for aggregating and coordinating a large fleet of residential flexible

energy resources, including electric battery storage, thermostatically controlled loads (TCLs), and

deferrable loads, offers the flexibility to the system operator as a synthetic reserve to preserve grid

stability [15]. When called upon, the VPP can rapidly respond to changes in net-load by quickly

coordinating its fleet of assets to provide requested balancing reserves [16, 17]. Since the level of

offered flexibility from aggregated DERs can not be measured directly, dynamic state estimators

and simplified model must be employed which introduce uncertainty. To accomplish optimal dis-
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patch of these uncertain energy resources, a risk based chance constrained MPC is developed. Our

interdisciplinary research lies at the intersection of power systems and optimizations.

1.2 Background and related work

1.2.1 Demand Response

Residential sector consumes around 40% of the total energy which form the substantial part of the

seasonal and daily peak demand [18]. According to the most recent data published by the U.S.

Energy Information Administration, U.S. electric utilities had about 80 million advanced metering

infrastructure (AMI) installation where about 88% of them are residential advanced meters. These

AMI (also known as smart meter) which are capable of two-way communication between costumers

and electric utilities, cover almost 50% the 150 million electricity costumers in the U.S. [19]. State

of Vermont is one of the leaders in the deployment of smart meters with smart meter penetration

rate of over 81% [20]. Increased penetration of smart meters enables higher active participation of

consumer in DR program. DR can be defined as the change in the electric consumption from their

normal consumption in response to the control signal by end use costumers. The control signal can

be designed with respect to the electricity price or reliability of the system [3]. Costumers are offered

incentive by utility companies to participate in the DR program [21].

Since consumers are more flexible under DR program, the elasticity of the demand is higher as

shown in Fig. 1.3. With no DR program, the demand is shown as vertical line while with the DR

program, the demand curve has negative slope compared to the original curve. Therefore, small

reduction in demand leads to a large reduction in the total price.

Stability of the power system must be maintained with respect to two operating points of voltage

and frequency. Traditionally, conventional power plants are dispatched in a load-following manner.

High integration of uncertain renewbale resources and DR makes the voltage/frequency stability

problem more complicated. DR can be used in a fast and corrective manner to respond to uncertain

and intermittent characteristic of the renewable. Load frequency control (LFC) and corrective

voltage control (CVC) have been used for decades to maintain the frequency and voltage of the

power system. The impact of integrating renewbales and DR program on LFC and CVC have to
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Figure 1.3: Effect of DR on electricity market price [3]

been carefully taken into account [22].

The performance and efficiency of coordinating flexible loads to reduce the total energy cost

that costumers should pay is studied in [23]. It has been shown that appropriate coordinating

of the flexible resources improves the efficiency of the power system operation [24–27]. Flexible

loads aggregators, not only can deliver the valuable electricity service that traditionally provided by

conventional generators, but also their distributed nature make them capable of new services [28].

New independent aggregators are blooming in U.S. market due to the true value they bring to the

market and not regulatory arbitrage [29].

The DR program two main categories illustrated in Fig 1.4 can be explained as follows:

• Price based program: Send electricity prices via communication channels to the consumers

and they will decide whether or not respond to the signals [30]. These types of program only

participate in energy market as the system operator can not control the devices directly.

• Incentive based program: End-consumers receives a defined reward for a specific shift or cur-

tailment of the load. These types of program are usually pre-defined contracts and give some

level of control to the system operator. Therefore, they can participate in the energy, capacity

and ancillary markets [21].

DR can have various benefits and its benefit are not limited to the participants only. Since the
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and pool pumps [34]. Figure 2 illustrates the potential parts and appliances of different end-consumers
for participation in a DR program.

Domestic participation has been limited as the enabling cost of DR for these consumers is higher,
but also residential premises are places of personal belonging which can make it hard to motivate
participation if it means disrupting their way of life, especially if bill savings are deemed small
by the end-consumer and are hence not worth the effort [14]. Furthermore, in the past, domestic
end-consumers have not been equipped with the ability to view dynamic electricity prices and have
typically had flat rate meters installed on their premises [35]. This has limited consumer awareness
to the fact that electricity price changes with time, and hence has prevented them from being able to
make informed energy decisions, however, this is changing with the roll-out of smart meters [35].
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In the case of energy storage, EVs and V2G technology, the aggregators aim to form a bi-lateral
contract with the EV/battery owner, where the aggregator seeks to remotely control the vehicle in
return for providing the vehicle owner with some kind of incentive [36]. Additionally, aggregators often
agree to replace and maintain the battery as an extra incentive to engage owners and to mitigate social
concerns of battery wear and tear [7]. Most research concludes that V2G/battery aggregators are well
suited to provide ancillary services to system operators with the particular emphasis on the reserves
market to provide frequency regulation, and hence this will be the primary market focus for this
type of aggregator [37,38]. Although bulk generating plants can supply cheaper sources of electricity
compared to DR aggregators with the focus on V2Gs/batteries, the pricing mechanism of the reserves
markets requires payments for ‘standby’ capacity and payments for the ‘actual’ energy dispatched,
which enables V2G/battery aggregators to remain competitive [39]. Moreover, the research discusses
the fact that these aggregators have lower capital costs for generation and storage equipment, faster
ramping abilities, and can switch between ramp up/down modes with less equipment degradation
compared to that of traditional centralized generators [39].

To improve the engagement performance of EV, V2G and energy storage within an aggregator, it
is important to consider the comfort level of end-users along with other technical and economic criteria.
For example, consumers should able to set some preferences on their loads and resources such as EVs
and batteries [40]. Consumers should be able to set the priority of consumption, the availability
during a day or a congestion, and the ability to withdraw the DR request from the aggregator

Figure 1.4: Demand response categories and enabling technologies [4].

Table 1.1: Demand response benefits

Consumers Market-Wide Reliablity Environmental

Lower bill
Incentive payments

Lower price
Higher capacity

Defer new investment

Less outage
Diverse resources

More renewables
Better land utilization
Better water quality

Less pollution

demand peak can be shaved using DR, the available infrastructure can be used more efficiently, the

needed electricity from expensive generation units reduce, and consequently the overall electricity

price goes down [31]. Moreover, new investment in generation and transmission area can be avoided

or at least deferred. In a well designed DR program, costumers participate in reducing risk of outage

while the grid operator has wider range of resources to maintain system’s reliability. In addition,

environmental benefits associated with DR program are achieved by providing reserves for the grid

operator and accelerates integration of renewables into the power grid. Some of the DR program’s

benefit are listed in Table. 1.1.
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1.2.2 Virtual energy storage system

DR and energy storage system (ESS) are two main tools that improve the power system reliability

and flexibility by matching the electricity demand to the uncertain renewable generation. DR

program shifts the consumption time while the storage can shift both consumption and generation.

Increased penetration of renewables makes the role of these tools, which can be accessed from

a number of technologies, more important. Since both of these technologies have the ability of

shifting the net-demand over desired period of the time, they are usually evaluated with the common

framework. Different types of the energy storage system are shown in table 1.2 which can be classified

into two groups based on their power ratings and energy rating and are utilized in power and energy

management applications [32].

ESS have been employed for grid frequency regulation since 1980s [33–35]. Conventional gener-

ators can be replaced by large scale ESS which can provide reserve to the power grid. Despite the

declination in the cost of the electrical storage technologies over the last decades, the main challenge

of the large deployment of the energy storage system is their high cost and their large scale deploy-

ment is not feasible yet. Various studies discussed the role of integrating DR and battery storage

and with numerical studies showed that coordinating the flexible resource under DR program re-

sults in considerable reduction in the size of required energy storage [36, 37]. Under DR program,

electrical demand can be shifted over time in a smart manner such that resembles the same charg-

ing or discharging behaviour of the ESS. By careful coordinating the existing flexible loads in the

power system such as thermostatically controllable loads (TCL), DR can be implemented in a lower

cost compared to the ESS. Electric water heaters, refrigerators, heat pumps and heating ventilation

and air conditions are among the most common TCLs that their temperature can be set so that

increase or decrease their demand for balancing purposes [38, 39]. It is estimated that 1.5 million

Table 1.2: Different types of energy storage system [5]

Electrochemical Mechanical Electrical Thermal

Battery
Hydrogen

Flow batteries

Pump hydro
Flywheels

Compressed air

Capacitor
Superconductive magnetic

Hot water storage
Thermal fluid storage

Ceramic thermal storage
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refrigerators can provide approximately 20 MW of response which cost less than $4m while to have

same response power with Flywheel energy storage system would cost approximately $33− 37m. It

is estimated that the energy storage market size will reduce by 50% due to DR program [40].

A virtual energy storage system (VESS) is formed by aggregation of different flexible, controllable

or dispatchable devices including conventional ESS, flexible loads such as TCLS and distributed

generators (DG) as a single ESS with high power/energy ratings and feasible cost [41]. A VESS is

integrated to the power system and vary its consumption level based on the control signal provided

by the grid operator to provide service on the transmission level or distribution level with different

capacity. In contrast to the ESS, VESS can be formed such that demonstrate both high power and

high energy rating with reduced cost and be utilized for wide range of applications accordingly [42].

An overview of a VESS is shown in Fig. 1.5.

.

.

.

.

.

.

Grid Operator

Pref
Balancing signals

MeasurementsPD

Generators’ set-points

Virtual	Energy	Storage	System

Figure 1.5: Overview of the virtual energy storage system.

Since VESSs can provide charging/discharging functions, by responding properly to the renewable

generation output, they can increase the distribution network capacity for renewable generation and

smooth the power output [43]. The cluster of the aggregated flexible loads has a baseline consumption

equals to the sum of the baseline consumption of individual devices. Actions that increase the total

consumption relative to the baseline consumption are charging the VESS and on the hand, actions
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that decrease the total consumption relative to the baseline consumption are emptying the VESS.

Therefore, the evolution of the state of the charge of a VESS, S, can be modeled as follows:

S[l + 1] = s[l] + (PC [l]− PT [l])∆τ (1.1)

Pmin
C ≤ PC [l] ≤ Pmax

C (1.2)

0 ≤ S[l] ≤ Smax (1.3)

where PC and PT represent the aggregated power consumption and the aggregated scheduled baseline

consumption and ∆τ is the length of time step.

Additionally, they can provide immediate corrective actions following occurrence of a contingency

in the power system and mitigate the probable congestion [5, 44]. Moreover the reserve service

offered by VESS, decreases the required reserve that traditionally should be provided by conventional

generators. Less required reserves from conventional generators means generators can work closer

to their maximum capacity [44].

To summarize, the main four potential advantages of VESS can be listed as [45]:

• Facilitate the penetration of renewables into the power grid

• provide ancillary services

• Avoid/Defer needed investments in the power system’s infrastructures

• Increase the generators loading capacity

The number of the controllable load and the flexibility they can offer is a function of time and

human usage which are uncertaint variable. Therefore, The capacity of the VESS and upper and

lower bound of the power consumption are estimated with respect to the different parameters such

as human usage pattern and outdoor temperature which are uncertain and time-varying.

1.3 Research Objective and Organization

The main objective of this dissertation is to provide a theoretical framework for utilizing the flexibility

offered by VESS under DR program to facilitate integration of uncertain, intermittent renewables
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to the power grid. Since the flexibility offered by VESSs are also uncertain, in both energy state

and energy capacity, a probabilistic optimization framework has been developed on the transmission

level. The challenge is to manage flexible resources reliably whit minimal impact on the quality of the

server. By corrective dispatch of energy resources on a minute-by-minute time scale, transmission

lines congestion and overload are managed via feedback under temperate based rating of transmission

lines. Also, since, significant variable or constant time delays are observed in DR program, the

effects of these delays on system-wide frequency stability is investigated. Additionally a realistic

hardware-in-the-loop platform has been developed. Chapter 2 introduces the basic of the power

system. Chapters 3 − 6 are presented as published or submitted publications. Chapter 7 discusses

the conclusion and avenues for future works. Each chapter is summarized as follow:

• Chapter 2 give introduction on the basic power system models.

• chapter 3 studies the impact of time-delays on frequency dependent load control scheme for a

power system with the droop-controlled generators and describes the conditions under which

the instability can occur and how injecting additional delays to an unstable power system can

bring back that power system to the stable region.

• chapter 4 formulates a chance-constrained optimization problem to integrate the uncertain

energy resources into the power system. The chance constrained problem is solved via the

scenario approach to dispatch energy resources robust against constraint violation. We showed

there exist a sensitive trade-off between robustness of the optimized dispatch and closed-loop

system performance and the popular approach of robustifying the chance-constraints may lead

to conservative solution exacerbating the system performance.

• We extend the results of chapter 4 to to develop an analytical reformulation of the VESSs’

uncertainty and formulate a risk-based, chance constrained problem which co-optimizes the

tracking performance of the control system and operational risk of the power system in chap-

ter 5. The results in chapter 5 show that to dispatch uncertain energy resources under high

penetration of renewables, the risk-based chanced constrained approach outperforms the de-

terministic and the robust approaches by reaching a balance between using energy resources

and being robust against uncertainties.
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• Chapter 6 presents a hardware-in-the-loop platform for validation of cyber-physical-system

consisting of real-time flexible load aggregator realized by a web-server and a transmission level

power system implemented on a real-time simulator. Moreover, we develop a model predictive

control scheme as an alternative to the PI-control-based AGC and we show that energy-aware

controller dispatch energy-constrained resources more efficiently over the time.

• Chapter 7 concludes the dissertation and gives avenues for future work.
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2 Chapter 2: Power system models

2.1 Power flow problem

This chapter gives a brief introduction on the basic of the power system models. The models explain

how the power flows from generators to the loads and succinctly derive the algebraic equations

associated with the physics of the power flow. The power system can be modeled by graph theory

E = (N ,L) with bus i ∈ N and line ij ∈ L. An example of an actual real-world power system based

on the provided data by a transmission utility is illustrated in Fig. 2.1.

PV

PQ

No Load / Gen

345 KV
230 KV
120 KV
115 KV
69 KV
46 KV

under 46 KV

Trasnsformers

Figure 2.1: An actual power system can be modeled as graph with nodes (representing buses) and
vertices (representing transmission lines or transformers)

All transmission lines, phase shifters and transformers can be modeled with a standard π trans-

mission line model (also known as unified branch model) which places a series impedance between

the buses and distributes one half of the shun capacitance of the line on each bus as shown in Fig. 2.2.

The series admittance of the line is defined as
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Vi Vj

Iij Iji

tij : 1

ysh
ij ysh

ij

V
0
i

zij = rij + ixij

Figure 2.2: The π-model of the transmission line

yij = gij + ibij =
1

zij
=

1

rij + ixij
(2.1)

while V, I and t represent complex node voltages, complex branch current and complex trans-

former tap ratio. By considering transformer’s equations the currents and voltage of on different

sides of the transformer can be derived as

Vi
tij

=
V
′
i

1
→ V

′
i =

Vi
tij

(2.2)

I
′
ij = Iijt

∗
ij (2.3)

where the ()∗ denotes phasor conjugate. By applying Kirchhoff’s law, the relationship of the

voltage and current can be derived as follows:

I
′
ij = V

′
i y

sh
ij + (V

′
i − Vj)yij (2.4)

Iji = Vjy
sh
ij + (Vj − V

′
i )yij (2.5)

By substituting (2.2) and (2.3) in (2.4) and (2.5), we can show
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Iij =

Vi

tij
yshij + ( Vi

tij
− Vj)yij

t∗ij
(2.6)

Iji = Vjy
sh
ij + (Vj −

Vi
tij

)yij (2.7)

The relationship between voltage and current now can be placed in matrix form:

Iij
Iji

 =

yij+yshij
tijt∗ij

−yijt∗ij
−yijtij yij + yshij


Vi
Vj

 (2.8)

Different types of branch can be captured within (2.8):

• Transmission line and nominal transformers: tij = 16 0

• in-phase transformer (IPT) and set yshij = 0; tij = aij 6 0

• phase-shifting transformers (PST): set yshij = 0; tij = 16 ψij

Notes that if the transformer does not cause phase shifting, matrix in (2.8) remains symmetric

(tij = t∗ij).

Now we can form N ×N dimensional admittance matrix Y-bus in the following way:

Yi,i = sum of admittance connected to bus i

Yi,j = negative sum of admittance’s connected between bus i and j

The injected current into each node, also known as nodal current, can be found by applying

Kirchhoff’s Current Law as follows:

Ii =
∑
k∈N

yik(Vi − Vk) + Viy
sh
ik (2.9)
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where ΩN represent set of adjacent nodes at node i. By rearranging (2.9) as follows:

Ii = Vi
∑

k∈N ,k 6=i
(yik + yshik ) +

∑
k∈N ,k 6=i

Vk(−yik) (2.10)

and then, based on the definition of the Y-bus we can show

Ii =
∑
k∈N

VkYik (2.11)

The expression shown in (2.11) is valid for all the nodes in the power system and can be vectorized

as follows:

I = YV (2.12)

where I and V are N -dimensional vectors.

By multiplying voltage and complex conjugate of the injected current at each node, the complex

injected power at each node can be derived as follows:

Sij = Pij + iQij = ViI
∗
ij

= Vi
( ∑
k∈N

VkYik
)∗

(2.13)

By substituting the phasor notation of the voltage, Vi = Vi 6 θi, and admittance values in rect-

angular coordination we can show:

Pi + iQi = Vi

∑
k∈N

Vke
i(θi−θk)(Gik − iBik) (2.14)

By writing θi − θk as θik and transforming the voltage phasor from polar coordination to rect-

angular coordination it can be shown as:
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Pi + iQi = Vi
∑
k∈N

Vk(cos(θik) + isin(θik))(Gik − iBik)

= V i
∑
k∈N

Vk(Gikcos(θik) +Biksin(θik) + iGiksin(θik)− iBikcos(θik)) (2.15)

By decomposing the above expression to real and imaginary parts, the injected active and reactive

power can be derived as follows:

Pi = Vi
∑
k∈N

Vk(Gikcos(θik) +Biksin(θik)) (2.16)

Qi = Vi
∑
k∈N

Vk(Giksin(θik)−Bikcos(θik)) (2.17)

This AC power flow model relates the voltage magnitude and voltage phase angle to the active

and reactive power injecting to each node. Since the injected active and reactive power to each bus

are known based on the generation (positive injected power to the bus) and load (negative injected

power to the bus) existed on that bus,P spi and Qspi , the mismatches function are formed as follows:

∆Pi(θ, V ) = P spi − Vi
∑
k∈N

Vk(Gikcos(θik) +Biksin(θik)) (2.18)

∆Qi(θ, V ) = Qspi − Vi
∑
k∈N

Vk(Giksin(θik)−Bikcos(θik)) (2.19)

The AC power flow problem solvers find voltage magnitude and phase angle of all buses, such

that all the mismatches functions become equal to zero. The equation above can be expressed in

the vector form as follows:

f(x) =

∆P (θ, V )

∆Q(θ, V )

 = 0 (2.20)

where x is the vector of unknowns, voltage magnitude and phase angles. The solution of the (2.20)
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can not be solved in closed form and should be solved in an iterative manner employing a Jacobian

matrix:

J(x) =

∂P (x)
θ

∂P (x)
V

∂Q(x)
θ

∂Q(x)
V

 (2.21)

Applying the Newton-Raphson (NR) method to the power flow equation (2.20) leads to the

following non-linear equation

∆P

∆Q

 = J

∆θ

∆V

 (2.22)

If the initial guess of the solution picked close to the solution, the NR method converges to the

solution very fast with less iteration. However, computing full Jacobian matrix at each iteration is

computationally expensive.

2.2 Transmission lines temprature model

To include the effects of phase shifting transformers (PST) and in phase transformers (IPT) with

complex tap ratio tij = aij 6 ψij , unified branch model is employed in which transmission lines

(aij = 1, ψij = 0), PSTs (aij = 1) and IPTs (ψij = 0) can be represented in a unified manner.

As mentionde, power flow equations in the electrical power system are set of nonlinear non-convex

algebraic equations. The power flow on the line connecting bus i to bus j can be shown as:

pij =
V 2
i

a2
ij

gij −
ViVj
aij

[
gijcos(θij − ψij) + bijsin(θij − ψij)

]
(2.23)

The nonlinearity of AC power flow equations make multi period AC-OPF problem computation-

ally intractable. To enable a computationally feasible solution approach, suitable linear approxima-

tion of the AC power flow equation (i.e., ”DC” ) has been adopted while ensuring the convexity of

optimization problem.

under standard DC assumptions:
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• The voltage magnitude of the every buses remains constant at 1 p.u.

• Phase angle difference along the branches is small ( � π/2)

• The active power losses is negligible

• Line’s reactance, xij , is much greater than its resistance, rij

Under these simplifications, the non-linear AC power flow can be reduced into the DC power

flow equations:

pij ≈
θij − ψij
aijxij

=
θ̂ij
x̂ij

(2.24)

where x̂ij = aijxij and θ̂ij = θij − ψij represent lumped reactance and phase angle difference along

the line.

To prevent excessive sagging and to ensure safety of the transmission lines, power flows on the

lines are enforced to be within power limits (MWA). The power carrying capacity of the transmission

lines are determined based on the thermal rating of the conductors. Considering such power limits

for hourly energy management schedule is reasonable. However, in short term planning of the system

the power flows on the lines can exceed the determined power limit without violating the thermal

limits of the lines. Since MPC reinitializes every minute, considering thermal limits instead of the

power limits, can increase transmission capacity significantly.

The DC formulation presented in (2.24) is based on lossless network assumption. However, heat

gain due to electrical and consequently temperature of the transmission line is a function of line

resistive losses (i.e. RI2). To ensure satisfying of the thermal limits, it is needed to include line

losses in power flow. Basically, line losses can be calculated as difference in active power at sending

and receiving nodes

ploss
ij = pij + pji (2.25)
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By substituing (2.23) in (2.25) line losses can be described as

ploss
ij = gij

(
Vi

2

ai2
+ V 2

j − 2
ViVj
aij

cosθ̂ij

)
(2.26)

Under assumption of voltage magnitudes are 1 p.u., θ̂ij are small, nominal tap ratios are close to

1 and by employing second-order Taylor series approximation of cosθ̂ij , (2.26) can be manipulated

as it shown in [46] to give

ploss
ij ≈

rij
ˆθij2

aijx2
ij

= aijrijp
2
ij (2.27)

Since line losses is not linear in θ̂ij (i.e. quadratic), it can not be used in linear constraint

formulation. Therefore, a peicewise linear approximation is applied to (2.27) as it has been done

in [46]. IEEE 738 standard [47], a standard for calculating the current-temperature of bare overhead

conductors, has been used to calculate the conductor temperature. The rate of change in temperature

of a conductor can be calculated by the following heat balance equation (HBE)

mCpṪ (t) = Qsun(t) +QLoss(t)−Qconv(t)−Qrad(t) (2.28)

where Qsun, QLoss, Qconv and Qrad represent the heat gained by solar radiation, the heat gained

due to resistive losses, the heat lost by convection and the heat lost by radiation receptively. Also

mCp represents per unit length conductor heat capacity [J/m-◦C]. According to the IEEE 738

standard [47], a standard for calculating the current-temperature of bare overhead conductors, (2.28)

can be approximated as

mCp ˙Tij(t) = Qsun
ij (t) + ploss

ij (t)− ηc(Tij(t)− Tamb(t))

−ηr((Tij(t) + 273)4 − (Tamb(t) + 273)4)

(2.29)

where Tij and Tamb represent conductor (i, j) and ambient temperatures [◦C]. Also ploss
ij and Qsun

ij
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represent resistive loss per unit length [W/m] and solar heat gain rate [W/m] where the later is a

function of conductor diameter and solar input. Furthermore, values ηc and ηr represent conductive

heat loss rate coefficient [W/m-◦C], and radiative heat loss rate coefficient [w/m-◦C4], where both

are function of conductor characteristics.

The non-linear continuous-time temperature dynamic in (2.29) should be discretized and lin-

earized around the equilibrium point (i.e T ∗ij = T lim
ij ) to become applicable for linear constraint

formulations. While T lim
ij is computed based on steady-state conditions with line current at am-

pacity, Qsun
ij
∗ and T ∗amb are related to the ambient condition and can be obtained directly from

measurements, forecast and historical data. According to [46], linearizing (2.29) with forward Euler

discretization can be shown by the following equations:

∆Tij [k + 1] = τij∆Tij [k] + ρij∆p
loss
ij [k] + δij∆dij [k] (2.30)

τij = 1− Tsγ̄c
mCp

(2.31)

γ̄c = ηc + 4ηr(T
lim
ij + 273)3 (2.32)

δij = [ρij γij ] (2.33)

ρij =
Ts
mCp

(2.34)

γij =
Tsγ̄a
mCp

, γ̄a = ηc + 4ηr(T
∗
amb + 273)3 (2.35)

∆dij = col(∆Qsun
ij ,∆Tamb) (2.36)

The ampacity of a three phase transmission line (i.e., current capacity) Ilim(A) is related to the

base voltage, Vb(V ) and power limit of that line, ulim(V A) as follows:

Ilim =
ulim√
3Vb

(2.37)

As an example, the three phase transmission line rating is given as uij = 175MVA and, the

conductor ampacity is calculated as Ilim = 439.25(A) (i.e., 5 pu at Vb = 230 kV) and associated

temperature limit of Tlim = 83◦C. Then, the nonlinear model is linearized with respect to the
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operating point. The conductor current is changed from 0 to twice of the Ilim and the linear and

the non-linear models of the current are calculated. As it shown in Fig. 2.3, the linearized model

accurately approximates the nonlinear model around the operating point.

Time-steps,  k (Ts = 60 s)

I ij
(p

u)
T 

(℃
) Tmax

Tlinearized
Tnonlinear

Ampacity
Iij

Figure 2.3: Thermodynamical conductor response to step changes in conductor’s current

2.3 The Optimal power flow problem

The main goal of the power system is to generate and deliver power from generation units to the

costumer reliably with the most economical cost. Several tools which can measure, analyze, and

control the power system have been invented and developed. In power system literature, there are

generally three types of problems such as power flow problem (also known as load flow), economic

dispatch problem (ED), and optimal power flow (OPF).
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There are various mathematical approaches to solve a power flow problem considering equations

related to the power generation, power consumption and power transferred in the power system.

However, not all the founded solutions are physically feasible. The Power flow equations do not take

into account physical constraints such as transmission lines’ power limits or generators’ reactive

power limit directly, however, these constraint must be included into the power flow solvers.

Economic dispatch is the process of allocating generation between different generation units to

meet the electrical demand and required reserve margin in a manner that minimizes the total cost

of generation. Each generation unit has its own generation cost curve and the purpose of solving

ED problem is to find the economically optimal power output of the generation units. The ED

formulations mostly concerns with quality constraints such as active and reactive power demand

and simplifies or sometimes even ignores power flow constraints.

The OPF problem aims to minimize the objective function considering physical and operational

constraints. The optimal power flow (OPF) was first introduced in 1960’s and researchers soon have

proven that OPF would be a very difficult problem to solve [48]. Different methods and techniques

of solving OPF have been evolved during these years with developments in optimization theory

and advancements in computational capabilities. Linear, non-linear, and mixed-integer methods

have been utilized for analyzing OPF problems [49]. Power grid operators need to solve the OPF

problem (or its approximation) several times in a day (i.e., every 5 minutes). Since non-linear

solvers are computationally expensive and can not guarantee a global optimal solution, linear solvers

have been employed to solve a linearized version of the OPF problem. OPF problem is mainly

focused on operational cost minimization while some researchers have looked at other aspects of the

power system such as active power losses [50], generators reactive power minimization [51], voltage

stability [52] and using FACT devices [53]. The general form of the optimal power flow problem can

be shown as follows:
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min
x, u

f(x, u) (2.38a)

s.t. g(x, u) = 0, (2.38b)

h(x, u) ≤ L (2.38c)

where f(x, u) is the objective function of the optimization problem, g(x, u) are the nonlinear

power flow equations and h(x, u) represents the set of linear, and non-linear inequality constraints

such as output power of the generation units and power limits of the transmission lines. Moreover,

x represents state variables such as voltage magnitude and phase angles. The control variables u

are defined based on the objective of the optimization problem such as active and reactive output

power of the generation unit, angle of phase shifter or control voltage setting.

For example, for an active power loss minimization, the OPF problem can be modeled as follows:

min
∑
i∈N

∑
k∈N

Gik(V 2
i + V 2

j − 2ViVjcos(θik)) (2.39a)

s.t. ∆P = P spi − Vi
∑
k∈N

Vk(Gikcos(θik) +Biksin(θik)) = 0, ∀i ∈ N , (2.39b)

∆Q = Qspi − Vi
∑
k∈N

Vk(Giksin(θik)−Bikcos(θik)) = 0, i ∈ N , (2.39c)

PGi ≤ PG,i[l] ≤ PG,i, ∀i ∈ G, (2.39d)

QGi ≤ QG,i[l] ≤ QG,i, ∀i ∈ G, (2.39e)

Pij ≤ Pij ≤ Pij ∀ij ∈ L (2.39f)

In the above OPF problem, the total active power loss in the power system is minimized through

a quadratic objective function. The equality constraints are nonlinear real and reactive power

mismatch at all node. The inequality constraints represent the operational constraints and limits

associated with the generation active and reactive power and power limits of transmission lines where

G is a set of all generators in the power system.
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2.4 Security constrained optimal power flow problem

Security, reliability and resilience of power systems have been studied extensively over past decades

and have been referred to as a system’s ability to withstand and recover from contingencies without

any undesirable disruption of customer service.

Certain security criteria should always be satisfied by a power system to ensure secure operations

for all credible contingencies at all times. Among the most fundamental of these criteria is the

concept of N −1 security. A power system is called “N −1 secure” when the system can sustain any

one-component outage (e.g., line, generator, load) without incurring a loss of load or overloading

any components [54]. Thus, an N −1 secure system will not cascade into a major blackout after any

single-component outage. To achieve security requires solving a large-scale complex grid optimization

problem, which in industry today provides locational marginal prices (LMPs) and is critical for

system planning and operations.

The security constrained OPF (SC-OPF) includes additional constraints to satisfy security crite-

ria [54], which means that the SC-OPF cost is always bounded below by the corresponding (unsecure)

OPF cost. Table 2.1 illustrates and compares the general OPF and SC-OPF optimization formu-

lations. In general, the SC-OPF problem is a non-linear, non-convex optimization problem with

continuous or discrete variables and the main challenge is the large problem size (i.e., scalability).

Note that corrective control for contingency k = 1, . . . , Nc are coupled to the pre-contingency solution

through the corrective coupling constraint, which could represent ramp-rate limits on controllable

energy resources. In this context, the term “corrective” implies that pre-defined post-contingency

control actions exist that when applied will bring the system back to a secure state.

In the past, N − 1 preventive SC-OPF algorithms provided operators with a well-understood

deterministic methodology for managing risk/security in power systems. In fact, in many ISO

markets (e.g., PJM and ISO-NE), it is a linear preventive SC-OPF algorithm that provides the

locational marginal prices (LMPs) that price electricity [55]. However, with the recent emergence

of competitive markets and stochastic renewable generation, systems have become more stressed,

uncertain, and variable, which makes preventive SC-OPF challenging due to its restrictive nature:

one control, u0, to manage all contingencies.
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Table 2.1: Comparing general OPF and SC-OPF formulations

OPF SC-OPF

min f(x, u) ← pre-contingency objective → min f(x, u)

subject to: subject to:

g(x, u) = 0 ← power flow equation → g(x, u) = 0

h(x, u) ≤ L ← pre-contingency constraint → h(x, u) ≤ L

contingency k equalities → gk(xk, uk) = 0

contingency k inequalities → hk(xk, uk) ≤ Lk

corrective coupling constraints → |uk − u| ≤ ∆uk

Although the DC Optimal Power Flow (DCOPF) is a relatively simple linear programming

problem, a full DC-based SCOPF including all possible line outages as contingencies can become

computationally cumbersome, especially for large systems. Therefore, a constraint filter based on

Power Transfer Distribution Factor (PTDF) and line outage distribution factors (LODF) is standard

baseline against which one can test any other SCOPF approach.

To make the system N − 1 secure , contingency constraints must be added, which is where the

Power Transfer Distribution Factor (PTDF) matrix and Line Outage Distribution Factor (LODF)

matrix are used to estimate post-contingency line flows after each possible contingency. LODF is

an N -by-N matrix where N represents the number of lines in the network. Each entry of LODF

matrix, hlm shows the relative change of flow on line l due to removing line m.

|Pl + hlmPm| ≤ Pl,max (2.40)

Pl, Pm represent the pre-contingency flow variable for line l and m, respectively. By adding

constraints (2.40) to optimization problem, effect of outage of line m on line l is taken into account.

PTDF is an N -by-M matrix where M represent number of buses. Each entry of PTDF matrix,

dlk shows the relative change of flow on line l due to change of injecting power on bus k.

25



|Pl + dlk∆Pg| ≤ Pl,max (2.41)

Also by adding constraint (2.41) to optimization problem, effect of change in bus injection power of

each bus (that could because of change in injecting power of generators, wind generation, load and

etc) on line l is taken into account.

The power injection at bus i, P iinj can be written as

P iinj = P iG + P iωf
− P iL (2.42)

where P iG,P iωf
and P iL are generating power, forecasted wind power and demand at bus i. The

injected power at bus i flows on the neighboring buses , (i.e., ΩNi ) via connected branches.

P iinj =
∑
k∈ΩN

i

P kf (2.43)

where P kf is power flows on line k connecting bus i and j.

Total deviation of the wind power at different locations from their forecasted values, leads to

generation-load mismatch which is a function of the total difference of the forecasted and actual

wind production, Pm(
∑
i P

i
ωf
−P iω). Generators shall deviate from their forecasted set-points, P iGf ,

relative to their contribution factors, di to compensate this power mismatch as follows:

P iG = (P iGf + di ∗ Pm(
∑
i

P iωf
− P iω)) (2.44)

The main objective is to design a minimum cost dispatch while satisfying N − 1 security con-

straints in probabilistic sense and decision variables are generations dispatch. Let c1 and c2 be cost

function of generators. The resulting optimization problem is given by

min Σ(cT1 PG + PTG [c2]PG) (2.45)
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subject to:

Deterministic constraints for DC power flow (hourly): These constraints correspond to

the case where the wind power is equal to its forecasted value.

1. power balance constraint:

P iG + P iωf
− P iL − P iinj = 0 (2.46)

2. line limit:

P kf ≤ P kf ≤ P̄ kf (2.47)

3. generators capacity:

P iG ≤ P iG + di ∗ Pm(
∑
i

P iωf
− P iω) ≤ P̄ iG (2.48)

where P kf and P̄ kf represent upper and lower limit of line k and P iG and P̄ iG are minimum and

maximum generating capacity of generator i.

Probabilistic constraint These constraints involve the uncertainty of the wind power forecast.

P (P iG ≤ P iG + di ∗ Pm(
∑
i

P iωf
− P iω) ≤ P iG) ≥ 1− ε (2.49)

The chance constraint encode the fact that the inequalities therein should be satisfied with the

probability at least 1− ε. There are different methods to satisfy the probabilistic constraint such as

scenario approach of analytical reformulation which are explained in chapter 4 and chapter 5.

In our work, we use the output of the SC-OPF as economically optimal reliable reference trajec-

tory and dispatch VESSs such that minimize the deviation of generators from their set-points.
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3 Chapter 3: Investigating Delays in Frequency-Dependent

Load Control

Abstract

Increased penetration of renewables will require significant regulating reserves, so there is a need to

re-think the traditional operating paradigm: supply follows demand. Recent work has expanded the

role of flexible and controllable energy resources, such as energy storage and dispatchable demand,

to regulate power imbalances and stabilize grid frequency. However, as shown in this chapter,

the large-scale deployment of dispatchable (i.e., controllable) loads needs to carefully consider the

existing regulation schemes in power systems, i.e., generator droop control. That is, this chapter

illustrates with a standard linearized model, the complex nature of system-wide frequency stability

from time-delays in actuation of dispatchable loads and the effect of different network topologies.

Interestingly, we show that delay-induced instability can be stabilized by injecting additional delay

into load controller.

3.1 Introduction

The quality of delivered electrical power and safety of electrical facilities are related to the nominal

system frequency (e.g., 60 Hz in the U.S.). Small frequency deviations from nominal is generally

caused by active power imbalances between generation and demand and is regulated through local

(proportional) adjustments in the generator’s governor (i.e., primary frequency control or PFC). PFC

events generally take less than 30 seconds to stabilize the system frequency. However, with energy

policy rapidly driving the installation of intermittent and low-inertia renewable generation, e.g., solar

PV and wind farms, frequency deviations from nominal power imbalances are increasing [56, 57],

which raises concerns over the ability of PFC to operate well in a future power system with significant

penetrations of renewable energy [58]. As such, partial automated participation of flexible loads (e.g.,

energy storage and demand) in response to system frequency represents an alternative.

In operations, load ”control” (i.e., load shedding) has been employed when severe imbalances

threaten system integrity. However, active consumer-side participation has led to some revision on
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the former demand side control logic. The concept of active consumer load coordination (i.e., aggre-

gation) of air conditioners, radiators, plug-in electrical vehicles and other home appliances to balance

the supply and demand has been discussed widely as means to reduce needed power reserves [59–63].

In fact, grid-scale distributed load frequency control algorithms have been proposed for stabilizing

system frequency [64, 65]. However, due to phasor measurement units’ (PMUs’) communication

channels that transmit data to the actuators or load coordinators (i.e., an aggregator), actuators

or coordinators processing the PMU data, and the physical characteristics of the actuators and

aggregators, significant constant or variable time-delays can be observed in power systems [66]. In

[67, 68], the performance of a load aggregation scheme is tested for delays of tens of seconds. Note

that the delays considered herein are the combined sensor-to-controller, controller-to-aggregator,

aggregator-to-actuator, and physical actuator delays until flexible loads provide expected change in

power. That is, we do not only consider the delays associated with PMU communication. Prior

work has focused on designing generator control loops (i.e., PFC and AGC) that are robust against

uncertain time-delays [69–71], but little (if any) work has considered the effect of time-delays on

load coordination algorithms and system-wide effects. Therefore, to maximize the potential of fully

automated load aggregation (at the MW-scale), the role of time-delayed load dispatch in power

networks and its interaction with PFC schemes must be fully investigated.

To this effect, we present herein preliminary results on the system-wide effects of time-delays

in flexible frequency-dependent loads. Specifically, we investigate through simulation-based analysis

how different transmission network structures, dispatchable scenarios, and delays affect performance

and stability of load coordination schemes.

3.2 Dynamic System Model

Consider a graph G = (V, E) with a set of buses V and lines E . Then, the balancedN -bus transmission

system with E lines will have buses divided into two sets: generator buses and load buses. A bus

with a generator is called a generator bus, while all other buses are called load buses (even if the

load is zero).

The voltage phase angle of bus i with respect to the rotating framework at nominal frequency is

denoted θi and let the angular frequency deviation of bus i from nominal frequency wnom
i be denoted
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∆ωi := ωi − ωnom
i . Then, their relationship is:

θ̇i(t) = ∆ωi(t) ∀i ∈ V (3.1)

From the swing equation, we relate changes in frequency to instantaneous power imbalances:

Mi∆ω̇i(t) = ∆Pmi (t)−∆P ei (t) (3.2)

−Di∆ωi(t)−∆di(t)

∆P ei (t) =
∑
j∈ΩN

i

∆Pij(t) (3.3)

∆Pij(t) = bij (∆θi(t)−∆θj(t)) (3.4)

where ∆Pmi ,∆P
e
i ,∆di,∆Pij are the changes in injected generator mechanical power, generator

electrical power output to neighboring buses of i (i.e., ΩNi ), controllable net-load, and line flow

between buses i and j from nominal steady-state. Mi is the generator inertia constant and Di is

the damping coefficient accounting for mechanical rotational losses (of generators and motors at

bus i). Also, the generator’s droop behavior at bus i is described by the dynamics of the turbine

and governor:

∆Ṗmi (t) =
1

τTi

(∆P vi (t)−∆Pmi (t)) (3.5)

∆Ṗ vi (t) =
1

τGi

(∆Pref,i −∆P vi (t)− 1

ri
∆ωi) (3.6)

where ∆P vi is the change in turbine output power from nominal, ∆Pref,i is the change in reference

power of generator i, and τTi
, τGi

, ri are time-constants of turbine, governor, and speed-regulator,

respectively.

In the case when there is no generator at bus i (i.e., i is a load bus), Mi = 0 and we have the

following algebraic equation describing net-flow into bus i:

Di∆ωi(t) = −∆P ei (t)−∆di(t), (3.7)
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which through differentiation can be re-written as a dynamic state:

Di∆ω̇i(t) = −
∑
j∈ΩN

i

∆Ṗij(t)−∆ḋi(t). (3.8)

Finally, (3.4) is transformed into a dynamic equation through differentiation:

∆Ṗij(t) = bij (∆ωi(t)−∆ωj(t)) . (3.9)

An overview of the system model for lines and buses is provided in Table 3.1. The controllable

inputs are ∆di,∆ḋi and represent the control of flexible energy resources such as demand and

storage. That is, in addition to the governor response of the generators, the controllable loads in

the system respond to the imbalances through sensed frequency deviations and is implemented with

proportional (Pi > 0) control as follows:

∆di(t) = Pi∆ωi(t− td) ∀i ∈ V, (3.10)

where td ≥ 0 is the time-delay in load response. Note that the dynamic system model described

by Eqs.(3.1)-(3.10) represents a closed-loop system with generator droop and (delayed) load control

reacting to changes in sensed local frequencies.

The continuous-time dynamic model is implemented in MATLAB in discrete-time via Modified

Euler with sampling time h = 0.001s, which has (global) accuracy on the order of O(h2) [72].

Remark 3.1 Since the delay is applied to the (measured) state in the controllable load’s closed-loop

description in (3.10), the time delay is internal to the closed-loop system, which is more challenging to

analyze than the case of external (input/output) delays in the open loop. For example, an internally

delayed system with input disturbance v(t) can be described by ẋ = Ax+Adx(t− td) +Wv(t) and

y = Cx(t). Then, the transfer matrix is given by:

H(s) =
Y (s)

V (s)
= C

(
sI −A−Ade−tds

)−1
W.
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Table 3.1: Power system model overview

Variable Type Variables

Dynamic states ∆ωi, θi,∆P
m
i ,∆P

v
i

Control inputs ∆di,∆ḋi
Constant Parameters Mi, Di, bij , τTi

, τGi
, ri

(a)	 (b)	 (c)	

Bus1	 Bus4	

Bus2	 Bus3	

G1	
	

G4	
	

G2	 G3	

Bus1	 Bus4	

Bus2	 Bus3	

G1	 G4	

G2	 G3	

Bus1	 Bus4	

Bus2	 Bus3	

G1	 G4	

G2	 G3	

Figure 3.1: Three different 4-bus networks.

The poles of transfer function [H(s)]ij determine stability of output i with respect to disturbance j.

3.3 Simulation Setup

In this section, we describe the different N -bus networks and the controllable load delay scenarios

to be investigated.

3.3.1 Test networks

We consider three small 4-bus networks (see Fig. 3.1) with different interconnections (e.g., radial

and meshed) and two standard IEEE test cases: 9-bus and 30-bus systems. Network parameters for

the 4-bus system are based on [73] and provided in Table 3.2. For simplicity, a generator and load is

connected to each bus. Note that controllable loads provide regulation at the scale of the damping

coefficients, which is an order of magnitude smaller than generator inertias.
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Table 3.2: Parameters for 4-bus system

Parameter Value Unit

M1,M2,M3,M4 4, 40, 35, 10 pu−s2
rads

D1, D2, D3, D4 3.7, 1, 2, 2.7 pu−s
rads

τT1 , τT2 , τT3 , τT4 5,10,20,10 s
τG1

, τG2
, τG3

, τG4
4,25,15,10 s

r1, r2, r3, r4 10,15,10,12 rads
pu−s

b12,13,14,23,24,34 2.5, 2, 2, 1.5, 2.5, 2 pu
Pi=4,Pi6=4 3, 0 pu−s

rads

3.3.2 Determining baseline controller gain

Before investigating the effect of time-delays, we need to design the nominal load controller’s gain,

Pi. The design of stabilizing P-controllers is achieved via closed-loop eigenvalue analysis of the multi-

input/multi-output dynamical system and proportional gains are provided in Table 3.2. For example,

the sets of closed-loop eigenvalues of the network 3.1(a) is illustrated in Fig. 3.2 for P4 ∈ [1, 100].

Clearly, for all P4, the poles are stable in the left-hand plane.
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Figure 3.2: Closed-loop poles for network 3.1a as a function of P4. Red dot denotes P4 = 1 and blue
dot represents P4 = 100.
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3.3.3 Time-delay

Since we are interested in the interaction between delays in load control and generator governors, we

limit delays to td ≤ 30s. Delay td is then applied to the frequency-responsive load at bus i = 4 for

the 4-bus system, buses i = 8, 9 for the 9-bus system, while five loads are controlled (but subjected

to identical delays) in the 30-bus system: buses i = 26− 30.

3.4 Simulation Results & Analysis

This section illustrates the non-periodic behavior of system stability for increasing delays and the

effects of network structure on this stability. Interestingly, we show that delay-induced instability

can be re-stabilized by injecting additional delay into load controller. The networks described in the

previous section are initially in nominal steady-state until a +0.1 pu step-disturbance in the load at

bus 1 occurs at t = 10 seconds.

For each applied delay td, the simulations capture performance (and stability conditions) through

the settling time Ts,i of the nodal frequency at bus i (∆ωi) and is defined as the time after which

the frequency enters and remains within specified dead-band, ε:

Ts,i = min
t
{|∆ωi(t∗)| < ε, ∀t∗ ≥ t}.

Due to the finite nature of computing, we limit simulations to consider Ts,i ≤ 1000 seconds. That is,

the closed-loop response is unstable if Ts,i = 1000s for any i (even if Ts,i does not exist) and stable

if Ts,i < 1000s.

3.4.1 The small 4-bus systems

The 4-bus systems in Fig. 3.1 are simulated according to the setup description. Note that for each

td, we get data pair (td, Ts,i). Figure 3.3 illustrates all pairs (td, Ts,i) for network 3.1a. Clearly,

when td < 2s, the system is stable and the system frequency settles in less than 15 s. However, by

increasing td at bus 4, the closed-loop system becomes unstable (e.g., see Fig. 3.6 for td = 5s) but

then additional delay actually recovers stability and further delay again beget instability, etc. These

stable-unstable-stable patterns repeat periodically as the load controller delay increases (e.g., see
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Figure 3.3: Network 3.1a: effects of td at bus 4 on stability. System is initially stable (td < 2s). At
Point A (td,A) the system is unstable, yet stable again at Point B, where: td,B = 17s > td,A = 5s.

Fig. 3.7 for td = 17 > 5s). To validate the numerical simulations, a 10th-order Padé approximation is

applied to the internal delay etds and the resulting poles are computed from the closed-loop transfer

function ∆ω2(s)/d1(s) for each td ≤ 25. The real part of the (complex conjugate) pole-pair traces

is illustrated in Fig. 3.8 and confirms the stable/unstable/stable behaviors observed in numerical

simulations. For each time delay td, the poles of the transfer function are given by a vertical slice

over all traces. Note that generally Ts,i increases with td. Ts,4 is most sensitive to td due to load

controller on bus 4.

Figures 3.4 and 3.5 illustrate all pairs (td, Ts,i) for networks 3.1b and 3.1c. As can be seen, the

performance of the 4-bus system under delays depends on the interconnection of buses. For example,

pairs (10, Ts,i) illustrate this the across 4-bus networks. Thus, the 4-bus system, while simple to

describe, shows the complex manner in which closed-loop stability and instability depends on the

nature of delay in actuation of frequency sensitive loads. In the next section, we investigate larger

systems, which are shown to exhibit the same type of behavior.

3.4.2 The larger 9-bus and 30-bus systems

In this section, the analysis is extended to the 9-bus and 30-bus IEEE standard test cases and

considers more than one controllable load to contrast with the results of the simple 4-bus networks.
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Figure 3.4: Network 3.1b: effects of td at bus 4 on stability.
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Figure 3.5: Network 3.1c: effects of td at bus 4 on stability.

The settling time of the system is now defined as the maximum settling time across the N buses:

Ts := max
i
{Ts,i}

The IEEE 9-bus test case is simulated with load controllers at bus 8 and bus 9:

∆di(t) = Pi∆ωi(t− td) ∀i ∈ {8, 9}

Figure 3.9 illustrates all pairs of (td, Ts) for IEEE 9-bus test case. For Ts < 1000s the system is

stable while the system is unstable when Ts = 1000s. The stable-unstable behaviors illustrated in
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Figure 3.6: Closed-loop response: Point A in Fig. 3.3: td = 5s.
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Figure 3.7: Closed-loop response: Point B in Fig. 3.3: td = 17s.

the 4-bus system occur also in the 9-bus case. That is, with increasing delay on the load controller,

the settling time increases.

For the 30-bus network, two load control scenarios are investigated:

(i) a single controllable load at bus 30.

(ii) five controllable loads at buses {26− 30}.

Figure 3.10 shows all pairs of (td, Ts) for the IEEE 30-bus test system under scenarios (i) and

(ii). The stable-unstable behavior is also present in the closed-loop but depends on how many loads

are controlled.

Remark 3.2 As the delay increases, the periods of instability become longer, until a delay, t∗d,
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Figure 3.8: The traces of the real parts of the closed-loop (complex conjugate) pole-pairs for increas-
ing time-delays in Fig. 3.1a are approximated with a 10th order Padé approximation. When any
pole has positive real part, the system is unstable (in red), which confirms the numerical simulation
results from Fig. 3.3. Note that for any given td, the dominant pole-pair is the trace with the largest
real part and is highlighted in blue.

is reached beyond which the system remains unstable for all td > t∗d and the periods of stability

exhibit increasing settling times (i.e., the dominant poles move closer to imaginary axis as shown in

Fig. 3.8. Furthermore, the stable/unstable/stable patterns illustrated in this chapter are expunged

if the generators do not utilize droop control. This indicates that the underlying behaviors are a

result of generator and load controllers fighting against each other. Ongoing work is focusing on

analytically characterizing this conflict and developing an improved load control scheme.

3.5 Conclusion and Future Direction

This chapter presents results on the effects of delay in frequency-dependent load control schemes

with droop-controlled generators and investigates how delays affects settling time and stability of

the system frequency in transmission networks. It is shown that the closed-loop performance of

the system is stable/unstable as delay increases. Specifically, we show that the patterns of sta-
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Figure 3.9: Effects of td for controllable loads at buses 8 and 9 on closed-loop stability of 9-bus test
case.

ble/unstable/stable depends on the network topology and parameters.

Future work will focus on developing analytical expressions for stability and controllability of

system frequency as a function of available energy resources and salient network properties. To

accomplish this, we seek to leverage recent results from linear delay differential equations where the

Lambert W function has been utilized in describing stability of linear delay differential equations [74].

Designing controllers that are aware of actuator saturation is also being pursued. The end-goal is to

develop load coordination schemes that are robust against a broad class of uncertainties, including

unknown time-delays.
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Figure 3.10: The 30-bus system experiences the same stable/unstable/stable patterns for different
delayed load control scenarios.

4 Chapter 4: Trading off robustness and performance in re-

ceding horizon control with uncertain energy resources

Abstract

Increased utilization of residential and small commercial distributed energy resources (DERs) has led

DER aggregators to develop concepts such as the virtual energy storage system (VESS). VESSs ag-

gregate the energy resources and dispatch them akin to a conventional power plant or grid-scale bat-

tery to provide flexibility to the system operator. Since the level of flexibility from aggregated DERs

is uncertain and time varying, the VESSs’ dispatch can be challenging. To improve the system opera-

tion, flexible VESSs can be formulated probabilistically and can be realized with chance-constrained

model predictive control (CCMPC). This can be solved using scenario-based methodology, which

provides a-priori probabilistic guarantees on constraint satisfaction. This chapter focuses on under-

standing the robustness and performance trade offs in receding horizon control with uncertain energy

resources. The CCMPC dispatches robustly the uncertain VESSs and conventional generators while
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taking into account economically optimal, secure reference trajectory for generating assets. Closed-

loop performance is with respect to minimizing the deviation of conventional generators from their

reference trajectory. To evaluate the trade off between robustness and system performance with

uncertain energy resources, a simulation-based analysis is carried out on the modified IEEE 30-bus

system.

4.1 Introduction

In recent years, environmental and energy concerns have led to increased penetration of distributed

energy resources (DERs), such as solar photovoltaic and wind generation, which represents both a

challenge and opportunity for grid operators. The intermittency of renewable energy sources as well

as forecast uncertainties in load, price, and renewable in-feed profiles, call for storage solutions and

appropriate control strategies [44]. So far, imbalances between production and load are compensated

by fast acting reserves from generators, such as gas turbines or hydro storage power plants. However,

due to the on-going increase in intermittent sources, day-ahead planning becomes more demanding.

The grid operators can pay high penalties when load forecasts are inaccurate and require generators

re-scheduling to balance demand and supply [75]. Furthermore, an increasing number of backup

generation units is needed, running on reduced power or even idling, to quickly react to output

changes of intermittent sources. Instead of compensating forecast uncertainties with fast acting

backup generators, as it is often done in practice, the imbalances can also be compensated by means

of coordinating flexible energy resources, i.e., demand dispatch [13, 38].

Recently, the concept of Virtual energy storage system (VESSs) has been proposed as a novel

technology for aggregating and coordinating a large fleet of residential flexible energy resources,

including electric battery storage, thermostatically controlled loads (TCLs), and deferrable loads.

The VESS offers the aggregate flexibility to the system operator as a synthetic reserve to preserve

grid stability [15]. When called upon, the VESS can rapidly respond to changes in net-load by quickly

coordinating its fleet of assets to provide requested balancing reserves [16]. Since offered flexibility

by VESSs to the system operator is limited, to benefit the most from them, careful planning through

smart techniques such as MPC is required.

Today, in practice, based on market conditions and load and renewable forecasts, an optimal

41



power flow problem is solved with a day ahead window prediction horizon (i.e. 24 hours) on an

hour by hour time scale to provide an economically optimal schedule for generators and flexible

resources [76]. However, due to variable uncertainty in the net-load forecast, there will always be

mismatches between scheduled operating set-points and the actual operating points. Therefore, the

scheduled operating point may no longer be feasible and balancing reserves are required and can be

provided by a set of VESSs by adjusting the aggregate output of DERs [77].

As a VESS derives its flexibility from aggregating thousands of DERs, estimation of the VESS’s

current energy state, energy limits, and up/down power capabilities are inherently uncertain and

time-varying. Therefore, this chapter seeks to formulate the VESS‘s flexibility in a probabilistic

manner with chance constraints. Then, we solve this by a scenario-based approach, which provides a-

priori guarantee to the probabilistic constraints [78–80]. The authors in [54, 78] use probabilistically

robust optimization method provides a priori guarantees on the probability of constraint violation

without needing any knowledge of the uncertainty distribution, however it requires large number

of uncertainty scenarios. Other recent studies also solve chance constraint problem using scenario

approach as authors do in [81], or by using analytical reformulation, e.g., [82], but these studies do

not model the uncertainty on the VESS’s capacity.

To take uncertainty of VESS’s energy capacity into account, we employ chance constraints to

a receding-horizon model predictive controller (MPC) that is similar to the author’s prior work

in [46, 83]. At each step, net-load forecasts (i.e., load minus renewable generation) and dynamic

states (e.g., storage and generators) are updated to provide a prediction of power imbalances. The

chance-constrained predictive dispatch operates on minute-by-minute time scale with 20-40 minutes

prediction horizon and responds to any mismatches caused by forecasting error, which is denoted

as chance-constrained model predictive control (CCMPC). The CCMPC provides an open-loop

schedule for the entire horizon yet only implement the first control decision. This procedure is

repeated every minute in receding horizon fashion. The objective of the chance constrained MPC

optimization problem is to minimize the deviation of conventional generation from the scheduled set

points provided by the economic trajectory.

Contributions of this chapter include the following:

• Prior works have explored allocating flexible resources in a techno-economic setting to com-
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pute optimal economic trajectories as reference signals for a fast timescale dispatch of energy

resources. In this chapter, we expand these bilevel frameworks to couple these economic tra-

jectories with a fast timescale stochastic predictive dispatch.

• As far as the authors are aware, prior work on stochastic OPF methods, focuses mainly on the

uncertainty of (algebraic) power injections (e.g., wind, demand), which temporally decouples

the OPF problem and side-steps the computational challenges of multi-period optimization un-

der uncertainty, e.g., [84, 85]. Unlike those works, this chapter presents a stochastic predictive

OPF with uncertain dynamic energy capacity and analyze how robustness (i.e., uncertainty in

VESS energy capacities) trades off with system performance (i.e., ability of VESS to supply cor-

rective power balancing). Related work in [81, 82, 86] also investigate uncertain energy storage

capacity, however, the authors manage that uncertainty through day-ahead reserve scheduling

at a 15-60 minute time-scale rather than the stochastic predictive dispatch presented herein.

• Computing optimized charging/discharging commands for uncertain energy resources deter-

ministically, based on the expected energy capacity estimate may result in saturation of the

control action under unexpected energy capacity realization. This saturation phenomena gives

rise to the notion of dynamic capacity saturation (DCS), which we present and analyze in this

chapter for the first time. We show that DCS is helpful to describe how uncertain resources

can participate in corrective power balancing.

The remainder of this chapter is organized as follows. Section 4.2 describes the optimal power

flow problem and tracking control framework, and discusses the roles of each, and their interactions.

In Section 4.3, we explain role of uncertainty on capacity of storage devices and describe chance

constrained model predictive control (CCMPC). In Section 4.4 the results of case studies on the

modified IEEE 30-bus power system is presented. Finally the concluding remarks and future work

are given in Section 4.5.

4.2 Problem Formulation

We consider a transmission system model comprising of Nb buses, Nl lines, NG generators, NL loads

and NB VESSs. Given a forecast of demand and expected renewable generation (i.e., net-load) for
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Figure 4.1: Overview of control scheme showing controller including OPF and MPC part and how
each part is related to power grid

a number of hours (e.g., day-ahead), an economically optimal trajectory is computed. However, due

to forecasting error, it may be necessary for generators to deviate from the predefined trajectory.

The controller’s objective is to meet the demand while minimizing the tracking error by utilizing

the flexibility of VESSs. This suggests a bi-level control strategy for electric power systems. In this

work our focus is on predective reference tracking-MPC. Figure. 4.1 provides an overview of the

proposed control system.

4.2.1 Optimal Economic Trajectory

Like most of related works, e.g., [46, 81, 86], the DC power flow approximation is adopted which gives

us a tractable linear representation of the power system while ensuring the convexity of optimization

problem.

Based on net-load forecast, the optimal, NT -hour ahead (i.e. NT = 24), schedule is computed

as a multi-period, quadratic programming (QP) problem whose objective is to minimize energy

(fuel) costs of conventional generators [87]. Let a [$/h-pu] and b [$/h-pu
2
] are linear and quadratic

coefficient of generators cost curve, PGi
∈ RNG refers to power set point of generator i corresponding

to the forecasted load power. With this definition, the resulting objective of the problem can be
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expressed as:

min
PGi

∑
∀k∈NT

∑
∀i∈NG

aki PGi[k] + bki P
2
Gi[k], (4.1)

subject to the physical and operational constraints corresponding to the power flow on the system

generator and line limits for all k ∈ NT :

P fLi[k] +
∑
j∈ΩN

i

fij [k] =
∑
z∈ΩG

i

PGz[k] ∀i ∈ Nb (4.2)

PGi ≤ PGi[k] ≤ PGi ∀i ∈ NG (4.3)

−RGi ≤ PGi[k + 1]− PGi[k] ≤ RGi ∀i ∈ NG (4.4)

fij [k] = bij(θi[k]− θj [k]) ∀ij ∈ Nl (4.5)

fij ≤ fij [k] ≤ fij ∀ij ∈ Nl (4.6)

where ΩNi and ΩGi refer to set of all buses connected to bus i and set of all generators at bus i.

Forecasted electrical net-load (i.e., demand minus renewables) is represented by P fL while PG(PG
1)

and RG represent, maximum (minimum) generation capacity and ramp rate limit of generator,

respectively. Also θi is the voltage bus angles at bus i and bij denotes the imaginary part of the

admittance of the line connecting node i to node j and fij represent power flows on the corresponding

line. By solving this problem every hour, a reference signal over a horizon of NT is established based

on the updated measurements and forecasts.

Remark 4.1 In this chapter, we assume that the responsive VESSs are available from previously

allocated reserves (e.g., akin to [81]) and have baseline consumption. By shifting the controllable

loads consumption from its baseline, VESSs can respond to the instantaneous mismatches caused

by forecast error quickly. Any decrease/increase in the consumption of the VESSs relative to its

baseline consumption can be translated as discharging/charging the VESSs. We assume that market

interactions have determined the regulation capability from each VESS [88].

1The lower bounds of the generator set-points would be available from unit commitment (UC) problem which is
not within the scope of this chapter. In this chapter for simplicity the lower bound is assumed to be zero.
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If constraints related to generator ramping is ignored, the multi-period problem becomes tem-

porally decoupled and each time-step can be solved separately as is the case in [89] which solving

problem with NG variables, NT time rather than solving a problem with NG × NT decision vari-

ables. However, by taking into account generators ramp-rate limits, generator set points changes are

coupled in time and bounded. Taking intro account coupling yields a smaller feasible region, means

more expensive dispatch and coupled problem takes longer to solve. By solving this problem every

hour, a reference signal over a horizon of NT is established based on the updated measurements and

forecasts.

4.2.2 Trajectory tracking and managing uncertainty

Due to mismatches between forecasted and actual values of net-load, forecasted optimal set points

of generator may not be a feasible solution for the power flow problem.

Therefore, in the second level, a model predictive controller (MPC) is in charge of responding to

any deviation in load consumption and renewable production from their predicted value in a way

to minimizing the deviation from reference optimal trajectory while satisfying all the constraints

such as line limits, generators limit, ramp rate limits of generators and dynamic and power ratings

of energy storage devices (VESSs). The MPC iteratively, based on initial states, updated net-load

forecast and updated reference signal, optimizing over a finite time horizon, M , by solving an open-

loop optimization problem. This yields a sequence of optimal control action for the next M steps,

where only applying the first instance of control sequence.

In general, the outcomes of the first level (optimizing under deterministic condition) are used

as our base trajectories which already take care of our primal objectives like cost or security while

the VESSs make the aggregated flexibility available to controller as balancing reserve and enhance

tracking performance. Since time step of MPC (≈ 1 minute ) is much shorter than OPF (≈ 1 hour),

reference trajectory provided by OPF is interpolated by time step of Ts.

Control actions will be applied for the whole step-width Ts such that u(t) = u[k] for t ∈ [kTs, kTs+

Ts]. At each time k, the state of the charge (SOC) of VESSs and generator set-points are the dynamic

states which are measured and included as initial state of the system for the next step. Based on [46],

MPC scheme can be summarized as follows:
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1. At time k, with initial SOC, Sk, updated net-load forecasts and generator set-points from

solving OPF, MPC solves a finite-horizon open-loop optimal control problem, over interval

[k,k + M ]. This returns sequence of optimal control action such as charging or discharging

VESSs and re-scheduling generator set-points if needed, for the next M steps (k to k +M).

2. Apply only the control action corresponding to time k

3. Measure the actual system state based on the actual load consumption and renewable gener-

ation at time k + 1.

4. Set k = k + 1

The open-loop MPC optimization is as follows:

J∗ = min
PGi, PCi, PDi

k+M∑
m=k

∑
∀i∈Ng

ciG(PGi[m]− P rGi[m])2 +

k+M∑
m=k

∑
∀i∈NB

ciCPCi + ciDPDi (4.7a)

s.t.

PNi[m] +
∑
j∈ΩN

i

fij [m]−
∑
z∈ΩG

i

PGz[m] = 0, (4.7b)

PNi[m] = PCi[m]− PDi[m] + P fLi[m], (4.7c)

fij ≤ fij [m] ≤ fij , (4.7d)

fij [m] = bij(θi[m]− θj [m]), (4.7e)

PGi ≤ PGi[m] ≤ PGi, (4.7f)

PCi ≤ PCi[m] ≤ PCi, (4.7g)

PDi ≤ PDi[m] ≤ PDi, (4.7h)

PGi[m]− PGi[m− 1] ≤ RGi, (4.7i)

−RGi ≤ PGi[m− 1]− PGi[m] ≤ RGi, (4.7j)

Si[m+ 1] = Si[m] + Ts

(
ηciPCi[m]− 1

ηdi
PCi[m]

)
, (4.7k)

Si ≤ Si[m] ≤ Si, (4.7l)

Si[k − 1] ≤ Si[k +M ], (4.7m)

PCi[m]PDi[m] = 0 (4.7n)
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where (4.7b)-(4.7n) are satisfied, ∀m = k, k+1, . . . , k+M . Note that cG and cC(cD) are positive

scalars representing tracking and charging (dis-charging) cost coefficients. Moreover, PCi, PDi ∈

R+ are positive scalars representing charging and discharging commands of VESSs and P rGi is the

reference signal. PCi (PDi) and Si represent the maximum charging (discharging) power capacity

and the maximum energy capacity of VESS located at bus i, respectively. Similarly, PCi (PDi) and

Si represent the minimum charging (discharging) power rate and the minimum energy level of the

VESSs which in our work assumed to be equal to zero for simplicity. The charging and discharging

efficiency of VESS located at bus i are denoted ηci and ηdi respectively. The net power injected

from VESS i at time m equal to (PCi[m]− PDi[m]) that could be positive (charging the VESS) or

negative (discharging) or zero. We impose terminal constraint (4.7m) on SOC of VESSs to ensure

sustainablity of VESS resources at the end of each optimization horizon.

Remark 4.2 To prevent simultaneous charging and discharging which is not physically realizable

for most of the storage devices, complementary condition (4.7n) is employed, however since this

constraint is non-linear, it makes the problem strongly non-convex and needs applying mixed-integer

approach [90]. Authors in [83] employed a heuristic method that enabled them to solve the convex

problem while preventing simultaneous charging and discharging. Furthermore, as VESSs aggregate

large population of small-scale flexible energy resources, they have the ability to send charging and

discharging commands to different devices in their group simultaneously and the aggregated charging

and discharging commands are what determine the next time steps overall energy level.

4.3 The chance constrained problem

The chance-constrained optimization has been employed to solve the optimization problem under

uncertainties. It formulates the optimization problem such that ensures that the a certain constraint

should be satisfied with a pre-defined probability.

VESSs can be formed from a large number of different resources including storage devices, wind

farms, solar farms as well as different forms of flexible energy resources like plug-in electric vehicles

(EVs) and TCLs [91].

The flexibility offered by VESSs can enable renewable integration into the power system and
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provide significant balancing reserves to the system operator and prevent frequent rescheduling due

to imbalances from weather and load/demand forecasts. However, the level of the flexibility that

VESSs can provide to system operator is uncertain itself.

As an example, coordinated aggregation of large population of TCLs is often modeled as virtual

storage resources [92]. However, due to stochastic and time-varying human usage of hot-water, the

size of the virtual storage resources is time-varying. More specifically, available flexibility offered by

aggregated TCL to the system operator, which can be translated to the upper bound of the virtual

storage resource, is a function of different stochastic quantities such as weather condition and human

behavior.

Flexibility offered by each device is uncertain and considered an independent random variable

(i.e. background usage of each device is independent from background usage of other devices). Since,

VESSs are formed from a large number of flexible resources, the central limit theorem implies that

the VESS’s energy capacity is a normally distributed random variable centered on the true mean

(i.e S ∼ N (µ, σ2). Thus, the stochastic variable (S) is present only on the right hand side of (4.7l).

Definition 4.3 Dynamic capacity saturation (DCS): Computing optimized control actions,

such as charging/discharging commands, for uncertain energy resources that provide balancing re-

serves can be based on a mean (or average) energy capacity estimate. When using the mean capacity

values result in a deterministic optimization problem. However, the underlying uncertain energy ca-

pacity may realize itself unexpectedly and saturate (or zero out) the optimized control action. We

call this saturation phenomenon dynamic capacity saturation (DCS). Under DCS, an energy resource

may saturate, which zeros out its control action, leading to unexpected power imbalances in the sys-

tem. To regulate these DCS-induced imbalances, grid operators must rely on (expensive) generation

to supply the difference based on their participation factor di, as shown in (4.8). In addition, SOC

of VESS could be updated to reflect actual capacity as shown in (4.9). Figure 4.2 shows an example

of how forecast errors lead to DCS. Plot (a) illustrates the expected and actual capacity of VESS

(dotted lines). Also, the state evolution of SOC based on the expected capacity of VESS and needed

correction due to forecasting error are shown (dashed lines). Plot (b) and (c) show the optimal

schedule for charging/dis-charging of VESS and how DCS causes deviation from optimal solution:
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Figure 4.2: An example of how forecast error causes dynamic capacity saturation.

∆PGi[k + 1] = −di
∑
i∈Nb

T−1
s max(Si[k + 1]− Si, 0)) (4.8)

Si[k + 1] = max(Si[k + 1], S) (4.9)

Since the capacity of VESS is a stochastic variable, we could approach the problem in a prob-

abilistic manner. The chance constraint is one such option whereby we decide on the probability
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level of 1− ε, where ε ∈ (0, 1), as shown below

P (Si[k + 1] ≤ Si(δ)) ≥ 1− ε (4.10)

In [79], a scenario is introduced, in which the chance constraint is substituted by a finite number

of deterministic constraints and provide a-priori guarantees on satisfying the chance constraint with

some certain level of confidence β , where β ∈ (0, 1).

Ref. [78] proposed a two step method based on [79] that results in a lower number of realizations.

In the first step, the set ∆, including at least 1 − ε probability mass of uncertainty, is made with

confidence level of at least 1− β. To form this set, we need at least N realizations, where e denotes

the Euler number and N is calculated based on the number of uncertain parameters Nω,

N ≥ 1

ε

e

e− 1
(ln

1

β
+ 2Nω − 1) (4.11)

Based on the set ∆, the chance constraint is substituted to the robust constrain

Si[k + 1] ≤ Si(δ) for all δ ∈ ∆ (4.12)

While only expected value of capacity of VESS is needed to come up with a deterministic solution,

N realizations are needed for a probabilistic solution. For example, to ensure a violation probability

of maximum ε = 0.1 with a confidence level of β = 0.05, in presence of one VESS with uncertain

capacity, we need to consider 64 realizations of VESS capacity as shown in Fig 4.3. The green,

dashed line represents expected values and the red, solid line represent the robust bound.

We introduce coefficient α ∈ [0, inf), as an average level of robustness to investigate role of

robustness on performance of the controller.

S = αSexpected (4.13)

By setting α based on the robust bound (e.g, robust bound computed by scenario approach), we

can reduce the probability of DCS, but part of the flexibility offered by VESSs will be dismissed.
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Figure 4.3: Expected value of VESS capacity versus 64 realizations

On the other hand, by selecting α ≥ 1, the predictive optimizer will have more VESS resources

available for balancing, however, DCS will occur more frequently in the system, which can reduce

closed-loop performance (i.e., generator having to make up the slack resulting from DCS.) Therefore,

there should be a balance between robustness and flexibility. i.e. coefficient α must be chosen in

such a way that controller can use the most flexibility offered by VESSs and minimize chances of

DCS. The forecasting error occurs almost at all time steps (e.g., see Fig 4.2a for t > t1). However,

despite forecast errors, sub-optimal solution happens only when DCS occurs (e.g., see Fig 4.2a at

t = t3). If DCS is absent, optimal regulation can be achieved despite forecasting errors.

4.4 Simulation result

In this section, the introduced control approach is applied to modified IEEE 30 bus power system,

consisting 30 substations, 6 generators, 21 loads, 37 transmission lines and 4 transformers [93] as

shown in Fig. 4.4. The power system is modified to include one VESS at bus 5. All optimization

problem were solved via the MATLAB and AMPL using the solver GUROBI.
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VESS

Figure 4.4: Modified IEEE 30 bus system

4.4.1 Perfect prediction of VESS capacity

Initially, we assume that the capacity of VESS can be forecasted perfectly. Based on the forecasts

of net-load, an optimal schedule for generators is computed. To model net-load forecast error raised

from uncertain renewable generation, mean reverting random walk with zero mean is added to the

forecasted net-load. Performance and behavior of MPC (with horizon length of M = 20) is shown

in Fig. 4.5.

Recall that reference signal is the generator set-point, which means high performance implies

generators do not respond to imbalances (i.e., do not ramp through reserves). Obviously, in presence
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of VESS, tracking performance is improved and the flexibility offered by VESS, make MPC able to

effectively limit the ramping up or down of generators. However, the tracking error can not be zero

due to limited capacity of VESS.

reference

with VESS

without VESS

Figure 4.5: Optimal schedule based on the forecasted net-load as a reference trajectory and perfor-
mance of the MPC scheme for one generator under two cases: without VESS and with VESS.

The role of MPC prediction horizon on reference-tracking MPC performance is investigated and

shown in Fig. 4.6a. Longer horizons lead to better performance, as expected, but performance benefit

diminishes as a function of VESS capacity. This is because the capacity of VESSs increases long-

term flexibility which improves value of predicted information. Figure 4.6b illustrates the role of the

VESS capacity on the MPC performance. Using larger VESSs leads to less ramping from generators

which reduces MPC objective. Average economic dispatch run time for each hour and average run

time of MPC under horizon of 40 steps is shown in Table 4.1. Average economic dispatch run time

for each hour is less than one second (∼ 0.5 sec) and average run time of MPC under horizon of 40

steps is less than two seconds (∼ 1.5 sec) as it shown in Table 4.1.

Table 4.1: Run-time metrics for OPF and MPC

Average (s) Standard deviation (s)
OPF (hourly) 0.5045 0.0021
MPC (M = 40 mins) 1.8289 0.0035
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Figure 4.6: Investigating the role of MPC prediction horizon and VESS capacity on reference-
tracking MPC performance. Note that benefit of prediction horizon and VESS capacity diminish
signicantly after 20 minutes and expected VESS capacity of 0.5 p.u., respectively. All trend lines
are fitted with an exponentially curve.

4.4.2 Uncertain VESS capacity

In this part, we assumed that the expected capacity of VESS is given and the probability distribution

of the uncertainty is known. The actual capacity of VESS at each time step is computed as

Sact = (1 + ζ/10)Sexpected, (4.14)

where ζ is normally distributed (i.e ζ ∼ N (0, 1)).

To investigate the role of uncertain capacity of VESS in tracking performance of MPC, a simple

forecast of net-load that stays constant over the next 24 hours is created. Actual net-load is created

by injecting 20 percent step down and 10 percent step up error while each error persists for 10

minutes, as shown in Fig 4.7. A comparison of the tracking performance of deterministic and robust
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approaches, at α = 0.9, is provided in Fig. 4.8.

The first plot shows one realization of actual capacity of VESS, S (dashed blue line) and state

evolution of SOC of VESS under the deterministic and robust approaches. The second plot shows

optimal schedule for charging/discharging VESS under the deterministic and robust approaches.

And the third plot shows tracking performance of the system under different scenarios. As illustrated,

under deterministic approach, DCS occurs twice (i.e. before and after t = 30 in the first plot) which

cause unscheduled adjustment in generator power (red dashed line in the third plot). Although by

using robust approach part of the offered flexibility is dismissed, chance of DCS reduces which leads

to less generators adjustment.

10 20 30 40 50 60
Time, k (minutes)

80P L / P
Lf  (%

)

100

120

forecasted net-load
actual net-load

Figure 4.7: The actual net-load is created by injecting 10 minutes long, step down and step up error
to the forecasted net-load.

To evaluate the tracking performance of deterministic and robust approaches under stochastic

behavior of VESS capacity, 100, 000 repeated trials are performed. Each trial differs in expected

capacity of VESS (0.4 p.u. and 0.8 p.u.) and α (from 0 to 2). Objective functions of robust approach

J∗R and deterministic approach J∗D are used as a metric for the tracking performance. Smaller objec-

tive means less average deviation from scheduled set-points and indicates better tacking. Figure 4.9

shows J∗R,J∗D and their ratio, at α = 0.9, where capacity of VESS is 0.8 p.u. for 2000 trials. The

results of deterministic and robust approaches where capacity of VESS equals 0.4 p.u. and 0.8 p.u.,

at α = 0.9, is shown in Table 4.2.

Figure 4.10 compares the average tracking performance under deterministic and robust approach

for different values of α (i.e. level of robustness). By choosing a small α (conservative choice), DCS
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Figure 4.8: The tracking performance of system under three different scenarios: no VESS, deter-
ministic approach and robust approach.

Table 4.2: Comparing the average of J∗D,J∗R and their ratio as a metric of performance based on
2000 trials

E(S) J̃∗D J̃∗R
˜J∗D/J∗R J∗D > J∗R

0.4 p.u. 0.1390 0.1336 1.0402 83%
0.8 p.u. 0.0848 0.0756 1.1227 74.5%

occurs less frequently, however, larger part of flexible resources are not utilized. By choosing large α,

the controller benefits from the full flexibility offered by resource. However, by discounting the role

of uncertainty, DCS occurs more frequently and consequently generators rescheduling is needed more

often. In both of these cases, the deterministic approach outperforms the robust one (i.e. J∗D < J∗R

). If α is chosen appropriately, the flexibility offered by the VESSs can be used effectively while

limiting occurrence of DCS. In other words, sacrificing some robustness in dispatching the uncertain

resource leads to improved tracking performance. It is interesting to note that in the scenario-based

approach with typical selection of ε = 0.1 and β = 0.05, 64 realizations are needed based on (4.11)
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Trials
Figure 4.9: The first plot compares J∗D and J∗R for 2000 trials (VESS capacity = 0.8 pu) and the
second plot illustrates their ratio. Any points above the green line indicates better performance of
the robust approach. The robust approach outperformed the deterministic approach on 1480 of the
2000 trials and on average, it is 12% better.

and we would get an equivalent α = 0.75, for which the deterministic (average) approach actually

outperforms the robust approach (i.e., it is overly conservative). However, equivalent violation

probability of α = 0.85 in which the robust approach (on average) outperforms the deterministic

one by 4.5% is a non-intuitive ε = 0.6.

To explore the performance of the robust approach for a more general net-load scenarios, a mean

reverting random walk (MRRW) noise is added to the actual load profile shown in Fig. 4.7, and 1000

realizations are created (Fig. 4.11). Table 4.3 provides result of the tracking performance of robust

and deterministic approaches regarding the 1000 trials. To better understand the effect of DCS on

performance of the controller, the total number of times that DCS occurs NDCS using each method

is calculated. Note that each trial includes 60 time-steps (minutes) and 1000 trials are considered for
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each scenario of capacity of VESS. Therefore, NDCS is computed with respect to 60000 time-steps.

~
~

0.85

Figure 4.10: Trade-off between robustness and tracking performance (VESS capacity = 0.4 pu).
Average ratio of J∗D and J∗R is used as a metric for performance of the system regarding to the
different levels of the robustness. At α = 0.85, on average the robust approach is 4.5% better than
the deterministic one.

Figure 4.11: One thousands realization of load profiles are created based on the Fig. 4.7 while the
green dashed line shows the forecasted load and the red line shows mean of all created load profiles.
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Table 4.3: Comparing average performance of the system under deterministic and robust approach
with 1000 trials

E(S) J̃∗D J̃∗R
˜J∗D/J∗R J∗D > J∗R NDCS

D NDCS
R

0.4 p.u. 0.1536 0.1480 1.0376 83% 2867 1769
0.8 p.u. 0.0947 0.0884 1.0713 69% 2089 1045

4.5 Conclusion and Future Work

This chapter studies the performance of a bilevel receding-horizon predictive optimal power flow

problem for managing short-term variability with grid assets (VESSs) that are uncertain in their

energy capacity. This gives rise to the notion of dynamic capacity saturation (DCS) for uncertain

energy resources. The numerical studies indicate that there exists a sensitive trade-off between

robustness of the optimized dispatch (i.e., severity of DCS) and closed-loop system performance

(i.e., VESSs ability to provide regulating reserves). It is shown that sacrificing some robustness

in the dispatch of the uncertain energy capacity can significantly improve system performance (up

to 4-12%). Interestingly, the popular approach of robustifying chance-constraints with scenario-

based sampling may lead to reduced closed-loop system performance. Future work will focus on

analytically quantifying the effects of DCS on the closed-loop response and developing tools that

optimally manages storage commitment under dynamic uncertainty (i.e., α). Additionally, we plan

to extend the current work to consider multi-VESSs with uncertain capacity under system constraints

such as line flow limits, and address the question of where the VESSs should be placed and how

many VESSs are advantageous for a given power network.
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5 Chapter 5: Corrective dispatch of uncertain energy re-

sources

Abstract

High penetrations of intermittent renewable energy resources in the power system require large

balancing reserves for reliable operations. Aggregated and coordinated loads can provide these fast

reserves, but represent energy-constrained and uncertain reserves (in their energy state and capacity).

To optimally dispatch uncertain, energy-constrained reserves, optimization-based techniques allow

one to develop an appropriate trade-off between closed-loop performance and robustness of the

dispatch. Therefore, this chapter investigates the uncertainty associated with energy-constrained

aggregations of flexible distributed energy resources (DERs). The uncertainty studied herein is

associated with estimating the state of charge and the capacity of an aggregation of DERs (i.e.,

a virtual energy storage system or VESS). To that effect, a risk-based chance constrained control

strategy is developed that optimizes the operational risk of unexpectedly saturating the VESS against

deviating generators from their scheduled set-point. The controller coordinates energy-constrained

VESSs to minimize unscheduled participation of and overcome ramp-rate limited generators for

balancing variability from renewable generation, while taking into account grid conditions. To

illustrate the effectiveness of the proposed method, simulation-based analysis is carried out on an

augmented IEEE RTS-96 network with uncertain energy resources.

5.1 Introduction

The rest of this chapter is organized as follow. In Section 5.2, we summarize the proposed control

framework and discuss the role and interactions of the OPF problem within a reference-tracking

predictive controller. Section 5.3 details the system models while Section 5.4 describes the nature

and management of uncertainty in a chance-constrained formulation. Via a simulation-based case-

study on the IEEE RTS 96 test system augmented with black VSSEs. In Section 5.5 the risk-based

approach is introduced. Section 5.6 illustrates the analytical results and compares the proposed

method against deterministic and robust approaches. Section 5.7 summarizes the key results and
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Figure 5.1: Overview of control scheme showing controller including economic dispatch (slow) and corrective

MPC (fast) part and how each part is related to the power grid.

describes future work directions.

The rest of this chapter is organized as follow. In Section 5.2, we summarize the proposed

control framework and discuss the role and interactions of the OPF problem within a reference-

tracking predictive controller. Section 5.3 details the system models while Section 5.4 describes the

nature and management of uncertainty in a chance-constrained formulation. Via a simulation-based

case-study on the IEEE RTS 96 test system augmented with black VSSEs, Section 5.5 illustrates

the analytical results and compares the proposed method against deterministic and standard robust

approaches. Section 5.6 summarizes the key results and describes future work directions.

5.2 System Operation and Control

Based on updated forecasts of demand and renewable generation, economic dispatch computes a

secure and economically optimal schedule for the available generators. However, the uncertainty

inherent to solar PV and wind forecasts, as well as uncertainty in electrical demand, results in

power imbalances that make previously computed set-points sub-optimal. Rescheduling the gener-

ators frequently and significantly accumulates cycling costs and economic penalties to the system

operator [75, 94]. With responsive VESS resources and temperature-based ratings, corrective power

system operations that leverage feedback represents a valuable and inherently robust and dynamic

alternative to conventional spinning reserve. Corrective control refers to the coordination of re-
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sponsive grid resources immediately after a disturbance occurs to drive the system back from an

economically sub-optimal or stressed system state to an economically optimal normal operating

state [46]. An overview of the proposed uncertainty-aware control strategy is provided in in Fig. 5.1.

While the focus of this chapter is on the corrective part of the controller, the details of the

standard ED can be found in [87] and are beyond the scope of this chapter. Thus, the output of the

market layer (P ref
G in Fig. 5.1) satisfies techno-economic objectives such as cost and security. Since

the proposed corrective controller’s time-step Ts (≈ 1 minute) is much shorter than the updated

of the market-based reference signals coming from ED (≈ 15 − 60 minutes), linear interpolation is

employed to form the reference trajectory.

In the faster control layer, the VESSs represent aggregated DERs and provide flexibility in

the form of synthetic balancing reserves. Therefore, based on the dynamic states (i.e., power and

energy states of VESSs, power states of generators and thermal states of the transmission lines) and

forecasts of the system and available resources, the trajectory-tracking MPC produces a corrective

dispatch every minute to respond to forecast errors and other disturbances. The MPC minimizes

the deviation of generators and flexible loads from the economic reference trajectory while satisfying

physical and operational grid constraints.

5.3 Corrective Controller Model Overview

The timescale of the corrective MPC (≈ 1 minute) is much faster than ED (≈ 15 − 60 minutes).

Thus, linear interpolation is employed between reference trajectory value computed by ED. The

corrective MPC scheme can be summarized by the following process:

1. At time k, with estimates of initial state of the charge (SOC), line temperatures, generators’

operating point, updated net-load forecasts and updated generator trajectory from SC-OPF,

the MPC solves a finite-horizon open-loop optimal control problem, over interval [k, k + M ].

This produces a schedule of control actions that describe charging (discharging) rates for VESS

and re-dispatch signals for generators.

2. Apply only the control actions corresponding to time k

3. Measure/estimate the system’s dynamic states based on the realized demand and renewable
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generation at time k + 1.

4. Go to 1)

The open-loop MPC optimization problem is defined below for a power system network E =

(N ,L) with bus i ∈ N and line ij ∈ L. The sets G and V represent conventional generators and

VESSs, respectively. The objective function seeks to minimize the deviation of generator outputs

from the scheduled set-points while penalizing line temperature overloads as follows:
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min
PG, Pch, Pdis

k+M∑

l=k

( ∑

∀i∈Ng

cG,i

(
PG,i[l]− P ref

G,i[l]
)2

+
∑

∀ij∈E
cT,ij∆T̂ij

2

)
(5.1a)

s.t.

Power balance: ∀i ∈ N ,
∑

n∈ΩG
i

PG,n[l]=
∑

n∈ΩL
i

PL,n[l] +
∑

n∈ΩB
i

Pch,n[l]− Pdis,n[l] +
∑

j∈ΩN
i

pij [l], (5.1b)

Conventional generators: ∀i ∈ G,

PGi ≤ PG,i[l] ≤ PG,i, (5.1c)

− TsRG,i ≤ PG,i[l + 1]− PG,i[l] ≤ TsRG,i, (5.1d)

Temperature-based line rating: ∀ij ∈ L,

ploss
ij [l] = Rij (bij (θi[l]− θj [l]))2 , (5.1e)

∆ploss
ij [l] = ploss

ij [l]− ploss
ij,∗, (5.1f)

∆Tij [l + 1] = τij∆Tij [l] + ρij∆p
loss
ij [l], (5.1g)

∆T̂ij [l] = max(0,∆Tij) , (5.1h)

VESSs: ∀i ∈ V,

0 ≤ Pch,i[l] ≤ Pch,i, (5.1i)

0 ≤ Pdis,i[l] ≤ Pdis,i, (5.1j)

− TsRch,i ≤ Pch,i[l + 1]− Pch,i[l] ≤ TsRch,i, (5.1k)

− TsRdis,i ≤ Pdis,i[l + 1]− Pdis,i[l] ≤ TsRdis,i, (5.1l)

Si ≤ Si[l + 1] = Si[l] + Ts

(
ηch,iPch,i[l]− 1

ηdis,i
Pdis,i[l]

)
≤ Si, (5.1m)

Si[k] = Sest
i,k (5.1n)

where ΩGi , ΩLi , ΩBi and ΩNi represent set of generators, demands, energy storage devices (VESSs),

and neighboring nodes connected to node i, respectively. Constraints (5.1b) to (5.1n) must be

satisfied for ∀l ∈ [k, k + M − 1] where the four groups of constraints in the MPC formulation are

described below. Next, we discuss each type of constraints.
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5.3.1 Power balance in (5.1b)

Based on Kirchhoff’s laws, the net power flow into any node must equal the net power flow out.

Generators may inject power, PG and loads may consume power PL at each node i. If VESSs are

available at a node, then positive (negative), Pch − Pdis, corresponds to additional consumption

(generation).

5.3.2 Conventional generators in (5.1c) to (5.1d):

Each conventional generator is described by its production state, PG, which must be within generator

limits, as shown in (5.1c). Furthermore, due to the thermal nature of the generators, the ramp rate

of generators are limited to their ramp-rate limit, RG, as shown in (5.1d). VESSs are particularly

helpful to overcome limitations imposed by the ramp-rate limits.

5.3.3 Transmission lines in (5.1e) to (5.1h)

The temperature-based line ratings provide a mechanism through which the uncertain power injec-

tions from renewable generation can be absorbed and directed via MPC’s feedback and the optimized

VESSs dispatch. The heat gain of transmission line (i, j) is a function of ohmic losses (i.e. I2
ijrij).

Thus, it is necessary to include line losses in the power flow model. Since all values are per-unit

(p.u.), and the voltage magnitudes of all buses are close to 1 p.u., the magnitudes of the current and

power flows on the respective lines are approximately equal (i.e., |I| ≈ |S| ). Therefore, line losses

can be effectively approximated in proportion to the square of the power flow [46, 95].

In general, the AC power flow between bus i and j, pij , is the solution to a set of nonlinear,

algebraic equations. To ensure a tractable approach at the timescale of interest, a suitable convex

relaxation of the AC power flow equation has been adopted from [83]. Since the MPC executes

on a fast timescale relative to the VESSs and line temperature time constant and the linearized

model is updated via feedback for estimating line losses, temperatures, and VESS states, the model

is accurate for control.

IEEE Standard 738 [47] defines the current-temperature relationship of bare overhead conductors

and has been employed herein to calculate the conductor temperature. To allow for a tractable
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implementation of MPC scheme, temperature dynamics of transmission lines are linearized around

the equilibrium point T ∗ = T lim, where T lim is computed from steady-state conditions with line

current at ampacity (i.e., set ploss∗
ij = (I lim)2rij , where rij is the per-unit resistance of line ij). The

linearized temperature dynamics of the transmission lines are given by (5.1g).

Since line losses are approximated in proportion to the square of the power flow (5.1e), its

respective constraint is non-convex in θij . Therefore, a convex relaxation is employed (i.e., ploss
ij ≥

Rijb
2
ij(θi− θj)2) that is provably binding at optimality for lines that are overloaded since ∆T̂ij is in

the objective function that is similar to [46]. This achieves the desired measure of control over the

line flows.

The MPC scheme computes control actions that drive line temperatures below limits, and as long

as they are below limits, there is no benefit in further reducing line temperatures. The following set

of constraint achieve this purpose as shown by (5.1h). This non-convex constraint can be relaxed

with the equivalent linear formulation 0 ≤ ∆T̂ij and ∆Tij ≤ ∆T̂ij .

5.3.4 Virtual energy storage system in (5.1i) to (5.1n)

In this chapter, responsive VESSs, which are available throughout the network, have a baseline

consumption (i.e., aggregated baseline consumption of individual flexible loads in a VESS), and are

allocated as balancing reserves (e.g., via [81]). Note also that the models used in this work are

agnostic to the specifics of the coordination scheme. By shifting the VESS’s controllable load in

time, the VESS can respond to the mismatches caused by forecast errors. Any decrease (increase)

in the consumption of the VESS relative to the baseline can be translated as discharging (charging)

the VESS. Each VESS is described by an estimated SOC and the amount of power it provides to

(consumes from) the grid. At time k, the initial SOC of a VESS is given by a dynamic state estimator

(5.1n) and the SOC of a VESS over the prediction horizon is defined by the discrete integrator

dynamics as shown in (5.1m) . Non-negative scalar Pch (Pdis) represents charging (discharging)

power of a VESS and the charging (discharging) efficiency is denoted by ηch (ηdis).

Charging (discharging) power and SOC of the VESSs are subject to constraints (5.1i), (5.1j)

and (5.1m) where Pch (Pdis) and S (S), respectively, represent maximum charging (discharging)

power and the maximum (minimum) energy capacity of VESS.
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Since VESSs represent the aggregate effects of coordinated DERs, they inherit the characteris-

tic timescales of the coordination schemes that underpin them. That is, in general, coordination

schemes do not offer instant control over all DERs in a fleet, but are subject to separate internal

control, actuation, and communication loops [96, 97]. These cyber-physical control considerations

generalize themselves as ramp-rate limits on the charging (Rch) and discharging (Rdis) of VESSs as

shown in (5.1k) and (5.1l). At high levels of renewable penetration, since the VESS’s are responsive,

they represent a valuable resource to overcome demand-supply imbalances. However, unlike a con-

ventional generator, the VESS’s energy-constrained characteristics necessitate careful management

of its state of charge.

Remark 5.1 (Simultaneous charging/discharging) For most physical ESSs, simultaneous charg-

ing and discharging is not physically realizable. To model this phenomenon generally requires

complementary constraints (i.e., Pch,i[l]Pdis,i[l] = 0) which are non-linear and makes the problem

non-convex [83, 90]. However, Since a VESS coordinates large populations of flexible loads (via an

underlying control scheme), a VESS can indeed realize simultaneous charging and discharging com-

mands across the population [97]. Thus, it is reasonable to assume, in this work, that it is just the

net charging commands that determine a VESS’s energy evolution. Furthermore, unlike grid-tied

batteries, the amount of flexibility available to the system operator is time-varying and uncertain.

That is, the flexibility available to the system operator from a VESS can be translated into

upper and lower bounds on the VESS’s energy state. These upper and lower bounds are functions of

different stochastic quantities, such as human behavior and weather. To capture these considerations,

VESSs herein are formulated probabilistically and are modeled with chance constraints.

5.4 Uncertainty management

Individual flexible loads are subject to device-specific background effects (such as hot water usage

or EV driving patterns), however, a VESS represents a macro-level object. These time-varying

and stochastic background processes realize themselves as uncertainty in the VESS’s energy bounds

and states. For example, the upper energy capacity limit of the VESS is uncertain and must be

estimated and predicted from a separate model. Considering the central limit theorem, the flexibility
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offered by each device is uncertain and represents an independent random variable (i.e., background

usage of each device is independent). Therefore, a VESS’s energy capacity can be approximated as a

normally distributed random variable centered on the true mean (i.e., Sest ∼ N (Sact, σ
2
c )). Moreover,

in contrast with the grid-scale batteries, the actual SOC of the VESSs can not be measured directly

and a dynamic state estimation method (e.g. an Extended Kalman Filter [98]) should be employed

to estimate the SOC of a VESS at each time step. State estimation of a VESS’s SOC is subject

to uncertainty inherent in any state estimation method. In addition, due to the nature of Kalman

filters, the noise process can be assumed normally distributed and centered on the true mean (i.e.,

Sest
k ∼ N (Sact

k , σ2
s) ). An illustration of the uncertain estimation of a VESS’s energy capacity and

SOC is illustrated in Fig. 5.2.
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Figure 5.2: Uncertainty in estimation of VESSs energy capacity (Red) and initial SOC (Green). The

variance of uncertainties grow over time as the distance from current time step increases.

Definition 5.2 (Dynamic capacity saturation (DCS)) Charging and discharging commands

of the uncertain VESSs can be optimized based on a mean (or average) energy capacity estimate

alone (i.e., only consider the first moment and ignore higher-order moments), which is known as a
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deterministic optimization problem. However, the underlying, uncertain VESS energy capacity may

realize itself unexpectedly and saturate in the energy state, which zeros out the charging rate of the

optimized control (power) action. We call this saturation phenomenon dynamic capacity saturation

(DCS) [99]. DCS may lead to unexpected power imbalances in the power system. To regulate these

unexpected DCS-induced power imbalances, grid operators must rely on (expensive) generation to

supply the difference based on their participation factor di, as shown below:

∆PGi[k + 1] = −di
∑
i∈Nb

max

{
Si[l + 1]− Si

Ts
, 0

}
. (5.2)

5.4.1 Chance constrained formulation

Chance constrained optimization is employed to reduce the risk of DCS and to solve an optimization

problem with uncertain parameters. The chance constraints should be satisfied with a predefined

probability level 1 − ε, where ε ∈ (0, 1) is the acceptable-worst-case violation level. Reducing risk

increases system reliability and operational cost, which implies a clear trade-off. Within the context

of pay-for-performance ancillary services, the operational costs are defined herein by the generators’

reference-tracking errors [100].

Chance constrained optimization problems can be solved with a probabilistically robust scheme,

inspired by the so-called scenario approach. In the scenario approach, the chance constraint is

substituted with a finite but large number of deterministic constraints corresponding to different

realizations of the underlying uncertainty space [101]. By employing an adequate number of scenarios

from this set (i.e. N >> 1), the approach is able to provide a-priori guarantees of satisfying

the chance constraint.The scenario-based approach is useful in offline planning studies when the

uncertainty is complex and captured via historical data sets, as it makes no assumption on the

underlying distribution of the uncertainty. However, the number of scenarios required is a function

of ε and the number of uncertain parameters can grow very large. If the underlying problem is

convex, there exists techniques to reduce the number of scenarios and mitigate computation costs

by reformulating the problem into a robust optimization problem [78].

Indeed, if an accurate analytical model of the uncertainty distribution is known, the method
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analytical reformulation can be employed to transform the chance constraint into a robust, deter-

ministic constraint [102, 103]. In contrast to the scenario approach, the analytical reformulation

does not require sampling complex distributions or large data-set. This means that only a single

reformulation for each chance constraint is needed, which makes implementation tractable at the

timescale of interest [104]. Due to the aggregation of many stochastic background processes it is

reasonable to assume that the estimation error are normally distributed random variables and the

chance constraint can be reformulated analytically.

Next, we introduce the chance constraints related to the uncertain variables of the VESS (i.e.,

energy capacity and SOC) and briefly describe the analytical reformulation to derive a convex

program. The formulation is presented with respect to the upper energy capacity limit of the VESS,

but the lower limit can be handled in a similar manner. Note also that while much of the literature

of analytical reformulation, the work herein focuses on uncertain energy states rather than power.

5.4.2 Analytical reformulation of chance constrained problem

Recall, the evolution of the SOC of the ith VESS over the prediction horizon (i.e., l ∈ [1,M ]), is

related to the estimated SOC of the ith VESS at time k (i.e., Sest
k,i ) and charging (discharging) control

actions as follows

Si[l] = Sk,i +

l∑
m=1

∆Si[m] (5.3)

where ∆Si[l] = Ts(ηch,iPch,i[l]− η−1
dis,iPdis,i[l]).

The estimated SOC of VESS is assumed to be a normally distributed random variable centered

on the true mean (i.e., Sest
k,i = Sact

k,i + ξs,i), where the SOC estimation error is denoted by ξs ∈ RNB ,

with µs ∈ RNB as its mean, δs ∈ RNB as its standard deviation and Σs ∈ RNB×NB as its covariance

matrix.

Any VESS technology that does not directly measure each DER’s energy state regularly requires

a dynamic state estimator that is specific to the model and information exchanges that underpin a

specific VESS. However, this work makes no assumption on specific state estimation methods. It is

only assumed that the state estimation methods are uncertain and errors are normally distributed
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and managing this uncertainty is desirable.

In addition, due to the i.i.d. nature of DERs’ end usage, estimation of the energy capacity of

the ith VESSs can be modeled as a normally distributed random variable around its true mean (i.e.,

Sest,i = Sact,i + ξc,i), where ξc ∈ RNB denotes the VESSs’ capacity estimation error, with µc ∈ RNB

as its mean, δc ∈ RNB the standard deviation and Σc ∈ RNB×NB the covariance matrix.

Then, for ∀i = 1, . . . ,NB the following constraints are equivalent:

P

(
Sact
k,i +

l∑
m=1

∆Si[m]− Sact,i ≤ 0

)
≥ 1− ε (5.4)

P

(
Sest
k,i − ξs,i +

l∑
m=1

∆Si[m]− Sest,i + ξc,i ≤ 0

)
≥ 1− ε (5.5)

Sest
k +

l∑
m=1

∆Si[m] ≤ Sest,i − αc
√
δ2
s,i + δ2

c,i + ρcs,iδc,iδs,i (5.6)

where αc := Φ−1(1 − ε) and Φ−1 denotes the inverse cumulative distribution function (cdf) of

the standard normal distribution and ρcs is the correlation coefficient of capacity and initial SOC

estimation error. Considering uncertainty introduces an uncertainty margin which is the amount

that the constraint should be tightened in order to secure the system against the prescribed, uncer-

tainty . Thus, the risk associated with each source of uncertainty is captured in a computationally

tractable framework via the covariances of the estimation errors, δs,i and δc,i. It is now intuitive to

understand the role of uncertainty on the conservativeness of the VESS dispatch.

Remark 5.3 A VESS’s initial SOC and capacity are estimated with an independent state estimator

dedicated to that specific VESS. Therefore, even with correlated estimation errors in capacity or

correlated estimation errors in initial SOC estimation, dynamic of each VESS only depends on that

VESS’s capacity and initial SOC estimation.

5.5 Risk-based Approach

For a given chance constraint P (f(x, ξ) ≤ b) ≥ 1 − ε, where x and ξ are decision and uncertain

variables, the magnitude of constraint violation is a function of ξ and is given by y(ξ) = f(x, ξ) −

b. Negative y indicates constraint satisfaction while positive y implies constraint violation. The
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standard chance constraint limits the probability of violation (y > 0) to a predefined risk limit, ε.

Since chance-constrained approaches ignore the severity of the constraint violation, the approaches

are generally conservative and a closed-loop chance constrained MPC (CC-MPC) implementation

may lead to reduced performance of the system (by reducing the available flexibility). Authors

in [105, 106], consider the severity of a constraint violation, by weighting the probability of the

constraint violation by magnitude of the constraint violation.

In applying chance constraints, there is a clear trade-off between high reliability (i.e., conservative

uncertainty margin for VESSs) and low nominal cost (i.e., use as much VESS as possible), which

depends on how risk limits are chosen. Risk limits are generally chosen as a predefined parameters

(e.g. ε ∈ (0.90 0.99)) based on the importance of the constraint.

Unlike the robust approach that limits the SOC of VESSs to a predefined robust limit Srob, we

propose a novel risk-based approach that allows the solution to exceed the robust limit at each point

in time. This is possible by introducing the operating risk, R, which is a new decision variable. Thus,

performance and risks can be co-optimized, which leads to the following multi-objective optimization

problem:

min
PG, Pch, Pdis,R

k+M∑

l=k

J1[l] + J2[l] (5.7a)

s.t.

(5.1b) to (5.1n),

Ri[l] = max(0, Si[l]− Srob,i), (5.7b)

Ri[l] ≤ Ri, (5.7c)

Ri = Sest,i − Srob,i (5.7d)

where

J1[l] :=
∑

∀i∈Ng

cG,i(PG,i[l]− P ref
G,i[l])

2 +
∑

∀ij∈E
cT,ij(∆T̂ij [l])

2

and

J2[l] :=
∑

∀i∈NB

cR,i(Ri[l])
2
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The robust limit can be computed by analytical reformulation or scenario based approach or

determined by using expert knowledge. As the risk-based MPC receives updated estimates at each

time step, the cost of risk, cR, can be designed such that it penalizes risk early in the horizon and

lowers the penalty later in the horizon. Larger cR indicates higher cost and higher security and

it is necessary to reach a good balance between risk of violation and nominal cost. To relate the

value of improving tracking performance and the associated increase in operational risk, an efficient

frontier for the tracking performance versus operational risk was computed by applying the weighting

method in [107].

The MPC seeks to drive the SOC of VESSs below the robust limit, and once below the robust

limit, there is no risk-induced incentive to lower SOC further as shown in (5.7b). This constraint

can be relaxed to the linear formulation equivalent of 0 ≤ Ri[l] and Si[l]−Srob,i ≤ Ri[l]. Figure 5.3

illustrates an example of the SOC of the VESS with respect to the estimated capacity of the VESS

and its robust limit.

Thus, deterministic, robust, and risk-based methods can be summarized as follow

I. The deterministic method dispatches VESSs with respect to the estimated SOC and energy

capacity of VESSs.

II. The robust method dispatches VESSs with respect to the robust limit calculated with analytic

reformulation.

III. The risk-based chance constrained (RB-CC) method co-optimizes reference-tracking perfor-

mance and operational risk of DCS. Note that by sweeping cR from 0→∞, the performance

of the controller changes from the deterministic approach to the standard robust approach.

Recall that unlike the existing literature on chance constrained optimization in power systems,

this work considers the uncertainty of time-coupled energy variables on a fast time scale for

corrective control.

5.6 Simulation and result

In this section, the proposed control scheme in Fig. 5.1 is demonstrated on an augmented version of

the IEEE RTS-96 power system test case, which includes three interconnected systems. The system

74



Prediction Step

SO
C

S
e
st

S
ro

b
Deterministic limit

Robust limit

Points with no risk

Points with risk

Risk magnitude

Ri

Figure 5.3: Illustrating the evolution of the SOC of a VESS with respect to the estimated capacity and

robust bound and the corresponding risk imposed on the system performance.The variance of uncertainties

grow over time as the distance from current time step increases. The green circles highlight the points with

zero added risk. On the other hand, the red circles demonstrate when the VESSs’ SOC is greater than the

robust limit and takes on an increased, but weighted risk of DCS.

is fully described in [108]. All optimization problems are solved in MATLAB and AMPL using the

solver GUROBI. MPC employs the simplified linear model to compute all optimal control actions.

However, the actual plant model is the non-linear AC system, with line temperature computed based

on the non-linear thermodynamic IEEE Standard 738 conductor temperature model to accurately

capture the effects of implementing MPC. The aim of this case study is to demonstrate generator

reference-tracking performance with uncertain VESSs while considering physical constraints of the

power system. Since the IEEE RTS-96 system is designed as a highly reliable system with high

thermal ratings for lines, to push the system towards its limit and induce more congested scenarios,

nominal thermal ratings are reduced by 40%, bringing line temperature limits in the range of 60−

70◦C. The network parameters are shown in Table 5.1.

Initially, the system is at steady-state (i.e., generators following exactly an economic trajectory

and VESS resources being available for balancing reserves), but at time t = 5 mins, the system
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Table 5.1: Three large VESSs Simulation Parameters

Description Value

Number of buses 73
Number of branches 120
Number of generators 96
Total load 8550 MW
Number of VESSs 3
Total capacity of VESSs 855 MWh
VESSS bus ID (location) 11, 35, 59
VESS energy capacity 285 MWh
VESS initial SOC 50%
Maximum VESS power 285 MW
VESSs ramp rate limit 60 MW/min
Sampling time 60 s
MPC prediction horizon 20 mins
Avg. MPC solve time 3.19 sec

Table 5.2: VESS Uncertainty parameters

Case σ1 (%) σ2 (%)

Low uncertainty 2 3
High uncertainty 5 10

experiences a net-load disturbance (e.g., forecasted net-load) that requires VESS balancing reserves

to provide 10% decrease in the net-load (i.e., 855 MW) to minimize unnecessary generators ramping.

The disturbance last for 60 minutes, and therefore, VESSs are designed such that they can provide

reserve for 60 minutes.To compare the performance of the proposed RB-CC method aginst deter-

ministic and standard robust approaches, 200 trials (i.e., realizations) are performed (NT = 200)

for two different scenarios of uncertainty as shown in Table 5.2. Since the baseline consumption

and consequently the capacity of VESSs are dependent on the same types of uncertain parameters,

capacity estimation errors of VESSs are assumed to be correlated. The sum of squared error (SSE)

of reference tracking of generators over the entire simulation time

JGen :=

N∑
l=1

∑
i∈Ng

(PG,i[l]− P ref
G,i[l])

2 (5.8)

is used as the tracking MPC performance metric.
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Mean and standard deviation of SSE of reference tracking of generators, for deterministic, robust,

and RB-CC approaches under the different scenarios of uncertainty are shown in Table5.3. The

robust approach is used as a benchmark to evaluate the proficiency of the proposed RB-CC approach.

Smaller SSE, implies better tracking performance. Poor performance of the deterministic approach

is due to dispatching VESSs without considering the second-order moment of uncertainties which

increase the risk of DCS. By applying the robust approach, chances of DCS is low, but since this

method is conservative, the flexibility offered by VESSs are not fully utilized. However, under the

proposed RB-CC, the controller uses the available flexibility while considering the uncertainty and

exceeds the robust limit (i.e., accepting the risk) only when it is most valuable to do so.

Table 5.3: Comparing mean and standard deviation of tracking performance of the MPC (i.e., JGen)
under deterministic, robust, and RB-CC approaches

Low uncertainty High uncertainty

µ σ µ/µRob(%) µ σ µ/µRob(%)

Deterministic 403.65 404.25 307.07 1118.90 1301.20 384.69
Robust 131.45 15.82 100 290.86 18.67 100
RB-CC 103.23 28.61 78.53 212.55 34.75 73.08

Note that for different duration of disturbances, as long as the capacity of VESSs are designed

to provide reserve for the desired duration, same behaviour are observed.

Fig. 5.4 shows the cumulative squared error and evolution of the SOC of VESSs over simulation

time for one trial (out of 200 trials). The robust approach dispatches VESSs considering the robust

limit which results in higher tracking error at the beginning compare to the deterministic approach.

However, as time goes on and the SOC of VESSs get closer to their limits, chance of DCS and

consequently need to corrective actions increases which results in poor tracking performance of

deterministic approach. Since the RB-CC approach considers the the risk-performance trade-off,

it optimizes the risk of dispatching VESSs beyond their limits, while preventing DCS reaches the

better tracking performance .

consider the the risk-performance trade-off

Histograms of the sum of the squared tracking error (JGen) of the deterministic, robust and

RB-CC approaches are shown in Fig 5.5. Note that as expected, increasing the level of uncertainty
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Figure 5.4: Cumulative squared error (top plot) and evolution of the energy state of the charge of the

VESSs (bottom plot) under deterministic, robust, and RB-CC approaches for one trial.

makes the deterministic formulation susceptible to poor average performance while the robust and

RB-CC formulations achieve similar performance.

To illustrate the role of risk cost, cR, on the tracking performance and total risk imposed to the

power system, we scale the risk cost, cR between 0 and 60 for one trial (out of 200 trials) where

0 resembles the deterministic and 60 approximates the robust approach. The resulting curves in

Fig. 5.6 show the optimal trade-off between the tracking performance JGen, total operational risk

that MPC accepts and risk cost. As expected, for small risk cost, controller dispatches VESSs with

respect to the expected energy capacity limit, disregarding the robust limit and operational cost.

This results in larger total risk, more DCS and poor tracking performance. For large risk cost,

VESSs are dispatched conservatively and while the VSEEs are dispatch at a very low risk level,

parts of the flexibility offered by VSEEs are declined.
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Figure 5.5: Histogram of the squared tracking error under deterministic, robust and RB-CC approaches.

For visualization purposes, trials with squared tracking error of greater than 2000 are categorized in the last

bin.
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Figure 5.6: Role of the risk cost, cR on the tracking performance and the total risk imposed to the
power system.

To further investigate the effectiveness of the proposed method, the three large VESSs (one

located in each region), are replaced by nine smaller VESSs (three located in each region) and
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Table 5.4: Parameters of nine small VESSs

Description Value

Number of VESSs 9
Total energy capacity of VESSs 855 MWh
Bus ID (location) of VESSs 11, 17, 24, 35, 41, 48, , 59, 65, 72
VESS energy capacity 95 MWh
Initial VESS state of charge 50%
Maximum VESS power output 95 MW
VESSs ramp rate limit 20 MW/min

location and parameters of small VESSs are shown in Table 5.4. Intuitively, smaller VESSs should

reduce the severity of DCS events, but increase their frequency. The same analysis has been carried

out on the system with the small VESSs under high uncertainty scenario anad results are shown in

Fig. 5.7. The RB-CC outperforms the standard robust method.

Table 5.5: Performances of the deterministic, robust and ACT method are analyzed in presence of
nine VESSs (three in each region).

µ σ µ/µRob(%)

Deterministic 403.65 404.25 307.07
Robust 131.45 15.82 100
RB-CC 103.23 28.61 78.53

5.7 CONCLUSIONS AND FUTURE WORKS

This chapter studies the performance of a bi-level receding horizon predictive optimal power flow

problem for managing variability with uncertain, flexible grid assets, such as VESSs. Since the

SOC and capacity of VESSs can not be measured directly, a dynamic state estimator and simplified

VESS aggregate model must be employed, which introduce uncertainty. This uncertainty in energy-

constrained resources gives rise to the notion of dynamic capacity saturation (DCS). To overcome

DCS, uncertainty can be managed by employing robust approaches. However, there is a sensitive

trade-off between robustness of the optimized dispatch and closed-loop performance of the system.

Indeed, robust approaches may lead to a conservative (high-cost) solution. Therefore, we introduced

a RB-CC approach under which the operational risk is optimized with respect to the dynamic states

of the VESSs over a receding horizon. The numerical studies indicate that RB-CC outperforms
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other methods and significantly reduces DCS while maintaining good tracking performance.

Future work focuses on quantifying how well uncertain VESSs can regulate line temperatures

under large disturbances. Furthermore, we are investigating stability guarantees for the MPC scheme

and how uncertainty in the temperature estimates affects performance.

Figure 5.7: Histogram of the squared tracking error under deterministic, robust and RB-CC ap-
proaches in presence of nine VESSs (three in each region). For visualization purposes, trials with
squared tracking error of greater than 2000 are categorized in the last bin.
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6 Chapter 6: A Model-Predictive Control Method for Coor-

dinating Virtual Power Plants and Packetized Resources,

with Hardware-in-the-Loop Validation

Abstract

In this chapter, we employ a bi-level control system to react to disturbances and balance power

mismatch by coordinating distributed energy resources (DERs) under packetized energy manage-

ment. Packetized energy management (PEM) is a novel bottom-up asynchronous and randomizing

coordination paradigm for DERs that guarantees quality of service, autonomy, and privacy to the

end-user. A hardware-in-the-loop (HIL) simulation of a cyber-physical system consisting of PEM

enabled DERs, flexible virtual power plants (VPPs) and transmission grid is developed in this work.

A predictive, energy-constrained dispatch of aggregated PEM-enabled DERs is formulated, imple-

mented, and validated on the HIL cyber-physical platform. The energy state of VPPs, composed

of a fleet of diverse DERs distributed in the grid, depend upon the distinct real-time usage of these

devices. The experimental results demonstrate that the existing control schemes, such as AGC, dis-

patch VPPs without regard to their energy state, which leads to unexpected capacity saturation. By

accounting for the energy states of VPPs, model-predictive control (MPC) can optimally dispatch

conventional generators and VPPs to overcome disturbances while avoiding undesired capacity sat-

uration. The results show the improvement in dynamics by using MPC over conventional AGC and

droop for a system with energy-constrained resources.

6.1 Introduction

The drive to reduce greenhouse gas emissions and declining capital costs are precipitating rapid

increases in wind and solar generation capacity. Despite their low emissions profile, wind and solar

power supplies vary rapidly in time, motivating the need for additional balancing resources [109, 110].

Since some peaking power plants may take more than an hour to bring online, during times of ex-

tensive peak usage, direct load control (i.e., load shedding) has been employed to ensure the security

82



of the power system [111]. However, the internet-connected distributed energy resources (DERs)

are flexible in power demand and can be coordinated to provide ancillary services to the grid [13].

Although the main idea underlying modern demand coordination has existed for decades [11], the

infrastructure required for load coordination is still in early stages, but developing rapidly [12–14].

Packetized energy managment (PEM) introduced previously by the authors [12, 112], is one such

load coordination scheme. PEM leverages protocols used to manage data packets in communication

networks to regulate the aggregate power consumption of DERs. More specifically, as in digital

communication systems that break data into packets before transmission, PEM enables load control

devices to consume energy in the form of “energy packets” which devices request periodically using a

carefully designed randomized control policy. In PEM, the load coordinator only needs to know the

aggregate power consumption and aggregate requests from the packetized-load to provide ancillary

services to the grid. The energy-packet mechanism of PEM, therefore, provides a significant advan-

tage in terms of communication overhead, over state-estimation based approaches, that require an

entire histogram of states, which is addressed through observer design. Furthermore, controller com-

plexity decreases in PEM, since the load coordinator only responds to individual requests depending

upon the available flexibility as compared to more complex controllers. By leveraging protocols

that are similar to TCP/IP, PEM inherits certain properties with regard to providing statistically

uniform access to the grid. PEM guarantees the quality of service (QoS) for individual DERs in the

entire population through its unique opt-out mechanism. The mean-field approaches, on the other

hand, ensure QoS in the mean sense of the population where individual DERs might violate the

QoS [13]. This work describes how aggregated PEM resources can be coordinated in real-time and

demonstrates the applicability of the method to practical power systems applications and the role

of cyber-physical systems (CPS).

Historically, balancing authorities maintain real-time supply/demand balance through automatic

generation control (AGC) and load-frequency control (LFC) by implementing PI controllers in steam

turbine generator systems to ensure power system operation at nominal frequency [113]. As the

amount and distribution of controllable resources increases, determining an appropriate response to

unscheduled events (e.g. power imbalances due to prediction error) is more challenging for the grid

operators who need new tools for decision making.
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An increasing number of researchers [114, 115] and industry groups [116] are employing virtual

power plants (VPPs) to aggregate groups of DERs and then dispatch those resources into energy

markets, such as frequency regulation/AGC. VPPs are formed from aggregation of flexible resources

which are limited in power and energy. Since PI-control-based AGC does not take energy state esti-

mation of VPPs into account, it may overuse the offered flexibility in short period of time (greedy)

which leads to the sudden saturation of VPPs (i.e. cannot provide any more flexibility). To overcome

this phenomenon, model-predictive control (MPC) can be employed. MPC is a multi-input, multi-

output (MIMO), optimization-based, predictive control technique that considers system constraints

explicitly [117]. MPC strategies have previously been applied in power systems for optimal coor-

dination of controllable loads, load shedding, capacity switching, tap-changer operation, etc. The

main purpose of those strategies is contingency management, voltage stability, thermal control of

transmission lines, and energy management [99, 118, 119]. In this work, an MPC scheme is employed

to track a secure, economically-optimal reference trajectory of generators and VPPs while respond-

ing to power imbalances and satisfying physical constraints of the power system. For frequency

regulation in the power system under high penetration of renewables, MPC has several advantages

over PI controllers including robustness of the system against disturbance and uncertainty [120].

This chapter demonstrates the benefit that MPC has on dispatching resources with limited energy

supply. An HIL platform is developed that consists of a transmission grid, MPC corrective dispatch

scheme and PEM-enabled DERs emulated on a high-performance PC that requests packets of energy

from the aggregator. The VPPs are physically realized in a micro-controller that connects the DERs

to the grid via analog signals. The experimental results demonstrate the effectiveness of the MPC

in a real-time CPS, thereby validating the ability of a VPP to track challenging signals under such

control.

The remainder of the chapter is organized as follows. Section 6.2 details Packetized Energy

Management of DERs. In Section 6.3, we demonstrate our cyber-physical validation platform.

Section 6.4 gives an overview of the system operation and control. Implementation results are

provided in Section 6.5 and Section 6.6 concludes the chapter.
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6.2 Packetized energy management of DERs

Packetized energy management is a bottom-up DER coordination scheme in which the DERs submit

randomized requests of energy packets. The VPP accepts or rejects these requests based on the

available flexibility. The DERs considered in this work are thermostatically controlled loads (TCLs)

and energy storage systems (ESS).

The PEM-enabled DERs are designed to operate in one of the four following logical states: (i)

charge (ii) discharge (iii) off (iv) opt-out. The first three states (charge, discharge, off) are associated

with the normal PEM operation whereas the fourth OPT-OUT state ensures quality of service (QoS).

A DER in OFF stochastically requests a charge packet or a discharge packet. If a charge packet

is accepted, the DER changes state from OFF to CHARGE and consumes power for a specific

time interval δc. If a discharge packet is requested and consequently accepted, the DER transitions

from OFF to DISCHARGE state and discharges power into the system for a fixed time δd. After

completing a charge or discharge packet, the device automatically transitions to OFF mode and this

process of stochastically requesting charge/discharge packets repeats. PEM aims to maintain the

DER’s state within minimum and maximum operating bounds. PEM provides QoS guarantees by

enabling the devices to opt out of the packetizing behavior when the energy state goes outside of

allowable upper and lower limits.

6.3 Cyber-Physical Layout

The smart grid paradigm [121] is largely about the transformation of power systems into full cyber-

physical systems that enable bidirectional flows of energy and communications. CPS are of vital

importance to the grid, especially when increasing the presence of renewable generation and smart

devices, improving control [122, 123], and adding resiliency to the system [124, 125]. The validation

of CPS require accurate models of both cyber and physical sub-systems (e.g. HIL systems commu-

nicating with one another over realistic communication protocols). In order to validate the proposed

demand-side CPS scheme, a real-time HIL platform is developed consisting of a transmission system

and packetized load. The OP5600 real-time digital simulator from OPAL-RT is used to simulate

the HIL cyber-physical system. The OP5600 has a multi-core processor along with digital and ana-
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log I/O with the capability of interfacing to a network of PCs in order to simulate large models

in real-time while real-time refers to timescales on the order of tens of milliseconds. The RT-Lab

software allows the communication between a host PC and the target (OP5600) simulator such that

a real-time physical model can run on the simulator while the controller would run on the PC where

an operator could make adjustments when necessary.

“ePHASORSIM” is a tool developed by OPAL-RT to offer dynamic simulation of power systems

in order to conduct power system studies and test control schemes. A grid is modeled with a standard

positive-sequence equivalent single-phase constant-power AC model in ePHASORSIM, based on

the Vermont Electric Power Company (VELCO) transmission system to be run in real time on

the OP5600. RT-LAB and ePHASORSIM can be interfaced extremely easily with MathWorks’

Simulink, which is used to develop the controls for the power system. The OPAL-RT blockset for

Simulink allows a section of the Simulink block diagram to be run in real time on the OP5600

and the controls can be run asynchronously on the PC with the ability to accept user inputs when

necessary. ESP8266 microchips were used to emulate VPP interconnections to the grid in real time.

ESP8266 communicate with the cloud server over WIFI, while the server is being hosted on a Linux

machine. Fig. 6.1 shows an overview of the cyber-physical platform used in this study.

6.4 Energy aware dispatch of diverse energy resources

Security constrained optimal power flow (SCOPF) enables grid operators to implement economic

schedules for generators, flexible loads and importing power into the area for a number of hours.

However, the volatility and intermittent characteristic of net-loads (i.e., demand minus renewables)

results in forecast error and power imbalances. Since grid operators may pay high penalties for

rescheduling generators or importing power through tie lines to balance supply and demand [75],

power mismatches can be balanced by controlling flexible resources. This suggests a bi-level control

strategy where the first level is in charge of economic scheduling and its outputs are used as a

reference input to the second level which is in charge of dispatching generators and VPPs to balance

the system against any disturbance. An overview of the proposed control system is provided in

Fig. 6.2.
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Figure 6.1: Cyber-physical platform overview: The transmission grid is simulated on the OP5600
and MPC-corrective dispatch is realized on a host PC and generates balancing signals. ESP8266
devices are connected to a python-based server via WiFi and transmit the VPPs’ states through the
analog interface. The packetized load is emulated on a high performance PC and requests energy
packets from the VPP through WiFi communication.

6.4.1 AGC

In the power system, safety of the electrical equipment and quality of delivered power is dependant

on nominal system frequency. Therefore, the frequency should be controlled and monitored regu-

larly and any mismatches in generation and consumption shall be corrected through load frequency

control (LFC) [15]. Traditionally, the primary frequency regulation (speed-droop) on each gener-
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Figure 6.2: Overview of control scheme showing controller including OPF and MPC part and how
each part is related to the power grid.

ator stabilizes the power system with a steady-state frequency deviation from the desired system

frequency depending on the droop characteristic and frequency sensitivity. A linear combination of

frequency errors and change in imported power through tie lines from their scheduled contract basis

is used as an error signal called area control error (ACE). AGC acts as a secondary control using

an integral controller that sends out control signals to generators and VPPs to reduce ACE to zero

in steady state. For the purposes of this work, only two areas are used for simplicity, while being

effective enough to demonstrate the flow of power between different areas. The first area represents

a small balancing authority (control area), and the second represents the aggregate dynamics of the

external system. One machine exists in the external area and has a large inertia and capacity to

emulate the properties of the rest of the interconnected power system.

Figure 6.3: Diagram showing a control schematic for the test system including all of the generation
in the internal and external areas.
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Fig. 6.3 shows the control diagram for the system modeled in this chapter, which is an adapted

version of the diagram from [113]. The interaction between the internal and external areas involved

are shown. The external machine, one of the internal machines, and the VPPs assist in AGC/ACE,

while all of these generation sources are equipped for primary frequency regulation.

6.4.2 Model predictive control for power system

Unlike conventional generators, VPPs (synthetic reserves) are energy-constrained and should be

utilized considering their available flexibility. Aforementioned primary and secondary frequency

controllers do not take energy states of the VPPs into account. Therefore, VPPs may reach their

energy capacity limits (saturate) unexpectedly and cannot provide balancing power anymore. As

a result, conventional generators must be rescheduled to provide the required balancing services,

which can be expensive, or even infeasible leading to a reliability risk.

As an advanced control technique, MPC forms an alternative to the PI controllers in frequency

regulation which uses a mathematical model of the power system based on the current and future

information and constraints to find the optimal control actions with respect to the defined objective.

Unlike a PI controller, MPC dispatches resources (generators and VPPs) at each time step consid-

ering current states and forecasted conditions while handling the energy constraints of the flexible

resources. The results of this work show that the MPC is more suitable for frequency regulation

and dispatching energy-constrained resources compared to the PI controllers [126, 127]. The MPC

scheme can be summarized as follows:

1. Controller uses measured/estimated initial states to solve an open-loop optimal control problem

for M steps, which is known as prediction horizon, taking into account current and future

constraints. This gives a sequence of optimal open loop control actions and predict output.

2. Apply receding horizon control so that only the first instance of the control sequence is given

as the input to the plant.

3. Measure the actual system state after applying the first control action.

4. Go to step 1.
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We consider a transmission system model comprising of Nb buses, Nl lines, NG generators, NL

loads and NB VPPs. Parameters ΩNi and ΩGi refer to a set of all buses connected to bus i and set

of all generators at bus i respectively. Since MPC relies on a linear model of the actual system,

the dynamic model of the system is discretized by forward Euler method with sample time Ts. The

MPC optimization is defined to minimize the cost of the deviation of generator outputs from the

scheduled set-points P rG,i considering deviation cost cG,i

J∗ = min
PG, Pch, Pdis

k+M∑

l=k

∑

∀i∈Ng

cG,i(PG,i[l]− P r
G,i[l])

2 (6.1a)

s.t.

Pch,i[l]− Pdis,i[l] + P f
L,i[l] +

∑

j∈ΩN
i

fij [l] =
∑

z∈ΩG
i

PG,z[l], (6.1b)

fij [l] = bij(θi[l]− θj [l]), (6.1c)

− fij ≤ fij [l] ≤ fij , (6.1d)

PG,i ≤ PG,i[l] ≤ PG,i, (6.1e)

− TsRG,i ≤ PG,i[l + 1]− PG,i[l] ≤ TsRG,i, (6.1f)

0 ≤ Pch,i[l] ≤ Pch,i, (6.1g)

0 ≤ Pdis,i[l] ≤ Pdis,i, (6.1h)

− TsRch,i ≤ Pch,i[l + 1]− Pch,i[l] ≤ TsRch,i, (6.1i)

− TsRdis,i ≤ Pdis,i[l + 1]− Pdis,i[l] ≤ TsRdis,i, (6.1j)

Si[l + 1] = Si[l] + Ts

(
ηch,iPch,i[l]− η−1

dis,iPdis,i[l]

)
, (6.1k)

Si ≤ Si[l] ≤ Si (6.1l)

where (6.1b) imposes Kirchhoff’s laws, implying that the net flow into a bus must equal the net flow

out of that bus. Power flows on the line connecting bus i and j that are determined by (6.1c) must

be within the power carrying capacity of the transmission line fij as shown in (6.1d). Generators

may inject power, PG and loads may consume power PL at each node i. Each conventional generator

is described by its production state, which must be within generator upper and lower limits, PG and

PG, as shown in (6.1e). Furthermore, due to the thermal nature of the generators, their ramp rates
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are limited to up and down limits, RG, as shown in (6.1f). The responsive VPPs overcome limitations

of generator ramping rates. Non-negative scalar Pch and Pdis represent charging and discharging

power of a VPP. The charging and discharging efficiencies are denoted by ηch and ηdis. Charging

and discharging power and SOC of the VPPs are subject to constraints (6.1g), (6.1h) and (6.1l)

where Pch, Pdis, S, and S represent maximum charging and discharging power and the maximum

and minimum energy capacity of VPP, respectively. In general, coordination schemes do not offer

instant control over all DERs in a fleet, but are subject to separate internal control, actuation,

and communication loops [97]. These cyber-physical control considerations manifest themselves as

ramp-rate limits on the charging (Rch) and discharging (Rdis) of VPPs as shown in (6.1i) and (6.1j).

The dynamic of the VPP’s SOC is shown in (6.1k).

6.5 Results

This section experimentally demonstrates that energy-aware dispatch of flexible VPPs enhances the

AGC performance. The details of the test-setup are as follows. The transmission system consisting of

161 buses, 223 transmission lines and three generating units, is set up in ePHASORSIM and supplies

a total load of 609 MW consisting of approximately 50% renewable generation and remaining load

is supplied from one external and two internal machines and generators. The flexibility is provided

by two VPPs consisting of one bulk battery and one HIL VPP. The HIL VPP consists of real

packetized-enabled DERs emulated on a high-performance PC, that requests the VPP (server) for

packets of energy through web-sockets. The VPP obtains balancing signals from the grid operator

and accepts/rejects the packets based on the available flexibility. ESP8266 is the physical realization

of VPP that obtains the VPP’s state from the server and sends it to the grid through an analog

interface.

6.5.1 Capacity saturation of VPP

The HIL VPP and grid scale battery providing grid services are energy-limited and ignoring their

energy capacity results in inferior AGC performance. The effect of their capacity on the ancillary

services provided to the grid is demonstrated in Fig. 6.4. The capacity of the battery is 45 MWh.

Fig. 6.4 shows that the load reduces by 50 MW resulting in excess generation and both battery and
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VPP take up 45 MW and 5 MW respectively, of this excess generation. The battery is initially 50%

charged, as shown in Fig. 6.4 (b). After t ≈ 36 mins, in Fig. 6.4 (b), the battery saturates and can

no longer provide ancillary services to the grid. The power output of Gen. 2 is therefore reduced to

account for the loss of 45 MW and the system deviates from its scheduled generation (Fig. 6.4 (c))

in order to keep the system stable (Fig. 6.4 (d)).

6.5.2 MPC with capacity saturation

The proposed energy aware scheme improves the performance by explicitly accounting for the energy

limits of the flexible resources. Fig. 6.5 shows a load change ∆PL = 50 MW that results in the HIL

VPP and the battery providing the remaining slack. MPC keeps track of the current state of charge

of the HIL VPP and the battery (Fig. 6.5 (a) and (b)) and after t ≈ 13 mins, gradually reduces the

set-points of the battery to avoid saturation as shown in Fig. 6.5 (b). The HIL VPP and the battery

can therefore supply ancillary services to the grid for over 60 mins.

6.6 Discussion/Conclusion

This chapter presents a hardware-in-the-loop implementation of PEM-based cyber-physical platform

and demonstrates that aggregated PEM-enabled DERs can provide ancillary services to the grid. The

system consists of emulated DERs, an aggregator realized as real live webserver, and a transmission

system developed from the real data provided by VELCO. The experimental studies carried out in

this work show that conventional control schemes (i.e. AGC and droop) do not take into account

the state of charge of VPPs while providing ancillary services to the grid that leads to capacity

saturation of the VPPs. As a result, the VPP can no longer support the requested flexibility and

cause a disturbance in the grid because the generators have to ramp-up quickly to ensure stability.

Conventional schemes are therefore greedy in managing flexible resources and leads to capacity

saturation and unwanted disturbances. Model predictive control (MPC) responds to the unexpected

disturbances by dispatching resources depending upon the hourly load forecast as well as minute-

by-minute dispatch in a receding horizon. MPC is shown to proactively vary the consumption of

flexible resources depending upon the SOC, which utilizes these resources for a longer time than the

base case with AGC. The generators therefore operate as close as possible to their optimal limits
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deviation of generator outputs from the scheduled set-points P r
G,i

considering deviation cost cG,i

J⇤= min
PG,Pch,Pdis

k+MX

l=k

X

8i2Ng

cG,i(PG,i[l]�P r
G,i[l])

2 (1a)

s.t.

Pch,i[l]�Pdis,i[l]+Pf
L,i[l]+

X

j2⌦N
i

fij[l]=
X

z2⌦G
i

PG,z[l], (1b)

fij[l]=bij(✓i[l]�✓j[l]), (1c)

�fij fij[l]fij, (1d)

PG,iPG,i[l]PG,i, (1e)

�TsRG,iPG,i[l+1]�PG,i[l]TsRG,i, (1f)

0Pch,i[l]Pch,i, (1g)

0Pdis,i[l]Pdis,i, (1h)
�TsRch,iPch,i[l+1]�Pch,i[l]TsRch,i, (1i)
�TsRdis,iPdis,i[l+1]�Pdis,i[l]TsRdis,i, (1j)

Si[l+1]=Si[l]+Ts

✓
⌘ch,iPch,i[l]�⌘�1

dis,iPdis,i[l]

◆
, (1k)

SiSi[l]Si (1l)

where (1b) imposes Kirchhoff’s laws, implying that the net flow
into a bus must equal the net flow out of that bus. Power flows on
the line connecting bus i and j that are determined by (1c) must
be within the power carrying capacity of the transmission line fij

as shown in (1d). Generators may inject power, PG and loads may
consume power PL at each node i. Each conventional generator is
described by its production state, which must be within generator
upper and lower limits, PG and PG, as shown in (1e). Furthermore,
due to the thermal nature of the generators, their ramp rates are
limited to up and down limits, RG, as shown in (1f). The responsive
VPPs overcome limitations of generator ramping rates. Non-negative
scalar Pch and Pdis represent charging and discharging power of a
VPP. The charging and discharging efficiencies are denoted by ⌘ch
and ⌘dis. Charging and discharging power and SOC of the VPPs
are subject to constraints (1g), (1h) and (1l) where Pch, Pdis, S,
and S represent maximum charging and discharging power and
the maximum and minimum energy capacity of VPP, respectively.
In general, coordination schemes do not offer instant control over
all DERs in a fleet, but are subject to separate internal control,
actuation, and communication loops [23]. These cyber-physical
control considerations manifest themselves as ramp-rate limits on
the charging (Rch) and discharging (Rdis) of VPPs as shown in (1i)
and (1j). The dynamic of the VPP’s SOC is shown in (1k).

V. RESULTS

The section experimentally demonstrates that energy-aware dis-
patch of flexible VPPs enhances the AGC performance. The details
of the test-setup are as follows. The transmission system consisting
of 161 buses, 223 transmission lines and three generating units, is set
up in ePHASORSIM and supplies a total load of 609 MW consisting
of approximately 50% renewable generation and remaining load is
supplied from one external and two internal machines and generators.
The flexibility is provided by two VPPs consisting of one bulk
battery and one HIL VPP. The HIL VPP consists of real packetized-
enabled DERs emulated on a high-performance PC, that requests the

VPP (server) for packets of energy through web-sockets. The VPP
obtains balancing signals from the grid operator and accepts/rejects
the packets based on the available flexibility. ESP8266 is the physical
realization of VPP that obtains the VPP’s state from the server and
sends it to the grid through an analog interface.

A. Capacity saturation of VPP

The HIL VPP and grid scale battery providing grid services are
energy-limited and ignoring their energy capacity results in inferior
AGC performance. The effect of their capacity on the ancillary
services provided to the grid is demonstrated in Fig. 4. The capacity
of the battery is 45 MWh. Fig. 4 shows that the load reduces by
50 MW resulting in excess generation and both battery and VPP
take up 45 MW and 5 MW respectively, of this excess generation.
The battery is initially 50% charged, as shown in Fig. 4 (b). After
t⇡36 mins, in Fig. 4 (b), the battery saturates and can no longer
provide ancillary services to the grid. The power output of Gen. 2 is
therefore reduced to account for the loss of 45 MW and the system
deviates from its scheduled generation (Fig. 4 (c)) in order to keep
the system stable (Fig. 4 (d)).

B. MPC with capacity saturation

The proposed energy aware scheme improves the performance
by explicitly accounting for the energy limits of the flexible
resources. Fig. 5 shows a load change �PL=50 MW that results
in the HIL VPP and the battery providing the remaining slack. MPC
keeps track of the current state of charge of the HIL VPP and the
battery (Fig. 5 (a) and (b)) and after t⇡13 mins, gradually reduces
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Fig. 4: (a) The HIL VPP’s actual and reference power (MW) (b) Grid scale battery’s
actual power (MW), reference power (MW) and state of charge (SOC %) during
charge/discharge events (c) Generators’ power output (MW) (d) Generators’ mean
frequency (Hz). The saturation of the VPP to a step decrease in load is shown in this
figure. For the change in load, the HIL VPP and the battery charges at a continuous
rate. The battery saturates at about t = 36 mins, after which their output goes to zero
and cannot support the requested flexibility.

4

Figure 6.4: (a) The HIL VPP’s actual and reference power (MW) (b) Grid scale battery’s actual
power (MW), reference power (MW) and state of charge (SOC %) during charge/discharge events
(c) Generators’ power output (MW) (d) Generators’ mean frequency (Hz). The saturation of the
VPP to a step decrease in load is shown in this figure. For the change in load, the HIL VPP and
the battery charges at a continuous rate. The battery saturates at about t = 36 mins, after which
their output goes to zero and cannot support the requested flexibility.

for a much longer time.
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Fig. 5: (a) The HIL VPP’s actual power (MW) and reference power (MW) (b)
Grid scale battery’s actual power (MW), reference power (MW) and state of charge
(SOC %) during charge/discharge events (c) Generators’ power output (MW)
(d) Generators’ mean frequency (Hz). MPC with capacity saturation takes into
consideration the current state of charge of the VPP and initially ramps up to the
requested 50 MW. However, at t = 13 mins, MPC lowers the setpoint in steps to
avoid VPP saturation and provide support to the system for a longer time.

the set-points of the battery to avoid saturation as shown, in Fig. 5
(b). The HIL VPP and the battery can therefore supply ancillary
services to the grid for over 60 mins.

VI. DISCUSSION/CONCLUSION

This paper presents a hardware-in-the-loop implementation of
PEM-based cyber-physical platform and demonstrates that aggre-
gated PEM-enabled DERs can provide ancillary services to the grid.
The system consists of emulated DERs, an aggregator realized as
real live webserver, and a transmission system developed from the
real data provided by VELCO. The experimental studies carried
out in this work show that conventional control schemes (i.e. AGC
and droop) do not take into account the state of charge of VPPs
while providing ancillary services to the grid that leads to capacity
saturation of the VPPs. As a result, the VPP can no longer support
the requested flexibility and cause a disturbance in the grid because
the generators have to ramp-up quickly to ensure stability. Conven-
tional schemes are therefore greedy in managing flexible resources
and leads to capacity saturation and unwanted disturbances. Model
predictive control (MPC) responds to the unexpected disturbances
by dispatching resources depending upon the hourly load forecast
as well as minute-by-minute dispatch in a receding horizon. MPC
is shown to proactively vary the consumption of flexible resources
depending upon the SOC, which utilizes these resources for a longer
time than the base case with AGC. The generators therefore operate
as close as possible to their optimal limits for a much longer time.
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5

Figure 6.5: (a) The HIL VPP’s actual power (MW) and reference power (MW) (b) Grid scale
battery’s actual power (MW), reference power (MW) and state of charge (SOC %) during
charge/discharge events (c) Generators’ power output (MW) (d) Generators’ mean frequency (Hz).
MPC with capacity saturation takes into consideration the current state of charge of the VPP and
initially ramps up to the requested 50 MW. However, at t = 13 mins, MPC lowers the setpoint in
steps to avoid VPP saturation and provide support to the system for a longer time.
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7 Chapter 7: Conclusion and Future Work

7.1 Summary

The global increasing of electrical demands and environmental concerns, prioritize investments in

integrating renewable energy sources which results in a significant reduction in air pollution and

fossil fuel consumption. Decreases in cost of renewable generation technologies, advance metering

technologies developments, and efficiency incentives make renewable generation a growing trend in

the world and especially in the United States. For decades, conventional fast ramping generators

enable reliable operation of the power system by providing required operational reserve. However,

integrating more uncertain, intermittent RES, has brought more uncertainties and challenges to

the power system that may have a significant impact on the power system reliability. Therefore,

appropriate control technologies are needed to be employed in order to facilitate integration of the

these renewable energy sources.

Chapter 1 presents an introduction to this thesis and motivation behind the research I have done

during my PhD is laid out. A review of the literature focusing on the demand response and how

virtual energy storage system are formed by aggregating flexible loads is presented. Moreover, the

existed challenges and the main research objectives are outlined.

In chapter 2 the formulation of the power system operations including power flow analysis prob-

lem, optimal power flow problem, ensuring security under optimal power flow and dynamic line

rating of transmission lines are presented.

VESS can provide similar functions of the grid scale battery to support the power grid. However,

due to the physical characteristics of the VESS, significant constant or variable delays can be observed

in the power system. Moreover, the VESSs’ energy capacity and state of the charge can not be

measured directly and should be estimated. These estimates both contains uncertainty and should

be carefully considered.

Chapter 3 investigates how inevitable delays in implementing frequency-dependent load control

in a power system with droop-controlled affects settling time and stability of the power system.

It is shown that the closed-loop performance of the power system follows a stable-unstable-stable
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patterns which directly depends on the network topology.

In chapter 4, a bi-level receding horizon optimal power flow framework has been introduced

and developed. The first level of the controller was in charge of the security constrained optimal

power flow and produce a reference trajectory for generator outputs while the second level manages

the net-load variability by VPP with uncertain energy capacity. If a VPP reached its actual (but

unknown) bound, it can not supply the desired set-point anymore and we say that it saturates. The

AC load-flow then allocates any remaining mismatch between demand and supply with a slack bus

mechanism, which, in the physical system, distributes the slack among available generators (e.g.,

via secondary frequency control or AGC). Reducing occurrence and severity of these saturation is,

therefore, key to avoid calling upon generator spinning reserves (via AGC). We showed there is a

sensitive trade-off between robustness and closed-loop performance of the system and the popular

robust approaches may lead to too conservative solutions that reduce the closed-loop performance

of the system. The numerical studies illustrates that the closed-loop performance of the system can

be improved significantly (up to 12%) by sacrificing some robustness.

Chapter 5 extends the results of the chapter 4 and propose a risk-based chance constrained

model predictive control approach that co-optimizes the delivery of the VESSs against operational

risk inherent to the VESSs’ uncertainty energy capacities and state of the charge. This approach is

compared with the deterministic and robust approach and it is shown that the proposed approach

outperforms the robust and deterministic approaches and significantly prevent VESSs saturation

while maintain good tracking performance.

Chapter 6 develops a hardware-in-the-loop cyber-physical platform and demonstrates that the

flexible resources can be aggregated to provide ancillary service to the grid. The system consits

of emulated DERs, and aggreagtor realized as webserver and transmission systsem inspired from

the real data provided by VELCO. The simulation studies carried out in this work shows that

conventional control schemes (i.e. AGC and droop) do not use the state of charge of VPPs while

providing ancillary services to the grid and leads to capacity saturation of the VPPs. As a result,

the VPP can no longer support the requested flexibility and cause a disturbance in the grid because

the generators have to ramp-up fast to ensure stability. Conventional schemes are therefore greedy

in managing flexible resources and leads to capacity saturation and unwanted disturbances. Model
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predictive control (MPC) dispatches resources depending upon the hourly load forecast as well as

minute-by-minute dispatch in a receding horizon. MPC is shown to proactively vary the consumption

of flexible resources depending upon the SOC and utilized these resources for a longer time than

dynamic AGC. The generators therefore operate as close as possible to optimal limits for as long as

possible.

7.2 Future Work

There are a number of different ways that the work in this dissertation could be extended. These

proposed paths for future research can be classified as: i) developing analytical expressions for

stability and controllability of system frequency as a function of available energy resources and salient

network properties. Recent results from linear delay differential equations where the Lambert W

function has been utilized in describing stability of linear delay differential equations can be leveraged

to accomplish this. Designing controllers that are aware of actuator saturation also can be pursued.

The end-goal should be developing load coordination schemes that are robust against a broad class

of uncertainties, including unknown time-delays; ii) by incorporating transmission line temperature

limits, value of the dispatchable VESSs increases significantly as it allows for congestion management.

Future work can address the question of how much flexible loads should be provided for a given power

system and where they should be placed; iii) generalizing the VESS models to include non-Gaussian

errors and analyze how the uncertainty affects the regulation of line temperatures in the presence

of disturbances; iv) the hardware-in-loop platform developed for the emulation of packetized DERs

enables the validation and testing of real-time control schemes for dispatch of flexible resources

(demand dispatch). Quantifying the flexibility of packetized DERs is crucial in demand dispatch as

it provides the aggregator with an estimate of the ”current state” of the DERs. This information

is crucial for the aggregator to provide ancillary services to the grid. This platform can be used to

develop and validate virtual battery models that estimate the current state of the charge of a fleet of

packetized DERs. Furthermore, it can be used to develop and validate optimal dispatch algorithms

of DERs under real-time grid constraints.
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