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Abstract

This thesis aimed to model agricultural outcomes that are important to Vermont dairy
farms and surrounding communities – runoff, erosion, nitrogen and phosphorus losses,
crop yields, and timeliness of farm operations – in a set of possible future climates.
The Agricultural Policy/Environmental eXtender (APEX) model was used, and the
models were calibrated with data from a project that measured most of these outcomes
on a set of local farms. The modeling methodology is thoroughly documented and
may be a useful starting point for others who are new to agricultural modeling.

Applied to two farms growing continuous corn, the future climate simulations
showed that increasing temperatures by 2° C, combined with raising total precipi-
tation or changing the seasonality of precipitation, had little effect on any outcome.
Intense rainfall has increased greatly in recent decades, so a combination of higher
temperatures and more intense precipitation was also simulated. This led to more
runoff, more soil loss, and more nutrient losses. While median values were only mod-
estly increased, the 95%-ile and total losses over the simulation period increased by a
larger amount (as much as 53%, depending on the site). Management practices that
can reduce runoff and soil/nutrient loss exist, but their effectiveness when a higher
fraction of losses occur in large events is not well known.

Crop yields changed by <10% in all simulations, and in some cases increased
slightly. Other studies have warned of decreases in yields because of high summer
temperatures and droughts. The pilot simulations in this thesis probed only a limited
range of climate parameter space, so running the models for a wider range of scenar-
ios may illuminate the circumstances in which particularly harmful and beneficial
outcomes occur.

Finally, APEX can in principle calculate the delays to corn planting that are ex-
pected if climate change leads to wetter conditions in the spring. However, the models
consistently predicted that only harvest operations will be delayed. The reasons for
this are not well understood, and it may be a useful avenue for future work.

The present work is limited in a number of ways. Chief among these are some-
what mediocre model performance, and the narrow range of farming systems and
climates investigated. Statistics describing the performance of the calibrated models
were poorer than anticipated, and satisfactory results could not be obtained for some
nutrient loss pathways. Only two farms were modeled, in just four hypothetical cli-
mates; results for other relevant farming systems and climates may be quite different.
Nonetheless, it is hoped that this thesis serves to illustrate the potential and limita-
tions of utilizing APEX in this context, and that it lays the groundwork for a more
extensive investigation of agricultural outcomes under climate change in Vermont.
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1 Introduction

A very basic purpose of any food system is to provide the calories and nutrients that

people require to stay alive. Beyond that, though, food systems are multifunctional,

multifaceted, and have countless direct and indirect effects on people, animals, and

the environment. Agriculture provides livelihoods for farmers, farm workers, and

people employed elsewhere in the system. Choices made on the farm, yet strongly

shaped by outside factors, affect whether agriculture maintains or erodes the natural

resources on which it depends. Food can contribute to vitality, health, and thriving;

or to sickness and premature death. The system, and its constituent parts, may or

may not have the capacity to bear up under ongoing stresses and bounce back from

sudden shocks.

This thesis will explore the effects on dairy farms of some of the stresses and

shocks that climate change is likely to bring. In terms of production, dairy farming

is Vermont’s largest-scale entanglement with the food system. According to a 2015

report by the Vermont Dairy Promotion Council, there are almost 900 dairy farms

in Vermont, located in every county in the state. Although they account for only

12% of Vermont’s farms, more than 80% of the farmland (approximately 15% of the

total area) in the state is devoted to pasture and feed crops for dairy farms, and
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dairy products make up roughly 70% of the state’s agricultural sales by market value.

The dairy industry supports numerous farm service and equipment providers, and

it is estimated that it generates $2.2 bn in economic activity in the state each year.

Approximately 2.5% of the state’s workforce is employed, directly or indirectly, by

the dairy sector (Vermont Dairy Promotion Council, 2014).

Beyond their contribution to livelihoods, dairy farms in Vermont appear to be

important to a wide cross-section of local society. In a survey of 271 Vermonters,

>90% agreed that dairy farms add to the beauty of the state and that they contribute

to Vermont’s quality of life (Vermont Dairy Promotion Council, 2014). 84% believed

that dairy is important to tourism in the state, consistent with the popularity of

events and attractions like the Vermont Cheesemakers Festival and the Ben & Jerry’s

ice cream factory. Vermont’s dairy farms are an integral part of the state’s “iconic

patchwork of forests and open fields” (Radel et al., 2010), and many Vermont cheeses

are recognized as being of very high quality, winning numerous awards (Sakovitz-Dale,

2006).

Dairy farming may be an integral part of the history and economy of Vermont, but

making a living as a dairy farmer is not easy. The story of dairy in the state, and in the

US generally, in the last few decades has been one of continually increasing production

and decreasing, but volatile, prices. Improvements in feed, genetics, technology, and

management mean that in 2010 the average cow produced three times more milk than

in 1965 (Parsons, 2010). This high supply rate has driven milk prices ever lower, to the

point that today’s prices are comparable to those in the late 1970s – without adjusting

for inflation. Furthermore, exposure to global markets and geopolitical events means

that milk prices fluctuate wildly (Charles, 2016; Macdonald et al., 2016), with swings
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of as much as 30% in a single month on record (Jesse and Cropp, 2008; Parsons,

2010).

At the same time, dairies are vulnerable to changes in the costs of inputs like

grains, which are also highly variable (Macdonald et al., 2016). The price of milk reg-

ularly drops below the cost of production in Vermont and elsewhere, putting tremen-

dous strain on farmers (Parsons, 2010; Kardashian, 2012). At the time of writing,

milk prices are below the break-even point, and the local Agri-Mark co-operative has

been making their farmers aware of mental health and suicide prevention services

(Hudzik, 2018).

From the farmer’s point of view, one potential solution to extremely narrow per-

cow profit margins is to milk more cows, thereby providing more total income. With

more revenue, the largest producers may also be better placed to weather economic

storms. Indeed, as farm after farm has gone out of business in Vermont, the aver-

age farm size has greatly increased. In 1965 there were roughly 6000 dairy farms

in Vermont, whereas now there are fewer than 900 (Winsten et al., 2010). In the

same time period, the average herd size increased from ∼40 to ∼125 cows. Farmers’

strategies are diverse, though, and a class of relatively thriving small farms has also

emerged, often producing organic milk and/or “grass milk” that commands higher

and historically more stable prices (Winsten et al., 2010).

Alongside the necessity of making a living, farmers must minimize negative effects

on the land, air, and water around them. Dairy farms are an important part of Ver-

mont’s economy and landscape, but they also contribute to water pollution and other

environmental problems. Nitrogen (N) and phosphorus (P), applied to agricultural

fields as manure and fertilizer, are lost in water that runs off and through the land,
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and attached to particles that are eroded from fields. In the watersheds surrounding

Lake Champlain, these nutrients are transported to the lake, where phosphorus fuels

the growth of cyanobacteria. As well as discouraging recreational use of the lake,

toxic algal blooms have killed animals, caused human illnesses, and contaminated the

source of the drinking water that is supplied to 145,000 people from the lake (Lake

Champlain Basin Program, 2015). Agricultural activity is estimated to account for

about 38% of the phosphorus in the lake (Lake Champlain Basin Program, 2015).

The existing nutrient loads in Lake Champlain are now high enough that reducing

them to acceptable levels will be a very long-term project (Winslow, 2016). However,

there are additional, immediate reasons for trying to prevent losses of agricultural

inputs, soil, and water from farms. Agricultural runoff has impaired the ability of

Vermont’s streams and rivers to support aquatic life, and bacterial contamination

means that some waterways are no longer suitable for recreational activities like fish-

ing and boating (Vermont Department of Environmental Conservation, 2006). Recent

severe storms, combined with prior wet weather, have led to episodes of extreme soil

erosion on some farms (Yellen et al., 2016).

Issues such as these are likely to become more pressing as Vermont’s climate

changes. The region is expected to experience higher temperatures and increased

rainfall, a combination that will have a slew of implications for agriculture (Frumhoff

et al., 2007; Galford, 2014; Horton et al., 2014; Markowitz, 2017; Tobin et al., 2015).

Intense rain can increase erosion and runoff, so one consequence may be that soil and

nutrients are lost at a faster rate. At the same time, more frequent summer droughts

are projected to increase the need for water-conserving practices. Physical losses of

soil, water, and nutrients can translate to economic losses for farms, and farmers are
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also under significant pressure from lawmakers and clean water advocates to reduce

their impact on the environment (Dolan, 2016).

Farmers can reduce the environmental impacts of their operations in many ways.

Practices such as decreasing tillage in annual crop fields, using cover crops to avoid

bare ground, replacing annual crops with hay or pasture, and not spreading manure

on frozen or saturated ground, can all help to keep soil and nutrients on the farm.

Some of these “best management practices” (BMPs) are now mandatory on Vermont

farms, as part of the Required Agricultural Practices (RAPs) introduced by the Ver-

mont State Legislature (General Assembly of the State of Vermont, 2015; VAAFM,

2016). Depending on the circumstances, these resource-saving practices can be a good

economic deal for farmers, and they have the potential to aid in adapting to climate

change as well (e.g. Kaye and Quemada, 2017). On the other hand, implementing

BMPs can impose new economic stresses on farmers that are already under financial

pressure. And it is not yet clear how effective the various BMPs will continue to be

as Vermont’s climate changes over the next few decades.

Climate change may affect aspects of dairy farms beyond their environmental

impact. The unusually wet spring of 2017 prevented many farmers planting silage

corn until well past the optimal dates (UVM Extension, 2017). Fine late summer

weather allowed crop growth to catch up in some cases, but farmers expecting poor

yields may not have invested in maintaining their crop, and purchased feed for their

cows instead (J. Faulkner, personal communication). Wet weather can also present

land management and cow health problems for farmers whose cows spend time on

pasture (UVM Extension, 2017).

This kind of situation may become more common in a future climate with in-
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creased precipitation. Conversely, unusually dry summers like that of 2016 could re-

duce yields by subjecting crops to drought stress. Opportunities may also arise, such

as an extended freeze-free season providing the occasion to relax restrictions on winter

manure spreading, or a longer window for fall cover crop establishment. On the other

hand, if frozen ground is replaced by saturated ground, winter manure spreading will

remain undesirable. In short, interactions between climate, management practices,

and operation schedules are likely to be complex and possibly counterintuitive.

Understanding the possible outcomes from a complex system like this requires

numerical models. Hydrological watershed models can simulate crop growth and

soil/nutrient transport processes under current conditions and for possible future

climates. They can also be used to assess whether the timeliness of farm operations

is likely to be affected by climate change, and whether that in turn affects crop yields

and the implementation and effectiveness of best management practices. At the same

time, the models are necessarily simplified representations of complicated natural

processes. They must be informed by, and tested against, measurements from the

field.

The aims of this thesis are to (1) investigate the utility of the Agricultural Policy

and Environmental eXtender model (APEX; Gassman et al., 2010) for simulating

farm operations, yields, and soil and nutrient losses from dairy farms in Vermont,

and (2) perform a pilot study of a handful of climate scenarios on two farms growing

continuous corn. Between 2012 and 2017, several farms around the state participated

in a project that gathered runoff, water quality, and agronomic data from corn and

hay fields on the farms (Braun et al., 2016). The measurements were originally used

to examine the effectiveness of BMPs on the fields, but they also provide a valuable
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source of input and calibration data for the APEX model. Once calibrated using the

field data, the models can then be used to simulate farm operations under a range of

possible future climates.

The purpose of this work is to build a foundation for identifying and giving warning

of future problems to farmers, service providers, policymakers and other interested

parties. It is hoped that the methodology and lessons learned can be used to expand

the modeling beyond this initial pilot project to examine a wider range of farming

systems and practices – while illustrating the potential limitations of the modeling

approach. The wider economic system will most likely continue to “hollow out the

middle” of the Vermont dairy industry for the foreseeable future, driving towards

fewer, larger farms alongside a handful of small, niche producers. Nonetheless, it

may ultimately be possible to find some options that may benefit farms and their

surroundings, and to give early warning of climate change effects that will be bad for

both.

The remainder of this Introduction goes into more detail about dairy farming

and climate change in Vermont, giving the background and context to the modeling

presented in this thesis. §1.1 briefly outlines how the state’s dairy farms work, with

particular reference to the crops required to feed the herd. §1.2 then summarizes

the effect of weather on the operations necessary to produce those crops. Next, §1.3

takes a closer look at the possible environmental impacts of dairy farming and the

mechanisms behind them. Finally, §1.4 reviews the climatic changes that have been

observed and are projected to take place in this region. The information in each

section is used to derive the specific issues and scenarios that will be addressed.

At that point, §1.5 outlines how APEX models are typically constructed, and
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highlights research that argues for the importance of proper model calibration. The

Agricultural Practice Modeling and Evaluation (APME) project (Braun et al., 2016),

whose data will be used for parameterizing the models in this thesis, is also intro-

duced. In addition, §1.5 briefly discusses issues of transparency and reproducibility

in research and how they will be addressed in this thesis. An overview of the whole

project is given in §1.6.

1.1 How Vermont’s Dairy Farms Work

Dairy farming in the US takes many different forms. Commonly, milking cows are

confined to barns and fed farm-grown crops and/or a commercial “total mixed ration”

(TMR). High grain intake, genetic improvements, and economies of scale mean that

per-cow production from these systems tends to be high, and herd sizes are large: in

2009, 30% of US milk cows were in herds of at least 2000 head, producing an average of

22,000 lbs of milk per cow each year (National Agricultural Statistics Service, 2010).

Milk from this type of farm is generally sold to processors as a bulk commodity.

In contrast to the confinement model, some dairies still pasture their milking

cows. Management-intensive grazing, in which short grazing and long rest periods

are used to improve plant and animal productivity, is a fairly popular technique among

these farms, which tend to be smaller than their confined-cow counterparts (Hanson

et al., 2013). Most farms supplement their cows’ pasture intake with home-grown

and/or purchased grain-based feed, although a few do not. Per-cow milk production

is usually lower than in confined cow systems, but pasture-based operations may still

be able to profit from reduced production costs (Hanson et al., 2013; Winsten et al.,
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2000). They are often able to take advantage of the higher prices commanded by

organic milk, which requires milking cows to spend time on pasture, and they may

also produce cheese, yoghurt, and other value-added dairy products.

Vermont’s dairy farms span a range of sizes and operating models and include

elements of both of the above systems. Winsten et al. (2010) surveyed farms in the

northeast US in 2006, and classified 10% of Vermont farms (39 respondents) as “large,

modern, confinement” (LMC) facilities, and 20% (74 respondents) as “management

intensive grazing” (MIG) farms. (In their scheme, an LMC farm uses a confinement-

feeding system and contains at least 300 cows, while MIG is characterized by frequent

pasture moves and cows obtaining most of their forage intake from pasture.) The re-

mainder either had smaller confinement herds or were using less intensively-managed

pasture. 83% of the certified organic farms in the study area were MIG systems.

Most of Vermont’s dairy farms, even the LMC operations, grow at least some of

the feed required by their cows. Corn is the preferred crop for many farmers, as silage

made from corn provides the energy needed to support high levels of milk production.

The corn may be grown in rotation with grass and legumes which are made into hay

and haylage (hay crop silage). Alternatively, corn and hay crops may be grown

continuously on the same piece of ground. In Vermont in 2016, hay and haylage were

harvested from 310,000 acres and corn silage from 85,000 acres (USDA/NASS, 2016).

While silage corn and hay are the main feed crops grown by Vermont’s dairy

farmers, the number of acres planted to each, and the number of years each one

occupies in the rotation, depend on many different factors. For example, a farmer

may wish to grow as much corn as possible to maximize their milk production, or

prefer to emphasize hay for environmental reasons. Corn may be productive on some
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soils, but less so on others. A farmer’s options are also likely to be constrained

by regulatory requirements, such as erosion prevention guidelines and the nutrient

management plan that certain farms must follow. Considerations like these also

influence the management methods adopted by farmers, such as the kind of tillage to

use.

The farms that follow the MIG model also often grow or purchase feed derived

from annual grain crops, but some do not. A minority of farms use permanent

pasture in place of corn fields, feeding their cows almost entirely through grazing and

hay production (e.g. Lazor, 2016). The herd grazes from late spring into autumn,

and surplus spring pasture growth is cut and stored for winter feed.

Within this considerable variety of farming systems, this thesis will examine a

single case: silage corn grown continuously on the same piece of land for an indef-

inite period. This system is chosen for two reasons. First, in the Missisquoi Bay

Basin region of Vermont, it is estimated that 49% of cropland is used for continu-

ous hay production, 41% for corn and hay in rotation, and only 10% for continuous

corn (Winchell et al., 2011). However, continuous corn land appears to contribute

disproportionately to phosphorus pollution (Winchell et al., 2011), so it is of interest

for this study. In addition, farms with continuous corn production participated in

the APME project that will be used to calibrate the APEX models (§2.1). Other

considerations relating to data quality etc. are explained in §2.1.1.

The specific management practices and detailed operations schedules that will be

modeled are discussed in later sections. For farms growing much of their own feed,

corn yield is an important economic outcome. As a rough proxy for economic effects

of climate change, then, one of the model outputs that will be examined is the annual
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forage yield.

1.2 Dairy Farming and the Weather

Farming, of course, is profoundly affected by the weather. Temperature and precipi-

tation may influence crop yields and nutrient losses directly, through effects such as

drought stress or soil erosion, and also indirectly, by affecting the timeliness of farm

operations. The direct effects of weather and climate on the environmental impacts

of agriculture are addressed in §1.3 and §1.4. To illustrate how the weather affects

farm operations and crop yields, this section gives a brief overview of a year in the

life of the farming systems listed in §1.1.

At the beginning of each year, state regulations prohibit the spreading of manure

until April 1st (April 14th on frequently flooded soils; VAAFM, 2016). This is in-

tended to minimize the likelihood of manure/nutrient runoff from frozen or saturated

ground (§1.3). Farms’ manure pits will be filling up after the long winter, so many

farmers will want to spread manure soon after the ban has been lifted. Ideally, the

manure will be incorporated into the soil, either via tillage (in conventionally tilled

corn) or a lower-impact technique such as injection or aeration (in reduced- or no-till

corn and on hay fields) very soon after spreading. This reduces the loss of valu-

able nitrogen in the form of gaseous ammonia, benefitting both the farmer and the

environment.

If a cover crop has been established, it will be terminated before the season’s

corn crop is planted (e.g. Darby et al., 2012). Corn seeds require soil temperatures

>10°C for germination, and soil that is moist but not too wet. At the same time,

11



it is necessary to plant early enough in the spring for the crop to mature before

temperatures start to cool again in the fall. The seedbed may be prepared using

tillage, or the seed may be no-till planted directly into residue. Starter fertilizer

is usually applied at the time the corn is planted, and pesticide and supplemental

fertilizer may be applied in the following days or weeks.

The highest quality hay is obtained by cutting early in the season, and this will

also allow the collection of several subsequent cuts. Manure spread after each cut of

hay (and before the first spring cut, if conditions permit) provides a source of nutrients

for the next harvest. Pastured milking cows go out in May, weather permitting, and

return to the barn in October.

Corn growth benefits from warm temperatures and adequate (but not excessive)

rainfall through the summer. After the corn harvest in mid-September – early Octo-

ber, many farmers will spread and incorporate manure again, to empty the pits for

winter. If they intend to plant a cover crop, the cover must be seeded in time for it to

establish well before it goes dormant for the winter; poor establishment will negate

the benefits of using the cover crop (§1.3). The funding that the Natural Resource

Conservation Service (NRCS) provides for cover crops is also contingent on meeting

latest acceptable planting dates (NRCS, 2014).

All of these field operations - spreading, planting, fertilizing, haying, grazing,

harvesting, and tillage - can cause harm if performed on soils that are excessively

moist, and soils in Vermont are often wet in the spring. For example, wet soils can

mean losses of fertilizer nitrogen through leaching and denitrification (§1.3), which

is both an economic and environmental problem. Allowing cows to graze on wet soil

can damage pastures and cause lameness and mastitis in the herd.
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Operating heavy machinery and tilling wet ground can also lead to soil compaction

(McKenzie, 2010; Wolkowski and Lowery, 2008). Compaction increases the strength

of the soil, which reduces the ability of plant roots to explore for nutrients and water.

Compacted soil also has less pore space and fewer aggregates, meaning it holds less

air and water and is less conducive to water infiltration and percolation. This can

cause increased denitrification rates, reduced biological activity (such as nutrient

mineralization), and more surface ponding, runoff, and erosion. Taken together, these

effects are likely to decrease yields and increase pollution problems.

Wet soils with high clay content are particularly prone to compaction because

water forms thin, lubricating films around the clay particles (Winterkorn, 1959).

While the relationship between soil moisture content and compaction susceptibil-

ity is complex, a common rule-of-thumb is to avoid tillage and other operations when

the moisture content is roughly equal to field capacity, particularly on fine-textured

soils (Al-Khaisi and Licht, 2005).

Clearly, wet weather can cause many practical problems (and in fact excess mois-

ture accounts for ∼60% of crop insurance claims in Vermont; RMA, 2012). In a

wet spring, a farmer planting corn may face a choice between planting on time but

risking poor germination and soil damage, and waiting for dry soil but risking that

the corn will not have time to develop adequately by harvest time. If warm, dry

summer weather allows the corn to continue developing into the fall, the farmer may

need to choose between maximizing their yield and planting cover crops in time to

establish before winter. A wet fall, of course, can interfere with harvest and planting

plans as well.

APEX allows the user to perform operations according to a set schedule, or to
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specify a soil moisture threshold at which operations will be postponed until the

soil has dried sufficiently. The corn simulations will therefore be run both ways:

operations-as-scheduled, and allowing for the possibility of delays. Days of delay

and final corn yields will be recorded in both scenarios. Corn yields are of course

also directly affected by temperature and soil moisture. APEX calculates and tracks

the temperature, water, and nutrient stresses that the growing crop experiences, and

these outputs will be used to understand the reasons behind any changes in yields in

the various climate scenarios that will be explored (§4.1.1).

1.3 Dairy Farming and the Environment

All agricultural systems displace “natural” ecosystems and interact, directly and indi-

rectly and in positive and negative ways, with the local and global environment. Dairy

farming can affect the environment in numerous ways, from greenhouse gas emission

to production of harmful airborne particles. Vermont’s most prominent agriculture-

related environmental issues are to do with water quality: the state faces a legal

requirement to reduce the phosphorus loading in Lake Champlain (Chapman and

Duggan, 2016; US EPA, 2015), farmers are under pressure to improve water quality

(Dolan, 2016), and local farmers themselves state a desire to prevent nutrient losses

into waterways1. Therefore the environmental part of this project will focus on losses

of soil and nutrients from Vermont’s dairy farms. Table 1.1 puts these processes into

the context of the wider suite of potential environmental problems associated with

dairy farming.
1See for example www.champlainvalleyfarmercoalition.com/home.html
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In the modern, global food system, biomass and nutrients are continually moved

from one place to another. Phosphorus and nitrogen fertilizers are produced in loca-

tions with an abundance of minerals rich in P (Rabchevsky, 1997), or where natural

gas is available for fixing atmospheric N via the Haber-Bosch process, and transported

to areas of crop production. Crops are harvested for human or animal consumption,

often far from the farm where they originated, then transformed into human, animal,

and food waste that must be disposed of or otherwise dealt with. This distribu-

tion creates local excesses and deficiencies of nutrients that can have environmental

consequences (Magdoff et al., 1997; Wironen et al., 2018).

In the dairy industry, material is imported to a farm in the form of feed and sup-

plements, fertilizer, and bedding, and exported as milk and other animal products.

Feed is processed through the cows and transformed into bovine biomass, milk, ma-

nure, and digestive gases. In the case of an operation with many animals and little

or no cropland and/or pasture, the result will be a large buildup of nutrients that is

likely to cause significant harm to the surrounding environment (Burkholder et al.,

2007; Kellogg et al., 2000).

On an integrated crop-livestock farm that grows some of its own feed, like most in

Vermont, animal manure will be applied to the crops (often along with some synthetic

fertilizer; §1.2). Manure is a valuable source of nutrients and organic matter that may

be deficient in the farm’s soil, and also replaces material lost in the harvest of crops

and milk. However, if the nutrients it contains end up being present in excess in the

soil, or in locations or chemical forms that are vulnerable to loss, the manure can still

be a source of pollution.

As noted above and in §1, the main nutrient of concern in Vermont is phosphorus.
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Table 1.1: Ways in which dairy farming can impact the environment. Entries in bold
are those that are evaluated in this thesis.

Area of Impact Examples
Water, land, and energy use Using water to clean milking areas

Using fossil fuels to produce fertilizer and
power machinery

Greenhouse gas emissions CH4 from ruminant digestion
CH4 and N2O from manure storage and
handling
N2O from denitrification of manure, fertilizer,
crop residues, etc.
CO2 from general farm operations (e.g. use of
fossil fuel, lime, urea)

Other airborne emissions NH3 volatilization from manure and fertilizer
Particulate matter
Odors

Land degradation Compaction by machinery and livestock
Erosion of cropland and streambanks
Soil acidification through N addition, leaching,
and harvest

Water pollution Contamination by nutrients and sediment;
also pesticides, pharmaceuticals, pathogens, etc.
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P is generally present in manure at a lower N:P ratio than is required by plants. If

manure is land applied to meet the nitrogen needs of plants (or simply at whatever

rate is needed to dispose of the manure that builds up in the farm’s manure pit) P

tends to build up. This is a problem because the amount of dissolved P lost in runoff

events is correlated with the amount of available P in the soil (Sharpley et al., 1977,

1994), and P sorbed to solids in the soil can also be lost via erosion and overland flow.

Nitrogen pollution is also relevant: contamination of drinking water with agricultural

nitrates is widespread in the US (Nolan and Ruddy, 2016), and has been the subject

of recent reporting in Vermont (Corwin, 2018).

Dairy farms can reduce their impact on water quality by means such as reducing

the quantity of material brought in from outside, improving the efficiency with which

their animals utilize the nutrients (so less is excreted), using manure to produce

biogas, and following a nutrient management plan that specifies appropriate amounts

of manure to add to the land (Sharpley et al., 2004). Most relevant to this thesis,

though, is what happens once the manure is on the fields. Farmers can implement

best management practices that reduce the likelihood of N and P being lost from

their fields, and also practices that trap material once it has been displaced.

There are several mechanisms that can transport N and P from farm fields, almost

all of which are influenced by the movement of water through the system (Baker et al.,

2006). Water falls on the fields as rain (and snow and irrigation water). If plants

are present, some of the rainwater will be intercepted by the plant canopy, from

where it can evaporate or drip to the ground. The remainder will flow along the soil

surface, infiltrate into the soil, and/or pool in surface depressions from where it can

either infiltrate or evaporate. Water that falls onto and/or moves along the surface
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can detach and transport mineral and organic soil particles as well as surface-applied

material such as broadcast manure and inorganic fertilizer. Runoff water can also

dissolve and transport material from a thin (∼1 cm) mixing zone at the soil surface.

Water that infiltrates into the soil can be stored in soil pores or move horizontally

or vertically through the soil profile. Some of the stored water is available to be

transpired by plants. Water flowing laterally may re-emerge further down the slope

and become surface runoff, or merge with a stream or other surface waterway. Water

moving vertically may be driven upwards by evaporative demand at the surface, end

up in artificial subsurface drainage (“tile drainage”), or percolate downwards into

groundwater. Soil water can carry nutrients and other substances with it, leading to

leaching losses of soluble materials.

In summary, nutrients can be lost through direct transport of surface-applied ma-

terials; adsorbed to eroded mineral soil particles; as part of eroded soil organic matter;

dissolved in runoff water; and dissolved in water that percolates to groundwater and

tile drains. P is found in all of these forms: some is found in the soil solution, a larger

fraction is fixed to colloids and minerals, it is a constituent of organic matter, and

may be surface applied in manure and inorganic fertilizer (Hansen et al., 2002). On

conventionally tilled land, erosion and therefore particulate P losses tend to be large

(Sharpley et al., 1994). Runoff P losses from grassland and forests tend to be domi-

nated instead by dissolved P. As P is usually strongly fixed by soil colloids, leaching

of dissolved P to groundwater is low in most circumstances. However, soils with high

levels of dissolved P have shown significant losses in leachate and subsurface drainage

(Hansen et al., 2002; VAAFM and VANR, 2017).

The nitrogen cycle is complex and N is found in many forms. Organic N makes
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up roughly half of the N in liquid dairy manure (Jokela et al., 2004) and is also found

in soil organic matter. Soil microorganisms are responsible for mineralizing organic N

into plant-available, inorganic forms. The main form of inorganic N in manure (and

some fertilizers) is urea (CH4N2O), which is rapidly hydrolyzed to ammonium, NH+
4 .

If this takes place on the soil surface, N is quickly lost as gaseous NH3. Within the

soil, NH+
4 is relatively immobile, held on cation exchange sites on clay and organic

matter particles.

Nitrifying bacteria transform NH+
4 into nitrite, NO−

2 , and nitrate, NO−
3 . Nitrate

ions are highly susceptible to leaching, and indeed agricultural nitrate leaching is

widely implicated in the eutrophication of coastal waters (CERN, 2000; Howarth

et al., 1996). In wet, anaerobic soil conditions, denitrifying bacteria reduce nitrates

into gaseous N2O (a potent greenhouse gas), N2, and various intermediates. The

existence of these numerous potential loss pathways means that N can be hard to

control (e.g. Mkhabela et al., 2008).

Many factors affect the flow of water and nutrients through agricultural systems.

Some of them are fairly fixed; for example, the relative fractions of sand, silt and

clay, or the presence of shallow bedrock, exert a strong effect on soil water movement.

Other factors, however, can be influenced by farm management. To a large extent

this is achieved by influencing the movement of water over and through the soil, and

maintaining or improving the structure of the soil itself.

Preserving a cover of living and/or dead plant material reduces the impact force

of raindrops on the soil and slows the flow of water over the surface, decreasing the

amount of material eroded. Stems and residue can also impede the movement of

sediment and runoff water. Slower-moving water, or water that pools within residue
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cover, has more opportunity to infiltrate into the soil instead of running off, and

sediment is more likely to settle out. Well-aggregated soil with many pores and root

channels also encourages infiltration and drainage, and is less susceptible to erosion

in the first place.

The placement and timing of nutrient applications also affect losses. Manure on

the soil surface is vulnerable to NH3 volatilization and erosion/runoff losses (although

manure within the soil may be susceptible to denitrification losses, instead; Duncan

et al., 2017). Over time, and if the ground is not frozen or snow-covered, the P in

fertilizer and manure becomes fixed to soil particles. If rainfall causes runoff before

that happens, then losses of P can be large. In fact, most P loss generally occurs

during just a few large rain events each year (Sharpley et al., 1994).

The sensitivity of runoff and sediment/nutrient losses to rainfall volume, intensity,

and timing implies that Vermont’s environmental problems could be altered – and

quite likely exacerbated – by climate change. The ability of best management prac-

tices to reduce runoff, erosion, and nutrient loads may also be affected (e.g. Chiang

et al., 2012; Jayakody et al., 2014; Woznicki and Nejadhashemi, 2012). Globally, the

effects of climate change on erosion, runoff, and nutrient loss depend on a complex

set of interactions between temperature, rainfall patterns, plant biomass production,

microbial activity, human land use decisions, etc. However, Nearing et al. (2004) sug-

gest that in general erosion will increase by roughly 1.7 times the amount of annual

rainfall increase. Closer to home, Marshall and Randhir (2008) predict that sedi-

ment loading and winter and spring runoff in the Connecticut River Watershed will

increase, leading to greater eutrophication potential. Across the U.S. Northeast, Hay-

hoe et al. (2007) find that annual total runoff will increase, driven by higher winter
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runoff volume and earlier peak flows.

In principle, APEX contains the machinery to simulate all of the above soil/wa-

ter/nutrient processes in arbitrary climates. The model tracks interactions between

components including precipitation, temperature, crop growth, and nutrient transfor-

mations and translocations, and reports information about all of these items. APEX

can also simulate numerous practices intended to reduce the environmental impacts

of agriculture.

Several of those practices – reduced tillage, cover cropping, grassed waterways,

strip cropping, and others – were implemented on the farms that took part in the

APME project. The initial work in this thesis, however, deals with relatively simple

cases: two farm sites that broadcast and sometimes incorporated manure, practiced

some tillage, and had relatively little soil cover through the winter. APEX’s predic-

tions for runoff, sediment, and nutrient losses (as well as crop yields) are calibrated

using data from these farms, and the model is then used to make predictions for how

these quantities would have changed in different climates. These different climates

are described in the following section.

1.4 Vermont’s Changing Climate

Increasing atmospheric concentrations of CO2 and other heat-trapping gases have

caused a rise in temperatures and changes in weather patterns around the world

(IPCC, 2014) to which global agriculture will have to adapt (e.g. Howden et al.,

2007; Smit and Skinner, 2002). Climatic changes in the US Northeast, and in Ver-

mont in particular, have been described in a series of reports (Betts, 2017; Frumhoff
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et al., 2007; Galford, 2014; Horton et al., 2014; Tobin et al., 2015) based on numer-

ous individual studies. This section takes a closer look at the literature concerning

historical and projected temperature and precipitation in the region, with the aim of

distilling a small set of plausible and/or interesting possible future scenarios to be

used as input to APEX.

1.4.1 Temperature

In Vermont, annual mean temperatures increased by 0.19°C decade−1 between 1958

and 2012, with nine of the 10 warmest years on record occurring since 1990 (Guilbert

et al., 2014). Lakes are freezing later and thawing earlier, leaves and flowers are

appearing earlier, and the frost-free period has increased by about 14 days (Betts,

2011). In the Northeast generally, warming has been more pronounced in winter

and spring than in the rest of the year, and the rate of temperature increase has

accelerated in the past three decades (Hayhoe et al., 2007; Kunkel et al., 2013b).

These trends are forecast to continue. Climate models are able to reproduce his-

torical temperature data in the Northeast region fairly well, and consistently predict

ongoing increases (Guilbert et al., 2014; Hayhoe et al., 2007; Kunkel et al., 2013b).

Both Hayhoe et al. (2007) and Guilbert et al. (2014) find that annual temperatures

will rise by 2 – 3°C by mid-century. The Guilbert models predict slightly more warm-

ing in winter, while the reverse is true for the Hayhoe models. In the Lake Champlain

basin, the number of days above 32.2°C is expected to increase from 6 to 24 days yr−1

by midcentury, and to 37 days yr−1 by the end of the century. The growing season

may lengthen by as much as 43 days in that time (Guilbert et al., 2014).
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1.4.2 Precipitation

Precipitation patterns in the region have also changed in recent decades. There is

broad agreement that the Northeast has been experiencing more total and heavy

precipitation (Kunkel et al., 2013a,b; Walsh et al., 2014), which has led to elevated

groundwater levels (Weider and Boutt, 2010) and a rise in flood magnitudes (Collins,

2009). However, the characteristics – seasonality, etc. – of the increase in extreme

precipitation, and expectations for future behavior, are less clear. There follows,

then, a brief review of the literature that addresses these issues. Table 1.2 at-

tempts to synthesize a concise overview from the various different indicators used

in the literature, somewhat subjectively dividing results into “primary/significant”

and “secondary/non-significant”.
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Table 1.2: Overview of observed changes in precipitation in the US Northeast, showing “significant/primary” trends
in dark gray, and “secondary/non-significant” results in light gray. Both annual and seasonal results are shown where
available. See text for full details.

Quantity, Years Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Referencea

Total
H17 ’79-’14 +4% decade−1 (+13% since 2002)

No significant change +6.5% decade−1 +2.5% decade−1

B08b ’63-’03 No significant change +8%
Median
G15 N/Ac No significant overall trend
Extreme, total
H16d ’79-’13 +8-10% decade−1

+2-4% decade−1 +8-10% decade−1

H17d ’79-’14 +19% decade−1 (+53% since 1996)
+45% since 1996e +83% since 1996e +27% since 1996e +85% since 1996e

Extreme, frequency
H16 ’79-’13 +6-8% decade−1

F15d ’01-’12 +15-80% after 2000
No significant change "Robust and significant" increase

G15 N/A 95%-ile ↑ at ≥ 2/3 of stations 95%-ile ↑ at < 2/3 of stations
Extreme, magnitude
H16 ’79-’13 +1-2% decade−1

F15 ’01-’12 No significant change
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a References: B08 – Beckage et al. (2008). F15 – Frei et al. (2015). G15 – Guilbert et al. (2015). H16 – Hoerling et al. (2016). H17 – Huang
et al. (2017).

b For Vermont only (Burlington International Airport weather station)
c Guilbert et al. (2015) calculated the median and 95%-ile of precipitation in a 30-year moving window.
d These authors define an “extreme” precipitation percentile (Hoerling: 95%-ile; Frei: 90, 95, 99%-ile; Huang: 95%-ile) and calculate its value
for some baseline period. For various periods of interest, they report the total precipitation above this threshold, frequency of events above
this threshold, and/or magnitude of events above the threshold.

e Huang et al. (2017) report large increases across the 1996 changepoint, but also state that winter (December - February) is the only season
which the overall temporal trend is statistically significant.
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Using data from Global Historical Climate Network (GHCN) stations, Hoerling

et al. (2016) find a 2%-3% decade−1 increase in the total amount of heavy (95%-

ile) precipitation over the 1901-2013 period in the Northeast. The magnitude of

this increase has risen to ∼10% decade−1 since 1979. This has primarily been a

warm season (May – October) phenomenon – the authors point out that “10 of the

12 summers since 2002 experienc[ed] anomalously high rainfall contributions related

to extreme daily events”. While they find a small (2.5% decade−1) increase in the

magnitude of extreme events, the rise in the total amount of extreme precipitation

has mainly been driven by a higher frequency of events.

In rough agreement with Hoerling et al. (2016), Frei et al. (2015) also find that

the frequency of warm season (June – October) heavy precipitation has increased in

the Northeast. This phenomenon has been particularly pronounced since 2000. Frei

et al. do not detect statistically significant increases in cold season extreme event

frequency, or in the magnitude of extreme events at any time of year.

Huang et al. (2017) examine total annual precipitation and the total amount of

extreme (95%-ile) precipitation in this region. While they observe a 13% increase

in total precipitation since 2002, they find that extreme precipitation has increased

by a much larger amount, by 53% since 1996. They emphasize the existence of

these “changepoints” in 1996 and 2002, as well as the fact that temporal trends in

precipitation are very sensitive to the choice of time period used for the analysis.

Huang et al. (2017) find that the largest increase in total precipitation has taken

place in the summer (+6.5% decade−1 in June - August). However, in contrast to

Hoerling et al. (2016) and Frei et al. (2015), they find the largest increases in extreme

precipitation to have occurred outside the summer months.
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Guilbert et al. (2015) also find evidence of increased heavy precipitation outside

the summer months. Unlike the studies discussed above, which calculate the 95%-ile

of precipitation over some time baseline, and then evaluate precipitation amounts

and frequencies above that threshold, Guilbert et al. (2015) calculate the 95%-ile in

a moving 30-year window and evaluate how that quantile changes over time. They

find that, for the 222 Northeast weather stations in their analysis, more than 2/3

show a positive trend in the daily 95%-ile from October through May. In July and

September, fewer than 1/2 of the stations show such a trend. The strongest signal,

0.7 mm d−1 decade−1, occurs in April, when 148 stations show a significant positive

trend, and only 20 a significant negative trend.

As well as extreme events, Guilbert et al. (2015) also examine median daily pre-

cipitation and wet and dry persistence (the likelihood of a wet day following a wet

day, or a dry day following a dry day). They detect little change in the median and

in dry persistence. However, wet persistence increases throughout the year, and most

consistently in May and June. Heavy rains in April followed by persistent wetness in

May and June is a combination that could have particularly important implications

for agriculture.

In summary, studies of historical climate data have shown that: (1) robust, statis-

tically significant increases in temperature and growing season have already occurred;

(2) total precipitation in has increased, while median precipitation has stayed fairly

constant; (3) heavy/extreme precipitation has increased by more than total precipita-

tion; (4) the increase in total extreme precipitation has been driven more by a higher

frequency of extreme events than by a higher magnitude of individual extreme events;

and (5) rates of change in all precipitation statistics appear to have increased in the
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last 2 – 3 decades. However, different analyses have led to different conclusions about

the seasonality of extreme precipitation – some analyses have found it to be a warm

season phenomenon, others the opposite. It is beyond the scope of this work to track

down the origin of the conflicting claims about the seasonality of precipitation, which

are likely related to factors such as the weather data sets included in the analysis

and the sensitivity of trends to the time periods used for the baseline and comparison

statistics (Huang et al., 2017; Keim et al., 2005).

To complete the picture of Vermont’s changing climate, I now review model pro-

jections of the region’s precipitation in decades to come. These simulations suggest

that both total precipitation and extreme events will continue to increase, particularly

in the winter (Table 1.3).
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Table 1.3: Overview of projected changes in precipitation in the US Northeast, showing significant/primary trends in
dark gray, and secondary/insignificant results in light gray.

Quantity, Years Jan Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec
Reference
MID-CENTURY
Total: Daily
Guilbert et al. (2014)a 2040-2069 +7.1%
Total: Annual
Hayhoe et al. (2007)b 2035-2064 +5 – 8%c

+6 – 16%c -1 – +3%c

Extreme: 95%-ile
Guilbert et al. (2014) 2040-2069 +8.9%
Extreme: 99%-ile
Guilbert et al. (2014) 2040-2069 +11.9%
LATE CENTURY
Total: Daily
Guilbert et al. (2014) 2070-2099 +9.9%
Total: Annual
Hayhoe et al. (2007) 2070-2099 +7 – 14%c

+12 – 30%c -2 – +0%c

Extreme: 95%-ile
Guilbert et al. (2014) 2070-2099 +12.5%
Extreme: 99%-ile
Guilbert et al. (2014) 2070-2099 +16.7%
a Relative to 1961-2000 baseline
b Relative to 1961-1990 baseline
c Generally identified as significant only for higher emissions scenarios
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For the US Northeast, Hayhoe et al. (2007) evaluate nine atmosphere-ocean gen-

eral circulation models fed by three emissions scenarios. They find that the models

are able to match historical temperature patterns quite well. However, they result in a

wide range of precipitation trends which do not all have the same sign as the observed

trends. Nonetheless, a common feature of the models is that they predict increas-

ing total winter precipitation and no change or a decrease in summer precipitation

(Table 1.3). More recent analyses confirm that climate models point to significantly

wetter winters, while changes in summer are model-dependent and within the range

of natural variability (Fan et al., 2015; Rawlins et al., 2012).

Hayhoe et al. (2007) find that the projected precipitation changes are more pro-

nounced in the north of the region. Combined with warmer temperatures, more

winter rain and the same or less summer rain would imply wetter soils and more

runoff in winter/early spring, drier soils and less runoff in late spring/summer, and

more short-term droughts. The lengthening growing season could further reduce soil

water through increased evapotranspiration.

Guilbert et al. (2014) develop projections specifically for the Lake Champlain

basin, using two representative concentration pathways (RCPs) and four general cir-

culation models intended to represent particularly warm, cool, wet and dry conditions.

They find that the models result in temperature and precipitation changes that are

qualitatively consistent with the existing trends in the historical record. According

to the models, mean daily precipitation will increase by 7.1% (9.9%) by 2040-2069

(2070-2099), the 95%-ile by 8.9% (12.5%), and the 99%-ile by 11.9% (16.7%). As

they point out, “the 99th percentile of daily precipitation is projected to increase

by 3.4 cm, which is equivalent to an additional 34,000 m3 of liquid precipitation
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per square kilometer”. Despite the higher mean daily rainfall, continued increases in

temperature lead the authors to predict that the ratio of precipitation to potential

evapotranspiration will tend to decrease between April and September.

At this point, we know that both the historical data and the models suggest that

Vermont will be a wetter place in the future. However, although more and heavier

rain is certainly to be expected from a warming atmosphere, it is not clear that the

increased extreme precipitation in the US Northeast in recent decades is the result of

human-induced climate change. Guilbert et al. (2014) note that the projected future

increases in precipitation are much smaller than historical trends, and Hoerling et al.

(2016) find that most of the observed increase so far can in fact be explained by

decade-scale variability in ocean temperatures. It is possible that the expected signal

of climate change is currently masked by other sources of variation.

At the same time, the model results are also uncertain. They are unable to

accurately reproduce precipitation changes that have already been observed. In the

case of future summer precipitation, different models give different results. They

consistently predict more total winter rainfall, but the observed increases in total

rainfall have so far been more of a warm season phenomenon (Table 1.2). In these

circumstances deciding on future climates to use as input for agricultural models is

not a trivial exercise.

Those issues, and the final selection of climates to be used in this thesis, are

discussed in detail in Ch. 4. Briefly, the following broad scenarios will be simulated:

1980 – 2009: Hypothetical scenarios are defined relative to this baseline period.

Warmer: Temperatures increased by 2°C year-round.

Wetter: Temperatures increased by 2°C and total precipitation uniformly in-
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creased by 20%

Wet Spring: Temperatures increased by 2°C and 25% of June, July, August

precipitation shifted to March, April, May.

Intense Rain: Temperatures increased by 2°C and the 95%-ile of precipitation

increased by 30%, with total precipitation held constant.

1.5 Simulating Vermont Farms

To evaluate the effect of climate on agricultural outcomes, we would ideally set up a

dense and extensive network of monitoring stations to collect data over many years of

farm operations. Valuable edge-of-field studies have indeed been carried out on dairy

farms (e.g. Bishop et al., 2005; Braun et al., 2016; Gilker, 2005; Kleinman et al., 2009),

but because of the realities of funding, staffing, weather, technology, etc., they tend to

be short in duration and concentrated at agricultural research sites and a fairly small

number of commercial farms. Computational models that calculate flows of water,

sediment, and nutrients into and out of the soil are a cost-effective alternative that

can in principle be deployed at any location and over any timescale. This project

will employ the widely-used Agricultural Policy/Environmental eXtender (APEX;

Gassman et al., 2010) model. This section outlines some considerations about model

calibration and accuracy that will constrain the farming and climate change scenarios

that can feasibly be simulated. APEX is described in more detail in §2.

APEX has several hundred parameters that can be set by the user. These pa-

rameters define the physical and chemical characteristics of the site (e.g. slope, soil

properties, weather), management information, and the methods, rates and thresh-
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olds used in calculating various processes (Baffaut et al., 2017). Management and

weather records, soil test results, and other information is often available to set or

constrain some of the parameters. Others may require adjusting until satisfactory

outputs are obtained, a process for which several strategies are available (Daggupati

et al., 2015; Wang et al., 2012).

If suitable comparison data exist, the user can refine the model parameters until

they produce an acceptable match to observed amounts of runoff, erosion, nutrient

loss, etc. from the area of interest. Typically, the model is calibrated using a subset

of these measurements, then validated using the remainder. When few or no data

are available, an alternative is to use judgment and experience to come up with a

set of parameters that give results that are consistent with broad expectations, such

as county-level historical crop yields and basic erosion calculations (Daggupati et al.,

2015; Williams et al., 2010).

APEX, the EPIC model upon which it is built (Williams et al., 1989), and the

very similar SWAT model (Arnold et al., 1998), have been used in numerous situa-

tions in which detailed empirical data for calibration and validation are not available.

The most extensive of these is probably the Conservation Effects Assessment Project

(CEAP; Duriancik et al., 2008; Johnson et al., 2015), in which APEX and SWAT

have been used for a nationwide study of the effects of implementing agricultural best

management practices. For that project, a sensitivity analysis was used to narrow

down the set of influential parameters that need to be optimized (Wang et al., 2006).

General model verification was accomplished by comparing outputs against a number

of criteria such as whether increasing tillage intensity was correlated with increased

erosion, and whether the results were consistent with the NRCS Conservation Prac-
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tice Physical Effects matrix (Williams et al., 2010). Intermediate levels of calibration

include techniques such as calibrating and validating models using data from one lo-

cation, and applying them to another location that is judged to be sufficiently similar

(e.g. Daggupati et al., 2015; Gassman et al., 2006).

Recently, some authors have investigated the effect of different calibration meth-

ods on the accuracy of APEX results. Baffaut et al. (2017) compared the output

obtained for 12 poorly-drained, midwest soils when APEX was (a) calibrated using

edge-of-field data and (b) set up using “best professional judgment” (BPJ) without

reference to runoff, sediment, and P measurements. They found that the BPJ model

gave acceptable predictions for runoff, although better results were achieved with the

calibrated model. However, only the calibrated model was able to satisfactorily sim-

ulate sediment and total phosphorus yields. Baffaut et al. argue that calibration of

APEX with water quality data is necessary for acceptable results.

Ramirez-Avila et al. (2017) performed a similar analysis for row crop and pasture

fields in the southern US, and found that uncalibrated APEX models did not give

useful results. In their study, calibrated models performed well for runoff, but did not

satisfactorily simulate sediment or dissolved and total P losses. It appears that the

performance of APEX depends on the context in which it is being used. However, no

systematic analysis relating model accuracy to specific circumstances yet exists. It

therefore seems highly advisable to calibrate APEX with respect to real-world data

before relying on its output.

Assuming that water quality data are available and APEX can be calibrated so

as to produce sufficiently accurate results, the next question is to what extent the

model can simulate conditions – soils, management, climate etc. – that differ from
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those used for calibration (which, obviously, is the point of modeling). In the case of

management, Bhandari et al. (2016) assessed the accuracy of APEX results for runoff,

sediment, and total and dissolved P (TP, DP) when the model was calibrated for one

management practice and then used to simulate another. They took advantage of

two field sites: one containing plots managed with and without tillage, and with

various fertilizer application methods, and another that compared different fertilizer

types and rates. When calibrated for specific tillage and fertilizer practices, model

validation results were generally good for runoff, TP, and DP (less so for sediment

because of generally low sediment yields during the experiment).

When calibrated for one management and applied to another, results for runoff

continued to be satisfactory. However, predictions of TP and DP were poor, especially

for larger changes in management (e.g. tillage vs no-till). Bhandari et al. recommend

that either models be applied only to the management types they are calibrated for,

or that data from multiple managements be included in the calibration.

As far as climate is concerned, Moriasi et al. (2016) emphasize the importance

of including wet, dry, and average years in the data set used to calibrate APEX.

Illustrating this, Wang et al. (2014) note that APEX gave poor results for a very dry

validation period when calibrated using data from a wetter period. This is consistent

with the finding of Vaze et al. (2010) that rainfall-runoff models calibrated in drier

conditions are better at predicting runoff in wetter conditions than the reverse. For

hydrologic and water quality models in general, Daggupati et al. (2015) advise a “dif-

ferential split-sample” strategy for simulations involving climate change. To simulate

a wetter climate, Daggupati et al. state that the model should be calibrated using

data from a relatively dry period and validated during a wet period to verify that it
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could simulate the transition from dry to wet conditions (and vice versa).

In simulating Vermont farms, then, it is clear that access to relevant water quality

data will give the best chance of producing reliable results. Fortunately, measure-

ments of runoff, sediment, N, and P for this study are available from a monitoring

project carried out at seven Vermont farms by a local environmental consulting firm,

Stone Environmental (Braun et al., 2016). The Agricultural Practice and Monitoring

(APME) study began in 2012 and gives access to 2 – 4 years’ worth of agronomic

records and edge-of-field monitoring data (depending on the site). The data were not

collected with the intent of being used for model calibration, which will present some

challenges for this study. Nonetheless, they are a valuable resource. More details

about the APME project are given in Chapter 2.

A large number of studies have made use of APEX (e.g. Gassman et al., 2010),

including some limited use in Vermont (Stone, 2015; Winchell et al., 2011). While

these works have made valuable contributions to our understanding of the environ-

mental effects of agricultural practices, the procedures used to set up and calibrate the

models are not usually well documented (although see Baffaut et al. 2017 for a good

counterexample). Calibrating APEX can be a complex and somewhat subjective pro-

cess and, while some useful general guidelines are available (Daggupati et al., 2015;

Wang et al., 2012), no standard, detailed procedure exists. In the light of growing

concerns about transparency and reproducibility in science in general (e.g. Stokstad,

2018), this is not ideal.

This thesis aims to give a thorough and detailed account of the APEX setup and

calibration process used in this work, documenting and explaining decisions taken at

each step. APEX input and output files will be made available, and the ancillary
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Python code and supporting documents created for this project may be requested

from the author. It is hoped that this will prove useful for others who are new to

APEX and may benefit from examples that can be adapted and improved upon for

their own research.

1.6 Summary of this Study

In summary, this thesis will create hydrological models for two Vermont dairy farms

that grow silage corn every year. These models will be run under five different cli-

mate scenarios, with and without the possibility of farm operations being delayed

by weather. The models will be used to predict runoff, erosion, nutrient losses, crop

yields, and scheduling issues.

Chapter 2 describes the creation of “baseline” APEX models for the two farms.

These models are based on agronomic, management, and weather data collected at

the site. Where no site-specific information is available, all parameters are left at their

default values. In Chapter 3, the parameters of the baseline models are adjusted in

order to produce outputs that better match the APME edge-of-field data. Climate

scenarios are fleshed out in Chapter 4, and many runs of the calibrated APEX models

are carried out for each climate, to characterize the distribution of outcomes. The

results of that exercise, and lessons learned along the way, are summarized in Chapter

5.

37



2 Initial APEX Model Setup

This thesis uses the APEX 1501 model to simulate nutrient flows and crop growth

on Vermont dairy farms. APEX was developed by the USDA Agricultural Research

Service and Texas A&M University to address water quality and other environmen-

tal problems (Gassman et al., 2010). Essentially, the model takes information about

weather, site, and soil, performs user-specified farm operations, and calculates how

water and nutrients move and how various soil and crop properties change as a func-

tion of time and management. It is a highly flexible tool that can simulate the effects

of different cropping systems, conservation and nutrient management practices, etc.

Depending on the inputs and operations defined by the user, APEX calculations and

outputs can include, for example:

• The amount of soil that is eroded by water and wind

• How nitrogen, phosphorus, and carbon are transformed and transported within

the soil

• The amount of nutrients exiting the simulation area in different forms

• The amount of pesticide exiting the simulation area

• The crop yield that is achieved each year
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• The cost of a year’s operations

Simulations can be composed of several distinct, connected sites – “subareas” – in

which case APEX tracks the flow of water, sediment, nutrients, and chemicals from

one subarea to the next.

APEX uses several hundred parameters to describe everything from how efficiently

a plant uses incident radiation to microbial decomposition rates. Some of them define

the system that is being simulated: the crops that are being grown, dates of operations

such as tillage and harvest, soil properties, weather, etc. Others must be set to values

that provide acceptable model outputs for the system in question, and the remainder

are most likely left at their default values. Assessing which of the many parameters are

relevant in any given simulation, and selecting appropriate values for them, requires

a number of decisions to be made. While numerical criteria and software tools are

available to assist in this process, some of these decisions are ultimately based on the

modeler’s judgment and the experience of others reported in the literature.

In the interest of transparency and reproducibility, this chapter and the next

describe in some detail the steps taken in creating APEX simulations for two small

watersheds on Vermont dairy farms: the initial setup process (selecting model param-

eters and processes to reflect the site conditions and management at each farm) and,

in Chapter §3, the calibration procedure (tuning additional parameters to improve the

model’s ability to represent reality). The model setup and calibration process relies

heavily on the data collected in the “Agricultural Practice Monitoring and Evalua-

tion” (APME) project introduced in Ch. 1 – both to characterize weather, site, and

management, and to provide crop yield, runoff, erosion, and nutrient loss information

against which the simulation output can be compared. This Chapter therefore begins
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by describing that study and how it is used in this work.

2.1 The Agricultural Practice Monitor-

ing and Evaluation Project

The information in this section is adapted from Braun et al. (2016), which gives

a comprehensive description of the APME project and discusses results obtained

through 2015. Most of the site characterization, agronomic records, and edge-of-field

measurements used in this thesis were supplied by D. Braun at Stone Environmental.

Some records and results from 2016 – 2017 were made available by J. Faulkner, L.

Barbieri, and C. Twombly at the University of Vermont (personal communications,

2018).

2.1.1 Sites

Seven Vermont farms took part in this study that aimed to assess the effects of

implementing conservation practices on corn and hay fields across the state (Braun

et al., 2016). The farm sites and some of their basic characteristics are listed in Table

2.1. The project lasted from late 2012 to early 2016 at most of these sites, except for

Charlotte (2015 – 2018) and Williston (2012 – ongoing).

The study employed a paired watershed design in which two similar, small (few-

hectare) watersheds were identified at each farm. Both watersheds were managed

in approximately the same way during a control period lasting about one year, and

runoff and water quality data obtained during that period were used to verify that the
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watersheds had similar hydrologic properties. At that point, alternative management

practices were implemented on one watershed while the other continued as before.

The advantage of a paired watershed study is that control and treatment practices

can be compared while effects due to temporal variations in weather conditions are

in principle canceled out.

The standard (control) management for the hay fields was broadcasting of manure,

while the alternative (treatment) practice was for the soil to be aerated prior to the

manure broadcasting with the aim of improving infiltration and reducing losses to

ammonia volatilization. The control management of the corn fields varied from site

to site (Table 2.1), but one common element is that manure was broadcast at least

once a year. The treatment management at those sites included manure injection,

a grassed waterway, reduced tillage, and a water and sediment control basin. Cover

cropping was practiced at some of the corn sites in the control and/or treatment

periods, although establishment was often poor.
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Table 2.1: Summary of farms in the APME project. The farms containing the watersheds that were modeled in this thesis are
indicated in bold.

Site Crop(s) Soil Control Treatment Tile
Texture(s) Management Management Drainsa

Charlotte (CHA) Corn Silty clay Manure incorporation;
disk tillage; cover
cropb

Grassed waterway No

Franklin (FRA) Corn, hay Silt loam Manure broadcast,
aeration, incorporation;
various tillage; strip
cropping; cover cropb

Manure injection;
reduced tillage;
WASCoBc

Yes

Pawlet (PAW) Corn Silt loam Manure incorporated;
chisel & disc plowing

Cover cropb No

Williston (WIL) Corn Silt/sandy loam Manure incorporated
& broadcast; disc plowing;
cover cropb

Manure injection;
reduced tillage

No

Ferrisburgh (FER) Hay Silty clay loam Manure broadcast;
ash+bedding broadcast

Soil aeration Capped

Shelburne (SHE) Hay (Silty) clay loam Manure broadcast Soil aeration Defunct
Shoreham (SHO) Hay Clay Manure broadcast Soil aeration No
a APEX has limited ability to simulate P in subsurface drains (Francesconi et al., 2016)
b Cover crops failed to establish at WIL; some establishment in one season at PAW; good establishment in one season at CHA; good
establishment in two seasons at FRA.

c Water and Sediment Control Basin
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Two watersheds, PAW1 and WIL2, were selected for modeling in this thesis, based

partly on expectations that they would be the simplest watersheds to use for an initial,

detailed study. Corn is the only cash crop grown on these watersheds, and they have

no known tile drainage that could complicate the modeling effort (e.g. Francesconi

et al., 2016). Also, the annual management of these watersheds is relatively uniform

over the duration of the monitoring study. This in principle permits the effectiveness

of APEX in different weather conditions to be examined without confounding effects

from major changes in farm operations.

PAW1 is technically the treatment watershed on the PAW1 farm, implying a

change of management midway through the study. However, the cover crops seeded

during the treatment phase at PAW1 generally failed to establish. In fact, weeds

covered more ground on PAW2 in some years than cover crops ever did on PAW1

(Braun et al., 2016), suggesting more variability on the control watershed than on

the treatment one. WIL2 is the control watershed on the Williston farm.

2.1.2 Data

A tipping bucket rain gauge and air temperature sensor monitored precipitation and

temperature at each farm. These data were used to supply daily weather information

to APEX during the model setup and calibration phase, with some substitutions

made for missing and unreliable data as discussed in §2.2.2. An extensive set of soil

physical and chemical properties, including pH, texture, cation exchange capacity,

and macro-/micro-nutrient and organic matter (OM) content, was measured at the

start of the project. A subset of that information was used to set up the soil properties

at the start of the APEX simulation, as described in §2.2.3.

43



The operations carried out at each site (planting, harvest, tillage, and manure and

chemical applications) were recorded, including date, method, variety, rate, etc., as

applicable. Data about crop yields, cover crop establishment, and weed growth were

also obtained. Much of this information was used in this thesis to create an operations

schedule for each watershed as described in §2.2.4. The yield records formed part of

the data set used during model calibration.

The runoff from each watershed was directed into a flume using plywood wing-

walls or a soil berm. A water level sensor in the flume was used to construct runoff

event hydrographs, while runoff samples were collected using a pair of autosamplers

designed for small-medium and medium-large events. The water level sensors and

autosamplers sent data every 30 minutes to a server at the project office, and sent

text messages to staff to notify them that a runoff event was occurring. Project staff

traveled to the site after every event to collect the water samples and dispatch them

for analysis by the state Department of Environmental Conservation.

The runoff and water quality data from the Pawlet and Williston sites consist of

the total flow for the runoff event (HQ), total suspended solids (TSS), and total and

dissolved nitrogen and phosphorus (TN, TDN, TP, TDP). For some events, HQ was

the only quantity that was measured; water quality data are not available. In order

to compare APEX model output with the edge-of-field observations, it is necessary

to identify the model variables that correspond to the measured quantities. Table 2.2

gives this translation.
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Table 2.2: Runoff and water quality variables measured by the Agricultural Practice Monitoring and Evaluation project, and the
corresponding model output variables

Observed quantity Units APEX Var. APEX Definitiona APEX Units
Runoff vol. (HQ) L Q Surface runoff mm
Total suspended solids (TSS) g Yb Soil loss from water erosion tonnes ha−1

Total P (TP) g QP + YP P in runoff + P loss with sediment kg ha−1

Total dissolved P (TDP) g QP P in runoff kg ha−1

Total N (TN) g QN + YN N in runoff + sediment transported N kg ha−1

Total dissolved N (TDN) g QN N in runoff kg ha−1

Silage yield US tons acre−1 YLDF Forage yield tonnes ha−1

a Some variables are defined in more than one way in the APEX User’s Manual; these definitions are taken from Table 2.9 in that
document.

b APEX includes several options for calculating water erosion including the Universal Soil Loss Equation (USLE) and Small Watershed
Modified Universal Soil Loss Equation (MUSS); see §3.3.3. The code generally outputs a specific “USLE”, “MUSS”, etc. variable. For
brevity, these will be referred to as “Y”.
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In the case of TSS/sediment yield, the correspondence between edge-of-field and

APEX variables is not exact. The observed TSS includes only the solids that were

suspended in the runoff water and measured as part of the water quality analysis,

whereas the modeled erosion (Y) represents all the sediment leaving the simulation

area. In some cases sediment was deposited in the flume rather than leaving the site

suspended in runoff, meaning that TSS underestimates the total amount of sediment

lost from the field. However, except in the smallest events, the “missing” sediment

is always a very small fraction of the total amount (Braun et al., 2016, Braun 2018,

personal communication), and we assume that TSS ≡ Y.

Field studies, especially those involving partnerships between scientists and work-

ing farms and measurements made under challenging outdoor conditions, are – un-

derstandably – affected by many sources of error and uncertainty. In the case of

the APME project, for example, the management and yield records are imprecise at

times. In 2014 the Williston farmer reported applying 4 loads of manure from a 9000

gallon tanker, but it is not clear whether that was on each watershed or in total.

Yields were sometimes recorded as “18-22 tons/acre”.

As for weather, the tipping rain gauges are expected to be accurate to ±3% in

general, but are known to under-record very intense events and are not designed to

accurately record solid precipitation (Braun 2017, personal communication). The

accuracy of the flow (runoff) measurements in the flumes depends on the size of the

event in a way that has not been fully characterized, although the fractional error will

be larger for small events than for large ones (Braun 2018, personal communication).

Erosion and frost heaving allowed some runoff to bypass the flumes at times, and

icing in the flumes compromised some winter level measurements. In some cases the
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data had to be rejected outright. In others, APME personnel could make reasonable

corrections. Errors in runoff volume will in turn affect the measurements of sediment

and nutrients.

Attempting to rigorously quantify the uncertainties on the runoff and water quality

data, etc., is beyond the scope of this thesis. For some general perspective, it is noted

that Harmel et al. (2006) reviewed published errors for streamflow and TSS/nutrient

measurements and found a range of 8 – 110% for total N and P and 7 – 53% for

TSS under “typical” sampling conditions. Overall, the data from the APME study

are an invaluable tool for assessing the performance of APEX at these Vermont sites.

However, the uncertainties in the data and records mean that even the most accurate

model cannot be expected to exactly match all of the observed measurements.

2.2 Initial Model Setup

The first step in setting up an APEX simulation is to enter the available information

about the site, weather, and soil, and create a realistic operations schedule. Several

other variables related to crops, tillage, fertilizer, etc. are also set at this point.

Once this “baseline” model has been created, it can be further refined through the

calibration process discussed in Chapter 3.

The model setup procedure essentially consists of editing numbers in a set of

interrelated text files. An overview of the files and the relationships between them is

given in Figure 2.1, reproduced from the APEX User’s Manual (see below). During

the setup and calibration phase of this work, APEX was configured using WinAPEX

15011, which provides a graphical interface to the program.
1WinAPEX is available from https://epicapex.tamu.edu/apex/winapex. More pre-
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Figure 2.1: APEX input and output files, reproduced from the APEX 1501 User’s Manual.

This section describes in some detail how baseline APEX models were created for

the study watersheds, and the reasoning behind the decisions made along the way. It

draws from several sources of information, in particular:

• The APEX Theoretical Documentation Version 0806 (Williams et al., 2012)

cisely, it was determined that in practice certain parameters are not translated cor-
rectly between the WinAPEX interface and the underlying APEX code (for example,
see https://groups.google.com/d/msg/agriliferesearchmodeling/4F9m6EM1Pf8/vYlyOItWBQAJ).
WinAPEX was therefore used to aid the initial model setup, then further parameter editing was
carried out on the underlying text files and the APEX executable run directly.
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– Lays out many of the principles and equations underlying the code

• The APEX User’s Manual Version 1501 (Steglich et al., 2016)

– Defines input parameters and output files and variables

• The EPIC/APEX Modeling Forum2

– APEX support staff answer questions and help troubleshoot model issues

2.2.1 Site Definition

An APEX simulation is comprised of one or more “homogeneous hydrological landuse

units”, otherwise known as “subareas”, that can be linked together to form a whole

watershed. The PAW1 and WIL2 “watersheds” in the APME project are treated in

this thesis as single APEX subareas, disconnected from any other land. This means

that water only enters the subarea in the form of precipitation; the simulations do

not account for any contributions from runoff and subsurface flow from neighboring

areas. This is an unavoidable limitation of APEX, and it may be more significant for

these single-subarea simulations than for models with a smaller ratio of upland edge

to simulated area.

The process of defining a subarea in APEX involves specifying basic information

like the size and slope of the area, and the land condition that will be used for runoff

curve number selection. These data are supplied in the Site and Subarea files. Those

files also contain references to weather stations, management schedules, and soil types
2https://groups.google.com/forum/#!forum/agriliferesearchmodeling
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that are defined in other files, which may in turn refer to sub-files of their own. (The

contents of these other files are examined in the following sections.)

The subarea file contains a large number of options and parameters beyond basic

site information, but many of them are not important for the purpose of this thesis.

For example, channel properties do not need to be defined for a single-subarea simu-

lation3, and parameters to do with irrigation, automatic fertilization, reservoirs, etc.

are not relevant. Table 2.3 summarizes the Site and Subarea parameters judged to

be potentially relevant for this work and comments on their function and how some

values were chosen. Table 2.4 gives the values of these parameters used for the PAW1

and WIL2 models.

3https://groups.google.com/forum/#!topic/agriliferesearchmodeling/J76A_Y_5Idc
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Table 2.3: APEX/WinAPEX site/subarea parameters judged to be potentially relevant for this study

APEX Param. Description Comments
Site file

Watershed name
Weather station

YLAT Latitude Used to estimate day length
ELEV Elevation Used in Penman-Monteith PET calculation
APM Peak runoff rate-rainfall energy factor Possible calibration parameter
Subarea file
SNUM Current subarea
TITLE Subarea name

Type of subarea WinAPEX only; APEX derives from RCHL & CHL
Downstream receiving subarea WinAPEX only; APEX derives from RCHL & CHL

IOW Owner Owner should have herd size = 0
IWTH Daily weather station Used when reading daily weather from file
INPS Soil number Selects one of the soils defined in §2.2.3
IOPS Operations schedule Selects one of the schedules defined in §2.2.4
LUNS Land condition Based on site descriptions in Braun et al. (2016)
WSA Subarea drainage area From Table 1 of Braun et al. (2016)
CHL Channel length CHL=RCHL indicates this is an extreme subareaa

RCHL Reach channel length CHL=RCHL indicates this is an extreme subarea
STP Average upland slope From Table 1 of Braun et al. (2016)
SPLG Average upland slope length Estimated from contour maps in Braun et al. (2016)
UPN Manning’s N for upland Estimated based on User’s Manual Appendix F
LM Lime application switch 0=auto lime, 1 = no lime
PEC Erosion control practice factor Possible calibration parameter
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NVCN Method used to adjust daily curve number Set to same value as APEXCONT.NVCNb

a The values of the channel variables CHL and RCHL are not important per se for these single-subarea simulations, but setting them
equal indicates to APEX that the subarea is not receiving material from any other subarea.

b There is also an NVCN variable in the Control file (§2.2.5). The APEX User’s Manual does not explain how the NVCN values in the
Control and Subarea files relate to one another; whether one overrides the other, for example.
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Table 2.4: Physical characteristics of the sites and subareas in the PAW1 and WIL2
baseline models.

Parameter PAW1 WIL2
Site file
YLAT 43°.617 44°.468
ELEV 189 m 101 m
APM 1.0 1.0
Subarea file
LUNS Straight row, poor infiltration Straight row, good infiltration
WSA 2.4 ha 0.81 ha
CHL 0.1 km 0.1 km
RCHL 0.1 km 0.1 km
STP 0.045 0.0006
SPLG 45 m 45 m
UPN 0.15 0.15
LM 1 1
PEC 1.0 1.0

2.2.2 Weather

The APME on-site and other local weather records were used to construct daily

weather files and weather stations for APEX. On-site temperature (T) and precipi-

tation (precip.) measurements are available for each site for the few-year duration of

the monitoring project (§2.1). However, a “run-up” period is needed before the model

output can be used, and long-term simulation results can help to identify trends and

anomalies in the model output. Alternative weather data was therefore needed to

enable longer-duration modeling.

Daily T and precip. records from the nearest Global Historical Climatology Net-

work (GHCN) weather station were used for this purpose. For the Pawlet model, the

nearest weather station is at Rutland, roughly 33 km distant (as the study farms are
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anonymous and their exact locations are not known to this author, only estimated dis-

tances can be given). For Williston, the nearby (∼8 km) Burlington Airport station

was selected.

The on-site precipitation was measured using tipping bucket rain gauges. These

instruments are not designed to record solid precipitation, meaning that the winter

precip. records were likely to be inaccurate. In an attempt to roughly correct for

that effect, weather station precip. values were substituted for on-site precip. on

days where the on-site Tmax < 0◦C. Weather station data were also substituted when

on-site records were obviously incorrect, specifically in cases where Tmax > 50◦C.

Figures 2.2 and 2.3 show weather station vs. on-site T and precip. for the two

modeled locations. In both cases, the on-site and weather station temperatures are

quite well-correlated. On days where the on-site Tmax < 0◦C, the on-site precip. is

often zero while non-zero precip. is recorded at the weather station. This may reflect

the inability of the on-site rain gauges to record snowfall. The precipitation at the

Williston site is quite closely correlated with that at the Williston weather station,

so substitutions made for that site are probably fairly accurate. Substitutions made

at Pawlet are likely to be less accurate.

Once daily weather text files had been constructed for the whole simulation du-

ration, the Weather Import program4 was used to convert the data to daily weather

files and weather stations in the format required by APEX. Note that these weather

files only contain T and precip.; the remaining weather variables (humidity, solar

radiation, wind speed) are generated by the model (see also §2.2.5).
4https://epicapex.tamu.edu/model-executables/weather-import/
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2.2.3 Soils

APEX support staff kindly made available a WinAPEX database containing APEX

parameters for all the soil series in Vermont, based on the Soil Survey Geographic

Database (SSURGO5). The first step in setting up soil parameters for any site, then,

was to select from the database the soil series making up the largest fraction of

the watershed. For PAW1, “Bomoseen and Pittstown soil 148B” comprises 63% of

the site, followed by Bomoseen and Pittstown 148C at 34% and Taconic-Macomber

complex 43C at 4%. As “B” and “C” soils differ only in their slopes (2-8% vs. 8-15%),

and the site slope is defined during the subarea setup (§2.2.1), PAW1 is treated in

this work as effectively composed entirely of soil 148B.

The SSURGO database contains two entries for soil 148B: Bomoseen (CH-L)

and Pittstown (SIL). The Bomoseen soil was selected for the baseline model. The

properties of these soils are very similar, so APEX models based on each of them

would not be expected to differ noticeably. At WIL2, Winooski and Limerick soils

respectively cover 65% and 35% of the WIL2 site. The Winooski soil was selected for

the baseline model. The Winooski and Limerick soils differ somewhat more than the

Bomoseen and Pittstown soils, but tests showed that the effect of substituting the

Limerick soil was small.

A soil in APEX is characterized by roughly 60 parameters that describe everything

from the soil’s pH to the lignin content of structural litter in the soil. The SSURGO

database contains reasonable values for many of these parameters, and APEX will

estimate values for those that are not available. Some of the parameters, like sand and

silt fractions, pH, and cation exchange capacity (CEC), are commonly measured on
5https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/?cid=nrcs142p2_053627
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individual farm fields. These can be used to replace the SSURGO values, which may

be important for watersheds that contain a mixture of soils, or where management

activities may have led to site-specific changes over time.

An extensive set of soil test data was obtained at the APME watersheds. To

use these data to parameterize the soils in APEX it was first necessary to identify

the APEX input parameter or output variables corresponding to the soil test mea-

surements. In some situations, the correspondence is fairly clear. For example, it is

straightforward to use the soil test pH value as the APEX PH parameter. Other field

measurements are less clearly related to the pools of nutrients and organic matter that

APEX uses. Although the APEX SOIL file contains an “Organic Carbon Concentra-

tion” parameter, and the APME data set includes an “Organic C” measurement, for

instance, the Organic C number appears to refer to a water-extractable carbon pool

that is much smaller than the organic C pool in APEX (Braun and Moore, 2014).

Table 2.5 gives the translation between APEX variables and soil test data for the

measurements for which a reasonable correspondence could be found. Approximate

values for APEX organic C and N can be obtained from soil test organic matter (OM)

by assuming that organic C ∼ OM/1.9 (Pribyl, 2010) and organic N ∼ organic C/12

(Kirkby et al., 2011; Lal, 2008). APEX soluble P can also be derived from soil test

results. Winchell et al. (2011) used a database from the UVM Agricultural Testing

Laboratory to derive a relation between phosphorus concentrations obtained from the

Modified Morgan (MM) soil test method used in Vermont, and the Mehlich 3 (M3)

P values that are required by the SWAT model. Stone (2015) used this relation, with

M3 values divided in half, to initialize soluble P in APEX. At high values of MM P

(&10 ppm), the scatter in the relation is very large.
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Figure 2.2: Top: Minimum and maximum daily temperature at the Rutland weather station
compared with that at the Pawlet field site. Bottom: Daily precipitation at the Rutland
weather station compared with that at the Pawlet field site. The blue points in this panel
identify days where the on-site maximum temperature was below freezing and the tipping
bucket rain gauge measurements are therefore likely to be unreliable. On those days, APEX
was supplied with precipitation measurements from the Rutland weather station instead of
on-site data. In both panels, the red dashed lines show the 1:1 relation.
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Figure 2.3: Top: Minimum and maximum daily temperature at the Burlington Airport
weather station compared with that at the Williston field site. Bottom: Daily precipitation at
the Burlington weather station compared with that at the Williston field site. The blue points
in this panel identify days where the on-site maximum temperature was below freezing and
the tipping bucket rain gauge measurements are therefore likely to be unreliable. On those
days, APEX was supplied with precipitation measurements from the Burlington weather
station instead of on-site data. The correlation between on-site and weather station data
in this figure is much better than in Figure 2.2, probably because of the smaller distance
between the field site and weather station. In both panels, the red dashed lines show the 1:1
relation.
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Table 2.5: Translation between APME soil test data and APEX variables

Soil Test APEX APEX APEX Conversion Referenceb

Measurement Param. Definition Filea Factor
pH PH Soil pH SOIL
Ca+K+Mg (%) SMB Sum of bases (cmol/kg) SOIL
OM (%) WOC Organic C (%) SOIL WOC∼OM/1.9 P10

WOC Organic C (kg/ha) ACN WOC∼OM/1.9 P10
WN Organic N (ppm) SOIL WN∼WOC/12 K11, L08
WON Organic N (kg/ha) ACN WN∼WOC/12 K11, L08

Sand (%) SAN Sand content (%) SOIL
Silt (%) SIL Silt content (%) SOIL
Avail. P (mg/kg) SSF Soluble P (g/Mg) SOIL See refs W11, S15

AP15 Plow depth soluble P (g/t) ACY See refs W11, S15
CEC (meq/100 g) CEC Cation exchange capacity (cmol/kg) SOIL
a The SOIL file contains parameters that initialize the soil at the start of the simulation, whereas the ACN and ACY files
contain annual simulation output. The SOIL and ACN files contain values for each soil layer in the model.

b P10: Pribyl (2010); K11: Kirkby et al. (2011); L08:Lal (2008); W11: Winchell et al. (2011); S15: Stone (2015).
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Table 2.6: Soil variables adjusted for the baseline modelsa

Parameter PAW1 WIL2
Default Baseline Default Baseline

PH 6.45 7.9 5.9 7.3
WN (ppm) 0b 1500 0b 1700
SAN (%) 32.9 35.0 60.68 31.3
SIL (%) 57.1 49.6 27.82 55.9
WOC (%) 2.35 1.95 2.06 1.0
CEC (cmol/kg) 10.06 18.8 9.63 12.9
SMB (cmol/kg) 0b 18.8 0b 12.9
a Soil samples were taken to a depth of 20 cm, so APEX values
were only adjusted for the top model soil layer. The thickness of
this layer is 23 cm at PAW1 and 20 cm at WIL2.

b In APEX, 0 generally indicates an unknown value that will be
filled in by the model.

Some soil properties do not change significantly with time, and can therefore be

used to initialize the model. These are the sand and silt fractions, pH, cation exchange

capacity (CEC), and base saturation. (Actions such as fertilizer applications can

certainly change the pH of a soil. However, experiments with APEX showed that the

initial and final soil pH remained the same in a 40-year simulation including annual

fertilizer applications, suggesting that APEX does not track changes in pH related to

management activities. Similarly, although the CEC of a soil is related in part to its

organic matter content, the initial and final CEC reported in the APEX log file were

found to be the same.). The APME soil test results were therefore used to set SAN,

SIL, PH, CEC, and SMB for the baseline models, as shown in Table 2.6.

Other soil characteristics, particularly those related to organic matter and nutri-

ents, can change appreciably during a multi-year APEX simulation. Rather than use

soil test data directly to initialize the model in these cases, initial values can be set

so that the correct values are achieved later in the simulations. The initial values of
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WOC and WN were therefore adjusted so that WOC and WON reported by APEX

in 2012 matched the values estimated from the organic matter level measured in the

field that year (Figures 2.4, 2.5).

In these simulations the soil organic C and N concentrations each year are also

affected by the amount of C and N added in manure and the organic matter cycling in

APEX. There are uncertainties in all of these quantities/processes, so an acceptable

match between the estimated and modeled WOC and WON in 2012 could have been

achieved by varying any one of a number of input parameters. The adopted initial

values of WOC and WON are not unique.

APEX does not report annual soil organic P, and the initial organic P (WPO)

value was left at 0 (“unknown”). For both PAW1 and WIL2, the model assigned a

starting WPO value such that the initial WN/WPO≈8. The initial soluble P value

(SSF) was also left at its default value, partly because of the substantial uncertainty

in the conversion between MM P and M3 P (especially for WIL2. where MM P =

43.5 ppm). Also, the modeled soluble P is unusually low at WIL2 in 2012 (Figure

2.4), the year the soil tests were obtained. With SSF at its default value, the plow

depth soluble P concentration reported by APEX in 2012 turned out to be within a

factor of two of the M3 P value estimated from the soil test data (Figures 2.4, 2.5).

In summary, soil properties in APEX were set to match field measurements as

well as possible, given the significant uncertainties involved in converting between the

available soil test data and APEX parameters. A further limitation is that soil pa-

rameters may not be independent; changing one parameter might imply that another

property should also change. For example, a change of soil texture would proba-

bly in practice also change the bulk density. These potential shortcomings were not
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Figure 2.4: Top left: APEX annual organic C in the top ≈20 cm of the soil at PAW1. The
dashed lines intersect at the organic C value estimated from soil test data obtained on the
PAW1 watershed in 2012 (see text). Top right: same for organic N. Bottom left: same for
soluble P in the plow layer.

addressed in this study.

2.2.4 Operations

APEX also needs to know the dates and types of the management activities that are

carried out on the watershed. The actual activities that took place on the APME

fields varied considerably from year to year. For example, operations sometimes had

to be postponed because of poor weather, or the farmer used different tillage methods

from one year to the next.
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Figure 2.5: Top left: APEX annual organic C in the top ≈20 cm of the soil at WIL2. The
dashed lines intersect at the organic C value estimated from soil test data obtained on the
WIL2 watershed in 2012 (see text). Top right: same for organic N. Bottom left: same for
soluble P in the plow layer.

Rather than construct an “average” or “typical” annual schedule, the approach

was to mimic the actual operations as closely as possible in terms of dates, seeding

and manure/fertilizer application rates, corn days to maturity, etc. In that way, we

can ask “what would have happened if this farm had been operated in the same way

but in different climates?”. In model years prior to the start of the APME project,

and after the end of the project, the schedule for the first APME year was used.

There were some differences between the actual and model schedules. One feature

of APEX is that a planting operation will not take place until the soil temperature

63



reaches 2° C above the crop’s base temperature (Tbase = 10° C for corn)6. This means

that the corn planting was delayed for several days in some years.

Also, although winter cover crops were seeded on the PAW1 and WIL2 watersheds,

the cover fraction observed each winter ranged from only 0 – 28% on PAW1 and

≤4% on WIL2, and no cover crop operation was included in the model schedule. In

addition, the manure application rate at WIL2 in 2012 was unusually low (33000 kg

ha−1 vs ≥65000 kg ha−1 in almost all other applications), so the rate for years prior

to 2012 was set to a more representative value (72000 kg ha−1). Finally, as the APME

data set does not include pesticide masses in runoff/sediment, pesticide applications

were omitted from the schedule.

6https://groups.google.com/d/msg/agriliferesearchmodeling/QnLo0XkZAG8/WrrBlsgzBgAJ
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Table 2.7: Sample years from the APEX operations schedules.

Operation Date Rate Substance Other
PAW1, 2012
Apply Manure 5-12 35867 kg/ha VT Dairy Manure
Plow, Chisel 5-12 LUN=0a

Plant Corn 5-29 79000 seeds/ha GDUs/PHU=1333b

Apply Fertilizer Through Planter 5-29 224 kg/ha 27-9-18
Harvest Silage 9-27
Killc 9-27
WIL2, 2013
Apply Manure 5-7 116569 kg/ha VT Dairy Manure
Plow, Disc 5-9 LUN=0
Plant Corn 5-16 84000 seeds/ha GDUs/PHU=1333
Harvest Silage 10-9
Apply Manure 11-10 116569 kg/ha VT Dairy Manure
Kill 11-9
a LUN=0 implies that the plow operation does not override the land condition defined in the Subarea file (§2.2.1)
b Growing degree days/potential heat units to maturity; see §2.2.4
c APEX requires a “kill” operation for annual crops that indicates that growth has finished.
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As an illustration, one year of the PAW1 and WIL2 schedules are given in Table

2.7. The management is similar in that both sites grow corn fertilized with dairy

manure, but manure is applied twice at WIL2 and at higher rates than at PAW1,

and no starter fertilizer is used at WIL2. To fully specify the entries in the schedule,

the relevant Tillage, Crop, and Fertilizer files must also be populated with reasonable

values. This is discussed in the following sections.

Tillage

Most of the operations in Table 2.7 disturb the soil. Each of the items in the “Opera-

tion” column in the table therefore has an entry in APEX’s Tillage file that describes

the depth of disturbance and mixing efficiency of the operation, the surface rough-

ness created, etc. For plowing/tillage specifically, the APME management records

refer to numerous methods and implements, such as “harrowed with a Sunflower disc

harrow” and “disc chisel plow”. These terms were simplified into just two kinds of

tillage, “Plow, Disc” and ”Plow, Chisel”, based on advice about likely implements

and soil disturbance levels from J. Faulkner (2018, personal communication).

The parameters of the tillage operations were based on pre-defined operations in

WinAPEX. To create each operation used by the baseline models, a similar template

operation was selected and its tillage parameters verified to (1) reflect relative soil

disturbance, and (2) appear to be generally reasonable. For example, to create the

Plow, Chisel operation, the existing Plow, Chisel, 20 ft operation was selected and

renamed (the “20 ft” has only economic, not physical implications), and verified to

cause less disturbance (have a lower mixing efficiency) than the pre-defined Plow,

Disk, 22 ft operation. Table 2.8 lists the final tillage parameters that were used.
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Table 2.8: Tillage-related parametersa for the APEX operations.

APEX Description Apply Plow, Plow, Fertilize, Fertilize, Plant Harvest
Variable Manure Disk Chisel Planterb Surfacec Corn Silage
EMX Fraction mixing efficiency 0 0.85 0.3 0 0 0.1 –
RR Random surface roughness (mm) 0 50 20 0 0 10 –
TLD Application/tillage depth (mm) 0 100 150 40 0 40 -50d

RHT Ridge height (mm) 0 0 50 0 0 75 –
RIN Ridge interval (m) 0 0 0.3 0 0 1 –
HE Harvest efficiencye – – – – – – 0.95
ORHI Override harvest indexf – – – – – – 0.9
FPOP Frac. plant population reduced 0 0 0 0 – – –
a The APEX tillage file also contains variables that influence only the economics of the simulation; these are omitted here
b Actual name, “Apply Fertilizer Through Planter”: Starter fertilizer applied through the planter at same depth as corn seed and
with no extra soil disturbance

c Actual name, “Apply Fertilizer On Surface”.
d Negative tillage depth indicates height at which crop is harvested
e Ratio of yield leaving the field to total crop yield
f Ratio of harvestable yield to total crop biomass. For forage crops, overrides the value of HI set in the crop file, allowing different
amounts of the crop to be harvested with different types of equipment.
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Crops

APEX’s Crop files include numerous parameters describing plant nutrient uptake,

heat units required for germination, efficiency of converting radiant energy into biomass,

etc. Files with pre-defined values are available for a wide range of crops, including

silage corn. The User’s Manual states that “The crop-parameters should not be

changed without consulting the model designers or without solid knowledge of plant

growth and development” (p104).

For the baseline model, the only crop-related parameters that were changed from

the defaults were the plant population (OPV5), heat units required for germination

(GMHU), and the heat units at maturity (PHU)7. OPV5 was based on agronomic

records, and GMHU was changed from its default of 100 (Fahrenheit scale; Darby

and Bosworth, 2004) to 55 (Celsius scale).

The PHU parameter governs the number of heat units (growing degree days;

GDUs) that are required to bring a plant to maturity, so for correct crop yields it must

be set appropriately for the crop variety and climate at the site. Both farms grew corn

with hybrids requiring ∼95-105 days to maturity, which translates to approximately

2200 - 2500 GDUs in Fahrenheit, or 1220 - 1390 GDUs in Celsius (Carter, 1992;

Nielsen, 2012).

Fertilizers

Two kinds of fertilizer were used on the study farms: cow manure from each farm’s

storage pit, and synthetic NPK fertilizers (e.g. Table 2.7). To simulate the effects
7The OPV5 and PHU parameters are actually set in the Operations file (Table 2.7), but are

discussed here along with the other crop-related parameters.
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of applying a fertilizer, the amounts of N, P, and K in their various forms must be

specified in the APEX Fertilizer file (Table 2.9). For a fertilizer such as 27-9-18 this

simply requires translating the fertilizer’s P and K fractions from P2O5 and K2O into

elemental P and K (so FN=0.27, FP=0.04, FK=0.15). It was also assumed that the

N in the synthetic fertilizers was in urea form (J. Görres, personal communication,

2018), so the FNH3 (Ammonia N fraction) parameter was set to 1.0.

Manure analyses from the farms in the monitoring study are not available for the

Pawlet and Williston farms, but typical values of mineral and organic N, mineral P,

and mineral K in liquid manure from Vermont dairy farms can be found in Jokela et al.

(2004). These were converted from lbs/1000 gallons to lbs/lb (=kg/kg) assuming a

density of 8 lbs/gallon (Beegle and Peters, 2011), and from P2O5/K2O to elemental

P/K as appropriate.

The APEX fertilizer file also specifies the organic P, NH4-N, and organic C in the

fertilizer. Roughly 10-40% of the P in manure is in the organic form (Sharpley and

Moyer, 2000), and a value of 25% was assumed for this work (i.e., FPO = FP/3).

All of the N was assumed to be in the form of NH4-N (D. Ross & J. Tilley, personal

communication, 2017).

Less information is available about the organic carbon fraction of the manure

in Vermont’s farm pits. Pettygrove et al. (2009) found that, in lagoon water from

California dairies, suspended C plus dissolved organic C totaled aproximately 2230

mg/L. Assuming the same density as above, this corresponds to FOC= 0.23%. In

another study, Moral et al. (2005) found a mean organic C fraction of 23% dry matter

in samples of Spanish cow manure on a dry matter basis. This converts to FOC=

1.6%, assuming a dry matter fraction of 7% (Jokela et al., 2004). The manure pits
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Table 2.9: Properties of the dairy manure used for the baseline models

Param. Description Value Derived From
FN Mineral Na 1.5 x 10−3 Jokela et al. (2004)
FP Mineral Pa 4.0 x 10−4 Jokela et al. (2004)
FK Mineral Ka 2.1 x 10−3 Jokela et al. (2004)
FNO Organic Na 1.6 x 10−3 Jokela et al. (2004)
FPO Organic Pa 1.3 x 10−4 Sharpley and Moyer (2000)
FNH3 NH4-Nb 1.0 D. Ross & J. Tilley 2017, pers. comm.
FOC Organic Ca 5 x 10−3 Moral et al. (2005); Pettygrove et al. (2009)
FSLT Salta 5.0 x 10−2 University of Arizona (2000)
a Judging by the worked example in section 2.18 of the APEX User’s Manual, this is the fraction
of the total wet weight of manure that is composed of this substance.

b Fraction of the mineral N that is in the NH3 form

in the APME study are often described as “well-agitated”, and may contain more

suspended C than the Pettygrove lagoon water, but probably less bedding material

than the Moral samples. An intermediate value of 0.5% (FOC=0.005) was chosen for

this work.

2.2.5 Control File

The Control file contains a number of parameters that govern global simulation prop-

erties. This includes specifying equations to use for calculating processes like runoff

and erosion, and quantities such as daily soil water and curve number. The base-

line values of the control parameters that could be relevant to these simulations are

shown in Table 2.10. Several of these options were later varied as part of the model

calibration process described in Chapter 3.

The Control file also contains information about the simulation starting date and

duration. APEX requires a “run-up” period to allow the model to stabilize before
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reliable results can be obtained. Studies in the literature have used run-up periods as

short as two years (e.g. Stone, 2015), while periods as long as 15 years have also been

recommended8. To allow an adequate run-up period, as well as permitting visibility

of long-term trends, the baseline models begin in 1982 and run for 37 years (through

2018).

8https://groups.google.com/d/msg/agriliferesearchmodeling/_OaXZg-F7_4/6B4x2WR_AwAJ
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Table 2.10: Baseline values for potentially relevant variables in the control file, used for both PAW1 and WIL2.

Parameter Description Default Baseline Comments
NBYR Simulation duration (yrs) 40 37 Run through 2018, long-term trends visible
IYR0 Beginning year 1960 1982 Start 30 years prior to APMEa; 15-year run-up
IPD Print code 2 6 Print daily output
NGN Weather input code 2345 2 Read T & P, generate all other weather variables
IGN Num. of random number cycles 0 0 Same seed used for all simulations
IET Potential evapotranspiration eqn 4 4 Hargreavesb

ISCN Stochastic CNc estimation 1 1 Deterministic (not stochastic) CN calculation
ITYP Peak rainfall rate code 1 3 SCS type II rainfall distribution, OK for US NE
ISTA Soil profile code 0 0 Normal soil erosion (not static profile)
IHUS Auto heat unit scheduling 0 0 Operations as scheduled (not by heat units)
NVCN0 Daily CN calculation method 4 4 Based on soil moisture index
INFL0 Runoff estimation methodology 0 0 CN (not Green & Ampt)
IERT Enrichment ratio method code 0 0 EPIC (not GLEAMS)
LBP Soluble P runoff method 0 0 GLEAMS (not “modified nonlinear”)
NUPC N and P plant uptake code 1 1 s-curve (not Smith curve)
ISLF Slope length/steepness factor 0 0 Use RUSLE slope factor in erosion equations
ICO2 Atmospheric CO2 0 0 Constant CO2
ISW Soil water calculation code 0 0 Rawls method, dynamic
RCN0 N in rainfall (ppm) 0.8 0.8 Default
CO20 Atmospheric CO2 (ppm) 330 400 www.esrl.noaa.gov/gmd/ccgg/trends/index.html
RTNO Yrs of cultivation at sim. start 0 0 Affects C and N mineralization
DRV Equation for water erosion 3 3 MUSS (small watershed MUSLE)
a Starting in 1982 also avoids starting the simulation on a leap year. A leap year start means that operations are delayed by one day in
that year and all subsequent years (https://groups.google.com/d/msg/agriliferesearchmodeling/QnLo0XkZAG8/WrrBlsgzBgAJ).

b The Hargreaves equation requires only T and precip. as input, and is recommended by APEX support staff when only those weather
data are available (https://groups.google.com/d/msg/agriliferesearchmodeling/maz5IDXcuRk/jpoCi41_IgAJ).

c Curve number, see §3.3.1.
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2.2.6 Parameter File

The Parameter file consists of two parts: 30 s-curve parameters and >100 other mis-

cellaneous parameters. An s-shaped curve is used to represent many processes in

APEX (such as soil water evaporation as a function of depth) and two parameters

per process specify the shape of the curve. The set of miscellaneous parameters af-

fects everything from the effect of soil bulk density on root growth to the day length

required for dormancy in winter crops. To distinguish this second set of parame-

ters from the s-curve variables, and for consistency with the notation in the APEX

documentation and tools, I will refer to them as the “PARMs”.

The User’s Manual states that “The PARMCOM.DAT file is a very sensitive part

in APEX, because many coefficients of equations are maintained in this file. The

equation coefficients should not be changed without consulting the model designer

first.” Nonetheless, Wang et al. (2012) identify several PARMs that can be useful for

model calibration, the APEX-CUTE auto-calibration tool (§3.1; Wang et al., 2014)

includes PARMs 1 – 100, and published studies routinely adjust PARMs to improve

the model’s performance (e.g. Baffaut et al., 2017). For the baseline models in this

thesis, all the s-curve parameters and PARMs were kept at the default values in the

WinAPEX Parm Table. This includes PARM78, whose default value (10) means that

operations will not be delayed because of excessive soil moisture (§4.2).

The meaning of “default” may be ambiguous for two of the PARMs. In the interest

of clarity, these are:

• PARM 101 (Century Passive Humus Transformation Rate): The WinAPEX

Parm Table lists the default value of this parameter as 0.000012, and the User’s
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Guide states that this is the “original value” for PARM 101. However, the

actual value in the Parm Table is 0.2918. The selected value was set back to

the default for the baseline models.

• PARM 102 (Lower Nitrogen-Carbon Ratio of Biomass): The WinAPEX Parm

Table lists the default value of this parameter as 0.0667, but the actual value in

the Parm Table is 7.35. The selected value was set back to the default for the

baseline models.

At this point the relevant APEX parameters for the baseline have been set to

reasonable values and the first baseline simulation can be executed. The following

sections explore in some detail the output of the baseline models, and compare the

output to the APME edge-of-field and crop yield data.

2.3 Baseline Models: Overview of Out-

put

A useful first step in evaluating the output from an APEX run is to simply visualize

the overall properties of the simulation. Are soil nutrient levels stable over time or

are they building up or being depleted? What are the dominant pathways of nutrient

loss? What are the main factors affecting the crop yield? Answering questions like

these can help identify problems with the setup, show whether the period for which

comparison data are available differs in any important ways from the simulation

period as a whole, and provide insight into areas that may be candidates for further

calibration.
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This kind of simulation overview relies on the user selecting variables of interest

from among APEX’s numerous outputs, so it is necessarily a narrow and subjectively-

chosen view of the model. However, it provides the background for a more detailed and

quantitative evaluation of the model’s performance, in which its output is compared

with the available real-world data in a systematic way. The following sections, then,

present a set of plots illustrating the baseline models, describing the characteristics

and trends observed. The models are then compared with the data obtained for the

APME project.

In the hope of aiding the reader in navigating the many APEX output plots,

standard colors will be used in Chapters 2 and 3 to denote quantities related to

water, temperature, carbon, etc.:

• Water (precipitation, percolation, water stress, etc.): blues

• Carbon: grays

• Nitrogen: greens

• Phosphorus: red/orange/yellow

• Erosion/sediment: browns

• Crop yield: purples

• Temperature: pinks

2.3.1 PAW1

Figures 2.6 and 2.7 give an overview of the PAW1 baseline model in terms of the total

inputs and outputs of water, carbon, phosphorus, and nitrogen that are reported in
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Figure 2.6: Summary of water and carbon inputs and outputs over the course of the PAW1
baseline simulation.

the model’s main log (“.OUT”) file. The figures illustrate the main pathways of addi-

tion and loss of these materials, as well as comparing their initial and final amounts

in the soil. In the case of water, for example, evapotranspiration is the main source

of loss from the system, with runoff and percolation accounting for lesser amounts.

Quick return flow and lateral subsurface outflow contribute negligible quantities.

Carbon is added to the soil with organic fertilizer (manure) and when crop residue

decays. Crop residue also accounts for the predominant losses of C (via respiration),

with a much smaller fraction lost as soil erodes. The overall C balance in the sim-

ulation is negative, with the final soil C at 88% of the initial value. P, in contrast,

accumulates slightly over the 37 year simulation period. Inputs in the form of min-
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Figure 2.7: Summary of P and N inputs and outputs over the course of the PAW1 baseline
simulation.

eral/labile, and to a lesser extent organic, P fertilizer outweigh P losses to harvest,

erosion, runoff, and leaching.

Most of the N in the simulation is added in fertilizer, with ammonia contributing

about twice as much as organic N. The most important losses are due to ammonia

volatilization, followed by harvest, erosion, runoff, leaching, denitrification, quick

return flow, and lateral subsurface outflow in that order. Soil nitrogen is about the

same at the end of the simulation as at the beginning.

Visualizing some of the year-by-year output gives further insight into the processes

occurring in the model; scatter and temporal trends in the results; and the relative

influence of various factors in determining important outcomes such as crop yield.
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Figure 2.8 shows a small subset of the PAW1 model output: precipitation, runoff,

percolation, and erosion for each year of the simulation, and the amounts of N and P

lost via those pathways.

Runoff loosely tracks rainfall over the course of the simulation, with an overall

rise in both quantities from 1982 until roughly 2011 followed by an abrupt drop.

Percolation, on the other hand, is relatively stable, suggesting that a significant frac-

tion of the “extra” water entering the system runs off rather than infiltrating. Erosion

gradually increases in a similar way to runoff, albeit with large interannual variations.

N and P can exit the system dissolved in the water that runs off or percolates, and

attached to sediment particles. The quantity of P lost via these pathways is generally

smaller than that of N, and most P tends to be lost with sediment. P losses with

runoff and percolate are a few times smaller than the sediment losses, and generally

quite similar to each other. Sediment is also the major (non-gaseous) loss pathway

for N, with runoff and leaching being both generally smaller and more variable. Of

the two dissolved N loss pathways, runoff usually dominates in any given year.

To understand the silage yield, it is helpful to know the basics of the crop growth

component in APEX. Plants grow by accumulating heat units. The heat unit index

(HUI) shown in Figure 2.10 is defined in the following way:

HU = 0.5× (TMX + TMN)− TBSC; HU > 0.0 (2.1)

HUI = HU/PHU (2.2)

where TMX and TMN are the daily maximum and minimum temperatures, TBSC is

the base temperature for crop growth, and PHU is the number of heat units required
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Figure 2.8: Annual precipitation, runoff, percolation, erosion, and N and P losses in the
PAW1 baseline simulation.

for the crop to reach physiological maturity (Table 2.7; Williams et al., 2012).

Heat unit uptake translates into leaf area increase and dry matter production at

a rate governed by various crop parameters (§2.2.4). This growth is then modulated

by various sources of stress. Although APEX performs a number of complex daily

calculations relating to soil concentrations and plant uptake of water and nutrients,

these variables are translated into a set of relatively simple stress factors. For example,

N and P stresses are a function of the actual N and P concentrations in plant tissue

compared to their optimal concentrations. The stress factor with the lowest value

becomes the “regulating stress” for that day, and the potential daily biomass increase

is multiplied by that factor to give the actual daily increase.
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The year-to-year corn silage yield is quite stable in the PAW1 baseline model

(Figure 2.9). There is no strong relationship between yield and precipitation, and

Figure 2.9 shows that in most simulation years there are relatively few days when

water (drought) stress is the yield-limiting factor. There are no days of aeration

(excess water) stress in the model, either9.

Temperature stress is present every year to some degree, but the most common

source of crop stress is insufficient N uptake. Most years have almost 50 days on

which N stress is the limiting factor, which is about half the growing season for the

95 – 105 GDD corn varieties grown by the farmer at PAW1. It may be useful to

understand the cause of the N stress because a farmer may then be able to take

actions that limit it – or the model can be adjusted to reduce the stress, if it is

judged to be unrealistic. In 1996, a year of especially high rainfall, high N stress and

lower-than-usual crop yield appear to be caused by high levels of N loss in runoff and

sediment. More generally, though, the N stress may be related to the large amounts

of NH3 volatilization predicted by the baseline model.

In the PAW1 baseline model, N is added when manure is spread in the spring and

in starter fertilizer applied when the corn is planted. N application rates at these

times are roughly 120 kg ha−1 (half of which is NH4-N) and 60 kg ha−1 (urea form).

Manure at PAW1 was incorporated on the same day as being broadcast, or the day

after. Immediate chisel plowing can reduce manure NH3 losses to a few per cent

of NH4N, while unincorporated manure may lose half of its NH4N (Thompson and

Meisinger, 2002). NH4N losses of ∼20% from surface-applied urea have been reported

(Jones et al., 2007), although losses at PAW1 are probably lower as in 3/4 years the
9As well as the stresses shown in Figure 2.9 APEX also calculates P, K, aeration (waterlogging)

and salt stress. Days of stress for those factors are zero throughout the simulation period.
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Figure 2.9: Annual precipitation, corn silage yield, crop stresses, and N loss mechanisms in
the PAW1 baseline simulation. Stress days indicate the number of days each year in which
a particular source of stress is the stress factor that limits crop growth (see text). Vertical
dashed lines denote the years (1996 and 2001) that are examined in more detail in Figure
2.10.

starter fertilizer was applied through the corn planter.

If 50% of the manure NH4-N were lost as NH3, and 20% of the starter fertilizer,

that would imply total annual volatilization of ∼42 kg ha−1. Even this number, which

assumes management that encourages volatilization, is less than half the value pre-

dicted by APEX. This suggests that it will be necessary to adjust model parameters

governing NH3 volatilization during the calibration process.

The relationship between stress and crop growth (biomass production) is further

illustrated in Figure 2.10. In 1996, a year of relatively low yield in Figure 2.10, severe
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Figure 2.10: Daily heat unit index (HUI), water (drought) stress factor, N stress factor,
and standing live crop biomass (STL) for the growing seasons in the PAW1 simulation
years indicated in Figure 2.9. Low stress factors imply high crop stress. 1996: N stress
begins early in the growing season, leading to depressed crop growth. 2001: N stress is less
severe this year but this is partially balanced by drought stress in late summer. The heat
unit index at harvest both years is lower than the expected value of 1.0 – 1.2.

N stress sets in in July during the period when the crop should be rapidly growing

and taking up N (e.g. Alley et al., 2009). In 2001 when the yield is a little higher,

N stress begins later and is less significant than in 1996. However, drought stress in

late summer affects crop growth in this model year. Temperature stress is the only

other stress that is ever significant in this model, but it generally only becomes the

regulating factor for short intervals towards the start of the season. (For clarity, T

stress is not shown in Figure 2.10).

The accumulation of heat units that drives the crop growth process depends on

daily temperatures: the higher are TMAX and TMIN, the more HUs will build up

(although biomass production may be reduced by T stress if temperatures climb too

high). If the crop is harvested at maturity and the PHU parameter is set appropriately

for the climate of the simulation, HUI should approach 1.0 in a typical year (Eq. 2.2).

In fact, the User’s Manual states that the heat unit index at harvest time “should
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normally range from 1. to 1.2”. However, the HUI values shown in Figure 2.10 do not

reach 1.0. PHU in the PAW1 baseline model has been set to match the corn varieties

reported for the PAW1 watershed. Nonetheless, the low HUI values calculated by

APEX may suggest that PHU is another parameter that could be adjusted during

calibration.

2.3.2 WIL2

WIL2 is the “control” watershed at theWilliston study site. In many ways it resembles

the PAW1 watershed. For instance, both farms grow silage corn fertilized with dairy

manure, and the soil properties at both sites are quite similar (e.g. silt loam texture,

3–4% organic matter content, mildly alkaline pH; Braun et al., 2016). However, there

are some potentially significant differences. The WIL site is rather flat, with a slope

of just 0.6% compared to 4.5% at PAW1, decreasing the likelihood of erosion at this

location. The two watersheds also differ somewhat in the methods used to grow the

corn during the study.

On the WIL2 watershed, manure was applied in the spring, but usually at a higher

application rate than on PAW1 (§2.2.4). The manure was incorporated on the same

day as it was broadcast or within the next few days, and a second round of tillage

was usually performed shortly before the corn was planted around two weeks later.

Unlike Pawlet, no starter fertilizer was used on the Williston watershed.

Following corn harvest in late September, a cover crop was seeded on both wa-

tersheds. As with Pawlet, the cover crop generally failed to establish during the

APME project. Unlike Pawlet, though, manure was surface applied at Williston at

some point between late October and early December, this time without being in-
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Figure 2.11: Summary of water and carbon inputs and outputs over the course of the WIL2
baseline simulation. For ease of comparison, these plots are on the same scale as Figure
2.6.

corporated. Again, application rates were relatively high. The differences in manure

application rates and incorporation, in conjunction with the different weather experi-

enced at both sites, may be reflected in the nutrient losses predicted by the baseline

models.

Results from the WIL2 baseline model, aggregated over the whole 37-year simu-

lation period, are shown in Figure 2.11. They differ from the PAW1 baseline model

in several respects. First, WIL2 received much less precipitation than PAW1 over the

duration of the simulation. Also, although evapotranspiration is still the main loss

pathway, percolation is more important than runoff at WIL2. This is true both in

aggregate (Figure 2.11) and on an annual basis (Figure 2.13); there are only a handful
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Figure 2.12: Summary of P and N inputs and outputs over the course of the WIL2 baseline
simulation. For ease of comparison, these plots are on the same scale as Figure 2.7.

of years in which runoff exceeds percolation at this site, notably the high-precipitation

years of 2011 and 2013.

Organic fertilizer accounts for a much larger fraction of C inputs at WIL2 than at

PAW1, and carbon stocks build up over the course of the simulation instead of being

depleted. P and N also build up to a larger extent than at PAW1 (Figure 2.12). All

of these phenomena are presumably due to the larger amount of manure used on the

WIL2 watershed compared to PAW1.

The distribution of N and P between loss pathways also differs between the two

corn simulations (Figure 2.12). While P losses in sediment dominated at PAW1, the

relative importance of P dissolved in percolate and runoff increases at WIL2. Total P
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Figure 2.13: Annual precipitation, runoff, percolation, erosion, and N and P losses in the
WIL2 baseline simulation.

removal in crop yield is also higher at WIL2, likely reflecting higher yields (see below).

Similar trends are seen for N losses, with dissolved N becoming more important at

WIL2 (although volatilization losses at both sites are high). The small amounts of

sediment-bound N and P loss (and the flat site) suggest that erosion is low at this

farm, and Fig. 2.13 confirms that this is the case.

Looking at the data on an annual basis shows that the relative importance of N

loss pathways at WIL2 is highly variable. In 2011, for example, N losses on the order

of 40 kg ha−1 are dominated by runoff N. In 2015, on the other hand, losses of over

60 kg ha−1 are almost entirely due to leaching. The dominant P losses at WIL2 also

fluctuate between runoff and leaching, and overall P losses increase in the second half
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Figure 2.14: Annual precipitation, corn silage yield, crop stresses, and N loss mechanisms
in the WIL2 baseline simulation. Stress days indicate the number of days each year in which
a particular source of stress is the stress factor that limits crop growth. Vertical dashed lines
denote the years (2013 and 2017) that are examined in more detail in Figure 2.10.

of the simulation. This may be partly due to the buildup of soluble P in the soil as

the simulation progresses (Figure 2.5).

The predominant crop stress at PAW1 was N stress, and N stress is also signif-

icant at WIL2. This may well reflect the fact that NH3 volatilization losses are of

a similar magnitude on both watersheds (Figure 2.14). The number of days where

drought stress regulates growth is generally fairly low, although it can occasionally

be comparable to N stress.

In contrast to PAW1, temperature stress is often a major factor at WIL2. T
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Figure 2.15: Daily heat unit index (HUI), temperature stress factor, N stress factor, and
standing live crop biomass (STL) for the growing seasons in the WIL2 simulation years
indicated in Figure 2.14. For clarity, drought/water stress is omitted. Low stress factors
imply high crop stress. 2013: The crop experiences moderate temperature stress early and
late in the growing season, but N stress is low and yields are high. 2017: Severe N stress
begins in July and persists until harvest, leading to depressed yields. The heat unit index at
harvest both years is a little lower than the expected value of 1.0 – 1.2, but higher than at
Pawlet (Figure 2.10).

stress occurs when the mean daily temperature is above or below the crop’s optimal

growing temperature, and in these Vermont simulations it tends to be highest early

and late in the season when temperatures are relatively low. T stress decreases with

time at WIL2, which could be a reflection of the warming climate. However, it could

alternatively indicate that water and N stress became more severe towards the end

of the simulation, leading to fewer days when T stress was the regulating factor.

Corn yields at WIL2 are substantially higher than at PAW1, although also more

variable. The higher yields are perhaps surprising given the large number of days on

which stress is experienced at WIL2. However, it is possible that if the timing of the

stress is favorable and the severity is low, this could offset the larger number of days

when stresses occur. The corn crop at WIL2 also tends to take up slightly more heat

units than the corn at PAW1 (Figure 2.15), which will also increase growth.
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2.4 Baseline Models: Comparison with

Observations

§2.3 gave an incomplete but perhaps illuminating description of the baseline simula-

tions, illustrating the relative importance of several processes and their influence on

some important model outcomes. The next step is to compare the models with real-

ity as represented by the APME measurements. This section briefly summarizes the

overall characteristics of the runoff and water quality measured at PAW1 and WIL2,

compares the model output to these data using a set of graphical model performance

indicators, and quantifies the model performance in terms of the total observed and

modeled runoff etc. at the end of the APME monitoring period. (More detailed and

quantitative model performance statistics will be introduced in Chapter 3.)

Comparing the models and data requires reconciling the different timescales upon

which each one is based. The APME data represent discrete runoff events that

could last <1 day or for multiple days, but APEX reports results on a daily basis.

To compare model and data, APEX output was summed over the number of days

included in each runoff event. No attempt was made to account for partial days (e.g, if

an event began on a Wednesday night and ran through Thursday, all of Wednesday’s

APEX output was included in the sum). However, to avoid double-counting, when

an event ended on the same day as another event began (e.g. an event ended on a

Wednesday morning and another event started on the Wednesday afternoon), both

the APME data and APEX output for the two events were merged into a single event.

Reconciling these different time scales is another limitation of attempting to model
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Figure 2.16: Upper panel: time series plot of observed and modeled runoff events on the
PAW1 watershed. Lower left: scatter plot of modeled vs observed event runoff. The dashed
line denotes the 1:1 relation. Lower right: cumulative plot of observed and modeled runoff.
Note that the bars in the time series plots are of a constant width that does not reflect the
duration of each event.

field data that were not collected for the specific aim of calibrating simulations.

2.4.1 PAW1

Runoff (Q)

Runoff and water quality monitoring at PAW1 began in late 2012 and ran through

2015, but was suspended during the spring and summer of 2014 due to a deviation

from the planned management. Therefore two distinct periods of monitoring data
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– ∼2013 and ∼2015 – are available at this site The frequency and volume of runoff

events was quite different between these two periods (Figure 2.16).

Frequent, high-volume runoff events took place at PAW1 in 2013. Braun et al.

(2016) note that across Vermont, the period between late May - early July 2013

contained “record-breaking rainfall totals, saturated soil conditions, and large runoff

events”. At PAW1, above-average rainfall was experienced in May, June, July, and

September. Apart from the large event in December 2014 (see below), the highest-

volume runoff events of the monitoring period occurred during those months.

The largest runoff event at PAW1 occurred between December 22nd – 29th, 2014.

Braun et al. (2016) describe this as “the major Christmas rain-on-snow event”. De-

spite a number of experiments with APEX, no model was ever found that could come

close to predicting the large magnitude of this event while also making reasonable

predictions for the remaining events. In addition, it is not clear that APEX’s runoff

algorithms can correctly handle rain falling on snow10. For completeness, the “Christ-

mas event” is shown in the time series plots in this Chapter. However, it is excluded

from the scatter and cumulative plots in the figures in this section, and will also be

excluded from all of the calibration plots and statistics presented in Chapter 3.

In 2015, rainfall in April and May was below average. June, however, was wetter

than usual; almost 60% above the long-term average precipitation. However, the

runoff events that occurred at PAW1 in June 2015 were small in comparison with

the events of mid-2013, perhaps because the preceding dry months allowed greater
10In the baseline models, APEX uses the NRCS curve number (CN) method to predict daily

runoff. The curve number each day is calculated based on a “soil moisture index” that takes into
account precipitation and potential evapotranspiration (§3.3.1). When rain falls on snow, that day’s
effective CN should be high. However, although APEX does increase runoff for frozen soil, its daily
CN calculation methods do not appear to take into account the presence of snow on the ground,
suggesting that the code cannot be expected to correctly predict runoff arising from rain on snow.
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infiltration into the soil. In contrast with 2013, the biggest runoff events at PAW1 in

2015 took place in November and December.

The time series plot in Figure 2.16 can reveal how well the model reproduces these

general features of the data, and can help identify trends in performance and data

points that are particularly problematic for the model. The figure shows that there

are several points in both the 2012 – 2013 and 2014 – 2015 periods where the PAW1

baseline model reproduces the observed runoff with reasonable accuracy. The general

shape of the model follows the rises and falls in the data relatively well in December

2012 – June 2013, and again in November – December 2015.

However, there are also places where the baseline model over- or under-estimates

the runoff. The model strongly underestimates several events in roughly September –

November of both 2012 and 2013, but it overestimates most of the small, infrequent

events in 2015 (until November). It is possible that the model calculates appropriate

runoff curve numbers when the soil is consistently fairly moist, but picks too high a

curve number (predicts too little infiltration) when the soil dries out.

The scatter plot in Figure 2.16 shows that the observed and modeled runoff are

correlated, but it also shows that the model tends to underestimate more frequently

than it overestimates. The general tendency for the model to predict too little runoff is

emphasized by the cumulative graph, which makes it obvious that the model predicts

too little runoff in total.

Erosion (Y)

Runoff is one of the factors that determines water erosion, and the plot of erosion

vs time (Figure 2.17) demonstrates that, to zero order, the observed sediment loss
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Figure 2.17: As for figure 2.16 but for erosion (PAW1 watershed). The baseline model uses
the MUSS equation to calculate sediment loss.

at PAW1 changes between 2013 and 2015 in a manner that is broadly similar to

runoff: the largest and most frequent erosion events occurred in 2013, while very little

erosion occurred in 201511. The relative magnitude of the erosion events bears some

resemblance to that of the runoff events, but the correspondence is far from exact.

For example, while one of the largest runoff events of 2013 occurred in September of

that year, relatively little sediment was lost at that time.
11There are fewer data points in Figure 2.17 than in Figure 2.16 because not all runoff samples

were sent for laboratory water quality analysis. Also, as explained at the beginning of §2.4, data from
some adjacent runoff events was combined into a single event to avoid “double counting” problems.
In a few cases, water quality data were only obtained for one of the combined events. These points
may appear to have large runoff volumes accompanied by small sediment and nutrient masses. This
does not affect the comparison of model vs data for a single variable, but it should be borne in mind
when using these figures to compare runoff with sediment and other water quality variables.
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Figure 2.18: Relation between sediment and runoff at PAW1, in both the field measurements
and the baseline APEX model.

Figure 2.18 gives a closer look at the connection between runoff and erosion. In

the field, most runoff events generated little sediment, and the largest quantities of

sediment did not necessarily result from the largest runoff events. In fact, there was

no clear relation between runoff and sediment at the PAW1 site. In the APEX model,

however, runoff and erosion are quite strongly related and the model generally expects

a higher ratio of sediment to runoff than was actually observed.

As with runoff, the baseline model makes better predictions for erosion in 2012 –

2013 than in 2014 – 2015. The model both over- and under-estimates in 2013, but

the cumulative plot shows that the total sediment loss at the end of 2013 matches

the observed value very well. In 2014 – 2015, where relatively weak runoff events
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Figure 2.19: As for figure 2.16 but for P dissolved in runoff (PAW1 watershed).

generated little sediment loss, the baseline model systematically overestimates. At

the end of the monitoring period, APEX has predicted 2350 kg/ha of sediment loss

whereas only 1600 kg/ha actually occurred, an excess of almost 50%.

Phosphorus losses (QP, YP)

The pattern of runoff P loss (QP) observed in the field (Figure 2.19) is rather different

from the pattern of runoff itself. Even in 2013, most QP events are relatively small.

The exception is a single event in early July, in which several times as much QP

was lost as in even the next largest event. This event did not coincide with any

reported farm activities – it occurred roughly two months after manure was spread
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Figure 2.20: Model and observed relationships between nutrient losses and runoff (top) and
sediment (bottom), on the PAW1 watershed.

and incorporated (May 2-3) and corn planted and fertilized (May 8), and during the

prolonged period of above-average rainfall at Pawlet that year.

Figure 2.20 confirms the rather weak relation between QP and Q in the field data.

The model relation between QP and Q is perhaps somewhat stronger, but the model

expects a higher ratio of runoff P to runoff than was observed. This, together with the

modest overestimate of Q, leads to the total QP loss over the monitoring period being

overestimated by about 90%. Perhaps encouragingly, the model is able to reproduce

the major July P loss event. However, calibrating the model to better match the total

QP loss may change that.

In contrast to QP and Q, the measured P losses with sediment (YP) closely
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Figure 2.21: As for figure 2.16 but for sediment-bound P (PAW1 watershed).

follow the pattern of sediment loss (Y) itself (Figure 2.20). The baseline model

captures this relation very well. In total, though, the model predicts about 150%

more YP loss than was observed during the APME project (Figure 2.21). While this

is undoubtedly related to the model’s overprediction of sediment losses, the 150%

excess of YP exceeds the ≈50% sediment excess.

In summary, the baseline model for PAW1 overestimates both QP and YP by a

large amount. However, it does correctly predict that more P is lost in sediment than

in runoff at this watershed.
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Figure 2.22: As for figure 2.16 but for N dissolved in runoff (PAW1 watershed).

Nitrogen losses (YN, QN)

Runoff N (QN) losses at PAW1 were about 15 times higher than QP losses, and the

ratio of QN to QP differed greatly between events. For example, runoff events in

late June and early July 2013 were accompanied by high and low rates of QN loss,

respectively, but loss of QP was low in the June event and very high in the July event.

Also, as Figure 2.20 shows, there is considerable scatter in the relationship between

QN and Q.

The baseline model fails to predict QN losses of the observed magnitude for all

but the smallest events. The total N loss over the monitoring period was almost 9 kg

ha−1, whereas the model calculates a loss of only 0.6 kg ha−1. The reason for this is
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Figure 2.23: As for figure 2.16 but for sediment-bound N (PAW1 watershed).

not clear to this author at this point. However, it may be that the model is directing

too much N into volatilization and other loss pathways, leaving little available to be

lost via runoff.

Like YP, sediment-bound N (YN) losses at PAW1 closely followed the pattern of

sediment loss (Figure 2.20). And as with runoff N and P, sediment N losses exceeded

P losses. The APEX predictions for YN resemble those for YP, just generally scaled

up in magnitude. That is, the model predictions for N loss in sediment are clearly

related to the predictions for sediment loss itself. As with YP, APEX overestimates

the total YN loss during the monitoring period, although by only 80% compared with

the 100% overestimate for YP.
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Figure 2.24: Upper panel: time series plot of model corn silage yield, statewide historical
average yield, and the yields reported by the farmer for the PAW1 watershed during the
APME project. Lower left: Model yield vs statewide historical and farmer-reported yield.
Lower right: Cumulative model and statewide historical yields. The scatter and cumulative
plots contain only data from 1997, conservatively allowing for a 15-year model run-up period.

Yield

Figure 2.24 shows the statewide average yield records obtained from the National

Agricultural Statistics Service12, and the yields estimated by the farmer at PAW1

during the APME project. The farmer-reported yields varied from 7 – 22 tonnes/ha

(dry matter), and experimentation with APEX did not result in any models that

produced year-to-year variation of this magnitude. This may be due to factors not

taken into account in the baseline APEX model, such as pest damage (although no
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insect, disease, etc. problems are mentioned in the APME report). For the purpose

of evaluating and calibrating the models, then, the reference yield value will be the

long-term Vermont historical mean yield, which is intermediate between the low and

high values reported at the study sites. Throughout the baseline simulation, the

model silage yield is roughly half of the historical mean yield.

2.4.2 WIL2

Runoff (Q)

The WIL2 watershed experienced fewer runoff events than PAW1, even though the

monitoring period at the Williston farm was longer. Apart from an event in May

2013 that produced ∼35 mm at both sites, runoff volumes at WIL2 also tended to

be smaller than at PAW1. In common with PAW1, runoff occurred quite frequently

during the unusually wet conditions in May and June of 2013. Runoff was detected

with quite high frequency (but fairly low magnitude) over the winter of 2015 – 2016

as well. Other than this, events at WIL2 were sporadic and/or small.

Unlike at PAW1, where the baseline model fitted at least the 2013 data reasonably

well, the WIL2 baseline model is only able to correctly reproduce a few of the very

small runoff events. There is perhaps a tendency for the model to over-estimate events

in the first ∼half of the year while under-estimating events later in the year, but on

the whole it is about as likely to predict too much runoff as too little. The total

quantity of model runoff exceeds the observed value by a factor of three.
12www.nass.usda.gov/. County-level corn silage production records are not available for Vermont.
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Figure 2.25: Upper panel: time series plot of observed and modeled runoff events on the
WIL2 watershed. Lower left: scatter plot of modeled vs observed event runoff. The dashed
line indicates the 1:1 relation. Lower right: cumulative plot of observed and modeled runoff.

Erosion (Y)

The measured sediment losses at WIL2 followed the pattern of runoff quite closely

(Figure 2.26). The relation between runoff and sediment in the APEX model is also

fairly clear. In contrast to PAW1, the baseline WIL2 model systematically underes-

timates sediment losses relative to runoff. However, because the model overestimates

runoff by such a large factor, the total model sediment loss is also too high (Figure

2.27).

Compared to its predictions for runoff, the WIL2 baseline model results for sedi-
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Figure 2.26: Relation between sediment and runoff at WIL2, in both the field measurements
and the baseline APEX model.

ment arguably bear more resemblance to the data, particularly in 2013. TSS measure-

ments after 2013 are sparse, however, so the performance of the WIL2 erosion model

is difficult to evaluate during that period. In total, the baseline model overestimates

sediment losses by 26%.

Phosphorus losses (QP, YP)

Contrary to PAW1, dissolved P losses measured at WIL2 roughly follow the pattern of

the runoff itself (Figure 2.28). The model runoff P losses also track the model runoff,

which was poorly modeled, meaning that the model does a poor job of predicting QP

losses (Figure 2.29). At the end of the monitoring period APEX estimates total QP
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Figure 2.27: As for figure 2.25 but for erosion (WIL2 watershed). The baseline model uses
the MUSS equation to calculate sediment loss.

losses of 4.0 kg ha−1, compared to the observed value of 0.73 kg ha−1.

The observed sediment P losses are quite closely related to the observed TSS

measurements, and the same is true for the modeled YP (Figure 2.28). However, the

model relation appears steeper than the observed one. The modeled sediment losses

are too high, and the modeled YP losses even more so (Figure 2.30). At the end of

the APME project, APEX has overestimated the total YP loss by 230%.

Nitrogen losses (QN, YN)

As was the case at PAW1, the scatter in the observed relation between QN and Q is

large, while the model relation is much cleaner and with a very different slope (Figure
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Figure 2.28: Model and observed relationships between nutrient losses and runoff (top) and
sediment (bottom), on the WIL2 watershed.

2.28). Despite this, the model does a remarkably good job of estimating the total

QN loss during the project, coming within a few per cent of the actual value (Figure

2.31). This is in stark contrast to the gross underestimate of QN in the PAW1 model.

For sediment-bound N, the observed losses at WIL2 quite closely mimic the ob-

served pattern of sediment loss. The WIL2 baseline model overestimates the mag-

nitude of almost all of these events, resulting in a total model YN loss of 15.25 kg

ha−1, compared to the observed value of 1.82 kg ha−1. The PAW1 baseline model

also overestimated YN, but by a much smaller amount.
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Figure 2.29: As for figure 2.27 but for P dissolved in runoff (WIL2 watershed).

Yield

The model silage yield at WIL2 compares more favorably with the state average than

the PAW1 model did. It is still slightly underestimated, but this time the mean

annual yield falls short by just under 20%. The model is close to the farmer-reported

yields in 2013 – 2015, but it grossly overestimates the low yield in 2012. As for PAW1,

the farmer-reported yields are more variable than the model yields.

106



Figure 2.30: As for figure 2.27 but for sediment-bound P (WIL2 watershed).

2.5 Discussion

This Chapter has examined in some detail the process of setting up APEX models

for two small watersheds using data collected for a project that aimed to monitor

the effectiveness of field-based best management practices on Vermont dairy farms.

The APME project provides a wealth of farm operations records and weather and

site information that are not commonly available for working farms, along with an

extensive set of measurements of runoff, erosion, and N and P loss at the field edge.

This data set has enabled the creation of APEX models that quite closely mimic the

conditions and operations experienced on the study watersheds, and adds an extra
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Figure 2.31: As for figure 2.27 but for N dissolved in runoff (WIL2 watershed).

layer of value to the APME project itself.

At the same time, the APME data were not collected for the specific purpose

of modeling. This, combined with challenging site conditions and the errors and

uncertainties that are inevitably present in field measurements, posed some challenges

for the modeling effort. These include:

• Identifying and replacing unreliable meteorological data (such as solid precipi-

tation measurements)

• Identifying APEX input and output variables corresponding to agronomic, soil

test, and edge-of-field data, or making reasonable conversions
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Figure 2.32: As for figure 2.27 but for sediment-bound N (WIL2 watershed).

• Reconciling different timescales: daily model output vs arbitrary runoff event

durations

• Evaluating model performance based on field data with poorly-understood er-

rors

Others may wish to bear these things in mind when planning to use similar studies

for modeling work, or while designing field experiments that will be used to parame-

terize and calibrate models.

The two watersheds that were modeled are similar in a number of ways, including

their soil properties and the fact that they grow silage corn fertilized with dairy

manure. However, they also differ in some respects, perhaps most importantly in the

109



Figure 2.33: Upper panel: time series plot of model corn silage yield, statewide historical
average yield, and the yields reported by the farmer for the WIL2 watershed during the
APME project. Lower left: Model yield vs statewide historical and farmer-reported yield.
Lower right: Cumulative model and statewide historical yields.

dates, rates, and methods of applying manure and starter fertilizer, and the fact that

one site is considerably flatter than the other. In terms of the runoff, sediment loss,

and N and P losses measured in the field, the sites also showed some similarities and

differences.

The largest and most frequent runoff events at both sites occurred in 2013, which

experienced several months of above-average rainfall. Overall, though, runoff events

were much more numerous at the PAW1 site. The pattern of nutrient loss in runoff

was only weakly related to that of runoff itself, except for dissolved P at Pawlet. In the
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case of dissolved N, this could perhaps be due to the complex set of transformations

undergone by N in the soil.

Sediment losses at both sites did not bear a strong resemblance to runoff. Fairly

large runoff events often generated little sediment, whereas large erosion events could

occur when runoff was moderate. However, the pattern of sediment-bound N and P

losses quite closely resembled that of the erosion events themselves.

The performance of the baseline models was similarly mixed. Figure 2.34 summa-

rizes the observed runoff, sediment, etc. summed over the duration of the monitoring

project. At both sites, the models overestimate erosion and underestimate crop yield.

However, they predict too little runoff at PAW1 and too much at WIL2.

Both models overestimate P lost in runoff and sediment, but at PAW1 the error

is larger for sediment-bound P, while runoff P has the worse prediction at WIL2.

Sediment-bound N is overestimated at both sites, but by a much larger factor at

WIL2. On the other hand, runoff N is grossly underestimated at PAW1 but correctly

predicted at WIL2.

Within a single site, the performance of the models varies over time. At PAW1,

the predictions are much better for the relatively wet 2012 – 2013 period than for

2014 – 2015. Performance at WIL2 is more mixed, but APEX perhaps tends to do

better in the first half of each year than the second. Overall the baseline models do

not perform well, and they are not consistent in the magnitude, direction, and timing

of their errors.

§2.3.1 and §2.3.2 identified some aspects of the models that may present oppor-

tunities to improve model performance through calibration. In particular, the crops

absorbed fewer heat units than expected, were subject to high levels of N stress, and
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Figure 2.34: Total observed and modeled runoff, erosion, etc. for the duration of the APME
project (Q=runoff, Y/10=sediment divided by 10, QP/N= runoff P/N, YP/N=sediment
P/N). Left: PAW1. Right: WIL2.

the model predicted much higher levels of NH3 volatilization than expected for these

watersheds. Adjusting parameters related to heat unit uptake and volatilization may

also improve crop yields. In addition numerous other options – e.g. runoff and erosion

calculation methods – and parameters can be adjusted to improve the model outputs.

Chapter 3 takes a closer look at that process and the results that can be achieved.
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3 APEX Model Calibration

The “baseline” APEX models presented in Chapter 2 were based on real climate,

management and agronomic records for the sites that were being modeled. However,

most other model parameters were left at their default values. Those defaults may

not be appropriate for the specific circumstances of dairy farms in Vermont, but it is

not clear a priori what the optimal values might be. It should therefore be possible

to improve the baseline models through a process of calibration.

Calibration refers to the action of refining the parameters of a model to improve

its ability to reproduce a set of observations. In the simplest version, the value of

a parameter is adjusted, the model re-run, and the new output compared against

data such as the APME measurements described in Chapter 2. This is repeated

for different values of the same parameter, and for other parameters, until the model

output is optimized or until it is judged that a satisfactory outcome has been reached.

Sensitivity analysis is often carried out before calibration takes place. The number

of APEX parameters is large, and it is not practical to search for the optimal value of

every one of them even with automatic calibration tools. Various methods, including

dedicated APEX support software (§3.1), are available to quantify whether a given

parameter has a significant effect on the output variables that are of interest (e.g.
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Wang et al., 2006). These methods allow the user to identify the important variables

and select only those ones to take part in the calibration process.

This chapter describes the sensitivity analysis and calibration methods used to

improve the PAW1 and WIL2 baseline models. Calibration requires a means of quan-

tifying how the changes are affecting the model at each iteration, and how well the

final version performs. Model performance measures are therefore also introduced,

and used to evaluate the baseline, intermediate, and final, calibrated models.

3.1 Overview of the Calibration Pro-

cess

Calibration can be done manually, automatically, or using a combination of the two

approaches (e.g. using manual calibration to find an approximate solution followed

by an automatic search to refine it). Manual calibration is a painstaking process in

which parameters are adjusted by hand, one at a time, and the results used to decide

upon the next step in the process. The time required for manual calibration means

that many combinations of parameters will not be explored. Interactions between

parameters can have significant effects on the model output (Wang et al., 2014), so a

limited manual calibration could lead to useful models being overlooked.

Automatic calibration programs quickly search through many combinations of

parameters, seeking to maximize or minimize a specified objective function. Auto-

matic methods are capable of producing models with better performance statistics

than manual calibration (Wang et al., 2014), and an extensive automatic search may

identify useful solutions where coarser manual methods are unable to find acceptable
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models. However, Wang et al. (2014) suggest that this may be at the expense of

misrepresenting parameters and processes that are not constrained by data.

The APEX-CUTE1 program can perform automated calibration of APEX models

(Wang et al., 2014; Wang and Jeong, 2016). However, to calculate model performance

statistics, the program needs to compare daily, monthly, or annual APEX output with

field measurements on the same timescales. Aside from crop yield, the APME data

do not conform to any of those timescales; the runoff etc. measurements reflect events

that may have a duration of <1 – several days (§2.4.1). This author’s experiments

with using APEX-CUTE to calibrate the PAW1 model were not successful, and the

effort required to update the software to handle variable-timescale field data was

judged to be beyond the scope of this thesis. A manual calibration approach was

therefore adopted for this work.

During manual calibration, model processes are calibrated sequentially. Wang

et al. (2012) recommend that runoff be calibrated first, together with or followed

by crop yield, then sediment. Nutrient losses are calibrated only when satisfactory

results have been achieved for the underlying runoff and erosion processes that drive

them. This sequence of runoff – yield – sediment – nutrients is used for the APEX

models in this work.

Sensitivity analysis for APEX can also be carried out with APEX-CUTE (Wang

et al., 2014; Wang and Jeong, 2016), which uses the enhanced Morris method (Cam-

polongo et al., 2007; Morris, 1991). The user specifies which parameters are to be

included in the analysis, the range of values to be sampled for each one, and the

number of points to be sampled within that range. APEX-CUTE runs APEX using
1https://epicapex.tamu.edu/apex-cute-4-3-download/
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a starting set of values for each parameter, changes the value of one parameter, runs

APEX again, and calculates the difference between the model outputs of interest

from one run to the next. Then, APEX-CUTE selects another parameter, changes its

value, runs the model again, and so on. The sensitivity measure for each parameter

is the mean of the differences in model outputs for each run in which that variable is

changed (Wang et al., 2006).

APEX-CUTE allows the user to select any of 100 PARMs (§2.2.6), many crop

growth parameters (§2.2.4), and a handful of site, subarea, and soil parameters to

take part in the sensitivity analysis. However, there are many parameters that are

not included. They encompass, for example, parameters that specify the methods to

be used by the model, such as the equation to be used for erosion calculations, or the

method of deriving the curve number used to estimate runoff each day. The calibration

was therefore carried out using a combination of user judgment to select potentially

relevant parameters, and sensitivity analysis with APEX-CUTE on a subset of them.

In most hydrological modeling studies, the calibrated model is run on a set of

“validation” or “test” data that were excluded from the calibration or “training” data

set. This verifies that the model can produce an acceptable description of the data

in general, and that it has not been so finely tuned that it reproduces the calibration

data at the expense of its ability to generalize to other data sets. There are various

ways of separating data into training and test sets (e.g. Daggupati et al., 2015; James

et al., 2000), but many studies simply split the data set into a calibration period and

a validation period.

In this thesis, no validation data set is used. This is partly because the number

of data points is quite limited, particularly for water quality variables and especially
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for the WIL2 watershed. Also, for PAW1, no model was ever found that simultane-

ously fit both the high-and low-runoff years very well, despite much experimentation.

Modeling these periods together gives a chance of finding a model that performs

adequately at both times.

3.2 Model Performance Indicators

To assess whether parameter changes are improving the model, and to judge the

quality of the final version, it is necessary to quantitatively evaluate the model’s

performance. Moriasi et al. (2007, 2015, hereafter M07, M15) provide guidance in

this area. Those papers reviewed the hydrological modeling literature to identify and

evaluate the ways in which researchers have presented and assessed their modeling

results. They describe various graphical performance indicators (used in Ch. 2),

identify the statistical performance indicators used in the literature, and discuss their

pros and cons. Finally, the authors recommend a set of six statistical performance

measures (PMs) that should be presented for any hydrological modeling study. This

thesis largely follows their advice.

The recommendations of M07 and M15 are based on (a) the effectiveness of the

PMs in indicating model performance, and (b) whether they are frequently used in the

literature, thereby enabling useful inter-model comparisons. The PMs are discussed in

detail in M07 and M15 and references therein. Definitions of, and brief comments on

these statistics are presented below (O and P denote observed and predicted values,

respectively).
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1. Coefficient of determination (R2)

R2 =


n∑

i=1

(
Oi − Ō

) (
Pi − P̄

)
√

n∑
i=1

(
Oi − Ō

)2
√

n∑
i=1

(
Pi − P̄

)2


2

(3.1)

R2 ranges from 0 to 1, with an optimal value of 1. R2 is sensitive to outliers but

additive and proportional differences between model and observed data do not reduce

its value. The intercept and slope of the regression line should ideally also be reported

and should be near 0 and 1 respectively for a good model fit.

2. Nash-Sutcliffe efficiency (NSE)

NSE = 1−

n∑
i=1

(Oi − Pi)2

n∑
i=1

(
Oi − Ō

)2 (3.2)

NSE ranges from -∞ to 1, with an optimal value of 1. NSE <0 implies that the mean

of the observed values is a better predictor than the model output for that point.

NSE is sensitive to outliers and does not indicate whether a model is biased.

3. Index of agreement (d)

d = 1−

n∑
i=1

(Oi − Pi)2

n∑
i=1

(
|Pi − Ō|+ |Oi − Ō|

)2 (3.3)

d ranges from 0 to 1, with an optimal value of 1. Like R2, d is sensitive to extreme
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values. Unlike R2, though, d is also sensitive to additive and proportional differences

between observations and model. Various authors have reported finding high d values

for poor model fits (Moriasi et al., 2015).

4. Root mean square error (RMSE)

RMSE =
√√√√ 1

n

n∑
i=1

(Oi − Pi)2 (3.4)

RMSE ranges from 0 to ∞, with an optimal value of 0. Unlike the dimensionless

statistics discussed so far, RMSE is in the same units as the observed/modeled quan-

tity being evaluated, which can be helpful for interpretation.

5. Ratio of RMSE to the standard deviation of the observations (RSR)

RSR = RMSE

STDEVobs

=

√
n∑

i=1
(Oi − Pi)2

√
n∑

i=1

(
Oi − P̄

)2
(3.5)

RSR ranges from 0 to ∞, with an optimal value of 0.

6. Percent Bias (PBIAS)

PBIAS =

n∑
i=1

(Oi − Pi)
n∑

i=1
(Oi)

× 100 (3.6)

PBIAS ranges from −∞ to ∞, with an optimal value of 0. PBIAS measures the

average tendency of a model to over- or under-estimate the observed values. PBIAS

can be close to zero for a model that both under- and over-predicts, and it says little
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about how well the model reproduces trends in the observations.

In addition to the PMs recommended by Moriasi et al. (2007, 2015), this thesis also

reports the p value derived from the two-sample Kolmogorov-Smirnoff test. A p-value

near zero indicates that the model and data are drawn from different distributions;

that is, that the model is a poor representation of the data.

Each of these PMs is capable of identifying some aspects of model performance but

is blind to others, and many of them can be disproportionately affected by extreme

values. It is therefore usually advisable to use more than one PM to evaluate the

performance of a model. In the following sections, NSE, and PBIAS are used to

illustrate the progress of the calibration. PBIAS relates to how well the model predicts

the mean and sum of the observed values, while NSE gives some indication of how well

the model fits the pattern of the observed points. In the interest of enabling future

comparisons between these models and others in the literature, all of the M07 and

M15 recommended statistics are presented for the initial baseline and final calibrated

models2.

Moriasi et al. (2007, 2015) also present numerical criteria by which a hydrological

model can be judged to be “very good”, “good”, “satisfactory”, or “unacceptable”. For

example, M07 suggest that in general, a model can be considered “satisfactory” if it

has 0.60 < RSR ≤ 0.7, 0.50 < NSE ≤ 0.60, ±30% < PBIAS ≤ ±55% for sediment and

±40% < PBIAS ≤ ±70% for nutrients. An important point that is mentioned only

in passing is that their criteria define how a model performs relative to other models.

The standards are based on how the model’s PMs compare to their compilations

of published PMs for that model, and a model that is judged to be “very good” or
2Calculated using the “spotpy” package (Houska et al., 2015).
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“unacceptable” by those standards may or may not be useful for the intended purpose

of the modeling3. The M07 and M15 criteria, along with some guidelines given by

Wang et al. (2012), will be used to give context to the performance of the APEX

models in this thesis, but will not be used to establish the utility of the models.

3.3 Model Calibration: PAW1

This section records the steps taken to calibrate the PAW1 model for runoff, silage

yield, erosion, and nutrient losses. The progress of the calibration is shown in a set

of plots that record performance statistics at each step (e.g. Figure 3.2).

3.3.1 Runoff

The steps involved in the runoff calibration of the PAW1 model are illustrated in

Figure 3.1. The next sections follow the sequence depicted in the figure, explaining

the reasoning behind the choices of processes and parameters tested, and the results

obtained at each step. Figure 3.2 shows how the model NSE and PBIAS change as

the calibration progresses.

Runoff calculation method

Two runoff calculation methods are available in APEX: the SCS curve number (CN)

method (USDA-SCS, 1972) used for the baseline models (INFL=0 in the Control file),
3M15 also acknowledge several other limitations: that the number of published performance

statistics for APEX is small, that model performance varies when compared with data on different
time scales, and that a bias against publishing poor model fits may mean that the published statistics
do not give an accurate picture of overall model performance.
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Baseline	Model

Runoff	method:	Green	&	
Ampt

Runoff	method:	Curve	
Number

Land	use	number	=	2 Land	use	number	=	5

Daily	CN	based	on	PET Daily	CN	based	on	SW

PARMs	42,	44 PARM	92

PET=Hargreaves PET=Priestley-Taylor

PARMs	affecting	PET	and	
CN

PARMs	affecting	PET	and	
SW

Figure 3.1: Sequence of processes/parameters tested during the calibration of the PAW1
model for runoff (see text for details). CN = curve number, PET = potential evapotranspi-
ration, SW = soil water.

and the Green & Ampt (G&A) method (INFL=1,2,3,4; Green and Ampt, 1911). With

G&A, several options are available depending on the form assumed for the rainfall

distribution within a rain event (exponential or uniform), and whether intra-storm

rainfall and peak rainfall data are available. Although 15-minute rainfall quantities

are available for the APME project watersheds, using APEX to model future climate

scenarios will require rainfall data to be simulated. Therefore only the INFL=1:

“Rainfall Exponential Distribution, Peak Rainfall Rate Simulated” option was tested.

Setting INFL=1 caused the runoff to drop almost to zero, leading to PBIAS=-99%

and NSE=-0.60. This is clearly a much poorer result than for the default INFL=0

(Figure 3.2), so the curve number method was retained for the remainder of the

calibration.
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Figure 3.2: Changes in performance statistics as the PAW1 baseline model is calibrated for
runoff. X-axis labels relate to parameter changes; see text for full details.

Land use number

With the curve number method, runoff is predicted according to:

Q = (RFV − 0.2s)2

RFV + 0.8s
; RFV > 0.2s (3.7)

Q = 0; RFV ≤ 0.2s (3.8)

where RFV is the daily rainfall and s is the potential retention after runoff begins.

The retention parameter (in mm) is derived from the curve number:
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s = 254× 100
CN − 1 (3.9)

The curve number itself is found from standard lookup tables that relate the CN

in average moisture conditions to land use (e.g. fallow, row crops, small grains), land

cover (straight row, contoured, or terraced), soil condition (good or poor infiltration)

and soil hydrologic group. The APEX parameter that encapsulates this information

and determines which CN is used is the Land Use Number, LUN, in the OPS file.

In the baseline model, LUN is set to LUN=2 (“Straight Row, Poor Infiltration”).

The model underestimates runoff in 2012–2013 (a relatively wet period), overesti-

mates in 2014 – 2015 (a relatively dry period), and results in too little total runoff.

LUN=2 is the value most conducive to runoff in a row cropping situation, so changing

LUN would most likely exacerbate the overall deficit of runoff in the model. LUN=5

(“Contoured, Good Infiltration”) was tested during the PAW1 calibration, but per-

haps surprisingly, it made no difference to the runoff statistics. LUN=2 was used for

the remaining calibration steps.

Daily CN calculation

Once APEX has established the average curve number according to the equation

above, the code recalculates a new CN every day depending on how wet or dry the

soil is that day. There are four relevant4 ways of calculating the daily curve number,

three of which relate CN directly to the soil water content and one that uses an

indirect “soil moisture index” instead. The method to be used is specified by the
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NVCN variable:

• NVCN=0: “Variable daily CN nonlinear CN/SW with depth soil water weight-

ing”. The daily curve number is related to soil water content, field capacity, and

wilting point in a nonlinear way, and is weighted by depth.

• NVCN=1: “Variable daily CN nonlinear CN/SW without depth weighting”.

• NVCN=2: “Variable daily CN linear CN/SW no depth weighting”.

• NVCN=4: “Variable daily CN SMI (soil moisture index)”. This method relates

the daily curve number to rainfall and evapotranspiration instead of directly to

soil water content, field capacity, and wilting point.

The default value, NVCN=4 was used for the baseline model. The equation

describing this option has two parameters, PARM42 and PARM44, that can be used

to tune the results:

s = so + PET × e−P ARM42×so/s1 −RFV + Q (3.10)

s < PARM44 × s1 (3.11)

where s1 is the retention parameter associated with dry conditions. Wang et al.

(2012) suggest using PARM42 as a calibration parameter, and Williams et al. (2012)

note that PARM42 and PARM44 are “convenient for calibration”. Increasing PARM42

from 1.0 to 2.5 (maximum) generally increases runoff in the PAW1 model. This nega-

tively affects the match between observed and model runoff in 2015, where the model
4NVCN=3, “Non-varying CN – CN2 used for all storms”, is intended for feedlot-type situations

and is not relevant here.

125



already predicted too much runoff, but overall the performance statistics are slightly

improved (Figure 3.2).

With PARM42=2.5, decreasing PARM44 from 1.5 to 1.2 gets the total runoff

almost exactly right and also has the highest NSE so far. Broadly speaking, the

overall effect is to increase runoff in all events. Again, this improves the model in

2012 – 2013 at the expense of 2014 – 2015.

The remaining NVCN options relate the daily curve number directly to soil water

content, so they could potentially result in a different pattern of runoff event mag-

nitudes that better matches the field data. The statistics obtained using NVCN=0,

1, and 2 are shown in Figure 3.2. PARM92 adjusts the results of the NVCN=0 cal-

culation, analogous to PARM42 for NVCN=0 (Steglich et al., 2016), so results from

changing PARM92 are also shown.

With NVCN=0 and PARM92=0.75, APEX is able to closely match the total

measured runoff. The pattern of runoff event magnitudes is indeed somewhat different

from the NVCN=4 models: the new model comes closer to reproducing events in late

2013 for which the NVCN=4 models predicted little to no runoff (Figure 3.3). This

is balanced by difficulties matching some other points, however, and the NSE of this

model is slightly lower than that of the baseline model. The NSE of the NVCN=1

model is higher, but so far the best combination of all the statistics in Figure 3.2

comes from the model with NVCN=4, PARM42=2.5, and PARM44=1.2.

The NSE and PBIAS for the best model so far are 0.48, and -1.6% respectively.

Wang et al. (2012) suggests aiming for NSE ≥0.55, and PBIAS within 20% when

using APEX to model runoff. The PAW1 model meets the suggested criterion for

PBIAS, but the NSE is slightly lower. The underlying issue is that the model tends
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Figure 3.3: The PAW1 model with NVCN=0 and PARM92=0.75. This model is better at
reproducing some of the points in late 2013, at the expense of other points (especially in
2015). This is about the largest change in the pattern of model runoff found during the
calibration process. Most parameter changes simply increased or decreased the overall level
of runoff.

to predict more runoff, relative to the field measurements, in 2014 – 2015 than in 2012

– 2013. Improving the model’s performance would require identifying parameters that

cause substantial differences in the pattern of the model runoff rather than simply

increasing or decreasing runoff overall. Such parameters may or may not exist in

APEX.

A search for parameters having the desired effects could be done in two ways.

The NVCN=0 – 2 models are formally slightly inferior to the model with NVCN=4,

PARM42=2.5, and PARM44=1.2. However, with NVCN=0 – 2, APEX relates the
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daily curve number directly to soil water. Many parameters in APEX are likely

to directly or indirectly affect soil water content, so further calibration of one of

more of the NVCN=0 – 2 models may offer more flexibility. On the other hand, the

parameter space that could be explored is very large, and higher flexibility also implies

a higher likelihood of overfitting the model. Given the limited resources available for

this project, and the possibility that no parameter combination is capable of fitting

all the PAW1 runoff measurements simultaneously, the following sections present a

cursory examination of the effect of some parameters that affect PET and the curve

number itself, on the NVCN=4, PARM42=2.5, and PARM44=1.2 model.

Potential evapotranspiration method

With NVCN=4, runoff is a function of potential evapotranspiration (PET, Eq. 3.10).

APEX contains several options for estimating PET. The Hargreaves method (IET=4)

was chosen for the baseline models because it does not require wind speed and humid-

ity data and is recommended by APEX support staff. However, the Priestly-Taylor

method (IET=3) can also be used when limited weather data are available. Using this

option turns out to preserve the overall pattern of the model runoff while decreasing

its magnitude (PBIAS=-35%). It may be possible to change the overall magnitude

using PARM42 and PARM44, but there would be no obvious benefit to doing that.

PARMs

An APEX-CUTE sensitivity analysis was carried out to identify the PARMs likely

to have the greatest effect on runoff calculated using NVCN=4. Table 3.1 lists the

PARMs that were judged to be potentially relevant and therefore included in the
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Table 3.1: APEX parameters used for runoff calibration/sensitivity analysis

Parameter Definitiona

PARM 15 Runoff CN residue adjustment factor
PARM 16 Expands CN retention parameter
PARM 20 Runoff curve number initial abstraction
PARM 22 Reduces runoff CN retention parameter for frozen soil
PARM 23b Hargreaves PET equation coefficient
PARM 25 Exponential coefficient used to account for rainfall intensity on CN
PARM 34 Hargreaves PET equation exponent
PARM 42 CN index coefficient
PARM 44 Upper limit of CN retention parameter
PARM 49 Maximum rainfall interception by plant canopy
PARM 50 Rainfall interception coefficient
a APEX User’s Guide Section 2.21
b Repeatedly caused APEX-CUTE to crash, therefore not included in the final analysis.

analysis. Although PARM42 and PARM44 were explored above, they are included

so that their influence can be compared with that obtained for other PARMs.

Figure 3.4 shows the results of the analysis. The most sensitive parameters are

PARM34 (the exponent in the Hargreaves PET equation), PARM20 (the initial ab-

straction parameter, i.e., the factor of 0.2 in Eq. 3.7), and PARM15 (which adjusts

the curve number according to how much surface crop residue is present). Perhaps

unexpectedly, the Morris index plot suggests that PARM42 and PARM44 should have

relatively little effect on runoff.

Changing PARM34 from 0.5 (min) to 0.6 (max) decreases total runoff without

having a major effect on the distribution of runoff volume across events. Changing

PARM20 from 0.2 to 0.05 (min) has a similar effect in the opposite direction (increas-

ing runoff). Increasing PARM15 from 0.0 (min) to 0.3 (max) does not change the

total runoff and does redistribute the runoff somewhat differently between events.

However, this is not on a scale that makes any significant difference to the model
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Figure 3.4: Results of APEX-CUTE sensitivity analysis for the PARMs listed in Table
3.1. The Morris method involves randomly sampling within a range of possible values for
each parameter, so two runs were performed to verify that consistent Morris indices were
obtained.

performance statistics.

Runoff calibration summary

Changing two parameters, PARM42 and PARM44, was sufficient to achieve a close

match between the model and observed total runoff at PAW1 (and a correspondingly

low PBIAS). Even the best model fell short of achieving an NSE that is considered

good in the literature, largely because of its inability to simultaneously give good

results for both the 2012 – 2013 and 2014 – 2015 monitoring periods. As well as
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PARM42 and PARM44, several other parameters could probably have been used

to achieve similar performance statistics. The main effect of them was simply to

increase or decrease the volume of runoff over all events; the pattern of event sizes

never changed enough to correct the general overestimate of runoff in 2014 – 2015

while retaining good results for 2012 – 2013.

At this point, the model with NVCN=0, PARM42=2.5 and PARM44=1.2 will be

calibrated for crop yield. None of the parameters tested during the runoff calibration

will be varied during the yield calibration stage, and the runoff statistics will be

monitored as the crop calibration progresses.

3.3.2 Crop Yield

The mean forage yield in the baseline model was 6.0 t ha−1 dry matter compared to

the statewide historical mean value of 12.6 t ha−1. At the end of the runoff calibration,

the mean yield is essentially the same (6.1 t ha−1). In §2.3.1 it was suggested that

the low yields in the baseline model are likely to be due to N stress caused by high

volatilization. Insufficient heat unit uptake may also play a role. Both of these factors

are still present in the runoff-calibrated model.

The first step in calibrating the crop yield was to run a sensitivity analysis on

parameters that could affect N availability in general and volatilization in particular.

The parameters included in the analysis are given in Table 3.2. Most of them bear

directly on the various forms taken by N in the soil, but the list also contains some pa-

rameters to do with organic matter turnover and mineralization. Because the APEX

manual cautions against changing crop parameters (such as maximum leaf area index,

plant N concentration, radiation use efficiency, etc.) without good reason (§2.2.4),
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Table 3.2: APEX parameters used for yield sensitivity analysis

Parameter Definitiona

PARM4 Water storage N leaching
PARM14 Nitrate leaching ratio
PARM27 CEC effect on nitrification and volatilization
PARM29 Biological mixing efficiency
PARM31 Maximum depth for biological mixing
PARM35 Denitrification soil water threshold
PARM36 Upper limit of daily denitrification rate
PARM69 Adjusts microbial activity in top soil layer
PARM72 Volatilization/nitrification partitioning coefficient
PARM80 Upper limit of nitrification – volatilization
PARM86 N and salt upward movement by evaporation
PARM100b Century slow humus transformation coefficient
a APEX User’s Guide Section 2.21
b Repeatedly caused APEX-CUTE to crash, therefore not included in the
final analysis. Also, parameters after PARM100 which are relevant to
organic matter decomposition are not included in APEX-CUTE.

parameters from the CROP file were not included in the analysis or calibration.

Figure 3.5 shows the results of the sensitivity analysis. PARM72 is clearly the

most influential parameter. This parameter governs how N is partitioned between

nitrification and volatilization, so it makes sense that it would have a strong effect on

yield in a simulation that has such high volatilization losses. PARMs 4, 14, and 80,

which are also to do with N leaching and volatilization, are of secondary importance.

Decreasing PARM72 from 0.4 to 0.05 (min) has a clear effect on the yield, raising

the mean from 6.0 t ha−1 to 11.6 t ha−1. The mean NH3 volatilization is now 24 kg

ha−1 yr −1, reduced from 115 kg ha−1 yr −1 in the runoff-calibrated model. The mean

N stress also decreases from 46 days yr−1 to just 7.5 days yr−1, and the predominant

crop stress is now temperature stress.

With PARM72=0.05, changing PARM4 from 0.5 to 1.0 (max) has only a mini-
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Figure 3.5: Results of APEX-CUTE sensitivity analysis for the PARMs listed in Table 3.2.

mal effect, increasing the mean yield to 11.8 t ha−1. PARM4, which affects N lost

via percolation, will therefore be left unchanged for crop yield and revisited during

nutrient calibration. A final adjustment, decreasing each year’s potential heat units

parameter from 1333 to 1050, brings the yield to 12.3 t ha−1. However, for reasons

that are not clear, this raises the total runoff by about 57 mm. Rather than revisit

the runoff calibration, PHU will be left unchanged.

Although the mean yield is now close to the statewide historical average and

PBIAS=-6%, the NSE is a very poor -1.59. Given that the state yield records average

over a wide range of soils, climate conditions, and farm management, it is to be

expected that a model for a single site will not accurately capture the year-to-year
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variations in the records. Calibrating APEX so that the average yield approximately

matches the statewide mean yield hopefully at least makes it likely that soil and crop

processes are represented more accurately than they would have been had no yield

calibration been attempted.

3.3.3 Erosion/Sediment

APEX calculates erosion using the Universal Soil Loss Equation (USLE) or one of

several variants. These equations are of the form:

Y = X × EK × CV F × PE × SL×ROKF (3.12)

where X is the erosive energy, EK the soil erodibility factor, CVF the crop man-

agement factor, PE the erosion control practice factor, SL the slope length/steepness

factor, and ROKF the coarse fragment factor. The erosion methods differ in the form

that is taken by X. The USLE and RUSLE2 equations base X on rainfall, while the

others (MUSS, MUSLE, etc.) relate X to runoff rate and volume in different ways.

In addition there are two methods available for calculating SL.

Of the remaining factors in Eq 3.12, EK is related to soil texture and organic

matter, CVF is based on residue cover, live biomass, and soil roughness, and PE

represents the effectiveness of erosion control practices applied on the field. Some of

the properties involved in EK and CVF may change over time, so could potentially

alter the relative magnitudes of erosion events in ways that better reproduce the

observed events. However, the PAW1 model was set up using soil test data and the

crop yield has been calibrated, so EK and CVF should already have reasonable values
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(and the number of parameters that could affect EK and CVF is huge). Instead, the

PE factor (corresponding to APEX’s PEC parameter) can be used as a calibration

parameter to generally increase or decrease sediment loss.

APEX allows the user to select the equation that is used to calculate the erosion

that interacts with the other model components (DRV parameter), while also calcu-

lating and printing erosion for the remaining models. The MUSS equation was used

for the baseline models and, now that the PAW1 model has been calibrated for runoff

and crop yield, the total MUSS erosion is 2432 kg ha−1, compared to the 1590 kg ha−1

measured at the site. The MUSLE model, which also bases X on runoff, estimates

5445 kg ha−1. The erosion predicted by the models that base X on rainfall is much

higher, ranging from 24,000 to 36,000 kg ha−1. Therefore DRV=MUSS will continue

to be used.

With DRV=MUSS, changing PEC from 1.0 to 0.66 brings the total erosion down

to 1593 kg ha−1, very close to the observed value. At this point NSE=0.22 and

PBIAS=0.2%. This is well below the NSE≥0.5 suggested by Wang et al. (2012),

but there is no obvious way to improve those statistics. The erosion calibration had

negligible effects on runoff and crop yield.

3.3.4 Nutrients

After calibration for runoff, crop yield, and erosion, the nutrient losses predicted by

the model have changed substantially from the baseline values. As Figure 3.6 shows,

P losses rose as the runoff was calibrated (i.e., as total runoff increased), then fell as

crop yield was calibrated (i.e., as mean yield increased), then fell again or remained

stable as erosion was calibrated (i.e., as total sediment loss decreased). Sediment N
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loss rose until yields had been calibrated, and then dropped slightly as sediment loss

was decreased. Runoff N has risen slightly, but has remained well below the observed

value throughout the process. At this point sediment-bound nutrients are lost in

excess, while runoff nutrient losses are smaller than observed.

Partly, the trends in Figure 3.6 simply reflect changes in runoff and erosion; more

runoff led to both more sediment loss and more of each form of nutrient loss. Decreas-

ing erosion by reducing the PEC parameter reduced the amount of sediment-borne

nutrient loss, but had little effect on losses in runoff. However, the crop yield calibra-

tion also had significant effects on nutrient losses. Although increasing the crop yield

did decrease erosion from 3236 kg ha −1 to 2430 kg ha −1, this cannot fully explain

the changes in N and P loss.

At least two underlying factors appear to be at work. First, the yield calibration

greatly reduced the soluble P concentration in the top soil layer. This may be due

to increased plant P uptake, and probably accounts for the large reduction in P in

runoff at that time.

Second, the crop calibration changed the relationship between sediment-bound N

(YN) and sediment (Y). Previously, APEX estimated a similar amount of N loss per

unit Y as is found in the field data (Figure 2.20). After reducing NH3 volatilization,

decreasing N stress, and increasing biomass production, the model now calculates

that more N is lost per unit Y than before.

This probably means that there is more organic N in the soil that can be lost as

erosion occurs. In APEX, only organic (as opposed to mineral) N and P are lost with

sediment, and the equation for sediment-borne nutrient loss is:
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Figure 3.6: Changes in the ratio of model:observed total N and P losses as the PAW1
baseline model is calibrated for runoff, crop yield, sediment, and nutrient losses. X-axis
labels relate to calibration steps; see text and Table 3.4 for full details.

Y ON = 0.001× Y × CON × ER (3.13)

Y P = 0.001× Y × CP × ER (3.14)

where YON (YP) is the organic N (P) transported by sediment, Y is the sediment

loss, CON (CP) is the concentration of organic N (P) in the top soil layer, and

ER is the “enrichment ratio” (Williams et al., 2012). The enrichment ratio is the

concentration of the nutrient in sediment vs that in the soil, and it is a function of

rainfall and runoff. Now that sediment loss and runoff have been calibrated, Y and
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Figure 3.7: Model and observed relationships between nutrient losses and runoff (top) and
sediment (bottom), on the PAW1 watershed after calibration for crop yield. Compare to
Figure 2.20 for the baseline model.

ER are fixed. The remaining quantity affecting YN (YP) is CON (CP), which must be

a function of the amount of organic matter in the top soil layer and the concentration

of N and P within that organic matter. If increased crop growth leads to more crop

residue and more organic matter production, for example, higher N (and, presumably,

P) loss in sediment could make sense.

Examination of the model outputs reveals that organic N (the WON variable in

the .ACN file) now builds up over time instead of decreasing (as in the baseline model;

Figure 2.4). Probably more importantly, the amount of organic N in the top 1 cm of

the soil – from where material is eroded – increases, both in absolute terms and as a
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fraction of the organic N in the top ∼20 cm.

The situation for YP seems somewhat different. The crop calibration actually

slightly improved the relationship between YP and Y compared to the baseline model.

APEX does not report annual soil organic P masses, but initial and final N and P

concentrations are recorded in the model’s main log (.OUT) file. While the end-of-

simulation organic N in the top 1cm increases by a factor of 1.6 from the baseline

model to the yield-calibrated model, the organic P increases by just a factor of 1.2.

Nitrogen and phosphorus cycling are calculated independently in APEX (Williams

et al., 2012), even if they are coupled via several plant and soil processes, so this

behavior is perhaps not surprising.

The above analysis suggests that parameters to do with N mineralization and

immobilization and mixing of soil layers may improve the calibration for YN. Other

parameters, such as the initial soluble P concentration, may also be relevant. Organic

matter cycling and biological processes were chosen as the starting point for the

nutrient calibration, focusing first on organic N and sediment N losses.

Again, an APEX-CUTE sensitivity analysis was carried out in order to identify

parameters to which organic N is sensitive. The value of PARM72 was fixed by the

crop calibration, but it is included in the sensitivity analysis so it can be used to

gauge the relative sensitivities of other parameters. Table 3.3 lists the parameters

included in the analysis, and Figure 3.8 shows the results. As described below, two

additional parameters recommended by others were also used in the YN calibration,

and parameters for calibrating YP, QN, and QP were selected without prior sensitivity

analysis5.
5APEX-CUTE crashes if sensitivity analysis for organic P is attempted. Also, although the

software can calculate Morris Indices for “total” and “mineral” N and P, it does not discriminate
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Table 3.3: APEX parameters used for organic N sensitivity analysis

Parameter Definitiona

PARM29 Biological mixing efficiency
PARM31 Maximum depth for biological mixing
PARM51 Water stored in litter (residue) coefficient
PARM52 Coefficient re. tillage effect on residue decay
PARM53 Coefficient modifying microbial activity with soil depth
PARM69 Adjusts microbial activity in top soil layer
PARM70 Microbial decay rate coefficient
PARM72 Volatilization/nitrification partitioning coefficient
PARM76 Standing dead fall rate coefficient
PARM100b Century slow humus transformation coefficient
PECc Erosion control practice factor
a APEX User’s Guide Section 2.21
b Repeatedly caused APEX-CUTE to crash, therefore not included in the final
analysis. Also, PARM101 – 107, which are relevant to organic matter decompo-
sition are not included in APEX-CUTE.

c PEC is included for the following reason. The Morris indices calculated by
APEX-CUTE are in the units of the model output being evaluated, which means
that the indices for nutrient loss are much smaller than those for runoff and
biomass. The program only reports the indices to three decimal places, however,
so indices for organic N tend to be rounded to either 0.001 or 0.000. Including
the PEC parameter and allowing it to vary within a very narrow range near its
maximum value (PEC=10) effectively scales up the sediment loss and therefore
the amount of N lost in sediment. The resulting Morris indices for organic N
are an order of magnitude larger and contain two significant figures’ worth of
information.
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Figure 3.8: Results of APEX-CUTE sensitivity analysis for the PARMs listed in Table 3.3.

The sequence of calibration steps is laid out in Table 3.4 and illustrated in Figure

3.6. The apparently most influential parameter, PARM76 (steps NP1–3), was tested

first but was found to have only minor effects on nutrient losses. Adjusting the bio-

logical mixing efficiency (PARM29, step NP4) had a larger effect on YN, presumably

because it reduces the amount of N in the top 1cm of the soil. Increasing this param-

eter increased erosion by about 14%, which was corrected using the PEC parameter

(§3.3.3). Changing the microbial activity function (PARM69, step NP7) also had a

beneficial effect on YN.
between leaching, runoff, etc. Fortunately the number of parameters that appear directly relevant
to QN and QP is fairly small.
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The first parameter to result in noticeable improvement to YP was PARM70

(step NP8), the microbial decay rate coefficient. Increasing PARM70 also slightly

increased the crop yield. However, raising PARM70 led to increased N leaching and

denitrification (DN), perhaps related to increased mineralization of organic matter.

Increasing the slow humus turnover rate (PARM100, step NP9)) had little effect,

but decreasing RTN1 from 150 to 0 (step NP10) brought the total QP much closer

to the observed value and had a small positive effect on YN as well. RTN1 refers to

the number of years of cultivation prior to the start of the simulation, and reducing

it speeds up the mineralization rate. RTN1 is suggested by APEX staff as a possi-

ble calibration parameter for nutrient losses6. The soil soluble P value, which was

much reduced after the crop calibration, increased to close to the expected value on

setting RTN1=0. However, this change caused a further increase in N leaching and

denitrification losses.

Wang et al. (2012) note that FHP, the fraction of humus in the passive pool, can

be useful for calibrating nutrient losses. Changing it from its near-maximum default

value to its minimum (step NP11) slightly improved YN while worsening QP. PARM8

sets the concentration of P in runoff relative to sediment, so this parameter was then

used to bring QP back closer to the observed value (step NP12). A further reduction

in both QP and YP was achieved by changing the parameter describing the upwards

movement of P by evaporation (PARM59, step NP13).

At this point, the total YP, YN, and QN were close to the APME values. QN,

however, was still very low, and N losses via leaching and denitrification had increased

greatly. The mean DN rate in the NP13 model is 10.6 kg ha−1 yr −1, which is 20% of
6https://groups.google.com/d/msg/agriliferesearchmodeling/Fw5jX7ZRK8o/vZKVkXkcCQAJ
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the volatilization rate of 52 kg ha−1 yr −1 (which has itself more than doubled since

the crop yield calibration). Given that Duncan et al. (2017) find that NO3-N losses

are at least 3 orders of magnitude below NH3 losses in a manure injection system

where DN rates are high, the denitrification predicted by APEX at this stage seems

excessive. It appears that the model is directing too much mineral N into leaching,

volatilization and denitrification, and not enough into runoff.

In an attempt to correct that, PARM14, which sets the relative N losses in per-

colate and runoff, was set to its maximum value (step NP14). This caused the total

QN to increase by almost a factor of 3. It remained, though, more than a factor of 3

below the target value. PARM4 governs the amount of N that is lost in leachate vs

that remaining in soil pores, but changing it had little effect on QN (steps NP15-16).

Finally, two parameters related to denitrification were tested. PARM35 sets the

soil water content needed to trigger denitrification, and PARM36 limits the daily

denitrification rate. Neither of these parameters had any effect on QN (steps NP17-

18). It is certainly possible that there exist combinations of parameters that are

able to simultaneously predict realistic losses of all nutrients at PAW1, but at this

point it was decided that climate simulations should be prioritized over full nutrient

calibration in the time remaining to the project.

The parameters for the final, “calibrated” model (step NP19) were chosen from

the parameters that had generally beneficial effects on the total YN, YP, QN, and

QP regardless of their effects on the underlying N-related processes. The parameter

changes between the baseline and calibrated models, and performance statistics for

the baseline and final models, are summarized in §3.3.5. Briefly, for YN, YP, and

QP, PBIAS ≤12% and 0.38 < NSE < 0.49. For QN, PBIAS=-68% and NSE=-0.04.
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Statistics for runoff and erosion have changed very little, and the mean crop yield is

now slightly closer to the statewide average.
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Table 3.4: PAW1 nutrient calibration process

Step Parameter Changea Comments
NP1 P76 0.01→0.1 (max)
NP2 P76 0.01→0.001
NP3 P76 0.01→0.0001 (min) Some improvement in YN
NP4 P29 0.1 (min)→0.5 (max) Larger improvement in YN
NP5 As for NP4 plus PEC 0.66→0.58 Erosion had risen slightly; correcting
NP6 As for NP5 plus P31 0.3 (max)→0.1 (min)
NP7 As for NP5 plus P69 1.0 (max) →0.1 (min) YN improved
NP8 As for NP7 plus P70 0.5 (min)→1.5 (max) Slight improvement in YP and QP

N leaching and denitrification increased
Crop yield slightly increased

NP9 As for NP8 plus P100 0.000548→0.00068 (max)
NP10 As for NP9 plus RTN1 150→0 (min) QP much improved

Large increase in soil soluble P
N leaching and denitrification increased again

NP11 As for NP10 plus FHP 0.695 (max)→0.3 (min) QP NSE slightly better, PBIAS worse
NP12 As for NP11 plus P8 15→20 (max) Improves QP, YP slightly worse
NP13 As for NP11 plus P59 10→3 YN, YP, QP now quite good, QN still v. low
NP14 As for NP13 plus P14 0.2→1.0 (max) Some improvement in QN
NP15 As for NP14 plus P4 0.5→1.0 (max?)
NP16 As for NP14 plus P4 0.5→0.0 (min)
NP17 As for NP14 plus P36 0.001→0.0001 (min)
NP18 As for NP17 plus P35 1.01→1.10 (max)
NP19 Erosion-calibrated model plus P8=10, P14=1, Final model

P29=0.5, P59=3, P69=0.1, P70=1.5, P76=0.0001,
RTN1=0, PEC=0.62

a See text and Table 3.3 for parameter definitions.
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Table 3.5: Differences between PAW1 baseline and calibrated models

Process Variable Description Base. Cal.
Runoff PARM42 CN index coefficient 1.0 2.5

PARM44 Upper limit of CN retention parameter 1.5 1.2
Yield PARM72 Volatilization/nitrification partition coeff. 0.4 0.05
Sediment PEC Erosion control practice factor 1.0 0.66a

Nutrients PARM8 Soluble P runoff coeff. 15 10
PARM14 Nitrate leaching ratio 0.2 1.0
PARM29 Biological mixing efficiency 0.1 0.5
PARM59 P movement by evaporation coeff. 10 3
PARM69 Microbial activity coeff. 1.0 0.1
PARM70 Microbial decay rate coeff. 0.5 1.5
PARM76 Standing dead fall rate coeff. 0.01 0.0001
RTN1 Years of cultivation at simulation start 150 0
PEC Erosion control practice factor 1.0 0.62

a Further adjustment made during nutrient calibration

3.3.5 Final Model

Table 3.5 lists the differences between the baseline and calibrated PAW1 models, and

Table 3.6 gives the full set of performance metrics for both models. Updated versions

of the model – data comparison plots shown in Ch. 2 are shown in Figures 3.9 – 3.18.

Overall the statistics have improved. This is not surprising, as the calibration

procedure was based on monitoring the PMs and totals as parameters were changed.

Figures 3.9 and 3.10 show that the model relationships between sediment and runoff,

and nutrient losses and sediment/runoff, are now closer to those observed in the field

data. This generally positive. However, it should be noted that all model outputs

except runoff systematically underestimate the magnitude of large events (Figures

3.12 – 3.16). This may be relevant in interpreting the results of the climate scenario

modeling in Chapter 4.
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Table 3.6: Model performance statistics for the PAW1 initial baseline and final calibrated modelsa

Model Component R2 d RMSE RSR NSE PBIAS p Mean Sum
Obs Mod Obs Mod

Baseline

Runoff 0.47 0.81 6.71 0.77 0.41 -24.1 0.15 6.93 5.26 402 305
Yield 0.02 0.24 6.78 5.23 -26.4 -52.6 0.00 12.6 6.0 265 126
Sediment 0.17 0.61 97.8 1.02 -0.05 48.0 0.04 40.8 60.4 1590 2354
Runoff P 0.64 0.86 0.03 0.79 0.37 91.1 0.07 0.01 0.03 0.57 1.09
Sediment P 0.53 0.75 0.12 1.33 -0.77 141.4 0.01 0.04 0.11 1.74 4.19
Runoff N 0.08 0.33 0.47 1.11 -0.23 -93.3 0.00 0.23 0.02 8.97 0.60
Sediment N 0.30 0.70 0.27 1.05 -0.11 83.1 0.01 0.13 0.23 4.90 8.97

Calibrated

Runoff 0.52 0.85 6.35 0.73 0.47 -1.23 0.90 6.93 6.85 402 397
Yield 0.01 0.35 2.22 1.72 -1.95 -2.30 0.30 12.6 12.3 265 259
Sediment 0.23 0.60 84.3 0.88 0.22 -3.85 0.07 40.8 39.2 1590 1529
Runoff P 0.51 0.77 0.02 0.72 0.48 4.09 0.22 0.01 0.02 0.57 0.59
Sediment P 0.49 0.81 0.06 0.72 0.49 10.5 0.07 0.04 0.05 1.74 1.92
Runoff N 0.13 0.34 0.43 1.02 -0.04 -68.5 0.13 0.23 0.07 8.97 2.83
Sediment N 0.39 0.74 0.20 0.79 0.38 11.6 0.04 0.13 0.14 4.90 5.47

a Units of RMSE, Mean, and σ are mm; others are dimensionless.
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Figure 3.9: Model and observed relationships between sediment and runoff in the PAW1
final model. Compare to Figure 2.18 for the baseline model.
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Figure 3.10: Model and observed relationships between nutrient losses and runoff (top) and
sediment (bottom) in the PAW1 final model. Compare to Figure 2.20 for the baseline model.
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Figure 3.11: Runoff in the PAW1 calibrated model. Compare to the baseline version in
Figure 2.16.
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Figure 3.12: Erosion in the PAW1 calibrated model. Compare to the baseline version in
Figure 2.17
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Figure 3.13: Runoff P in the PAW1 calibrated model. Compare to the baseline version in
Figure 2.19
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Figure 3.14: Sediment P in the PAW1 calibrated model. Compare to the baseline version in
Figure 2.21
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Figure 3.15: Runoff N in the PAW1 calibrated model. Compare to the baseline version in
Figure 2.22
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Figure 3.16: Sediment N in the PAW1 calibrated model. Compare to the baseline version in
Figure 2.23
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Figure 3.17: Forage yield in the PAW1 calibrated model. Compare to the baseline version
in Figure 2.24
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Figure 3.18: Total observed and modeled runoff, erosion, etc. for the duration of the
APME project at PAW1 (Q=runoff, Y/10=sediment divided by 10, QP/N= runoff P/N,
YP/N=sediment P/N). Compare to the baseline version in Figure 2.34.
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3.4 Model Calibration: WIL2

The WIL2 calibration followed the same basic path as the PAW1 calibration. The first

difference was that runoff needed to be reduced overall, rather than increased. In the

PAW1 model, adjusting PARM42 and PARM44 with NVCN=4 (the baseline value for

the daily curve number method) was sufficient to raise the total runoff to match the

field measurement (§3.3.1). At WIL2, runoff could not be lowered sufficiently with

those parameters alone (Figure 3.19). What reductions were achieved came partly

from decreasing the model runoff in 2015 and 2016 essentially to zero, worsening the

match between model and data in those years. Experience with the PAW1 runoff

calibration suggested that manipulating further parameters with NVCN=4 would be

unlikely to fix this problem.

With NVCN=0 and PARM92=1.3, the model was able to give the correct total

runoff while preserving some runoff in 2015 – 2016. For that model, PBIAS=0.3%

and NSE=0.40. Those parameters were adopted for the remainder of the calibration.

As with PAW1, crop yields in the WIL2 baseline model were low and N stress

and volatilization were high. Again, changing PARM72 reduced volatilization and

N stress and brought the mean yield to match the statewide annual average. After

reducing runoff and increasing yields, the model erosion had decreased relative to the

baseline model, and had in fact become lower than the observed value. Three ways

of bringing the total erosion to the observed value were identified:

1. With DRV=MUSS, raise PEC from 1.0 to 2.12.

• NSE=0.77, PBIAS=-0.9%
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Figure 3.19: Changes in performance statistics as the WIL2 baseline model is calibrated for
runoff. X-axis labels relate to parameter changes; see text for full details.

2. With DRV=MUSLE, change ISLF from 0 (RUSLE SL factor) to 1 (MUSLE SL

factor) and PEC from 1.0 to 0.77

• NSE=0.78, PBIAS=0.9%

3. With DRV=RUSLE2, change PEC from 1.0 to 0.035

• NSE=0.65, PBIAS=3%

The first two methods give essentially the same outcome, while the third results

in a slightly poorer pattern of erosion event magnitudes. While all three methods

are somewhat arbitrary and arguably unphysical, method (1) was adopted for the
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erosion-calibrated model.

WIL2 nutrient calibration was attempted using the parameters that had been

beneficial for nutrient calibration at PAW1 (Table 3.4). Statistics for YN remained

extremely poor through the process (Figure 3.20). PBIAS for QN and QP could be

brought close to zero (Figure 3.20), but no model with NSE >0.1 could be identified

for QN, and NSE was always negative for QP. Calibration of YP was relatively success-

ful, with NSE=0.82 and PBIAS=8%. However, given the uncertainty in underlying

soil processes suggested by the poor model performance for the other nutrient losses,

further investigation is recommended before using this model to make predictions for

sediment-bound P.

3.4.1 Final Model

Table 3.7 lists the differences between the baseline and calibrated WIL2 models, and

Table 3.8 gives the full set of performance metrics for both models. Updated versions

of the model – data comparison plots shown in Chapter 2 are shown in Figures 3.21

– 3.30.

As with the PAW1 model, the statistics for the model components that are consid-

ered to have been successfully calibrated (runoff, sediment, yield, and sediment-bound

P) have improved. The relationships between runoff and sediment, and nutrients and

runoff/sediment, also look better (Figures 3.21, 3.22). The WIL2 model is less prone

to underestimating large events than the PAW1 model, although the smaller number

of data points makes it difficult to draw firm conclusions.

160



Figure 3.20: NSE and PBIAS for runoff N and P and sediment P during nutrient calibration
at WIL2. Nutrient loss statistics were very poor for the baseline model and for YN for all
models, so they have been omitted for clarity.

Table 3.7: Differences between WIL2 baseline and calibrated models

Process Variable Description Baseline Cal
Runoff NVCN Daily curve number calc. method 4 0
Runoff PARM92 Runoff volume adjustment 1.0 1.3
Yield PARM72 Volatilization/nitrification partition coeff. 0.4 0.1
Sediment PEC Erosion control practice factor 1.0 2.12
Nutrients PARM8 Soluble P runoff coeff. 15 14

PARM14 Nitrate leaching ratio 0.2 0.7
PARM29 Biological mixing efficiency 0.1 0.5
PARM59 P movement by evaporation coeff. 10 8
PARM69 Microbial activity coeff. 1.0 0.1
PARM70 Microbial decay rate coeff. 0.5 1.5
PARM76 Standing dead fall rate coeff. 0.01 0.0001
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Table 3.8: Model performance statistics for the WIL2 initial baseline and final calibrated modelsa

Model Component R2 d RMSE RSR NSE PBIAS p Mean Sum
Obs Mod Obs Mod

Baseline

Runoff 0.73 0.54 20.0 3.56 -11.7 206 0.00 2.98 9.12 152 465
Yield 0.01 0.32 3.24 2.5 -5.25 -17.0 0.00 12.6 10.5 265 220
Sediment 0.83 0.94 23.5 0.57 0.68 26.2 0.00 17.4 21.9 469 591
Runoff P 0.52 0.30 0.32 7.49 -55.1 450 0.00 0.02 0.13 0.73 4.02
Sediment P 0.79 0.83 0.10 1.20 -0.45 123 0.00 0.03 0.07 0.95 2.12
Runoff N 0.70 0.89 0.09 0.78 0.39 -3.46 0.00 0.06 0.06 1.87 1.81
Sediment N 0.79 0.30 1.21 8.80 -76.4 738 0.00 0.06 0.51 1.82 15.3

Calibrated

Runoff 0.70 0.89 4.37 0.78 0.39 0.89 0.00 2.98 3.01 152 153
Yield 0.11 0.57 1.83 1.41 -0.99 3.30 0.53 12.6 13.1 265 274
Sediment 0.80 0.95 19.6 0.47 0.78 -1.65 0.00 17.4 17.1 469 461
Runoff P 0.48 0.75 0.06 1.34 -0.79 -4.38 0.00 0.02 0.02 0.73 0.70
Sediment P 0.82 0.95 0.04 0.42 0.82 7.63 0.00 0.03 0.03 0.95 1.02
Runoff N 0.18 0.65 0.13 1.08 -0.17 1.62 0.01 0.06 0.06 1.87 1.90
Sediment N 0.76 0.44 0.69 5.04 -24.4 412 0.00 0.06 0.31 1.82 9.31

a Units of RMSE, Mean, and σ are mm; others are dimensionless.
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Figure 3.21: Model and observed relationship between sediment and runoff in the WIL2 final
model. Compare to Figure 2.26 for the baseline model.
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Figure 3.22: Model and observed relationships between nutrient losses and runoff (top) and
sediment (bottom) in the WIL2 final model. Compare to Figure 2.28 for the baseline model.
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Figure 3.23: Runoff in the WIL2 calibrated model. Compare to the baseline version in
Figure 2.25.
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Figure 3.24: Erosion in the WIL2 calibrated model. Compare to the baseline version in
Figure 2.27.
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Figure 3.25: Runoff P in the WIL2 calibrated model. Compare to the baseline version in
Figure 2.29.
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Figure 3.26: Sediment P in the WIL2 calibrated model. Compare to the baseline version in
Figure 2.30.
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Figure 3.27: Runoff N in the WIL2 calibrated model. Compare to the baseline version in
Figure 2.31.
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Figure 3.28: Sediment N in the WIL2 calibrated model. Compare to the baseline version in
Figure 2.32.
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Figure 3.29: Forage yield in the WIL2 calibrated model. Compare to the baseline version in
Figure 2.33.
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Figure 3.30: Total observed and modeled runoff, erosion, etc. for the duration of the
APME project at WIL2 (Q=runoff, Y/10=sediment divided by 10, QP/N= runoff P/N,
YP/N=sediment P/N). Compare to the baseline version in Figure 2.34.

172



3.5 Discussion

For PAW1, the calibration process led to low values of PBIAS for all of the model

outputs except QN. That is, it was usually possible to obtain a model that is not

biased towards high or low values and accurately reproduces the mean/total output.

The same was true for WIL2 for everything but YN.

It was much more difficult to attain high values of NSE, which would indicate

that the model does a good job of matching the pattern of the runoff events and

sediment/nutrient losses. Aside from yield (for reasons discussed in §3.3.2) and QN,

NSE > 0 was achieved for all outputs in the PAW1 model, meaning that the model is a

better predictor than the mean of the observed data. At WIL2, NSE >0 was obtained

only for runoff, sediment, and YP. The WIL2 sediment and Y components had very

high NSE values (NSE=0.78 and NSE=0.82, respectively). For PAW1 and the other

WIL2 outputs, though, NSE fell somewhat short of the NSE>0.5 that Moriasi et al.

(2007) and Wang et al. (2012) suggest characterize an acceptable model.

Improving the model fits for runoff, for example, would have required parameter

adjustments that resulted in major changes to the relative magnitudes of the runoff

events. However, there seemed to be little scope for doing this. The parameters that

were tested raised or lowered the runoff overall while making only small changes in

the pattern of runoff. As runoff is a driving factor in sediment and nutrient losses,

this affects how well the model can predict those quantities as well.

At the same time, relatively few parameter changes were necessary to achieve the

PBIAS and NSE values in Tables 3.6 and 3.8 for runoff, sediment, and yield. For

runoff at PAW1 it was sufficient to adjust two parameters that alter the daily soil
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moisture index calculation, while WIL2 required a different method of calculating

the daily runoff. Especially at PAW1, there was little difference between the PMs for

many of the model variants tested during runoff calibration (Figure 3.2), suggesting

that many parameter combinations are capable of performing equally well. Both

models were calibrated for erosion by adjusting the erosion control practice factor,

PEC (albeit in different directions), and for yield by using PARM72 to reduce the

NH3 volatilization rate.

Nutrient calibration required changes to many more parameters and was ulti-

mately only partially successful. Calibrating the crop yield at PAW1 by reducing

volatilization and N stress had significant effects on soil N, P, and organic matter

that worsened the model statistics for nutrient losses. Some of those effects were

rectified by changes related to organic matter cycling and mineral P behavior. How-

ever, N cycling remained problematic, with the model appearing to direct too much

N towards leaching, volatilization, and denitrification, and too little into runoff.

Because of the difficulty of calibrating the PAW1 model for nutrient losses, a less

extensive search was carried out for the WIL2 model. Satisfactory (NSE>0) results at

WIL2 were obtained only for YP. It may be possible to attain better results for both

models through a wider search of parameter space, a task that would be aided by

automatic calibration tools that can handle comparison data on arbitrary timescales.

Both before and after calibration, the PAW1 model performed quite well in the

high-runoff 2012 – 2013 monitoring period, but generally overestimated runoff and

erosion in 2014 – 2015. Annual or seasonal variations in the performance of the WIL2

model are less clear, especially in the case of sediment and nutrients for which few

measurements are available. However, there may be a tendency for the model to
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predict too much runoff in spring/summer events and too little in autumn/winter.

Improving the calibration statistics for PAW1 also came at the expense of predic-

tions for particularly large events. The calibrated model tends to underestimate the

magnitude of large sediment and nutrient loss events, and also sometimes overesti-

mates small ones. This tendency is less noticeable in the WIL2 model.

Differential APEX performance during modeling periods has been reported in the

literature. Wang et al. (2014) calibrated APEX for streamflow and sediment in a

large Chinese watershed using data from relatively wet conditions and found that it

performed poorly in the drier validation period. Anomaa Senaviratne et al. (2013)

found that APEX underestimated sediment losses for small-to-medium rainfall events

in their corn-soybean rotations on claypan soils, while Nearing (1998) show that in

general soil erosion models tend to over-predict losses for small events and under-

predict for large ones. Given the variety of reported results, it is not surprising that

the APEX models for Vermont do not perform consistently over time. A literature

review of how APEX performs in different circumstances, and why, would be useful

guidance for model users.

The temporal pattern in the PAW1 model suggests that using it to calculate and

compare runoff etc. between dry and wet climates will result in underestimating the

magnitude of potential changes. It may also suggest that simulations of runoff etc. in

even wetter climates could work quite well – provided they do not generate too many

large events. However, this work has not investigated the mechanism underlying this

behavior, which could be to do with total precipitation, relative timing of precipitation

events, or something else entirely. This means that the circumstances in which the

model will give accurate results are not well understood.
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In fact, the errors in these models in general are not well quantified. The PBIAS

and NSE statistics show how well the models perform compared to others in the

literature, but they do not provide confidence intervals on any of the model outputs.

Deriving such information is well beyond the scope of this thesis. The calibrated

models will simply be regarded as useful for making predictions for runoff, sediment,

crop yield, and YP, YN, QP (PAW1) and YP (WIL2) in a range of climates in Ch.

4.
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4 Farming in Vermont’s Changing

Climate

One of the aims of this thesis is to simulate agricultural outcomes – runoff, erosion,

nutrient losses, crop yields, and delays to farm operations – in a selection of hypo-

thetical climates. At this point, models for two farm sites have been calibrated using

data obtained between 2012 and 2015/2017. The actual operations on those farms

can now be simulated many times over, each time using a new daily weather data set

generated from statistics that describe the underlying climate conditions. Running

many simulations allows properties such as the mean, 95%-ile, and standard devi-

ation of the outcomes to be characterized. It is then possible to ask, for example,

how variable crop yields would be under the proposed climates, or whether formerly

extreme erosion events would become routine.

The next steps, then, are to (1) select a set of specific climate scenarios and derive

the statistics that describe them, (2) run many repeats of the calibrated PAW1 and

WIL2 models using sets of daily weather generated from those climate statistics,

and (3) analyze the distributions of outcomes obtained for each climate scenario.

This chapter details all of those steps, beginning with the considerations involved in
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selecting hypothetical climates, and how the selection of scenarios is affected by how

APEX represents climate information.

4.1 The Climate Scenarios

4.1.1 Choosing Climate Scenarios

For this thesis, hypothetical future climates will be defined relative to the actual

climate as observed in recent years. This raises two questions. First, which recent

time period should be used as the baseline from which the new climates are developed?

Second, should the proposed scenarios be extrapolations of recent climate trends, or

based on model projections, or generated using other criteria such as likely relevance

to the agricultural community? Regardless of which option is chosen, it would be

useful to put the final scenarios into the context of recent and projected changes.

These issues are complicated by a number of factors. First, as explained in Ch. 1,

the climate in the northeastern US appears to have undergone especially pronounced

changes since approximately the turn of the century. To recap: Hoerling et al. (2016)

note that 10 of the 12 years since 2002 in their data set had experienced unusually

high rainfall from extreme events, Frei et al. (2015) find that increases in warm season

heavy precipitation have been especially marked since 2000, and Huang et al. (2017)

detect changepoints in extreme precipitation in 1996 and 2002. On one hand, a single

baseline beginning before and ending after∼2000 could be chosen to represent a recent

“average” climate. On the other hand, the change point represents an opportunity:

periods prior to and since ∼2000 could potentially be used as a natural laboratory to
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explore the effects of the climatic changes that have already occurred.

The second issue is that climate models do not appear to capture this recent be-

havior. For example, Guilbert et al. (2014) find that in the Lake Champlain basin

region, “the 0.95 quantile of daily precipitation is projected to increase by 8.9% by

midcentury”, relative to a 1961 –2000 baseline. However, Huang et al. (2017) ob-

serve that “averaged over the Northeast, extreme precipitation from 1996 to 2014

was 53% higher than from 1901 to 1995”. Creating a climate scenario by increasing

the 95%-ile of precipitation by 9% above pre-2000 levels may result in less extreme

precipitation than has actually been experienced recently. Conversely, given that

.20 years have elapsed since the apparent step change in precipitation, and that it

may be a short-term phenomenon that is not primarily due to anthropogenic climate

change (Hoerling et al., 2016), attempting to extrapolate from recent data may result

in extreme scenarios that are unlikely to occur.

Even a simple quantitative comparison of proposed scenarios to historical and

model climates turns out not to be straightforward, because different papers use

different time periods and statistical measures to quantify the climate. It is beyond

the scope of this thesis to convert all the published statistics to a consistent scale and

compare the trends and projections. As Moriasi et al. (2007, 2015) recommend for

hydrological modeling, it would be helpful if the authors of climate assessments could

report a standard set of statistics along with whichever numbers are of particular

interest to their own studies.

Given these considerations, this thesis examines a small set of climates that are

qualitatively consistent with observed and expected trends and/or may be of partic-

ular significance for agriculture. All of the future scenarios include warmer temper-
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atures. Precipitation either increases year-round, shifts from summer to spring, or

becomes more intense. The specifics of the scenarios, and in particular the selection

of the historical baseline, are partly determined by how APEX represents climate

information, so this is discussed next.

4.1.2 Selecting a Baseline Scenario

APEX can handle weather and climate inputs in two different ways. First, it can

directly use files containing daily weather data supplied by the user. This was how

APEX was run in Chapters 2 and 3. Second, it can use a file containing monthly

statistics for temperature, precipitation, etc. to generate its own daily weather. The

monthly statistics can be supplied directly by the user or they can be calculated

from daily weather files using one of two supporting programs, Weather Import (for

WinAPEX) or WXPM1. In principle, constructing climate scenarios simply means

feeding Weather Import or WXPM daily weather data for a baseline climate period,

obtaining monthly statistics, and editing the statistics as necessary to obtain climates

with the desired characteristics.

In practice, the way in which weather data are represented by the monthly statis-

tics (“WP1”) files constrains the climates that can be meaningfully simulated. The

WP1 files contain mean monthly numbers of rainy days that are converted into a set

of probabilities that govern when precipitation occurs. They also contain parameters

describing a skewed normal distribution of event sizes. APEX generates weather by

first deciding whether rain occurs on a given day, and if so, generating an event from

the skewed normal distribution (Williams et al., 2012).
1https://epicapex.tamu.edu/model-executables/
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Specifically, if the probabilities of a wet day after a wet day (P (W |W )) and a wet

day after a dry day (P (W |D)) are available, the code generates a random number,

and if that number is smaller than the appropriate probability, precipitation occurs.

If P (W |W ) and P (W |D) are not available, they are estimated from the monthly

number of rainy days:

PW = NWD/ND (4.1)

P (W |D) = 0.75 ∗ PW (4.2)

P (W |W ) = 1− 0.75 + P (W |D) (4.3)

Where ND is the number of days in the month and ND the number of wet days.

Event sizes are generated as follows :

RF = XLV ×RST2Mo + RST1Mo (4.4)

XLV =
(
X13 − 1

)
× 2/RST3Mo (4.5)

X1 = (SND −R6)×R6 + 1 (4.6)

R6 = RST3Mo/6 (4.7)

Where RST1, RST2, RST3 are the monthly storm mean, standard deviation, and

skew coefficient, and SND is the standard normal deviate.

The extent to which this distribution fits the input weather data governs the

accuracy with which the data can be represented by the parameters in the file, and

the degree to which the properties of the weather generated from those statistics
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match those of the original data set. Also, any climate scenario created by editing

the WP1 parameters must be capable of being represented by the parameters of the

skewed normal distribution.

To investigate how these issues may affect the modeling in this thesis, WP1 files

were generated from Rutland and Burlington weather station data using Weather

Import. Then, Python code was created to mimic the process that APEX uses to

generate daily weather from the WP1 files, using Equations 4.1 – 4.7 above. For each

WP1 file, 1000 years’ worth of events were generated. The cumulative distributions of

the real and generated events were then obtained, along with a set of simple statistics

describing the distribution of events.

Figure 4.1 shows actual and generated cumulative distributions for different time

periods for the Burlington weather station. Statistics for both Rutland and Burlington

are given in Table 4.1. The left-hand panel in the figure shows the actual distribution

of events for 1970 - 1999, and the distribution of the events generated from the WP1

file output by Weather Import. The generated distribution clearly contains fewer

small events, and the median simulated rainfall is about 5.0 mm compared to the

actual value of 2.5 mm. The 95%-ile and 99%-ile are also about 3 mm higher than

observed, although the total precipitation is approximately correct. The Weather

Import statistics include a much smaller number of rainy days per month than is

actually present in the 1970 – 1999 data, which – together with the correct total

rainfall – presumably is the cause of the higher median precipitation.
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Table 4.1: Comparison of measured and generated precipitation statistics for various periods for the Rutland
(for PAW1) and Burlington Airport (for WIL2) weather stations. Days with zero precipitation are excluded
from the calculations. The climate models adopted as the basis for generating hypothetical future climates
are shown in bold.

Period Dataa 50%-ile 95%-ile 99%-ile Total Days w/ pb

mm mm mm mm precip.
Rutland
1970 – 1999 Historical 4.3 25.7 42.4 948 127 0.15
1970 – 1999 Generated, Weather Import 5.2 26.9 44.9 1001 118 –
1970 – 1999 Generated, corrected 4.5 26.0 44.3 997 128 –
2000 – 2018 Historical 3.8 27.3 43.2 1064 143 0.15
2000 – 2018 Generated, corrected 4.3 26.7 47.2 1134 143 –
1980 – 2008 Historical 4.1 26.9 44.7 1007 133 –
1980 – 2008 Generated, corrected 4.1 26.4 47.1 1032 133 –
Burlington
1970 – 1999 Historical 2.5 21.6 37.4 911 159 0.02
1970 – 1999 Generated, Weather Import 5.0 24.4 40.8 896 114 –
1970 – 1999 Generated, corrected 3.3 21.5 38.6 981 160 –
2000 – 2018 Historical 2.8 24.1 40.9 976 156 0.02
2000 – 2018 Generated, corrected 3.8 23.7 40.8 1087 157 –
1980 – 2008 Historical 2.5 22.4 40.7 926 156 –
1980 – 2008 Generated, corrected 3.2 21.9 40.3 976 156 –

a Historical = calculated from weather station data. Generated, Weather Import = generated using monthly
statistics for the historical data output by the Weather Import program. Generated, corrected = generated using
Weather Import monthly statistics adjusted to better reflect the observed percentiles. See text for full details.
b K-S p value for the comparison between data for the 1970 – 1999 and 2000 – 2018 periods
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Figure 4.1: Cumulative distributions of historical and generated daily weather for two time
periods at the Burlington Airport weather station. The distribution based on Weather Import
monthly statistics can be improved upon (left), but the inaccuracy in the improved distribu-
tion is still comparable to the difference between the real distributions for the 1970 – 1999
and 2000 – 2018 periods (right).

An attempt was made to “correct” the WP1 file by setting the number of rainy

days and monthly totals to their observed values, setting the wet-wet and wet-dry

probabilities to zero (i.e., unknown), and adjusting the skew coefficient. The result

of this is shown in the left-hand panel of Figure 4.1 (and in Table 4.1). The median

has decreased from 5.0 to 3.3 mm, and the 95%-ile, 99%-ile are also closer to their

observed values. However, the total precipitation is now too high by 8%.

Whether these inaccuracies are important depends on how the generated events

will be used. As noted in the previous section, it could be interesting to ask how

agricultural outcomes in the post-∼2000 climate, where a significant rise in intense

precipitation appears to have occurred, may compare to those experienced prior to

2000. Statistics for the Rutland and Burlington weather stations for 1970 – 1999 and

2000 – 2018 are in broad agreement with the region-wide trends described in Ch. 1:

at both sites, total precipitation is higher in the more recent period, and the 95th
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and 99th percentiles have also risen (Table 4.1). To be clear, the difference between

the distributions of precipitation data in the two time periods is only significant at

the Burlington weather station (at the p<0.05 level). Nonetheless, the fact that their

properties are consistent with those derived from more comprehensive and sophisti-

cated analyses suggests that it could be worth simulating agricultural outcomes from

climates with these characteristics2.

The actual distribution for the 2000 – 2018 period at Burlington is shown in the

right-hand panel of Figure 4.1 (and statistics given Table 4.1). The difference between

the 1970 – 1999 and 2000 – 2018 precipitation distributions at Burlington – which

a K-S test finds to be significant at p = 0.02 – is small. In fact, it is comparable

to the difference between the distributions of actual and generated events for 1970 –

1999 at that site, even after the initial Weather Import statistics have been adjusted

to better represent the data. This suggests that it is not useful to separately model

pre-and post-2000 climates. Instead, a single period, 1990 – 2008, will be used as the

baseline climate scenario.

4.1.3 Summary of Scenarios

The properties of the climates that were ultimately selected are illustrated in Figures

4.2 and 4.3 and listed in Table 4.2. The scenarios are:
2We of course have records of the actual daily weather for 1970 – 1999 and 2000 – 2018, so it would

be possible to simply model those periods using historical data and measure (to the model’s degree
of accuracy) the actual distribution of agricultural outcomes that took place. However, in practice
it would be preferable to characterize the climate statistically, generate many realizations of those
climates, and run APEX for each one of them. This would allow a more accurate quantification of
extreme (rare) outcomes. Also, if the model does not predict absolute quantities well but can predict
relative outcomes more accurately, comparing model outcomes produced in an identical manner is
preferred.
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Figure 4.2: Some statistical properties of the hypothetical climate scenarios, Rutland weather
station (for the PAW1 site).

1980 – 2009: All of the hypothetical future scenarios are defined relative to this

baseline period. The monthly statistics that define this climate are the “corrected”

Weather Import numbers described in the previous section.

Warmer: Each month’s maximum and minimum temperature is increased by

2°C relative to the 1980 – 2009 climate. This is similar to the temperature rise of 2 –

3° C between ∼1970 – 1999 and the mid-21st century found in the model projections

of Hayhoe et al. (2007) and Guilbert et al. (2014). (Note that the kind of analysis

presented in §4.1.2 was not done for temperature, and it was simply assumed that

APEX’s monthly statistics can provide an adequate representation of a 2° C differ-

ence.)
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Figure 4.3: Some statistical properties of the hypothetical climate scenarios, Burlington
weather station (for the WIL2 site)

All of the subsequent scenarios use the temperatures of the “Warmer” scenario.

Wetter: Total precipitation is raised by 20%. This is achieved by increasing the

monthly number of rainy days by 20%. This only affects the total precipitation; the

median and 95%-ile are unchanged. Annual increases in total precipitation of ∼5-8%

by mid-century were modeled by Hayhoe et al. (2007), but total precipitation already

appears to have risen by 13% since 2002 (Huang et al., 2017).

Wet Spring: 25% of the precipitation in June, July, and August is added to

March, April and May. This is achieved by decreasing/increasing the monthly number
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of rainy days by 25%. This changes the total annual precipitation whilst the median

and 95%-ile remain approximately the same. This scenario is of interest because farm

operations are particularly sensitive to wet spring conditions (§1.2). Also, Hayhoe

et al. (2007) find that climate models expect an increase in cool season precipitation

(although they only discuss December – February) possibly combined with a slight

decrease in warm-season rainfall.

Intense Rain: In this scenario the 95%-ile of precipitation rises by 30%. This

is achieved by increasing the monthly storm standard deviation by a factor of 1.25

(WIL2) or 1.28 (PAW1). Increasing the standard deviation also results in higher total

and median precipitation. To isolate the effect of intense precipitation, the total for

this scenario was “reset” by decreasing the number of days on which precipitation

occurs by a factor of 0.8 (WIL2) or 0.85 (PAW1). Median precipitation remains

higher and has more month-to-month variability than in 1980 – 2009.
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Table 4.2: Annual precipitation properties of the climate scenarios. Days with zero precipitation have been
excluded from the calculations.

Scenario Description 50%-ile 95%-ile 99%-ile Total Days w/
mm mm mm mm precip.

PAW1
1980 – 2008 Local weather stationa 4.1 26.4 47.1 1032 133
Warmerb 1980 – 2009 plus T+2°C, year-round 4.1 26.1 47.2 1024 133
Wetter “Warmer” plus total precip. + 20% 4.1 26.1 46.2 1227 160
Wet Spring “Warmer” plus 25% of Jun/Jul/Aug 4.0 25.5 45.5 1007 133

precip. added to Mar/Apr/May
Intense Rain “Warmer” plus 95%-ile precip. + 30% 4.7 33.9 59.9 1059 113
WIL2
1980 – 2008 Local weather stationa 3.2 22.0 40.3 976 156
Warmerb 1980 – 2009 plus T+2°C, year-round 3.2 21.9 39.9 975 156
Wetter “Warmer” plus total precip. + 20% 3.2 21.7 39.8 1166 187
Wet Spring “Warmer” plus 25% of Jun/Jul/Aug 3.2 21.4 38.2 959 157

precip. added to Mar/Apr/May
Intense Rain “Warmer” plus 95%-ile precip. + 30% 4.1 28.4 50.9 982 125

a Rutland for the PAW1 watershed, Burlington Airport for the WIL2 watershed; see §2.2.2
b “Warmer” uses the same monthly precipitation statistics as “1980 – 2009”. The small differences in the descriptive
statistics result from random number generator seeds not being fixed in the Python code used to recreate APEX’s
daily weather generation method (§4.1.2).

189



4.2 APEX Simulation Procedure

APEX was run 998 times for each of the scenarios listed in §4.1.3. The APEX setup

was exactly that derived for the final, calibrated model at each site (§3.3.5, 3.4.1),

except that NGN was set to -1 (telling APEX to generate daily weather) and for each

run the random number generator seed (IGN parameter) was incremented so that

a unique set of daily weather files was generated from the monthly statistics files.

The WP1 files were generated as described in the previous sections. Annual runoff,

sediment, and nutrient loss values were collected for each run, along with annual crop

yields and stresses. These distributions are presented and interpreted in §4.3.1 and

4.3.2.

In addition, a separate set of runs was made to investigate whether the climate

scenarios might affect the scheduling of farm operations. This was achieved by reduc-

ing the value of PARM78 from 10 to 1 and then repeating the runs described above.

PARM78 sets the ratio of soil water:field capacity above which operations will be

delayed, so a value of 10 effectively means that operations will never be postponed.

Farmers do not commonly base operations decisions on a specific, measured value of

soil water, but some extension publications recommend avoiding working in the fields

when soil moisture is roughly equal to field capacity (Al-Khaisi and Licht, 2005), i.e.,

PARM78=1.

Unlike runoff, crop yield, etc., APEX does not summarize the number of days by

which an operation is delayed in annual output files with a regular format. Instead,

that information is printed as part of the program’s main log (.OUT) file in free text

format. Whenever an operation does not occur on the scheduled date, preceding lines
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Figure 4.4: Screenshot of part of an APEX .OUT file. The highlighted string “PDSW”
indicates that the subsequent operation did not occur on Sep 27th because of excessive soil
water. The following line indicates that the harvest operation was carried out on Sep 28th.
Searching for instances of “PCUS YLD=” preceded by “PDSW” allow the days of delay to
be counted for each year in the simulation.

in the file print the value of “PDSW”, the plow depth soil water, for the days on which

PARM78 was exceeded and the operation could not be executed (Figure 4.4). Python

code was therefore written to parse this output by counting sequential occurrences of

PDSW and linking them to a regular expression identifying the subsequent delayed

operation. The results of this investigation are described in §4.3.3.
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.
Table 4.3: Median and 95th percentile of annual runoff and erosion, and totals
over the indicated time period, in the five climate scenarios described in §4.1.3

Scenario Runoff, mm Sediment, t ha−1

50%-ile 95%-ile Total 50%-ile 95%-ile Total
PAW1 2012 – 2015
1980 – 2008 309 519 1282 1.61 3.36 7.05
Warmer 299 505 1246 1.44 3.08 6.35
Wetter 304 515 1262 1.50 3.14 6.58
Wet Spring 305 514 1259 1.42 3.06 6.29
Intense Rain 338 595 1425 1.76 4.01 7.98
WIL2 2012 – 2017
1980 – 2008 31.4 85.5 224 0.050 0.200 0.424
Warmer 30.3 84.8 218 0.051 0.200 0.429
Wetter 32.5 88.0 231 0.056 0.212 0.462
Wet Spring 29.2 83.8 213 0.048 0.194 0.408
Intense Rain 42.7 132 315 0.079 0.333 0.668

4.3 Results

4.3.1 Runoff, Erosion, and Nutrient Losses

Distributions of annual runoff, sediment, and nutrient loss values for PAW1 and

WIL2 for the five climate scenarios are shown in Figures 4.5 – 4.9. Some statistical

properties are given in Tables 4.3 and 4.4. These statistics relate to the years 2012

– 2015 for PAW1 and 2012 – 2017 at WIL2, the years for which we have actual

management records and can ask “what might have happened on these farms in a

different climate?”.
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Table 4.4: Median and 95th percentile of annual nutrient lossesa, and total losses over the indicated time
period, in the five climate scenarios described in §4.1.3

Scenario Runoff P, kg ha−1 Sediment P, kg ha−1 Sediment N, kg ha−1

50%-ile 95%-ile Total 50%-ile 95%-ile Total 50%-ile 95%-ile Total
PAW1 2012 – 2015
1980 – 2008 0.88 1.86 3.91 1.51 3.28 6.67 4.67 9.73 20.5
Warmer 0.90 1.80 3.93 1.44 3.08 6.34 4.76 9.68 20.7
Wetter 0.97 1.94 4.23 1.51 3.16 6.63 4.77 9.59 20.8
Wet Spring 0.81 1.69 3.60 1.41 2.98 6.23 4.67 9.61 20.5
Intense Rain 0.99 2.12 4.46 1.74 3.89 7.80 4.76 10.3 21.2
WIL2 2012 – 2017
1980 – 2008 – – – 0.129 0.470 1.04 – – –
Warmer – – – 0.136 0.469 1.06 – – –
Wetter – – – 0.153 0.491 1.15 – – –
Wet Spring – – – 0.129 0.449 1.01 – – –
Intense Rain – – – 0.198 0.719 1.56 – – –

a Runoff N is omitted because neither the PAW1 model nor the WIL2 model was capable of satisfactorily simulating
that quantity (§3.5). The WIL2 model only gave reasonable results for sediment-bound P.
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For runoff and sediment, a similar pattern holds at both sites: little change rel-

ative to 1980 – 2009 except in the case of Intense Rain. In Warmer, Wetter, and

Wet Spring, median runoff decreases by ≤3% at PAW1, and changes by ≤ 7% at

WIL2. The lower runoff in the Warmer scenarios presumably results from increased

evapotranspiration/lower soil moisture. Runoff is also marginally lower in the Wetter

and Wet Spring scenarios at PAW1 and in the Wet Spring scenario at WIL2. This

can probably be explained by the slightly higher crop yield in those cases (§4.3.2).

The small changes in sediment loss in Warmer, Wetter, and Wet Spring are always

in the same direction as runoff.

During the setup and calibration process it was found that the PAW1 model

reproduced events in a high-runoff year reasonably well while overestimating runoff

in a low-runoff year. It is therefore possible that the model overestimates runoff in the

1980 – 2009 scenario relative to the higher-rainfall scenarios, at least at PAW1. The

“real” effect of higher temperatures and total rainfall could actually be an increase

in runoff. Nonetheless, in a warmer climate, increasing total rainfall or shifting rain

from summer into spring appears to have relatively minor effects on runoff.

The intensity of precipitation appears to be a more important factor than the

total amount. In the Intense Rain scenario, runoff and sediment increase at both

farms. Median runoff and soil loss increase by 9% at PAW1, and by 36% and 58%

respectively at WIL2 (albeit from very low initial values at WIL2).

As far as nutrients are concerned, sediment-bound P behaves in a similar manner

to runoff and sediment: little change except for the Intense Rain scenario where

median P loss increases somewhat (15% at PAW1, 53% at WIL2). Runoff P could

only be simulated reasonably at the PAW1 site. Again, changes are fairly small. The
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Figure 4.5: Distributions of annual runoff (upper panels) and sediment (lower panels) at the
PAW1 site for the five climate scenarios described in §4.1.3. Box plots (left-hand panels)
are used to indicate the median (horizontal line), first and third quartiles (box limits) and
5th and 95th percentiles (whiskers). The right-hand panels show cumulative frequency dis-
tributions for the same outcomes and scenarios. Only the years 2012 – 2015 are included in
the PAW1 figures in this chapter, as the aim is to simulate actual, recorded farm operations
in a range of climates.

largest shifts are increases of 10% from 1980 – 2009 to Wetter, and 13% to Intense

Rain.

The behavior of N in sediment (which, again, could only be simulated at PAW1),

does not follow the same clear pattern. Median sediment N changes by only 2%

between scenarios. The main (but still small) difference is that the 95%-ile in Intense

Rain is higher than in the other scenarios.

More generally, the 95%-ile of outcomes increases by more than the median in the
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Figure 4.6: Distributions of annual runoff (upper panels) and sediment (lower panels) at
the WIL2 site for the five climate scenarios described in §4.1.3. Box plots (left-hand panels)
are used to indicate the median (horizontal line), first and third quartiles (box limits) and
5th and 95th percentiles (whiskers). The right-hand panels show cumulative frequency dis-
tributions for the same outcomes and scenarios. Only the years 2012 – 2017 are included in
the PAW1 figures in this chapter, as the aim is to simulate actual, recorded farm operations
in a range of climates.

Intense Rain scenario. For sediment at PAW1, for example, the median rises by 9%

but the 95%-ile increases by 19%. Because the distribution of erosion events is skewed

in this way (Figure 4.5), the total soil loss also increases by more than the median,

by 13%. The PAW1 calibrated model tended to underestimate the magnitude of

large sediment and nutrient loss events (§3.3.5), so it is possible that these numbers

should be even higher. Higher total losses, and a higher fraction of large events, could

have implications for the effectiveness of management practices designed to reduce
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Figure 4.7: Distributions of annual runoff P and sediment P losses at the PAW1 site for
the five climate scenarios described in §4.1.3.

sediment and nutrient losses. This is revisited in §4.4.

4.3.2 Crop Yields

Annual crop yields in the various climate scenarios are shown in Figures 4.10 and

4.11, along with annual days of water (i.e. drought) and temperature stress (WS, TS;

all other stresses are negligible in all scenarios). The median and standard deviation

of the yields are given in Table 4.5. The standard deviation was selected because

it may be a useful indicator of the predictability of crop yields in future climates

(ignoring other factors like pest damage), and could potentially be translated into
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Figure 4.8: Distributions of annual sediment N loss at the PAW1 site for the five climate
scenarios described in §4.1.3. (The PAW1 model was not able to produce acceptable results
for runoff N.)

the likelihood of achieving an economically viable yield.

The way in which forage yields change between the climate scenarios is quite

different from the changes in runoff etc. At PAW1 the median yield is lowest in the

1980 – 2009 scenario, rises in the Warmer scenario, decreases marginally as rainfall

increases in Wetter, then rises slightly again in Wet Spring before dropping slightly

again in Intense Rain. In contrast, at WIL2 the highest median yield occurs in 1980

– 2009. The relative yields in the other scenarios are qualitatively the same as at

PAW1, but none of the hypothetical climates produces as much forage as 1980 –

2009. Overall, though, the yield changes are quite small; <10% over all scenarios at

both sites.

The pattern of yields is not clearly related to patterns of crop stress. APEX reports

the number of days each year when each source of stress is the one that regulated

(decreased) crop growth, and these numbers change as temperature and rainfall are

altered. At PAW1, increasing temperatures in the Warmer scenario decreases days

of temperature stress. Days of water stress increase, but total stress days decrease.

198



Figure 4.9: Distributions of annual sediment P loss at the WIL2 site for the five climate
scenarios described in §4.1.3. (The WIL2 model was not able to produce acceptable results
for runoff P or for N.)

This, combined with the higher heat unit uptake that presumably also occurs, may

be the reason for the generally higher yields in the future, warmer climates.

At WIL2, however, increased temperatures contribute to a larger reduction in total

stress days, but yields are also reduced. There are other, smaller oddities as well. At

PAW1, WS increases slightly in Wetter even though precipitation occurs on more

days, and TS decreases despite the fact that APEX simulates lower temperatures

on rainy days (Williams et al., 2012). Days of water stress are fewer in Wet Spring

despite 25% of the June – August precipitation having been shifted to March – May.

These counterintuitive results may simply arise from the kind of complex, nonlinear

interactions between weather, soil processes, and crop growth that require the use of

a hydrological model in the first place.

The increase in temperature and changes in precipitation modeled in this Chapter

appear to have a modest, positive effect on median silage corn yields at PAW1, but

slightly negative effects at WIL2. Regardless of whether yields increase or decrease,

variability increases somewhat at both sites in all scenarios relative to 1980 – 2009,
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Table 4.5: Forage yield, water stress, and temperature stress for the
five climate scenarios described in §4.1.3.

Scenario Yield WS TS WS+TS
50%-ile Std. dev 50%-ile 50%-ile 50%-ile
t ha−1 t ha−1 days days days

PAW1
1980 – 2008 12.2 1.81 9.22 29.6 38.9
Warmer 13.0 2.14 16.7 18.2 34.8
Wetter 12.7 2.21 18.2 16.0 34.9
Wet Spring 13.4 2.12 15.9 18.5 34.4
Intense Rain 13.2 2.31 17.7 17.6 35.3
WIL2
1980 – 2008 13.7 2.00 9.47 36.1 45.5
Warmer 12.8 2.17 14.9 12.8 27.7
Wetter 12.5 2.19 16.4 11.2 27.6
Wet Spring 13.3 2.11 12.6 14.0 26.7
Intense Rain 12.9 2.28 15.37 13.1 28.5

and more markedly at PAW1. However, the magnitude of the variability is small

compared to the∼factor-of-3 variations in yield observed during the few-year duration

of the APME project (Figure 2.24), so it is probably not very relevant for planning

purposes.

4.3.3 Farm Operations

Results from the simulations in which soil water content can delay field operations

are given in Table 4.6. The spring manure applications and the planting operations

at PAW1 are rarely delayed; fewer than 1% of operations do not happen on time.

Any delays that do occur are small, ≤2 days. This is true for all climate scenarios.
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Figure 4.10: Upper panels: Percentiles and cumulative distribution functions for forage
yield at the PAW1 site for the five climate scenarios. Lower panels: Water stress (left) and
temperature stress (right).
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Figure 4.11: As for Figure 4.10 but for the WIL2 site.
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Table 4.6: Statistics describing delays to farm operations. All years are included in these statistics, including
the run-up period.

Scenario Spring manurea Planting Harvest
% delayedb Meanc Maxd % delayed Mean Max % delayed Mean Max

PAW1
1980 – 2008 0.09 1.03 2 0.10 1.03 2 13.9 1.92 13
Warmer 0.06 1.00 1 0.10 1.05 2 14.5 1.83 14
Wetter 0.05 1.00 1 0.06 1.00 1 14.0 1.57 10
Wet Spring 0.04 1.00 1 0.05 1.00 1 14.3 1.82 14
Intense Rain 0.10 1.00 1 0.11 1.07 2 12.4 1.63 12
WIL2
1980 – 2008 0.00 – – 0.00 – – 31.9 3.04 22
Warmer 0.00 – – 0.00 – – 27.8 2.36 22
Wetter 0.00 – – 0.00 – – 23.5 1.92 22
Wet Spring 0.00 – – 0.00 – – 29.2 2.41 22
Intense Rain 0.00 – – 0.00 – – 24.4 2.38 22

a Fall manure at WIL2 is not shown, but no delays were found in any scenario.
b Fraction of runs in which the operation was behind schedule.
c Mean of the non-zero delays, in days. The median of the non-zero delays is 1.0 for all scenarios at both sites.
d Maximum delay, in days.
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Only the harvest operation turns out to be delayed for any significant fraction

of the simulation years. This operation occurs late about 14% of the time at PAW1

and 23 – 32% at WIL2 in all scenarios, and can be delayed by as much as 14 days

at PAW1 and 22 days at WIL2. The proportion and magnitude of delays at PAW1

are similar across all climates, while there is a little more variation at WIL2. These

delays do not affect the statistics for runoff, sediment, nutrients, or yields.

If delays essentially occur only in the autumn, APEX must consistently estimate

higher soil water values at that time of year. Figure 4.12 shows daily soil moisture for

2013 at PAW1, from the setup/calibration simulations that used that year’s actual

daily weather as input. In 2013 Braun et al. (2016) describe the weather as being dry

in mid-March to mid-May, very wet in late May – early July, and average or drier

than usual through the rest of the summer and fall. In those conditions, APEX soil

moisture fell rapidly during the spring, stayed relatively low but with large excursions

as the crop took up water and large rain events occurred in June and July, then began

to rise again in ∼September.

If this temporal pattern of soil water is representative, harvest events in September

– October will be more prone to delays than manure spreading and planting operations

in ∼May. The larger fraction and extent of delays at WIL2 compared to PAW1 is

probably due to the later dates at which harvest took place at that site; as late as

November 9th in 2012.

This behavior seems contrary to experience in the field. Quantitative data regard-

ing delayed farm operations are scarce, but anecdotally, delays are usually associated

with wet spring weather and planting operations. Vermont extension personnel have

reported that “most farmers planted late [in 2017]... [2013 had] one of the wettest
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Figure 4.12: Model soil water for the PAW1 watershed in 2013, using actual daily weather.

Junes on record, so no doubt that a lot of farmers lost their initial plantings and had

to replant or had to plant late” (J. Faulkner, personal communication, 2018). There

is only one comment on weather-related delays at Pawlet and Williston during the

APME project (Braun et al., 2016), and that is that “wetness delayed planting of the

PAW2 field” in 2014.

The reasons why these APEX results appear to differ greatly from farmers’ expe-

rience are not understood by this author at this time. One contributing factor could

be that APEX delays planting operations until the soil temperature reaches the crop’s

base temperature (§2.2.4; the user has no control over this), so if low temperatures

and wet weather tend to occur together, this could mask delays caused by wet soils.
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Overall, though, it is not clear whether high soil moisture in the fall is a fundamental

characteristic of APEX models in Vermont’s precipitation regime or whether there

are parameters that influence soil water that should be changed during the setup and

calibration process. This may be a useful avenue for further investigation.

4.4 Discussion

It sounds straightforward to design realistic climate scenarios based on historical data

and model projections, obtain their monthly temperature and precipitation statistics,

and then use APEX to simulate agricultural outcomes in those climates. In prac-

tice, several complications are encountered. First, the climate is not well-behaved.

Gradual trends turn into abrupt changes and the models are uncertain and incon-

sistent. Second, the mass of statistical measures used to describe historical, recent,

and projected regimes makes it difficult to compare the published climate studies in

a consistent way. Also, the climates that can be simulated by APEX are constrained

to be those that can be adequately described by a skewed normal distribution3.

Once these issues have been taken care of, the mechanics of simulating agricultural

outcomes in a range of climates are fairly simple. In most cases, differences turn out to

be small. In the Warmer, Wetter, and Wet Spring scenarios, median runoff, sediment,

and nutrient loss changed by < 10%. These changes could be in either direction,

and differed slightly between sites, but the general picture in these scenarios is that
3Actually this isn’t quite true. APEX also gives the option of using a modified exponential

distribution. Brief experiments with this option did not produce reasonable rainfall, but it may
be worth further investigation. Also, the user could produce their own set of daily weather files
generated from an arbitrary distribution and feed these to APEX in lieu of the program generating
its own daily weather.
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outcomes do not change substantially. It should be noted that when the PAW1 model

was compared against edge-of-field data in Chapters 2 and 3, it tended to overestimate

runoff in low-runoff years relative to high-runoff years. This could imply somewhat

worse relative outcomes in the wetter climates than the model predicts, but this

possible bias cannot be quantified on the basis of the work done for this thesis.

Larger changes were found for the Intense Rain scenario. At the PAW1 site, where

runoff etc. are already at relatively high levels, median runoff, sediment, and nutrient

losses increase by ≈9 – 15%. At WIL2, the changes are much more pronounced:

median runoff increases by 36%, erosion by 56%, and sediment-bound P by 53%

(other nutrient loss pathways could not be simulated at WIL2). Fortunately, these

increases are relative to low baseline values.

In the Intense Rain scenario, the 95%-ile of outcomes increases by a larger factor

than the median. This means that total runoff and sediment/nutrient losses also

rise by more than the median. At PAW1 the increases in median, 95%-ile, and total

sediment losses are 9%, 19% and 13%, respectively. Higher total losses, and a larger

fraction occurring in large events, could have several implications for farms and their

surrounding environments.

First, severe erosion events can pose a threat to crops. In the APME study, Braun

et al. (2016) comment that “Several large runoff events in the spring of 2013 caused

substantial soil erosion of the PAW1 field... A thick layer of sediment was deposited...

at the lower end of the field, smothering young corn plants”. The farmer reported

that erosion and crop yield that year were the worst he had ever experienced.

Second, management practices that aim to reduce sediment and nutrient losses

could become less effective. BMPs generally work by some combination of encouraging
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soil aggregation and water infiltration, reducing the impact energy of raindrops and

the velocity at which rainwater moves across the land, and filtering out sediment and

nutrients. It is possible that there exist thresholds, either in terms of long-term total

loads or short-term pressures, above which these practices “saturate”. Indeed, some

modeling work finds that BMPs become “more necessary but less effective” under

climate change (Bosch et al., 2014). The Intense Rain scenario probably bears the

most relation to recent, observed changes in the climate in the US Northeast, but it

is not clear whether these trends will continue, strengthen, or weaken in the future.

Crop yields change in different ways at PAW1 and WIL2. At PAW1, all of the

climate scenarios have a mildly positive effect on median yields, which increase by

up to 10%. At least some of this increase is likely due to lower temperature stress

and higher heat unit uptake. At WIL2, yields decrease relative to 1980 – 2009 levels

by similar amounts, and the reason for this is unclear. Model yields become more

variable in all scenarios, but at a level that is dwarfed by the normal year-to-year

variations seen on real farms.

This behavior seems contrary to many published reports, which have warned that

temperature stress, drought stress, and pressures from weeds, insects and diseases

will cause field crop yields to decrease in this region (Frumhoff et al., 2007; Galford,

2014; Horton et al., 2014; Markowitz, 2017; Tobin et al., 2015). In one of the studies

underlying these reports, for example, Wolfe et al. (2008) derive temperature and pre-

cipitation data from downscaled global circulation models for two emissions scenarios,

and use that as input to a model that calculates infiltration, evapotranspiration, etc.

They point out that more frequent summer droughts will be occurring at the same

time as crop water requirements are increasing because of warmer temperatures, and
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find that all crops will be negatively affected by water deficits.

There are a few possible reason for this apparent discrepancy. One is that the

APEX models in this thesis and/or the published models could be generating inaccu-

rate results. To some extent, this is very likely true: model results should generally

be regarded as exploratory and indicative, rather than as firm predictions (Oreskes

et al., 1994).

Also, this thesis has modeled two particular sites in Vermont using future cli-

mates that are based on fairly conservative changes to recent conditions at those

locations. These hypothetical, location-specific climates may be quite different from

those based on region-wide projections from downscaled GCMs. In particular, the

most pronounced temperature and drought effects occur under higher emissions sce-

narios towards the end of the century (Guilbert et al., 2014; Hayhoe et al., 2007;

Wolfe et al., 2008). The climate scenarios modeled here do not include the much

higher temperatures of those scenarios. The crop model in APEX is also fairly sim-

ple, and does not include effects such as the shortened grain-filling period expected

in a warmer climate (Wolfe et al., 2008).

The APEX models used in this section were calibrated to reproduce observed

runoff, erosion, nutrient losses, and crop yields. They were also used to investigate the

possibility that a wetter future climate will cause losses to farmers by delaying spring

farm operations. At least in the configuration used in this study, the models calculate

that soil moisture will delay autumn harvest operations but not spring planting and

manure spreading. This seems contrary to real-world experiences. Further work is

needed to understand the underlying cause of this behavior, and whether parameters

can be found that lead to more realistic outcomes.
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5 Conclusions

Dairy farming is in many ways at the heart of Vermont. It sustains rural communities,

creates delicious food, and plays a big role in shaping the much-loved landscape of

the state. At the same time, the industry has also contributed to environmental

problems, and – along with dairying in much of the rest of the country – finds itself

in a deeply troubled economic state.

Climate change threatens to make the current situation worse. Increasingly intense

storms could sweep more soil, phosphorus, and nitrogen into the state’s waterways. A

wetter start to the year could keep farmers from planting their corn on time, and crops

may suffer from hot days and summer droughts. These issues have been investigated

in general, region-wide modeling studies, but many gaps in our knowledge remain.

Better predictions of how climate change will affect agricultural outcomes, including

delays to farm operations, should help farms adapt to a warmer, wetter world.

This thesis has started to fill in those gaps. The first task was to investigate

whether the APEX model could adequately simulate runoff, sediment, nutrient losses,

and crop yields on two local farms, comparing model outputs with data obtained

on the farms themselves. The second was to carry out a pilot study of outcomes,

including weather delays, in a handful of hypothetical climates.
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The scope of this study has been narrow but deep. Partly, this is because of

the need to critically evaluate the models. Silberstein (2006) asked, “If hydrological

models are so good, do we still need data?”. According to several recent papers, the

answer is “yes”. Baffaut et al. (2017) found that APEX could not be relied upon to

give satisfactory results without being calibrated using dedicated water quality data.

In other cases, even calibrated models could not adequately reproduce sediment or

water quality measurements (Ramirez-Avila et al., 2017), or performed poorly when

used to model management that was not used in the calibration data set (Bhandari

et al., 2016).

Calibration is important, but to the best of this author’s knowledge no standard

procedure or worked examples exist. APEX is extensively documented in terms of its

underlying equations and principles (Williams et al., 2012), and its input and output

files and variables (Steglich et al., 2016). General calibration guidelines exist in the

literature (Daggupati et al., 2015; Wang et al., 2012), some supporting tools are also

available (e.g. Wang et al., 2014; Wang and Jeong, 2016), and modeling workshops

are offered from time to time. However, papers based on APEX often do not fully

document their procedures and choice of model parameters. Some have argued that

the hydrology/water quality modeling community is only beginning to grasp issues

of transparency and reproducibility in research (Saraswat et al., 2015).

For those reasons, the APEX models in this thesis were created and calibrated

using a rich set of data collected by a project that aimed to quantify the effects of

best management practices on local dairy farms (the APME project; Braun et al.,

2016). A calibration procedure was developed that paid close attention to some of

the many processes occurring in the model, attempting to understand the causes of
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problems and find opportunities to improve the model. Extensive use was made of

the graphical and statistical performance indicators recommended by Moriasi et al.

(2007, 2015).

The setup and calibration steps, described in Chapters 2 and 3, are most likely

imperfect, incomplete, and will not apply to all modeling applications. However, they

might be a useful starting point for others who are new to modeling, either as a case

study that can illuminate some of the considerations involved in model calibration,

or as a living document that can be improved upon by the community. The APEX

input and output files for the calibrated models, and some supporting materials, are

made available as described in Appendix 1.

The performance of the uncalibrated, “baseline” models was not good. For most

of the outputs the Nash-Sutcliffe Efficiency (NSE) was <0, meaning that the mean

of the data was a better predictor than the model. Runoff is generally the easiest

quantity for a model to get right, and the total runoff summed over all events was

within 25% of the observed value at PAW1. However, it was overestimated by a factor

of three in the WIL2 model.

Calibration improved the performance measures significantly. NSE for runoff and

sediment increased from 0.41 and -0.05 to 0.47 and 0.22, respectively, at PAW1; and

from -11.7 and 0.68 to 0.39 and 0.78 at WIL2. The PBIAS measure for all outputs

was within ±10%, indicating that the models reproduced the observed total crop

yield, runoff, sediment, and nutrient losses to within a small margin.

Still, the calibrated models fell short of what is considered a satisfactory model

in the scheme of Moriasi et al. (2007, 2015). The PAW1 model tended to predict

too much runoff etc. in low-runoff years compared to high-runoff years, and also
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systematically underestimated large events. These tendencies were not apparent in

the WIL2 model, although the smaller number of comparison events made that model

more difficult to evaluate. In addition, NSE values for some of the nutrient outputs

(runoff N at PAW1 and all but sediment P at WIL2) remained below zero. Model

predictions for those nutrient loss pathways were excluded from the remainder of the

study.

The calibrated models were used in Chapter 4 to simulate runoff, erosion, and

some nutrient losses on the two farms in a small set of hypothetical future climates.

Selecting these climate scenarios was surprisingly difficult. Ideally, the way in which

hypothetical climates relate to recent observations and climate model predictions

would be clear, but climate assessment papers do not always report the same statis-

tical measures, baseline time periods, and other quantities of interest. Nevertheless,

four scenarios were constructed in which monthly temperatures were increased by 2°

C (“Warmer”), total precipitation increased by 20% (“Wetter”), 25% of precipitation

shifted from June, July, and August to March, April, and May (“Wet Spring”), and

the 95%-ile of precipitation increased by 30% (“Intense Rain”).

In the Warmer, Wetter, andWet Spring scenarios, there was little change to runoff,

sediment, and nutrient losses. Only the Intense Rain scenario was different. In that

scenario, median runoff, sediment, and nutrients changed by 2 – 15% at PAW1 and

36 – 53% at WIL2 (albeit from very low baseline values at WIL2). More importantly,

the 95%-ile of all environmental outcomes increased by more than the median, as did

total runoff, sediment, and nutrient losses. Having more total sediment and nutrient

loss, and more of it happening in large events, could pose problems for both farm

operations and field practices that aim to reduce environmental problems.
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Chapter 4 also found that changes in crop yields are small, ≤10%. These findings

are rather muted compared to predictions in recent assessments of agriculture and

climate change (Frumhoff et al., 2007; Galford, 2014; Horton et al., 2014; Markowitz,

2017; Tobin et al., 2015). Such reports warn that hot, dry summers will cause field

crop yields to fall, but any signature of that in the APEX simulations was minor. In

fact, yields at PAW1 actually increased slightly relative to the recent climate baseline.

The reasons for this are probably related to the specifics of the climates that

were modeled. The scenarios presented here do not include the 4–5° C temperature

increase expected by the end of the century in some emissions pathways, and those

are the conditions in which the largest yield declines are seen in other simulations.

As well as runoff, water quality, and yields, APEX can in principle also estimate

how often and for how long farm operations will be delayed due to wet soils. This

was also investigated in Chapter 4. Contrary to real-world experiences, only the fall

silage harvesting operation ever experienced significant delays. The reasons for this

are presumably to do with how APEX calculates soil moisture, but it is not clear at

this point whether and how this could be improved.

5.1 Limitations

For clarity, the limitations of this study are highlighted below:

• The model was calibrated using a limited set of field data with unquantified, and

possibly large, errors and uncertainties. In addition, some model parameters

and outputs could be only approximately mapped to the field measurements.

• Because of limitations in the available automatic calibration software, the cal-
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ibration and some of the sensitivity analysis were done manually. Automating

these activities would have allowed a wider search of the model parameter space,

possibly leading to the identification of better-performing models.

• Partly due to the limited number of runoff events in the calibration data set,

the models were calibrated using all the available data for each site. No data

were held out for model validation.

• The final model performance statistics were usually lower than those that have

been suggested in the literature as indicating satisfactory model performance

(although those criteria should depend on the purpose of the modeling, are not

well-established for APEX, and are probably affected by publication biases).

Some outputs (e.g. some nutrient losses) could not be reliably simulated at all,

and delays to farm operations were not well reproduced.

• The model results could not be associated with error bars or confidence intervals.

• The range of farming systems and climate scenarios simulated in this pilot study

was small.

• Further work is needed to elucidate how the results in this thesis compare to

those of other studies that may have examined different climates and included

different processes (e.g. pest damage) in their simulations.

5.2 Future Work

Although the present work is limited in scope, it suggests numerous possibilities for

future research. Obtaining reliable results from hydrological models is important for
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a number of reasons, from climate change adaptation to the possibility of reducing

pollution through nutrient credit trading between farms. Evaluating the accuracy

of model outputs, or the range of outcomes that could be obtained by reasonable

modelers, would therefore be of interest.

Even though automatic calibration tools are now available to aid with obtaining

reproducible results in a systematic manner, there are still many subjective decisions

to be made when setting up a model. Many manually-calibrated models also exist

in the literature. It would be an interesting exercise to assign the same modeling

task to two or more people, requiring them to work independently, and see whether

they obtained consistent results. A similar test could be done using software to

find all parameter combinations that produced acceptable model results, then use

the distribution of model outcomes to assign confidence intervals to the results (see

Moriasi et al., 2016, for related work).

The calibrated PAW1 and WIL2 models could be used to simulate outcomes in a

wider range of climates. If the full range of historical, recent, and projected climates

were quantified in a consistent manner, the full parameter space could be explored. A

grid like this could identify sudden changes in outcomes, or climates with especially

negative or beneficial effects. Calibrating models for the hay farms in the APME

study would allow climate effects on those systems to be evaluated, in addition to the

corn-growing farms modeled in this thesis. The work could also perhaps be extended

to rotational grazing systems using data from Gilker (2005).

The APME data could also be used to help construct models of BMPs in future

climates. As noted above, BMP efficacy may be impaired when more runoff etc. comes

from large events, and there are indications that models should be calibrated using
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data obtained under the same management that they will be used to model (Bhandari

et al., 2016). This would probably not be a straightforward task, though. The period

in which BMP data were gathered in the APME project was short compared to

the control period, so calibration data will be more limited, and the project itself

concluded that the effects of the BMPs were often the opposite of what was expected

(Braun et al., 2016).

The present work was not successful in using APEX to obtain predictions for how

farm operations may be delayed by wet soils in future, wetter climates. Resolving this

issue would require digging into the mechanics of how APEX calculates soil moisture,

and probably writing dedicated software to identify and optimize influential param-

eters. Current APEX auto-calibration tools are not equipped to handle operations

delays as a calibration variable.

5.3 Final Thoughts

Times are hard for Vermont’s dairy farms. The price paid for milk cannot cover the

cost of production, and another round of sell-offs and farm consolidation appears to

be underway (D’Ambrosio, 2018). Even the historically less vulnerable organic sector,

and the newer, niche “grass-milk” producers are struggling.

Many observers connect the current problems to structural issues within the dairy

industry and in agriculture in general, including the perennial problem of ever-higher

production leading to ever-lower prices. To this, climate change adds many challenges,

and perhaps some opportunities for those who have the capacity to adapt. It is hoped

that the work in this thesis provides a foundation for more extensive work that can
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warn of dangers and highlight possibilities in our changing world. In the meantime,

to the farms that are struggling to get through this difficult period and (hopefully)

on to the next high point in the cycle, I wish the very best of luck.
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A Appendix 1

The APEX files needed to run the PAW1 and WIL2 calibrated models can be found

here. This folder contains:

• PAW1_NP19: Input and output files for the PAW1 calibrated model, using

historical daily weather data.

• PAW1_climate: Input files for running multiple PAW1 simulations for the cli-

mate scenarios in Ch. 4, and some sample output files.

– For 1980-2009, use RUT_80_09.WP1

– For Warmer, use RUT_warme.WP1

– For Wetter, use RUT_plus.WP1

– For Wet Spring, use RUT_wetSp.WP1

– For Intense Rain, use RUT_inten.WP1

– batchJob.ipynb can be used to run multiple simulations

• WIL2_NP8: Input and output files for the WIL2 calibrated model, using his-

torical daily weather data.
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• WIL2_climate: Input files for running multiple WIL2 simulations for the cli-

mate scenarios in Ch. 4, and some sample output files.

– For 1980-2009, use BTV_80_09.WP1

– For Warmer, use BTV_warme.WP1

– For Wetter, use RUT_plus.WP1

– For Wet Spring, use BTV_wetSp.WP1

– For Intense Rain, use BTV_inten.WP1

– batchJob.ipynb can be used to run multiple simulations

All other material used in the production of this thesis – baseline models, inter-

mediate calibration steps, code used for data manipulation and figure creation, etc.

– may be obtained from the author on request.
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