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Abstract

Machine-to-machine (M2M) communication is becoming an important aspect of warehouse man-
agement, remote control, robotics, traffic control, supply chain management, fleet management
and telemedicine. M2M is expected to become a significant portion of the Industrial Internet
and, more broadly, the Internet of Things (IoT). The environments in which M2M systems
are expected to operate may be challenging in terms of radio wave propagation due to their
cluttered, multipath nature, which can cause deep signal fades and signal depolarization. Po-
larization diversity in two dimensions is a well-known technique to mitigate such fades. But
in the presence of reflectors and retarders where multipath components arrive from any direc-
tion, we find the detrimental effects to be three-dimensional and thus consider herein mitigation
approaches that are also 3D. The objectives of this dissertation are three. First, to provide a the-
oretical framework for depolarization in three dimensions. Second, to prepare a tripolar antenna
design that meets cost, power consumption, and simplicity requirements of M2M applications
and that can mitigate the expected channel effects. Finally, to develop new channel models in
three dimensional space for wireless systems.

Accordingly, this dissertation presents a complete description of 3D electromagnetic fields,
in terms of their polarization characteristics and confirms the advantage of employing tripolar
antennas in multipath conditions. Furthermore, the experimental results illustrate that highly
variable depolarization occurs across all three spatial dimensions and is dependent on small
changes in frequency and space. Motivated by these empirical results, we worked with a collab-
orating institution to develop a three-dimensional tripolar antenna that can be integrated with
a commercially available wireless sensor. This dissertation presents the testing results that show
that this design significantly improves channels over traditional 2D approaches. The implica-
tions of tripolar antenna integration on M2M systems include reduction in energy use, longer
wireless communication link distances, and/or greater link reliability. Similar results are shown
for a planar antenna design that enables four different polarization configurations. Finally, the
work presents a novel three-dimensional geometry-based stochastic channel model that builds
the channel as a sum of shell-like sub-regions, where each sub-region consists of groups of mul-
tipath components. The model is validated with empirical data to show the approach may be
used for system analyses in indoor environments.
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1 Introduction

1.1 Motivation

Wireless systems are being deployed in evermore complex environments. Such environments can

consist of a variety of surfaces that block and/or reflect the wireless signals thus introducing

non-line-of-sight (NLOS) and/or multipath conditions, respectively. Signals may arrive at the

receiving antenna not only through the direct path, i.e., the line-of-sight (LOS) path, but also

on multiple indirect paths, due to different electromagnetic effects such as signal reflection,

diffraction. These signal components arrive with a certain delay, phase, and amplitude difference

relative to the LOS component. We will call these signal components, multipath components

(MPCs), and the phenomena, multipath propagation. Multipath can not only cause fading in

a channel but also depolarize the transmitted signal [4]. A well-known approach to mitigating

multipath is to leverage multiple branches whose fading statistics are poorly correlated [5].

Branches can, for example, consist of utilizing multiple frequencies, antennas, or polarizations.

This is called channel diversity.

Machine-to-Machine (M2M) communication is the self-determining interaction of a large

number of machine devices to perform sensing, processing, and actuation activities without hu-

man involvement [6]. This communication paradigm is becoming very popular in wide areas such

as smart grids, e-healthcare, home area networks, intelligent transportation systems, environ-

mental monitoring, smart cities, and industrial automation [7]. For M2M systems that involve

multiple devices, coordinating multiple frequencies is not a tenable diversity approach, for it

is possible that an appropriate frequency for one particular device to device link may exhibit

deep fades in another. Employing multiple antennas (i.e., spatial diversity) requires elements to

be located sufficiently far from each other (∼ λ/2) to guarantee decorrelation of fading effects.

This constraint makes spatial diversity a less than desirable approach for applications where

the size of the antenna system is a crucial design parameter. Cross-polarized antenna systems

resolve this problem by using perpendicular antennas. This technique reduces the correlation

while keeping antennas co-located.

Polarization diversity in two dimension has been long considered [8, 9]. However exploiting
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all three polarizations in multipath conditions is comparatively a new concept [10]. Three di-

mensional polarization diversity can be regarded as a suitable technique for implementation for

applications where device size and power consumption is a concern.

1.2 Concepts

In this section, I overview some basic concepts that have been largely used throughout this

dissertation.

1.2.1 What is fading?

The wireless channel refers to the electromagnetic propagation environment that lies between

a transmit antenna and a receive antenna. The transmitted electromagnetic wave interacts

with the surrounding environment before reaching to the receiving antenna. The interaction

of the electromagnetic waves with their surrounding is very complicated, especially in cluttered

environments. The transmitted signal goes through several kinds of attenuation mechanisms:

including path loss, shadowing, multipath attenuation etc. These fading types can be classified

into two main categories: large-scale fading and small-scale fading.

Large-scale fading is the result of path loss and shadowing effects. The solution of Maxwell’s

equations reveal that the magnitude of the electric field in the free space is inversely proportional

to the traveled path. The free space path loss can be expressed as follows [11].

Pr
Pt

=

[√
Glλ

4πd

]2
(1)

where, Pr and Pt are the transmit and the receive power, respectively.
√
Gl is the product of the

transmit and receive antenna field radiation patterns and λ is the wavelength of the transmitted

signal. d denotes the distance between the transmitting and receiving antenna. Another type

of fading is shadowing that is the result of obstacles between the transmitter and the receiver.

Since the variations due to both path loss and shadowing occur over large distances, they are

categorized as large-scale fading types.

Small-scale fading, on the other hand, refers to variation in the received signal over very short

distances (on the order of the signal wavelength) or short period of time or small movements
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Figure 1.1: Types of fading in wireless communication

in frequency. Two phenomena cause small-scale fading in a wireless channel. First, multipath

spread that is the outcome of the constructive and destructive interference of the different prop-

agation paths arriving from various directions. Second, Doppler spread that is the result of

moving the transmitter of a signal in relation to the receiver. Classification of fading types

is shown in Fig. 1.1 [11]. Multipath fading can affect wireless communication channels in two

general ways:

• Flat fading: This fading affects all the frequencies across a given channel almost equally.

• Frequency-selective fading: This fading affects different frequencies across the channel dif-

ferently. Sometimes relatively deep nulls may be experienced in the frequency response.

This effect can be reduced by exploiting diversity techniques [12]. The focus of this dis-

sertation is mostly on the effects, characterization, and mitigation of this fading type in

wireless channels.

The main mechanisms of multipath wave prorogation can be classified as follows (Fig. 1.2) [13]

• Reflection occurs when signal encounters a smooth surface (in sense of Rayleigh criteria

[14]) that is large relative to the wavelength of the signal.

• Diffraction happens when the path is blocked by an object with large dimensions relative

to wavelength of the signal and sharp edges. Diffraction causes bending of waves around
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Figure 1.2: Main multipath propagation mechanisms.

Figure 1.3: S-parameters

the obstacle [15].

• Scattering occurs when incoming signal hits an object that its size is the order of the

wavelength of the signal or a rough surface. This phenomena causes signals to scatter in

different directions [16,17].

S-parameters are complex matrix that show Reflection/Transmission characteristics in fre-

quency domain. Specifically, S21 is a measure of the signal coming out the port 2 of the

measurement equipment (vector network analyzer) relative to the RF stimulus entering the port

1 of the device and shows the transmission loss or fading of the channel [18]. These parameters

are illustrated in Fig. 1.3. The magnitude of the scattering parameter, S21 , over a bandwidth of
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Frequency-selective fadingFlat fading

Figure 1.4: Measured S21 over frequency band of 2.40 GHz - 2.48 GHz. Left: flat fading channel.
Right: frequency-selective channel

2.40 GHz - 2.48 GHz is shown in Fig. 1.4 and presents examples of a flat and a frequency-selective

fading channel.

1.2.2 Rayleigh and Rician fading models

In cluttered environments where multipath components arrive from so many different directions,

the deterministic methods are not able to describe radio channels and the statistical methods

should be employed. Here, I introduce Rayleigh and Rician distributions that have been largely

used for description of fading in multipath conditions.

Let an be the amplitude and θn be the relative phase of the nth multipath component. Then,

the received signal is [19]

y(t) =

N∑
n=1

an(t)e−jθn(t) (2)

or

y(t) = yI(t) + yQ(t) (3)

Both the in-phase, yI , and the quadrature-phase, yQ, components are the sum of numerous, N ,

random variables. Based on the central limit theorem, pdf ’s of such summation are zero mean

normal distributions. It is well known that the envelope of the sum of two quadrature Gaussian

signals obeys a Rayleigh distribution [5]. The probability density function (pdf) of Rayleigh
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distribution is given by [20].

p(r) =
r

σ2
exp(− r2

2σ2
), r ≥ 0 (4)

where, r =
√
y2I + y2Q is the envelope of the random variable r, and σ2 is the average of the

received power. In calculating radio link budget, we are interested in the probability that the

envelope of the received signal drops below a specific value R. This probability is given by the

corresponding cumulative distribution function (CDF )

P (R) = Pr(r ≤ R) =

∫ R

0

p(r)dr = 1− exp(− R2

2σ2
) (5)

On the other hand, Rician distribution describes a more benign wireless channel where in

addition to so many multipath components, there is a strong LOS component. As the LOS signal

becomes weaker, the distribution of the envelope of the received signal gets closer to Rayleigh

distribution. The pdf of Rician distribution is given by

p(r) =
r

σ2
exp(−r

2 +A2

2σ2
)I0(

Ar

σ2
), r ≥ 0 (6)

where, the parameter A denotes the peak amplitude of the dominant or specular component

and I0() is the modified Bessel function of the first kind and zero-order. Parameter K, which

is the ratio of the power of the specular component to the power of nonspecular or diffuse

components [21], is found

K =
Average specular power

Average diffuse power
=

A2

2σ2
(7)

The parameter K is often given as a dB value. As the power of the specular component decreases,

K gets closer to−∞. Fig. 1.5 shows CDF plots of a Rayleigh channel and various Rician channels

with different K values. As the value of K increases, the channel becomes a more benign Rician

channel.
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Rayleigh fading

Figure 1.5: Rician CDF for different K factors [1].

1.2.3 Diversity techniques

Diversity in wireless communications leverages the idea that different links can experience fading

effects that are statistically independent, if the links themselves are “distinct enough”. Consider

two independent Rayleigh fading paths, then diversity would leverage the one that is most

favorable to the receiver. Choosing the branch with maximum signal strength reduces the

probability that the received signal drops below a specified threshold which means that the

reliability of the link increases. The four most common diversity methods are as follows [5]:

• Time diversity: the same data is transmitted at different time instants. This technique is

efficient for time-varying channels. It utilizes coding of channel to mitigate channel fading

that leads to added delay and loss of bandwidth efficiency.

• Frequency diversity: the signal is transmitted using several frequency channels. This

method is not a plausible diversity approach for M2M systems. Because it is possible that

an appropriate frequency for one particular device to device link may exhibit deep fades

in another.

• Spatial diversity: the transmit signal is received at several antenna elements. These el-
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ements should be sufficiently far from each other to guarantee low correlation between

signals at antenna elements. This constraint make spatial diversity a less than desirable

approach for M2M applications where the size of the antenna system is a crucial design

parameter.

• Polarization diversity: orthogonal polarized components propagate differently in a wire-

less channel. The fading of signals with different polarization is statistically independent.

Therefore, receiving two polarizations using a dual-polarized antenna, or three polariza-

tions using a tripolar antenna, as we investigate in this dissertation, offers diversity without

any need for a minimum distance between antenna elements.

Generally, there are two ways of exploiting signals from the multiple diversity branches

namely selection diversity in which the ”best” signal copy is selected, while the other copies are

discarded, and combination diversity that combine all signals received from diverse branches.

Diversity gain expresses the fact that it is unlikely that several antenna elements are in a fading

dip simultaneously. Selection diversity can be implemented in two ways :

• Received-signal-strength-indication-driven-diversity: in this method, the RX selects the

signal with the largest instantaneous power (or Received Signal Strength Indication, RSSI.

This techniques needs Nr antenna elements, Nr RSSI sensors, and a Nr-to-1 multiplexer

and one RF chain.

• Switched diversity: this approach is simpler to implement. Switched diversity just monitors

the active diversity branch at one time and if this branch falls below a threshold, it switches

to the next branch.

1.2.4 What is polarization?

An electromagnetic wave can be characterized by four features: frequency of the oscillation of

the wave, direction of propagation, intensity of the wave, and its polarization. Among mentioned

features, polarization is unique to electromagnetic waves and is not defined in other waves [22].

At a fixed point in space, the electric field of an electromagnetic wave outlines an ellipse, the

polarization ellipse (Fig. 1.6), in a plane perpendicular to the propagation direction [23]. The
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Figure 1.6: Polarization ellipse showing the orientation angle Ψ and ellipticity δ [2].

shape of the ellipse is dependent on the magnitudes and relative phase between the horizontal

and vertical components of the electric field vectors. When the components are in phase, the

polarization is linear (δ = 0). In case of π/2 radians phase difference between orthogonal

polarization components, the ellipse transforms to a circle which represents circular polarization.

Polarization is described by time variations of the electric field vector such that the electric field

vector variation in time and space for a wave traveling in +z direction is

~E(t, z) = EHcos(2πft− kz)x̂+ EV cos(2πft− kz + δ)ŷ (8)

where, f is the frequency of the wave and k is the phase constant. EH and EV are the amplitude

of horizontal and vertical polarized components of the electric field. δ defines phase difference

between these horizontal and vertical components.

In an ideal environment (i.e., anechoic chamber), both the propagation direction and the po-

larization ellipse remain constant at each point in space, whereas in a multipath environment like

inside a reverberation chamber, as shown in this dissertation, these two parameters change over

time/frequency/space. There are different representations for describing polarization of a wave.

The phasor representation of electric field is called the associated Jones’ vector and contains all

the information about the polarization of the wave. In general, an arbitrary plane wave that

propagates in a direction orthogonal to the horizontal and vertical polarization components, has
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the following Jones’ vector [22].

~E =

 EH

EV e
jδ

 (9)

where, EH and EV are horizontally and vertically polarized components of the electric field,

respectively and δ defines phase difference between them. The state of polarization of an elec-

tromagnetic wave rotates as it goes through reflection, diffraction, or scattering in a wireless

channel. This rotation can be described as [24]

 ErH

ErV e
jδr

 =

γHH γHV

γV H γV V


 EtH

EtV e
jδt

 (10)

where, EtH and EtV are the components of the wave before the interaction, ErH and ErV are

the components of the wave after the interaction. δt and δr are phase difference between two

polarization components before and after the interaction, respectively. The terms of matrix γ also

contain the complex loss coefficients due to the interaction. Unlike single polarized channels that

only one loss coefficient should be characterized, in a dual-polarized channel, all four elements

of the matrix γ should be determined.

1.2.5 Wireless channel model

A major requirement in the design of any digital wireless system in terms of selecting modulation

schemes, channel equalization techniques, and network concepts is the adequate understanding

of the radio channel [25]. A wireless channel model is a tool to simulate certain aspects of

what happens between transmitter and receiver without the need to actually implement the

real wireless communication system. This helps us in better utilization of wireless resources.

Creating a channel model can be described as a three step procedure. First, measurements must

be collected. Then, the actual model will be designed and finally, the model should be validated

using some predetermined metrics. Channel models are categorized as three main types [24]:

• Deterministic methods: These are exact channel models, where a specific environment is

constructed and the field at every point in the space is computed. Ray-tracing model

that uses very narrow beams in different directions is the most common deterministic
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methods. In a basic ray-tracing algorithm, the main task is to determine the trajectory

of a ray launched from a transmitting antenna. This procedure involves the calculation

of the intersection of a ray with a surface or a ray with an edge segment using simple

reflection, transmission and diffraction laws. The disadvantage of this method is the huge

computation time for complex environments [26].

• Statistical channel models: In these models statistical properties of channels are modeled

based on measurements and without requiring physical justifications. These methods re-

quire the environment to be statistically stationary. Though in this method disassociating

antenna effects from channel effects is not possible, its mathematical simplicity has made

this technique very popular for channel characterization. A good example of statistical

channel model can be found in [27]. In this paper, a comprehensive statistical radio im-

pulse channel model for factory and open plan buildings is presented. The statistical model

is built based on measurements taken at 50 different locations within five different factory

buildings. Small scale effects are accounted for by moving receiver on a 1 m track with

step sizes of λ/4.

• Geometry-based stochastic channel models (GBSCM): These models are simplified ray-

tracing approaches in which scatterers are specified by spatial distributions which are

described using parameters that are extracted from experimental measurements. The main

advantage of these models is their independence of antennas characteristics [3, 28,29].

1.3 Research Objectives and Organization

The first two objectives of this dissertation are to provide a theoretical framework for depolar-

ization in three dimensions and to prepare a tripolar antenna design that is suitable for M2M

applications and that can mitigate severe fading in such channels. The third objective is to

develop new dual-polarized channel models in a 3D space for wireless systems that are able

to incorporate different polarization types. This dissertation is organized as seven chapters.

Chapters 2-6 are presented as published or submitted for publication. Chapter 7 discusses the

Conclusions and avenues for future work. Each Chapter’s goal is summarized as follows.
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• Though 2D polarization formalism has found its way in wireless communication and sens-

ing, the new 3D definition has not received attention in wireless communication and so

far the performance analysis of tripolar systems has been mostly through experiments. In

Chapter 2, an analytical study of depolarization in three dimensions and also justification

of employing 3D polarization diversity instead of traditional 2D approach for mitigating

fading in cluttered environments are provided.

• In Chapter 3, the data taken in an environment, that can be a representative of a M2M

communication channel, show that highly variable depolarization occurs across all three

spatial dimensions and is dependent on small changes in frequency and space. These empir-

ical results illustrate the use of a prototype tripolar antenna to mitigate the depolarization

in three dimensions caused by such channels.

• The results obtained in Chapters 2 and 3 motivated development of tripolar antenna de-

signs. In the first part of Chapter 4, antenna system geometries that can be cofabricated

with the device’s enclosure using 3D printing technologies are explored. The second part

of this chapter concludes by presenting the efficacy of the fabricated tripolar antenna for

mitigating fading in a highly-reflective, fading environment.

• Chapter 5 discusses the effectiveness of different types of polarization (linear, circular) in

suppressing multipath effects in cluttered settings. In this chapter, a 3D dual-polarized

geometrical channel model is proposed to evaluate circular and linear polarization in in-

door channels. The second part of this chapter focuses on effects of implementing hybrid

polarization diversity for mitigating deep fading in harsh multipath environments. Hy-

brid polarization diversity is achieved by choosing between four different polarizations of

a simple low-cost omnidirectional antenna.

• Bandwidth shortage has motivated the exploration of the under-utilized millimeter wave

(mm-wave) frequency spectrum for future broadband cellular communication networks.

There is, however, little knowledge about mm-wave propagation in cluttered indoor envi-

ronments. The first part of Chapter 6 discusses dual-polarized channel measurements at

28 GHz band inside an office. In the second part of this chapter, multipath effects at 60
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GHz are characterized over small-scale movements using a finite-state Markov model.

• Conclusions and avenues for future work are summarized in Chapter 7.
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2 Depolarization Evaluation Using Stokes Vector

Foreword

This chapter studies depolarization in three dimensions using a Stokes vector framework. First

it introduces the well defined 2D Stokes vector and then discusses its insufficiency for descrip-

tion of polarization state of a signal in multipath conditions. Thereafter, the 3D generalized

Stokes vector framework is provided as a suitable option for determining depolarization in such

cases. Section 2.1 is the work as presented at the ”2016 Wireless and Microwave Technology

Conference” [30]. Section 2.2 presents the submitted paper to ”2019 Progress In Electromag-

netics Research (PIER) Letters”. This letter builds on the conference paper by elaborating on

analytical frameworks by which 2D and 3D depolarization are described using a spectral po-

larization matrix. Degree of polarization in 3D is decomposed into two polarization indices to

quantitatively distinguish between 2D and and 3D depolarization.

2.1 Depolarization in three dimensions: theoretical formulations and

empirical results

2.1.1 Abstract

Depolarization of wireless communication signals in two dimensions is a well studied phe-

nomenon. However, with systems being deployed in ever more cluttered environments, this

work herein illustrates that depolarization should be considered a three dimensional effect. The

work presents analytical frameworks to study depolarization in three dimensions and empirical

results illustrating its potentially significant impact1.

2.1.2 Introduction

Point-to-point wireless communication systems are becoming evermore pervasive with the advent

of machine-to-machine (M2M) and other Internet of Things (IoT) systems. This pervasiveness

1Golmohamadi, M. and Frolik, J.. 2016, April. Depolarization in three dimensions: theoretical formulations
and empirical results. In Wireless and Microwave Technology Conference (WAMICON), 2016 IEEE 17th Annual
(pp. 1-6). IEEE.
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leads to systems being deployed in environments that are less than ideal for wireless communica-

tions. These include, for example, about and/or within industrial machinery or home appliances.

Such environments can consist of a variety of surfaces that block and/or reflected the wireless

signals thus introducing non line of sight (NLOS) and/or multipath conditions, respectively, and

multipath can not only cause fading in a channel but also depolarize the transmitted signal [4].

A well-known approach to mitigating multipath is to leverage multiple ‘branches’ whose fad-

ing statistics are poorly correlated [5]. Branches can, for example, consist of utilizing multiple

frequencies, antennas, or polarizations.

For M2M systems that involve multiple devices, potentially implemented as an ad hoc mesh

network, coordinating multiple frequencies is not a tenable diversity approach, for it is possible

that an appropriate frequency for one particular device to device link may exhibit deep fades

in another. Employing multiple antennas (i.e., spatial diversity) requires elements to be located

sufficiently far from each other (∼ λ/2) to guarantee decorrelation of fading effects. This con-

straint makes spatial diversity a less than desirable approach for applications where the size of

the antenna system is a crucial design parameter.

Although polarization diversity in two dimensions has been long considered [8,9], leveraging

all three spatial dimensions has received limited attention [10]. For point-to-point systems with

a line of sight (LOS), it is reasonable to state that there are only two relevant polarizations (e.g.,

linearly vertical and horizontal) which lie in a plane normal to the direction of propagation.

However, in the presence of reflectors and retarders that eliminate a LOS component, an envi-

ronment can lead to depolarization in a third dimension and thus, we contend and show herein,

one should consider a 3D polarization space versus a 2D plane.

Recognizing depolarization effects in three dimensions, there has been some efforts in de-

signing antennas to leverage the extra degree of freedom. For example, use of colocated an-

tenna elements with three (one loop and two coplanar dipoles) and four elements (one loop

and three mutually orthogonal dipoles) led to channel capacities greater than a single element

antenna [31]. Tripolarized antennas have also been demonstrated to achieve channel capacities

comparable to three spatially separated single polarized antennas in a MIMO system [32]. In

addition, prior work has also studied extra degrees of freedom provided by the magnetic field

components [10, 33, 34]. For example, the feasibility of hexapolarized antenna was introduced
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in [10]. More recently, a hexapolarized antenna operating at 377 MHz was fabricated and its

channel characteristics measured in a multipath setting [34].

Beyond the noted prior work, there has been little additional investigation of (de)polarization

in three dimensional space [4]. For instance, and to the best of the authors’ knowledge, there has

been little empirical data illustrating this phenomenon. Thus one contribution of the work herein

is to present such data. But first we provide analytical frameworks by which 3D depolarization

can be studied.

2.1.3 3D Depolarization: Analytical Frameworks

In this section, we consider two approaches by which to frame the 3D depolarization problem.

This first is to extend well-known 2D channel matrix results to three dimensions. The second,

extends the Stokes vector to three dimensions. We will later use these two frameworks and

empirical data to demonstrate the significance of considering the third polarization.

2.1.3.1 Channel matrix framework

For wireless communications, a channel state matrix can be used to represent how a signal

propagates from a transmitter to a receiver. The channel for n transmit and m receive antennas

can be represented by the following matrix with complex coefficients of the form [35]:

Am,n =



a11 a12 a13 . . . a1n

a21 a22 a23 . . . a2n

. . . . . . . . . . . . . . . . . . . . . . . . . . .

am1 am2 am3 . . . amn


(11)

where aij represents the complex gain in the path from transmitter j to receiver i. The received

electric field for when linearly polarized antennas (vertical and horizontal) are transmitting can

be found from using a 2D channel matrix as follows (A2D is the case where m = 2, n = 2):

ERX = A2DETX , (12)
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Figure 2.1: 3D linear polarization framework: vertical (V ), horizontal (H), and parallel (P )

which we can write more explicitly as

EVRX

EHRX

 =

aV V aV H

aHV aHH


EVTX

EHTX

 . (13)

A2D is the case where m = 2, n = 2.

For the three dimensional formulation, we extend the 2×2 channel matrix of Eq. (13) to the

following 3×3 formulation by adding the third dimension ‘P ’ that is orthogonal to both a linear

vertical polarization (V ) and a linear horizontal polarization (H) and that is nominally parallel

with the LOS between a transmitter and a receiver (Fig. 2.1). The resulting formulation can be

written as 
EVRX

EHRX

EPRX

 =


aV V aV H aV P

aHV aHH aHP

aPV aPH aPP



EVTX

EHTX

EPTX

 , (14)

or compactly as ERX = A3DETX . In other work, this third dimension has been designated ’D’

for diagonal [32], but there is no standardized notation to date.

2.1.3.2 Stokes parameter framework

The Stokes vectors provide a convenient framework of representing how an electromagnetic wave

is affected by insertion of a reflector, polarizers, and retarders. They form a complete set which

characterize any plane electromagnetic wave. We first consider 2D representation of Stoke vector

which is appropriate when the electric field remains in a fixed plane. Stoke parameters can be
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described as follows [36],

S2D =



s0

s1

s2

s3


=



〈|EV |2〉+ 〈|EH |2〉

〈|EV |2〉 − 〈|EH |2〉

〈EV E∗H〉+ 〈EHE∗V 〉

−i(〈EV E∗H〉 − 〈EHE∗V 〉)


. (15)

The first parameter of Stokes vector, s0, is the intensity of electromagnetic wave. The other

three parameters, s1, s2, and s3 describe the polarization state of the wave. As examples, for a

given field intensity I, the Stokes vectors for linear vertical, horizontal, and 45◦ polarization are:

SV =



I

I

0

0


, SH =



I

−I

0

0


& S45◦ =



I

0

I

0


(16)

.

2D Stokes parameters can be geometrically represented in Poincare sphere. For example,

pure linear polarizations lie on the equator of the sphere. Any inner point of the sphere refers to

a partially polarized wave, and its origin represents unpolarized wave (S2D =

[
I, 0, 0, 0

]
]T ) [37].

However, since the nature of wave propagation in presence of multipath or in near-field

electromagnetic radiation is 3D, 2D framework is insufficient for modeling electromagnetic waves.
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The generalized Stokes parameters in 3D have been defined as follows [38].

S3D =



q0

q1

q2

q3

q4

q5

q6

q7

q8



=



〈|EV |2〉+ 〈|EH |2〉+ 〈|EP |2〉√
3/2(〈EV E∗H〉+ 〈EHE∗V 〉)√
3/2(〈EV E∗P 〉+ 〈EPE∗V 〉)

i
√

3/2(〈EV E∗H〉 − 〈EHE∗V 〉)√
3/2(〈|EV |2〉 − 〈|EH |2〉)√

3/2(〈EHE∗P 〉+ 〈EPE∗H〉)

i
√

3/2(〈EV E∗P 〉 − 〈EPE∗V 〉)

i
√

3/2(〈EHE∗P 〉 − 〈EPE∗H〉)√
1/2(〈|EV |2〉+ 〈|EH |2〉 − 2〈|EP |2〉)



(17)

Unlike 2D representation where the Poincare sphere can be utilized, there is no geometrical

representation for 3D Stokes parameters. However, some analogies can be made between 2D

and 3D Stokes parameters. q0, which is intensity of wave, is analogous to s0 in 2D formalism.

q1 and q3 act like s2 and s3, respectively. Furthermore, the pair of (q2, q6) and (q5, q7) can be

compared to (s2, s3) in different plane coordinates. And also q4 is analogous to s1 [37].

The Stokes parameters of three linear polarizations we are considering for the three dimen-

sional environment (V , H, and P ) are found from Eq. (34) as:

StV =

[
I, 0, 0, 0,

√
3/2I, 0, 0, 0,

√
1/2I

]
,

StH =

[
I, 0, 0, 0,−

√
3/2I, 0, 0, 0, 0,

√
1/2I

]
StP =

[
I, 0, 0, 0, 0, 0, 0, 0, 0,−2

√
1/2I

]

2.1.4 Experimental Results

We now present empirical data illustrating the depolarization effect in three dimensions. Two

different scenarios are considered (an idealized case and a multipath case) along with analyses

of the measurements.
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2.1.4.1 Methodology

S21 measurements were conducted, using a vector network analyzer (Agilent 8722ES), between

two linearly-polarized, monopole antennas. The antennas were placed approximately 1 m apart

in one of two compact chambers. The first chamber presented an anechoic (i.e., idealized)

environment. The second chamber had highly reflected walls and contained a variety of re-

flective obstructions. As illustrated in Fig. 2.1, the two antennas were aligned to one of three

orientations: (1) vertical (V ), (2) horizontally orthogonal to wave propagation (H), and (3) co-

inciding and parallel to the transmitter to receiver propagation direction (P ). Each antenna

was oriented to one of these three positions thus yielding nine S21 measurements in total:

V V,HV, PV,HH, V H,PH, V P,HP, and PP .

For each of the nine polarization configuration, S21 sweeps were made between 2.40 GHz and

2.48 GHz (bandwidth of 80 MHz). The S21 measurements were used directly to create a 3 × 3

channel matrix, A3D described in Eq. (14), in which each element represents the complex gain

between transmitter and receiver. For instance, aV H is path gain between port H of transmitter

and port V of receiver.

2.1.4.2 Idealized case

We first illustrate our test methodology with an idealized case where the testing was conducted

in a compact anechoic chamber (Fig. 2.2). As would be expected, V V and HH copolarization

(copol) performance exhibits nearly flat behavior in this environment. Also, as expected, the

cross polarization discrimination (XPD) between orthogonal polarizations is high. For illustra-

tion purposes, Fig. 2.3 shows the copol measurement (V V ) and the XPD measurements (HV

and PV ) for case when the transmit antenna was oriented vertically. We see from this data the

XPD exceeds 15 dB as would be expected for such an idealized environment.

For this environment, we would also expect little to no multipath and thus the propagation

is effectively modeled in just two dimensions (i.e., planar propagation). Our data for when the

transmit antenna was oriented in the P (parallel) direction confirms this expectation (Fig. 2.4).

Here both the copol (PP ) and crosspol (V P and HP ) measurements are comparable and sig-

nificantly lower (> 10 dB) than the V V or HH copol measurements. The lack of multipath in
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Figure 2.2: Measurement set-up for ideal case (anechoic chamber)
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Figure 2.3: Copol and crosspol S21 in dB for V polarized transmit antenna (anechoic chamber)

this scenario results in little signal received when the transmission is in the P direction and thus

a 2D formulation is more than adequate for this case.

To illustrate the idealized case further, we utilize our data to determine the optimal orien-

tation for the receive antenna for a vertical transmit antenna. Depolarization can occur both

in azimuth (i.e., toward the H polarization) or in elevation (i.e., toward the P direction). The

depolarization is determined directly from the S21 measurements as follows.

θaz = tan−1(SHV /SV V ) & θel = tan−1(SPV /SV V ) (18)
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Figure 2.4: S21 in dB for P polarized transmit antenna (anechoic chamber)
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Figure 2.5: Depolarization of vertically transmitted signal in azimuth and elevation (idealized
chamber)

Recall that our S21 measurements are a function of frequency (2.40-2.48 GHz). Thus we may

see variation over frequency in the amount of rotation in azimuth and elevation directions as

shown in Fig. 2.5.

In an idealized chamber, the electric field does not experience significant depolarization and

its orientation almost remains unchanged for different frequencies. When the transmitter is

aligned vertically, the best receive antenna angle, relative to vertical, is only off 3◦ − 8◦ in
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Figure 2.6: Measurement set-up for multipath case (compact reverberation chamber)

azimuth and 7◦ − 10◦ in elevation. Similar lack of depolarization is seen when the transmit

antenna is set to linear horizontal. So, as would be expected for an idealized environment, the

best nominal orientation for receiver antenna is to be copolarized with the transmitter regardless

of transmitter polarization.

2.1.4.3 Multipath case

The second scenario is one where channel measurements were made inside a highly reflective and

cluttered environment (Fig. 2.6) which we contend emulates the environment that may be seen

by many M2M/IoT systems.

Fig. 2.7 shows copolar and crosspolar S21 data when transmitter is vertically polarized.

In this test scenario, the data are (1) no longer clearly distinguished in terms of mean S21

measurements and (2) all measurements are highly variable illustrating significant multipath

fading. Thus, this environment not only introduces multipath but depolarizes the transmitted

wave in three dimensional space, which is noted by the significant SPV data. We see the three

dimensional effect distinctly in Fig. 2.8 for the case where the transmit antenna is P polarized.

This configuration exhibits measurement results not unlike that seen in Fig. 2.7, for vertical

transmit polarization, indicating that transmitting in the P direction is no worse/better than

choosing to do so in the V or H directions.

As in Fig. 2.5, we now present in Fig. 2.9 the depolarization noted over frequency if the

transmit antenna is oriented in the vertical position. For this highly reflective environment, it is
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Figure 2.7: Copol and crosspol S21 in dB for V polarized transmit antenna (cluttered chamber)
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Figure 2.8: S21 in dB for P polarized transmit antenna (cluttered chamber)

difficult to argue what is the ‘right’ orientation in three dimensions to set the receive antennas

as that is clearly a function of frequency. This result should motivate the pursuit of antennas

that are designed to operate in three dimensions as opposed to more common planar designs.
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Azimuth variation(degree): H direction
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Figure 2.9: Depolarization of vertically transmitted signal in azimuth and elevation (cluttered
chamber)

2.1.5 Summary Metrics

In this section we utilize our prior formulations of Section II to provide summary metrics for

depolarization. In particular, we consider cross-polarization discrimination and degree of polar-

ization. These metrics allow us to provide global performance metrics for the two environments

in which our testing was conducted.

2.1.5.1 XPD

Cross-polarization discriminator (XPD) is defined as the ratio of the average power received

in the copolarized channel to the average power received in the crosspolarized channels [39, 40].

XPD has been formalized in a 2D framework, using the channel matrix Eq. (13), as follows.

XPDV =
〈aV V a∗V V 〉
〈aHV a∗HV 〉

(19)

XPDH =
〈aHHa∗HH〉
〈aV Ha∗V H〉

Where, for our data, 〈...〉 denotes the average over frequencies 2.40 GHz - 2.48 GHz. However, to

the best of our knowledge, XPD has not been presented in 3D framework. As such, we extend
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Table 2.1: Cross polar discrimination in 3D framework

Case XPDV XPDH XPDP

Idealized 17.15 dB 15.1 dB -3.46 dB

Multipath 4.34 dB 2.94 dB -1.76 dB

Eq. (48), using our 3D channel matrix Eq. (14), as follows.

XPDV =

√
2〈aV V a∗V V 〉√

〈aHV a∗HV 〉2 + 〈aPV a∗PV 〉2
(20)

XPDH =

√
2〈aHHa∗HH〉√

〈aV Ha∗V H〉2 + 〈aPHa∗PH〉2

XPDP =

√
2〈aPPa∗PP 〉√

〈aV Pa∗V P 〉2 + 〈aHPa∗HP 〉2

Note that the purpose of the
√

2 factor in the numerator is to normalize the sum of the two

denominator components.

Lower cross-polar discrimination indicates more depolarization in a propagation environment.

A multi-polarized antenna can provide maximum diversity when copolar and crosspolar branches

provide same power at the receiver (i.e., when XPD = 0 dB) [41]. Large values of XPD in the

idealized chamber is an indicator of dominance of co-polar components and shows that a single

copolar channel will provide the same performance as a multi-polarized channel. But low XPD

in the multipath chamber demonstrates a good reason to use multi-polarized antennas in such

environments.

We can see from Table 5.4 that there is low XPD in all three directions for the multipath

channel, thus indicating that all three polarizations can be utilized effectively to increase system

capacity. We also note that XPDP is low for the idealized case but recall from Fig. 2.4 that

SPP was also very low and thus it is unlikely one can leverage effectively this third branch.

2.1.5.2 Summary of Results: Degree of polarization

To evaluate the depolarization in an environment quantitatively, the degree of polarization

(DOP ) metric can be used. A fully polarized wave has a DOP = 1 and a completely un-

polarized wave has DOP = 0. Using the Stokes parameters of Eq. (28), DOP is formalized in
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Table 2.2: Degree of polarization

Framework Idealized Multipath

2D (m2) 0.9998 0.88

3D (m3) 0.99 0.43

a 2D framework by using Eq. (30) of [42].

m2 =

√
s21 + s22 + s23

s0
(21)

Degree of polarization in 3D framework can be calculated by using the elements of Eq. (34),

i.e., S3D and using Eq. (21) of [42].

m3 =

√
8∑
i=1

q2i

√
2q0

(22)

From measured S21 parameters, the channel matrix (A2D, A3D) are composed. The received

electric field, ERX , in 2D and 3D is calculated from Eq. (12) and Eq. (14), respectively,

for each of the frequencies measured. Then a 3D polarization matrix, Φ3, leveraging prior

formulations [43], is developed.

Φ3 =


〈EHRX

E∗HRX
〉 〈EHRX

E∗VRX
〉 〈EHRX

E∗PRX
〉

〈EVRX
E∗HRX

〉 〈EVRX
E∗VRX

〉 〈EVRX
E∗PRX

〉

〈EPRX
E∗HRX

〉 〈EPRX
E∗VRX

〉 〈EPRX
E∗PRX

〉

 (23)

Where, again, brackets denote averaging over frequency. Using the elements of Φ3 matrix,

Stokes parameters are computed for Eq. (28) and Eq. (34). Results of the DOP based on our

measured data are presented in Table 2.2.

In an idealized case DOP shows the same value for both 2D and 3D framework. Having

degree of polarization close to 1 in idealized chamber indicates that received wave is almost fully

polarized. On the other hand, results of cluttered chamber shows completely different DOP

values for two frameworks which indicates inaccuracy of considering its polarization state in

a 2D basis. In this case, the transmitted signal has converted from a fully polarized at the

transmitter to a partially polarized wave with DOP = 0.43 at the receiver. This index can be
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applied for evaluating whether it is reasonable to use 3D antenna in an environment by knowing

the fact that 3D antenna imposes cost increase and power division among branches.

2.1.6 Conclusion

In this work, we present analytical frameworks to study depolarization in three dimensions.

We apply these frameworks to channel data collected in multipath environments and illustrate

that commonly utilized two dimensional formulations do not sufficiently capture the effects of

depolarization.

Work on the topic of 3D depolarization is limited but with the advent of M2M and other

IoT systems, many deployed as mesh networks in highly complex environments, we contend

that further exploration of this topic is warranted. Specifically, we expect that additional chan-

nel characterization and modeling will be conducted and new tripolar antenna designs to be

developed.
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2.2 A 3D Stokes Framework for Wireless Depolarized Channels

2.2.1 Abstract

In severe multipath channels, depolarization of wireless signals has been shown to be a three

dimensional effect. This work herein presents and applies a 3D Stokes vector framework for such

depolarization. Empirical data is used to illustrate the capabilities of this framework (specifically,

polarization purity indices and direction of propagation) to describe depolarization behavior for

three different wireless channels2.

2.2.2 Introduction

Wireless communication is becoming evermore pervasive with the advent of machine-to-machine

(M2M) and other Internet of Things (IoT) systems. This pervasiveness leads to systems being

deployed in environments that are less than ideal for wireless communications (e.g., about and/or

within industrial machinery). Such environments can consist of a variety of surfaces that block

and/or reflect the wireless signals thus introducing non-line-of-sight (NLOS) and/or multipath

conditions, respectively. These conditions can cause not only fading in a channel but also

depolarize the transmitted signal [4]. For point-to-point wireless communication systems with a

strong line of sight (LOS), it is reasonable to state that there are only two relevant polarizations

(e.g., vertical/horizontal linear or left/right hand circular polarization) which lie in the 2D

plane normal to the direction of propagation. However, cluttered environments can lead to

depolarization in a third dimension [10]. Thus, we contend and show herein, one should consider

a 3D polarization framework versus a 2D one.

Electromagnetic wave polarization characterization in two dimensions is well-studied. How-

ever, the description of electromagnetic waves in three dimensions, where in general there is no

specific propagation direction, is still an open question which needs careful consideration [44,45].

A well-defined polarization model will build a basis for understanding the input-to-output po-

larization behavior in wireless channels. Cross-polarization discrimination (XPD) has been used

for polarization characterization [40], but this metric is not capable of fully interpreting po-

2Golmohamadi, M.and Frolik, J.. Submitted on January 20, 2019. A 3D Stokes Framework for Wireless
Depolarized Channels. Progress In Electromagnetics Research (PIER) Letters.
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larization properties of electromagnetic waves. Thus, in this work we consider a Stokes vector

framework. A 2D Stokes vector framework has been used to model polarization behavior in

multipath channels before [46], but employing a 3D framework has received little attention. The

3D framework was been applied for analyzing propagation within reverberation chambers [47].

Herein, we extend this initial contribution by characterizing frequency-dependant polarization

effects and the propagation direction in 3D and apply this framework to empirical data.

In this paper, we present, in Section 2.2.3, analytical frameworks by which 2D and 3D

depolarization are described using a spectral polarization matrix. Further, we present and

analyze empirical data, in Section 2.2.4, for three different environments finding their polarization

indices and also their variations of propagation direction. The contributions of this work are

summarized in Section 2.2.5.

2.2.3 Polarization framework

In this section, we review the 2D polarization framework and then extend it to the third di-

mension. At a fixed point in space, the electric field of an electromagnetic wave outlines a

polarization ellipse perpendicular to the propagation direction. In an ideal environment (i.e.,

anechoic chamber), the polarization ellipse remains in a fixed plane and maintains its shape,

whereas in a multipath environment not only the shape of polarization ellipse changes but also

its plane and consequently direction of propagation vary over time/frequency/space. In the

latter case, as our data will show, a 2D representation is no longer sufficient.

2.2.3.1 2D Framework

A 2D coherency matrix, or polarization matrix, contains all information about autocorrelation

and cross-correlation of the electric field components that are assumed to be contained in the

x, y plane.

In this work, we consider the matrix elements in the space-frequency domain and call it the

spectral polarization matrix which can be written as [48]

Φ2D =

〈Ex(r, f)Ex(r, f)∗〉 〈Ex(r, f)〈Ey(r, f)∗〉

〈Ey(r, f)E∗x(r, f)〉 〈Ey(r, f)Ey(r, f)∗〉

 (24)
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where, Ex and Ey are orthogonal components of the electric field vector at frequency f and po-

sition r and the asterisk denotes complex conjugation. The operator 〈 〉 indicates that averaging

of the signal has to be performed over the ensemble that characterizes the statistical properties

of the field. Henceforth, we omit the explicit dependence on r and f . The spectral polarization

matrix is non-negative definite Hermitian and consequently it is diagonalizable.

Any 2×2 diagonal representation of the spectral polarization matrix can be written as the sum

of fully polarized ρp = diag{1, 0} and completely unpolarized ρ2u = 1
2diag{1, 1} matrices [49],

that is

Φ̂2D = (λ1 − λ2)ρp + 2λ2ρ2u (25)

where, λ1 and λ2 are eigenvalues of both matrix Φ2D and matrix Φ̂2D. The degree of polarization

in a 2D framework, P , is a metric to measure depolarization extent in an environment and is

defined as the ratio of the intensity of the fully polarized part of the field to the total intensity

of the field [44]. P can also be obtained from Stokes parameters that will be described shortly.

P =
Tr((λ1 − λ2)ρp))

Tr(Φ̂2D)
=
λ1 − λ2
λ1 + λ2

=

√
3∑
i=1

〈si〉2

〈s0〉
(26)

where, Tr denotes the trace operation. Furthermore, the 2 × 2 identity matrix (σ0) and the

three Pauli spin matrices (σ1, σ2, σ3) form a basis in which the spectral polarization matrix can

be expanded as follows [50].

Φ2D =
1

2

3∑
j=0

〈sj〉σj (27)

In this expansion, the coefficients, sj , are the Stokes parameters. These parameters provide a

convenient framework of representing polarization state of a wave and form a complete set that

characterize any fixed-plane electromagnetic wave. The 2D Stokes vector, S2D, is defined as

follows [37],

S2D =



s0

s1

s2

s3


=



|Ex|2 + |Ey|2

|Ex|2 − |Ey|2

ExE
∗
y + EyE

∗
x

−i(ExE∗y − EyE∗x)


. (28)
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The first parameter of Stokes vector, s0, is the intensity of the electromagnetic wave. The other

three parameters, s1, s2, and s3 describe the polarization state of the wave.

2D Stokes parameters can be geometrically represented in Poincare sphere. For example, pure

linear polarizations lie on the equator of the sphere, where vertical and horizontal polarizations

are on diametrically opposite sides of the sphere. Any inner point of the sphere corresponds to

a partially polarized wave. The origin represents a completely unpolarized wave that has the

following characteristics: S2D =

[
I, 0, 0, 0

]
]T (where I is the intensity of the field) and P = 0

(i.e., λ1=λ2).

2.2.3.2 3D Framework

In the presence of severe multipath, the polarization state of electromagnetic waves can not be

fully realized within a 2D framework (as we demonstrate in Section 3). Therefore we now present

the 3D spectral polarization matrix to describe wireless depolarization more generally [42].

Φ3D =


〈ExE∗x〉 〈ExE∗y〉 〈ExE∗z 〉

〈EyE∗x〉 〈EyE∗y〉 〈EyE∗z 〉

〈EzE∗x〉 〈EzE∗y〉 〈EzE∗z 〉

 (29)

where the electric field vector has three orthogonal components along x, y, z axes. Unlike the

2D framework, Φ3D cannot be described as the sum of only two components of a fully polarized

and a fully unpolarized wave, as we had in Eq. (2). However, prior work [44] has shown that

the diagonal representation of Φ3D can be decomposed into three parts instead. Namely, fully

polarized component ρp = diag{1, 0, 0}, fully 2D unpolarized ρ2u = 1
2diag{1, 1, 0} and fully 3D

unpolarized components ρ3u = 1
3diag{1, 1, 1}.

The diagonal representation of the 3D spectral polarization matrix can be presented as

Φ̂3D = (λ1 − λ2)ρp + 2(λ2 − λ3)ρ2u + 3λ3ρ3u (30)

where, λ1, λ2 and λ3 are eigenvalues of the 3D spectral polarization matrix, Φ3D. Subsequent

work [23] proposed two polarization indices, P1 and P2, such that P1 defines stability of polar-

ization ellipse and P2 represents stability of propagation direction or stability of polarization
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plane. P1 is the ratio of the intensity of the fully polarized part of the field to the total intensity

and P2 is the ratio of components that have a fixed propagation direction (fully polarized and

2D unpolarized parts) to the total density of the field

P1 =
Tr((λ1 − λ2)ρp)

Tr(Φ̂3D)
=

λ1 − λ2
λ1 + λ2 + λ3

(31)

P2 =
Tr((λ1 − λ2)ρp + (λ2 − λ3)ρ2u)

Tr(Φ̂3D)
=
λ1 + λ2 − 2λ3
λ1 + λ2 + λ3

(32)

In the 3D framework, the 3× 3 identity matrix (ω0) and eight Gell-Mann matrices (ω1...ω8)

form a basis for the 3D spectral polarization matrix such that [37]

Φ3D =
1

3

8∑
j=0

〈Λj〉ωj (33)

where, the nine real coefficients Λj are the generalized Stokes parameters of the 3D Stokes vector

(S3D) [37]

S3D =



Λ0

Λ1

Λ2

Λ3

Λ4

Λ5

Λ6

Λ7

Λ8



=



|Ex|2 + |Ey|2 + |Ez|2

3/2(ExE
∗
y + EyE

∗
x)

i3/2(ExE
∗
y − EyE∗x)

3/2(|Ex|2 − |Ey|2)

3/2(ExE
∗
z + EzE

∗
x)

i3/2(ExE
∗
z − EzE∗x)

3/2(EyE
∗
z + EzE

∗
y)

i3/2(EyE
∗
z − EzE∗y)√

3/4(|Ex|2 + |Ey|2 − 2|Ez|2)



(34)

Some analogies can be made between 2D and 3D Stokes parameters. Λ0, which is the intensity

of the wave, is analogous to s0 in the 2D framework. Λ1, Λ2, and Λ3 in the 3D formulation are

analogous to s2, s3, and s1, respectively, in 2D. Furthermore, the pair of (Λ4,Λ5) and (Λ6,Λ7)

can be compared to (s2, s3) in different plane coordinates. Furthermore, it has been shown that

the direction of propagation (V) can be defined from 3D Stokes parameters as follows [48]
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V = (−Λ7,Λ5,Λ2), φ = arctan
Λ5

−Λ7
, θ = arccos

Λ2

|V|
(35)

from which we find the azimuth (φ) and elevation (θ) angles of the vector V and will apply

them to our empirical cases presented in Section 3. The generalized degree of polarization in 3D

framework, P3, is dependent on two purity indices, P1 and P2, and can be calculated from 3D

Stokes parameters [23].

P3 =

√
8∑
i=1

〈Λi〉2

√
3〈Λ0〉

=

√
1

4
(3P 2

1 + P 2
2 ) (36)

The value of P3 for a fully polarized wave is 1 and for a 2D unpolarized wave, which has a

well-defined propagation direction, is equal to 0.5. P3 is 0 for a wave with completely random

direction of propagation.

2.2.4 Experimental Results

Leveraging the formulation presented in Section 2.2.3, we now characterize the three distinct en-

vironments using polarization indices and arrival directions obtained from the 3D Stokes frame-

work. To the best of the authors’ knowledge, applying this 3D framework to data collected over

frequency and space and to compare/contrast wireless environments has not been presented to

date.

2.2.4.1 Methodology

The three surrogate environments represented an ideal (no multipath) environment, an office

setting, and a highly reflective factory setting. To emulate an ideal setting, the testing was

conducted in a compact anechoic chamber. The second environment was a non-line-of-sight

condition within a lab. A compact (0.9 m× 0.9 m× 0.3 m) reverberation chamber was utilized

to create the highly reflective scenario. A vector network analyzer was used to measure S21

(i.e., path loss) between the a vertically polarized transmit antenna and one orthogonal element

of the receive array having three mutually orthogonal elements. S21 measurements were made

at 551 frequencies between 2.40 GHz and 2.48 GHz. To emulate the random placement of the

transmitting device, the transmit antenna was mounted on a linear track that allowed positioning
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Figure 2.10: Polarization indices for the three demonstration environments. Left: Ideal surro-
gate. Center: Office surrogate. Right: Factory surrogate, reverberation chamber (RC).

Table 2.3: Degree of polarization

Framework mean(P1) mean(P2) mean(P3)

Anechoic 0.97 0.99 0.97

Office 0.36 0.74 0.49

RC 0.24 0.48 0.40

to one of 50 repeatable locations in 1 cm (i.e., < λ/10) increments.

2.2.4.2 Summary of Results

To obtain the results presented herein, we created spectral polarization matrices for each of the

50 locations by averaging over the 551 S21 measurements. Using this approach we find clear

distinctions between the resulting parameters for the three different environments.

Fig. 2.10 shows the two purity indices, P1 and P2, calculated along 50 positions in the three

environments. We clearly see the non-ideal environments depolarize the signal. Significantly, P2

is much less than unity indicating that the depolarization is indeed three dimensional. The mean

value of purity indices over 50 positions and generalized degree of polarization are presented in

Table 2.2. In the anechoic chamber where there is no multipath components, the shape and

plane of polarization ellipse remains constant over frequency variations and resulting in values

very close to 1 for P1, P2, and P3 parameters. In the reverberation, by contrast, P1 very low

indication the polarization ellipse changes significantly over frequency. Furthermore, P2 is very

low, an indication that plane of polarization rotates randomly along frequency. In addition, P3
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Figure 2.11: Azimuth and elevation angles of direction of propagation over frequency band of
2.40-2.48 GHz at one position.

is less than 0.5 (the one obtained for fully 2D unpolarized wave) that again confirms 3D nature

of electromagnetic wave propagation in the chamber. The indices for the office indicate this is

the intermediate case. In this scenario, on average, 26% (1 − P2) of the total intensity of the

wave behaves completely randomly along frequency and is spread uniformly in 3D sphere. This

percentage is attributed to the part of the 3D polarization matrix with equal eigenvalues.

The direction of propagation was calculated from Stokes parameters, using equation Eq. (35),

for the measured frequencies in the band from 2.40 to 2.48 GHz. The results are presented

Fig. 2.11. Since there is little depolarization in the anechoic chamber, the received direction is

in original transmitted plane and the depolarization angle is approximately zero. In addition,

as direction of propagation is almost fixed over the frequency, this confirms the result presented

for P2 ≈ 1 in Table 2.3. However, in the office setup, the rotation of polarization plane along

frequency band is evident. This rotation becomes even more prominent in reverberation chamber

which indicates that this environment is more frequency-dependent than the office, as the data

in Table 2.3 confirms. The rotations in the latter two cases is an indicator that the receiver’s

polarization should include all three planes in order to compensate for such depolarization effects.

Recently, tripolar antennas have been developed in order to mitigate such severe multipath and

depolarized channels [31,51].
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2.2.5 Conclusion

In this work, we presented a Stokes vector-based analytical framework to study depolarization

in three dimensions. We applied this framework to empirical data in order to compare and

contrast depolarization seen in three distinct environments. For environments with significant

multipath, our calculated parameters show that depolarization is indeed a three dimensional

effect. As wireless IoT systems become more pervasive and are deployed in evermore cluttered

environments, these results can help determine if antenna systems that are tripolar are warranted.

If so, then employing 3D polarization diversity in these scenarios would considerably improve

link reliability as compared to the traditional dual polarization, 2D diversity approaches.
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3 On Random and Multidimensional Channel Effects in

Cluttered Environments

Foreword

This chapter is presented as published in “2017 IEEE Antennas and Wireless Propagation Let-

ters” [12]. In this work, several experiments are conducted to investigate depolarization in three

dimensions. The results show that polarization states of the received signals are highly variable

and dependent on very small changes in frequency and placement. These random behavior of

the depolarization prove that employing tripolar antennas in cluttered settings can enhance link

reliability significantly, even if the environment is almost static and antenna’s positions change

minimally.

3.1 Abstract

Machine-to-machine (M2M) devices have the potential to be placed in environments that are

less than ideal for wireless propagation, such as factory floors or within metallic enclosures. In

this work, we illustrate that such environments not only produce the expected multipath but

can also depolarize the signal across all three spatial dimensions. Furthermore, we show that

these effects are multidimensional in that they are highly sensitive to extremely small changes

in user placement and frequency of operation. That is, these channels exhibit randomness based

on a user’s action. These effects motivate new channel characterization approaches and metrics

along with the development of tripolar antenna designs. The work concludes by presenting the

efficacy of such a prototype antenna 3.

3.2 Introduction

Machine-to-machine (M2M) systems are those envisioned to not only report aggregated data to

an end user but to also exchange data among devices to better and autonomously operate a larger

system. For example, a M2M system may monitor and/or manage large machinery on a factory

3Frolik, J. and Golmohamadi, M.. 2017. On Random and Multidimensional Channel Effects in Cluttered
Environments. IEEE Antennas and Wireless Propagation Letters, 16, pp.1863-1866.
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floor, coordinate appliance activity throughout a home to reduce peak power loads, or track

locations of shipping containers at docks. Given this breadth of potential M2M applications,

it is clear that the environments in which they will be deployed can vary greatly in terms of

wireless propagation conditions (multipath, line-of-sight (LoS), and non-LoS). Furthermore, as

we illustrate herein, these effects, which include severe frequency-selective and depolarization

effects in three dimensions, will be highly dependent on the placement of the device in the

environment. This dependency, on what may be considered user-caused randomness, motivates

this study.

For M2M systems to be low cost and easily deployed, there will likely be little prior knowledge

about the propagation environment or control over device placement thus suggesting a strong

need for the device to adapt to channel randomness. In this work, we provide examples of the

aforementioned channel effects. For example, we show that these channels can take on character-

istics that are statistically more severe than the worst-case assumed for mobile communications.

Furthermore, we illustrate the use of a prototype tripolar antenna to mitigate the depolarization

in three dimensions caused by such channels. Recognition of these severe effects and utilization

of new channel analysis methods, we contend, will allow M2M designers to create more reliable

networks.

Although polarization diversity in two dimensions has been long considered [8,9], leveraging

all three spatial dimensions has received limited attention [4,10]. Furthermore, the consideration

of depolarization along with channel loss, to the best of our knowledge, has yet to be explored.

Thus another contribution of this work is to suggest means for characterizing these random

effects.

3.3 Experimental Results

We first present empirical data illustrating that the channel effects in severe multipath envi-

ronments are highly sensitive in multiple dimensions, specifically, to extremely small changes in

frequency, the polarization utilized, and the device’s position.
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Figure 3.1: Measurement setup in a compact reverberation chamber with transmit (TX) and
receive (RX) antennas. Arrows indicate directions for the three receive antenna linear polariza-
tions: V , H, and P .

3.3.1 Methodology

S21 measurements were conducted, using a vector network analyzer (Agilent 8722ES), between

two linearly-polarized, monopole antennas. The antennas were placed approximately 1 m apart

in a compact (0.9 m × 0.9 m × 0.3 m) reverberation chamber capable of creating a variety

of channel conditions ranging from the benign (i.e., high-K, Rician) to the severe (i.e., two-

ray, hyper-Rayleigh) [52]. As reverberation chambers have been shown to emulate channel

characteristics similar to industrial sites [53], we contend our test environment will similarly

emulate conditions that may be seen by M2M systems. Testing was conducted with the transmit

antenna oriented with vertical polarization. The receive antenna was oriented to one of three,

mutually orthogonal, orientations (as illustrated in Fig. 6.1): (1) vertical (V ), (2) horizontally

orthogonal to wave propagation (H), and (3) coinciding and parallel to the transmitter to receiver

propagation direction (P ). For each of the three polarization configurations (i.e., V V , HV , and

PV ), S21 sweeps were made between 2.40 GHz and 2.48 GHz (bandwidth of 80 MHz).

3.3.2 Frequency and Polarization Dependency

Fig. 3.2 shows copolar and crosspolar S21 data for our initial test position. Here we see the data

indicate that (1) the three measurements are highly variable illustrating significant multipath

effects and (2) there is little to no cross polarization discrimination (XPD) in that the median
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Figure 3.2: Copol and crosspol S21 in dB for V polarized transmit antenna.
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Figure 3.3: CDF of S21 data presented in Fig. 3.2. Curves are normalized to median SV V value
of -29.04 dB.

value for SV V (−29.0 dB) is within 3 dB of the SHV and SPV values (−26.4 dB and −27.1

dB, respectively). Thus, this environment not only introduces multipath but depolarizes the

transmitted wave in three dimensional space, which is noted by the non-inconsequential SPV

data.

Statistically, across frequency, we find that the V V case not only exhibits more severe mul-

tipath effects than the other two receive antenna polarization scenarios but also effects more
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Figure 3.4: Depolarization of vertically transmitted signal in azimuth and elevation.

severe than Rayleigh (Fig. 3.3), as indicated by the V V curve being rotated clock-wise relative

to the theoretical Rayleigh curve.

To further illustrate the significance of the depolarization caused by this environment, we

utilize the data to determine the optimal orientation for the receive antenna. Depolarization

can occur both in azimuth (i.e., toward the H polarization) or in elevation (i.e., toward the P

direction). Recall that our S21 measurements are a function of frequency (2.40-2.48 GHz), thus

we may see variations in the amount of these rotations over frequency. Fig. 3.4 illustrates this

effect where the depolarization angles are determined directly from the S21 measurements as

follows.

θaz = tan−1(|SHV |/|SV V |) &

θel = tan−1(|SPV |/|SV V |) (37)

3.3.3 Placement Dependency

One source of user-caused randomness in M2M systems is that associate with the placement of

the wireless devices. Fig. 3.5 shows copolar and crosspolar S21 data for the same conditions

noted for the data presented in § II.B with the exception that the receive antenna has shifted in

location by 1 cm (i.e., < λ/10). Statistically (as seen in Fig. 3.6), we find, in comparison to our
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Figure 3.5: Copol and crosspol S21 in dB for V polarized transmit antenna with 1 cm shift in
receive antenna position.

initial test position, that the SV V case has improved while another case (SHV ) has degraded.

For both of these positions, a receive antenna oriented in the P statistically provides the best

performance of the three orthogonal orientation. However, as suspected, another slight change

in position could produce a different result. To show this susceptibility in link performance,

we plot in Fig. 3.7 - left the copolar (i.e., V V ) S21 data from Fig. 3.5 against that from Fig.

3.2. The figure illustrates that moving the antenna less than λ/10, under otherwise fixed test

conditions, can result in S21 changes of over 30 dB. Over all frequencies, we find the median

absolute change to be 3.8 dB. This results is consistent with the low correlation that we find

between the two data sets (i.e., ρ = 0.47).

This slight change of position not only changes the channel’s S21 characteristics but also its

depolarization impact. We illustrate this in Fig. 3.7 - right where the depolarization in azimuth

for this position is plotted against that seen for the first test position (i.e., the x-axis of Fig. 3.4).

This figure shows the lack of correlation in depolarization in the azimuth (H) direction (i.e., ρ

= 0.37) over frequency. The correlation of depolarization in the elevation (i.e., P ) direction is

similarly low (ρ = 0.42).

We have demonstrated thus far that M2M-like environments can yield significant channel

changes across the dimensions of polarization, frequency and space. As each of these dimensions
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0.47). Right:Depolarization correlation (in the azimuth direction) across the 2.4 GHz ISM band
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are non-singular, we can readily conclude that a deterministic approach to ascertaining channel

conditions is not a tenable. Thus to categorize an environment using multiple measurements, we

leverage a previously suggested metric, the 10% Fade Depth (10%FD) [54]. Calculation of the

10%FD is readily determined from channel measurement data by first finding the median S21

value (in dB), next normalizing that data set by the median, and finally sorting the resulting data

from low to high. The 10% fade value will be the N/10th value in the resulting data where N is
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Figure 3.8: 10% fade depth calculated across 37 closely spaced antenna locations and three
receive polarizations.

the total number of measurements. Known 10%FD values are -8.2 dB for Rayleigh and -13.1 dB

for worst-case (i.e., two-ray) hyper-Rayleigh channels [54]. Using this metric, we analyzed the

data collected across 37 closely spaced receive antenna positions and at 551 frequencies between

2.40 and 2.48 GHz. The measurement locations were spaced 1 cm apart in a cross pattern of

25 cm × 12 cm extent. As illustrated in Fig. 3.8, all three receive antenna polarizations exhibit

channel statistics both more benign than Rayleigh (cases to the right of the -8.2 dB Rayleigh

line) and worse (cases to the left). For this particular environment and across all locations and

frequencies measured, we find over 50% of all measurements exhibit hyper-Rayleigh channel

statistics. We also find that cross-polarized links (i.e., HV and PV ) are more favorable than

the copolar (i.e., V V ) configuration for which over 65% exhibit hyper-Rayleigh conditions.

3.3.4 Summary Metric: XPD

Cross-polarization discriminator (XPD) is defined as the ratio of the average power received in

the copolarized channel to the average power received in the crosspolarized channels [39]. XPD

has been formalized in a 2D framework as follows.

XPDV :2D =
〈SV V S∗V V 〉
〈SHV S∗HV 〉

(38)
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Table 3.1: Cross Polar Discrimination (XPD) in 2D and 3D

Scenario Fig. V vs. H V vs. P V vs. H & P

Antenna Position 1 2 -1.01 dB -0.88 dB -0.95 dB

Antenna Position 2 5 -0.25 dB -1.74 dB -1.12 dB

Median of all positions 8 0.89 dB 1.63 dB 1.06 dB

Where, for our data, 〈...〉 denotes the average calculated over the frequencies of 2.40 GHz to 2.48

GHz. However, to the best of our knowledge, XPD has not been presented in 3D framework.

As such, we extend Eq. (48), as follows.

XPDV :3D =

√
2〈SV V S∗V V 〉√

〈SHV S∗HV 〉2 + 〈SPV S∗PV 〉2
(39)

Note that the purpose of the
√

2 factor in the numerator is to normalize the sum of the two

denominator components.

Lower XPD values indicate more depolarization in a propagation environment. We can

see from Table 5.4 that there is low XPD (< 2 dB) between all three directions for our high

multipath test environment. Prior work has also shown that such low XPD indicates that

diversity techniques can be effective [55] (e.g., effectiveness is maximum when XPD = 0 dB [41]).

In our case, we see that there is potential to leveraged diversity over three mutually orthogonal

polarizations, as indicated by the low XPD seen in the final column of Table 5.4 as calculated

using Eq. (39).

3.4 Mitigation with Tripolar Antenna Designs

Given the multipath and three-dimensional depolarization we illustrated in Section 3.3, we now

consider a tripolar antenna systems that can mitigate these effects. Earlier studies considered

three distinct linear antennas oriented in a mutually orthogonal manner to investigate both

diversity [55] and MIMO capacity [10] gains. Subsequently, fully-integrated, tripolar antenna

systems were developed for MIMO investigations [32, 56]. For M2M systems, link reliability is

arguably more critical than high data rates and thus we consider, as an illustrative example,

results obtained from one such prototype integrated antenna system that was designed to operate
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Figure 3.9: Channel statistics for the three orthogonal elements of a prototype tripolar antenna
along with M=3 selection diversity results.

from 5.40 to 5.48 GHz [57].

The prototype antenna was placed arbitrarily in our test chamber (Fig. 6.1) to receive the

signal from a vertically oriented transmit antenna. The statistics associated with the three

measured responses are shown in Fig. 3.9. For this particular placement, one polarization

exhibits Rician fading (V ), another is approximately Rayleigh (P ), and the third is hyper-

Rayleigh (H). As shown in § II, for these types of environments, the link statistics can be

highly dependent on very small changes in location and/or frequency, thus motivating one to

exploit the available diversity enabled by the tripolar design. As such, also shown is the result of

implementing arguably the simplest diversity/adaptation technique of selecting the best of the

M = 3 paths. This technique results in a relatively benign Rician environment (K ≈ 2.5 dB)

even when the conditions seen by the three individual component polarizations are statistically

significantly worse. Such adaptation can be readily done in situ and with little computation

by a M2M device by leveraging the receive signal strength indication (RSSI) feature inherent in

modern wireless chipsets.
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3.5 Conclusion

In this work, we present channel data collected in an environment that emulates that which

may be seen for M2M systems. The work illustrates that channel variations are highly variable

and dependent on small dimensional changes in frequency and space and that depolarization

occurs across all three spatial dimensions. Because of the sensitivity to device placement by

the user, deterministic modeling of these channels is not tenable. We thus illustrate the use of

the 10%FD to statistically characterize the environments and a 3D XPD metric to show the

three dimensional impact of depolarization. Future work includes developing compact tripolar

antenna systems that can be readily integrated in M2M devices and which can adapt to these

random channel conditions.
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4 Tripolar Antenna Geometry and Fabrication

Foreword

This chapter the development of a tripolar antenna design for M2M application. 3D-printing

offers a low-cost and low-to-medium-volume manufacturing technology and therefore is a good

option for fabrication of the tripolar antenna. A constraint faced by 3D printing in regards

to the deposition of the conductive material is build angle. Section 4.1 is presented in “2017

11th European Conference on Antennas and Propagation (EuCAP)” [58]. In this section, the

performance of a tripolar antenna system that conforms to the 3D build angle constraint of 45◦ is

evaluated. The data showed that this design provide the same diversity gain as a tripolar antenna

design with one vertically polarized element and thus the geometric constraints of 3D printing do

not prevent the fabrication of an effective tripolar antenna system. Section 4.2 that presents the

paper submitted to “2019 IEEE Antennas and Wireless Propagation Letters”. This paper is built

on the results obtained in the first part of this chapter. It discusses fabrication of the tripolar

antenna using 3D printing technology. The antenna fabrication is done in University of South

Florida. My contribution in latter work was to testing antennas in multipath environments.

4.1 Characterization of a Geometrically Constrained Tripolar Antenna

Under M2M Channel Conditions

4.1.1 Abstract

Historically, antenna designs have been dictated by specific performance requirements for gain,

beammwidth, return loss, etc. without consideration of the environment the antenna is be-

ing deployed in. Herein, we consider an over-the-air (OTA) approach for characterizing an-

tenna performance for a wireless device arbitrarily deployed in a cluttered environment, e.g., a

machine-to-machine (M2M) installation. We then explore antenna system geometries that can

be cofabricated with the device’s enclosure using 3D printing technologies. Based on a channel

characterization study and fabrication constraints, we propose a tripolar antenna design that is

49



readily integrated with, for example, a wireless sensor 4.

4.1.2 Introduction

Machine-to-machine (M2M) systems promise to form a significant portion of future wireless

systems and will push deployments into evermore cluttered environments (e.g., factory floors)

that are likely to produce non-line-of-sight (NLOS) and/or severe multipath conditions. These

environments can also depolarize the transmitted signal in all three spatial dimensions [30].

Recent work has shown that tripolar antenna systems offer a compact approach to mitigate

these type of propagation environments [59], particularly, if diversity schemes (e.g., polarization

selectivity) are also pursued. Fabrication of tripolar antenna with mutually well-isolated (<-15

dB) orthogonal branches has been considered before [31, 32, 56]. However, to the best of our

knowledge, mass production of such antennas has not been pursued.

Thus, in addition to designing antennas which can improve system reliability and reduce

transmit power requirements, a consideration of this paper is reducing the cost of antenna

integration. Planar antennas for consumer wireless devices often come in the form of surface

mount chips that are bonded to a printed circuit board, or simply adhesive-backed conductive

strips that are attached to cases. However, volumetric three-dimensional antenna systems, such

as proposed herein, require more complex manufacturing approaches. The use of multi-material

3D-printing, that combines the deposition of thermoplastic substrates and conductive traces,

is one possibility for low cost, low- to medium-volume manufacturing as illustrated in [60, 61].

Demonstrating the suitability of a 3D printing approach for the proposed tripolar antennas is

one goal of this work. A constraint faced by 3D printing in regards to the deposition of the

conductive material is build angle (in our case, the limit is 45◦). Some work has been done

aiming for conformal printing of electronics and antennas [62, 63], but physical adjustments are

often necessary during fabrication to complete the ink deposition. Our efforts hope to alleviate

these extra steps.

Because of the 3D build angle constraint of 45◦, we compare herein the performance of a

4Golmohamadi, M., Ramirez, R., Hewgill, B., Jamison, J., Frolik, J. and Weller, T.. 2017, March. Char-
acterization of a geometrically constrained tripolar antenna under M2M channel conditions. In Antennas and
Propagation (EUCAP), 2017 11th European Conference on (pp. 2998-3002). IEEE.
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Figure 4.1: Antenna array surrogates. Left: Cartesian-based ArrayA. Right: “Out-of-plane”
ArrayB

surrogate tripolar antenna system that conforms to this build angle against a tripolar antenna

system based on Cartesian coordinates. Our Cartesian-based antenna system, ArrayA can be

seen on the left of Fig. 4.1. It can be noted that the Z element is at an angle of 90◦ and thus could

not be 3D printed based on our working constraint. Our 3D “out-of-plane” surrogate, ArrayB ,

can be seen on the right. Each of the three elements of this array (i.e., 1, 2, and 3) are at an angle

of 45◦ and thus could be 3D printed. We compare these arrays in two distinct environments.

One environment emulates a highly reflective environment that could be experienced by a M2M

system operating in a factory or within a large machine. The second environment considers a

working laboratory that could also emulate a NLOS office environment.

We organize this paper as follows. In Section 2, we present the two tripolar antenna systems

that are used in this work and discuss our test and analysis methodologies. In Section 3,

the performance of both antennas over multiple cases of over-the-air (OTA) testing in the two

different deployment scenarios are compared. We find that in both environments the performance

of the two antenna arrays over many test cases are statistically equivalent. In Section 4, a

proposed design for a 3D fabricated tripolar ”out-of-plane” antenna array is presented that

could be integrated with a commercial wireless sensor product. Section V concludes the work

and outlines future efforts related to antenna system integration and test.
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4.1.3 Methodology

In this section we discuss the the two antenna geometries, along with the channel measurement

and analysis approaches.

4.1.3.1 Antenna Arrays

Two tripolar antenna arrays (Fig. 4.1) have been considered in this work. ArrayA, seen in

Fig. 4.1-left, is composed of three mutually orthogonal monopole antennas placed along X,

Y , Z axes of the Cartesian coordinate system (where Z corresponds to vertical polarization).

ArrayB , seen in Fig. 4.1-right), utilizes the same monopoles but these are oriented 45◦ from

the horizontal plane and uniformly separated radially by 120◦. These elements are approaching

mutual orthogonality with a minimum separation angle of 75◦. When deployed, Element 2 of

ArrayB lies in the Y Z plane of ArrayA. Elements 1 and 3 are 30◦ with respect to the XZ

plane.

Mutual coupling between all the three elements for each antenna arrays was measured in an

anechoic environment. While these arrays were fabricated for demonstration purposes and have

elements that are not truly orthogonal, the mutual coupling is <−29 dB between any two array

elements.

4.1.3.2 Test Setup

Unlike mobile communication systems where the user and/or the environment are moving/dynamic,

a M2M device could experience static channel conditions once placed in the environment. How-

ever, for severe multipath and depolarizing environments, link propagation loss is highly depen-

dent on placement and frequency of operation. As shown herein, 30 dB variations can occur

with movements of as little as λ/10 and frequency shifts of <150 kHz for center frequencies in

the 2.4 GHz band (i.e., <0.01% proportional shift).

As noted, link measurements were conducted in two surrogate environments, one comparable

to a highly reflective factory setting, the other comparable to an office setting. A compact (0.9

m× 0.9 m× 0.3 m) reverberation chamber (Fig. 4.2) was utilized to create the highly reflective

scenario. The second was a NLOS condition within a lab (Fig. 5.2). An Anritsu MS2036A vector
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Figure 4.2: Test setup inside highly reflective, compact reverberation chamber used to emulate
“factory” conditions.

Figure 4.3: Test setup for NLOS “office” conditions.

network analyzer was used to measure S21 (i.e., path loss) between the a vertically polarized (i.e.,

Z-oriented) transmit antenna and one element of the receive tripolar array. Measurements were

made at 551 frequencies in the range of 2.40 GHz to 2.48 GHz. To emulate the random placement

of the transmitting device, the transmit antenna was mounted on a LabView controlled linear

track that allowed positioning to one of 50 repeatable locations in 1 cm (i.e., < λ/10) increments.

To analyze antenna array performance, we consider the S21 statistics. As illustrated in

(Fig. 4.4), S21 data for the reverberation chamber (Fig. 4.2) shows significant frequency-selective

multipath, of up to 30 dB in some instances, for this particular position of the transmit antenna,

irrespective of which receive array element is considered. Note that the receive arrays were wall

mounted in the chamber.

Fig. 4.5 shows the cumulative distribution of the S21 data presented in Fig. 4.4. We find for
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Figure 4.4: Sample S21 reverberation chamber data for one location of a vertically polarized (Z
direction) transmit antenna with arrays used at the receive side. Left: ArrayA, Right: ArrayB .

-50 -40 -30 -20 -10

Loss (dB)

10
-3

10
-2

10
-1

10
0

P
 [
S

2
1
 <

 a
b
s
c
is

s
a
]

Array
A

-50 -40 -30 -20 -10

Loss (dB)

10
-3

10
-2

10
-1

10
0

P
 [
S

2
1
 <

 a
b
s
c
is

s
a
]

Array
B

ZZ

XZ

YZ

3Z

RayleighRayleigh

2Z

1Z

Figure 4.5: CDF of S21 reverberation chamber data shown in Fig. 4.4. Left: ArrayA, Right:
ArrayB .

ArrayA that the copolar (i.e., ZZ) configuration is not necessarily the best even though the range

is short (∼1m) and there is a direct line-of-site (LOS) condition. At this particular position, ZZ

reveals link characteristics worse than what are observed for cross-pol links (i.e., XZ and Y Z).

When ArrayB is used at the receiver, there are not strictly copol or crosspol elements. That

being said, the performance of ArrayB in the reverberation chamber is comparable to that of

ArrayA in the nominal sense (e.g., median loss in both cases is ∼25 dB). However, the multipath
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Figure 4.6: CDF of S21 data inside office at one TX position. Left: ArrayA. Right: ArrayB .

effects experienced by ArrayB are seen to be more benign (i.e., all curves fall below the Rayleigh

reference line). Note that these same measurements conducted in an anechoic environment do

clearly show the advantage of a copolar (i.e., ZZ) configuration over the other five (i.e., XZ and

Y Z for ArrayA and 1Z, 2Z and 3Z for ArrayB) measured links.

We conducted a similar measurement in our lab (Fig. 5.2) to emulate a NLOS office setup. In

this case, the antennas were separated by ∼2.7m. The analysis of this data is presented in Fig.

4.6. In comparison to the reverberation chamber data (Fig. 4.5), we see the curves are in absolute

value at a lower value indicating a greater large-scale (i.e., nominal) path loss as expected for the

increased distance and NLOS conditions. We also note that all the curves follow a shape similar

to the Rayleigh reference, as also would be expected for this NLOS environment. However, and

most significantly, the copolarized link (i.e., ZZ) is not better than an explicitly crosspolarized

case (i.e., Y Z). On the whole, for this particular position of the transmit antenna, element 2Z of

ArrayB provides the best link performance for over 99% of the measured frequencies. However,

as we will discuss next, slightly different positioning of either the transmit antenna or receive

antenna array could yield completely different results.
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4.1.4 Summary and Impact of Selection Diversity

The previous section illustrated the test methodology and presented illustrative data for a single

position in each of the considered environments. We contend that placement of M2M devices in

the environment will be dictated by what is expedient for the installer and will not necessarily

be dictated by link quality considerations. As such, we consider in this section the performance

of each link over multiple spatial considerations. This testing was enabled by moving the vertical

transmit antenna to one of 50 closely spaced (1 cm) positions along the aforementioned linear

track.

Furthermore, we consider the scenario where the M2M device would implement arguably

the simplest of diversity techniques, selection diversity, in which the device would choose the

“best” of the tripolar elements. That is, the device would choose the element which results

in the strongest signal, which could be determined using the device’s received signal strength

indicator (RSSI). We show that this approach improves the overall channel statistics by reducing

the probability of deep fades and consequently the margins needed in link budgets to maintain

a desired quality of service (QoS).

4.1.4.1 Reverberation Chamber Results

Fig. 4.7 shows the summarized results of measurements taken in the reverberation chamber. In

total, we are presenting the results of over 27,000 measurements (50 positions × 551 frequencies).

We show the copol curve (i.e., ZZ) for reference but it should be noted that the other five links

exhibited comparable CDF curves (i.e., within ∼2 dB).

In Fig. 4.7 we also show the CDF when M = 3 selection diversity is implemented for each of

the arrays. In both cases, the 1% link margin is improved by over 13 dB in this environment.

That is, for a QoS of 99% link reliability, the margin or, equivalently, transmit power could be

reduced by over 13 dB if M = 3 selection diversity is used versus just any one of the single

elements. As in [64], we determine diversity gain as the ratio relative to the strongest individual

branch (i.e., element) of a particular array. This result further illustrates that the performance

of the “out-of-plane” ArrayB design is not significantly different from an antenna designed to

be copolar with the transmit antenna. In this environment, the 1% link margin gain is 13.6 dB
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Figure 4.7: M = 3 selection diversity in reverberation chamber is shown to increase 1% link
margins by over 13 dB for both arrays with ArrayA showing slightly better performance.

for ArrayB versus 14.4 dB for ArrayA.

4.1.4.2 NLOS Lab Results

Fig. 4.8 presents results of the extensive measurements conducted under our NLOS lab condition.

In contrast to the reverberation chamber results (Fig. 4.7), we find that element Y Z of ArrayA

and 3Z of ArrayB are found to be the “strongest individual branches” and have comparable

performance. This result illustrates the need for M2M antennas that are adaptable to the channel

conditions created by the application’s setting. When M = 3 selection diversity is employed, we

find further evidence that in “real-world” environments these two arrays will perform equivalently

(i.e., 1% diversity gain is ∼13.3 dB for both).

4.1.5 Proposed Antenna

The results presented thus far indicate that statistically, for the two environments considered, a

tripolar receive antenna array that is rotated 45◦ relative to a vertical transmit antenna performs

is no worse than a tripolar array that has one element copolar. This result thus enables us

to propose a tripolar design that can be arbitrarily oriented in space and readily fabricated

using 3D printing methods. Fig. 4.9 shows the proposed tripolar antenna geometry, with all
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Figure 4.9: Proposed antenna geometry (left), fabricated ABS substrate (right).

three elements perpendicular to each other and rotated 45◦ with respect to the Z axis. This

orientation is important because most 3D printing tools, including the micro-dispensing system

used for this work, are incapable of depositing conductive pastes or inks in the Z-direction

(normal to the printing platform). Accordingly, manufacturing a configuration such as ArrayA

using 3D printing would require an additional step to physically rotate the part during the

printing process.

Fused deposition modeling and micro-dispensing are the fabrication techniques proposed to

produce the substrate and conductive layers, respectively. The dielectric sections are fabricated

with a ceramic tip heated at 235◦ C; allowing printing of 250 µm thick ABS layers.

Since the resulting substrate is a relatively non-flat and uneven 3D surface, a laser displace-

58



-70 -60 -50 -40 -30 -20 -10

Loss (dB)

10-3

10-2

10-1

100

P
 [

S
2

1
 <

 a
b

s
c
is

s
a

]
M = 3 sel

1% gain
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position in a multipath environment show comparable individual links and that M = 3 selection
diversity improves the 1% link margin >11 dB.

ment sensor is necessary for conformal printing. A grid map is performed to scan the surface

along a defined pattern with a resolution of not less than 0.2 mm. The data collected from this

scan is triangulated into a mesh for collision detection. The micro-dispensing head is then used

to deposit the silver paste (DuPont CB028) to pattern the antenna elements; the height of the

generated mesh will be adjusted to conform approximately to the surface with a clearance gap

between the nozzle and the target surface of 100 µ m. All three processes are realized using an

nScrypt Tabletop 3Dn printer.

Fig. 4.10 presents initial results from a prototype 3D printed antenna array of the design

illustrated in Fig. 4.9. S21 link measurements were made in our compact reverberation chamber

at 1840 points between 2.40 and 2.48 GHz between each array element and a transmit antenna.

The individual links have comparable characteristics with median losses ranging from approxi-

mately 28.5 to 30 dB. Thus, just as was seen earlier, this scenario results in no particular single

element being “best”. However, employing selection diversity among the three elements improves

the 1% link margin by over 11 dB; again showing the importance of arrays being adaptive in

such environments.
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4.1.6 Conclusion

Herein we present the results of over-the-air testing conducted to demonstrate the efficacy of

a tripolar receive antenna array that is not copolar with with its vertically-oriented transmit

counterpart. The investigation showed that over two distinct environments, this antenna per-

formed no worse than a tripolar antenna in which one element was vertically polarized. The two

environments we chosen to represent a highly reflective industrial environment and an NLOS

office environment. For each environment, the transmit antenna was moved, in small increments,

to 50 different locations and S21 channel data was collected at 551 frequencies in the 2.4 GHz

ISM band.

The results of this investigation demonstrate that the geometric constraints of multi-material

3D printing do not prevent the fabrication of an effective tripolar antenna system that can be

an integral part of the wireless device’s packaging. We presented a preliminary design and data

for such an antenna system. Future work includes integration of a compact, tripolar antenna

system with commercial wireless sensor hardware and implementing algorithms that leverage

the wireless chipset’s RSSI measurement to configure the tripolar array either using selection

diversity, whose efficacy was demonstrated herein, and/or limited phasing of the three constituent

array elements.
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4.2 Additive Manufactured, On-Package 2.4 GHz Tripolar Antenna

Systems for Harsh Wireless Channels

4.2.1 Abstract

Two distinct and compact, 3D printed tripolar antenna systems operating at 2.4 GHz are pre-

sented. Both antennas are designed for integration with commercial wireless nodes with the

purpose of mitigating multipath and depolarization channel effects that might be present in

many machine-to-machine (M2M) deployments. The antennas are fabricated as a single-piece,

utilizing fused deposition modeling for dielectric parts and micro-dispensing of silver paste for

conductive layers. Over the air testing demonstrates that by leveraging the diversity provided

by the three mutually orthogonal monopoles, a 1% channel improvement of up to 14 dB can be

achieved in a highly-reflective, fading environment. This improvement leads to better bit error

rate (BER) performance (as is also shown). Additionally, RSSI measurements show significant

improvement when the prototype antenna system is integrated with a commercially-available

wireless sensor. Implications of tripolar antenna integration on M2M systems include reduction

in energy use, longer wireless communication link distances, and/or greater link reliability5.

4.2.2 Introduction

The Internet of Things (IoT) or Industrial Internet, generally refers to systems of electro-

mechanical machines and devices interconnected to one another through embedded wireless

sensors and actuators; a network that enables continuous machine-to-machine (M2M) commu-

nication is often realized autonomously without the need of any human intervention [65]. The

M2M communications market is predicted to grow to a value by 2022 anywhere from US $28B

to $200B [66, 67]; which is why energy-efficient, small size, reliable and low-cost wireless sensor

nodes are of great interest for industrial, commercial and aerospace applications. The devices

that comprise the M2M networks will in most cases be expected to undergo alterations in physical

temperature, pressure, moisture, etc.; and will be deployed in settings that are harsh for wireless

5Ramirez, R.A., Golmohamadi, M., Jamison, Frolik, J., and Weller, T.M.. To be submitted. Additive
Manufactured, On-Package 2.4 GHz Tripolar Antenna System for Harsh Wireless Channels. IEEE Antennas and
Wireless Propagation Letters. note it has been reviewed twice and has been rejected. It is now in
revision.
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communications (e.g., non-line-of-sight (NLOS) and with severe multipath), environments that

can weaken and depolarize a transmitted signal across all three spatial dimensions [12,30,68]. In

such environments, several copies of the transmitted signal will show up at the receiver, such that

each copy corresponds to a distinct multipath component with a distinct delay. The amplitude

of these summed signals can experience fast variations over time, space, and/or frequency due

to constructive and destructive combining [11].

To mitigate such fading effects, diversity-combining of independently fading signal paths can

be applied which leverages different frequencies and/or antenna elements [11]. For M2M systems

that involve multiple devices, coordinating the best frequency to use is not a viable diversity

approach, for it is possible that an appropriate frequency for one particular device to device link

may exhibit deep fades in another. Employing multiple antennas (i.e., spatial diversity) requires

elements to be located sufficiently far from each other (∼ λ/2) to guarantee uncorrelated fading

effects [69]. This constraint makes spatial diversity an undesirable approach for applications

(e.g., low-cost IoT systems) where the size of the antenna system is a crucial design parameter.

As noted, multi-element antenna diversity can improve link reliability thus allowing for the

reduction of the transmitted RF power (to save energy), but at the cost of a bulkier node design.

To address this problem, in [70], a cooperative spatial diversity technique was incorporated in

sensor nodes to improve link reliability. The approach utilizes several compact transmitter nodes

to send a message to a single destination. The trade off in this approach is added complexity

in node computation and network communications. An alternative method described in [71]

employs frequency diversity to improve link quality, however it required two radios separated by

65 cm for each node and therefore is not suitable for compact installations. In the work pre-

sented herein, we leverage polarization diversity as a means to provide a compact and relatively

uncomplicated approach for improving communication link quality in M2M systems.

Cross-polarized antenna systems, through their perpendicular/orthogonal elements, provide

signal paths that are weakly correlated, while keeping antenna elements colocated. Recently,

two dimensional polarization diversity has been exploited in sensor node design. For example, a

dual-polarized, 2.4 GHz patch antenna was proposed for integration into a wireless node in order

to mitigate body shadowing effect in wearable communication systems. Implementing selection

diversity improved the 1% outage probability by providing gain of 9.5 dB [72,73].
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In the presence of reflectors and retarders, an environment can lead to depolarization in

all three spatial dimensions [10]. In recognition of 3D depolarization, there has been some

efforts in designing antennas to leverage the extra degree of freedom [74]. For example, use of

colocated antenna elements with three (one loop and two coplanar dipoles) and four elements

(one loop and three mutually orthogonal dipoles) led to channel capacities greater than a single

element antenna [31]. Tripolarized antennas have also been shown to achieve channel capacities

comparable to three spatially separated single polarized antennas in a MIMO system [32].

A tripolar antenna meant to be integrated on a sensor node was previously presented by the

authors in [51] where pieces of the antenna package were printed separately and post-assembled

manually into a 3D form-factor, a drawback that reduce attractiveness for low- to middle-scale

production. A subsequent design, fabricated as a single piece, was introduced in [75] and will

be further analyzed in this work (i.e., the square antenna seen in Fig. 4.11). However, to the

best of our knowledge, full characterization and integration of a tripolar antenna into a wireless

node has not been reported.

This paper presents two tripolar antennas that were 3D printed in a single-piece construction

and intended for communication channels that experience significant multipath and depolariza-

tion. The antenna systems are integrated into the packaging of sensor nodes using an additive

manufacturing approach that combines fused deposition modeling (FDM) of the plastic case and

micro-dispensing of conductive pastes to realize the antenna elements; both methods combined

have been proven to perform efficiently up to mm-wave frequencies [76–79]. We present the per-

formance of these two antenna designs using both traditional antenna characterization measures

(S11, patterns) and through over-the-air (OTA) testing in a harsh communications environment.

The proposed tripolar antenna systems achieve a return loss greater than 15 dB at 2.4 GHz and,

when tested in a highly variable multipath environment, a 1% channel improvement of up to

14 dB by leveraging the diversity provided by the system’s three mutually orthogonal elements.

This improvement is shown herein to correspond directly to improved bit error rate (BER) im-

provement or could allow nodes to communicate either at lower transmit power (saving energy)

or over greater distances.

The content of this paper is organized as follows. In Section 4.2.3, the designs of two tripolar

antenna systems are discussed. Antenna characteristics, propagation measurements in anechoic
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and reverberation environments along with improvements gained in BER and in signal quality

are presented in Section 4.2.4, 4.2.5, and 4.2.6, respectively.

4.2.3 Antenna Systems Design and Fabrication

The multipolar antenna systems presented herein were custom designed to fit and replace covers

of two commercial wireless sensor node packages; packages with different dimensions and ge-

ometries were selected to show the versatility of the additive manufacturing technology. These

nodes are generally produced on a low to medium volume scale, making the FDM fabrication

approach a valid low cost and robust alternative.

Fig. 4.11 (left) and Fig. 4.12 show the dimensions, geometry and angular arrangement of

the first proposed, ‘square’ tripolar system having total height of 21 mm, length of 65 mm, and

width of 60 mm. The system is seen integrated on top of a 2.4 GHz sensor node in Fig. 4.11

(right).

Figure 4.11: Square antenna design (left), and fabricated prototype on top of a commercial
wireless node (right).

Similarly, Fig. 4.13, shows the dimensions of a second 2.4 GHz, ‘circular’ tripolar antenna,

designed to be placed on top of a cylindrical node; with total height of 11 mm, bottom diameter

of 33 mm and top diameter of 40 mm.

The antenna designs are based off three mutually orthogonal λ/4 monopoles operating at

2.4 GHz; each radiating element is directly printed over 45◦ sloped substrate walls, a value that

represents the maximum printing angle supported by most additive manufacturing systems,

including the one used for this work [80]. The complete process is realized in a single-piece

construction and avoids the need for physical part rotations to achieve orthogonality between
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Figure 4.12: Square antenna geometry and angular arrangement between elements.

Figure 4.13: Circular tripolar antenna design.

X, Y, and Z antenna elements. Each monopole is fed with a 50 Ω microstrip line, printed over

a 500 µm thick flat substrate. The lines are subsequently connected to an externally controlled

SP3T integrated circuit (Analog-Devices HMC245AQS1) that is used to switch between the

individual polarization states without any specific phasing arrangement between them. The

SP3T switch and SMP connector were manually placed and fixed onto the 500 um thick ABS

substrate with a two-part dielectric epoxy. Interconnection was achieved through dispensing of

DuPont CB028 silver paste with a subsequent drying stage at 90◦C for 60 minutes.

The processes used for the fabrication of both antenna devices are FDM and micro-dispensing.

FDM utilizes acrylonitrile butadiene styrene (ABS) with measured properties at 1 GHz of εr ∼

2.6 and tan(δ) ∼ 0.0058, to create the three-dimensional dielectric substrate. The ABS filament

is extruded through a ceramic 125 µm inner diameter tip at 235◦C and patterned layer by
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Figure 4.14: Microdispensing head on a sloped wall (top), fabricated circular antenna prototype
(bottom right) on a commercial wireless node (bottom left).

layer onto a metallic bed pre-heated at 110◦C. The 3D surface is then laser-scanned to create

a topography mesh that will guide the micro-dispensing head to conform to the surface while

depositing the conductive parts, as shown in Fig. 4.11 (left) and Fig. 4.14 (top). DuPont CB028

is the material used for the conductive traces; a silver paste which possesses a conductivity

of ∼16 S/m once it undergoes a 90◦C drying stage for 60 minutes. All three processes are

realized using an nScrypt Tabletop 3Dn printer (FDM head, laser displacement sensor and

micro-dispensing head). Fig. 4.11 (right) and Fig. 4.14 (bottom) show the fabricated square and

circular antenna prototypes placed on top of the commercial sensor node packages, respectively.

Coaxial SMP connectors were used on both prototypes for the RF output signal; the connector

and the 3-way switch are manually placed and connected.

4.2.4 Antenna Characteristics

In order to demonstrate radiation characteristics and the advantages of implementing polar-

ization diversity, the performance of each antenna is tested in both anechoic and reflective

environments. This testing allows the determination of the antenna radiation patterns and cu-

mulative distribution functions of fading statistics, respectively. Along with these results, the

transmission and reflection coefficients for the antenna ports are shown in this section.
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Figure 4.15: Square antenna simulated and measured reflection coefficient: M1-M3 (left), M2
(right).

4.2.4.1 Network Properties and Performance in Anechoic Environments

The measured and simulated input reflection coefficients of the square antenna for monopoles

M1 and M3, both of which are rotated 45◦ with respect to the Z and X axes, are shown in

Fig. 4.15 (left). Similarly, Fig. 4.15 (right) shows the reflection coefficient for monopole M2,

which is rotated 45◦ with respect to the Z axis. The return loss is greater than 15 dB at 2.4 GHz

on all elements, with a worst case 10 dB bandwidth extending from 2.1 GHz up to 2.8 GHz (i.e.,

700 MHz).

Fig. 4.16 (a) and (b) show the measured and simulated radiation gain patterns at 2.4 GHz

for monopoles M1, M3 and M2, respectively. The data correspond to the antenna azimuth

plane against a vertically oriented transmitter horn antenna. That is, the X-Y plane follows

the reference axes shown in Fig. 4.11 and Fig. 4.12. Fig. 4.16 (c-e) show the simulated 3D gain

pattern when each individual monopole is selected. From each pattern, one will note that a

null is aligned along the monopole axis, ensuring pattern orthogonality and reasonable decou-

pling/independence between the three elements. Fig. 4.16 (b) also shows the simulated cross-

polarization pattern for monopole M2 on the square system with a maximum cross polarization

discrimination of 35 dB; similar values are achieved for the other elements.

Fig. 4.17 (left) presents the simulated coupling between each monopole for the square an-

tenna system, where a maximum mutual coupling level of -15.7 dB is seen at 2.4 GHz. To

further evaluate the antenna diversity performance, envelope correlation coefficients (ECCs) are

67



Figure 4.16: Square Antenna - Simulated and measured normalized gain pattern (X-Y cut) :
M1-M3 (a), M2 (b), and simulated 3D gain pattern for each polarization M1(c)-M2(d)-M3(e).

Figure 4.17: Square antenna - Simulated coupling between elements (left), envelope correlation
coefficients (right).

computed between each element from simulated far field radiation patterns [81]. ECC values

up to a threshold limit of 0.5 are often considered as acceptable [82, 83], while values of zero

and one would suggest complete uncorrelation or overlapping radiation patterns, respectively.

The proposed square antenna demonstrates low correlation between all polarizations, with a

maximum ECC value of 0.05 in the ISM band of 2.4-2.5 GHz, as shown in Fig. 4.17 (right).

Similarly, Fig. 4.18 (a) and (b) illustrate the measured and simulated radiation gain patterns

of the circular antenna system at 2.4 GHz for monopoles M1, M3 and M2, respectively. The data

correspond to the antenna azimuth plane against a vertically oriented transmitter horn antenna,
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Figure 4.18: Circular antenna - Simulated and measured normalized gain pattern (X-Y cut) :
M1-M3 (a), M2 (b), and simulated 3D gain pattern for each polarization M1(c)-M2(d)-M3(e).

and show good agreement between measured and simulated traces. Fig. 4.18 (c-e) show the

simulated 3D gain pattern when each individual monopole is selected; as in the previous design,

it is seen how each radiation null is aligned in the direction of the corresponding monopole,

ensuring pattern orthogonality and reducing the mutual coupling between arms. Some ripples

observed on the X-Y plane measured radiation patterns can be attributed to the presence of

the SMP connector on the top surface; its placement may be switched to the bottom surface in

order to reduce scattering. Fig. 4.18 (b) also shows the simulated cross-polarization pattern for

monopole M2 on the circular system with a maximum cross polarization discrimination of 25.8

dB, and again similar values are achieved for the other elements.

A return loss greater than 20 dB at 2.4 GHz is achieved for all three monopoles, with a

worst case 10 dB bandwidth from 2.19 GHz to 2.56 GHz (i.e., 370 MHz). Slightly higher

correlation coefficients are observed for the circular system as compared to the square system,

with a maximum ECC value within the 2.4-2.5 GHz ISM band of 0.159. The increase can be

attributed to non-orthogonal field components created by meandered traces on each monopole.

Similarly, the simulated coupling between elements on the circular antenna system shows a

maximum level of -13.5 dB at 2.4 GHz.
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4.2.4.2 Antenna Performance in Multipath Environments

The anechoic chamber results presented in Section 4.2.4.1 represent those expected in terms

of functionality for an array of monopoles (albeit that our design has these oriented mutually

orthogonal in three dimensions). However, in terms of performance of the antenna system for

its intended application (i.e., IoT devices in cluttered environments), a more representative test

environment is required. For this, we employed a compact (0.9 m × 0.9 m × 0.3 m) reverberation

chamber (Fig. 4.19), capable of emulating channel conditions ranging from benign (i.e., Rician,

high K) to very severe (i.e., two-ray, hyper-Rayleigh) [84]. As reverberation chambers have been

shown to emulate channel characteristics similar to industrial sites [53], we contend our test

environment will similarly emulate conditions that may be seen by M2M systems.

Moving Tripolar RX

Track

Vertical TX

Figure 4.19: Test setup inside highly reflective, compact reverberation chamber.

Figs. 4.20 (left) and (right) show the reflection (S11) coefficient for the monopoles M3 ‘square’

and M2 ‘circular’, respectively, inside an aluminum reverberation chamber (solid line) for a fixed

stirrer position. Although the measured return loss is strongly affected by the antenna placement

and conditions inside the chamber, the impedance match is still preserved at 2.4 GHz, moreover

the overall frequency response follows the trend of the anechoic coefficient shown with the dashed

line [85].

Chamber testing was conducted by placing each individual tripolar array mounted on a

LabView controlled linear track that allowed positioning to one of 50 repeatable locations in

1 cm (i.e., < λ/10) increments. An Anritsu MS2036A vector network analyzer was then used to

measure S21 (i.e., path loss) between a vertically polarized (i.e., Z-oriented) transmit antenna
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Figure 4.20: S11 data in reverberation chamber for square antenna (left) and circular antenna
(right).

and one element of the receive tripolar array.

Measurements (Fig. 4.21 (left)) and (Fig. 4.22 (left)) were made at 551 frequencies in the

range of 2.40 GHz to 2.48 GHz and at 50 positions inside the chamber. For the ‘square’ antenna,

the individual links have comparable characteristics with median losses ranging from approxi-

mately 39.7 to 40.3 dB. Thus, over 25,000 test conditions, we found that no single element (M1,

M2, or M3) exhibit any superior performance over the other two.

Also implemented was M = 3 selection diversity where the best (i.e., lowest link loss) path

was selected for each frequency. The resulting cumulative distribution function (CDF) is seen

in Fig. 4.21 (right). This diversity technique yields 1% link improvement of 11 dB. The value

is significant in that it could be traded for reducing transmit power by an order of magnitude,

thereby saving node energy and extending battery life or be leveraged to reduce the link outage

probability and/or BER (as we demonstrate later).

The results obtained from the circular antenna shows that the individual links have compa-

rable characteristics with median S21 ranging from approximately -36 to -37.5 dB. Employing

selection diversity among the three elements improves the 1% link margin by 14 dB (Fig. 4.22

(right)), again, a significant improvement in overall link characteristics.
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Figure 4.21: Square antenna results. Link loss, i.e., S21, for three mutually orthogonal receive
elements when transmit element is vertically polarized (left). CDF plots of S21 data for individual
elements and when M = 3 selection diversity is leveraged. 1% link improvement is found to be
∼11 dB (right).

Figure 4.22: Circular antenna results. Link loss, i.e., S21, for three mutually orthogonal receive
elements when transmit element is vertically polarized (left). CDF plots of S21 data for individual
elements and when M = 3 selection diversity is leveraged. 1% link improvement is found to be
∼14 dB (right).
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Figure 4.23: Test setup for BER measurements.

4.2.5 BER Measurements

Transmission over a link in a wireless network is prone to error due to noise and multipath effects.

Bit error rate (BER) is often used to evaluate the link quality. BER has also been employed as

a performance metric for routing protocols in wireless sensor networks [86,87].

To understand how the tripolar antenna system might improve BER in very harsh envi-

ronments, over-the-air BER measurements were performed in the reverberation chamber. The

measurement setup for obtaining the BER is shown in Fig. 4.23. Unlike the previous S21 over-

the-air measurements that were taken at 50 locations and 551 distinct frequencies, the BER

measurements were conducted for one configuration of transmit and receive antenna array and

at 16 channels with bandwidths of 375 kHz in the range of 2.4 GHz to 2.48 GHz. A vector signal

generator (Agilent E4438C) was used to generate BPSK modulated signals with symbol rate of

250 kb/s. To receive and demodulate the signals, a vector signal analyzer (Agilent E4440A) was

employed.

In order to measure the BER, the received bits were compared with transmitted bits. These

measurements were made 1000 times. The BER graphs at Eb/N0 = 20 dB for three antenna

links over channel frequency, which are presented in Fig. 4.24, indicate frequency selectivity of

the channel. Theoretical BER values for Rayleigh channel and Rician channels with two different

K values are plotted in order to see qualitative effects. The lowest BER among three links is

selected at each frequency and shown in Fig. 4.24. The data are summarized in Table 4.1. We
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Figure 4.24: BER of three links and the best link of the square tripolar antenna.

Table 4.1: Statistics of BER of square tripolar antenna

Link Min Mean Max

M1 9.6× 10−5 7.0× 10−4 3.2× 10−3

M2 1.1× 10−4 7.6× 10−4 2.4× 10−3

M3 9.8× 10−5 9.2× 10−4 3.4× 10−3

Best 9.6× 10−5 4.0× 10−4 1.1× 10−3

find that employing diversity methods for this particular measurement scenario decreased the

average BER by 42% compared to leveraging just any single element.

The same BER measurement protocol was repeated for the circular antenna, the results

of which are presented in Table 4.2. In this case, the average BER decreased by 44% when

employing this tripolar antenna. It should be noted that the nominal Eb/N0 = 20 is a relatively

robust channel and that greater improvement can be expected at lower Eb/N0 values.

4.2.6 Sensor Node Integration

The S21 measurements (Section 4.2.4) and BER data (Section 4.2.5) have shown experimentally

that the prototype tripolar antennas provide an effective means of mitigating frequency and space

dependent multipath effects in highly reflective communication environments. In this section, we
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Table 4.2: Statistics of BER of circular antenna links

Link Min Mean Max

M1 1.1× 10−4 1.8× 10−3 4.7× 10−3

M2 2.0× 10−4 1.9× 10−3 6.2× 10−3

M3 1.0× 10−4 1.9× 10−3 6.5× 10−3

Best 1.0× 10−4 1.0× 10−3 3.8× 10−3

demonstrate results of integrating our prototype antenna system with a commercially available

wireless sensor node (Fig. 4.11 (right)). Specifically, we leverage the ability of the node’s wireless

chipset to provide its received signal strength indicator (RSSI) measurement. We use RSSI to

infer path loss, akin to our S21 data, as it provides a relative dB value of the received signal

strength.

As noted at the onset of this work, the prototype antenna systems were physically designed to

be integrated with commercial wireless sensor nodes. The nodes in mind during the development

were the LORD Sensing G-Link2 for the square antenna and the LORD Sensing G-Link-200-

8G for the circular design. In our demonstration, RSSI data is captured using the square

antenna, integrated with firmware from a LORD Sensing WSDA-Base-104 gateway/basestation.

The firmware was developed and the experiment was run using a Silicon Labs Mighty Gecko

EFR32MG development board. This board is designed to operate at 2.4 GHz with a maximum

power of 13 dBm. A test script was then written using LORD Sensing’s open source MSCL

library. The script successively pings the node 50 times, saves the average RSSI value, repeats

the process for each antenna element, and then repeats the process for each channel frequency

(LORD Sensing wireless networks use 16 channels between 2.40 and 2.48 GHz).

The integrated system was placed in the reverberation chamber, connected to the SL board

with the basestation firmware, and a link is established with a LORD Sensing G-Link2 with the

line-of-sight blocked (Fig. 4.25). Applying selection diversity using this tripolar antenna improves

the RSSI measurements substantially (Fig. 4.26), with the supporting statistics displayed in

Table III. From Table III it can be seen that selection diversity between the three antenna

elements improves the median RSSI 10 dB from the “worse” performing antenna element (M2).

Selection diversity also provides “flatter” (i.e., more consistent) performance across the channels
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Figure 4.25: The set-up for the RSSI experiments. The LORD G-Link2 is present on the left of
the chamber, while the tripolar is on the right, with the LOS component blocked.

Figure 4.26: RSSI data captured within the reverberation chamber. The measurements taken at
each antenna element are displayed, along with the ’best’ scenario that could be attained with
selection diversity.

(Fig. 4.26) as there is between 3 to 6 dB decrease in standard deviation when compared to the

individual elements.

4.2.7 Conclusion

Two distinct 3D printed tripolar antennas have been developed and characterized for operation

at 2.4 GHz. Each antenna is fabricated through additive manufacturing techniques to match

the geometries of commercial wireless node packages. The antenna systems are designed to
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Table 4.3: RSSI Data (Square Antenna System)

Link Median Standard deviation

M1 -13 dB 5.93 dB

M2 -17 dB 6.94 dB

M3 -8 dB 9.66 dB

Best -7.5 dB 2.59 dB

mitigate harsh channel conditions by implementing polarization diversity between three mutually

orthogonal (∼ λ/4) monopoles. Performance was demonstrated under ideal and high multipath

conditions, showing return loss values greater than 15 dB at the frequency of interest. Over the

air testing demonstrated a 1% channel improvement of up to 14 dB across over 500 locations in a

multipath environment and 44% reduction in BER at a representative location. Additionally, full

integration with commercial hardware was performed resulting in the antenna array’s capability

for providing more consistent conditions over all selectable communication frequencies/channels.

Future work includes developing on-chip mm-Wave multipolar antenna systems fabricated with

additive manufacturing and laser machining to diminish depolarization effects present in wireless

chip-to-chip communication channels.
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5 Geometry-based Stochastic Channel Model and Quad

Polarization Diversity

Foreword

This chapter evaluates circular polarization performance and hybrid polarization diversity (a

diversity technique that chooses the best signal among both linear and circular polarizations)

in indoor channels. Section 5.1 presents the paper submitted to ”2018 IEEE Transaction on

Antennas and Propagation”. A geometrical stochastic channel model (GBSCM) is proposed

for indoor radio channel with ability of incorporating different polarization types (e.g., linear,

circular, elliptical). To date, these evaluations have been largely through experiments and ray-

tracing simulation tools and have primarily focused on linearly polarized systems. Two metrics

of 1% link margins and cross-polarization discrimination (XPD) are obtained from both simu-

lated and empirical data and show comparable results (within 1 dB). Section 5.2 presents the

paper submitted to ”2018 IEEE Antennas and Wireless Propagation Letters”. In this paper, we

report effects of using quad-polarization diversity antenna systems in harsh multipath environ-

ments to mitigate deep fading. The antenna is designed and fabricated by our collaborator at

Dublin Institute of Technology. The results demonstrate that choosing between four different

polarizations, while using simple low-cost omnidirectional antennas leads to substantial benefit

in high-multipath environments.

5.1 A Geometric Scattering Model for Circularly Polarized Indoor

Channels

5.1.1 Abstract

Wireless systems are being deployed in evermore complex environments, ones that can introduce

multipath resulting in not only severe frequency selective fading but also signal depolarization.

Polarization diversity is a known technique to mitigate such fades. To date, primarily linear

polarization (LP) systems have been used for indoor communications, but recently circular po-

larized systems have received attention. As such we are motivated in this work to better under-
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stand how both linear and circular systems perform in depolarizing environments. In this work,

we present a 3D geometry-based stochastic channel model (GBSCM) for dual-polarized systems

to evaluate circular and linear polarization in cluttered settings. Using a Poisson distribution,

the model generates a number of multipath scatterers. Measurements have been conducted at

2.4 GHz to validate the model. Leveraging parameters extracted from measured data, linear and

circular polarization conditions are simulated for both line-of-sight (LOS) and non-LOS (NLOS)

conditions. Cross-polar discrimination (XPD) and 1% link margins are considered as perfor-

mance metrics. These metrics applied to both simulated and empirical data are both within 1

dB of each other 6.

5.1.2 Introduction

Machine-to-machine (M2M) communication promises to form a significant portion of future

wireless systems and will push deployments into evermore cluttered environments that are likely

to produce non-line-of-sight (NLOS) and/or severe multipath conditions (e.g., factory floors).

For linearly polarized (LP) links, these environments are known to change polarization plane of

the transmitted wave, so the best orientation for the receive antenna is not always evident [12].

In this work, we investigate circular polarized (CP) antennas in these environments.

Other works has shown the benefit of CP-CP systems (i.e., a link where both antennas are

circularly polarized) over LP-LP systems.

For instance, CP-CP links were shown to reduce delay spread in LOS indoor channels at

frequencies of 1.3 and 4 GHz [88]. The simulated model presented in [89] confirmed these

results and showed a reduction of delay spread by half when using circular polarization at

10 GHz. The same result has been seen at 60 GHz [90]. Finally, lower BER was observed

for circular polarization in LOS conditions at 60 GHz using both experimental data [90] and

simulation data [91]. Furthermore, LP-CP links were found to perform better than LP-LP when

there was LOS in an outdoor environment, whereas the superiority became insignificant with

obstructed LOS path and abundant number of scatterers [92]. In a system with dual-linearly

polarized receiver, higher diversity gain was achieved by replacing a LP transmitter with a CP

6Golmohamadi, M.and Frolik, J.. Submitted on December 28, 2018. A geometric scattering model for circu-
larly polarized indoor channels. IEEE Transactions on Antennas and Propagation.
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transmitter [93].

The aforementioned works have compared CP-CP and CP-LP links with LP-LP links in

different environments using either empirical data or ray-tracing simulation. Alternatives are

geometric-based stochastic channel models (GBSCM) that characterize a channel independent

of antenna aspects, and thus, are suitable candidates for developing multi-polarized channels.

These models are simplified ray-tracing approaches in which scatterers are specified by spa-

tial distributions which are described using parameters that are extracted from experimental

measurements [24].

There are precedents for the modeling of indoor radio channels using geometry-based tech-

niques. A 2D elliptical model was introduced for personal communication systems in [29]. The

elliptical model was extended to a 3D spheroidal channel model for simulating indoor radio

channels. Closed form distributions of angle-of-arrival (AOA) and time-of-arrival (TOA) showed

good agreement with the distributions of empirical data in an indoor setup [3]. Furthermore,

geometrical reference models have been developed for multi-polarized mobile to mobile (M2M)

and fixed to mobile (F2M) channels to calculate cross-polarization discrimination (XPD) in three

dimensions [28]. However, these works only considered linear polarization systems.

Here, we develop a GBSCM for indoor channels which is able to evaluate different polarization

types (linear, circular, elliptical). Specifically, we combine the techniques proposed in [3] and [28]

and develop a new approach that incorporates antenna polarization types within the channel

model in order to describe propagation characteristics of CP waves in indoor radio channels. Note

throughout this paper, we use CP and LP for CP-CP and LP-LP links respectively. Finally,

we use the proposed geometrical channel model to study depolarization effects of CP and LP

systems by computing XPD and also 1% link reliability margins as metrics. To best of our

knowledge, non-linear polarized systems has not been considered to date. To summarize, the

proposed geometrical channel model

• accounts for channel depolarization as a result of reflection effects;

• is able to estimate the impact of different polarization diversity types on mitigating fading

in indoor channels.

The content of this paper is organized as follows. In Section 5.1.3, the CP polarization and
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depolarization mechanisms are presented. The geometrical model is explained in Section 5.1.4.

Model validation and measurement setup are addressed in Section 5.3.1. The results are dis-

cussed in Sections 5.3.2 and 5.3.3. Conclusions and avenues for future work are summarized in

Section 5.3.4.

5.1.3 Wave Depolarization

In this section, we review relevant foundation for analyzing depolarization. Polarization can

be explained such that at a fixed point in space, the electric field of an electromagnetic wave

outlines an ellipse in a plane perpendicular to the propagation direction [23].

When horizontal and vertical components are in phase, the polarization is linear. In case

of π/2 radians phase difference between equally weighted orthogonal polarization components,

the ellipse transforms to a circle which represents circular polarization. In particular, the unit

vectors of right hand circular polarized wave (RHCP) and left hand circular polarized wave

(LHCP) are given by:

RHCP =

√
2

2
(Ĥ − jV̂ ) (40)

LHCP =

√
2

2
(Ĥ + jV̂ ) (41)

where, Ĥ and V̂ are unit vectors of horizontally and vertically polarized waves, respectively.

Depolarization is defined as coupling of a wave into an orthogonal polarized wave due to

reflection, scattering, or diffraction. In an ideal environment (i.e., free space), both the prop-

agation direction and the polarization ellipse remain constant at each point in space, leading

to zero depolarization. Whereas in a multipath environment, these two parameters randomly

change over time/frequency/space and cause depolarization [30].

For simplicity, we only consider depolarization effects due to reflection off a smooth surface.

This assumption roots from the fact that in indoor radio channels at frequency of 2.4 GHz,

surfaces can be mostly considered smooth in the sense of Rayleigh criterion [94]. Because the

electromagnetic wave is transverse, the field incident onto the interface can be decomposed into

two polarization components, one parallel polarization with the electric field vector inside the

plane of incidence (a plane that contains incident and reflected waves), and the other one per-
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pendicular polarization, normal to that plane [95]. Magnitude and phase of reflection coefficient

of them are different. Decomposition of incident waves into these two polarization modes is

described in Appendix A.

5.1.4 Model Development

In this section, the geometry of the model and the distribution of scatterers will be discussed.

5.2 Physical Propagation Process

The 3D spheroidal geometry used in this paper has been previously proposed for indoor channel

characterization (Fig. 5.14(a)) [3]. That work assumed that scatterers are distributed uniformly

inside the volume with uniform phase distribution. Furthermore, the scatterers were treated as

perfect conductors such that reflection coefficients of parallel and perpendicular polarizations

were identical and unity in magnitude. However, in this paper, we have developed a model that

takes polarization differences into account and calculates phase shifts of multipath components

due to both reflection phenomenon and path length. This allows us to compare CP systems with

LP ones. Because reflection induces a phase difference between the two orthogonal polarization

components that sometimes better suppresses multipath components in CP systems compared

to LP systems.

A horizontal cross-section of proposed 3D spheroidal model is presented in Fig. 5.14(b). The

geometry has been divided into several sub-regions such that each sub-region is representative

of a tap in tapped delay line channel model. These divisions let us to include bandwidths of

measurements in the model by varying width of the sub-region.

Receive and transmit antennas are placed on spheroid’s foci. A random scatterer pattern for

use in our model is established as follows:

• The interval [0, τmax] is divided into N consecutive sub-intervals of length ∆τ = τmax

N .

∆τ is the time resolution of the system, which is equal to inverse of system’s bandwidth.

Bandwidth limits time resolution so that echoes at τ and (τ + ∆τ) arrive effectively at the

same time [5]. τmax is the the maximum excess delay spread of the channel.
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𝑆1
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𝑆𝑁

…

Scatterer’s distribution

Figure 5.1: (a) Spheroid models geometry for indoor channels [3]. (b) Horizontal cross-section
of proposed geometry, scatters are distributed in sub-regions S1 − SN with different densities.

• The scatterers are distributed uniformly inside sub-regions. The most outer sub-region

produces the maximum excess delay spread of the channel (τmax).

5.3 Dual-polarized Channel

A multipath channel with one polarization channel can be described as a linear filter, Eq. (62),

with a complex baseband impulse response for a stationary user [29]

h(t) =

N∑
n=1

αnδ(t− τn) (42)

where, αn represents complex amplitude of nth component, τn is the relative delay of each

component compared to the first arriving one, and N shows the number of taps in a tapped delay

line channel model. The complex amplitude αn is sum of all multipath signals received within

the nth tap or sub-region. The frequency transfer function is given by the Fourier transform of

h(t) [96]. This can be calculated to be

H(f) =

N∑
n=1

αnexp[−j2πfτn] (43)
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To characterize a dual-polarized channel, losses due to interaction with scatterers for all

polarization channels, namely, γnV V , γ
n
HV , γ

n
V H , and γnHH are included in the model. For instance,

γnV V defines induced loss at nth sub-region for vertical to vertical polarized links. Derivation of

these four polarization functions for a single scatterer in the space is described in Appendix A.

H(f) =

N∑
n=1

~Et
H

γnV V γnV H

γnHV γnHH

 exp[−j2πfτn] ~Er (44)

where, ~Er is the electric field vector of the receive antenna and ~EHt is Hermitian transpose

of electric field vector of the transmit antenna. Throughout this paper, we also assume all the

polarization mixing is due to the channel effects, i.e., we neglect polarization leakage of antennas.

However, the model is capable to consider these effects.

5.3.1 Model Validation

In this section, we first present the test setup for conducting measurements and afterwards

describe extraction of model’s parameters from measurements.

5.3.1.1 Test Setup

Link measurements were conducted in both NLOS and LOS conditions within a lab environment,

with tables, chairs and closets (Fig. 5.2). To emulate the NLOS setting, LOS path was blocked by

a large table. An Anritsu MS2036A vector network analyzer was used to measure S21 (i.e., path

loss) between two dual-polarized patch antennas. CP an LP link measurements were made at 551

frequencies in the range of 2.40 GHz to 2.48 GHz (bandwidth of 80 MHz). To measure co-pol and

cross-pol LP links, the transmitting antenna was configured to radiate vertically polarized waves

and the receiving antenna was configured to both vertically and horizontally polarized radiations.

To generate CP links, a 90 degree splitter was used to provide π/2 phase shift between two linear

orthogonal polarized branches of patch antenna. LOS distance between antennas was set about 2

m. To emulate the random placement of the transmitting device, the receive antenna was moved

to one of 20 repeatable locations in 1 cm (i.e., < λ/10) increments in direction orthogonal to

the wave propagation. The environment was kept static during measurements.
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Figure 5.2: Test setup for LOS “office” conditions.
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Figure 5.3: Left: Copol S21 in dB for vertically polarized transmit antenna. Right: PDP of
measured S21.

Fig. 5.3 shows frequency responses and the corresponding normalized power delay profile

(PDP) at one position for LOS and NLOS conditions. For the LOS scenario, the frequency

response is almost flat over the whole bandwidth. Furthermore, PDP falls off very quickly which

indicates that first arriving rays carry a significant portion of the received power. However, in

NLOS situation, channel shows a frequency-selective behavior. The deep fading seen in this

scenario corresponds to multipath and the large excess delay spread in comparison with LOS

condition.

The model’s parameters are maximum excess delay spread, width and number of sub-regions.

We used PDP of measured data to estimate these parameters. The channel impulse response
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Table 5.1: Measured excess delay and number of sub-regions

Set-up Maximum excess delay N

LOS-VV 23 nsec 2

NLOS-VV 49 nsec 4

was made by taking the IFFT of the measured frequency data. The PDP then was derived from

the impulse channel response and was normalized such that the area under PDP was equal to

unity. Maximum excess delay spread of the channel was estimated by counting all components

that were within 15 dB of the strongest multipath component. Average value of excess delay

over 20 positions for LOS and NLOS environments are presented in Table 5.7. The number of

sub-regions, N , was estimated using ratio of maximum excess delay to the time resolution of the

measurement. Time resolution of our measurement was ∆τ = 1
80MHz = 12.5 nsec.

N =
τmax
∆τ

(45)

Maximum excess delay of 23 nsec for LOS condition resulted in two sub-regions. While larger

excess delay of NLOS environment led to four sub-regions for this case.

Prior works have shown that the Poisson distribution is a good fit for number of scatterers [97,

98]. So we assume that scatterers are randomly distributed inside each sub-region by following

spatial Poisson process with rate or expected value of λn such that probability of finding k

scatterers in nth sub-region (Sn) is given by

P (k ∈ Sn) =
λkne
−λn

k!
(46)

To find average number of scatterers in each sub-region, the total number of scatterers is mul-

tiplied by the ratio of sub-region’s power (or power of corresponding tap in PDP) to the total

received power [99].

λn = Λ
P (τn)

Ptot
, i = 1, 2, ..., N. (47)

where, Λ is the expected value of total number of scatterers. P (τn) and Ptot are power of nth
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Table 5.2: Model parameters used in simulation

Set-up λ1 λ2 λ3 λ4
LOS-VV 18 2 - -
NLOS-VV 16 2 1 1

tap in PDP and total received power, respectively.

Since reported values for number of multipath components in a channel are dependent on

measurement bandwidth and receiver sensitivity, it is challenging to find an accurate estimation

for number of scatterers in indoor settings. However, a meaningful range for number of multipath

components can be derived from various studies in which they have used different measurement

parameters. Statistical analysis of the data taken in factory buildings with time resolution of

7.8 nsec showed a range from 9 to 36 for average number of multipath components [27]. Indoor

data with measurement bandwidth of 500 KHz and short TR-RX distances have resulted in a

range of 5 to 20 for number of significant multipath components [100]. Owing to having so many

multipath components in our lab setup, the average of total number of multipath components

(Λ) is chosen to be 20.

Employing the method described in Eq. (47), the average number of scatterers in all sub-

regions are estimated for LOS and NLOS environments. These values are presented in Table 5.2

and illustrated in Fig. 5.4. For both LOS and NLOS cases, most scatterers are distributed in the

first sub-region. These scatterers are sources of multipath components that arrive within first

12.5 nsec. In LOS case, since the first arriving echo contains the strong LOS signal, density of

scatterers in the first sub-region is larger than NLOS case.

Horizontal cross-section of geometrical representations of both LOS and NLOS environments

are shown in Fig. 5.4.

5.3.2 Diversity Gain Results

This section presents some comparisons between the simulation results and empirical data ob-

tained from the measurement setup. The scatterer distribution parameters are presented in

Tables 5.7 and 5.2. In addition, reflection coefficients εr of the scatterers should be defined.

Reflection coefficients were measured for common building materials at 2.4 GHz [101]. The

measured range for εr was mostly between 2 and 7. For instance, numbers of 2.7, 3 and 2.4 were
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Figure 5.4: Left: NLOS scatterer’s distribution geometry. Right: LOS scatterer’s distribution
geometry.

estimated for reflection coefficients of wood, linoleum, and drywall which exist in our indoor

office environment [101]. Thus, we set the reflection coefficient εr to be 3 in our simulation.

5.3.2.1 NLOS

Fig. 5.5 shows the summarized results of measurements taken in lab when there was no LOS.

We show the linear copol curve (i.e., Copol, LP ) exhibits better performance compared to cross

polarized linear link (i.e., Xpol, LP ). However, CP shows comparable CDF curves for both copol

and cross polarized links. In Fig. 5.5 we also show the CDF when M = 2 selection diversity

is implemented for each of polarization systems. We consider the selection diversity, in which

the device would choose the “best” of the receive antenna elements. That is, the device would

choose the element which results in the strongest signal. In both systems, the 1% link margin

was improved by 7.7 dB. That is, for 99% link reliability, the margin or, equivalently, transmit

power could be reduced by over 7.7 dB if M = 2 selection diversity is used versus just any one of

the single elements. The simulated received links were attained from our 3D geometrical model.

The CDF plots of the simulated links for five hundred realizations are shown in Fig. 5.6. All

curves are normalized to median of Copol, LP . Again, circular polarized links showed comparable

CDF curves, while linear ones provide more distinction between copol and cross-pol links. In

terms of diversity gain, the simulated data showed 1% diversity gains of 7.4 dB and 8.6 dB for

LP and CP systems, respectively.

A summary of measured and simulated diversity gains for both NLOS scenario are presented
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Table 5.3: 1% Diversity Gain

Case gaindata gainsim ∆

NLOS-LP 7.7 dB 7.4 dB 0.3 dB
NLOS-CP 7.7 dB 8.6 dB 0.9 dB

in Table 5.3. The difference between measured and simulated diversity gain results are shown

to be within 1 dB.
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Figure 5.7: Measured S21 data of LP and CP links in LOS case.
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Figure 5.8: Synthesized S21 data of LP and CP links in LOS case. Curves are normalized to
median of Copol, LP .

5.3.2.2 LOS

Measured data in presence of LOS showed that Copol, CP links perform better than Copol, LP

links and provide 2.6 dB improvement of 1% link margin compared to LP link (Fig. 5.7). 3 dB

enhancement of 1% link margin of Copol, CP in the simulation verified the experimental result

presented in Fig. 5.8.
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Table 5.4: Cross polar discrimination

Case XPDdata XPDsim ∆

LOS-LP 7.30 dB 8.00 dB 0.70 dB

NLOS-LP 3.00 dB 2.64 dB 0.36 dB

LOS-CP 6.16 dB 6.90 dB 0.74 dB

NLOS-CP 0.69 dB 0.54 dB 0.15 dB

5.3.3 XPD results

Cross-polarization discrimination (XPD), which is the percentage amount of a transmitted wave

that decouples into an orthogonal polarized wave, is defined as the ratio of the average power

received in the co-polarized channel to the average power received in the cross-polarized channels.

XPD has been formalized as follows [39,40].

XPD =
〈Pcopol〉
〈Pxpol〉

(48)

where, for our data, 〈...〉 denotes the average over frequencies 2.4 GHz - 2.48 GHz. Lower

cross-polar discrimination indicates that antenna’s rotation, which results in polarization mis-

match between the transmitter and the receiver, affects the received signal strength less.

Table 5.4 presents the median of measured and simulated XPD. The results show that

power imbalance between orthogonal circularly polarized waves is less than orthogonal linearly

polarized waves. In the NLOS case, XPD of CP polarized waves is 0.69 dB for the empirical

data and 0.54 dB for simulated data. While LP shows larger XPD in both measurements and

simulation, namely 3 dB and 2.64 dB. In the LOS scenario, XPD values of CP system are

also less than LP system. These results confirm that CP systems are less sensitive to antenna

rotation.

5.3.4 Conclusion

We have presented a 3D geometry-based stochastic model for indoor channels capable of evalu-

ating circular and linear dual-polarized systems. The proposed geometrical model uses spatial

distributions of scatterers in a shell-like 3D spheroid to build the multipath channel. The model’s

parameters are obtained from measurements taken, for this work, inside an office. Analysis of the
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propagation characteristics of the data has shown similarity between measured and simulated

diversity gains for NLOS setting. In NLOS scenario, CP did not show significant improvement in

terms of diversity gain compared to LP. However, XPD results of measurements and simulation

showed less power imbalance in CP systems in comparison with LP systems. This fact causes

CP systems to be less sensitive where orientation of the receive antenna changes dramatically

relative to the transmit antenna. Both the experimental and simulated data proved superiority

of CP polarization in the presence of LOS.

The contributions of this paper is both in geometrical model development and also in the

mathematical description of channel depolarization for all types of polarized systems. It is worth

mentioning that real measurements accredits this model to regenerates realistic multipath chan-

nels, and may thus be used for meaningful system analyses in indoor environments. Performance

of hybrid polarized systems (e.g, LP-CP) in cluttered environments has not yet been well studied.

This model can provide a practical tool for more extensive future studies in this topic.

Appendix A: Reflection from a single scatterer

Here we consider the reflection equations for a single scatterer placed in an arbitrary point in

space. Assuming an incident wave has both vertical and horizontal polarizations, first, these

polarizations are decomposed into perpendicular and parallel components relative to incident

plane of each scatterer. Reflection coefficients for a dielectric with a reflective index of εr for

perpendicular and parallel polarizations are well known and given by [102]

r⊥ =
cosθi −

√
εr − sin2θi

cosθi +
√
εr − sin2θi

(49)

r‖ =
−εrcosθi +

√
εr − sin2θi

εrcosθi +
√
εr − sin2θi

(50)

where, θi is the incident angle. Unit vectors of parallel and perpendicular polarization are then

deduced from cross product of vectors. The perpendicular polarization is normal to the incident

plane and consequently orthogonal to incident and reflected vectors. So, unit vector of cross

product of incident and reflected vectors gives direction of perpendicular polarization as given
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Figure 5.9: Reflection from a single scatterer

by:

~u⊥ =
~dts × ~dsr

| ~dts × ~dsr|
(51)

where, ~dts is the distance vector from transmitter to the scatterer and similarly, ~dsr is the

distance vector from scatterer to the receiver. ~u⊥ is the unit vector of perpendicular polarization

for a given scatterer plane.

In a similar way, unit vectors of parallel polarization can be expressed as

~ui‖ =
~u⊥ × ~dts

| ~u⊥ × ~dts|
(52)

~ur‖ =
~dsr × ~u⊥

| ~u⊥ × ~dsr|
(53)

where, ~ui‖ and ~ur‖ are unit vectors of incident and reflected parallel polarization. Vectors used in

(51) and (52) are illustrated in Fig. 5.9.

Due to different reflection coefficients of parallel and perpendicular polarizations, the trans-

mitted wave should be decomposed into these two polarizations for each scatterer plane. It can
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be done using unit vectors obtained in (51) and (52)

~Vt⊥ = ( ~u⊥ · ~Vt) ~u⊥ (54)

~Vt‖ = ( ~uit‖ · ~Vt)
~ui‖ (55)

~Ht⊥ = ( ~u⊥ · ~Ht) ~u⊥ (56)

~Ht‖ = ( ~ui‖ · ~Ht)
~ui‖ (57)

where, · represents inner product, ~Vt⊥ and ~Vt‖ are projections of vertical polarization into parallel

and perpendicular polarizations, respectively. ~Ht⊥ and ~Ht‖ can be described in a similar way.

From (54), the amplitudes of the vertical and horizontal polarization components received from

a vertically polarized transmitted wave are given by

fV V = (r⊥ ~Vt⊥ + r‖ ~Vt‖) · ~V
ej2πf

dref
c

dref
(58)

fHV = (r⊥ ~Vt⊥ + r‖ ~Vt‖) · ~H
ej2πf

dref
c

dref
(59)

In a similar fashion, the polarization components arriving from a horizontally polarized trans-

mitter can be written as

fV H = (r⊥ ~Ht⊥ + r‖ ~Ht‖) · ~V
ej2πf

dref
c

dref
(60)

fHH = (r⊥ ~Ht⊥ + r‖ ~H‖) · ~H
ej2πf

dref
c

dref
(61)

where, dref = dts + dsr is the total path length and f is the carrier frequency. c denotes the

speed of light.
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5.4 Mitigating indoor channels with hybrid polarization diversity

5.4.1 Abstract

In this paper, we evaluate the performance of a reconfigurable, planar antenna design to mitigate

frequency-selective, multipath fading. Prior work has shown that the diversity provided by two

or three polarizations can significantly improve system performance. The considered antenna

enables four distinct polarization, two linear that are mutually orthogonal and two circular that

are likewise. Measured 1% diversity gains in a reverberation chamber and in a office were 14

dB and 11.7 dB, respectively. While the linear and circular configurations are not uncorrelated,

these gains are ∼4 dB greater than gains obtained by selecting between either two orthogonal

polarizations. An empirical, geometry-based stochastic channel (GBSC) model is also presented

to facilitate further study of polarization diversity in such environments 7.

5.5 Introduction

Machine-to-machine (M2M) communication promises to form a significant portion of future

wireless traffic and will push wireless deployments into even more severe multipath conditions

(e.g., indoor industrial settings). For linearly polarized links, these environments are known

to change the polarization plane of the transmitted wave, so the best orientation for a receive

antenna is not always evident [12].

The work presented herein builds on prior efforts that compared the performance of circularly

polarized (CP) communication systems with those linearly polarized (LP). For instance, circular

polarization was shown to reduce delay spread in line-of-sight (LOS) indoor channels at frequen-

cies of 1.3 and 4 GHz [88]. The simulation results presented in [89] confirmed the reduction of

delay spread by half when using circular polarization at frequency of 10 GHz. Similar behavior

has been seen at 60 GHz [90]. Finally, lower bit error rate (BER) was observed for a circularly

polarized system in LOS conditions at 60 GHz using both experimental data [90] and simulation

data [103].

In all above works, CP antennas were used at both the transmitter (TX) and the receiver

7Golmohamadi, M., Narbudowicz, A. and Frolik, J.. Resubmitted on March 6, 2019. Mitigating indoor
channels with quad polarization diversity. IEEE Antennas and Wireless Propagation Letters. in revision
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(RX) and these systems were compared to those where linear antennas were at both ends of

the link. Herein, we refer these systems as CP-CP and LP-LP, respectively, for their TX-RX

configuration.

Many CP diversity antennas have been proposed [104–106]. However, those CP antennas

were highly-directional and thus designed primarily for LOS communications. Only recently

have compact, omnidirectional circularly polarized antennas been proposed [107,108]. Such om-

nidirectional CP radiation can offer benefits in environments with strong multipath components

arriving at various angles with no apparent LOS. This allows for new diversity schemes, i.e.,

hybrid polarization diversity, where the communication occurs between LP transmitter and CP

receiver (LP-CP) or vice-versa (CP-LP).

Herein, we propose for the first time the polarization diversity scheme with M = 4, where

M denotes the number of available polarization paths to switch between. Contrary to common

practice, it is shown that polarization diversity can offer a performance improvement for M >

2. The work demonstrates the abilities of a planar, quad-polarization antenna [107] that can

be configured to two mutually orthogonal linear polarizations (+45◦, −45◦) and two mutually

orthogonal circular polarizations (right-hand, left-hand). LP-CP links are compared with LP-

LP links in both a highly-reflective reverberation chamber and in an office setting. The link

margin improvement is measured for M = 4 selection diversity. Our performance metric is

the improvement seen in 1% link reliability and we find the gain to be up to 14 dB. The data

are used to construct an empirical, geometry-based stochastic channel (GBSC) models for each

environment to facilitate further study.

5.6 Test setup

The planar design of the antenna, to be detailed shortly, makes it readily manufacturable at low

cost, thus applicable for M2M wireless devices that would deployed in cluttered environments.

These devices could be configured as end nodes that communicate with a hub in a star network.

It is this scenario that drives our test configurations. The transmitter (hub) used a vertically

polarized off-the-shelf antenna, which is the default antenna orientation used in practice as it

provides omnidirectional coverage in the azimuth plane. The receiver (end node) employs our
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quad-polarization antenna [109]. Each of the four polarizations receive with the same pattern

(i.e., omnidirectional in horizontal plane), which allows a fair comparison between LP-LP and

LP-CP links. Both transmit and receive antennas operated at 2.55 GHz and that is the center

frequency for our collected data.

To compare performances of LP-LP and LP-CP links under multipath conditions, channel

measurements were conducted in two surrogate environments, one comparable to a highly re-

flective factory setting and the other comparable to an office setting. The measurement setup

is shown in Fig. 5.10. For the former, a compact (0.9 m × 0.9 m × 0.3 m) reverberation

chamber was utilized. The second environment was within a lab. Both test environments had

non-line-of-sight (NLOS) conditions.

Quad-Polarized RX 
Antenna  

Vertically Polarized TX 
Antenna

Z

Y (LOS Direction)

Plate (for NLOS)

X (Direction of RX Movement)

VNA

Moving Track

Figure 5.10: Test setup in NLOS condition. A vertically polarized antenna is used for transmit-
ting (TX) and the reconfigurable quad-polarization antenna is used to receive (RX).

An Anritsu MS2036A vector network analyzer was used to measure S21 (i.e., path loss)

between the vertically polarized transmit antenna and each of the four ports of the quad-polarized

(+45◦, −45◦, RHCP, LHCP) receive antenna. Measurements were made at 551 frequencies in

the range of 2.525 GHz to 2.575 GHz. The distance between antennas was set at 0.8 m for the

reflective environment and 1.8 m in the office setting. To emulate the random placement of the

devices, the receive antenna was mounted on a LabView controlled linear track that allowed

positioning to one of 15 repeatable locations in 1 cm (i.e., < λ/10) increments. The movement

of the positioner was orthogonal to the nominal TX-RX direction to help maintain a nearly

constant link length.

The quad-polarization antenna leveraged in this study was previously presented in detail

97



in [109]. For this study, we are concerned not with traditional antenna measures (e.g., patterns)

but how reconfiguring the antenna allows one to mitigate channel fading effects. In this case,

the four different polarizations are obtained by using the phase shifts detailed in Table 5.5 to

each of antenna’s four inputs. The CP configurations are achieved by using a hybrid quadrature

coupler (as in [?], pp. 343-347) followed by 3 dB Wilkinson power dividers (as in [?], pp. 328-

333). Fig. 5.11(a) shows the hybrid coupler along with power dividers. The configuration for

generating CP polarization is presented in Fig. 5.11(b). Fig. 5.11 clearly shows the planar design

of the antenna.

Table 5.5: Phase shifts at antenna ports to generate desired configuration

Polarization Port 1 Port 2 Port 3 Port 4
+45◦ 0◦ - 0◦ -
-45◦ - 0◦ - 0◦

RHCP 90◦ 0◦ 90◦ 0◦

LHCP 0◦ 90◦ 0◦ 90◦

Figure 5.11: (a) Feed circuitry (hybrid coupler and power divider) used to generate circular
polarization. (b) Antenna attached to feed circuitry that provides phasing described in Table
5.5.

5.7 Results

To analyze the diversity performance provided by the M = 4 antenna, we leveraged the col-

lected S21 data. For each polarization in each environment, we had over 8000 data points

(frequencies × locations). For our diversity method, we considered the scenario where the

M2M device would implement the simplest technique, selection diversity. In this method, the

device chooses the “best” element among the two linear, two circular, or among all four links.

In practice, a device would choose the link which results the strongest received signal strength

indicator (RSSI) measurement. We show below that this approach improves the overall channel

characteristics by reducing the probability of deep fades and consequently the margins needed

in link budgets to maintain a desired quality of service (e.g., 99% reliability).
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5.8 Experimental Results

Fig. 5.12 shows the cumulative distribution of the S21 data taken inside the reverberation cham-

ber. In this environment, we find that all four links are individually statistically similar. Selecting

the best link between two linearly polarized receiver branches (i.e., M = 2 selection diversity) led

to 1% link improvement of 9.4 dB. While choosing the best of the two circularly polarized (i.e.,

also M = 2 selection diversity) resulted in 9.5 dB 1% link enhancement. These results indicate

that for this environment there is no clear advantage to employ orthogonal circularly polarized

antennas over orthogonal linear antennas. However, when selection diversity was implemented

using all four receiver links (i.e., M = 4 selection diversity), 14 dB diversity gain was obtained.

Thus for a bit more hardware complexity significant gains can be obtained, as illustrated in Fig.

5.11(b). We also find that the median (i.e., 50%) diversity gain to be about 2 dB for both M =

2 cases and a significant 4 dB when all four polarizations are leveraged.

Our results illustrate that the M paths considered in this work are not-uncorrelated. For

M = 2 independent Rayleigh paths, the 1% diversity gain can be found to be 11.2 dB, whereas

we are finding gains to be ∼9.5 dB. These empirical results indicate more paths are desirable

thus making the presented quad-polarization antenna, even with its inherently non-uncorrelated

paths, attractive. Our result are also significant in that the diversity gains obtained for this

two-dimensional (i.e., planar), M = 4 design are larger than those recently obtained for a three-

dimensional and more complicated to manufacture design having M = 3 mutually orthogonal

elements [58]; i.e., 1% diversity gain 14 dB vs. 11 dB.

For the office NLOS setup, “+45◦” and “RHCP” links showed slightly better link quality

than “−45◦” and “LHCP” links (Fig. 5.13). We see no significance in that these two particular

links performed better, as this result is unlikely generalizable across other, but similar, environ-

ments. As we had for the the reverberation chamber, M = 2 diversity results indicate that CP

and LP diversity will provide comparable (within 1 dB) 1% gain improvement (∼8 dB). How-

ever, leveraging all four polarization results in a 11.7 dB 1% link enhancement; a further 3 dB

improvement. The larger diversity gain seen in the reverberation chamber can be attributed to

the more severe multipath conditions and thus the resulting path responses being less correlated.

Table 5.6 provides a summary of our 1% and median diversity gain results for both the chamber
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Figure 5.12: CDF plots of all links and selection diversity in reverberation chamber for M = 2
and M = 4.

and the NLOS office environments.

Table 5.6: Empirical results - 1% & 50% diversity gains

Case % LP, M=2 CP, M=2 M=4

Reflective chamber 1% 9.4 dB 9.5 dB 14.0 dB

Reflective chamber 50% 2.1 dB 2.1 dB 3.9 dB

Office-NLOS 1% 7.9 dB 8.7 dB 11.7 dB

Office-NLOS 50% 1.2 dB 1.5 dB 2.2 dB

5.8.0.1 Modeling results

To facilitate further study of polarization diversity in environments such as considered herein,

the collected data were used to construct a 3-D geometrical stochastic model that describes

wireless channels using ellipsoid sub-regions (Fig. 5.14). In this model, scatterers are randomly

distributed within each sub-region S1 to SN according to the Poisson distribution. Each sub-

region corresponds to a bin of the channel’s power delay profile (PDP).

To develop our model, the inverse Fourier transform (IFFT) was calculated from the measured

S21 data to obtain power delay profiles for both environments. Then, using the PDPs we were
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Figure 5.13: CDF plots of all links and selection diversity in NLOS condition in office for M =
2 and M = 4.
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Figure 5.14: Horizontal cross-section of scatterer’s distribution, scatterers are distributed uni-
formly in sub-regions S1 − SN .

able to determine the number of sub-regions (N) and the expected value of number of scatterers

in the ith sub-region (λi). The sum of the number of scatterers in all sub-regions (Λ) was set

to 20, based on prior work for cluttered environments [99]. As our measurement bandwidth

was the 50 MHz, our bin resolution in the PDP was its reciprocal, i.e., 20 nsec. We calculated

expected value of the number of scatters in a particular sub-region, by taking average of received

power at that sub-region’s and divided it by the total PDP power. The calculated parameters

for both environments are shown in Table 5.7. Based on our measured data, we found we needed

N = 9 sub-regions to properly model the reverberation chamber. However, for the NLOS-office

environment, due to its smaller excess delay, only N = 3 sub-regions were needed.
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Table 5.7: Model parameters used in simulations

Set-up λ1 λ2 λ3 λ4 λ5 λ6 λ7 λ8 λ9 Λ

Reflective chamber 4 4 4 3 2 1 0 1 1 20

Office-NLOS 13 3 4 - - - - - - 20

Fig. 5.15(a) presents synthesized S21 data based on our model for the reverberation chamber

and Fig. 5.15(b) shows its corresponding power delay profile. The geometrical model has cap-

tured the frequency selectivity of the channel inside the chamber well as seen by comparing the

CDF of Fig. 5.16 to that of Fig. 5.12. Implementing selection diversity in the modeled reverber-

ation chamber showed that the 1% link margin could improve about 13 dB, compared to 14 dB

in measured data. Choosing best of the two links for linear polarized and for circular polarized

receive antennas resulted in 9.3 and 8.3 dB 1% diversity gains, respectively. This compares

closely to 9.4 dB and 9.5 dB obtained empirically.
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Figure 5.15: (a) Synthesized S21 for the modeled reverberation chamber. (b) Power delay profile
obtained from the S21 result.

The modeled NLOS office case showed 1% link margin improvement for M = 4 to be 12.6 dB.

Linear M = 2 diversity resulted in 9 dB link improvement, while M = 2 circular polarization

diversity for this modeled environments showed 8.7 dB 1% link enhancement. These results

compare favorably and respectively to 11.7 dB, 7.9 dB, and 8.7 dB in the measured data. For

median diversity gain, the results obtained for our modeled environment were within 0.5 dB of

those from the measured physical environment.
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Figure 5.16: Channel statistics from modeled reverberation chamber. The metric of 1% diversity
gain are within 1 dB of actual measurements found in Fig. 5.12.

5.9 Conclusion

Polarization diversity is a powerful mitigation technique especially in space-constrained applica-

tions with the presence of abundant multipath components. This paper presents a reconfigurable

antenna that provides four distinct polarization paths. The planar design of the antenna lends

itself to be readily manufactured at low cost and thus could be incorporated in wireless devices

intended for highly cluttered environments, such as those expected for machine-to-machine ap-

plications. Experimental data demonstrated the proposed antenna offers substantial benefit in

high-multipath environments. When one employs selection diversity, the 1% diversity gain in a

reverberation is 14 dB and in office NLOS environment it is 11.7 dB. This gain can be traded for

greater system reliability, greater transmission distances, or low transmission power to extend

device battery life. Furthermore, the technique can be seemingly combined with other diversity

schemes and the paper provides a geometry-based stochastic channel model to facilitate such

further studies.
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6 MM-Wave Channel Measurements and Characterization

Foreword

This chapter discusses channel measurements and characterization at Millimeter-wave band.

Section 6.1 presents the paper as published in the ”2018 IEEE International Symposium on

Antennas and Propagation” [110] and discusses dual-polarized channel measurements at 28 GHz

in indoor channels. Section 6.2 presents the paper as published in the ”2017 IEEE International

Symposium on Antennas and Propagation” [111]. This paper uses a finite-state Markov model

to synthesize multipath effects over small-scale movements in harsh environments at 60 GHz.

6.1 28 GHz Channel Measurements in High Multipath, Indoor Envi-

ronments

6.1.1 Abstract

Millimeter-wave (mmWave) communication systems are being proposed for a variety of short-

range applications where large bandwidths are required. This work presents an experimental

characterization for a dual-polarized 28 GHz indoor channel. Power delay profiles (PDPs) were

measured in an indoor environment to extract site-specific multipath details 8.

6.1.2 Introduction

Millimeter-wave (mmWave) technology is eyed to meet the needs of a variety of forthcoming

high bandwidth communication systems. These systems include 5G mobile, in-building, vehicle-

to-vehicle, infrastructure-to-vehicle, and wireless data center networks. The mmWave spectrum

provides a large bandwidth that can enable multi-Gbps data rate wireless links. The 28 and 38

GHz bands have recently become available through LMDS and LMCS auctions and are currently

considered for mobile cellular. This work focuses on the former band for an indoor environment.

The channel models for mmWave systems are still nascent; measurements for indoor settings

8Golmohamadi, M., Chowdhury, S., Jamison, J., Kravitz, E. and Frolik, J.. 2018, July. 28 GHz Channel
Measurements in High Multipath, Indoor Environments. In 2018 IEEE International Symposium on Antennas
and Propagation & USNC/URSI National Radio Science Meeting (pp. 767-768). IEEE.
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Figure 6.1: The indoor measurement environment considered in this work.

in particular have been limited. It is known that penetration loss of most materials at mmWave

frequencies is high [112]. In addition directional antennas and/or adaptive beam-forming have

been proposed be employed in order to establish a reliable communication link (vs. omni di-

rectional antennas that are prevalent in, e.g., 2.4 GHz systems). Furthermore, many surfaces

which are assumed to be smooth in lower frequencies, are considered rough in mmWave band

that cause diffused scattering which makes the wave propagation behavior more complicated.

In short, one cannot expect to apply models developed for lower frequencies. As such, this

work adds to the nascent work to better understand channels associated indoor 28 GHz systems.

In particular,this work presents dual-polarized channel measurements and analysis at 28 GHz in

a cluttered environment.

6.1.3 Methodology

S21 measurements were conducted, using a vector network analyzer (Keysight Technologies

N5227A), between two linearly polarized antennas placed in an office setting. The transmit

antenna was a 6-dBi omni-directional antenna and the receive antenna was a directional horn

antenna with 25-dBi gain. Half beamwidths (HPBW) of the horn antenna are 10◦ in azimuth

and 9◦ in elevation. Omni-directional antenna has a HPBW of 10◦ in elevation. To model small-

scale spatial fading characteristics, the transmit antenna was mounted on a LabView controlled
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Figure 6.2: Representative copol and crosspol S21 data taken using the set-up illustrated in Fig.
6.1.

linear track that allowed positioning to one of 50 repeatable locations in 1 cm (i.e., < λ) incre-

ments. So at each position on the track, 36 azimuth measurements were collected to provide full

azimuthal coverage.

Fig. 6.1 displays the measurement set-up used in this work. The omni-directional antenna

was placed inside a reverberation chamber previously used for multipath characterization at

lower frequencies [84]. The horn antenna was placed, approximately 2 m away, on a platform

which could be rotated in 10◦ (one HPBW) increments from 0◦ to 360◦ to resolve angle of arrival

(AoA) variations.

6.1.4 Experimental Results

Co-polarized and cross-polarized data were collected at 36 azimuth angles under LOS and NLOS

conditions. Measurements were made at 3201 frequencies in the range of 27.5 GHz to 28.5 GHz.

Fig. 6.2 shows a representative S21 measurement taken using this set-up, with the horn antenna

at 0◦, pointing directly at the omni-directional antenna. The severity of the small-scale effects

present at these high frequencies in a multipath environment are evident in this measurement.
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Table 6.1: maximum AoA and corresponding PDP value

Case First peak Second peak Third peak

VV- LOS 0◦,−41 dB 90◦,−50 dB 200◦,−59‘ dB

VV- NLOS 30◦,−61 dB 90◦,−50 dB 200◦,−60 dB

HV - LOS 10◦,−62 dB 20◦,−64 dB 210◦,−68 dB

HV - NLOS 30◦,−78 dB 90◦,−74 dB 200◦,−70 dB
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Figure 6.3: Power delay profile in 3D for LOS-VV case.

6.1.4.1 Power Delay Profile

The channel’s impulse response was obtained from frequency domain data to calculate power

delay profile (PDP). Fig. 6.3 and Fig. 6.4 show 3D plots of PDP over delay and AoA for LOS

and NLOS conditions. For LOS case, first maximum AOA ,which is the arrival direction of the

strongest multipath component at the receiver, is 0◦. The next maximunm AOA is 90◦ that

corresponds to reflected paths from a metal cabinet in the corner of the office. The first PDP

peak for NLOS case occurs at 30◦ which is the result of diffraction from a metal surface used to

block LOS path. The next peak corresponds to AoA of 90◦. It can be explained by reflection

from the cabinet. Table 6.1 presents the maximum AOA and their corresponding PDPs for

different scenarios.
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Figure 6.4: Power delay profile in 3D for NLOS-VV case.
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Figure 6.5: CDFs of small-scale fading in LOS and NLOS, for the cross-polarized V- H and
co-polarized V- V cases at one location on the track. Rayleigh and Rician distributions are also
plotted.

6.1.4.2 Small-Scale Spatial Statistics Results

The synthesized omni-directional PDP was extracted using the method proposed in [113]. Fig. 6.8

presents The empirical cumulative distribution functions (CDFs) of the normalized path loss of
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Table 6.2: Cross Polar Discrimination (XPD)

Scenario XPD

LOS 17.8 dB

NLOS 9.1 dB

omni-directional channel at one location on the track. For the V-V co-polarized data, the curves

are best fitted by the the Rician distribution with K-factor of 10 dB in LOS, and the Rayleigh

distribution in NLOS. For the V-H cross-polarized data, both the LOS and NLOS CDFs appear

to be approximately Rayleigh. The results for cross- polarization discrimination (XPD) is shown

in Table 6.2. An XPD factor of 17.8 dB for cross-polarized antennas indicates strong polariza-

tion discrimination in LOS environments. A more noticeable de-polarization effect in NLOS is

confirmed by the XPD factor of 9.1 dB.

6.1.5 Conclusion

In this study, measurements of a 28 GHz indoor channel are presented and discussed. Maximum

AoA is obtained for different scenarios. Furthermore, XPD factor , as a metric for depolarization

effects in an environment, is estimated for both LOS and NLOS cases.
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6.2 Markov Modeling of Spatial Variations in Multipath

6.2.1 Abstract

Multipath effects over small-scale movements are characterized using a finite-state Markov model.

Performance of the model is evaluated by comparing statistical behavior of synthesized data

with those were taken at 60 GHz inside a reverberation chamber. The proposed method allows

multipath behavior prediction for new environments or frequencies in line-of-sight and non-line-

of-sight situations 9.

6.2.2 Introduction

A major requirement in the design of any digital wireless system in terms of selecting modulation

schemes, channel equalization techniques, and network concepts is the adequate understanding

of the radio channel [25]. Predicting multipath effects by estimating the impulse response and

fading rates before designing a specific system is especially of great importance for applications

which are subject to operating in harsh propagation environments (e.g., cluttered factories).

Markov models have been used to address temporal variations in Rayleigh fading channels

[114]. This approach has especially received attention for vehicle-to-vehicle applications where

multipath components experience significant variations over time [115,116].

However, to the best of our knowledge, Markov models have not been employed to charac-

terize spatial changes of multipath components. So in this work, we propose a channel model

based on Markov processes that captures variations of fading characteristics over small-scale

movements.

6.2.3 Synthesis Method

A multipath radio channel can be described as a time-varying linear filter. Eqn. (62) presents

an alternative to the channel response equation found in [115]; for time variation “t” is replaced

9Golmohamadi, M., Chowdhury, S. and Frolik, J.. 2017, July. Markov modeling of spatial variations in mul-
tipath. In Antennas and Propagation & USNC/URSI National Radio Science Meeting, 2017 IEEE International
Symposium on (pp. 611-612). IEEE.
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Figure 6.6: Flowchart of the Markov model.

with spatial variation “x”.

h(x, τ) =

P∑
p=0

zpαp(x)exp[j[2πfcτp(x)]δ(τ − τp(x)] (62)

Where αp(x) represents real amplitude of each multipath component, τp(x) is relative delay

of each component compared to the first arriving one, and P shows the number of multipath

components. The stochastic variable zp describes appearance and disappearance of multipath

components over spatial movements [115]. This formulation presumes that the environment is

stationary in time and that variations are only due to the small changes in device position at

time of deployment or the frequency of operation. This assumption would be valid for fixed

devices deployed in relative static environments (e.g., wireless sensors).

Fig. 6.6 outlines the proposed modeling approach. An impulse response is obtained from

frequency domain data. The power delay profile (PDP) is then calculated and is normalized

such that the area under PDP is equal to unity. The number of taps should be predefined and

will depend on the choice of environment (e.g., factory, office, etc). Each of these environments

produces a different range of delay spread values which is a key factor in determining the number

of taps. A rule of thumb for estimating number of taps based on distance between transmitters
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and receivers and maximum delay spread of the channel is presented in [117]. To set a threshold

value for our Markov model, PDP data has to be processed in order to reduce the impact of

measurement noise. We follow the method described in [118], where a constant false alarm

rate (CFAR) is achieved independent of the signal to noise ratio. The assumption is that the

amplitude of this noise is Rayleigh distributed. Using this approach, we set the probability of

false alarm at 10−3 to determine the threshold level (-32 dB). Let S = [OFF, ON] = [s0, s1]

denote set of states for taps. At each position, taps with total energy of less than the threshold

value fall into the s0 or “OFF” state and those with energy level greater belong to the s1 or

“ON” state. State transition probability (STP ) and steady state probability (SSP ) matrices

for each tap can be defined as follows:

STP =

P00 P01

P10 P11

 , SSP =

[
P0, P1

]
(63)

Where each element Pij in matrix STP is the transition probability of going from State i

to State j. For instance, P01 describes the probability that a tap will be in “ON” state in next

position, knowing that it is in “OFF” state at current location. P0 in SSP matrix represents

steady state probability of a tap to be in “OFF” state and, similarly, P1 shows the probability

of being in the “ON” state.

6.2.4 Model Validation

To validate the model, a set of S21 channel measurements were taken at 32 positions in a

reverberation chamber. S21 sweeps were made between 59.5 GHz and 60.5 GHz (bandwidth of

1 GHz). The antennas were placed pointed towards each other and approximately 15 cm (i.e.,

60λ) apart in a compact (3′ × 2′ × 3′) reverberation chamber. To illustrate the effect of small

physical changes in the environment, a microstage was used to adjust the receive antenna by step

sizes of 1 mm. Testing was conducted with the receiver and transmitter antennas oriented in

vertical orientation. Additional elements such as metallic baffles and copper sheets were added

in order to create a NLOS and highly reflective environment. An estimate of the channel impulse

response was made by taking the IFFT of the measured frequency data.

Fig. 6.7 shows zp processes associated with the fifth and eighths taps for modeling data

112



0 5 10 15 20 25 30 35

Position index

0

0.5

1

1.5

2

S
ta

te
 (

O
n
- 

O
ff
)

Tap #5

0 5 10 15 20 25 30 35

Position index

0

0.5

1

1.5

2

S
ta

te
 (

O
n
- 

O
ff
)

Tap #8

Figure 6.7: Sample persistence processes for Taps 5 and 8.
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Figure 6.8: CDF of real and synthesized S21 at 32 positions.

inside the reverberation chamber for each of the 32 positions. Tap−5 is seen to be more critical

in capturing chamber’s environment, while Tap− 8 provides additional variability. Cumulative

distribution probability of normalized magnitude of measured and synthesized data over 32

positions (Fig. 6.8) indicates consistency between real and simulated channels.

Different fading scenarios ranging from Rician (different K values) to hyper-Rayleigh [119]
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Figure 6.9: CDF of 300 possible fading scenarios simulated for the reverberation chamber envi-
ronment.

were generated using synthesized tap model (Fig. 6.9). Rician fading curves represented by pink

color are generated by adding LOS component to the current model. 100 distinct Rician curves

are generated for different K factors ranging from 5 dB to 15 dB. 100 Hyper-Rayleigh curves

that are shown with green color are generated by adding two strong destructive components

to the model (using the same K but as defined in [119]). The 100 blue curves are different

Rayleigh-like realizations of the synthesized model corresponding to NLOS measurements.

6.2.5 Conclusion

In this study, a Markov channel model for spatial variations in multipath environments is pre-

sented. Comparison between measurements taken at 60 GHz inside a reverberation chamber

and synthesized data showed good agreement. Furthermore, the model was used to generate

different fading scenarios ranging from Rician to hyper-Rayleigh.
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7 Conclusion and Future Work

7.1 Summary

Machine-to-Machine (M2M) communication is widely employed in many popular wireless com-

munication systems, such as traffic control, supply chain management, fleet management and

telemedicine. The environments in which M2M systems are expected to operate may be chal-

lenging in terms of radio wave propagation due to their cluttered, multipath nature, which can

cause deep signal fades and signal depolarization. A well-known approach to mitigating mul-

tipath is to leverage two antenna elements whose polarizations are orthogonal and thus fading

characteristics are not correlated. The idea behind this work is to investigate the potential of

tripolar antenna systems, which contain three perpendicularly oriented antennas, and to see

whether these systems can be used for mitigating fading in M2M communication systems. Since

the different antennas can be co-located, polarized antenna systems combine the advantages of

multi-antenna systems (increased bitrate, reliability, etc.) while still maintaining a compact an-

tenna system. The other aspect of this dissertation is developing new 3D multi-polarized channel

models for wireless systems.

To understand how tripolar systems can be effective in a wireless communication channel,

we need a theoretical framework for depolarization in three dimensions. Chapter 1 presents

a Stokes vector-based analytical framework to study depolarization in three dimensions. This

framework is applied to empirical data in order to compare and contrast depolarization seen

in three distinct environments. For environments with significant multipath, the calculated

parameters demonstrate that depolarization is a three dimensional effect. This work illustrates

that commonly utilized two dimensional formulations do not sufficiently capture the effects of

depolarization in complex environments. As wireless IoT systems are deployed in evermore

cluttered environments, these results can help determine if antenna systems that are tripolar are

warranted. If so, then employing 3D polarization diversity in these scenarios would considerably

improve link reliability as compared to the traditional dual polarization, 2D diversity approaches.

The provided theory verifies the effectiveness of employing tripolarized systems in multipath

conditions.
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To explore the necessity of tripolar antennas for improving link reliability in M2M communi-

cation systems, the data collected in an environment that emulates M2M systems are analyzed.

The wide range of M2M applications suggests that the environments in which they will be

deployed can vary greatly in terms of wireless propagation conditions (multipath, line-of-sight

(LoS), and non-LoS). Chapter 3 illustrates that these effects, which include severe frequency-

selective and depolarization effects in three dimensions, are highly dependent on the placement

of the device in the environment. This chapter demonstrates the use of the 10%FD to statisti-

cally characterize the environments and a 3D cross-polarization discrimination (XPD) metric

to show the three dimensional impact of depolarization.

Motivated by the results presented in Chapters 2 and 3, tripolar antenna system geome-

tries that can be fabricated using 3D printing technologies are investigated in Chapter 4. Over

two distinct environments (a highly reflective industrial environment and an NLOS office envi-

ronment), the experimental results confirm the efficacy of a tripolar antenna array that is not

copolar with with its vertically-oriented transmit counterpart and thus meets the build angle

constraint faced by 3D printing technology. For each environment, in order to emulate the ran-

dom placement of the transmitting device, the transmit antenna was moved, in small increments,

to 50 different locations and S21 channel data was collected at 551 frequencies in the 2.4 GHz

ISM band. Subsequently, two distinct 3D printed tripolar antennas are fabricated through addi-

tive manufacturing techniques and characterized for operation at 2.4 GHz. Over the air testing

demonstrates a 1% channel improvement of up to 14 dB across over 50 locations in a multipath

environment and 44% reduction in BER at a representative location.

Multi-polarized channel models are fundamental steps toward developing multi-antenna sys-

tems. In these types of channel models, the power imbalance between channel elements that

occurs due to antenna polarization, antenna orientation, and propagation channel depolarization

should be modeled accurately. The interaction of these three effects is significant, and requires

complex channel models to be described completely. In this dissertation, a 3D geometry-based

stochastic model is presented in Chapter 5 that considers the interaction between antenna’s

polarization and channel depolarization effects and is capable of evaluating circular (CP) and

linear (LP) dual-polarized systems. The proposed geometrical model uses spatial distributions

of scatterers in a shell-like 3D spheroid to build the multipath channel. Analysis of the prop-
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agation characteristics of the data shows similarity between measured and simulated diversity

gains for non-line-of-sight (NLOS) setting. In NLOS scenario, CP does not exhibit significant im-

provement in terms of diversity gain compared to LP. However, cross-polarization-discrimination

(XPD) results of measurements and simulation shows less power imbalance in CP systems in

comparison with LP systems. This fact causes CP systems to be less sensitive where orientation

of the receive antenna changes dramatically relative to the transmit antenna. Both the experi-

mental and simulated data proves superiority of CP polarization in the presence of LOS. Then,

the proposed model along with the data taken from a simple low-cost omnidirectional antennas

are employed to evaluate the hybrid polarization diversity. Hybrid polarization diversity offers

to choose between four different polarizations namely, two orthogonal linear and two orthog-

onal circular polarizations. The experimental and simulated data demonstrate the proposed

technique offers substantial benefit in high-multipath environments. The proposed technique

can be useful in sensor network applications where sensor nodes should be implemented in very

cluttered settings and where easy to manufacture and low-cost antenna solutions are desired.

Finally, in Chapter 6, the millimeter-wave (mmWave) spectrum provides a large bandwidth

that can enable multi-Gbps data rate wireless links and thus meets the needs of a variety of

forthcoming high bandwidth communication systems such as 5G mobile, in-building, vehicle-

to-vehicle, infrastructure-to-vehicle, and wireless data center networks. The 28 GHz bands is

currently considered for the next generation of mobile cellular. The channel models for mmWave

systems are still nascent; measurements for indoor settings in particular have been limited. Due

to unique features of communication at very high frequencies, one cannot expect to apply models

developed for lower frequencies. As such, this work presents dual-polarized channel measure-

ments and analysis at 28 GHz in a cluttered environment. Furthermore, 60 GHz frequency band

is being considered for the next-generation short-range wireless networks. In this dissertation, a

Markov channel model for spatial variations in multipath environments at 60 GHz is presented.

Comparison between measurements taken inside a reverberation chamber and synthesized data

shows good agreement.

To sum up, tri-polarization and quad polarization diversity improved the 1% link margin by

3-4 dB in comparison with conventional dual-polarized systems in multipath channels. That is,

for a quality of service (QoS) of 99% link reliability, the margin or, equivalently, transmit power
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could be reduced by over 3-4 dB or by 2-2.5 factor if M = 3 or M = 4 selection diversity is used

versus just M = 2 selection diversity. This reduction of the transmitted power can for example

be translated into longer time that a mobile phone battery can retain its charge.

7.2 Future Work

There are a number of different ways that the work in this dissertation could be extended. These

proposed paths for future research can be classified as follows.

• The current 3D Stokes vector framework provides information about direction of propaga-

tion in a channel at different frequencies. Further studies can be conducted to investigate

effectiveness of this approach for source localization as it may offer more compact antenna

array systems and less computational complexity for this application [120]. Moreover, the

extracted polarization indices from three dimensional measurements can be used exten-

sively to characterize depolarization effects in wireless channels over parameters of interest

such as time/space/frequency in order to devise more efficient as well as more optimized

strategies for improving reliability in these channels.

• The suggested channel model in this dissertation studies dual-polarized systems. However,

it can be expanded to model tri-polarized systems. Furthermore, the current model only

consider depolarization effects caused by reflection from a smooth surface. To provide

a more precise model, other depolarization mechanisms such as diffuse scattering and

diffraction are needed to be taken into account. For instance, since many surfaces that are

considered smooth in lower frequencies behave like rough surfaces in mmWave band, diffuse

scattering plays a significant role in channel depolarization at mmWave band [24,121]. In

future research, diffuse scattering effects can be added to this model for mmWave channel

characterization. Knife-edge diffraction (KED) or a creeping wave linear models can also

be included in the model to predict diffraction loss around sharp objects [122].

• The tripolar antenna is designed for integration with commercial wireless sensor nodes.

Future work can implement these compact, tripolar antennas in hardware to demonstrate

the benefits in practice in real wireless network systems. The proposed hybrid polarization

diversity technique can be also useful in sensor network applications where sensor nodes
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should be implemented in very cluttered settings and where easy to manufacture and low-

cost antenna solutions are desired. In future studies implementation of this technique in

hardware and its effectiveness in sensor network applications can be tested.

7.3 Final Comments

Characterization and mitigation of fading in wireless communication channels and building chan-

nel models is only the beginning of the story and can not be considered as an achievement in

itself. Indeed, it is the first step toward building better communications schemes. To exploit the

most of the tripolar or quad-polarized antenna designs, it is necessary to develop sensor node

communication protocols, coding schemes that exploit the most of these modified designs.

In addition, one of the major tendencies in today’s research is multi-user systems. This

includes cognitive radios, mesh networks etc. Current channel models including the proposed

channel model in this dissertation have been built for single-link systems. The extension of

channel models from single-link to multiple-link will be mandatory in order to have reliable

models to characterize such pervasive multi-user communication schemes.
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