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ABSTRACT 

In a world confronting climate change and rapidly shifting land uses, effective 

methods for monitoring natural resources are critical to support scientifically-informed 

management decisions. By taking audio recordings of the environment, scientists can 

acquire presence-absence data to characterize populations of sound-producing wildlife 

over time and across vast spatial scales. Remote acoustic monitoring presents new 

challenges, however: monitoring programs are often constrained in the total time they can 

record, automated detection algorithms typically produce a prohibitive number of 

detection mistakes, and there is no streamlined framework for moving from raw acoustic 

data to models of wildlife occurrence dynamics. In partnership with a proof-of-concept 

field study in the U.S Bureau of Land Management’s Riverside East Solar Energy Zone 

in southern California, this dissertation introduces a new R software package, 

AMMonitor, alongside a novel body of work: 1) temporally-adaptive acoustic sampling 

to maximize the detection probabilities of target species despite recording constraints, 2) 

values-driven statistical learning tools for template-based automated detection of target 

species, and 3) methods supporting the construction of dynamic species occurrence 

models from automated acoustic detection data. Unifying these methods with streamlined 

data management, the AMMonitor software package supports the tracking of species 

occurrence, colonization, and extinction patterns through time, introducing the potential 

to perform adaptive management at landscape scales.  
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CHAPTER 1: INTRODUCTION AND COMPREHENSIVE LITERATURE 

REVIEW 

1.1. Introduction 

Amid climate change and rapidly shifting land uses, effective methods for 

monitoring natural resources priorities are critical to support scientifically-informed 

resource management decisions (Pollock et al. 2002). Acoustic monitoring of wildlife 

provides one such method: by taking audio recordings of the environment, scientists can 

acquire data to characterize status and trends of populations of sound-producing wildlife 

over time and across vast spatial scales (Furnas & Callas 2015, Cerquiera & Aide 2016). 

Many animals – from birds, to amphibians, to mammals, to insects – use vocalizations or 

other sounds to defend territory, attract mates, and communicate (Kroodsma 1996, 

Catchpole & Slater 2008, Suthers et al. 2016). The scientific community has long used 

animal sounds to gain insights into the whereabouts, abundance, and behavior of wildlife 

species and communities, amid a changing climate and changing land uses (Robbins et al. 

1986). Typically, auditory information is gathered by way of researchers present on site 

to listen for species of interest (Ralph et al. 1995, Rosenstock et al. 2002). Though such 

field study is vital to the growing body of ecological knowledge, it also has drawbacks, 

such as detection mistakes by the human observer (Campbell & Francis 2011, Swiston & 

Mennill 2011), modification of animal behavior in the presence of human observers 

(Gutzwiller & Markum 1997, Bye et al. 2001, Gaynor et al. 2018), and the logistical 

effort required to be physically present to detect wildlife when they are available for 

observation (Moore & McCarthy 2016).  
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To circumvent these challenges, some research settings have traded in-person 

field study for autonomous recording units (ARUs), in which audio recorders are 

deployed for some length of time at some number of study sites to capture recordings of 

the environment, which can later be analyzed for species of interest (Shonfield & Bayne 

2017). The practice of using ARUs to monitor wildlife species has grown immensely in 

the past decade, with monitoring projects across species from birds (Furnas & Callas 

2015), to bats (Zamora-Gutierrez et al. 2016), elephants (Wrege et al. 2012), wolves 

(Root-Gutteridge et al. 2014), primates (Heinicke et al. 2015), amphibians (Brauer et al. 

2016), insects (Newson et al. 2017), and marine mammals (Bioacoustics Research 

Program 2018).  

Critically, recorded audio data confers the capacity to verify and analyze species 

identifications and/or vocalization behavioral patterns a posteriori (Hobson et al. 2002), 

and uses of this information windfall have been diverse. Recordings from ARUs have 

been interrogated to characterize wildlife occurrence patterns (Furnas & Callas 2015, 

Cerquiera & Aide 2016), avian density (Dawson & Efford 2009), biodiversity and 

ecological communities (Gage et al. 2001, Sueur & Farina 2015), animal behavior 

patterns (e.g. Mennill & Vehrencamp 2008), and environmental soundscape 

characteristics, which provide an alternative to species-focused acoustic monitoring 

(Pijanowski et al. 2011). Audio data have also been used to identify individual wolf packs 

by the frequency of their howls (Root-Gutteridge et al. 2014), recognize and mitigate 

poaching incidents (Astaras et al. 2017), avoid marine shipping strikes of North Atlantic 
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Right Whales (Eubalaena glacialis) (Bioacoustics Research Program 2018), classify the 

cryptic nocturnal flight calls of migratory birds (Farnsworth et al. 2005, Salamon et al. 

2016), and monitor wildlife and soundscapes in remote or unsafe areas, such as the 

Chernobyl Exclusion Zone (Stowell et al. 2018).  

Although applications of environmental audio data are numerous, this dissertation 

focuses specifically on the use of ARU-acquired audio data in occurrence-based wildlife 

population models, and the utility of ARUs for this purpose is emerging alongside two-

overarching challenges. Firstly, fundamental questions remain with regard to the ARU 

hardware itself: how much data can be recorded, when and how often may recordings be 

taken, and how can the resulting audio data be efficiently collected by researchers for 

subsequent processing? Existing ARU choices vary in data storage volume, capacity to 

schedule recordings, and options for collecting the data. Regardless of the hardware used, 

if recordings are not taken under suitable conditions, target monitoring species may not 

be acoustically captured even if the species is truly present, resulting in problematic false 

negatives at the site level. Secondly, once large volumes of audio data have been 

acquired, humans often cannot search through audio recordings in a timely manner, 

making automated detection systems necessary for expedient data processing and 

analysis. The performance of these nascent automated systems, however, varies widely 

depending on the expertise of the user, acoustic characteristics of target species sounds, 

and soundscape circumstances of the study area. Automated detection systems can 

frequently miss individual sound events emitted by a target species (false negatives) or 

mistakenly detect non-target sounds (false positives) (Marques et al. 2012). 
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Beyond acoustic monitoring, these false negatives and false positives represent a 

ubiquitous challenge in occurrence-based population modeling, where the goal is to 

characterize presence and absence (rather than abundance) of a species across a 

landscape. Dynamic occurrence models (e.g. Mackenzie et al. 2003), in which 

researchers strive to gain insight not only on an initial occurrence pattern, but on local 

extinction and colonization patterns over time, are especially valuable, but particularly 

susceptible to the vagaries of false negatives and false positives (McClintock et al. 2010, 

Miller et al. 2015, Ruiz-Guitierrez et al. 2016). If the challenges posed by false negatives 

and false positives in acoustic monitoring can be adequately addressed, this method will 

be better equipped to produce dynamic species occurrence models that can inform 

adaptive management, in which learning over time can be used systematically for 

prediction to aid land management decisions (Williams et al. 2009).  

1.2. The challenge of taking recordings in a way that minimizes false 

negatives  

One of the first hurdles a remote acoustic monitoring program encounters is 

determining when and how much to record, decisions which are often constrained by the 

hardware used for recording. There are a growing number of hardware solutions for 

gathering acoustic data, with wide variation in costs, recording quality, convenience, and 

ease of use. The vast majority of ARU options take audio recordings and store them 

directly on a memory card on the device, obliging researchers to physically collect data 

from the device on a regular basis: these include the Song Meter SM4 ($849 USD per 

unit) (Wildlife Acoustics 2018), the AudioMoth ($43 USD per unit) (Hill et al. 2018), the 
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Swift Recorder (price varies) (Bioacoustics Research Program 2018), or the fully open-

source and customizable Raspberry Pi-based Solo, which records continuously ($199 

USD per unit) (Whytock & Christie 2017).  

Some devices may be programmed to record at specified intervals if desired; 

certain individual brands of storage card-based ARU can capture up to 400 hours of audio 

data (Song Meter SM4: Wildlife Acoustics 2018), though total run-time depends on the 

recording sampling rate, with up to 1,065 hours of recording possible at a sample rate of 

8 kHz (Swift: Bioacoustics Research Program 2018). In some cases, devices are limited 

more by their power source than by storage restrictions, recording independently for up to 

three weeks before requiring a recharge (Swift Recorder: Bioacoustics Research Program 

2018), while still others are capable of recording continuously for nearly six weeks at a 

time depending on the audio sampling rate used (Solo: Whytock & Christie 2017).  

An alternative to on-device storage is for the ARU to use a cellular or wireless 

network to transmit recordings from the device to a storage server in near real-time, a 

method which has been deployed to remotely monitor seabirds (McKown 2012), and in a 

variety of projects undertaken by the Remote Environmental Assessment Laboratory at 

Michigan State University (Gage et al. 2015). The monitoring devices used in those cases 

were constructed specifically for the projects in question and are not commercially 

available. Currently, the only commercially available hardware option for transmission of 

acoustic files over a WiFi or cellular network is the ARBIMON permanent Acoustic 

Monitoring Station ($4000 USD before WiFi or cellular data plan) (Aide et al. 2013, 

Sieve Analytics 2018). 
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ARUs may be limited in how much data they can record, and when they can 

record it, particularly if constrained by transmission over a cellular network (McKown et 

al. 2012, Aide et al. 2013, Gage et al. 2015) or if there is minimal power and/or storage 

capacity on the device within a desired monitoring period. Recording constraints may 

cause sampling to occur under suboptimal conditions, with ARUs potentially failing to 

record a present species when it is actually active (Sidie-Slettedahl et al. 2015). Thus, 

recording constraints can lead to “site-level false negatives”: if recordings are routinely 

taken under conditions inappropriate for detecting a species of interest, or if the 

probability of detecting a present species is less than one, researchers may mistakenly 

conclude that a species is absent where it is actually present (Mackenzie et al. 2002, 

Pollock et al. 2002). 

False negatives in wildlife monitoring are often either the consequence of a 

suboptimal sampling method or of sampling at a time when the animal was not active or 

available for detection (Thompson 2004). Such circumstances are often rooted in 

logistical or budgetary constraints that limit sampling power across time and space. For 

wildlife monitoring, literature around allocation of sampling resources typically focuses 

on the optimization of observation effort for field studies, or on the most efficient 

allocation of sampling effort in the spatial dimension (Thompson et al. 1998, 2004, Turk 

and Borkowski 2005, Moore & McCarthy 2016). For example, a “removal design” 

typically refers to a framework in which sites are surveyed multiple times until the target 

species is detected, after which remaining sampling efforts can be directed to sites where 

a species has not yet been detected (Mackenzie & Royle 2005).  



  

 

7 

 

In the context of wildlife monitoring, adaptive sampling means that information 

from prior surveys is explicitly incorporated into future sampling efforts in order to 

improve the chances of detecting a target species given that it is present (Thompson & 

Seber 1994), but the concept of adaptive sampling is not limited to wildlife monitoring. 

Incorporation of prior information into future sampling efforts amid sampling constraints, 

in order to maximize the utility of available sampling resources, is a challenge present 

across domains and applications concerned with monitoring and prediction (Bucher 1988, 

Bishop et al. 2001).  

The problem of sampling optimization is commonly encountered in the 

implementation of wireless sensor networks (WSNs), which are composed of a number 

of sensors deployed to monitor environmental or other conditions at different spatial 

locations (Anastasi et al. 2009). ARUs might be integrated into a WSN framework, and 

like ARUs, WSNs often confront constraints on memory, data communication, data 

transmission, and power (Anastasi et al. 2009). Spatio-temporal adaptive sampling 

techniques have been used in WSNs to detect military base intruders (Raghunathan et al. 

2006), monitor snowpack for avalanche prediction (Alippi et al. 2012), and monitor water 

level sensor nodes to warn of floods (Zhou & De Roure 2007). They have also been used 

for wildlife applications, such as tracking the social behavior of badgers (Dyo et al. 

2012), characterizing the occupancy status of Leach’s Storm Petrel nests (Mainwaring et 

al. 2002), long-term censusing of birds in spruce-fir habitat, and others (Porter et al. 

2005). The implementation of temporal adaptive sampling in WSNs range has been 

achieved via Kalman filters (Jain & Change 2004), hidden Markov models, 



  

 

8 

 

reinforcement learning (Dyo et al. 2012), Bayesian frameworks (Xu et al. 2011), and 

more (Anastasi et al. 2009). The resource allocation routines of WSNs provide inspiration 

for an analogous pursuit of sampling resource optimization by ARUs.  

Though the notion of adaptive sampling for wildlife across space has attracted 

much attention in the literature (Smith et al. 1995, Thompson et al. 2004), the idea of 

adaptive sampling for wildlife through time has invited comparatively little study, though 

this is likely to change with the rise of long-term remote monitoring opportunities offered 

by acoustic monitoring and camera trapping. In most commercially available ARU 

hardware, recordings are taken and then stored locally on a memory card on the device, 

requiring periodic field trips to collect the audio data (Whytock & Christie 2017, 

Bioacoustics Research Program 2018, Hill et al. 2018, Wildlife Acoustics 2018). Another 

emergent paradigm is for the ARU to use the cellular or WiFi network to transmit 

recordings to a server in near-real time, eliminating the need for frequent field trips into 

areas where human disturbance may impact the quality of monitoring data (McKown 

2012, Aide et al. 2013, Gage et al. 2015). The latter case of network-linked ARUs 

provides the opportunity to conduct temporally adaptive allocation of constrained 

sampling resources, due to the availability of two-way communication between the server 

and the ARU, wherein fresh recording schedules might be dispatched to ARU monitoring 

locations on a daily basis, contingent on information from the day before and weather 

information predicted for the next day (Balantic & Donovan in prep).  

Many animals vocalize under very specific conditions, often based on seasonal 

changes and weather (Hayes & Huntly 2005, Frick et al. 2012). Sampling resources for 
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characterizing wildlife populations thus may be allocated intelligently to avoid wasteful 

recording at times when target species will not be active. Additionally, if researchers 

have multiple target species they want to detect, it behooves them to sample at times 

when the highest proportion of target species will be active concurrently. This idea has 

been explored in the context of wildlife community interactions monitored with camera 

trap data, where researchers optimally only sample (take photos) on occasions with 

temporal overlap of multiple focal species, instead of wasting the camera’s power 

resources on photos likely to contain only a single species (Frey et al. 2017).  

1.3. The challenge of analyzing recordings, given that automated detection 

systems are mistake-prone  

Despite constraints on total recording time, ARUs can typically capture a 

markedly larger volume of observation time than the traditional 3-10 minute point counts 

common to avian field studies (Ralph et al. 1995). This information increase confers a 

double-edged sword: ARUs, and the audio recordings they produce, can very quickly 

engender a big data problem, wherein signals of interest must be efficiently located 

within large bodies of data. Real-time listening by a researcher is often prohibitively 

time-consuming, and thus, automated acoustic monitoring approaches are necessary, 

wherein computer algorithms are employed to automatically detect signals of interest 

(Stowell et al. 2016, Shonfield & Bayne 2017).  

The notion of mature computer-automated acoustic detection of wildlife is an 

illusion, however: existing automated detection systems can be so rife with mistakes that 

the consequences of automated systems may outweigh any benefits, unless the detection 
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process includes some manual validation by a human researcher (Acevedo et al. 2009, 

Hutto & Stutzman 2009, Buxton & Jones 2012, Duan et al. 2013). For example, 

automated detection systems may flag prohibitively high numbers of detections wherein a 

target species is not actually vocalizing (“event-level false positive”) or may fail to detect 

a vocalizing species when it is producing the target sound (“event-level false negative”) 

(Acevedo et al. 2009, Marques et al. 2012). If not adequately addressed, both of these 

mistakes may compromise scientific inference and undermine monitoring and 

management objectives. 

Several software options exist for the purpose of automatically detecting wildlife 

signals out of audio recordings. The objectives of an automated detection system can 

vary, ranging from requiring perfect detection and time-stamped data for every single 

species calling event for use in behavior-based research, to information that facilitates 

abundance-based research, to simple presence/absence data for use in occurrence models 

(Stowell et al. 2016). A widespread paradigm in automated acoustic wildlife detection is 

to focus on the most difficult of these, individual event detection, which is commonly 

conveyed as time vs. frequency event boxes in a spectrogram. Detection mistakes are a 

challenge due to the nature of environmental audio recordings: in addition to sounds 

produced by a species of monitoring interest, the acoustically captured soundscape may 

include sounds from nontarget species, wind, rain, and anthropogenic noise, all of which 

can either produce event-level detections where the target species was not actually 

calling, or which can mask sounds produced by the target species (Towsey et al. 2012, 

Aide et al. 2013, Potamitis 2014). 
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Widely commercial software options include Raven Pro, which uses band-limited 

energy detection, and Wildlife Acoustics Kaleidoscope program, which uses a hidden 

Markov model paired with clustering and classification algorithms to detect and classify 

events. At the time of this writing, Raven Pro costs $100 per year and Wildlife Acoustics 

Kaleidoscope costs $299-$399 per year depending on license type (Bioacoustics 

Research Program 2018, Wildlife Acoustics 2018). Alternatively, the ARBIMON 

Bioacoustics analysis software platform provides cloud-based automated detection 

functions and data storage at varying cost rates (5 minutes recording per day * 365 days 

per year * 20 devices * 0.03 cents per minute = $1095 per year), and uses template-based 

detection paired with a random forest classifier (Aide et al. 2013, Corrada-Bravo et al. 

2016).  

Many free programs exist as well, such the R packages seewave (for general 

soundwave analysis) (Sueur et al. 2008), soundecology (to compute soundscape ecology 

indices) (Villanueva-Rivera & Pijanowski 2018), warbleR (functions for acquiring and 

analyzing avian vocalizations) (Araya-Salas & Vidaurre 2017), and monitoR (template-

based acoustic event detection) (Hafner & Katz 2018). Of these R packages, only 

monitoR supports automated species detection meant to be used without continuous 

manual checking; it does so via binary template matching or spectrogram cross-

correlation templates. Other free recently released software includes the hidden Markov 

model-based MatlabHTK (Ranjard et al. 2017), and Tadarida, which uses random forests 

paired with discriminant analysis (Bas et al. 2017).  
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Several other automated detection methods have been detailed in the scientific 

literature (Knight et al. 2017, Shonfield & Bayne 2017), but most implementations were 

designed for specific research purposes, and lack code or software platforms that 

explicitly make the methodologies accessible for widespread use. Common methods 

include hidden Markov models (e.g. Wildlife Acoustics), support vector machines 

(Acevedo et al. 2009, Fagerlund 2007), classification trees (Adams et al. 2010), wavelets 

(Priyadarshani et al. 2016), dynamic time warping (Anderson et al. 1996), convolutional 

neural networks (Knight et al. 2017), ensemble approaches that make use of multiple 

layers or combinations therein (Stowell et al. 2016), and deep learning methods (Goeau et 

al. 2016). Towsey et al. (2012) emphasize that for single-species detection, the method 

employed might vary based on sound characteristics of that specific species (as well as 

the soundscape environment it inhabits), and recommend solutions such as energy-based 

segmentation, spectral peak tracking, detection of amplitude modulation within small 

frequency ranges, and spectrogram template matching (as in Katz et al. 2016), depending 

on the circumstances.  

There is a distinction between the algorithm used to automatically detect events 

(these might be algorithms like a random forest, a convolutional neural network, or a 

support vector machine) and the features used by the algorithm to decide whether a sound 

is in fact a signal from a target species. These features are properties of the sound that can 

be used by the automated detection system to assess whether a sound is a target signal. 

Commonly used features include the zero-crossing rate, signal energy, or features 

constructed from a short-time Fourier transform, such as linear prediction cepstrum 
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coefficients (LPCC), mel frequency cepstral coefficients (MFCC) (Levy et al. 2003), and 

other statistical properties of the frequency spectrum (Sueur et al. 2008).  

Regardless of the particular algorithm and set of acoustic features employed by an 

automated detection system, the human user of that system constitutes perhaps the most 

important factor of all. Automated detection systems typically involve a training period, 

wherein the human user provides the algorithm with examples of sounds from a target 

monitoring species (Bishop 2006). The algorithm then produces a model for detecting 

those target sounds. If this trained model performs adequately during a subsequent testing 

period, wherein its detection and classification performance is evaluated against target 

sounds not encountered during training, then the human user may decide that the model is 

ready for use in an active research for the automated detection of target monitoring 

species.  

The quality of example data provided during the training phase is critical, and if 

the system is given inappropriate examples during training and testing, it will likely 

perform poorly in a real monitoring program (Friedman et al. 2001). It is desirable for 

animal sound training data to come from the same environment from which it will be 

collected (Katz et al. 2016, Shonfield & Bayne 2017), and it is likely best if a recognizer 

is trained on recordings that have been collected with the same type of microphone and 

audio sampling rate that will be used for the study. Ideally, during the training phase, the 

user is able to provide examples of target monitoring sounds that capture every single 

fragment of variation the automated detection system will confront when it is deployed in 

an active monitoring context. In practice – as is true for many scientific domains broadly 
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concerned with predictive modeling – achieving this level of training data quality is 

impossible, due to the relative rarity of examples that can encompass all possible 

scenarios an automated detection system might encounter (Friedman et al. 2001, Bishop 

2006). To illustrate, imagine that a research program wants to automatically detect the 

vocalizations of a species of songbird. In order to train an automated detection system to 

successfully detect every single vocalization in every single recording taken by the 

monitoring program, without detecting any false positives, that automated detection 

system will first require examples of every type of sound this species makes, with the 

target species vocalizing very close to the recorder, vocalizing far away from the 

recorder, vocalizing while other animals are vocalizing, and vocalizing against a 

backdrop of wind, vehicle noise, and any other non-target sounds present in the research 

setting.  

Many such training examples are difficult or impossible to capture a priori, given 

that the impacts of climate and land use change on wildlife are ongoing. Wildlife species 

may modify their vocalization behavior based on landscape changes, a phenomenon 

observed in populations of White-crowned Sparrows (Zonotrichia leucophrys) who 

increased the pitch of their songs to cope with increasing urban development in 

California (Luther & Baptista 2010). Additionally, some species of birds and whales are 

known to learn their songs from neighbors or family members, and consequently modify 

their vocalizations on a generational basis (Kroodsma et al. 1996, Noad et al. 2000). 

Thus, what constitutes suitable training data for an automated detection system may shift 
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over time, giving this domain the property of non-stationarity (Sugiyama & Kawanabe 

2012). 

Human curation of training data thus has a substantial impact on any automated 

acoustic detection system’s performance (Buxton & Jones 2012, Duan et al. 2013). 

Automated detectors may do well in the circumstances in which they were trained, only 

to dip in performance in new environments (Wrege et al. 2017). Depending on the life 

histories of target species, it is conceivable that researchers might unwittingly train an 

automated detection model on only a scant few vocalizing individuals in a given 

monitoring season. In the next season, when population turnover culls some individuals 

that contributed to the model, and introduces new individuals that present new variation 

in target vocalizations, the automated detection system may struggle. Systems may 

therefore benefit from seasonal updates to the training data to accommodate these 

changes, though no literature has explicitly implemented nor documented the outcome of 

such an action.  

In conclusion, the vast variety in animal sounds offers complex challenges, 

making certain tools and approaches appropriate only in certain contexts. No one-size-

fits-all automated detection approach meets the needs of every research problem 

(Acevedo et al. 2009, Towsey et al. 2012).  
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1.4. The challenge of modeling wildlife occurrence patterns with acoustic 

monitoring data  

Though it is increasingly easy to collect reams of acoustic data within study areas 

of interest, and emerging methods can assist with expedient data processing, less is 

known about how to use these data to create population models with actual utility for 

researchers and land managers. The ecological research community emphasizes that 

long-term studies should be prioritized, because they carry more weight in policy and 

decision-making (Hughes et al. 2018), and are more likely to have conservation and land 

management utility compared with static, single-season approaches (Dugger et al. 2015, 

Nichols et al. 2015).  

Automated acoustic monitoring using ARUs may be able to support this type of 

research, most imminently by way of translating audio data streams with automated 

species detections into dynamic occupancy models (sensu Mackenzie et al. 2003). In 

contrast to abundance-based population models, an occupancy model requires only 

presence-absence data for species of interest. Because the probability of detecting a 

species, given that it is present, is often less than 1 (i.e., false negatives are possibility), 

the standard occupancy model requires estimation of a nuisance parameter, p, the 

probability of detecting a species given that it is present (Mackenzie et al. 2002). 

Numerous extensions to the basic single-season occupancy model have emerged in the 

past decade, including dynamic (multiple season models) (Mackenzie et al. 2003), and 

models that accommodate heterogeneity (Royle 2006), false positives (Miller et al. 2011, 

2013), both false positives and heterogeneity (Ferguson et al. 2015), and more (Bailey et 
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al. 2014). Occupancy models can be fit using covariates that predict occupancy, and 

model selection techniques and goodness-of-fit methods can be used to assess and select 

models, from which inference may be gained in order to guide land management 

decisions. The free software packages PRESENCE (Hines 2018) and unmarked (R 

package, Fiske & Chandler 2011) support streamlined fitting of these models.  

Prior to the work described in chapter 3 of this dissertation, no method had yet 

been introduced for the development of dynamic occupancy models from automated 

acoustic monitoring data. Such a framework may be able to support adaptive 

management paradigms across landscapes, amid climate change and land use change. 

Adaptive management is a form of management that involves learning over time to 

inform future management decisions, though it can be difficult to implement 

systematically (Williams et al. 2009). One successful example of adaptive management is 

the U.S. Fish and Wildlife Agency’s adaptive management program for American 

waterfowl populations, which uses a mixture of management objectives, monitoring, and 

model prediction under alternative management scenarios in order to achieve optimal 

management decisions by way of reductions in uncertainty around population responses 

to land management over time (Nichols et al. 2007, Johnson et al. 2015). There are not 

yet examples of dynamic occupancy models used for adaptive management purposes 

from automated acoustic monitoring data. Camera trap data provides an analog as it is 

also high volume and often requires some automation to detect focal species, but no cases 

of using camera trap data for adaptive management exist yet either (Nichols et al. 2011).  
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1.5. Conclusions 

Automated acoustic monitoring of wildlife is a rapidly emerging field with 

several challenges yet to address. The simple act of taking recordings at study areas can 

present difficult logistical constraints and yield inadequate information about the 

presence or absence of a target monitoring species. Once recordings have been acquired, 

overwhelming quantities of audio data, in combination with processing by mistake-prone 

automated detection systems, can further undermine attempts to characterize the 

occurrence of focal species through time. The following body of work describes novel 

methodology for alleviating these challenges.  
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2.1. Abstract  

1. Acoustic recordings of the environment can produce species presence-absence 

data for characterizing populations of sound-producing wildlife over multiple 

spatial scales. If a species is present at a site but does not vocalize during a 

scheduled audio recording survey, researchers may incorrectly conclude that the 

species is absent (‘false negative’). The risk of false negatives is compounded 

when audio devices do not record continuously and must be manually scheduled 

to operate at pre-selected times of day, particularly when research programs target 

multiple focal species with vocal availability that varies across temporal 

conditions. 

2. We developed a temporally-adaptive acoustic sampling algorithm to maximize 

detection probabilities for a suite of focal species amid sampling constraints. The 

algorithm combines user-supplied species vocalization models with site-specific 

weather forecasts to set an optimized sampling schedule for the following day. To 

test our algorithm, we simulated hourly vocalization probabilities for a suite of 

focal species in a hypothetical monitoring area for the year 2016. We conducted a 

factorial experiment that sampled from the 2016 acoustic environment to compare 

the probability of acoustic detection by a fixed (stationary) schedule vs. a 

temporally-adaptive optimized schedule under several sampling efforts and 

monitoring durations.  

3. We found that over the course of a study season, the probability of acoustically 

capturing a focal species at least once via automated acoustic monitoring was 
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greater (and acoustic capture occurred earlier in the season) when using the 

temporally-adaptive optimized schedule as compared to a fixed schedule.  

4. The advantages of a temporally-adaptive optimized acoustic sampling schedule 

are magnified when a study duration is short, sampling effort is low, and/or 

species vocal availability is minimal. This methodology thus offers new 

possibilities to the existing paradigms for adaptive wildlife sampling and acoustic 

monitoring, potentially allowing research programs to maximize sampling efforts 

amid constraints.  

 

Key Words 

Automated acoustic monitoring; bioacoustics; optimization; adaptive sampling; 

occupancy; detection probability; wildlife 
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2.2. Introduction  

Automated remote acoustic monitoring of wildlife offers a means to characterize 

the distribution of sound-producing species – such as birds, amphibians, bats, and insects 

– across vast landscapes (Dawson & Efford 2009, Marques et al. 2013). Because 

acquiring species abundance data is often logistically impractical at large spatial scales, 

research programs may instead collect species presence-absence data, an endeavor with 

which automated remote acoustic monitoring is compatible (Furnas & Callas 2014, 

Cerquiera & Aide 2016). In a typical remote acoustic monitoring program, audio 

recording devices deployed at fixed locations take environmental recordings based on a 

schedule that has been manually input to the device. Commercially available recording 

units often store recordings directly on the device (e.g., Wildlife Acoustics 2016), which 

obligates the researcher to be physically present to retrieve data from a storage card. 

Alternatively, in an emerging paradigm, recordings units may expedite data access and 

analysis by sending files in near-real time to a server using a cellular or Wi-Fi network 

(McKown et al. 2012, ARBIMON: Aide et al. 2013, Gage et al. 2017, Balantic & 

Donovan in prep). 

The difficulty with manually setting a recording schedule to survey wildlife is that 

truly present species do not always cooperate by vocalizing during the recording session. 

If a species is present but does not vocalize during scheduled recording periods, the 

species is logged as absent, resulting in a “false negative” (MacKenzie et al. 2002). 

Across time and space, deficient fixed recording schedules can fail to adequately describe 

a pattern of occupancy, which could potentially result in conservation management 
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decisions that are at odds with management objectives. For example, if an amphibian 

species of interest only vocalizes after the first substantial rainfall of the season, as is the 

case for Couch’s Spadefoot Toad (Scaphiopus couchii) in the Sonoran Desert (Mayhew 

1965), and no recordings were scheduled at a time that captures this event, then 

researchers may conclude the species is likely absent. Resource managers may 

subsequently use this information to make land use decisions that unwittingly sabotage 

their own conservation goals. As such, low species detection probabilities motivate the 

development of sampling protocols that improve the chances of detecting a species given 

that it is present (MacKenzie et al. 2006). 

The task of avoiding false negatives is magnified when large-scale acoustic 

monitoring regimes attempt to track multiple focal species that are available under 

varying conditions (Manley et al. 2004, McKown 2012). Focal species may have diverse 

behaviors and life histories, driving vocalization activity patterns that vary across time of 

day, time of year, and weather conditions. For example, a comprehensive monitoring 

program may be interested in tracking the occurrence patterns of breeding birds that 

vocalize on spring mornings with minimal rain and wind, seasonally available 

amphibians that only vocalize after fall monsoon rains, and nocturnally active species 

such as nightjars (Caprimulgidae family) or coyotes (Canidae family). Certain species 

within the focal set may be of special concern and therefore merit higher monitoring 

priority. Thus, remote acoustic monitoring programs targeting multiple species face the 

prospect of low detection probabilities for some or all targets if using a fixed, manually 

applied schedule for sampling.   
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Alongside detection challenges, acoustic monitoring programs often encounter 

constraints that restrict sampling efforts, prompting the need for guidance in the 

development of effective sampling schedules that avoid squandering key resources. 

Contingent on program circumstances, budget and logistical limitations may curb the 

total number of allowable audio samples, total amount of sampling time, and sample file 

sizes for storage or efficient transfer over a mobile or Wi-Fi network (Gage et al. 2015). 

Even if a Wi-Fi or cellular network is available to facilitate the real-time transmission of 

audio recordings (allowing researchers to avoid collecting recordings from on-site 

memory cards), some portion of the research budget is required to support the Wi-Fi or 

cellular data plan, which may limit the total recording time that can be taken and 

transmitted over the network. Additionally, if network signal is weak, it is prudent to 

limit recordings to short intervals of time (~1-2 minutes) to ensure efficient and reliable 

file transmission over the network, particularly if using high sampling rates (44.1+ kHz) 

and/or uncompressed file formats (e.g. .wav).  

Addressing these emergent acoustic monitoring challenges is crucial for building 

an expedient acoustic monitoring framework. As human land use and climate change 

continue to influence wildlife ranges and populations, there is a need to characterize 

status and trends of species that have been poorly understood and described (Thompson 

2004). Lacking a framework for optimizing acoustic sampling schedules amid 

constraints, landscape-scale bioacoustic monitoring programs may fail to take full 

advantage of their monitoring efforts, resulting in compromised scientific inference and 

sub-optimal conservation management decisions. 
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In this paper, we introduce a novel, temporally-adaptive acoustic monitoring 

methodology for recording devices that can communicate remotely via Wi-Fi or cellular 

network. Devices that can send recordings are inherently equipped to receive external 

instructions about when to record on the following day. Our method optimizes these 

instructions across time and monitoring locations by tracking p* or p(capture), the 

probability of acoustically capturing (detecting) a target species at least once at any 

monitoring site at any time during the study (sensu Otis et al. 1978). By tracking p* for 

each species at each site on a daily basis, the timing of future acoustic surveys is allowed 

to vary across sites as a function of information from previous surveys. Once p* reaches a 

user-defined threshold for target species at a given site, those species are released from 

future monitoring priority, allowing the recording schedule to focus more heavily on 

species that remain below their target thresholds. Acoustic monitoring thus offers an 

opportunity to implement flexible, temporally-adaptive sampling schedules that adjust 

automatically to optimize detection probabilities across a suite of focal species.  

Objectives 

The goal of this work was to develop and evaluate the utility of a temporally-adaptive, 

automated acoustic sampling algorithm, and assess its potential for maximizing detection 

of multiple focal species. Our objectives were to 1) Develop a temporally-adaptive 

automated acoustic sampling algorithm for acoustic wildlife monitoring subject to species 

prioritization and sampling constraints, 2) Simulate hourly vocalization probabilities for 

nine species across 133 sites in a hypothetical monitoring area for the year 2016, 3) 

Implement a 2 x 6 x 2 factorial experiment to compare the probability of acoustic 
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detection across sites in the 2016 vocalization simulation under differing monitoring 

protocols: schedule type (n = 2 levels; fixed schedule versus optimized temporally-

adaptive schedule), sampling effort (S = 6 levels: 2, 5, 10, 20, 30, or 40 minutes sampling 

per day at each site), and monitoring duration (D = 2 levels: full year [d = 366 days for 

the 2016 leap year] versus bird breeding season only [d = 31 days]). 

2.3. Materials and Methods 

Objective 1: Develop an optimized adaptive sampling algorithm subject to 

species prioritization and sampling constraints 

We engineered a temporally-adaptive sampling algorithm (Fig. 2. 1) designed to 

maximize detections across K target species and R study sites for D days, conditional on 

presence. The sampling schedule’s unit of temporal adaptation was one day (i.e., the 

schedule updated every 24 hours, and could not change mid-day). In this approach, audio 

samples were collected on day d. Each day, based on these samples and forecasted 

temporal data, an optimized recording schedule was determined for the next day (d + 1).   

Three fundamental user-defined inputs provided the functionality for schedule 

optimization (Fig. 2. 1):  

1. Species Vocalization Models: First, we created logistic regression vocalization 

models that reflected our knowledge about each of the K target species’ 

vocalization patterns. We then used these models to predict the probability of 

vocalization (pv) for each species at each monitoring site during any given hour of 

the day given existing weather and temporal conditions (User Input 1; Fig. 2. 1a).  
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2. Species Monitoring Priority Weights: For each species in the focal group, we 

assigned an initial weight that reflected its user-defined monitoring priority 

throughout the entire study period. Weights can be equal across focal species, or 

asymmetrical if a research program has varied species monitoring priorities and/or 

anticipates greater or lesser calling availability of certain species a priori. 

Furthermore, these weights may be constant across the R sites, or may vary if 

certain monitoring sites are prioritized above others (User Input 2; Fig. 2. 1a). We 

used equal monitoring priority weights for each species at each site. The 

algorithm updated these weights on a daily basis as monitoring progressed.    

3. Species Acoustic Capture Thresholds: Third, for each species and site 

combination, we chose a monitoring threshold that informed the allocation of 

samples at each site. We designated this user-defined monitoring threshold as 

p*max, or the maximum cumulative probability of acoustic capture (Otis et al. 

1978, White et al. 1982). For example, a p*max value of 0.95 for a given species at 

a given site indicated that monitoring should continue for this species at this site 

until the probability of detecting the species at least one time across the full 

monitoring period (D) met or exceeded 0.95 (i.e., monitor until p* ≥ p*max; User 

Input 3, Fig. 2. 1a). 

These three key inputs drove the optimized schedule (Fig. 2. 1), and utilized functions 

within the R package AMMonitor (Balantic et al. in prep) on day d to produce the 

optimized recording schedule for each site on day d + 1. For each day d of monitoring, 

we used AMMonitor’s temporalsGet() function to obtain site-specific, hourly weather 
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forecast data for the next day (d + 1). We combined this temporal data with the species 

vocalization models to predict each species’ hourly probability of vocalization (pv) at 

each site on day d + 1, hereafter “site-hour” (Fig. 2. 1b-2. 1c). Next, the AMMonitor 

function scheduleOptim() calculated a single overall score for each site-hour, computed 

as the dot-product of the species weights vector and the species vocalization probabilities 

vector (Fig. 2. 1d). On day d = 1, the weights vector consisted of the species monitoring 

weights assigned at the start of the monitoring program (Fig. 2. 1a). In later iterations, it 

was a vector updated based on the probability of acoustic capture (p*) computed from 

previous sampling intervals (Fig. 2. 1h). The site-hour scores were then ranked for each 

site, identifying the optimal hour(s) for sampling within each site for day d + 1. The 

scheduleOptim() function then scheduled S one-minute samples, evenly spaced, into the 

highest scoring hour(s) for each site for day d + 1 (Fig. 2. 1e). The schedule was then sent 

to the recording unit, which collected audio samples as instructed the following day (Fig. 

2. 1f). Based on the optimized recording schedules (which could vary from site to site) 

and the pv associated with that hour for each species, we then computed p*d for each 

species at each site, where p*d was defined as the probability of detecting the species at 

least once that day given the sampling schedule (Fig. 2. 1g). We recomputed the 

cumulative probability of acoustic capture across all previous days (p*) for each species 

at each site at the end of each day (Fig. 2. 1g). The daily update of p* permitted priority 

weights of each species at each site to shrink or grow based on how likely it was that the 

species has already been adequately acoustically captured by previous sampling (Fig. 2. 

1h). When p* equaled or exceeded our chosen p*max threshold at a given site, the species’ 
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updated weight at that site dropped to zero, allowing remaining sampling to emphasize 

species for which acoustic capture remained inadequate. The algorithm repeated daily 

until the sampling period D was complete or until all p*  ≥ p*max for each species at each 

site. 

Objective 2: Simulate hourly vocalization probabilities for nine species 

across 133 sites in a hypothetical monitoring area for the year 2016 

2.1 Study Site 

To test the utility of the algorithm, we simulated hourly vocalization probabilities 

for 9 species across 133 sites for 366 days (2016 was a leap year), and then sampled from 

this acoustic environment in Objective 3. Our focal study area in this work is the U.S. 

Bureau of Land Management’s (U.S. BLM) Riverside East Solar Energy Zone, a 599 km2 

parcel allocated as a utility-scale solar renewable energy hub and located between Desert 

Center, CA and Blythe, CA. The Riverside East Solar Energy Zone (Fig. 2. 2) contains 

133 sites actively monitored under an adaptive management protocol for vegetation 

indicators (U.S. Bureau of Land Management, 2016). We used these 133 sites as study 

locations for our simulation.   

2.2 Study Species 

Based on literature and the monitoring interests of U.S. BLM, we selected nine 

study species for this simulation: Black-tailed Gnatcatcher (Polioptila melanura), 

Common Poorwill (Phalaenoptius nuttallii), Couch’s Spadefoot Toad (Scaphiopus 

couchii), Coyote (Canis latrans), Eurasian Collared-Dove (Streptopelia decaocto), 
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Gambel’s Quail (Callipepla gambellii), Lesser Nighthawk (Chordeiles acutipennis), 

Phainopepla (Phainopepla nitens), and Verdin (Auriparus flaviceps). These species 

represented a mix of phylogenetic classes, diurnal and nocturnal vocalizers, early and 

late-year vocalizers, common and uncommon vocalizers, residents and non-residents, and 

species that are of conservation concern vs. invasive species (Table 2. 1).  

2.3 Vocalization Models 

We used the AMMonitor function simGlmModel() to create literature-based 

logistic regression models that predicted the probability of vocalizing at least once during 

a single hour of a given day for all nine target species (pv), conditional on presence. This 

function produced a statistical model of class ‘glm’ (generalized linear model) in R. 

Model covariates for any given species included date, hour of day, lunar phase, and 

proximity to sunrise and/or sunset, as well as weather conditions such as temperature, 

wind, and precipitation. In the interest of simplicity, we did not include any spatial 

(habitat) covariates.  

To accommodate the circular nature of temporal predictive variables like day of 

year, hour of day, and lunar phase, we modeled sin and cosine-based coefficients. For 

example, we modeled hour of the day on a 24-hour scale as sin(2*pi*hour.of.day/24) and 

cosine(2*pi*hour.of.day/24). To provide finer control over the modeling outcome, we 

also modeled hour of the day on a 12-hour scale as sin(2*pi*hour.of.day/12) and 

cosine(2*pi*hour.of.day/12). To illustrate with a hypothetical example, the 0-intercept 

model M describes the vocalization process of Eurasian Collared-Dove (Streptopelia 

decaocto): 
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M = 0 + 1*sin(2*pi*day.of.year/366)  – 2*cosine(2*pi*hour.of.day/12)  – 0.000005* 

time.to.sunrise2 + 0.009*temperature – 0.000001*temperature3 – 0.25*wind.speed 

The probability of vocalizing at least once during a given hour on a given day (pv) was 

subsequently obtained by applying the logit link function: 

pv = exp(M) / (1 + exp(M)) 

We developed logistic regression models that reflected our literature-based 

knowledge about vocalization activity for all nine focal species (Table 2. 2). All models 

used some combination of distance to sunrise/sunset and/or circular temporal variables 

(day of year, time of day) modeled with sin and cosine. We visualized the impacts of 

these variables on each species’ vocalization probability in Fig. 2.3. Temperature and 

wind speed were included for all diurnal avian species (U.S. Geological Survey 2001). 

The nocturnal avian species models included variables for wind speed and cosine of the 

lunar phase because vocal availability may be improved on moonlit nights (Woods 2005). 

The coyote model also contained the cosine of the lunar phase because this species is 

often more vocally active at the new moon (Bender et al. 1996). The Couch’s Spadefoot 

Toad model included rain accumulation within the past 24 hours (Mayhew 1965). Based 

on the literature, we made Couch’s Spadefoot Toad, Coyote, and Lesser Nighthawk less 

vocally available and thus more difficult to detect (Table 2. 2). 

2.4 Calculate pv for each site-hour for each species at each location 

For each day of 2016, we acquired hourly weather data for all 133 study sites 

using the AMMonitor function temporalsGet(). This function utilized the Dark Sky API 
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(Dark Sky 2017) to provide hourly data for precipitation intensity, precipitation 

probability, temperature, dew point, pressure, wind speed, cloud cover, ultraviolet index, 

visibility, and ozone, as well as the daily sunrise time, sunset time, and lunar phase 

associated with each monitoring site. The function appended variables such as the 

absolute value of time to sunrise or sunset, predicted rain accumulation in the previous 24 

hours, day of year, and hour of day, and the aforementioned circular sin and cosine-based 

predictors. We supplied the finalized covariate dataset and the class glm vocalization 

models (n = 9) to R’s predict() function to generate the probability of vocalization (pv) for 

each species, at each location, during each hour for the year 2016 in its entirety. This 

resulted in a dataset consisting of 9 species * 133 sites * 24 hours * 366 days = 

10,514,448 pv records from which to sample in Objective 3. 

Objective 3: Apply both the optimized schedule and fixed (stationary) 

sampling schedule to the simulated environment, and compare performance 

of the optimized schedule and fixed schedule at different sampling efforts 

and study season lengths. 

We implemented a 2 x 6 x 2 factorial experiment that subsampled the Objective 2 

vocalization simulation. The experiment consisted of two scheduling treatments (Tr = 

optimized or fixed) at six sampling effort levels (S = 2, 5, 10, 20, 30, or 40 minutes per 

day of sampling) and under two study durations (D = “Full Year (366 days)”: the full 

2016 year using all nine species, and “March Only (31 days)”: a sole focus on the March 

2016 breeding season, where most focal species were expected to be especially active, 

and where Couch’s Spadefoot Toad was omitted since it was not expected to be active).    
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For the Full Year Optimization treatment, we applied our daily temporally-

adaptive sampling protocol beginning on January 1, 2016 and ending on December 31, 

2016. For the March Only Optimization treatment, the temporally-adaptive sampling 

protocol began on March 1, 2016, and concluded on March 31, 2016. In both cases, we 

set each initial Species Monitoring Priority Weight to be equal at each site (1 divided 

by the total number of focal species) (Table 2. 3). Additionally, we selected Species 

Acoustic Capture Thresholds (p*max) of 0.95 for each species at each site.  

For the fixed treatment, we created stationary schedules for each sampling effort (S) 

(Table 2. 4) in an effort to make them as competitive as possible with the optimized 

treatment at the same sampling effort. The S = 2 minute sampling effort consisted of a 

one-minute sample in the morning (08:00:00), and a one-minute sample at night 

(23:00:00). At higher efforts, samples were generally clustered around the average 

sunrise and sunset times throughout the year, with recordings scheduled on an hourly and 

sub-hourly basis as sampling effort increased. The same fixed schedules were applied for 

both the Full Year and March Only study durations.  

For the optimized treatment, the scheduleOptim() function allocated evenly-

spaced samples to the highest scoring hour(s) in one minute increments, with a buffer of 

at least one minute between each sample. We settled upon this formulation as a 

consequence of real field testing within the Riverside East Solar Energy Zone, wherein 

we found that a), schedules with a high number of sampling occasions mitigated the risk 

of individual events not being received and logged by our audio recording devices, and 

b), smaller files produced by short recordings were more likely to be reliably dispatched 
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over the cellular network. Thus, a maximum of 30 one-minute samples could be assigned 

to any single hour. For example, a sampling effort of S = 30 one-minute samples would 

allot all 30 evenly-spaced samples, each one minute in length, with a one-minute buffer 

between each sample, into the highest scoring hour. For sampling efforts greater than 30 

minutes (i.e., S = 40), additional minutes spilled over into the second highest scoring 

hour.  

For each species, under each sampling effort (S) and study duration (D), we used 

two metrics to compare the performance of the optimized and fixed treatments. First, we 

rendered p* accumulation curves averaged across the 133 sites, and computed the total 

area under these curves (AUC), with AUC values closest to 1 being best. We also 

calculated the average date p*max was achieved for each species across sites (if at all), on 

the assumption that earlier achievement dates were more desirable.   

2.4. Results 

Vocalization Simulation Results (Objective 2) 

Driven by weather and temporal covariates, the simulated environment produced 

hourly probabilities of vocalization for each of the nine species at each site for the entire 

year of 2016. Summary statistics of monthly temperature, 24-hour rain accumulation, and 

wind speed demonstrated variation in weather covariates throughout the year, while 

sunrise and sunset times illustrated shifts in temporal covariates (Table 2. 5), all of which 

showed differences in conditions between the March Only and Full Year study durations.  
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The average probability of vocalization by species was summarized in Fig. 2. 4 

for both study durations, showing that breeding birds had a higher average vocalization 

probability during the March study duration as compared to the entire year, and also 

illustrating that three species – Couch’s Spadefoot Toad (TOAD), Coyote, and Lesser 

Nighthawk (LENI) – were far less vocally available in general. Large standard deviations 

in Fig. 2. 4 indicated the wide variation in overall vocalization probabilities across each 

hour of the year. (Note that Fig. 2. 3 conveys in finer detail the influence of temporal and 

weather conditions on modeled vocalization probabilities.) 

Factorial Results (Objective 3) 

Using the simulated environment for all species, the optimized treatment equaled 

or outperformed the fixed treatment on both metrics under all sampling efforts (S) and 

under both the Full Year and March Only durations (D), with only one exception (coyote 

p*max achievement at S = 20, D = Full Year).  

In the optimized treatment, because we used equal initial monitoring priority 

weights for all species, gregarious species dominated the sampling allocation early on for 

both study durations. Species modeled to be more vocally available (Fig. 2. 4) initially 

had a greater effect on aggregate scores, causing sampling effort to be allotted in their 

favor early in the season. Once these species’ weights began shrinking as their p* values 

increased, optimized sampling focus shifted to less vocally available species. If this 

phenomenon had been undesirable, we could have assigned higher monitoring priority 

weights a priori to species of special sampling concern.  
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Across species, AUC values produced by the p* accumulation curves for the 

optimized treatment equaled or exceeded those of the fixed treatment under all sampling 

efforts and for both study durations. At the extreme low end of sampling effort (S = 2 

minutes per day), the optimized treatment yielded AUC values that were typically at least 

25% greater than those of the fixed treatment during the Full Year study (Fig. 2. 5a), 

ranging up to more than 50% greater for the March Only study (Fig. 2. 5b). Though the 

optimized AUC values are greater than the fixed AUC values in most cases, these 

differences became negligible for commonly available vocalizers during the Full Year 

study when sampling effort was high. For example, comparatively loquacious species 

like Black-tailed Gnatcatcher, Common Poorwill, Gambel’s Quail, Eurasian Collared-

Dove, Phainopepla, and Verdin attained relatively high AUC regardless of schedule type, 

provided that the study duration was sufficiently long and sampling effort was 

sufficiently high. Meanwhile, for the rarest vocalizers (e.g., Couch’s Spadefoot Toad), 

the optimized treatment substantially outperformed the fixed treatment AUC even when 

sampling was high over the longer study duration. 

Schedules only achieved p*max values under certain conditions of sampling effort, 

study duration, and species vocal availability. For the full year study, where comparisons 

were possible, the optimized schedule reached p*max earlier in the year than the fixed 

schedule for nearly all scenarios (Fig. 2. 5a). The sole departure from this pattern was 

presented by the coyote, for which p*max was not obtained below a sampling effort of 20 

minutes. At 20 minutes, both schedules attained p*max for coyote, although the fixed 

schedule reached this value nine days earlier than the optimized schedule. In every other 



  

 

47 

 

case, the opposite was true: across sites, for the full year study, the optimized schedule 

surpassed p*max anywhere from five to 180 days earlier than the fixed schedule depending 

on the species and sampling effort (average = 30 days earlier) (Appendix A. 1). Even at 

40 samples, where the fixed schedule began to become more competitive, the optimized 

schedule still reached p*max an average of 14 days earlier than the fixed schedule for all 

species except for Couch’s Spadefoot Toad, where no comparison was available because 

the optimized schedule achieved p*max and the fixed schedule did not (Fig. 2. 5a). In 

general, for both the fixed and optimized treatments, commonly available vocalizers (e.g., 

Eurasian Collared-Dove, Gambel’s Quail, Verdin) exceeded p*max earlier in the season 

than less available vocalizers (e.g., Coyote, Lesser Nighthawk), and the least available 

species (Couch’s Spadefoot Toad) only reached p*max with the optimized schedule. This 

outcome is consistent with simulated differences in average vocalization probability 

between species (Fig. 2. 4), given that we assigned equal initial monitoring priority 

weights to each species. 

Under the abbreviated March sampling duration (where the toad was ommitted 

due to seasonal inactivity), the optimized schedule again proved superior on the p*max 

metric (Fig. 2. 5b). Only six out of the eight species hit p*max at all during the shorter 

sampling season. Often p*max was achieved only at higher sampling efforts, even for 

commonly available vocalizers such as Eurasian Collared-Dove, Gambel’s Quail, and 

Verdin. In all cases, the fixed schedule lagged well behind the optimized schedule in 

attaining p*max, if at all. For conditions under which a comparison was even possible, 
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across all species and sampling efforts in the March Only study, the optimized schedule 

reached p*max an average of 11 days earlier than the fixed schedule (Appendix A. 1).  

2.5. Discussion 

We demonstrated that a temporally-adaptive optimized sampling schedule can 

substantially outperform a fixed schedule in a simulation setting for maximizing the 

probability of detecting a suite of focal species, given presence. The advantage of the 

optimized schedule was magnified especially for the shorter study season and particularly 

at lower sampling efforts. The optimized schedule thus minimized the risk of 

encountering false negatives compared to the fixed schedule. In wildlife monitoring 

efforts striving to characterize distribution patterns of focal species, a temporally-

adaptive sampling schedule may therefore improve capacity to definitively characterize 

true negatives within acoustic monitoring, wherein a species is truly not present on site.  

This work contributes novel methodology to the adaptive sampling paradigm for 

monitoring wildlife. The bulk of research on adaptive sampling of wildlife is justifiably 

focused on sampling in the spatial dimension (e.g. Thompson et al. 1998, 2004; Turk and 

Borkowski 2005), while temporal adaptive sampling has not been explicitly explored in 

great depth (though see Dyo et al. 2012 and Charney et al. 2015). Recent work on the 

optimization of survey effort over space and time (Moore & McCarthy 2016), and when 

species detectability varies (Moore et al. 2014), focused on empirical field research, 

typically including a travel cost parameter that is fortunately irrelevant for spatially fixed 

automated acoustic recording units. Additionally, though the notion of time-sensitive 
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sampling is present in wildlife surveys – for example, by surveying during seasonally-

appropriate occasions for breeding amphibians, or on spring mornings during the dawn 

chorus for breeding birds – such sampling is not adaptive in nature unless information 

from prior surveys is incorporated into future sampling efforts (Thompson and Seber 

1994, Charney et al. 2015). 

Accordingly, the adaptive nature of this methodology enhances existing 

bioacoustic endeavors and introduces new possibilities. In terms of existing methodology, 

our adaptive sampling framework may be used to increase confidence in the local arrival 

and departure dates for migratory birds in a dynamic occupancy model framework (sensu 

MacKenzie et al. 2003). Though occupancy models already account for detection errors 

in the form of false negatives, the adaptive optimization framework described here can 

reduce the false negative rate to provide more confidence in detection probability 

estimates, potentially resulting in more precise occupancy estimates.  

The optimization options developed here provide a framework for improved 

sampling granularity. First, in addition to local weather conditions, field-based 

implementations of the temporally-adaptive optimization scheme could incorporate real-

time bird migration predictions which combine citizen science observations via the eBird 

database (Sullivan et al. 2009), flight calls of nocturnal migrants, and radar to detect 

‘clouds’ of migrating birds (BirdCast: Cornell Lab of Ornithology 2017). Given brief 

study durations, sampling constraints, and multiple focal species with varied vocal 

availabilities, automated optimization of acoustic sampling may thus allow research  
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programs to collect higher quality data with limited resources.   

Second, though we used the simple daily site constraint option here, where an 

equal number S one-minute samples per day were taken at each site and distributed into 

the highest scoring hour(s), samples could also be distributed via the ‘max per hour’ 

argument within AMMonitor’s scheduleOptim() function. Using the ‘simple’ daily site 

constraint option, if daily sampling effort is ≤ 30 minutes, all of those minutes are 

distributed at equal intervals into the highest scoring hour of the day. If this is 

undesirable, the researcher may invoke the ‘max per hour’ option to specify a maximum 

number of samples that can be allocated into each hour. In an exploratory simulation 

using the March 2016 study duration, eight species, sampling efforts of S = 20, 30, 40 

one-minute samples per day, and a maximum number of samples per hour of 10, we 

found that the ‘simple’ daily site constraint option outperformed the ‘max per hour’ 

option considerably (Appendix A. 2). Nevertheless, in a real-field scenario, researchers 

may elect to hedge their bets in this way depending on their confidence in the species 

vocalization models and accuracy of the weather forecast.  

Third, optimization methods might sample during the highest scoring time 

increments independent of site. In this work, we forced all sites to take S one-minute 

samples daily, but future extensions could allocate all available sampling power within a 

given time period to the best ‘site-hours’ overall, perhaps across a one-, three-, or even 

five-day weather forecast. For example, if a study area is vast, and rain is forecasted for a 

subset of sites where Couch’s Spadefoot Toad is of high monitoring priority, available  
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sampling power would be optimally distributed only to those site-hours with high 

predicted rain accumulation. Rainless site-hours, meanwhile, would be earmarked for no 

sampling during the forecast period of interest, minimizing wasteful sampling efforts if 

target species are only available under specific conditions.  

Fourth, although this implementation optimized under an assumption of species 

presence, future extensions might set the adaptive schedule based on the joint probability 

of occupancy and vocalization. That is, our simulations set the optimized schedule based 

on the probability of calling, conditional on presence; we did not consider the factors that 

actually shape the presence or absence of species across the 133 sites, which was not 

necessary to test the optimization algorithm. However, site occupancy can be factored 

into the algorithm by redefining pv (currently, the conditional probability of vocalization 

given presence) as the joint probability of presence and vocalization. In this formulation, 

high presence probabilities produce a higher site-hour score, increasing the chances of 

sampling a given site-hour under the optimization scheme. In contrast, lower presence 

probabilities drive lower site-hour scores, resulting in a smaller chance that a site-hour 

will be selected for sampling. 

Fifth, although this work focused on simulation results, in practice, researchers 

may incorporate additional considerations into a temporally-adaptive sampling scheme 

implemented in the field. Firstly, vocalization models producing species vocalization 

probabilities (pv) may be generated such that they have confidence intervals that include 

upper and lower bounds. In practice, to accommodate model uncertainty, researchers may  
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elect to use the upper bound, lower bound, or mean predicted pv values in the 

optimization scheme, depending on model confidence. Secondly, although we used equal 

initial priority monitoring weights at all sites for all species, in practice, researchers 

maybe set higher weights for species or sites of greater monitoring priority.  

Finally, although our p*
max values were set to 0.95 for the simulation (i.e., 

sampling continued until there was a 95% chance the species was acoustically captured 

on our recording devices at least once), users may set this threshold to any value. For 

instance, we might relax the definition of p*
max as a probability bounded between zero 

and one, and set a p*
max value of 2.00 for a given species at a given site, which would 

indicate that monitoring should continue until we are quite confident that the species has 

been acoustically captured on at least two separate sampling occasions during the 

monitoring period. This arrangement could further safeguard against false negatives: first 

by providing an additional failsafe against recording at inopportune times, and second by 

adding preemptive cushion against false negatives that could occur as a consequence of 

using automated detection algorithms.  

Although this work is simulation-based, we field-tested the mechanics of a 

temporally-adaptive sampling optimization protocol on N = 16 audio recorders by 

connecting each Android audio recording unit with a site-specific Google calendar 

account. We also developed a protocol linking the Android apps Easy Voice Recorder 

Pro (Digipom 2016) and Tasker (Tasker 2015) with the optimization protocol (Balantic et 

al. in prep). This combination allowed us to populate each device’s calendar with the 

optimized sampling schedule on a daily basis and collect acoustic recordings, providing a 
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real field proof-of-concept for the simulation experiment detailed in this paper.  This 

protocol can be implemented in the field using the fully operational AMMonitor functions 

scheduleOptim() and scheduleFixed(), which can be combined to create daily optimized 

and/or fixed schedules that are automatically pushed to a remote recording unit’s Google 

account and then synced automatically for the next day of acoustic sampling. Step-by-

step instructions for linking the Android apps Easy Voice Recorder Pro (Digipom 2016) 

and Tasker (Tasker 2015) with scheduleOptim() are available in Balantic et al. in prep. 
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2.8. Tables 

Table 2. 1. Summary of nine focal species used for simulation  
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Table 2. 2. Logistic regression models for nine focal species, each producing the hourly 

probability of vocalization.   

 

Species Model

Black-tailed Gnatcatcher 

(BTGN)

-0.3 – 0.002*day.of.year + 1*sin(day.of.year) – 0.5*cosine(hour 12 ) 

– 0.000007*time.to.sunrise
2

 + 0.009*temperature – 

0.000001*temperature
3

 – 0.35*wind.speed

Common Poorwill 

(COPO)

-1.5 – 0.003*day.of.year – 0.5*cosine(day.of.year) + 

0.6*sin(day.of.year) + 1*cosine(hour 24 ) – 0.5*cosine(hour 12 ) – 

0.0005*time.to.sunrise – 0.0005*time.to.sunset – 0.1*wind.speed – 

0.2*cosine(lunar.phase)

Couch’s Spadefoot Toad 

(TOAD)

-8 – 1*cosine(day.of.year) – 2*sin(day.of.year) + 

3*cosine(hour.of.day 24 ) + 5*rain accumulation in the past 24 hours

Coyote                          

(COYOTE)

-3 – 0.5*cosine(day.of.year equinox ) + 0.2* sin(day.of.year equinox )  + 

1* cosine(hour 24 )  – 0.5* cosine(hour 12 )  – 0.001* time.to.sunrise – 

0.001* time.to.sunset + 0.2*cosine(lunar.phase)

Eurasian Collared-Dove 

(ECDO)

-1.4 + 1*sin(day.of.year)  – 2*cosine(hour 12 )  – 0.000005* 

time.to.sunrise
2

 + 0.009*temperature – 0.000001*temperature
3

 – 

0.25*wind.speed

Gambel’s Quail     

(GAQU)

-1.2 - 0.002*day.of.year + 1.3*sin(day.of.year) – 

2*cosine(hour.of.day 12 ) – 0.000005*time.to.sunrise
2 

+ 

0.009*temperature – 0.000001*temperature
3 

 – 0.25*wind.speed

Lesser Nighthawk    

(LENI)

-2 – 0.006*day.of.year – 0.4*cosine(day.of.year) + 

0.7*sin(day.of.year) + 1*cosine(hour 24 ) – 0.5*cosine(hour 12 ) – 

0.0005*time.to.sunrise – 0.0005*time.to.sunset – 0.25*wind.speed – 

0.3*cosine(lunar.phase)

Phainopepla            

(PHAI)

-2.2 – 0.00001*day.of.year
2

 + 0.7*cos(day.of.year) + 

2.2*sin(day.of.year) – 2.5*cosine(hour 12 ) – 

0.000004*time.to.sunrise
2

 + 0.009*temperature – 

0.000001*temperature
3

 – 0.25*wind.speed

Verdin                  

(VERD)

-0.5 – 0.004*day.of.year + 1*sin(day.of.year) – 1.5*cosine(hour 12 ) 

– 0.000007*time.to.sunrise
2

 + 0.009*temperature – 

0.000001*temperature
3

 – 0.25*wind.speed
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Table 2. 3. Monitoring priority weights for focal species at 133 sites, used for the Full 

Year (a) and March Only (b) study durations. 

a. 

 Site 

Species 1 2 3 … 131 132 133 

Black-tailed Gnatcatcher 

(BTGN) 
0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Common Poorwill (COPO) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Couch’s Spadefoot Toad 

(TOAD) 
0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Coyote (COYOTE) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Eurasian Collared-Dove 

(ECDO) 
0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Gambel’s Quail (GAQU) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Lesser Nighthawk (LENI) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Phainopepla (PHAI) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Verdin (VERD) 0.11 0.11 0.11 0.11 0.11 0.11 0.11 

Sum  1.00 1.00 1.00 1.00 1.00 1.00 1.00 

 

b. 

  Site 

Species 1 2 3 … 131 132 133 

Black-tailed Gnatcatcher 

(BTGN) 
0.13 0.13 0.13 0.13 0.13 0.13 0.13 

Common Poorwill (COPO) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 

Coyote (COYOTE) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 

Eurasian Collared-Dove 

(ECDO) 
0.13 0.13 0.13 0.13 0.13 0.13 0.13 

Gambel’s Quail (GAQU) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 

Lesser Nighthawk (LENI) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 

Phainopepla (PHAI) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 

Verdin (VERD) 0.13 0.13 0.13 0.13 0.13 0.13 0.13 

Sum  1.00 1.00 1.00 1.00 1.00 1.00 1.00 
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Table 2. 4. Fixed sampling schedules used on the 24-hour clock at each sampling effort 

(S = 2, 5, 10, 20, 30, or 40 minutes), applied to both the March Only and Full Year study 

durations.  

Number of Samples Fixed Schedule 

2 08:00:00, 23:00:00 

5 02:00:00, 05:00:00, 06:00:00, 08:00:00, 23:00:00 

10 
00:00:00, 01:00:00, 02:00:00, 06:00:00, 06:30:00, 

07:00:00, 07:30:00, 08:00:00, 22:00:00, 23:00:00 

20 

00:00:00, 01:00:00, 02:00:00, 03:00:00, 04:00:00, 

05:00:00, 05:30:00, 06:00:00, 06:30:00, 07:00:00, 

07:30:00, 08:00:00, 18:00:00, 18:30:00, 19:00:00, 

19:30:00, 22:00:00, 22:30:00, 23:00:00, 23:30:00 

30 

00:00:00, 01:00:00, 01:30:00, 02:00:00, 02:30:00, 

03:00:00, 03:30:00, 04:00:00, 04:30:00, 05:00:00, 

05:30:00, 06:00:00, 06:30:00, 07:00:00, 07:30:00, 

08:00:00, 08:30:00, 09:00:00, 09:30:00, 10:00:00, 

17:00:00, 17:30:00, 18:00:00, 18:30:00, 19:00:00, 

19:30:00, 22:00:00, 22:30:00, 23:00:00, 23:30:00 

40 

00:00:00, 00:30:00, 01:00:00, 01:30:00, 02:00:00, 

02:30:00, 03:00:00, 03:30:00, 04:00:00, 04:30:00, 

05:00:00, 05:30:00, 05:45:00, 06:00:00, 06:15:00, 

06:30:00, 06:45:00, 07:00:00, 07:15:00, 07:30:00, 

07:45:00, 08:00:00, 08:15:00, 08:30:00, 08:45:00, 

09:00:00, 09:30:00, 10:00:00, 17:00:00, 17:30:00, 

18:00:00, 18:15:00, 18:30:00, 18:45:00, 19:00:00, 

19:30:00, 22:00:00, 22:30:00, 23:00:00, 23:30:00 
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Table 2. 5. Summary statistics for weather and temporal covariates across the simulation 

study area in 2016. (Monthly summaries convey conditions in March as compared with 

the Full Year variation.) 

 

 

 

 

Month Avg. Min. Max. SD Avg. Min. Max. SD Avg. Min. Max. SD

January 12.3 1.9 27.0 3.1 0.617 0.000 11.549 1.671 8.2 0.0 49.0 5.9

February 17.7 1.1 31.0 4.5 0.008 0.000 1.097 0.043 9.9 0.0 36.7 6.0

March 20.0 6.7 33.9 4.0 0.044 0.000 2.017 0.149 10.5 0.0 55.7 7.0

April 22.5 10.6 36.0 3.7 0.304 0.000 4.686 0.825 11.0 0.0 50.8 7.5

May 25.1 13.1 38.5 3.8 0.047 0.000 1.280 0.179 10.1 0.0 38.7 5.9

June 33.2 19.9 48.8 4.1 0.017 0.000 1.194 0.094 10.5 0.1 35.3 5.3

July 34.9 22.4 45.7 3.5 0.092 0.000 2.908 0.325 11.6 0.0 47.3 5.3

August 33.9 22.0 45.5 3.3 0.065 0.000 1.600 0.155 9.2 0.0 39.7 5.1

September 28.9 16.0 42.3 3.7 0.187 0.000 6.104 0.841 9.1 0.0 35.4 5.7

October 25.0 14.8 36.3 3.5 0.074 0.000 3.498 0.399 8.1 0.0 34.4 4.8

November 18.3 3.6 33.5 4.2 0.094 0.000 2.870 0.304 8.4 0.0 34.8 5.3

December 12.8 1.3 25.6 3.1 1.239 0.000 18.900 2.831 9.5 0.0 44.8 6.9

Temperature (*C) 24-hr. Rain Accumulation (mm) Wind Speed (km/hr)

Month Avg. Min. Max.

SD 

(minutes) Avg. Min. Max.

SD 

(minutes)

January 6:44:36 6:37:05 6:48:47 2.5 16:56:21 16:41:32 17:12:21 8.3

February 6:25:40 6:08:47 6:40:09 8.4 17:24:54 17:09:49 17:39:11 7.8

March* 6:26:22 5:53:20 6:55:34 20.2 18:26:43 17:36:28 19:02:57 35.2

April 6:09:42 5:51:13 6:29:42 10.5 19:12:48 19:00:05 19:25:48 6.6

May 5:40:29 5:30:27 5:53:45 6.0 19:36:04 19:22:52 19:48:35 6.6

June 5:31:31 5:28:40 5:35:58 1.3 19:52:58 19:45:17 19:57:58 2.9

July 5:43:09 5:32:53 5:54:46 5.6 19:50:56 19:40:32 19:57:53 4.2

August 6:04:36 5:51:58 6:16:55 6.4 19:26:09 19:06:34 19:43:29 10.0

September 6:25:35 6:14:02 6:37:09 5.9 18:47:07 18:25:05 19:08:51 12.1

October 6:47:37 6:34:16 7:01:57 7.2 18:06:39 17:48:02 18:27:16 10.7

November** 6:24:31 6:03:46 7:06:33 18.2 16:49:13 16:31:24 17:50:38 26.1

December 6:38:59 6:26:55 6:48:04 5.4 16:36:07 16:31:08 16:44:50 3.3

* Begin DST

** End DST

Sunset TimeSunrise Time
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2.9. Figures 

Figure 2. 1. Objective 1 Workflow for an optimized temporally-adaptive sampling 

algorithm subject to species prioritization and sampling constraints. 
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Figure 2. 2. Map of simulation study area: 133 sites were distributed across 599 km2 

located in southeastern California (USA) within the U.S. Bureau of Land Management’s 

Riverside East Solar Energy Zone.  
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Figure 2. 3. Visual demonstration of species logistic regression vocalization models. 

Species codes and regression models are given in Table 2. 2. The probability of 

vocalization (pv), given presence, is graphed as a function of key weather and temporal 

covariates to display vocalization characteristics across species. Because covariates are 

graphed separately, intercepts of zero are used for visual demonstration purposes.  
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Figure 2. 4. Vocalization Simulation Results. Average probability of vocalization in a 

given hour across all hours and sites for each focal species during both the March Only 

and Full Year study durations. Species codes are provided in Table 2. 1. Standard 

deviation error bars reveal wide variation in vocalization probabilities contingent on 

weather and temporal conditions.  
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Figure 2. 5. Factorial Experiment Results. p* and p*
max charts are given for all focal 

species at six sampling efforts for the Full Year (a) and March Only (b) study durations. 

Species codes are provided in Table 2. 1.  Lines track cumulative p* values for both the 

fixed and optimized schedule treatments. Total area under the cumulative p* curve (AUC) 

values are given for both treatments within each box. Where applicable, the date of first 

p*
max achievement is denoted by a single solid point on the line.  
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3.1. Abstract 

Audio sampling of the environment can provide long-term, landscape-scale presence-

absence data to model populations of sound-producing wildlife. Automated detection 

systems allow researchers to avoid manually searching through large volumes of 

recordings, but often produce unacceptable false positive rates. We developed methods 

that allow researchers to improve template-based automated detection using a suite of 

statistical learning algorithms when false positive rates are problematic. To test our 

method, we acquired 675 hours of recordings in the Sonoran Desert, California USA 

between March 2016 and May 2017, and created spectrogram cross-correlation templates 

for three target avian species. We trained and tested five classification algorithms and 

four performance-weighted ensemble classifier methods on target signals and false 

alarms from March 2016, and then selected high-performing ensemble classifiers from 

the train/test phase to predict the class of new detections thereafter. For three target 

species, our ensemble classifiers were able to identify 98%, 85%, and 99% more false 

alarms than the baseline template detection system, and comparative positive predictive 

values improved from 6% to 75%, 87% to 97%, and 2% to 69%. We show that statistical 

learning approaches can be implemented to mitigate false detections acquired via 

template-based automated detection in automated acoustic wildlife monitoring.  

Key Words 

Automated acoustic monitoring; bioacoustics; false positives; machine learning; species 

identification; statistical learning 



  

 

73 

 

3.2. Introduction 

Tracking wildlife population dynamics at regional scales requires methods that 

efficiently accumulate data on species of interest (Pollock et al. 2002). Automated 

acoustic monitoring of sound-producing wildlife offers one path for characterizing 

baseline species status and trends across vast landscapes, important within the context of 

climate change and rapidly shifting land uses. Because obtaining species abundance data 

is often inefficient, costly, and impractical, research at large spatial scales may instead 

collect species presence-absence data for use in occupancy models; remote acoustic 

monitoring is well-positioned to support such data collection because it affords the 

opportunity to identify presence or absence of species based on sounds captured on audio 

recordings (Furnas & Callas 2014, Cerquiera & Aide 2016).  

Recent efforts have yielded tremendous growth in large-scale, long-term 

bioacoustic monitoring programs that accumulate vast amounts of acoustic data well 

beyond human capacity for efficient examination (Shonfield & Bayne 2017). Such large-

scale data acquisition is accompanied by methodologies and software that enable semi-

automated detection of sound-producing wildlife species from audio recordings. No 

approach for automated detection is perfect, and detection methods can vary based on 

research goals, soundscape characteristics, and acoustic features of a target species sound 

(Towsey et al. 2012; Stowell et al. 2016). Hidden Markov models (Agranat 2009, Aide et 

al. 2013, Potamitis et al. 2014, Ranjard et al. 2016, Wildlife Acoustics 2016), 

spectrogram cross correlation (Avisoft Bioacoustics e.K. 2016, Hafner & Katz 2018), 

binary point matching (Hafner & Katz 2018), band-limited energy detection (Figueroa 
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2012, Bioacoustics Research Program 2015) and convolutional neural networks (Knight 

et al. 2017) are common approaches. Probabilistic classification methods also show 

promise (Ovaskainen et al. 2018).   

In any approach, a detected audio signal is either a true positive detection, which 

is a sound produced by the target species, or a false positive detection, which is not a 

signal from a target species. Throughout this paper we will use the convention of styling 

true positive detections as “target signals” and false positive detections as “false alarms”. 

Regardless of the automated detection method employed, when acting without human 

assistance, computer-automated methods often produce an unacceptable number of false 

alarms, wherein non-target noise is detected and incorrectly assigned to a target species 

(Acevedo et al. 2009). False alarm rates from computer-automated methods may vary 

widely from project to project based on the prevalence of similar sounds from non-target 

sources in the soundscape, acoustic characteristics of sounds made by the target species 

(Towsey et al. 2012), the type of automated detection routine used (Corrado-Bravo et al. 

2017), the available number of target sound examples upon which automated methods 

may be trained (Stowell et al. 2016), the quality of training data (Knight & Bayne 2018) 

and selection of score thresholds above which detections may occur (Knight et al. 2017).  

We illustrate the process of acquiring both true target signals and false alarms 

using a spectrogram cross-correlation template as a screening mechanism to accumulate 

detections for a North American desert songbird, the Verdin (Auriparus flaviceps). First, 

we render a spectrogram of an audio recording (Fig. 3. 1a), in which a Verdin vocalized 

three times, each with a characteristic three note whistle at about 4 kHz on the y-axis. We 



  

 

75 

 

set time and frequency limits that define a cross correlation-based detection template for 

the song occurring at ~24 seconds within the example recording (Fig. 3. 1b). This 

template thus provides an acoustic pattern issued by a known target species, and can be 

used to scan many recordings in pursuit of Verdin vocalizations. The template is 

compared to an audio recording in a moving window analysis, in which a correlation 

between the template and audio file is obtained for each window (Fig. 3. 2). We then 

select a correlation detection threshold for the template, which is a user-specified 

detection threshold ranging from 0 (no correlation) to 1 (full correlation). Only peaks 

with scores above the chosen threshold are considered detections. This process facilitates 

rapid screening of acoustic data to acquire a set of detections, which are either true target 

signals or false alarms (Table 3.1a). Distinguishing target signals from false alarms is the 

focus of this paper. Tangentially, this process also results in false negatives at the level of 

actual vocalization occurrence, in which a species produced a sound but was not detected 

by the template matching process (Table 3. 1a; see Brauer et al. 2016 and Katz et al. 

2016 for assessment of false negatives using a template-matching system).   

Although humans may distinguish between true target signals and false alarms by 

visually examining the spectrogram or listening to the audio file, this approach is 

inefficient against the sheer volume of data collected in an acoustic monitoring program. 

Alternatively, after the template screening step has been performed, users may manually 

verify a small subset of detections as target signals and false alarms and use these to train 

a variety of classification algorithms that can predict whether template detections are true 

or false positives. Such an approach describes a form of statistical learning called 
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supervised learning, in which a human labels a subset of data for the algorithm so that it 

can map existing data to known output classes (Bishop 2006). Once an algorithm has 

been trained on known data, it can be tested to predict the class – target signal or false 

alarm – of unknown data.  

Two key components must be addressed to undertake supervised statistical 

learning. First, one must decide which acoustic features (predictive variables) of a 

detection can be used by the algorithm to predict the outcome (target signal or false 

alarm). The best predictive features may vary based on sounds produced by any given 

target species, as well as soundscape circumstances such as wind, rain, anthropogenic 

noise, or non-target species vocalizing within the same frequency range. An example of a 

set of acoustic features can be seen in Fig. 3. 1b: the colored shading in each pixel of the 

spectrogram represents the amplitude (or sound intensity) at that point, and each of the 

amplitude values in this spectrogram serves as an acoustic feature. Other potential 

predictive features include binned zero-crossing rates, time and frequency contours of the 

amplitude probability mass function, and summary statistics of the frequency spectrum 

(Sueur et al. 2008) (Appendix B. 1). 

Once predictive features have been obtained, they are fed into a classification 

algorithm that will map predictive feature inputs to known output labels (target signal or 

false alarm). For example, the k-Nearest Neighbors classifier predicts the class of a new 

observation based on its feature similarity to some ‘k’ number of observations within the 

training set (Cover & Hart 1967). Support Vector Machines seek an equation that 

optimally separates classes based on a high number of feature dimensions in geometric 
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space (Boser et al. 1992), while Random Forests average a number of feature-based 

decision trees in order to make predictions (Breiman 2001). Regularized Logistic 

Regression uses penalized maximum likelihood to shrink the values of predictive feature 

coefficients, reducing variance so that the resulting model is better equipped to predict 

outside the range of data upon which it was trained (Zou & Hastie 2005). To improve 

classification, multiple algorithms may be combined into an ‘ensemble’ method to predict 

the class of a new detection. 

Classification methods for discriminating between target signals and false alarms 

thus provide an opportunity in large-scale automated acoustic wildlife monitoring. 

Climate and land use change are forces that shift the occurrence of species across vast 

spatial scales, and monitoring these shifts at large scales is paramount for natural resource 

practitioners tasked with maintaining and sustaining species, populations, and 

ecosystems. Acoustic monitoring can produce vast amounts of data for this purpose, but 

existing automated detection algorithms often deliver high rates of false positives 

(Acevedo et al. 2009, Buxton and Jones 2012, Marques et al. 2012, Duan et al. 2013, 

Shonfield & Bayne 2017). Without accessible, straightforward, and generalizable 

methodologies for the mitigation of false positives in long-term data sets, occurrence-

based bioacoustics research will continue to suffer the complications imposed by 

prohibitive numbers of detection errors, which often preempt poor model inference, ill-

informed management decisions, and undesirable conservation outcomes (Royle & Link 

2006, Miller et al. 2011, Ruiz-Gutierrez et al. 2016). 
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Objectives 

The aim of this study was to explore key functionality in the R package 

AMMonitor (Balantic et al. in prepa) for the semi-automatic removal of false positives to 

increase the quality of monitoring data. Our objectives were to 1) use spectrogram cross-

correlation templates as an initial screening step to accumulate detections for focal 

species in a pilot acoustic monitoring program, 2) train and test statistical learning 

classification algorithms to distinguish between target signals and false alarms acquired 

during the template screening phase, 3) use a trained and tested classifier on new 

detections and compute overall classification performance in comparison to the template 

screening system.   

3.3. Materials and Methods 

Objective 1: Use templates as a screening step to acquire focal species 

detections from field data  

Acquire Acoustic Recordings 

We piloted an acoustic monitoring program in the Colorado-Sonoran Desert on 

public land managed under the auspices of the U.S. Bureau of Land Management (BLM). 

Autonomous recording units were installed at 16 sites within the BLM-managed 

Riverside East Solar Energy Zone, a 599 square-kilometer patch allocated as a utility-

scale solar renewable energy hub. Because this work is a proof of concept with a focus on 

methodology rather than on ecological inference, study sites were selected nonrandomly 
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near microphyll woodland habitat to record songbirds, and historic breeding pond 

locations with the intention of recording Couch’s Spadefoot Toad (Scaphiopus couchii). 

Acoustic monitoring units were located at least 800 meters away from one another to 

maximize independence of acoustic events.  

Each audio recording unit was a modified Android cellular phone (2015 2nd 

Generation Motorola Moto E model XT1527 with 5.0.2 Lollipop Android Operating 

System) contained within a weatherproof case and attached to an external 10-watt solar 

panel for power. Each unit was outfitted with an external omnidirectional electret 

condenser microphone (JLI-61A, JLI Electronics). All units were secured to U-posts 

elevated 1.83 meters aboveground. Units recorded in WAV format at a sampling rate of 

44.1 kHz. The data collection period ran from March 2016 to May 2017. Units located in 

microphyll woodland habitats recorded every day for one minute at 6:00, 6:30, 7:00, 

7:30, 8:00, 16:00, 16:30, 17:00, and 17:30 PST. Two units located next to historic toad 

breeding ponds also recorded for one minute each day at 5:30, 6:00, 6:30, 7:00, 21:00, 

21:30, 22:00, 22:30, and 23:00 PST (n = 9 surveys per phone per day). We used the 

CinixSoft Remote Schedule Voice Recorder App (CinixSoft 2014) and Easy Voice 

Recorder Pro (Digipom 2016) to schedule recordings and remotely send them to our 

server using the cellular network. All units were in airplane mode while recording to 

prevent electromagnetic interference that occurs while in cellular data mode.  

Create templates for target species  

As monitoring targets for this environment, we chose three avian species common 

to the region: Eurasian Collared-Dove (Streptopelia decaocto), Gambel’s Quail 
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(Callipepla gambelii), and Verdin (Auriparus flaviceps). The canonical call from 

Eurasian Collared-Dove is a three note ‘advertising coo’ used for mate attraction and 

territory defense (Romagosa 2012), with calls occurring at frequencies around 0.5 kHz 

(Fig. 3. 3a). The Gambel’s Quail kaa or cow call emitted by males, whose principal 

function is to announce mating availability, is a single upside-down u-shaped note 

typically occurring between 1-3 kHz (Gee et al. 2013) (Fig. 3. 3b). The male Verdin’s 

‘whistle song’ is a two to four note whistle occurring around 4-6 kHz; little 

documentation exists with regard to individual or geographic variation (Webster 1999) 

(Fig. 3. 3c). 

We created one template for each species from song events chosen out of the 

recordings acquired in Objective 1 (Fig. 3. 3 d-f), using the monitoR R package function 

makeCorTemplate() with a window length of 512, zero overlap, and the Hanning window 

function. As suggested by Katz et al. (2016), we developed the templates and their 

accompanying score thresholds iteratively, testing them on recording data outside the 

recording from which the template was constructed before settling on finalized versions.  

Accumulate detections and obtain associated predictive features 

Using the templates and accompanying score thresholds developed in Objective 2, 

we ran the AMMonitor function scoreDetections() to accumulate detections for all 

recordings from the rapid field prototype described in Objective 1. The scoreDetections() 

function employs Pearson’s correlation coefficient to score amplitude values of a moving 

frame against those in the template, and then isolates local maxima in the score vector to 

identify detection events (Katz et al. 2016). As in Fig. 3. 2, peaks with scores exceeding 
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the score threshold were considered detections, which were either true target signals or 

false alarms. 

Concomitant with the accumulation of detections, we used the scoreDetections() 

function to extract the raw amplitude matrix values associated with each detection, the 

correlation score, and a number of acoustic summary features acquired via the R package 

seewave (Sueur et al. 2008). These features included binned zero-crossing rates, time and 

frequency contours of the amplitude probability mass function for each time and 

frequency bin, quantiles calculated from the cumulative distribution functions of the time 

and frequency probability mass functions, and statistical properties of the frequency 

spectrum such as the spectral mean, standard deviation, standard error, median frequency, 

dominant (mode) frequency, frequency quartiles, centroid, skewness, kurtosis, flatness, 

and entropy (Appendix B. 1).  

Objective 2: Train and test classification algorithms to distinguish between 

target signals and false alarms for each species 

Manually label a subset of detections; split into training and testing data 

Once detections had been acquired via the template screening step in Objective 1, 

we manually verified all detections within the first month of field sampling (March 

2016). We used the AMMonitor function verify() to assist with manual labeling of all 

detections as true and false positives for each target species. Each detection was labeled 

by the lead author primarily by visual identification on the spectrogram. We made 

additional effort to listen to visually ambiguous detections to confirm their class labels. 
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For Eurasian Collared-Dove (hereafter ECDO), we labelled detections as target signals if 

at least two notes were contained within the detection frame. For Gambel’s Quail 

(hereafter GAQU), we labelled detections as target signals if they contained one 

frequency-modulated call signal. For Verdin (hereafter VERD), we labelled detections as 

target signals if at least one frequency-modulated whistle note was contained within the 

detection frame. Any other detections were labeled as false alarms. After verification, we 

split the labeled datasets into training (70%) and testing (30%) data, which is a common 

heuristic data split in statistical learning problems (Weinberger et al. 2006), and used the 

createDataPartition() function in the R package caret (Kuhn 2016) to obtain a balanced 

split of features, target signals, and false alarms. 

Train and test statistical learning classifiers 

To construct models for each species and train them on the training data sets, we 

invoked the AMMonitor function classifierTrain(), which utilizes functions from the 

machine learning R package caret (Kuhn 2016). We trained our classifiers on raw data 

with no preprocessing (i.e., no scaling or transformation of the acoustic feature data). We 

used the method ‘kknn’ for kernelized k-nearest neighbors, which tunes to select an 

optimal k, ‘svmLinear’ for linear support vector machines, which entails the optimization 

of a cost parameter, ‘svmRadial’ for radial support vector machines, which optimizes 

both a cost parameter and the σ value of the radial basis function kernel, ‘rf’ for random 

forests, which involves tuning a parameter for the number of randomly selected predictor 

variables, and ‘glmnet’ for regularized logistic regression, which requires tuning a 

regularization parameter (λ) and a mixing parameter (α). Because a prohibitive entry 
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point to the use of statistical learning methods is meticulously tuning algorithms to 

produce acceptable models, and because our aim was to generate extensible methodology 

accessible to researchers with little or no statistical learning experience, we used the 

default caret package tuning grids for all five models. Lastly, we applied 10-fold cross 

validation during the training phase to reduce model overfitting.  

After the training phase, we tested the trained classifiers on the 30% of unseen 

data using the AMMonitor function classifierTest(). For every detection, each of the five 

classifiers yielded a probability that the detection was of the target signal class. While the 

logistic regression and random forest models output actual probabilities, the support 

vector machines and k-nearest neighbors fit a sigmoid function on their outputs to return 

probability-like values between 0 and 1 (Kuhn 2016). Detections with values of 0.5 or 

above were classified as target signals; those below were classified as false alarms. 

Assess classifier performance on the test set  

Since labels for the test data were already known (target signal or false alarm), the 

training and testing procedure resulted in a confusion matrix summarizing the true classes 

of each detection and the classes to which they were assigned by each classifier (e.g., 

Table 3. 1b). We used the AMMonitor function classifierAssess() to calculate several 

measures of classifier performance (Table 3. 1b). The literature contains rich debate over 

measures of classifier performance (Powers 2007), but the most useful evaluation 

measures depend on the research motivation behind using classification, as well as on the 

total number of observations and the balance of classes, which is why we sought a range 

of evaluation measurements.  
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For our study, we gave special merit to four performance metrics, all of which 

range in value from 0 to 1, with scores closest to 1 being most desirable (highlighted in 

Table 3. 1b). First, sensitivity (a.k.a. recall or true positive rate) is of particular interest 

because it denotes the proportion of target signals correctly identified by the classifier 

[TP / (TP + FN)] (Table 3. 1b). Second, specificity (or true negative rate) denotes the 

proportion of false alarms correctly identified as such, making them true negatives within 

the confusion matrix [TN / (TN + FP]. Third, positive predictive value (a.k.a. precision) 

expresses the proportion of predicted positive detections that are actually target signals 

[TP/(TP + FP]. Finally, the F1 score represents a weighted average of positive predictive 

value and sensitivity, quantifying the tradeoff between a desire for high positive 

predictive value and high sensitivity. The F1 score is calculated as 2 * Positive Predictive 

Value * Sensitivity / (Positive Predictive Value + Sensitivity). Maximizing all four of 

these metric scores was a primary goal in classifier evaluation.  

We also constructed Receiver-Operating Characteristic (ROC) curves, which plot 

the true positive rate (sensitivity) against the false positive rate (1 – specificity). Many 

classification problems involve imbalanced datasets, in which the number of false 

positive cases greatly outweighs the number of true positive cases or vice versa. Class 

imbalances undermine performance metrics like accuracy and area under the ROC curve 

(AUC): a classifier may predict the majority class for most or all observations in the test 

set and still attain a high accuracy score, which is why measures beyond accuracy are 

necessary (Zhu & Davidson 2007). To account for this, we also constructed Precision-

Recall Curves, which plot positive predictive value (a.k.a. precision) against sensitivity 
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(a.k.a. recall) (Davis & Goadrich 2006). For both ROC and Precision-Recall curves, we 

defined AUC values matching or exceeding 0.80 as acceptable, and values matching or 

exceeding 0.90 as high performance, with values of 1 indicating perfect performance. 

Create and assess performance-weighted class probability ensemble methods 

After performance metrics were computed for each of the five classifiers 

individually, we used the classifierAssess() function to aggregate the results of the five 

classifiers. In statistical learning, such methods are known as ‘ensembles,’ in which 

classification occurs as a consequence of aggregation or integration across multiple 

distinct algorithms to improve predictive performance. The classifierAssess() function 

established four simple performance-weighted ensemble methods, weighting each 

classifier’s probability that a detection was of class “target signal” by the classifier’s test 

phase sensitivity, specificity, positive predictive value, or F1. Each performance-

weighted method produced a single ensemble class probability of true detection (Target 

Signale), calculated as  

𝑃(𝑇𝑎𝑟𝑔𝑒𝑡 𝑆𝑖𝑔𝑛𝑎𝑙)𝑒 = [𝜃] • [𝑆] 

where [] is a vector of length five consisting of the individual probability of a target 

signal for each of the five classifiers, and [S] is a length five vector of normalized 

performance scores that sums to 1.0. The [S] vector is computed by dividing each 

classifier’s score on the metric of interest by the maximum score within the vector, 

resulting in a vector that represents how proportionally close each score is to the top 

score for that metric, which is then normalized to sum to 1 (Appendix B. 2). Thus, 

contributions of lower-scoring classifiers are diminished, while higher-scoring classifiers 
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have stronger impact on ensemble class predictions for any given detection. We then 

computed the sensitivity, specificity, positive predictive value, and F1 of the ensemble 

results.   

Objective 3: Assess the performance of a trained and tested classifier on new 

detections 

In releasing our trained and tested classifiers “into the wild” on new, incoming 

template detections, our goal was to use classification to eliminate as many false alarms 

as possible, while still retaining true target signals needed for meaningful estimations of 

species occurrence. For this reason, we chose to proceed using the ensemble method 

weighted by the F1 score as our predictive classifier on new data for all three species.  

 Using AMMonitor’s classifierPredict() function, we invoked the ensemble 

method weighted by the F1 score to predict the class of all detections across the entire 

recording dataset that were not seen during the training and testing phase. Thus, the 

training and testing phase occurred on all data from March 2016, and the prediction phase 

occurred on all data spanning the 14 month period from April 2016 to May 2017. We 

then manually verified all detections in the prediction set, and computed metrics to 

evaluate whether our classification method improved upon the initial template screening 

step. We calculated the positive predictive value and F1 score for the template screening 

step, and calculated sensitivity, specificity, positive predictive value, and F1 score for the 

classifiers to compare performances of the two systems. We assumed that the template 
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screening method had a sensitivity of 1 and specificity of 0 with regard to distinguishing 

target signals from false alarms. 

3.4. Results 

Objective 1: Use templates as a screening step to acquire focal species 

detections from field data 

We collected a total of 40,496 one-minute recordings from March 2016 to May 

2017 across 16 cellphone-based audio recorders. An unknown number of recordings 

contained electromagnetic interference for reasons unknown, all of which were retained 

in the dataset. We created spectrogram cross-correlation templates for ECDO, GAQU, 

and VERD (Fig. 3. 3 d- f), and identified score thresholds of 0.43, 0.33, and 0.23, 

respectively. At these score thresholds, we collected a total of 4,427 detections for 

ECDO, 1,464 detections for GAQU, and 4,241 detections for VERD, resulting in a total 

of 10,132 detections.   

Objective 2: Train and test classification algorithms to distinguish between 

target signals and false alarms for each species 

Manually label a subset of detections; split into training and testing data 

There were 631 detections acquired from 54.3 hours of recordings from March 

2016 at the selected score thresholds: 323 ECDO, 62 GAQU, and 246 VERD (Table 3. 

2). It took approximately one hour to manually verify all March 2016 detections using 

our chosen verification standards. The ECDO and GAQU datasets were adequately 
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balanced, with 135 true and 188 false for ECDO, and 34 true and 28 false for GAQU. 

The VERD dataset had a class imbalance with 49 true and 197 false (Table 3. 2). A 

visual summary of verifications is contained in Fig. 3. 4, wherein spectrograms for 

verified detections were averaged across the amplitude values to show the mean target 

signal and mean false alarm. 

Train and test statistical learning classifiers 

Despite the low total number of GAQU detections and considerable class 

imbalance for VERD, all classification models converged during the training phase and 

were functional for testing and assessment. It took a total of 3.5 minutes to train and test 

the models for all three species. Because the k-nearest neighbors and support vector 

machines algorithms do not provide readily interpretable output with regard to predictive 

power of acoustic features, here, we only report feature selection results from the 

regularized logistic regression and random forest models.  

Features summarizing statistical properties of the frequency spectrum served as 

the strongest predictors for distinguishing between target signals and false alarms. For 

ECDO, both the regularized logistic regression and random forest models identified 

spectral mean, spectral centroid, and spectral mode as the top predictors, with no other 

variables providing predictive value. For GAQU, both the regularized logistic regression 

and random forest models identified spectral kurtosis as the top predictor, with spectral 

skewness adding a lesser contribution. Correlation score, several binned zero-crossing 

rates, several time and frequency contours, and a number of individual amplitude values 

also supplied marginal predictive capacity. For VERD, the regularized logistic regression 
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model identified spectral entropy as the top predictor, followed by spectral flatness and 

spectral kurtosis. The random forest model identified spectral skewness as the most 

important predictor, with spectral kurtosis and correlation score supplying some 

predictive impact. A number of time and frequency contours and binned zero crossing 

rates also offered minor predictive value.  

Assess classifier performance on the test set; create and assess performance-weighted 

class probability ensemble methods 

Performances across the various metrics, classification approaches, and templates 

varied (Table 3. 3). All five classifiers performed well on the ECDO data, reporting 

perfect sensitivity (1.00) with values ranging from 0.93 to 0.99 for specificity, positive 

predictive value, and F1. For the GAQU models, regularized logistic regression, random 

forest, and k-nearest neighbors each achieved sensitivities of 0.90, specificities and 

positive predictive values of 1.00, and F1 scores of 0.95, while the linear support vector 

machine had a lower sensitivity (0.80) and thus a lower F1 score (0.89). Though the 

radial support vector machine had perfect sensitivity (1.00), it failed to identify any false 

alarms (specificity = 0.00) and thus produced poor positive predictive value (0.56) and a 

sub-optimal F1 score (0.71). The large class imbalance in the VERD data, with many 

false alarms and few target signals, resulted in a radial support vector machine model 

adept at identifying false alarms (specificity = 1.00) but incapable of identifying target 

signals (sensitivity = 0.00), consequently producing NA results for positive predictive 

value and F1 score. Indeed, for VERD, all five classifiers were effective at identifying 

false alarms, as indicated by specificities ranging from 0.95 to 1.00, but weaker at 



  

 

90 

 

identifying target signals, with sensitivities ranging from 0 to 0.86. The regularized 

logistic regression and random forest models nevertheless attained adequate positive 

predictive value and F1 scores of 0.86.  

The weighted ensemble approaches all performed similarly across performance 

metrics for both ECDO and GAQU, and displayed greater performance variation for 

VERD (Table 3. 3c). The ensemble classifier weighted by F1 score, upon which we 

chose to focus in advance, was a top-performing model for ECDO and GAQU on all 

metrics, producing scores ranging between 0.98 and 1.00 (ECDO), and from 0.90 to 1.00 

(GAQU). For VERD, the ensemble classifier weighted by F1 was slightly outperformed 

by the regularized logistic regression and random forest classifiers.  

ROC curves (Fig. 3. 5) of the training and testing data generated acceptable areas 

under the curve (AUC) in most cases, aside from the radial support vector machine’s 

performance for GAQU and VERD, which was indistinguishable from that of a random 

guess. Precision-Recall curves (Fig. 3. 6.) exhibited high performance for ECDO (all 

AUC >= 0.99), high performance for GAQU despite the low amount of training data 

(aside from the radial support vector machine, all test set AUC >= 0.91), and variable 

performance for VERD, though the random forest and F1-weighted ensemble methods 

both met or exceeded AUC of 0.93 on the test set. 

Objective 3: Assess the performance of a trained and tested classifier on new 

detections 
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From April 2016 to May 2017, the template screening phase resulted in 9,501 

new detections: 4,104 ECDO, 1,402 GAQU, and 3,995 VERD. Applying the trained and 

tested ensemble classifiers to these data yielded classifier sensitivities of 0.70 (ECDO), 

0.67 (GAQU) and 0.81 (VERD) (Fig. 3. 7), compared to sensitivities of 1 in the template 

screening phase. Classifier specificities were 0.98 (ECDO), 0.85 (GAQU), and 0.99 

(VERD), compared to specificities of 0 for the template screening phase. 

Overall positive predictive values from the classification phase were 0.75 

(ECDO), 0.965 (GAQU), and 0.69 (VERD), compared to positive predictive values of 

0.06 (ECDO), 0.865 (GAQU), and 0.02 (VERD) for the template screening phase (Fig. 

3.7). F1 scores improved from 0.12 to 0.725 (ECDO) and from 0.04 to 0.75 (VERD) with 

the classifier system, but declined from 0.93 to 0.79 in the GAQU model (Fig. 3. 7).  

The majority of false alarms for ECDO stemmed from wind and anthrophonic 

sources such as faraway highway traffic noise, though several false cases were prompted 

by vocalizations from Greater Roadrunner (Geococcyx californianus), White-Winged 

Dove (Zenaida asiatica), and Mourning Dove (Zenaida macroura). Most GAQU false 

alarms resulted from electromagnetic inference, with a few due to Common Raven 

(Corvus corax) and Phainopepla (Phainopepla nitens). VERD false alarms occurred 

overwhelmingly as a consequence of electromagnetic interference, though some were 

caused by crickets and other songbirds. 

3.5. Discussion 

We demonstrate that statistical learning approaches can be used to mitigate false 

detections acquired within an automated acoustic wildlife monitoring dataset while 
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retaining sufficient true detections for inference about species occurrence status. 

Compared to a basic template-matching system, the ability to identify false alarms 

improved, and positive predictive values increased in all cases demonstrated here, though 

there was a tradeoff in capacity to identify all target signals: we observed a decrease in 

the F1 score for GAQU, though F1 scores for ECDO and VERD increased markedly. 

Since GAQU is known to be a highly gregarious and vocally available species (Gee et al. 

2013), the observed increase in positive predictive value to 0.96 at the expense of 

sensitivity is likely a desirable tradeoff. For a rare or acoustically cryptic species, this 

tradeoff in comparative sensitivity with respect to detected events would not be 

advantageous. 

Three main concepts emerge from this work:  First, although other auspicious 

classification methods implicitly strive to minimize false positives (e.g., Heinicke et al. 

2015, Bas et al. 2017, Corrada-Bravo et al. 2017, Ranjard et al. 2017), none that we know 

of explicitly address false positive mitigation within the context of template-based or 

threshold-based detection. In addition to making binary predictions about each 

detection’s class, this method also has the advantage of producing probability values for 

each detection, which may be aggregated to predict the overall probability of species 

occurrence (Balantic et al. in prepb). 

Second, an advantage of this method is the opportunity to create ensemble 

classifiers that overtly capture a research program’s monitoring needs with regard to 

vocalization characteristics of focal species. For example, researchers might opt for a 

positive predictive value-weighted ensemble classifier for gregarious species, or a 
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sensitivity-weighted ensemble for rare or cryptic species. Research groups could make a 

variety of decisions about which classification method(s) to employ in production based 

on research objectives, characteristics of focal species, and classifier performance during 

the training and testing phase. Systematic decision tools do not presently exist in this 

arena, and the interpretation of classifier assessment metrics persists as an 

underappreciated challenge when applying statistical learning approaches to real-world 

problems.  

Lastly, template creation, including selection of the score threshold, is a highly 

influential component of the detection and classification process. The balance of target 

signals and false alarms occurring in a dataset is a function of the quality of data from 

which a template is constructed (Katz et al. 2016, Knight & Bayne 2018), the score 

threshold selected (Brauer et al. 2016, Katz et al. 2016, Knight et al. 2017), verification 

standards for manual labeling of target signal and false alarm training data, soundscape 

features such as non-target noise sources that contribute to detections, individual 

variation in sounds produced by the target species, and overall vocal availability of the 

target species, much of which is difficult to know in advance. Low template score 

thresholds may be necessary for research programs pursuing rare or vocally elusive 

species, or for circumstances where there is considerable uncertainty around how the 

template will perform in practice; it follows that large numbers of false alarms are 

possible, though there is little consistency across detection methodologies for detection 

threshold selection (Shonfield & Bayne, 2017). In practice, for species with multiple 

well-described vocalization types, a different template can be deployed for each 
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vocalization type a priori, and overall false positive reduction at the detection level can 

be aggregated across the template portfolio up to the site level for use in occupancy 

models.  

Increasing use of automated methods for detecting target species signals from 

audio recordings demonstrates the growing importance of accessible automated detection 

methods. Template-based software methods like spectrogram cross-correlation and 

binary point matching present an accessible approach with a low barrier to entry for 

researchers (Hafner & Katz 2018), but factors like inappropriate score detection 

thresholds, an unwittingly poor template choice, noisy soundscapes, and acoustic features 

of the target signal may conspire to generate unacceptably high numbers of false alarms. 

Here, we investigated statistical learning methods that allow researchers to semi-

automatically eliminate large numbers of false alarms, and showed that these methods 

may improve the monitoring quality of automated detection data from template-based 

detection systems.   
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3.8. Tables 

Table 3. 1. Confusion Matrix Examples to distinguish between true and false positives at 

the vocalization occurrence level vs. the detection level.  

1a. Following from Fig. 3. 2, a confusion matrix at the ‘vocalization occurrence level’ 

summarizes all vocalizations issued by the target species and captured within the 

recording. Three vocalizations are correctly detected and referred to as ‘true positives’ 

(TP = 3), while one non-vocalization is flagged as signal from the target species, which is 

a ‘false positive’ (FP = 1). Meanwhile, two vocalizations are missed by the system and 

are ‘false negatives’ (FN = 2). Lastly, approximately 38 time bands within the recording 

are appropriately ignored since they contain no vocalizations from the target and are ‘true 

negatives’ (TN = 38). We highlight the top row to indicate that only the true and false 

positive detections from Table 3. 1a are considered within this paper. 

 

 

 

 

 

 

 

 

 

 Actual Class: 

Vocalization  

Actual Class: 

No Vocalization 

 

Predicted Class: 

Vocalization 

TP = 3 FP = 1 4 

Predicted Class: 

No Vocalization 

FN = 2 TN = 38 40 

 5 39 44 
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3. 1b. Confusion Matrix for Detections Only.  

The four detections highlighted in the top row of Table 3. 3. 1a are now subject to 

‘detection level’ classification, in which an algorithm is used to reclassify events in an 

effort to minimize false alarms. The goal of reclassification is to maximize sensitivity, 

specificity, positive predictive value and F1 score. Ideal conditions are given in brackets 

next to the actual condition. 

 

 

 

 Actual Class Label: 

Target Signal 

Actual Class Label: 

False Alarm 

Row Sum: 

Predicted Class: 

Target Signal 

TP = 3  [3] FP = 1  [0] 4  [3] 

 

Pos Pred. Value = ¾ = 0.75 

[Pos. Pred. Value = 3/3 = 1] 

Predicted Class: 

False Alarm 

FN = 0  [0] TN = 0  [1] 0  [1] 

Column Sum: 3  [3] 

 

Sensitivity = 3/3 = 1  

[Sensitivity = 3/3 = 1] 

1 [1] 

 

Specificity = 0/1=0 

[ Specificity = 1/1 = 1] 

4 

 

F1 = 2*(0.75*1)/(0.75 +1) = 0.86 

[F1 = 2*(1*1) / (1+1) = 1 ] 
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Table 3. 2. Number of manually verified detections from March 2016 used as classifier 

training and testing data for three focal species: Eurasian Collared-Dove (ECDO), 

Gambel’s Quail (GAQU), and Verdin (VERD).  

Template Total N Total True Total False 

ECDO 323 135 188 

Training 

95 

Testing 

40 

Training 

132 

Testing 

56 

GAQU 62 34 28 

Training 

24 

Testing 

10 

Training 

20 

Testing 

8 

VERD 246 49 197 

Training 

35 

Testing 

14 

Training 

138 

Testing 

59 

 

 

 

 

 

 

 



  

 

104 

 

Table 3. 3. Assessment of Classifier Performance on the Test Data. The classifier 

performance metrics in this table can take on values between 0 (worst) and 1 (best). Rows 

indicate classifiers, and columns indicate performance metrics.  

a. ECDO Models:   

Classifier Sensitivity Specificity Pos. Pred. Value F1 

Regularized Logistic Regression 1.00 0.98 0.98 0.99 

Linear Support Vector Machine 1.00 0.95 0.93 0.96 

Radial Support Vector Machine 1.00 0.96 0.95 0.98 

Random Forests 1.00 0.98 0.98 0.99 

Kernelized k-Nearest Neighbors 1.00 0.96 0.95 0.98 

Ensemble weighted by Sensitivity 1.00 0.98 0.98 0.99 

Ensemble weighted by Specificity 1.00 0.98 0.98 0.99 

Ensemble weighted by Pos. Pred. Value 1.00 0.98 0.98 0.99 

Ensemble weighted by F1 1.00 0.98 0.98 0.99 

 

b. GAQU Models:  

Classifier Sensitivity Specificity Pos. Pred. Value F1 

Regularized Logistic Regression 0.90 1.00 1.00 0.95 

Linear Support Vector Machine 0.80 1.00 1.00 0.89 

Radial Support Vector Machine 1.00 0.00 0.56 0.71 

Random Forests 0.90 1.00 1.00 0.95 

Kernelized k-Nearest Neighbors 0.90 1.00 1.00 0.95 

Ensemble weighted by Sensitivity 0.90 1.00 1.00 0.95 

Ensemble weighted by Specificity 0.90 1.00 1.00 0.95 

Ensemble weighted by Pos. Pred. Value 0.90 1.00 1.00 0.95 

Ensemble weighted by F1 0.90 1.00 1.00 0.95 
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c. VERD Models: 

Classifier Sensitivity Specificity Pos. Pred. Value F1 

Regularized Logistic Regression 0.86 0.97 0.86 0.86 

Linear Support Vector Machine 0.71 0.95 0.77 0.74 

Radial Support Vector Machine 0.00 1.00 NA NA 

Random Forests 0.86 0.97 0.86 0.86 

Kernelized k-Nearest Neighbors 0.57 0.95 0.73 0.64 

Ensemble weighted by Sensitivity 0.79 0.97 0.85 0.81 

Ensemble weighted by Specificity 0.71 0.98 0.91 0.80 

Ensemble weighted by Pos. Pred. Value 0.79 0.97 0.85 0.81 

Ensemble weighted by F1 0.79 0.97 0.85 0.81 
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3.9. Figures 

Figure 3. 1. a. Verdin songbird vocalization within a recording. b. Example template 

created from Verdin vocalization occurring at ~24 seconds. 
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Figure 3. 2. Illustration of event detection via template matching paired with a score 

threshold. Red boxes in the top panel denote detections, while the red line in the bottom 

panel indicates a selected threshold (0.3). The first red box is a false alarm produced as a 

result of electromagnetic interference. The last three red boxes are all target signals 

wherein the Verdin is actually vocalizing. Note also two occurrence-level false negatives, 

in which the species is vocalizing but no detection occurred.  
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Figure 3. 3. Vocalization examples (a-c) and templates (d-f) for Eurasian Collared-Dove, 

Gambel’s Quail, and Verdin, respectively.   
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Figure 3. 4. Visual summary of all manually verified detections used as training and 

testing data. Templates used to collect detections (a-c) are juxtaposed against average 

spectrograms for all verifications (d-f), all target signal verifications (g-i), and all false 

alarm verifications (j-L).  
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Figure 3. 5. Receiver-Operator Characteristic (ROC) Curves describing classifier 

performance during the training and testing phases. The upper panel shows ROC curves 

on the 10-fold cross-validated training data for the five classifiers. The bottom panel 

shows ROC curves on the test data. The ensemble classifiers only make predictions in the 

test phase, so the bottom panel also demonstrates the ensemble classifier weighted by F1 

score. Area under the curve (AUC) is denoted next to each model’s name in square 

brackets. Curves that reach into the upper left corner, with AUC values close to 1, show 

the best classification performance. 
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Figure 3. 6. Precision-Recall Curves describing classifier performance during the training 

and testing phases. The upper panel shows PR curves on the 10-fold cross-validated 

training data for the five original classifiers. The bottom panel shows PR curves on the 

test data. The ensemble classifiers only make predictions in the test phase, so the bottom 

panel also demonstrates performance of the ensemble classifier weighted by F1 score. 

Area under the curve (AUC) is denoted next to each model’s name in square brackets. 

Curves that reach into the upper right corner, with AUC values close to 1, show the best 

classification performance. 
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Figure 3. 7. Comparison of performance metrics for the classification and template 

screening phases. Scores closest to 1 are desired for all metrics. 
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4.1. Abstract  

Automated acoustic monitoring of wildlife has been used to characterize populations of 

sound-producing species across large spatial scales. However, false negatives and false 

positives produced by automated detection systems can compromise the utility of these 

data for researchers and land managers, particularly for research programs endeavoring to 

describe colonization and extinction dynamics that inform land use decision-making. To 

investigate the suitability of automated acoustic monitoring for dynamic occurrence 

models, we simulated underlying occurrence dynamics, calling patterns, and the 

automated acoustic detection process for a hypothetical species under a range of 

scenarios. We investigated an automated species detection aggregation method that 

considered a suite of options for creating encounter histories. From these encounter 

histories, we generated parameter estimates and computed bias for occurrence, 

colonization, and extinction rates using a dynamic occupancy modeling framework that 

accounts for false positives via small amounts of manual confirmation. We were able to 

achieve relatively unbiased estimates for all three state parameters under all scenarios, 

even when the automated detection system was simulated to be poor, given particular 

encounter history aggregation choices. However, some encounter history aggregation 

choices resulted in unreliable estimates; we provide caveats for avoiding these scenarios. 

Given specific choices during the detection aggregation process, automated acoustic 

monitoring data may provide an effective means for tracking species occurrence, 

colonization, and extinction patterns through time, with the potential to inform adaptive 

management at multiple spatial scales.  
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4.2. Introduction 

Remote automated acoustic monitoring of sound-producing wildlife provides a 

means for characterizing status and trends in species occurrence across landscapes 

(Cerquiera & Aide 2016). In a typical remote acoustic monitoring program, autonomous 

recording units (ARUs) are installed at study locations to capture recordings of the 

environment over time, based on a schedule input to the device by the research team. 

Vast quantities of audio data may be collected in a short amount of time, from which 

sounds produced by target monitoring species may be detected. Remote acoustic 

monitoring offers the potential to efficiently gather occurrence data for sound-producing 

wildlife species across regional spatial scales (Furnas & Callas 2005). Long-term, large-

scale acoustic monitoring programs may be positioned to engage in systematic adaptive 

management research, wherein iterative learning reduces uncertainty over time to 

improve management decisions amid climate change and rapidly changing land uses 

(Williams et al. 2009).  

Characterization of occurrence, or occupancy, requires only species presence-

absence data – or more precisely, detection-nondetection data, since the probability of 

detecting a truly present species (p) is often less than 1, and false negatives transpire 

when a species is present but not detected (MacKenzie et al. 2002). To characterize false 

negatives, a site must be surveyed more than once. The fundamental building block of an 

occupancy model is thus the encounter history, a binary string indicating whether a 

species was detected or not detected on each survey occasion. Any combination of zeroes 

and ones is possible; an encounter history of 001, for example, indicates that a site was 
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surveyed three times, and the species was only detected on the third occasion. The 

original single-season occupancy model has been expanded upon in several crucial ways, 

including dynamic (multiple season) models (MacKenzie et al. 2003), models that 

account for both false negatives and false positives (Royle & Link 2006, Miller et 

al. 2011, Miller et al. 2013, Chambert et al. 2015), and numerous other advances (Bailey 

et al. 2014). The dynamic occupancy model is particularly suitable for research seeking 

to understand trends over time. In addition to initial occupancy status (), this model 

characterizes local extinction () and colonization () patterns between survey seasons, as 

well as covariates that influence the initial state and state changes. 

Although acoustic monitoring is suited to capturing dynamic occupancy data for 

sound-producing species, the ease of acoustic data acquisition can overwhelm research 

programs with massive audio data streams. Accordingly, audio recordings may be rapidly 

processed using computer algorithms for automatically detecting species by their calls. 

For example, we have used the R package AMMonitor to create customized call 

templates for target species combined with statistical learning classifiers for this purpose 

(Katz et al. 2016, Hafner & Katz 2018, Balantic et al. in prepa). Numerous other software 

solutions exist for automated detection, such as Wildlife Acoustics Kaleidescope 

(Wildlife Acoustics 2018), Raven Pro (Bioacoustics Research Program 2015), the 

Arbimon platform (Aide et al. 2013), MatlabHTK (Ranjard et al. 2016), Tadarida (Bas et 

al. 2017), and Animal Sound Identifier (ASI) (Ovaskainen et al. 2018), though none 

provide means for aggregating detections into encounter histories.  
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Regardless of the software or detection method used, computer algorithms for 

automated detection may not detect a species when it is present (“false negative”) or may 

incorrectly detect an absent species (“false positive”). We take care to distinguish 

between detection mistakes occurring at the “event level” and those occurring at the 

“survey level.” Event-level mistakes are perpetrated by the automated detection method; 

these occur when the algorithm flags a detection not actually from the target species 

(“event-level false positive”) (Fig. 4. 1-a-i), or when the algorithm fails to detect an 

existing signal from the target species (“event-level false negative” (Fig. 4. 1-a-iii). 

Event-level detection mistakes represent a ubiquitous and well-documented challenge in 

automated acoustic monitoring research problems (Acevedo et al. 2009, Katz et al. 

2016a, Brauer et al. 2016, Stowell et al. 2016, Shonfield & Bayne 2017). Survey-level 

mistakes, on the other hand, originate as a consequence of aggregating event-level 

mistakes into an encounter history for occupancy analysis. Ambiguity around how to 

combine event-level detections to create survey-level encounter histories is an area of 

emergent interest in automated acoustic monitoring, and is made especially vexing by 

acoustic monitoring’s capacity to generate high numbers of surveys compared with 

traditional field methods. Robust detection aggregation methodology is paramount for 

dynamic models, where the consequences of survey-level detection mistakes are 

amplified: when false positive detection errors are ignored, estimated extinction and 

colonization rates can become so biased and imprecise as to render results useless 

(McClintock et al. 2010, Miller et al. 2015, Ruiz-Gutierrez et al. 2016).  
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To address concerns about survey-level false negatives and false positives, Miller 

et al. (2013) introduced the “multiple detection states” dynamic occupancy model 

(hereafter, the Miller model). Survey-level detection states in the Miller model are 

categorized as “certain” or “uncertain,” making this framework amenable to cases where 

humans can later verify a subset of automated detections. In this work, within automated 

acoustic monitoring contexts, we presume that all audio recordings are scanned for the 

target species using an automated acoustic detection system. Event-level detections are 

then aggregated into survey outcomes, which compose the encounter history (Fig. 4. 1). 

Any survey-level detections that result via automation only (state 1) are denoted by a ‘1’ 

to indicate an uncertain detection (Fig. 4. 1-a). A subset of surveys, however, is allocated 

for a posteriori verification, wherein we assume no false positives exist. Surveys with 

automated event-level detections corroborated by manual verification (state 2) are given a 

‘2’ to represent a certain detection at the survey level (Fig. 4. 1-b). A survey with no 

detections is assigned a ‘0’, indicating uncertain absence (Fig. 4. 1-c). 

To illustrate, the history 120 000 suggests two demographic seasons, each 

surveyed three times. In the first season – assumed closed to demographic change across 

surveys – the species was detected in the first survey via automation only (producing an 

uncertain detection), detected with certainty in the second survey via automation with 

manual verification, and undetected in the third survey. In the second season, also 

assumed closed to demographic change, the species was not detected in any of the three 

surveys, all of which connote uncertain absences. The parameters estimated by the Miller 

model are the initial probability of occupancy (ψ), the state transition probabilities for 
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colonization () and extinction (), and a family of detection probability parameters. For 

uncertain detections, which are acquired via the automated acoustic detection system, p10 

represents the probability of incorrectly detecting the species at an unoccupied site 

(survey-level false positive), while p11 is the probability of correctly detecting a present 

species at an occupied site (survey-level true positive). Certain detections are denoted by 

the parameter b, the probability of detecting a species via automated detection paired with 

manual verification, given presence. The probability of each observed encounter history 

can be computed for each site given the model parameters, and the product of those 

probabilities across all sites can be used to estimate parameters with maximum likelihood 

analysis (Miller et al. 2013).  

Although the Miller model may have high utility for acoustic monitoring 

programs endeavoring to describe local extinction and colonization dynamics, two chief 

challenges remain. First, minimal guidance exists for aggregating large quantities of 

event-level automated acoustic detections into survey-level encounter histories (though 

see Chambert et al. 2017; Newson et al. 2017), and we are unaware of any previous 

efforts to explicitly exploit existing properties of automated detection algorithms for this 

purpose. Secondly, it is unclear how encounter history aggregation decisions affect the 

reliability of the Miller model for producing the unbiased, precise state parameter 

estimates (ψ, , and ) necessary to make informed monitoring and management 

decisions. Without a comprehensive framework for moving from audio data collection to 

mistake-sensitive dynamic occupancy analysis, acoustic monitoring programs will be 

hobbled in their capacity to effectively leverage the opportunities offered by long-term, 
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large-scale monitoring research, yielding compromised inference about population trends 

and limited model utility for subsequent adaptive management decisions.  

Objectives: 

The goal of this paper was to explore methodology for using acoustic data in 

dynamic occupancy models where observed data may include both false positives and 

false negatives. Our objectives were to: 1) Simulate latent occurrence dynamics and 

calling production, as well as the automated acoustic detection process for a hypothetical 

target species across N sites in a hypothetical monitoring area, 2) Introduce an event-level 

detection aggregation method that leverages properties of automated acoustic monitoring 

to create encounter histories under a suite of detection aggregation time frames, detection 

thresholds, and confirmation capacities, and 3) Generate parameter estimates and 

compute the bias for occurrence, colonization, and extinction rates using the Miller 

Model.     

4.3. Materials and Methods 

Simulation of occurrence dynamics, species calling production, and 

detection process 

We simulated two 30-day seasons of underlying occupancy dynamics and species 

sound production for a hypothetical target species across 100 sites. For simplicity, we did 

not use site or survey-level covariates to model any processes. To create dynamic 

occupancy scenarios, we used the four simulation cases outlined by Miller et al. 2015 

(Fig. 4. 2a): high initial occurrence with high turnover (HH) (ψ = 0.60,  =  = 0.25), high 
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initial occurrence with low turnover (HL) (ψ = 0.60,  =  = 0.05), low initial occurrence 

with high turnover (LH) (ψ = 0.20,  =  = 0.25), and low initial occurrence with low 

turnover (LL) (ψ = 0.20,  =  = 0.05).  

For each dynamic occupancy scenario, we simulated the underlying sound production 

process wherever the species was present (Fig. 4. 2b). Individual calling rates vary 

widely based on species, breeding stage, and environmental conditions (Catchpole & 

Slater 2008), with overall abundance driving the total number of target signals available 

in the soundscape (Royle & Nichols 2003). We condensed these elements into an average 

species calling rate per hour, λc, and investigated two cases: (1) a low call production 

scenario that averaged 20 calls per hour (or 0.33 calls per minute) (λc = 20), and (2) a 

high call production scenario that averaged 100 calls per hour (or 1.67 calls per minute) 

(λc = 100). For each sampled minute of the season, we used a Poisson process to generate 

the true number of calls produced by the species.   

Next, we simulated the automated acoustic detection process (Fig. 4. 2c) where 

we addressed three components: (1) the timing and frequency of audio recordings, (2) the 

existence of “false alarm” sources within the recording soundscape, and (3) the general 

aptitude of the automated detection method. First, we chose a recording scheme of five 

minutes of audio sampling per day, presumed to occur during ideal windows for 

capturing target species call production. Second, we used a Poisson process to inject false 

alarms (λf) into each minute of audio recording. The false alarm rate, λf, acts as an analog 

to the call production rate (λc), in that it connotes underlying sources of false alarms 

present in the soundscape, which fool an automated detector into generating event-level 
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false positives. We selected a rate of λf = 48 false alarms per hour (0.8 false alarms per 

minute), based on the false alarm rate we computed from a field study using automated 

detections across 675 hours of real field recordings (Balantic et al. in prepa).   

Finally, we simulated the production of event-level detections in each recording 

within an automated acoustic monitoring framework. Automated detection algorithms, 

also known as classifiers, may be constructed to produce the probability that an event-

level detection is truly a signal from the target species (Balantic et al. in prepa). For 

example, in Fig. 4. 3, to each event-level detection, a trained statistical learning classifier 

has assigned a probability that the event is a signal from the target species. Hereafter, we 

refer to this attribute as the “target signal probability” of any event-level detection. We 

simulated two alternative classifiers (“good” and “bad”), each defined by a mixture of 

two beta distributions. The good classifier was likely to assign high target signal 

probabilities to true target signals (which are produced by λc) and low target signal 

probabilities to false alarms (which are produced by λf) (α = 4, β = 1 for target signals; α 

= 1, β = 4 for false alarms). The bad classifier was represented by a beta distribution with 

α = β = 3 for both target signals and false alarms, yielding average target signal 

probabilities of 0.5 across all detections (Fig. 4. 2c). Table 4. 1 provides an example of 

event-level detections with target signal probabilities assigned by good and bad 

classifiers.   

In summary, the simulated acoustic environment consisted of four underlying 

species occurrence dynamics cases, each with two levels of calling production. All eight 

of these scenarios had the same underlying false alarm rate. Finally, we simulated the 
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automated detection process with two types of classifiers, good and bad, which output the 

target signal probability associated with each event-level detection. The Objective 1 

simulations thus produced 16 scenarios for subsequent evaluation.   

Encounter History Aggregation  

To analyze the 16 scenarios produced by Objective 1 under the Miller model 

occupancy framework, we collapsed event-level detections into encounter histories (Fig. 

4. 2d). Using a capture-recapture framework (sensu Otis et al. 1978), target signal 

probabilities associated with event-level detections were aggregated to produce the 

overall probability that at least one target signal had been detected within a particular 

survey period, which yields the survey-level detection. We take care not to conflate the 

occupancy term “survey” with an individual audio recording: multiple audio recordings 

might be amassed to collectively constitute the survey based on a chosen unit of survey 

closure, which is informed by research goals and life history of the target species. To 

demonstrate, imagine an occupancy survey closure period defined as all of the audio 

recordings taken in a single day (in our simulation, five minutes of recordings per day are 

combined into a single survey). Suppose that on the first day (survey 1) three events are 

detected by the classifier, with target signal probabilities of 0.15, 0.04, and 0.11 (Fig. 

4.3a). In this case, we aggregate the probabilities as (1-0.15)*(1-0.04)*(1-0.11), which 

gives the probability that all detected events are false alarms, 0.73. Next, 1-0.73 gives 

0.27, the probability that any of these detected events is truly a signal from the target. 

Applying a user-chosen threshold of 0.95, we log a ‘0’ in the encounter history for this 
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survey and presume that the species was not detected unless we are 95% sure that we 

captured at least one target signal. In the next day’s survey (Fig. 4. 3b), three events are 

detected by the automated algorithm, with target signal probabilities of 0.56, 0.88, and 

0.71. The probability that all detected events are false alarms is (1-0.56)*(1-0.88)*(1-

0.71), resulting in a probability of ~0.015 that all events are false alarms, and probability 

of ~0.98 that at least one true target signal has been captured by the automated system. 

Applying the same 0.95 threshold, we log a ‘1’ for this survey to reflect that the target 

species has been detected in the uncertain state (that is to say, it has been detected 

automatically and without manual verification). Taken together, the two surveys in this 

example return an encounter history of 01. 

To generate encounter histories for each of the 16 scenarios from Objective 1, we 

examined eight alternative scenarios defined by three factors: (1) the survey-level 

detection threshold, (2) the aggregation period, and (3) the percentage of manually 

confirmed surveys, which comprise state 2 of the Miller model (Fig. 4. 2d). First, we 

investigated two survey-level detection thresholds: 0.8 and 0.95 (i.e., we were 80% or 

95% certain that at least one target signal was detected during the survey period). Second, 

we examined two aggregation options, in which recordings were lumped into a single 

survey based on a desired unit of closure. We used survey aggregation periods of either 

one day or three days across each 30-day monitoring period. Thus, over a 30-day season, 

a single season encounter history for the 1-day aggregation period would yield a string of 

30 surveys, represented by a 0, 1, or 2 (with a total of 60 surveys over two seasons). A 

single season encounter history for the 3-day aggregation period would produce a string 
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of 30-day season / 3-day aggregation period = 10 surveys (20 surveys total over two 

seasons). Lastly, we examined two scenarios for the total proportion of surveys that were 

confirmed a posteriori to serve as the “certain” state (state 2) of the Miller model: 0.025 

or 0.05. In other words, we randomly assigned 2.5% or 5% of surveys to be manually 

confirmed to produce a certain state. For practical purposes, with 100 sites across two 30-

day seasons, at a rate of 5 minutes of recording per site per day, this would equate to 

manual verification of event-level detections from 12.5 hours (2.5%) or 25 hours (5%) 

worth of recordings, regardless of the N-day survey aggregation period used.  

In summary, the 16 acoustic scenarios generated from Objective 1 were each 

subjected to 8 alternative scenarios for developing encounter histories, resulting in 16 * 8 

= 128 total scenarios to be analyzed with the Miller model in Objective 3. To summarize 

the outcome of the simulation, we calculated survey-level true and false positive rates 

based on the survey window aggregation length, classifier type, survey-level detection 

threshold, and species calling rate. The survey-level true positive rate indicated the 

proportion of surveys in the encounter history where the species was present and detected 

(with rates closest to 1 most desirable). The survey-level false positive rate signified the 

proportion of sites where the species was absent but mistakenly detected (with rates 

closest to 0 most desirable) (note that this survey-level false positive rate should not be 

confused with the event-level false alarm rate). 

Generate state parameter estimates and compute bias under different 

scenarios 
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The 128 scenarios were simulated 500 times each (64,000 replicates total). To 

generate parameter estimates for occupancy, colonization, and extinction, we fit intercept 

models for each of the 64,000 replicates using RPresence V.12.10 (Fig. 4. 2e) (Hines 

2018). All simulation models were fit using informed initial parameter values to aid 

convergence to a global minimum in the negative log-likelihood, because preliminary 

testing showed that results were sensitive to starting values. We compared these state 

parameter estimates to the simulated dynamics values to compute raw bias, as well as the 

mean and standard deviation across each scenario’s 500 replicates (Fig. 4. 2f). Although 

we focused on the outcomes of the state parameter estimates, we also computed estimate 

bias for the detection parameters, p11, p10, and b. We recorded model convergence rates 

for all scenarios. 

4.4. Results 

Occurrence Dynamics and Sound Simulation 

 For the four occurrence-turnover states and two sound production rates, we 

summarized daily available sound production averaged across occupied and unoccupied 

sites in Fig. 4. 4. The total number of species target signals is contingent on occupancy 

status, given five minutes of recording daily – low occurrence rates naturally produce a 

lower number of target signals available for automated capture across sites. Meanwhile, 

the average number of available false alarms is the same regardless of occupancy status 

and species sound production rate. The good classifier assigned an average target signal 

probability of 0.80 (+/- 0.002 sd) for target signals, and 0.20 (+/- 0.001 sd) for false 
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alarms. The bad classifier assigned an average target signal probability of 0.50 (+/- 0.003 

sd) for target signals, and 0.50 (+/- 0.001 sd) for false alarms. 

Encounter History Aggregation 

 To create encounter histories from the signals produced in Objective 1, recall that 

we investigated eight alternative scenarios (factors = aggregation day length: 1 vs. 3; 

survey-level detection threshold:  0.8 vs 0.95; and human-verified confirmation level:  

2.5% vs. 5%). Each survey within an encounter history was assigned either a 0 (uncertain 

absence), 1 (uncertain detection produced by the automated system) or 2 (certain 

detection produced by the automated system with manual confirmation) to denote species 

detection/non-detection status. Survey-level true and false positive rates produced by the 

automated method differed based on aggregation length, survey-level detection threshold, 

and classifier (Fig. 4. 5). Encounter histories using 1-day aggregation produced 30 

surveys in total, because the 30-day monitoring duration was split into survey periods 

lasting one day. Meanwhile, encounter histories using 3-day aggregation had 10 total 

surveys, because the 30-day monitoring duration was split into survey periods lasting 

three days. Overall, the confirmation levels we chose did not yield any appreciable 

difference in true and false positive rates.  However, rates varied substantially depending 

on species calling rate, aggregation level, detection threshold, and classifier performance. 

For 1-day aggregation (Fig. 4. 5a), the 0.95 survey-level detection threshold 

produced encounter histories with lower underlying true positive rates than those created 

by the 0.80 threshold, particularly when a good classifier is used against a low call rate 
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(Fig. 4. 5a; upper left panel). It is logical to expect inferior true positive rates for the 0.95 

threshold and the good classifier if there are few target signals within a survey period – 

these conditions foster a higher overall standard that surveys must meet before meriting a 

score of ‘1’. As a result of this high standard, for both species calling rates, false positive 

rates for 1-day aggregation approached zero when using the 0.95 threshold and good 

classifier; the rate rose to 0.17 when using the 0.80 threshold and good classifier (Fig. 

4.5a; upper right panel). The differences caused by higher and lower-standard detection 

systems illustrate the tradeoff inherent in striving for a high site-level true positive rate 

while keeping false positives to a minimum. Overall, the bad classifier generated much 

higher false positive rates, ranging from 0.46 (0.95 threshold) to 0.75 (0.80 threshold) 

(Fig. 4. 5a; lower right panel).  

The tradeoff between a high true positive rate and a low false positive rate is 

magnified in the 3-day aggregation scenarios (Fig. 4. 5b). Both survey-level detection 

thresholds and both classifiers generated encounter histories with true positive rates of 1 

or nearly so. For false positive rates, however, the good classifier had false positive rates 

as low as 0.44 using the stricter detection threshold (0.95) and false positive rates as high 

as 0.85 using the lenient threshold (0.8) (Fig. 4. 5b; upper right panel). For the bad 

classifier, false positive rates were near 1 for all encounter history scenarios (Fig. 4. 5b; 

lower right panel). In summary, although 3-day aggregation generated encounter history 

scenarios with higher underlying survey-level true positive rates overall, these encounter 

history scenarios also carried higher underlying false positive rates. Meanwhile, 1-day 



  

 

132 

 

aggregation produced encounter history scenarios with lower overall true positive rates, 

but also much lower false positive rates.  

Bias of state parameter estimates under different scenarios 

Summarized across all dynamics and calling scenarios, encounter histories 

generated with the 1-day survey aggregation period generally produced the least biased 

estimates across the three state parameters, with bias values closest to zero being most 

desirable (Fig. 4. 6). The superiority of the smaller aggregation period held true across 

both survey-level detection thresholds, both the good and bad classifiers, and both 

proportions of a posteriori survey confirmation. Under 1-day aggregation, neither 

confirmation level nor survey-level detection threshold made an appreciable difference in 

the bias estimates (Fig. 4. 6a,c,e,g). Under 3-day aggregation, the higher confirmation 

level (5%) reduced both the bias and variation in bias (compare Fig. 4. 6b to 4. 6d, and 

Fig. 4. 6f to Fig. 4. 6h). From the big picture view, when a good classifier was used, bias 

was comparable across all Fig. 4. 6 scenario panels except for 3-day aggregation, 2.5% 

confirmation, and 0.8 survey-level detection threshold (Fig. 4. 6f), where even the good 

classifier’s estimates tended to be more erratic and biased. Thus, although 1-day 

aggregation outperformed 3-day aggregation overall, 3-day aggregation is competitive 

with increasing survey-level detection thresholds and/or confirmation levels, especially if 

the classifier is good, demonstrating that longer aggregation windows can retain utility if 

adequately balanced by higher automated detection standards and higher manual 

confirmation effort.  
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Under most scenarios, state parameter estimates tended to have wide ranges in 

variation. Zooming in on the most conservative encounter history aggregation conditions 

(1-day aggregation, 0.95 survey-level detection threshold, Fig. 4. 7), mean estimates fell 

within 3% of simulated truth, though with deviation out to 10% in both directions for 

some parameters. The lower confirmation level (Fig. 4. 7a) was generally competitive 

with the higher confirmation level (Fig. 4. 7b). The high occurrence-low turnover (HL) 

scenario had the least biased and most precise estimates across all three parameters under 

all scenarios and both confirmation levels, and the low occurrence-low turnover (LL) 

scenario would have approached this level of precision if not for the tendency to 

overestimate the extinction parameter (). The higher turnover scenarios (HH, LH) 

generally produced more variation in the bias. The influence of species calling rate was 

minimal overall. Estimates for the detection parameters p11, p10, and b were generally 

much less biased and more precise than the state parameter estimates, with mean biases 

and standard deviations all falling well within 3% of simulated truth (Fig. 4. 8). 

The Miller model convergence rate across all scenarios was 59%. Only replicates 

that converged were included in the Fig. 4. 6 and Fig. 4. 7 results. Convergence rates 

generally mirrored the bias results. The number of aggregation days had the clearest 

impact on convergence: 1-day aggregation had an 84% convergence rate, while 3-day 

aggregation only converged 34% of the time. Classifier type also affected convergence, 

with the good classifier (68% convergence rate) outperforming the bad classifier (51% 

convergence rate). Survey detection level also affected convergence rates: models that 

used a 0.95 threshold converged 66% of the time, whereas models with a 0.80 threshold 
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converged at a rate of 53%. The impact of confirmation level was minimal (2.5% 

confirmation: 57% converged, 5% confirmation: 61% converged). Convergence rates 

also differed based on the underlying state dynamics, with the high turnover scenarios 

(HH, LH) converging at greater rates overall (HH: 67%, HL: 57%, LH: 64%, and LL: 

50%). The high calling rate (55%) converged substantially less frequently than the low 

calling rate (64%).  

4.5. Discussion 

The capacity to understand and predict long-term, large-scale species occurrence 

dynamics is critical against a backdrop of climate change and rapidly shifting land uses 

(Nichols et al. 2015). Although automated acoustic monitoring provides a means for cost-

effective and efficient collection of species occurrence data, minimal guidance exists for 

translating enormous streams of raw audio data into dynamic occurrence models that 

provide actual utility for wildlife researchers and land managers. We introduced a novel 

method for aggregating detected events into encounter histories for use in dynamic 

models meant to capture changes in occurrence patterns over time. When automated 

detection algorithms are constructed to yield the probability that a detected event is 

produced by a target signal, these event-level probabilities may be aggregated within a 

capture-recapture framework to provide the probability that any detected event within a 

survey period is a sound from the target species (Otis et al. 1978). We believe this work 

is the first to unify the concepts of automated acoustic data collection with analysis for 

mistake-sensitive dynamic occupancy modeling, although single-season approaches have 

been implemented (Cerquiera & Aide 2016, Chambert et al. 2017). Where classifier-
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assigned target signal probabilities are not available, Chambert et al. (2017) offer a 

method contingent on the total abundance of event-level detections. Other alternatives 

include automated target event detection followed by manual removal of false positives 

(Cerquiera & Aide 2016), or deploying machine learning approaches to identify and 

remove false positives automatically (Balantic et al. in prepa). In contrast to removing 

false positives manually or automatically, the method we describe here takes full 

advantage of the information provided by target signal probabilities associated with each 

detected event. 

To explore the utility of the Miller model framework for dynamic occupancy 

models constructed from automated acoustic monitoring data, we investigated our 

probability aggregation method in 128 scenarios that spanned a range of occurrence 

dynamics, species sound production rates, classifier performances, and encounter history 

aggregation. Our results demonstrate that the Miller model was able to produce state 

parameter estimates within an average of 3% of simulated truth estimates for occurrence, 

colonization, and extinction for all latent conditions (dynamics and sound production) 

and all observation conditions (good vs. bad classifier), given specific encounter history 

aggregation choices. We also applied our probability aggregation method to the false 

positive-ignorant dynamic model (Mackenzie et al. 2003) but found that it was generally 

not competitive with the Miller model. In a 100-repetition test, the model of Mackenzie et 

al. 2003 tended to overestimate initial occurrence and underestimate extinction rates 

(Appendix C), suggesting that the Miller model is the stronger choice for automated 

acoustic monitoring.  
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In our simulation, narrow frames of survey aggregation produced the least biased 

parameter estimates. These shorter survey aggregation periods, in turn, produce a larger 

number of surveys. Single-day aggregation outperformed 3-day aggregation because 

longer aggregation periods are more likely to result in “uncertain” survey-level false 

positives in the encounter history, particularly if the survey-level detection threshold is 

not high enough. Longer aggregation periods lead to a greater number of detected events. 

If a species is absent from a site, even if a good classifier is used, the target signal 

probabilities assigned to false alarms may not be low enough to overcome the effects of 

many probabilities ultimately being multiplied together. The (multiplied) product of too 

many probabilities may be an unacceptably high number of survey-level false positives 

within the probability aggregation scheme (as in Fig. 4. 5b). Although the 3-day 

aggregation period slightly outperforms 1-day aggregation on the survey-level true 

positive rate, the accompanying bloated false positive rates are too high to overcome 

without bias when fitting the dynamic occupancy model. Thus, smaller windows of 

probability aggregation may perform better in general, though the narrowness of this 

aggregation window must be balanced against practical considerations for the period of 

survey closure for a target species. 

These general results bode well for an automated acoustic monitoring program.  

Automated acoustic monitoring – like camera trapping and other remote automated 

methods – boasts a unique position in the occupancy modeling realm, where many 

traditional study methods tend to be “survey poor” (Mackenzie & Royle 2005). In 

contrast, automated acoustic monitoring provides the opportunity to be “survey rich” if 
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audio recordings occur regularly over an extended time, a benefit of the flexibility around 

gathering audio recordings into distinct survey periods. Since false positives can inflate 

the number of recommended surveys (Clement 2016), the opportunity to be survey-rich is 

useful for a monitoring methodology where false positives are prevalent.  

Unsurprisingly, a higher quality classifier will better serve an acoustic monitoring 

program than a poor classifier. In our experiment, the good classifier was typically able to 

provide minimally biased results even when coping with a long aggregation period (e.g. 

Fig. 4. 6d), or low survey-level detection thresholds provided that the aggregation period 

was short enough (Fig. 4. 6e,g), while the bad classifier was often less robust under these 

conditions. For the good classifier, as long as the aggregation period was short, the 

confirmation levels we examined made little difference. While we expect that no research 

team would intentionally deploy a bad classifier, the performance of an automated 

detection system during the testing phase can be markedly different from its performance 

on new audio data, which can introduce emergent challenges such as seasonal changes to 

the soundscape, turnover of individual animals that contributed training data to the 

automated detection system, and cultural drift of vocalization behavior over time 

(Williams et al. 2013). Researchers should take caution in the deployment of automated 

detection systems that have not been thoroughly field-tested (Russo & Voigt 2016). To 

moderate the impacts of these potential changes on classifier performance over time, a 

monitoring team may opt for higher confirmation levels, or might choose to place their 

automated detection and classification models in a Bayesian framework, updating them 

regularly at intervals appropriate for the target species and study landscape. Additionally, 
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if target species issue multiple types of call or song signals, multiple detectors and 

classifiers can be used to scan audio files; our method can easily incorporate such cases. 

Compared with short-term ecological monitoring studies, long-term studies have a 

disproportionately large impact on scientific knowledge and policy (Hughes et al. 2017), 

and research programs engaging in long-term, large-scale automated acoustic monitoring 

of wildlife have the potential to contribute to this type of knowledge. However, the utility 

of long-term, large-scale acoustic monitoring will be undercut without a means for 

moving from raw acoustic data to population models from which inference may be 

gained and land management decision-making supported. Generation of occupancy 

model encounter histories from large data streams is a salient challenge in automated 

acoustic monitoring. In this work, we conducted all simulations using the acoustic 

monitoring data management framework described in Balantic et al. (in prepb), which 

contains functions to support machine learning assignment of target signal probability 

values to automatically-detected events (Balantic et al. in prepa,b).  
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4.8. Tables 

Table 4. 1. Illustration of the detection portion of the simulation. Event-level detections 

can be target signals or false alarms, generated according to λc and λf , respectively. For 

each event-level detection, a classifier assigns a probability that the detection is actually a 

target signal. The good classifier typically assigns higher target signal probabilities to 

actual target signals, and lower probabilities to false alarms. The bad classifier makes no 

such distinction. Both classifiers randomly sample probabilities from their respective beta 

distributions visualized in Fig. 4. 2c. 

  Target Signal Probability  

Minute Sound Type 

Good 

Classifier 

Bad 

Classifier  

1 False Alarm 0.31 0.72 

1 False Alarm 0.27 0.67 

2 Target Signal 0.80 0.52 

2 False Alarm 0.04 0.29 

2 Target Signal 0.75 0.46 

3 Target Signal 0.60 0.71 

4 Target Signal 0.87 0.61 

4 False Alarm 0.07 0.36 

5 Target Signal 0.88 0.35 

5 False Alarm 0.27 0.09 

 Mean False Alarm 0.19 0.43 

  Mean Target Signal 0.78 0.53 
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4.9. Figures 

Figure 4. 1. Construction of an encounter history for the Miller model is illustrated with 

three “surveys” represented by audio recording spectrograms. Event-level detections by a 

hypothetical automated method for a target species (red boxes) can be event-level false 

positives (a-i) or event-level true positives (a-ii). Event-level false negatives occur where 

the automated method misses a target signal (a-iii). Event-level detections from all 

recordings within a survey period are collected to produce a single value that describes 

survey-level detection status according to the Miller model (0, 1, or 2). In ‘a’, which used 

the automated method only, aggregation produces a ‘1’ in the encounter history to 

indicate an uncertain detection. Survey ‘b’ underwent a posteriori manual verification; all 

event-level detections within this survey are checked by hand. We assign this survey a ‘2’ 

to denote a certain detection at the survey level. Survey ‘c’ yielded zero event-level 

detections and is assigned a ‘0’ at the survey level. Together, surveys a, b, and c produce 

an encounter history of 120 for the season. 
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Figure 4. 2. Simulation and parameter estimation workflow for simulating dynamics (a), 

simulating species calling production (b), simulating the automated detection process (c), 

building encounter histories (d), generating parameter estimates (e), and computing bias 

(f). 
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Figure 4. 3. Event-level detections (red boxes) and their associated target signal 

probabilities can be aggregated into survey-level detection outcomes for an encounter 

history by multiplying together 1 minus the event-level probabilities within each survey, 

and then 1 minus this outcome to yield the probability of at least one target signal within 

the survey (italicized text). If the result exceeds a user-defined threshold, such as 0.95, a 

1 is assigned at the survey level. Otherwise, the survey is assigned a 0.  

 

 

 

 

 

 



  

 

149 

 

Figure 4. 4. The average daily number of target signals captured by the automated system 

(dark gray), vs. the average daily number of false alarms captured by the automated 

system (light gray), across all sites, under both low (20 calls per hour) and high (100 calls 

per hour) species calling production scenarios, and under all four underlying dynamics 

scenarios (Fig. 4. 2a): high occurrence-high turnover (HH), high occurrence-low turnover 

(HL), low occurrence-high turnover (LH), and low occurrence-low turnover (LL).  
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Figure 4. 5. Boxplots of survey-level true positive and false positive rates for 1-day 

aggregation (a) and 3-day aggregation (b) by classifier type, survey-level detection 

threshold, and species calling rate (x-axis). 
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Figure 4. 6. Summary of state parameter estimate bias across occurrence dynamics, 

species call rates, classifier performance, aggregation frames, survey-level detection 

thresholds, and confirmation percentages. Circles indicate the mean bias, with dotted 

vertical bars showing standard deviations. Open circles denote scenarios with a low call 

rate. Closed circles denote a high call rate. Gray circles denote the bad classifier, and 

black circles denote the good classifier. 
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Figure 4. 7. Summary of state parameter estimate bias across different dynamics, call 

production, classifier performance, and confirmation percentages, for the most 

conservative survey aggregation circumstances (aggregate days = 1, survey-level 

detection threshold = 0.95). Circles indicate the mean bias, with dotted vertical bars 

showing standard deviations. Note that the y-axis has narrowed to range from -0.15 to 

0.15. 
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Figure 4. 8. Summary of detection parameter estimate bias across different dynamics, call 

production, classifier performance, and confirmation percentages, for the most 

conservative survey aggregation circumstances (aggregate days = 1, survey-level 

detection threshold = 0.95). Circles indicate the mean bias, with dotted vertical bars 

showing standard deviations. Note that the y-axis has narrowed to range from -0.15 to 

0.15. 
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Appendix A 

A. 1. Comprehensive p*max Achievement Results. The value in red denotes the only case 

in which the fixed schedule achieved p*max prior to the optimized schedule. 

Date p*max Achieved (Full Year) 

Species Optimized Fixed Difference (Days) Effort 

BTGN 12/28/2016 - - 2 

ECDO 5/24/2016 - - 2 

GAQU 5/11/2016 - - 2 

PHAI 4/28/2016 - - 2 

VERDI 5/16/2016 - - 2 

BTGN 4/8/2016 5/23/2016 -45.2 5 

COPO 7/15/2016 - - 5 

ECDO 3/2/2016 4/22/2016 -51.4 5 

GAQU 2/26/2016 4/10/2016 -43.8 5 

PHAI 2/19/2016 3/30/2016 -39.6 5 

VERD 2/25/2016 4/8/2016 -42.5 5 

BTGN 2/19/2016 3/20/2016 -30.0 10 

COPO 3/7/2016 4/9/2016 -32.8 10 

ECDO 1/31/2016 3/7/2016 -35.4 10 

GAQU 1/29/2016 3/1/2016 -32.3 10 

PHAI 1/27/2016 2/25/2016 -28.9 10 

VERD 1/28/2016 2/28/2016 -30.9 10 

BTGN 1/24/2016 2/25/2016 -32.4 20 

COPO 2/2/2016 2/13/2016 -10.8 20 

COYOTE 10/11/2016 10/3/2016 8.9 20 

ECDO 1/17/2016 2/13/2016 -27.3 20 

GAQU 1/15/2016 2/8/2016 -23.1 20 

LENI 3/20/2016 9/16/2016 -180.0 20 

PHAI 1/15/2016 2/2/2016 -18.1 20 

VERD 1/15/2016 2/6/2016 -22.8 20 

BTGN 1/16/2016 2/8/2016 -23.1 30 

COPO 1/23/2016 1/31/2016 -7.5 30 

COYOTE 6/15/2016 8/10/2016 -55.0 30 

ECDO 1/12/2016 2/3/2016 -21.7 30 

GAQU 1/11/2016 1/29/2016 -18.0 30 

LENI 2/23/2016 4/12/2016 -49.7 30 

PHAI 1/10/2016 1/25/2016 -15.2 30 
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TOAD 11/16/2016 - - 30 

VERD 1/10/2016 1/27/2016 -16.4 30 

BTGN 1/15/2016 1/24/2016 -9.5 40 

COPO 1/19/2016 1/24/2016 -5.1 40 

COYOTE 4/12/2016 5/16/2016 -33.2 40 

ECDO 1/10/2016 1/21/2016 -11.4 40 

GAQU 1/9/2016 1/19/2016 -10.2 40 

LENI 2/11/2016 3/8/2016 -25.4 40 

PHAI 1/8/2016 1/18/2016 -9.2 40 

TOAD 9/27/2016 - - 40 

VERD 1/8/2016 1/18/2016 -9.4 40 

 

Summary Statistics for Difference in Days (Full Year) 

Min. 1st Qu. Median Mean 3rd Qu.  Max 

-180.0 -34.3 -25.4 -29.7 -13.3 8.9 

 

Date p*max Achieved (March Only) 

Species Optimized Fixed Difference (Days) Effort 

No species achieved p*max below an effort of 10 samples 

ECDO 3/30/2016 - - 10 

GAQU 3/27/2016 - - 10 

PHAI 3/23/2016 - - 10 

VERD 3/28/2016 - - 10 

BTGN 3/25/2016 - - 20 

ECDO 3/18/2016 - - 20 

GAQU 3/14/2016 3/31/2016 -16.7 20 

PHAI 3/12/2016 3/25/2016 -13.2 20 

VERD 3/16/2016 - - 20 

BTGN 3/14/2016 3/30/2016 -16.2 30 

COPO 3/25/2016 - - 30 

ECDO 3/10/2016 3/26/2016 -15.6 30 

GAQU 3/10/2016 3/22/2016 -12.3 30 

PHAI 3/9/2016 3/18/2016 -9.2 30 

VERD 3/10/2016 3/23/2016 -13.9 30 

BTGN 3/11/2016 3/20/2016 -9.2 40 

COPO 3/19/2016 3/27/2016 -7.8 40 

ECDO 3/8/2016 3/17/2016 -8.4 40 



  

 

171 

 

GAQU 3/8/2016 3/15/2016 -7.1 40 

PHAI 3/7/2016 3/12/2016 -5.2 40 

VERD 3/8/2016 3/16/2016 -8.0 40 

 

Summary Statistics for Difference in Days (March Only) 

Min. 1st Qu. Median Mean 3rd Qu.  Max 

-16.7 -13.9 -9.2 -11.0 -8.0 -5.2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



  

 

172 

 

A. 2. Comparison of Simple Optim vs. Max Per Hour vs. Fixed Schedule 

In the scheduleOptim() function’s ‘max per hour’ option, end users may specify the 

maximum allowable number of samples that may be distributed within any given hour. 

This option exists for end users who do not want all their sampling power allotted into a 

single hour. In an exploratory experiment, we used a study duration of March 2016 (31 

days), and selected a maximum number of 10 samples allowable per hour. We looked at 

sampling efforts of S = 20, 30 and 40 one-minute samples per day (because at S = 2, 5, 

and 10, the simple optimization and ‘max per hour’ options will perform identically). We 

kept the fixed schedule in for comparison. The figure below demonstrates that the 

‘simple’ optimized schedule method, which preferentially allocates sampling power into 

the highest scoring hour, outperforms the ‘max per hour’ optimization method in the 

simulation. In some cases, for nocturnal species (COPO, COYOTE, and LENI), the fixed 

schedule outperforms the ‘max per hour’ method on the p* AUC measurement.  
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Appendix B  

B. 1. Summary of acoustic features used as inputs to classification models that predict 

whether a detection is a true or false positive.  

Feature Description  

Raw amplitude 

values 

Acquired by way of Fourier Transform. Every single raw 

amplitude value (in dB) in the matrix of a detected event. Each 

amplitude value is a measure of signal intensity at that point, and 

is rendered in colored shading on the spectrogram.  

Correlation Score Correlation score produced by moving window analysis during 

template matching. 

Zero-Crossing 

Rate for each 

time bin 

zcr = 0.5 * mean(abs(sgn(x(t+1)) - sgn(x(t)))) 

with: N the length of the signal x, and where: sgn(x(t)) = 1 if x(t) 

>= 0 and sgn(x(t)) = -1 if x(t) < 0. 

Time Contours 

for each time bin 

Amplitude probability mass function for each time bin 

Frequency 

Contours for each 

frequency bin 

Amplitude probability mass function for each frequency bin 

Time.P1 Time initial percentile based on cumulative distribution function 

generated from time probability mass function 



  

 

175 

 

Time.M Time median based on cumulative distribution function 

generated from time probability mass function 

Time.P2 Time terminal percentile based on cumulative distribution 

function generated from time probability mass function 

Time.IPR Time interpercentile range based on cumulative distribution 

function generated from time probability mass function 

Freq.P1 Frequency initial percentile based on cumulative distribution 

function generated from frequency probability mass function 

Freq.M Frequency median based on cumulative distribution function 

generated from frequency probability mass function 

Freq.P2 Frequency terminal percentile based on cumulative distribution 

function generated from frequency probability mass function 

Freq.IPR Frequency interpercentile range based on cumulative distribution 

function generated from frequency probability mass function 

Spectral Mean Sum of the product of the spectrogram intensity (in dB) and the 

frequency, divided by the total sum of spectrogram intensity. 

Spectral Standard 

Deviation 

Standard deviation of the mean frequency 

Spectral Median  The value of the halfway point in ordered frequency values in the 

data set 

Spectral Mode Dominant frequency of the amplitude matrix 
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Q1: First quartile 

(0.25 quantile) 

The first quartile; a measure of statistical dispersion. Value that 

divides the lowest 25% of data from the highest 75%.  

Q3: Third quartile 

(0.75 quantile) 

The third quartile; a measure of statistical dispersion. Value that 

divides the highest 25% of data from the lowest 75%.  

Interquartile 

range (IQR) 

IQR = Q3 – Q. A statistical dispersion (variability) measure 

based on dividing the detected event into quartiles.  

Spectral Centroid C = sum(x*y) 

with x = frequencies, y = relative amplitude of the i frequency, 

and N = number of frequencies. 

Spectral 

Skewness 

A measure of signal asymmetry. 

S = sum((x-mean(x))^3)/(N-1)/sd^3 

Spectrum asymmetry increases with |S|. 

Spectral Kurtosis A measure of signal peakedness. 

K = sum((x-mean(x))^4)/(N-1)/sd^4 

Spectral Flatness F = N*(prod(y_i)^(1/N) / sum(y_i)) 

With y = relative amplitude of the i frequency, and N = number 

of frequencies. Ratio between geometric mean and arithmetic 

mean. Flatness of noisy signals are closer to 1; flatness of pure 

tone signal is closer to 0.  

Spectral Entropy 

(Shannon’s) 

S = -sum(ylogy)/log(N).  

Noisy signals have S closer to one, while pure tone signals have 

S closer to 0.  
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B. 2. Example of weighted average ensemble probability computation  

1. For a single detection, take the vector of true positive class probabilities for all 

five classifiers, [P]:  

[P] = [p1, p2, p3, p4, p5] 

[P] = [0.02, 0.29, 0.20, 0.29, 0.09] 

2. Gather each classifier’s score on the metric of interest (e.g., Sensitivity) in 

vector [S] 

[S] = [0.86, 0.77, 0.00, 0.86, 0.73] 

3. Compute a vector representing how proportionally close each score is to the 

highest score:  

[D] = [S] / max[S]  

[D] = [0.86, 0.77, 0.00, 0.86, 0.73] / 0.86 = [1.00, 0.895, 0.00, 1.00, 

0.849] 

4. Compute a vector of weights normalized to add to 1, [N]:  

[N] = [D] / sum([D]) 

[N] = [1.00, 0.895, 0.00, 1.00, 0.849] / 3.74 = [0.27, 0.24, 0.00, 0.27, 

0.23] 

5. Compute dot-product of the vector of probabilities [P] times the vector of 

normalized weights [N] to get a single weighted-average value for the class 

probability, pw.   
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pw = [P] • [N] = [0.02, 0.29, 0.20, 0.29, 0.09] • [0.27, 0.24, 0.00, 0.27, 

0.23] = (0.02*0.27) + (0.29*0.24) + (0.20*0.00) + (0.29*0.27) + 

(0.09*0.23) = 0.17 

6. For pw < 0.5, class = false alarm. For pw > 0.5, class = target signal. If ties, 

coinflip for class.  

pw = 0.17 = false alarm class 
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Appendix C 

Performance of the classic dynamic occupancy model that ignores false positives 

(Mackenzie et al. 2003) in a 100-replicate experiment. Summary of parameter estimate 

bias across occurrence dynamics, species call rates, classifier performance, aggregation 

frames, survey-level detection thresholds, and confirmation percentages. Circles indicate 

the mean bias, with dotted vertical bars showing standard deviations. Open circles denote 

scenarios with a low call rate. Closed circles denote a high call rate. Gray circles denote 

the bad classifier, and black circles denote the good classifier. 
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Performance of the classic (false positive-ignorant) dynamic model in a 100-replicate 

experiment: state parameter results. 
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Performance of the classic (false positive-ignorant) dynamic model in a 100-replicate 

experiment: detection parameter results. 
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