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ABSTRACT 

 

Watershed regulation of water, carbon and nutrient dynamics support food, 

drinking water and human development. Projected climate changes and land use/cover 

change (LUCC) have been identified as drivers of watershed nutrient and hydrological 

processes and are likely to happen jointly in the future decades. Studying climate 

change and LUCC impacts on watersheds’ streamflow and nutrients dynamics is 

therefore essential for future watershed management. 

 

This research aimed to unveil how climate change and LUCC affect water and 

nutrient dynamics in the Missisquoi River watershed, Vermont. We used 12 scenarios 

of future climate data (2021 – 2050) generated by three GCMs (ccsm4, mri-cgcm3, and 

gfdl-esm2m) under four Representative Concentration Pathways (RCPs).  For LUCC, 

we used three different scenarios generated by the Interactive Land Use Transition 

Agent-Based Model (ILUTABM). The three LUCC scenarios were Business As Usual 

(BAU), Prefer Forest (proForest), and Prefer Agriculture (proAg). New land use maps 

were generated every 10 years for the period of 2021 – 2050. Combining each climate 

change and LUCC scenario resulted in 36 scenarios that were used to drive Regional 

Hydro-Ecologic Simulation System (RHESSys) ecohydrological model.  

 

In chapter 3, we used RHESSys to study streamflow. We found climate was the 

main driver for streamflow because climate change directly controlled the system water 

input. For streamflow, climate change scenarios had larger impacts than LUCC, 

different LUCCs under the same climate change scenario had similar annual flow 

patterns.  

 

In chapter 4, we used RHESSys to study streamflow NO3-N and NH4-N load. 

Because fertilizer application is the major source for nitrogen export, LUCC had larger 

impacts; watersheds with more agricultural land had larger nitrogen loads. 

  

In chapter 5, we developed RHESSys-P by coupling the DayCent phosphorus 

module with RHESSys to study climate change and LUCC impacts on Dissolved 

Phosphorus (DP) load. RHESSys-P was calibrated with observed DP data for 2002 – 

2004 and validated with data for 2009 - 2010. In both calibration and validation 

periods, simulated DP basically captured patterns of observed DP. In the validation 

period, the R2 of simulated vs observed DP was 0.788. Future projection results 

indicated BAU and proForest annual loads were around 4.0 × 104 kg under all climate 

change scenarios; proAg annual loads increased from around 4.0 × 104 kg in 2021 to 

1.6 × 105 kg in 2050 under all climate change scenarios. The results showed LUCC 

was the dominant factor for dissolved phosphorus loading. 

 

Overall, our results suggest that, while climate drives streamflow, N and P 

fluxes are largely driven by land use and management decisions. To balance human 

development and environmental quality, BAU is a feasible future development strategy.  
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CHAPTER 1: DISSERTATION FRAMEWORK 

 

Anthropogenic activities have dramatically changed our world and are still 

changing our world. Two urgent issues are climate change and Land Use/Cover Change 

(LUCC).  

 

According to the Intergovernmental Panel on Climate Change (IPCC)’s Fifth 

Assessment Report (AR5) (Pachauri et al., 2014), the global average surface temperature 

showed a warming trend of 0.85 ℃ from 1880 to 2012. Global temperatures are projected 

to rise by 2-4 °C by 2100 if greenhouse gas emissions can’t be mitigated in the future. 

The impacts of climate change are huge, including altered global energy patterns, 

ecosystems, global economic.   

 

At the same time, dramatic changes in global land use/cover change (LUCC), 

including conversion (i.e. complete replacement of one type by another type) and 

modification (i.e. small changes in one type without overall change) (Coppin et al., 

2004), have occurred over the past two centuries (Meiyappan & Jain, 2012). LUCC 

converts natural ecosystems to human use systems, including agriculture, pasture land, 

and urban areas (Foley et al., 2005). In the year of 2000, cropland covered 12% of the 

Earth’s ice-free land surface and pasture covered 22% (Ramankutty et al., 2008). Land 

use/cover change also has large impacts, including the potential to alter earth surface 

processes, such as energy and water exchange with the atmosphere, soil erosion, and 

hydrology (Ban et al., 2015). 
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Either climate change or LUCC can have dramatic impacts on many aspects of 

global and ecosystem functions and properties. The combined impacts of climate change 

and LUCC will likely be even more dramatic and complex. Although impacts will range 

from local to global in scale, my dissertation will focus on the intermediate scale of the 

watershed. At this scale, I will be able to investigate climate change and LUCC impacts 

on important watershed dynamics, including hydrology and biogeochemistry. This study 

will examine these impacts on the Missisquoi River watershed in Vermont, US.  

 

The research tools used in the study include General Circulation Models (GCMs) 

for generating future climate data under different Representative Concentration 

Pathways (RCPs), an agent-based land transition model – Interactive Land Use 

Transition Agent-Based Model (ILUTABM) (Y. Tsai et al., 2015), and an Eco-

hydrologic model – Regional-Hydro-Ecologic Simulation System (RHESSys) (Band et 

al., 1993; Band et al., 2000; C. L. Tague & Band, 2004).  

 

The dissertation organization is as follows: 

 

Chapter 1 is the dissertation introduction. 

 

Chapter 2 is a comprehensive literature review covering the topics on climate 

change and LUCC impacts on watershed hydrology and water quality. 
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Chapter 3 is the study of how climate change and LUCC impact streamflow in 

Missisquoi River watershed with RHESSys in the period of 2021 - 2050.  

 

Chapter 4 is the study of how climate change and LUCC impact streamflow 

nitrogen (NO3-N and NH4-N) in Missisquoi River watershed with RHESSys in the period 

of 2021 - 2050.  

 

Chapter 5 is RHESSys-P model development, which added dissolved phosphorus 

module into current RHESSys model, which does not include phosphorus module. After 

calibration and validation in Missisquoi River watershed , we used RHESSys-P to study 

climate change and LUCC impacts on streamflow dissolved phosphorus patterns in the 

period of 2021 – 2050.  

 

Chapter 6 concludes the whole dissertation work and suggests some future work.  
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CHAPTER 2: LITERATURE REVIEW 

2.1. Brief history of watershed research development 

A watershed (basin or catchment) is the area where precipitation or snow falls 

and, through overland flow or groundwater flow, finally flows to the same outlet (Sauer 

et al., 2008). Watersheds support social systems, economics, manufacturing, food 

production, and drinking water. Therefore, healthy watersheds are critical to sustainable 

development. However, several factors can combine to result in diminished watershed 

health: flooding (Alderman et al., 2012; Hunter et al., 2007), soil erosion (Garcia-Ruiz et 

al., 2015; Patil et al., 2015), excess nutrient export, and water quality degradation 

(Bouwman et al., 2013).  These environmental issues drive people to understand and 

predict complex watershed processes such as water and nutrient transport.  

 

Why choose the watershed scale for research? A watershed usually has a clear 

natural geography boundary, making it a relatively closed and independent system in the 

hydrologic cycle (Cai et al., 2001).  Watersheds processes are complex, involving the 

atmosphere, hydrosphere, biosphere and pedosphere. Research on understanding 

watershed processes dates back to watershed hydrology, which stemmed from 

hydrology(Singh & Woolhiser, 2002). Key watershed hydrology processes, which were 

established between 1910 and 1960 (Singh & Woolhiser, 2002), include infiltration 

(Heber Green & Ampt, 1911), overland flow (Horton, 1939), evapotranspiration 

(Penman, 1948), and groundwater hydrology (Theis, 1935). After 1960, many watershed 

models sprang up and have developed in the past decades, such as Stanford Watershed 

Model-SWM (Crawford & Linsley, 1966), Agricultural Non-Point Source Model 
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(AGNPS) (Young et al., 1989), Distributed Hydrology Soil Vegetation Model (DHSVM) 

(Wigmosta et al., 1994), Soil Water Assessment Tool (SWAT) (Arnold et al., 1998; 

Srinivasan et al., 1998), Regional-Hydro-Ecologic Simulation System (RHESSys) (Band 

et al., 2000; C. L. Tague & Band, 2004) and a global scale model—Global Nutrient 

Export from Watersheds (NEWs) (S. P. Seitzinger et al., 2005). Generally, current 

watershed models are developing in the direction of physical process-based, distributed 

system and are also integrating anthropogenic activities. Another important development 

is that watershed models are moving to simulate both ecological and hydrologic 

processes rather than only hydrologic processes (Kemanian et al., 2011; C. L. Tague & 

Band, 2004). 

 

Along with watershed model development, more and more data is available for 

model use: Remote sensing and GIS technologies provide Digital Elevation Models 

(DEMs) and land cover and land use information; meteorological stations provide long 

term temperature and precipitation data; soil texture data is available from Food and 

Agriculture Organization (FAO); and in the US, the United States Geological Survey 

(USGS) stream gauges provide long-term stream flow data across the nation. This huge 

data inventory can function as input data, to calibrate and validate watershed models. 

Watershed models are maturing and are being effectively used for research and 

watershed management.  
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2.2. Current watershed research focuses and research questions 

The development of watershed models, growing data availability, and growth of 

computing power have made watershed models a significant tool for tackling new, 

challenging questions in watershed research (Dunn et al., 2014; Ficklin et al., 2013; 

Yadav et al., 2009): How will global climate change and land use and land cover change 

affect watershed processes (Christensen et al., 2004; D'Agostino et al., 2010; Elsner et 

al., 2010; Fan & Shibata, 2015; Luo et al., 2013)? What adaptive strategies should we 

take to mitigate the effects of these changes (Park et al., 2014)?  In this study, I will use 

a hydro-ecological model (RHESSys) to investigate concurrent climate change and land 

use/land cover change impacts on watershed ecological and hydrological processes.  

 

2.2.1. Climate change impacts on watershed hydrology 

According to the Intergovernmental Panel on Climate Change (IPCC)’s Fifth 

Assessment Report (AR5) (Pachauri et al., 2014), the global average surface temperature 

showed a warming trend of 0.85 degree Celsius from 1880 to 2012.  Based on different 

Green House Gas (GHG) emission levels, IPCC released four Representative 

Concentration Pathways (RCPs) for the 21st century: RCP2.6, RCP4.5, RCP6.0 and 

RCP8.5. The number after each RCP refers to radiative forcing values in year 2100 

relative to pre-industrial values (+2.6, +4.5, +6.0 and +8.5 W/m2). In these scenarios, 

RCP2.6 represents the least emissions and RCP8.5 represents the most emissions. Global 

mean surface temperature is projected to increase 1.0 degree under RCP2.6, and 3.7 

degrees under RCP8.5 by 2100. Under all RCPs scenarios, globally, the area 

encompassed by monsoon systems will increase and precipitation is likely to intensify.  
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Generally, the strategy for determining how climate change may affect watershed 

processes in most studies is to obtain temperature and precipitation data from future 

climate projections based on the GHG emission scenarios using General Circulation 

Models (GCMs), and then use the future climate projection data as input for watershed 

hydrological models to project future stream flow, and nutrient load (Christensen et al., 

2004; Elsner et al., 2010; Zhang et al., 2015). 

 

Climate change is projected to affect future hydrological regimes directly and 

indirectly (Elsner et al., 2010; Luo et al., 2013; Viola et al., 2015; Zhang et al., 2015). 

Direct impacts of climate change on hydrology include changing precipitation and 

temperature. Projected precipitation changes (temporal pattern and total precipitation 

change) will directly alter the water input for watersheds and further alters streamflow. 

In an agricultural watershed study of southern Quebec (Canada), annual precipitation 

increases of 7 to 12% resulted in streamflow increases of 11 to 21% (Gombault et al., 

2015) . Increasing temperature is projected to increase evapotranspiration (Masood et al., 

2015) and brings earlier snow melt which leads to shifts in the timing of spring 

streamflow in snowmelt dominant area (Elsner et al., 2010). Indirect impacts on 

hydrological regimes due to climate change include increasing CO2 concentration and 

growing season length change. High CO2 concentration reduces leaf stomatal 

conductance and affects plant transpiration, which further alters watershed hydrological 

processes. Luo et al. (2013) integrated CO2 effects on plants in SWAT model and showed 

doubling CO2 reduced evapotranspiration (ET) by 10.6% for agricultural land, 5.7% for 

deciduous forest, and 4.2% for rangeland. Growing season length expansion also 
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increased plant ET, resulting in reduced streamflow and more water from the watershed 

entering into the atmosphere (Band et al., 1996).  

 

One potentially important indirect effect of climate change is the lengthening the 

growing season, which may result in phenological changes in vegetation. Phenological 

change resulting from climate change has been documented in the mid-high latitudes of 

the northern hemisphere since the 1960s (Jeong et al., 2011; Kolarova et al., 2014; 

Menzel & Fabian, 1999; Piao et al., 2007). The average growing season length extended 

10.8 days from 1960s to 1990s in Europe (Menzel & Fabian, 1999). In the US, the 

average growing season length increased about 9.4 days from 1982 to 2008 (Jeong et al., 

2011). Growing season length extension affects ecosystem functions. Piao et al. (2007) 

showed growing season length increased by 0.30 days yr-1 in the northern hemisphere 

during 1980-2002, and one day growing season length extension could increase annual 

gross primary productivity (GPP) by 0.6%. Carbon dynamics are closely coupled with 

water cycle (Luo et al., 2013), so the longer growing season length could also potentially 

impact the watershed water cycle through water uptake and ET. 

 

Although much research has studied the direct impacts of climate change (i.e. 

temperature and precipitation change) on watershed hydrological regimes, the impacts 

of changes in growing season length on watershed hydrology were rarely studied. Band 

et al. (1996) used a model to study changes in growing season length, however, the 

growing season length change was implemented by increasing plants LAI in the growing 

season instead of simulating growing season length directly. In other research, 



9 

 

Christiansen et al. (2011) studied climate change impacts on the growing season length, 

defined as the period between the last spring frost and the first hard frost in the fall, in 14 

basins in United States. The future climate and the projected growing season length then 

were used as input for a hydrological model Precipitation-Runoff Modeling System 

(PRMS) to project the watershed response in the 21st century. However, in Christiansen’s 

model, the growing season length definition could not directly reflect the earlier leaf 

onset and later leaf fall. Additionally, no control experiment was implemented, so the 

results could not identify how changes in growing season length impacted watershed 

hydrology. Thus, the impacts of growing season length extension on watershed 

hydrology have lacked quantitative assessment.  

 

2.2.2. Land use/cover change (LUCC) impacts on watershed hydrology 

Global land use/cover change (LUCC), including conversion (i.e. complete 

replacement of one type by another type) and modification (i.e. small changes in one type 

without overall change) (Coppin et al., 2004), has been dramatic over the past two 

centuries (Meiyappan & Jain, 2012). LUCC converts natural ecosystem to human use 

systems, including agriculture, pasture land, and urban areas (Foley et al., 2005). In the 

year of 2000, cropland covered 12% of the Earth’s ice-free land surface and pasture 

covered 22% (Ramankutty et al., 2008).  

 

Land use/cover change has the potential to alter earth surface processes, such as 

energy and water exchange with the atmosphere, soil erosion, and hydrology (Ban et al., 

2015). The dramatic LUCC in the past and possible future trends has drawn researchers 
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to study LUCC impacts on watershed hydrology (Dong et al., 2015; Ling et al., 2015; 

van Roosmalen et al., 2009; Yang et al., 2012).  To study LUCC impacts on hydrology, 

two important aspects must be considered, The first is what method is used to represent 

LUCC; and the second is what method is used to reflect hydrology response to LUCC.  

Currently, hydrological models are mostly used for reflecting hydrology responses, so 

the key question is how to represent LUCC.  

 

Generally, the methods used to represent LUCC have three categories:  The first 

assumes some LUCC scenarios based on land use demand (Viola et al., 2014; Yuan et 

al., 2015); the second uses two (Gessesse et al., 2015; Zhi Li et al., 2009) or several 

(Yang et al., 2012) satellite images in different years for the same study area; and the 

third uses a land use transition model to simulate land use (Fan & Shibata, 2015; Ling et 

al., 2015; Wu et al., 2015). For the first two methods, a base land use/cover (earlier year) 

and a changed land use/cover (later year) are usually retrieved. The base and changed 

land use/cover are used separately as input for a hydrological model and the model 

responses for different land use/cover are used to reflect the LUCC impacts on 

hydrology. The drawback is that the land use/cover is assumed to be unchanged during a 

period of time, which is dynamically changing in reality.  In contrast, the land use 

transition models can provide LUCC dynamics over a period of time, which provides the 

potential for hydrological models to reflect the dynamic LUCC processes. Additionally, 

land use transition models can project possible future land use scenarios, which could 

combine projected climate data to study the joint impacts of LUCC and climate change 

on hydrology (Fan & Shibata, 2015). Because LUCC and climate change are likely to 
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occur jointly in the future, studying combined LUCC and climate change impacts on 

hydrological processes is essential and meaningful for future land use planning (Fan & 

Shibata, 2015; Tong et al., 2012).  

 

Several statistical land use transition models have been used for hydrology 

studies, such as the Conversion of Land Use and its Effects (CLUE) model (Fan & 

Shibata, 2015), and Dynamic Conversion of Land-Use and its Effects (Dyna-CLUE) 

(Ling et al., 2015), Dynamic Land Use System (DLS) model (Wu et al., 2015). These 

statistical models are based on biophysical characteristics, such as soil type, elevation, 

slope, and aspect (Fan & Shibata, 2015). However, these models don’t explicitly simulate 

landowner behavior, which is a key factor in determining land use. Fan and Shibata 

(2015) suggested agent-based model including decision-making behavior would be an 

improvement for predicting agricultural land use transition. Therefore, I use an agent-

based land transition model – Interactive Land Use Transition Agent-Based Model 

(ILUTABM) (Y. Tsai et al., 2015) – to study LUCC change impacts on hydrology. In 

addition, I will combine LUCC scenarios with future climate change scenarios to study 

the joint impacts of LUCC and climate change on hydrological processes. 

 

2.2.3. Watershed nutrient dynamics 

Riverine nutrient fluxes (carbon, nitrogen and phosphorus) play an important role 

in linking terrestrial with aquatic systems. Excess nutrients in water can degrade water 

quality and cause environmental problems, such as eutrophication. Nutrient transport 

from land to water is highly reliant on hydrological processes. Therefore, nutrients 
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dynamics in watersheds are best studied using models that combine watershed ecological 

and hydrological processes.  

 

Dissolved organic carbon (DOC) export has been extensively studied due to its 

roles in carbon cycle and water quality (Jennings et al., 2010). Traditionally, water 

sampling on a regular basis with water flow data is used to quantify the DOC fluxes from 

a watershed (Veum et al., 2009). Recently, high frequency measurements have been 

applied in DOC monitoring, which can capture hourly variation and provide more precise 

fluxes estimates (Strohmeier et al., 2013). In a review for 550 worldwide watersheds, 

DOC contributed to 73 ±21% of total organic carbon (TOC) export (Alvarez-Cobelas 

et al., 2012) . Generally, freshwater ecosystems are not considered important in global or 

regional carbon cycles, but Cole et al. (2007) found that freshwater’s role in the global 

carbon budget cannot be ignored. Several studies have integrated aquatic carbon fluxes 

into watershed carbon budgets. Shibata et al. (2005) showed the carbon export was very 

small (~ 2%) compared with net ecosystem exchange (NEE) in a forested watershed in 

Japan. Jonsson et al. (2007) found carbon export in a boreal watershed was around 6% 

of NEE. Other studies found the carbon export could be over 10% of NEE in peatland 

watersheds (Dinsmore et al., 2010; Juutinen et al., 2013). Therefore, integrating carbon 

export, especially DOC, in carbon dynamics in watersheds is essential.  

 

Nitrogen and phosphorus export is another important topic in watershed research 

because of their key roles in freshwater eutrophication (Conley et al., 2009). Non-point 

source pollution, especially non-point agricultural sources, are considered major 
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contributors to excess nitrogen and phosphorus loads (Zhernwei Li et al., 2015; Ongley 

et al., 2010; Ulen et al., 2007) and best management practices have been implemented in 

farmlands to mitigate nutrient load (Smith et al., 2015).  

  

Because of the complexity of nitrogen and phosphorus dynamics processes in 

watersheds, hydrological models have been the main tools for nutrient study. To better 

integrate terrestrial nutrient sources and changes in land uses or land use management, 

some hydrological models have incorporated nitrogen and phosphorus processes. For 

example, SWAT, which integrates fertilizer application, management practices, and 

nutrient transport, has been used to quantify watershed nutrient export (Sen et al., 2012) 

and nutrient hot spots at the watershed level (Jacobson et al., 2011).  Climate change is 

projected to affect future hydrological regimes (Christensen & Lettenmaier, 2007), which 

could further affect nutrient transport and export (Jeppesen et al., 2011). Fan and Shibata 

(2015) used SWAT to study the impacts of climate change on water quality in the Teshio 

River watershed of Japan, assuming land cover and land management practices did not 

change. Their results showed the impacts on water quality varied with seasons: Snowmelt 

shifted from April to March increased monthly N yield in March; N yield decreased in 

May due to the enhanced plant uptake and less water yield. 

 

2.2.4. Extreme events 

According to IPCC’s Fifth Assessment Report, extreme weather and the number 

of heavy precipitation events have increased since 1950 (Pachauri et al., 2014). Although 

the occurrence of extreme events is relatively rare, the environmental impacts are huge. 
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For example, 10 extreme events in 205 erosion events contributed 83.8% of the total 

suspended sediment load in a small agricultural watershed in the Three Gorges Area of 

China (Fang et al., 2013). Extreme storms can dramatically increase carbon, nitrogen and 

phosphorus load (Y. Gao et al., 2014), deteriorating water quality. Therefore, 

understanding extreme events is essential to watershed management.  

 

Climate change and land use/cover change (LUCC) are considered the two most 

important factors contributing to the increased frequency of extreme events (Poelmans 

et al., 2011; Tavakoli et al., 2014). Extreme weather induced by climate change can 

directly alter precipitation quantity and intensity; LUCC can alter water flow path ways 

or generate more runoff in some land use/cover types (e.g. urban) and lead to extreme 

flows. Because climate change and LUCC are very likely to occur in the future, 

understanding how climate change and LUCC could influence future extreme events (e.g. 

extreme event frequency) is essential for future management. Tavakoli et al. (2014) 

studied how extreme flows in a watershed in Belgium responded to climate change and 

urban growth. They found that extreme low flows were decreased by climate change and 

extreme peak flows were predicted to increase due to climate change and urban 

expansion.  

 

Currently, only a few studies focused on the climate change and LUCC impacts 

on extreme events. Among those studies, most focused on water flow rather than nutrient 

export. It is urgent to study the impacts of extreme events on water flow and nutrient 

export for future management.  
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2.3. Regional-Hydro-Ecologic Simulation System (RHESSys) 

This dissertation used RHESSys as a tool to study watershed hydrology and 

nutrient dynamics, and also developed a new model with a dissolved phosphorus module. 

The reason why we chose RHESSys is that RHESSys is a process-based hydro-

ecological model, and RHESSys is also easy to customize its application. For example, 

RHESSys can be easily integrate dynamic land use change on the model run. Compared 

with RHESSys, although SWAT is a powerful and widely used hydrological model, 

integrating dynamic land use change in SWAT is complex. This section will cover 

RHESSys model and its development.  

 

2.3.1. RHESSys development history 

RHESSys is a Geographical Information System (GIS)-based hydro-ecological 

model that simulates watershed water, carbon and nutrient (nitrogen) dynamics (Band et 

al., 1993; Band et al., 2000; C. L. Tague & Band, 2004). Detailed model information can 

be found on the RHESSys website (http://fiesta.bren.ucsb.edu/~rhessys/).  

 

RHESSys was developed in 1990s and thus belongs to a later generation of 

watershed models. Importantly, RHESSys coupled ecosystem processes with hydrology. 

Thus, RHESSys can simulate the water cycle in ecosystems using process-based 

modules, such as rain interception and evapotranspiration. Band et al. (1993) developed 

the first version of RHESSys by coupling the biogeochemistry model FOREST-BGC (S. 

W. Running & Coughlan, 1988) and the hydrological model TOPMODEL (Beven & 

Kirkby, 1979). The first version only partitioned a watershed into different hillslopes and 

http://fiesta.bren.ucsb.edu/~rhessys/
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water routing on the land was implicit. Later, an explicit routing method modified from 

DHSVM (Wigmosta et al., 1994) was introduced into RHESSys (C. L. Tague & Band, 

2001). Now, the user can choose either routing method. In 2000, a more detailed land 

hierarchy structure was developed (Band et al., 2000), which further divided hillslopes 

into climate zones, patches and canopy strata. In 2001, the nitrogen module in RHESSys 

was further improved by integrating BIOME-BGC (Steven W Running & Hunt, 1993) 

and Century-NGAS (Parton et al., 1996), to include decomposition, nitrification, 

denitrification, plant uptake, and nitrogen export processes. These key developments 

form the main framework of current RHESSys structure, although new features are still 

being added to the model.  

 

2.3.2. Structure and application of RHESSys model 

RHESSys uses a hierarchical structure to represent landscapes, which includes 

basins, hillslopes, zones, patches and canopy strata (Figure 2.1). RHESSys provides a 

tool, GRASS2WORLD in GRASS (Geographic Resources Analysis Support System) 

GIS environment, that partitions the landscape into different structure levels using a 

Digital Elevation Model (DEM), land cover map, and soil texture, and then generates a 

text file called worldfile, which represents the landscape structure. This worldfile is used 

as input file to RHESSys. 
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More specifically, the RHESSys model’s hierarchical structure contains the 

following elements:  

• Basin: a closed drainage area equivalent to a whole watershed area. 

• Hillslope: the area draining into one side of a stream reach. In RHESSys, deep 

ground water processes are processed at the hillslope level. Deep ground water is 

simulated with a linear reservoir model. On a daily basis, a portion of the deep 

ground water enters its connected stream reach as base flow. Explicit water routing 

between patches is also processed at the hillslope level. 

• Zone: areas with similar climate. Meteorological data is processed at the zone level. 

Each zone is linked with one base station, which provides the meteorological data 

such as daily max temperature, daily min temperature, and daily precipitation. In 

version 5.19, RHESSys can process hourly precipitation input and process the 

Figure 2.1: RHESSys hierarchical structure and corresponding functions (From RHESSys website, 

http://fiesta.bren.ucsb.edu/~rhessys/data/data.html) 
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precipitation on an hourly step. The MT-CLIM model (S. W. Running et al., 1987) 

was integrated in RHESSys to process climate data. The model uses one climate 

base station that a zone links, along with the topography, slope and aspects etc. to 

estimate each zone’s meteorological data, is integrated at the zone level.  

• Patch: the smallest spatial unit and the basic modeling unit in RHESSys. Patches 

represent homogeneous soil and land cover characteristics. Vertical water 

movement is simulated at the patch level, including infiltration into the root zone 

(for vegetated patch) and unsaturated zone, and recharge to the saturated zone. Soil 

nutrient fluxes are also simulated at the patch level, such as plant uptake, leaching, 

decomposition, nitrification and denitrification. Some farmland management 

practices are implemented at the patch level by linking the patch to a base station, 

including irrigation and fertilizer application. The linked base station provides a 

spatial time series of land management information for each patch. Users can 

specify irrigation and fertilizer application amounts and dates in the patch linked 

base station.  

• Canopy strata: these have the same spatial unit as patches but represent the vertical 

aboveground layers. All layers are sorted into different groups by layer height. For 

vegetation canopy strata, precipitation falls through layers from highest to lowest. 

At each layer height, a portion of the precipitation is intercepted. When the 

precipitation penetrates all layers, it becomes throughfall to the litter layer. The 

litter layer intercepts some water, and the remaining throughfall infiltrates into the 

soil, which is processed at the patch level. The canopy strata also simulates plant 

growth, including radiation interception and photosynthesis by the Farquhar model 
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(Farquhar & von Caemmerer, 1982), respiration, phenology (controlling leaf out 

and leaf fall date), and evapotranspiration using the Penman-Monteigh equation 

(Monteith, 1965). 

 

RHESSys has been applied to study water (Godsey et al., 2014; C. L. Tague & 

Band, 2001), carbon (Hwang et al., 2008; Vicente-Serrano et al., 2015) and nitrogen 

(Band et al., 2001) fluxes.  The model has been confirmed as a suitable tool for simulating 

climate change impacts on hydrology (Zierl et al., 2007) and has been used for projecting 

hydrological regime changes under different climate change scenarios (Lopez-Moreno et 

al., 2014; Meyers et al., 2010). However, one problem with using the RHESSys model 

for a long-term climate change study is that the current model version (5.19) uses a static 

CO2 concentration rather than dynamic. The Mauna Loa CO2 record 

(www.esrl.noaa.gov/gmd/ccgg/trends/) indicates that CO2 increased from around 320 

ppm in 1960 to around 400 ppm in 2015. Atmospheric CO2 levels can affect 

photosynthesis, plant water use efficiency and ET (Luo et al., 2013; C. Tague et al., 

2009), thereby further affecting carbon and water cycles. Thus, future long term studies 

using RHESSys should consider integrating a dynamic CO2 data module.  

 

2.4. Study area 

The Missisquoi River watershed is located along the border of US and Canada. 

The predominant land cover is forested (~ 70%) with ~14% pasture/hay land cover and 

~5% crop land cover (Table 2.1). The Missisquoi River drains into Missisquoi Bay, 

which is in the northern part of Lake Chaplain (Figure 2.2). In the past decades, the 

http://www.esrl.noaa.gov/gmd/ccgg/trends/


20 

 

Missisquoi Bay has experienced eutrophication due to excess nitrogen and phosphorus 

load from non-point source pollution, especially from agriculture (Isles et al., 2015; 

Schroth et al., 2015). Efforts have been made to protect the lake. The Long-Term Water 

Quality and Biological Monitoring Project for Lake Champlain started in 1992, 

providing lake monitoring data and assessing the lake health. A recent study showed 20% 

of the Missisquoi river watershed area contributed 74% of the watershed total phosphorus 

load (Winchell et al., 2015), another study showed total phosphorus increased by 72% in 

Missisquoi Bay during 1979 – 2009 (Smeltzer et al., 2012). So identification of nutrient 

critical source area is important for cost-effective nutrient load management.  
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Figure 2.2 Missisquoi river watershed location and its landuse/landcover map, US landcover portion 

is from the year of 2001, and Canadian portion is from 2000. 
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Table 2.1: Landuse/Landcover area and percentage in Missisquoi river watershed 

Landuse/Landcover Area (ha) Percentage (%) 

Deciduous Forest 83953.26 37.8 
Mixed Forest 54545.85 24.5 
Pasture/Hay 31370.13 14.1 
Evergreen Forest 17489.52 7.9 
Crop 10283.4 4.6 
Woody Wetland 7660.98 3.4 
Developed, Open Space 4462.92 2.0 
Developed, Med 
Intensity 2723.13 1.2 
Developed, Low 
Intensity 2313.45 1.0 
Shrub 2197.98 1.0 
Open Water 1628.1 0.7 
Herbaceous Wetland 1345.41 0.6 
Grass 1126.98 0.5 
Barren 965.07 0.4 
Developed, High 
Intensity 129.69 0.1 

Total 222195.87 100 

 

 

 

2.5 Summary 

Climate change and LUCC have been identified as the two main drivers for 

watershed hydrology. Many studies have been conducted on how climate change and 

LUCC impact on watershed hydrology separately. However, few studies investigate the 

joint impacts of climate change and LUCC. Furthermore, LUCC dynamics are rarely 

integrated into model simulations. Instead, LUCC is assumed to be constant for future 

scenario simulations. The reason is that current hydrologic models don’t have a 

customized LUCC configuration interface, making the integration of dynamic LUCC 

hard for hydrologic model users. Yet, LUCC is not a constant, but changes over time and 

likely also changes in response to a changing climate.  
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Therefore, in my dissertation, I address this gap by developing a frame to 

incorporate climate change and LUCC dynamics for watershed simulation using 

RHESSys. I used agent-based land transition model ILUTABM to generate future LUCC 

dynamics and then developed a LUCC fusion module for RHESSys to take a series of 

LUCC to reflect LUCC in the simulation process. This work will answer the joint impacts 

of climate change and LUCC on watershed hydrology and nutrient loads.  
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CHAPTER 3: CLIMATE CHANGE AND LAND USE/COVER CHANGES 

IMPACTS ON STREAMFLOW IN MISSISQUOI RIVER WATERSHED 

 

3.1. Introduction 

Climate change has been occurring over the past 30 years and is projected to 

continue into the 21 century (Pachauri et al., 2014).  Rising atmospheric CO2 and climate 

change, including warming temperatures and altered precipitation, could impose 

significant impacts on hydrological processes and lead to floods, drought and water 

resource management problems (Luo et al., 2013; Zhang et al., 2015). Projected 

precipitation changes in temporal patterns and total precipitation will directly alter water 

inputs. In an agricultural watershed study in southern Quebec (Canada), annual 

precipitation increases of 7 to 12% resulted in streamflow increases of 11 to 21% 

(Gombault et al., 2015). Increasing temperature will also impact watershed hydrology. 

Increasing temperatures are projected to increase evapotranspiration (Masood et al., 

2015) and bring earlier snow melt, which leads to shifts in spring streamflow timing in 

snowmelt dominant areas (Elsner et al., 2010). 

 

At the same time, human activities have changed global land cover greatly. In the 

year 2000, cropland covered 12% of the Earth’s ice-free land surface and pasture covered 

22% (Ramankutty et al., 2008). Such Land Use/Cover Change (LUCC) can greatly 

impact hydrological process (Wu et al., 2015) by altering canopy interception, 

infiltration, and evapotranspiration processes, consequently leading to streamflow 

variation (Fan & Shibata, 2015; Gessesse et al., 2015; Yang et al., 2012).  Generally, 

conversion of natural vegetation to cultivated or impervious land cover increases runoff 
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generation (Gessesse et al., 2015). However, the complexity (configuration) of land 

use/cover patterns mean that simple conclusions can’t be drawn according to land 

use/cover change rates alone (Yang et al., 2012). Instead, it is critical to use spatially 

explicit models to understand LUCC impacts on watershed hydrology and inform land 

management. 

 

Many publications have studied the separate impacts of LUCC (Sajikumar & 

Remya, 2015; Wu et al., 2015; Yang et al., 2012) or climate change (Al-Mukhtar et al., 

2014; Andersen et al., 2006; Viola et al., 2015) on watershed hydrology. However, in the 

future, climate change and LUCC are likely to occur jointly (Ling et al., 2015). Thus, 

coupling of climate change and LUCC is important for watershed hydrology simulation 

(Fan and Shibata (2015), but hydrological models do not fully couple land use and 

climate change. Instead, the same land use scenario is typically used for the entire 

simulation period. Ling et al. (2015) noticed this gap and coupled Dyna-CLUE land use 

model with climate change scenarios to study the joint impacts on Heihe River Basin, 

China. The study provided a framework of coupling land use and climate change; 

however, Dyna-CLUE model is non-spatial, and does not simulate landowner’s behavior.  

 

Therefore, in this study, we coupled LUCC from an agent-based land transition 

model – Interactive Land Use Transition Agent-Based Model (ILUTABM) (Y. Tsai et 

al., 2015) and climate change to study their joint impacts on Missisquoi river watershed 

streamflow using the RHESSys model  (C. Tague et al., 2004).  We expected that climate 

change, especially precipitation change, would have larger impacts on streamflow than 
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LUCC. Using a spatially explicit model to understand climate change and LUCC impacts 

on watershed hydrology will improve our understanding of how these complex processes 

impact hydrology and support will stakeholder decisions around land management and 

policy making. The novelty of this study is coupling the climate change with dynamic 

LUCC process, and our experiment design can investigate the relative importance of 

LUCC, climate change due to RCPs and GCMs.  

 

3.2. Data and methods 

3.2.1. Study area 

The Missisquoi River watershed is located along the border of the US and Canada 

and covers 2,200 km2 (Figure 3.1). The altitude in this area ranges from 17 to 1172m. In 

2001, the predominant land cover was forested (~ 70%). Pasture/hay land cover was 

~14% and crop land cover was ~5%.   The Missisquoi River drains into Missisquoi Bay, 

which is in the northern part of Lake Chaplain.  

 

A USGS streamflow gauge (#04294000) is located at 44°55'00" N and 73°07'44" 

W (North American Datum 1927) near the Missisquoi river outlet. The gauge has 

recorded daily streamflow from March 1st, 1990 until now. The Lake Champlain Long-

term Monitoring program also set up a sampling point at the streamflow gauge and 

recorded nutrient data from 1992 – Now 

(https://anrweb.vermont.gov/dec/_dec/LongTermMonitoringLakes.aspx).  
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Figure 3.1 Missisquoi river watershed location, USGS gauge #04294000 is located at the outlet of 

Missisquoi river 

 

3.2.2. RHESSys model description 

We used the Regional Hydro-Ecologic Simulation System (RHESSys) (C. L. 

Tague & Band, 2004), version 5.20 for this study. RHESSys is a Geographical 

Information System (GIS)-based hydro-ecological model, simulating watershed water, 
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carbon and nutrient dynamics. RHESSys adopts a hierarchical structure to represent 

landscapes, which includes basins, hillslopes, zones, patches and canopy strata.  

 

The basin is the whole watershed area. Stream and nutrient routing processes 

occur at this level, and the routing process iteratively occurs from the highest patch to 

the lowest patch. The hillslope is the area draining into one side of a stream reach. 

Groundwater lateral flow is processed at the hillslope level. Deep ground water is 

simulated as a linear reservoir model. On a daily basis, a fraction of the deep ground 

water enters its connected stream reach as base flow. Zones are areas with a similar 

climate. Meteorological data is processed at the zone level by linking the zone with a 

base station, which provides climate data. The MT-CLIM model (S. W. Running et al., 

1987), which uses one climate base station linked to a zone, the topography, slope and 

aspects etc. to estimate each zone’s meteorological data, is integrated at the zone level. 

The patch is the smallest spatial unit and the basic modeling unit in RHESSys. Patches 

represent homogeneous soil and land cover characteristics. Vertical water movement is 

simulated at the patch level, including infiltration in the root zone (for vegetated patches) 

and unsaturated zone, and recharge to the saturated zone. Soil nutrient fluxes are also 

simulated at the patch level, such as plant uptake, leaching, decomposition, nitrification 

and denitrification. Canopy strata have the same spatial area as patches but represent the 

vertical aboveground vegetation layers. BIOME-BGC (Steven W Running & Hunt, 

1993) is integrated at the canopy strata level to simulate plant growth and element fluxes.  
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RHESSys provides a tool, GRASS2WORLD in GRASS (Geographic Resources 

Analysis Support System) GIS environment, that partitions the landscape into different 

structure levels using a Digital Elevation Model (DEM), land cover map, and soil texture, 

and then generates a text file called worldfile, which represents the landscape structure. 

This worldfile is used as an input file to RHESSys. 

 

3.2.3. Data 

3.2.3.1 Climate data  

RHESSys requires at least daily minimum temperature (Tmin), daily maximum 

temperature (Tmax) and daily precipitation as climate data input. Historical climate data 

are from Daymet version 3 (Thornton et al., 2017), which provides 1-km grid daily data 

from 1980 to 2016 for North America. Because future projected downscaled climate data 

from general circulation models (GCM) have much courser spatial resolution (1/8 

degree), Daymet data were resampled at 1/8 degree to be consistent with projected 

climate data (Figure 3.2).  

 

Three GCM models were chosen based on the model credibility for Northeast 

United States (Thibeault & Seth, 2015):  ccsm4, mri-cgcm3, and gfdl-esm2m. Each GCM 

has four projected climate datasets from 2020 – 2050 based on the four Representative 

Concentration Pathways (RCPs): RCP2.6, RCP4.5, RCP6.0 and RCP8.5. All climate 

data were downscaled to 1/8-degree bias correction with constructed analogs dataset (Zia 

et al., 2016). Thus, in total, 12 climate scenarios were used for future climate data.  
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Figure 3.2: RHESSys input data. (a). 1/8 degree grid data used, the grid center points were used to 

generate Thiessen polygons for spatial climate data input. (b). Missisquoi river watershed land cover, 

U.S. side is from the year 2001, and Canada side is from the year 2000.  (c). Missisquoi river 

watershed surface soil texture map. 

 

 

3.2.3.2 Land use/cover data 

The land use/cover map combined the US portion (National Land Cover 

Database, 2001) and Canadian portions (circa 2000, http://www.geobase.ca/) of the 

Missisquoi River watershed. This land use/cover map was used for RHESSys calibration 

with historical climate data and gauge data (Figure 3.2).  

 

For the future period (2020 – 2050), we used the ILUTABM model (Y. S. Tsai et 

al., 2015) to generate three different land use scenario maps (Figure 3.3): Business As 

Usual (BAU), Prefer Forest (proForest) and Prefer Agriculture (proAg). The ILUTABM 

model can output land use map every year, but for this study, we outputted one land use 

map every 10 years. Thus, for each land use scenario, there were three land use maps for 

the period of 2020 to 2050 (Figure 3.3). Prior to model input, all land use/cover data were 

reclassified as RHESSys land use/cover types. 

 

http://www.geobase.ca/
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Figure 3.3: Projected land use of the year 2021, 2031 and 2041 for the three land use scenarios: Business 

As Usual, prefer forest and prefer agriculture. 

 

3.2.3.3 Other input data 

For the Missisquoi watershed, a Digital Elevation Model (DEM) of 1 arc-second 

(approximate 30 meters) from the American National Elevation Dataset was used (Figure 

3.1).  The DEM was used to generate slope, aspect, west and east horizon grid data. 

Surface soil texture data were from Vermont Center for Geographic Information 

(http://vcgi.vermont.gov/) and Soil Landscapes of Canada 

http://vcgi.vermont.gov/
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(http://sis.agr.gc.ca/cansis/nsdb/slc/index.html). Agricultural land management practice 

data (fertilizer/manure application, harvest date) were from surveys (Department of Plant 

and Soil Science, the University of Vermont). Due to lack of spatial agricultural land 

management practice data, we assumed all agricultural land had the same management 

practices. Atmospheric nitrogen deposition data was from National Atmospheric 

Deposition Program (http://nadp.slh.wisc.edu/). The total nitrogen deposition for 

Missisquoi river watershed was 1g N/m2/year.  

 

 

3.2.4. Experiment design for climate change and LUCC impacts assessment 

I spun-up the RHESSys model for about 1500 years to let plants and soil carbon 

and nitrogen pools reach equilibrium states. Then, the spun-up model was calibrated for 

streamflow at the outlet of Missisquoi river watershed. Finally, with the calibrated 

parameter set, the model was run with the different climate and LUCC scenarios. In this 

study, 12 climate scenarios (three GCMs with four RCPs for each GCM) and 3 LUCC 

scenarios were used, for a total of 36 total climate-LUCC scenarios. 

 

3.2.4.1 Calibration and validation 

Four parameters were used to calibrate RHESSys: m, K, gw1 and gw2. m is the 

decay of hydraulic conductivity with depth (dimensionless); K is the surface lateral 

hydraulic conductivity (m/day); gw1 is the proportion of net inflow water moving to the 

deep ground water store (dimensionless); and gw2 is the proportion of water from deep 

http://sis.agr.gc.ca/cansis/nsdb/slc/index.html
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ground water store moving to the stream. The four parameter ranges used in this study 

were m (0 – 0.2), K (0 – 300), gw1 (0 – 0.9) and gw2 (0 – 0.9) (Saksa et al., 2017). 

 

Monte Carlo simulations were used to calibrate RHESSys. A total of 5040 

parameter sets were generated using the Latin-Hypercube sampling technique with even 

distribution for each parameter over the parameter range. The 5040 parameter sets were 

used to drive RHESSys model on NCAR Cheyenne cluster (Laboratory, 2017). The 

Nash-Sutcliff coefficient (NSE) was used to assess parameter set performance.  

 

Streamflow was calibrated from 1992.1.1 to 1994.12.31 and validated from 

1992.1.1 to 1994.12.31 (Table 3.1).  Model fit during the calibration and validation 

periods was assessed using the Nash-Sutcliffe efficiency value (NSE) and RMSE. NSE 

is in the range of −  to 1, NSE = 1 means perfect match and NSE = 0 means the model 

performance is equivalent to the average of observed data, and NSE < 0 means model 

performance is worse than the average of observed data. A threshold value of 0.6 for 

daily streamflow NSE is considered good fit (Guilbert, 2016). RMSE measures the 

average differences of simulated and observed data. The smaller the better.  

 

Table 3.1: Calibration and validation period 

  Calibration  Validation  

runoff 1992.1.1 - 1994.12.31 1995.1.1 - 1999.12.31 
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3.2.4.2 Future projection under different climate and LUCC scenarios 

Once the best parameter set was determined, it was used to drive RHESSys for 

all projected scenarios. For all scenarios, the historical land use (US 2000, and Canada 

2001) was used to run 2011.1.1 to 2020.12.31 for model warm up. From 2021.1.1, 

projected land use of 2021 was used to run RHESSys until 2050.12.31. The land use map 

was updated every 10 years. The same processes were applied to other land use transition 

years.   

 

In RHESSys, the worldfile is used to describe basin states. Land use change can 

affect 3 items in the worldfile: the base station a patch attached to, patch land use type, 

and patch vegetation type. The base station controls agricultural land management 

practices, such as fertilizer application. Land use type controls common land 

management configurations and vegetation type controls vegetation physiology 

characteristics. Changing these 3 items reflects the LUCC in the RHESSys model.  

 

At the land use transition year, a new worldfile with a new land use map was used 

to compare with old worldfile (with old land use map). If any of the 3 items were different 

for the same landscape unit, the item value from new worldfile was used to replace the 

corresponding value in the old worldfile. In this way, land use change was integrated into 

model configuration. 
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3.2.4.3 Future projection results analysis 

We used boxplots to show multiple temporal streamflow distribution 

characteristics under all climate change and LUCC scenarios. To test our hypothesis, we 

used annual streamflow standard deviations of RCPs, GCMs and LUCCs to study which 

factor was the dominant impacting factor on streamflow. This analysis further factored 

climate into RCPs and GCMs and would provide insights on climate change impacts on 

streamflow.  

 

3.3. Results 

3.3.1. Calibration and validation 

Monte Carlo simulation was used to calibrate RHESSys with 5040 parameter 

sets. Model fit was examined using the streamflow Nash-Sutcliffe efficiency value (NSE) 

relationship with each parameter (Figure 3.4). Parameter m ranged from 0 to 20 and NSE 

increased with m in this range (Figure 3.4 a). Parameter K had no uniform relationship 

with NSE and most NSE values were above zero (Figure 3.4 b). Parameter gw1 had a 

parabola relationship with NSE, with the NSE peak is in the range between 0.3 and 0.6 

(Figure 3.4 c). Like parameter m, the NSE increased with parameter gw2 (Figure 3.4 d).  

 

Based on the NSE values of all parameter sets, one parameter set with the best 

performance for streamflow was chosen, and this parameter set was used for calibration, 

validation and future projections. The best parameter set had values of 19.2 for m, 206.08 

for K, 0.299 for gw1 and 0.888 for gw2. 
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In the streamflow calibration period (01/01/1992 –12/31/1994), NSE was 0.59, 

RMSE was 1.5054 mm. In the validation period (1/1/1995 – 12/31/1998), NSE was 0.52 

(Figure 3.5), RMSE was 2.1031 mm and the R2 is 0.526 (Figure 3.6). Streamflow NSE 

and RMSE for each individual calendar year in the calibration and validation period was 

calculated (Table 3.2). In the calibration period, year 1994 reached the highest NSE 

Figure 3.4: Daily streamflow NSE relationship with the 5040 calibrated parameter sets (m, K, gw1, 

and gw2) in the calibration period (1992.1.1 – 1994.12.31). (a) Parameter m. (b) Parameter K. (c) 

Parameter gw1. (d) Parameter gw2. 
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(0.77) and lowest RMSE (1.1873 mm) and year 1993 achieved the lowest NSE (0.41) 

and highest RMSE (1.8737 mm). In the validation period, the lowest NSE (0.41) occurred 

at the year 1996, and the highest NSE (0.61) was in the year 1998. The highest RMSE 

(2.5737 mm) occurred at the year of 1996, which was consistent with the lowest NSE; 

the lowest RMSE (1.4655) occurred at the year of 1995, which was different with the 

highest NSE year (1998). 

 

 

Table 3.2: Streamflow NSE value for each individual year for the calibration and validation years. 

Calendar year 1992 1993 1994 1995 1996 1997 1998 
NSE 0.58 0.41 0.77 0.52 0.41 0.48 0.61 
RMSE(mm) 1.3710 1.8737 1.1873 1.4655 2.5737 1.7771 2.3993 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.5 Simulated and observed streamflow for calibration and validation periods. 
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3.3.2. Projected streamflow 

Annual streamflow showed great variability during the projected period of 2021 

– 2050 under all climate and land use scenarios (Figure 3.7). Under the same GCM, all 

land use scenarios had similar annual streamflow patterns for the same RCP, although 

with some variation. Under the same LUCC scenario, different GCMs had different 

annual streamflow patterns and fluctuation magnitudes (Figure 3.7). This indicates that 

climate change had larger impacts on annual streamflow than LUCC in Missisquoi River 

watershed during the period of 2021 – 2050. 

 

 

Figure 3.6 Scatter plot for streamflow 
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Annual streamflow boxplots also showed climate scenarios had a stronger 

influence than LUCC (Figure 3.8). For the same GCM and RCP, annual streamflow 

boxplots showed similar patterns under different LUCC. Under all LUCC scenarios, 

ccsm4 had a median annual flow of around 1.4 ×109 m3 with a narrow interquartile 

range for all RCPs; gfdl-esm2m had a median annual flow of around 1.4 ×109 m3 but 
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Figure 3.7 Projected annual streamflow under different climate change and LUCC scenarios from 

2021 to 2050 
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with a bigger interquartile range for all RCPs; mri-cgcm3 had higher median annual flow 

of around 1.5 ×109 m3 with a median interquartile range in the 3 GCMs.  

 

 

 

 

Annual streamflow boxplots for the 3 decades of 2021 – 2050 were studied under 

all climate and LUCC scenarios (Figure 3.9). In each decade, streamflow under the same 

climate scenario showed similar patterns under different LUCC, but quite different 

patterns under different GCMs (Figure 3.9). This indicated climate had a stronger 

influence on than LUCC in each of the 3 decades.  

 

Generally, under all scenarios, there is no clear increasing or decreasing 

streamflow trend from the first decade to the third decade, which is consistent with the 

lack of an upward trend in projected annual stream flows across all three decades (Figure 

3.7).  

 

Figure 3.8 Projected annual streamflow boxplot under different climate change and LUCC 

scenarios for the period of 2021 – 2050 
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In addition to annual streamflow, I studied quarterly streamflow to examine 

potential within year changes in streamflow (e.g., in wintertime or low summer flows 

Figure 3.10 and Figure 3.11).  Under BAU and proForest, all climate scenarios had an 

increasing trend from quarter 1 (January to March) to quarter 4 (October to December; 

Figure 3.10), with quarter 1 streamflow significantly lower than other quarters. ProAg 

shows different characteristics. Under proAg, quarter 1 to quarter 3 (July to September) 
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Figure 3.9 Projected annual streamflow boxplot under different climate change and LUCC 

scenarios for decades of 2021 – 2030, 2031 – 2040 and 2041 – 2050 



42 

 

streamflow was similar under all climate scenarios, but quarter 4 had higher stream flows 

than the other 3 quarters.  

 

GCMs also predicted different quarterly extremes. The ccsm4 and gfdl-esm2m 

models had more extremes in quarter 3 under all LUCCs. The mri-cgcm3 model had the 

most extremes in the quarter 2.  
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Figure 3.10 Projected quarterly streamflow boxplot under different climate change and LUCC scenarios. 

Q1 is from January to March, Q2 is from April to June, Q3 is from July to September, and Q4 is from 

October to December 
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Figure 3.11 shows the quarterly streamflow in each of the three decades between 

2021 and 2050. For each RCP, all 3 GCMs results were combined to represent each RCP 

result.  In all decades, under BAU and proForest, streamflow generally increased from 

quarter 1 to quarter 4 under all RCPs. Under proAg, streamflow in quarters 1 to 3 were 

similar, but quarter 4 had higher streamflow than the other 3 quarters.  
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Figure 3.11 Projected quarterly streamflow boxplot under different LUCC scenarios for decades 

of 2021 – 2030, 2031 – 2040 and 2041 – 2050, for each RCP scenario, all 3 GCMs data were 

merged in each box 
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We used annual flow standard deviation to compare the impact of LUCC, RCP 

climate scenarios, and GCM model choice on streamflow (Figure 3.12). The standard 

deviation of annual streamflow from 2021-2050 for the 3 LUCCs in each RCP across all 

GCMs was relatively small (all medians < 0.5 ×108 m3). The standard deviations for 

annual streamflow for the RCPs (within each LUCC) and for the GCMs (within each 

RCP) were substantially higher than for LUCCs (medians were approximately 1.5 ×108 

m3), indicating that substantially more variation in streamflow was associated with 

climate scenarios and GCM climate projections. The standard deviation spread of 

LUCCs was shorter than that of RCPs and GCMs, indicating the impacts on streamflow 

of LUCCc were stable across the 30 years compared with RCPs and GCMs. One notable 

thing was that the standard deviation medians and spreads were similar between RCPs 

and GCMs, meaning the impacts on streamflow of RCPs and GCMs were comparable.  
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Figure 3.12 Standard deviation of annual streamflow (2021-2050) by land use cover change (LUCC) 

scenarios, representative concentration pathway (RCP) climate scenarios, and general circulation 

models (GCMs). The top row shows the standard deviation of LUCCs, the middle row shows the 

standard deviation of RCPs and the bottom row shows the standard deviation of GCMs  

 

  

 

 

 

3.4. Discussion 

3.4.1. RHESSys performance on streamflow  

Although RHESSys has been widely used for watershed simulation (Godsey et 

al., 2014; Hanan et al., 2017; Hwang et al., 2008; Martin et al., 2017; Saksa et al., 2017), 

and showed RHESSYs could capture streamflow dynamics, our study showed RHESSys 
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had low performance in some years (Table 3.2). Guilbert (2016) had similar problems 

using RHESSys in the Mad River watershed of Vermont, US. He found that NSEs were 

greater than 0.5 for only 9 of the 49 validation years. This unstable simulation 

performance suggests that multiple years’ data are necessary for RHESSys calibration 

and that a well-calibrated RHESSys model may still perform poorly in any given 

simulation year. This situation likely leads to uncertainty surrounding model results and 

the appropriate level of reliance on these results for predicting the impacts of climate 

change and LUCC on streamflow. Unfortunately, RHESSys does not come with a 

diagnostic tool to analyze model uncertainty. Here, we attempt to analyze the potential 

sources of uncertainty.  

 

The first reason is that RHESSys combines processed-based and empirical water 

cycle frameworks for ground water. Specifically, the empirical framework is the simple 

reservoir model for deep ground water, while the process-based framework is for ground 

water. The problem here is that while the process-based ground water framework is based 

on real-world processes, the deep ground water seems to only function for tuning 

streamflow – it cannot be mapped to a real-world process. However, RHESSys 

calibration relies heavily on the deep ground water parameters (gw1 and gw2). The 

outcome of the calibration is that even though the model can capture the observations 

during the calibration period, the calibrated model could still perform poorly in validation 

or simulation years because the calibrated model does not reflect real-world processes.  
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The second reason is the mismatch between the input data temporal scale and 

simulation time step. In this study, precipitation is daily, but RHESSys runs hourly 

processes internally. When lacking hourly time step data, RHESSys assumes the 

precipitation is evenly distributed throughout the day. This assumption will 

underestimate rain intensity, especially for storms, and likely reduces the ability of the 

model to capture observed high streamflow.  

 

Therefore, future model development should improve the water cycle framework 

by replacing the empirical module with a process-based module. Furthermore, for 

precipitation input data, hourly data should be prioritized, especially for investigations 

of extreme precipitation events. 

 

 

3.4.2. Climate change and LUCC impacts on streamflow in Missisquoi river 

watershed  

Using projected RCP climate scenarios and LUCC simulations generated by an 

agent-based land transition model (Y. Tsai et al., 2015), we found that annual discharge 

was more sensitive to climate than to LUCC. Annual discharge under the same LUCC 

with different climate data had quite different annual discharge patterns (Figure 3.7 and 

Figure 3.12). Discharge under different LUCC scenarios with the same climate data had 

similar patterns, indicating annual discharge is relatively insensitive to land use change 

at this time scale. Furthermore, streamflow showed little variation in response to LUCC, 

while it showed large variability in response to climate data from the RCPs and different 
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GCMs (Figure 3.12). This suggests that streamflow is more sensitive to climate than to 

LUCC, despite the fact that no overall trend or response to the RCPs was observed over 

the 2021-2050 period. This result is consistent with Ling et al. (2015) and  Alaoui et al. 

(2014), who found that climate change rather than LUCC were primarily responsible for 

the hydrological variations. Although land use change can alter ET in the water cycle, 

which could further influence discharge, compared with climate influence (i.e., direct 

precipitation input and temperature change), the LUCC scenarios did not play a dominant 

role in altering discharge.  

 

A further question we explored was the impacts of climate change and GCMs. 

Climate change is represented as RCPs. However, future climate projection is produced 

by a specific GCM. This means climate change impacts on streamflow carry over the 

bias from GCM. Therefore, it is necessary to use multiple GCMs to study the impacts of 

climate change. In this study, we used 3 GCMs to study and all the 3 GCMs showed the 

annual streamflow responded RCPs stronger than LUCC, which meant climate change 

had stronger impacts on streamflow than LUCC. However, we noticed the standard 

deviation of GCMs were comparable with that of RCPs. This means GCMs options could 

lead to big variances. Multiple GCMs should be used to provide an uncertainty range 

from GCMs.   

 

While there were no overall responses of streamflow to the different RCPs, there 

were some indications that the number of extreme flow events may increase over time in 

the various RCPs. DESCRIBE THESE RESULTS BRIEFLY HERE. Also, why no 
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overall response to the RCPs if streamflow is so responsive to climate? Perhaps because 

the scenarios do not diverge substantially from one another by 2050. Perhaps also 

because of the variation between GCMs in predicting the different scenarios.  

 

 

3.4.3. Limitations 

Although my study followed the advanced philosophy of simulating real-world 

dynamic processes, there are still some limitations. The limitations can be categorized 

into three main categories: model input data, RHESSys intrinsic processes and simulation 

processes.  

 

Some model input data limitations are common across model applications, but 

some are specific to this study. First, spatial data aggregation is based on majority rule 

and this process may have caused some information loss, e.g., regarding soil texture and 

land use. Second, climate reanalysis data may have contained inaccuracies. The GCM 

climate data were downscaled to 1 / 8 degree. Winter et al. (2016) pointed the downscaled 

data absolute bias was noisy at low elevations, and the climate data could be 

underestimated or overestimated without clear relationship with elevation. The error in 

precipitation can directly affect watershed water input and reflect in the streamflow. 

Gombault et al. (2015) found annual precipitation increases of 7 to 12% resulted in 

streamflow increases of 11 to 21% in an agricultural watershed study of southern Quebec 

(Canada). These two limitations are common across model simulations. The specific 

limitation to this study is that lack of hourly precipitation input can’t reflect precipitation 



50 

 

intensity, and further affect infiltration and overland flow processes, especially for 

storms.  

 

There are several RHESSys intrinsic limitations. The first one is RHESSys uses 

empirical reservoir ground water model, which was mentioned in section 3.4.1. The 

second limitation is that RHESSys does not include in-stream routing processes, once 

water reaches any stream, the water automatically exits from the outlet. For small 

watersheds, this assumption may not result in large errors, because the time for water to 

travel to the outlet is short. However, for large watersheds, precipitation in one day may 

reach the outlet in the next day. This mismatch between simulation and observation can 

make shift simulation streamflows from observed streamflows by several days. The third 

limitation is that RHESSys does not dynamically change CO2 concentration and does not 

fully integrate the interactions between climate and vegetation. High CO2 concentration 

reduces leaf stomatal conductance and affects plant transpiration, which further alters 

streamflow. Luo et al. (2013) integrated CO2 effects on plants in the SWAT model and 

showed that doubling CO2 reduced evapotranspiration (ET) by 10.6% for agricultural 

land, 5.7% for deciduous forest, and 4.2% for rangeland. Therefore, long-term simulation 

projections without dynamic CO2 change can overestimate ET and underestimate 

streamflow. Growing season length increases due to climate change in mid-high latitude 

of the northern hemisphere has also been documented since the 1960s (Jeong, Ho, Gim, 

& Brown, 2011; Kolarova, Nekovar, & Adamik, 2014; Menzel & Fabian, 1999; Piao, 

Friedlingstein, Ciais, Viovy, & Demarty, 2007), the longer growing season length could 

also potentially impact the watershed water cycle through water uptake and ET. 
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RHESSys uses fixed growing season starting day and end day to determine the growing 

season length, thus the fixed growing season length will not interact with future climate 

change, which will affect ET and further affect streamflow. 

 

Our simulations are also limited by abrupt LUCC transitions during the land use 

change year. In this study, we changed patch land use code based on a new land use map 

in the transition year. This can make the patches with new land use characteristics. 

However, we kept the patch state variables as the same as before land use change. For 

example, if a patch changed from grass land to forest land, the patch will carry grass 

patch states into forest patch. And grass pools will go to corresponding forest pools. If 

forest pools are not balanced well, the forest patch growth could be affected in the next 

few years.  

 

These limitations necessarily result in streamflow uncertainly for future 

projections. To overcome this limitation, more effort needs to be put into improving 

ecosystem simulation processes in RHESSys.  

 

 

 

 

 

 

 

 

3.5. Conclusion 

 

This study coupled LUCC and climate change with 3 GCMs to study their 

impacts on Missisquoi River watershed streamflow dynamics with RHESSys. The study 
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first evaluated RHESSys performance on streamflow. The model performed moderately 

well: simulated daily streamflow had an NSE of 0.59 (0.41 – 0.77 for individual year) 

and RMSE of 1.5054 mm (1.1873 – 1.8737 mm for individual year) in the calibration 

period, NSE of 0.52 (0.41 – 0.61for individual year) and RMSE of 2.1031 mm (1.4655 

– 2.5737 mm for individual year) in the validation period. Second, we evaluated how 

climate change and LUCC impact on Missisquoi River watershed streamflow. Major 

results were: (i) For streamflow, medians of standard deviation of annual streamflow was 

around 1.5 × 108 m3  for RCPs and 0.2 × 108 m3 for LUCC, indicating climate had a 

stronger influence than LUCC; (ii) climate variation in the RCPs and GCMs had 

comparable influences on streamflow, and had a stronger impact on streamflow than 

LUCCs; (iii) the stronger impact of climate on streamflow suggests that future, and 

increasing, climate change will likely have a larger impact on streamflow than changes 

in LUCC; and (iv) The standard deviation of GCMs was similar to RCPs, indicating 

GCMs could be an important source of uncertainty source..  



53 

 

CHAPTER 4.   CLIMATE CHANGE AND LAND USE/COVER CHANGES 

IMPACTS ON NITROGEN LOAD IN MISSISQUOI RIVER WATERSHED 

 

4.1 Introduction 

Anthropogenic activities have greatly modified the nitrogen cycle through fixing 

nitrogen as fertilizer, which converts inert nitrogen (N2) to reactive nitrogen. By 2010, 

75% of reactive nitrogen was created on the land by human activities (Galloway et al., 

2014). The fixed reactive nitrogen increased agricultural crops yield and supported the 

growing global population (S. Seitzinger, 2008). However, fertilizer application also 

provides nitrogen sources for emission into the atmosphere as greenhouse gases (M. Gao 

et al., 2014) or transport to rivers, leading to water quality degradation (Vitousek et al., 

2009). Indeed, agricultural non-point source pollution is a main nutrient source for 

surface water. Therefore, agricultural land as a nutrient source has received great 

attention (M. Gao et al., 2014; Jiang et al., 2014).  

 

At the same time, the climate has been warming, especially since 1980, and the 

global warming trend is projected to continue into the 21st century, which potentially 

dramatic changes in future temperature and precipitation patterns (Pachauri et al., 2014). 

Hydrological regimes are closely related to temperature and precipitation, and some 

studies have shown that projected climate change will affect hydrological regimes in the 

future (Fan & Shibata, 2015; Zhang et al., 2015). Since hydrology is closely coupled with 

nitrogen transport, understanding how hydrological regime change will affect nitrogen 

export is significant for future adaptation. Jeppesen et al. (2011) used the IPCC A2 

scenario to study the climate change effects on nitrogen loading and found that the 
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projected climate change will likely increase the nitrogen load to lakes in Northern 

Europe at the end of 21st century (2071 – 2010). A study in Eastern Canada showed 

projected climate change will not only increase annual nitrogen load, but also lead to 

more nitrogen load in earlier spring by 2100 (Dayyani et al., 2012).  

 

Land use/cover change (LUCC) is another important factor influencing 

watershed nitrogen loads (El-Khoury et al., 2015; Fan & Shibata, 2016). Different land 

use types have different nitrogen cycling pathways and characteristics: forest and grass 

land can intercept and absorb nitrogen; crop land receives fertilizer, making crop land a 

potential nitrogen source; urban lands with impervious area cannot retain as much 

nitrogen as vegetated land.  Thus, land use change from one to another type leads to 

different nitrogen cycling pathways and to further changes in watershed nitrogen outputs.  

 

Climate change and LUCC are likely to occur jointly in the future (Ling et al., 

2015). Therefore, in this study, we couple LUCC from an agent-based land transition 

model – Interactive Land Use Transition Agent-Based Model (ILUTABM) (Y. Tsai et 

al., 2015) – with climate change projections to study their joint impacts on nitrogen loads 

in the Missisquoi river watershed in Vermont, US. We expect LUCC to have larger 

impacts on nitrogen loading than climate change scenarios due to fertilizer application in 

cropland. Thus, the more agricultural land in the land use scenarios, the more nitrogen 

load the watershed will output. Using a spatially explicit model to understand the relative 

impacts of climate change and LUCC on watershed nitrogen loading will improve will 

support stakeholder decisions around land management and policy making. The novelty 



55 

 

of this study is coupling the climate change with dynamic LUCC process, and our 

experiment design can investigate the relative importance of LUCC, climate change due 

to RCPs and GCMs.  

 

 

4.2. Data and methods 

4.2.1. Study area 

The Missisquoi River watershed is located along the border of the US and Canada 

and covers 2,200 km2 (Figure 4.1). The altitude in this area ranges from 17 to 1172m. In 

2001, the predominant land cover was forested (~ 70%). Pasture/hay land cover was 

~14% and crop land cover was ~5%. The Missisquoi River drains into Missisquoi Bay, 

which is in the northern part of Lake Chaplain.  

 

A USGS streamflow gauge (#04294000) is located at 44°55'00" N and 73°07'44" 

W (North American Datum 1927) near the Missisquoi river outlet. The gauge has 

recorded daily streamflow from March 1st, 1990 until now. The Lake Champlain Long-

term Monitoring program also set up a sampling point at the streamflow gauge and 

recorded nutrient data from 1990 – Now 

(https://anrweb.vermont.gov/dec/_dec/LongTermMonitoringLakes.aspx). 

 

 



56 

 

 

Figure 4.1 Missisquoi river watershed location, USGS gauge #04294000 is located at the outlet of 

Missisquoi river 

 

 

4.2.2. RHESSys model description 

We used the Regional Hydro-Ecologic Simulation System (RHESSys) (C. L. 

Tague & Band, 2004), version 5.20 for this study. RHESSys is a Geographical 

Information System (GIS)-based hydro-ecological model, simulating watershed water, 
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carbon and nutrient dynamics. RHESSys adopts a hierarchical structure to represent 

landscapes, which includes basins, hillslopes, zones, patches and canopy strata.  

 

The basin is the whole watershed area. Stream and nutrient routing processes 

occur at this level, and the routing process iteratively occurs from the highest patch to 

the lowest patch. The hillslope is the area draining into one side of a stream reach. 

Groundwater lateral flow is processed at the hillslope level. Deep ground water is 

simulated as a linear reservoir model. On a daily basis, a fraction of the deep ground 

water enters its connected stream reach as base flow. Zones are areas with a similar 

climate. Meteorological data is processed at the zone level by linking the zone with a 

base station, which provides climate data. The MT-CLIM model (S. W. Running et al., 

1987), which uses one climate base station linked to a zone, the topography, slope and 

aspects etc. to estimate each zone’s meteorological data, is integrated at the zone level. 

The patch is the smallest spatial unit and the basic modeling unit in RHESSys. Patches 

represent homogeneous soil and land cover characteristics. Vertical water movement is 

simulated at the patch level, including infiltration in the root zone (for vegetated patches) 

and unsaturated zone, and recharge to the saturated zone. Soil nutrient fluxes are also 

simulated at the patch level, such as plant uptake, leaching, decomposition, nitrification 

and denitrification. Canopy strata have the same spatial area as patches but represent the 

vertical aboveground vegetation layers. BIOME-BGC (Steven W Running & Hunt, 

1993) is integrated at the canopy strata level to simulate plant growth and element fluxes.  
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RHESSys provides a tool, GRASS2WORLD in GRASS (Geographic Resources 

Analysis Support System) GIS environment, that partitions the landscape into different 

structure levels using a Digital Elevation Model (DEM), land cover map, and soil texture, 

and then generates a text file called worldfile, which represents the landscape structure. 

This worldfile is used as an input file to RHESSys. 

 

 

4.2.3. Data 

4.2.3.1 Climate data  

RHESSys requires at least daily minimum temperature (Tmin), daily maximum 

temperature (Tmax) and daily precipitation as climate data input. Historical climate data 

are from Daymet version 3 (Thornton et al., 2017), which provides 1-km grid daily data 

from 1980 to 2016 for North America. Because future projected downscaled climate data 

from general circulation models (GCM) have much courser spatial resolution (1/8 

degree), Daymet data were resampled at 1/8 degree to be consistent with projected 

climate data (Figure 4.2).  

 

Three GCM models were chosen based on the model credibility for Northeast 

United States (Thibeault & Seth, 2015):  ccsm4, mri-cgcm3, and gfdl-esm2m. Each GCM 

has four projected climate datasets from 2020 – 2050 based on the four Representative 

Concentration Pathways (RCPs): RCP2.6, RCP4.5, RCP6.0 and RCP8.5. All climate 

data were downscaled to 1/8-degree bias correction with constructed analogs dataset (Zia 

et al., 2016). Thus, in total, 12 climate scenarios were used for future climate data.  
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Figure 4.2 RHESSys input data. (a). 1/8 degree grid data used, the grid center points were used to 

generate Thiessen polygons for spatial climate data input. (b). Missisquoi river watershed land cover, 

U.S. side is from the year 2001, and Canada side is from the year 2000.  (c). Missisquoi river 

watershed surface soil texture map. 

 

 

 

4.2.3.2 Land use/cover data 

The land use/cover map combined the US portion (National Land Cover 

Database, 2001) and Canadian portions (circa 2000, http://www.geobase.ca/) of the 

Missisquoi River watershed. This land use/cover map was used for RHESSys calibration 

with historical climate data and gauge data (Figure 4.2).  

 

For the future period (2020 – 2050), we used the ILUTABM model (Y. S. Tsai et 

al., 2015) to generate three different land use scenario maps (Figure 4.3): Business As 

Usual (BAU), Prefer Forest (proForest) and Prefer Agriculture (proAg). The ILUTABM 

model can output land use map every year, but for this study, we outputted one land use 

map every 10 years. Thus, for each land use scenario, there were three land use maps for 

http://www.geobase.ca/
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the period of 2020 to 2050 (Figure 4.3). Prior to model input, all land use/cover data were 

reclassified as RHESSys land use/cover types. 

 

 

Figure 4.3 Projected land use of the year 2021, 2031 and 2041 for the three land use scenarios: 

Business As Usual, prefer forest and prefer agriculture. 
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4.2.3.3 Other input data 

For the Missisquoi watershed, a Digital Elevation Model (DEM) of 1 arc-second 

(approximate 30 meters) from the American National Elevation Dataset was used (Figure 

4.1).  The DEM was used to generate slope, aspect, west and east horizon grid data. 

Surface soil texture data were from Vermont Center for Geographic Information 

(http://vcgi.vermont.gov/) and Soil Landscapes of Canada 

(http://sis.agr.gc.ca/cansis/nsdb/slc/index.html). Agriculture land management practice 

data (fertilizer/manure application, harvest date) were from surveys (Department of Plant 

and Soil Science, the Universithy of Vermont). Due to lack of spatial agriculture land 

management practice data, we assumed all agriculture land had the same management 

practices. Atmospheric nitrogen deposition data was from National Atmospheric 

Deposition Program (http://nadp.slh.wisc.edu/). The total nitrogen deposition for 

Missisquoi river watershed is 1g N/m2/year.  

 

 

 

4.2.4. Experiment design for climate change and LUCC impacts assessment 

I spun-up the RHESSys model for about 1500 years to let plants and soil carbon 

and nitrogen pools reach equilibrium states. Then, the spun-up model was calibrated for 

streamflow, streamflow NO3-N and streamflow NH4-N at the outlet of Missisquoi river 

watershed. Finally, with the calibrated parameter set, the model was run with different 

climate and LUCC scenarios. In this study, 12 climate scenarios (three GCMs with four 

http://vcgi.vermont.gov/
http://sis.agr.gc.ca/cansis/nsdb/slc/index.html
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RCPs for each GCM) and 3 LUCC scenarios were used, so 36 total climate-LUCC 

scenarios were used. 

 

4.2.4.1 Calibration and validation 

Four parameters were used to calibrate RHESSys: m, K, gw1 and gw2. m is the 

decay of hydraulic conductivity with depth (dimensionless), K is the surface lateral 

hydraulic conductivity (m/day), gw1 is the proportion of net inflow water moving to the 

deep ground water store (dimensionless), and gw2 is the proportion of water from deep 

ground water store moving to the stream. The four parameter ranges used in this study 

were m (0 – 0.2), K (0 – 300), gw1 (0 – 0.9) and gw2 (0 – 0.9) (Saksa et al., 2017). 

 

Monte Carlo simulations were used to calibrate RHESSys. 5040 parameter sets 

were generated using the Latin-Hypercube sampling technique with even distribution for 

each parameter over the parameter range. The 5040 parameter sets were used to drive 

RHESSys model on NCAR Cheyenne cluster (Laboratory, 2017). The Nash-Sutcliff 

coefficient (NSE) was used to assess parameter sets performance.  

 

Due to data availability, streamflow, streamflow NO3-N and streamflow NH4-N 

were calibrated and validated with different years’ data at a daily timestep (Table 4.1). 

Model fit during the calibration and validation periods was assessed using the Naash-

Sutcliffe efficiency value (NSE) and RMSE. NSE is in the range of −  to 1, NSE = 1 

means perfect match and NSE = 0 means the model performance is equivalent to the 

average of observed data, and NSE < 0 means model performance is worse than the 
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average of observed data. A threshold value of 0.6 for daily streamflow NSE is 

considered good fit (Guilbert, 2016). RMSE measures the average differences of 

simulated and observed data. The smaller the better.  

 

 

Table 4.1 Calibration and validation period 

  Calibration  Validation  

Runoff 1992.1.1 - 1994.12.31 1995.1.1 - 1999.12.31 

NO3-N 1993.1.1 - 1993.12.31 1994.1.1 - 1994.12.31 

NH4-N 1993.1.1 - 1993.12.31 1994.1.1 - 1994.12.31 

 

 

 

4.2.4.2 Future projection under different climate and LUCC scenarios  

Once the best parameter set was determined, it was used to drive RHESSys for 

all projected scenarios. For all scenarios, the historical land use (US 2000, and Canada 

2001) was used to run 2011.1.1 to 2020.12.31 for model warm up. From 2021.1.1, 

projected land use of 2021 was used to run RHESSys until 2050.12.31. The land use map 

was updated every 10 years. The same processes were applied to other land use transition 

years.   

 

In RHESSys, the worldfile is used to describe basin states. Land use change can 

affect 3 items in the worldfile: the base station a patch attached to, patch land use type, 

and patch vegetation type. The base station controls agricultural land management 

practices, such as fertilizer application. Land use type controls common land 
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management configurations and vegetation type controls vegetation physiology 

characteristics. Changing these 3 items reflects the LUCC in the RHESSys model.  

 

At the land use transition year, a new worldfile with a new land use map was used 

to compare with old worldfile (with old land use map). If any of the 3 items were different 

for the same landscape unit, the item value from new worldfile was used to replace the 

corresponding value in the old worldfile. In this way, land use change was integrated into 

model configuration. 

 

 

4.2.4.3 Future projection results analysis 

We used boxplots to show multiple temporal streamflow distribution 

characteristics under all climate change and LUCC scenarios. To test our hypothesis, we 

used annual streamflow standard deviations of RCPs, GCMs and LUCCs to study which 

factor was the dominant impacting factor on streamflow. This analysis further factored 

climate into RCPs and GCMs and would provide insights on climate change impacts on 

streamflow.  

 

 

4.3. Results 

4.3.1. Calibration and validation 

Monte Carlo simulation was used to calibrate RHESSys with 5040 parameter 

sets. Model fit was examined using the streamflow NSE relationship with each parameter 
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(Figure 4.4). Parameter m ranged from 0 to 20 and NSE increased with m in this range 

(Figure 4.4 a). Parameter K had no uniform relationship with NSE and most NSE values 

were above zero (Figure 4.4 b). Parameter gw1 had a parabola relationship with NSE, 

with the NSE peak is in the range between 0.3 and 0.6 (Figure 4.4 c). Like parameter m, 

the NSE increased with parameter gw2 (Figure 4.4 d).  

 

Based on the NSE values of all parameter sets, the parameter set with the best 

overall NSE value for streamflow, NO3-N and NH4-N was chosen, and this parameter set 

was used for calibration, validation and future projections. The parameter values for the 

selected set were 19.2 for m, 206.08 for K, 0.299 for gw1 and 0.888 for gw2. 
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During the streamflow calibration period (01/01/1992 –12/31/1994), NSE was 

0.59 and RMSE was 1.5054 mm. In the validation period (1/1/1995 – 12/31/1998), NSE 

was 0.52, RMSW was 2.1031 mm and the R2 was 0.526 (Figure 4.6 a).  

 

Figure 4.4 Daily streamflow NSE relationship with the 5040 calibrated parameter sets (m, K, gw1, 

and gw2) in the calibration period (1992.1.1 – 1994.12.31). (a) Parameter m. (b) Parameter K. (c) 

Parameter gw1. (d) Parameter gw2. 
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Mineral nitrogen fluxes were calibrated with 1993 data and validated with 1994 

data (Figure 4.5 b-c). In both calibration and validation periods, simulated NO3-N 

captured the general observed NO3-N trend (Figure 4.5 b). The RMSE was 0.0032 g/m2 

in the calibration period and 0.0020 g/m2 in the validation period. However, in the 

validation period, the R2 was 0.007 (Figure 4.6 b). The low R2 value was due to several 

simulated values that were lower than the observed values in April of 1994. Similar to 

NO3-N, simulated NH4-N generally was consistent with observed NH4-N (Figure 4.5 c). 

The RMSE was 0.00025 g/m2 both in the calibration period and validation period. In the 

validation period, the R2 was 0.494.  
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Figure 4.5 Simulated and observed data for calibration and validation periods. (a) streamflow. (b) 

NO3-N. (c) NH4-N. 
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4.3.2. Projected NO3-N 

Annual NO3-N load (Figure 4.7) showed similar patterns and magnitudes under 

BAU and proForest LUCC scenarios, fluctuating around 5 ×105 kg. The annual loads 

under proAg scenario were two times higher than BAU and proForest and had large 

variance during the period of 2021 – 2050.  In contrast, the RCPs had little impact on N 

lodading, either among scenarios or over time (Figure 4.7 and Figure 4.8). Thus, LUCCs 

Figure 4.6 Scatter plot for streamflow, NO3-N, NH4-N and DOC in the validation period. 

(a) streamflow. (b) NO3-N. (c) NH4-N. 
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(especially proAg) had a much stronger influence on annual NO3-N load than climate 

change.  
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Figure 4.7 Projected annual NO3-N under different climate change and LUCC scenarios from 2021 

to 2050 
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The median annual NO3-N load from 2021 – 2050 (Figure 4.8) for the proAg 

scenario was around 2 times larger than the BAU and proForest scenarios. BAU and 

proForest annual loads had similar patterns under all climate scenarios. Under the proAg 

scenario, annual median loads in the gfdl-esm2m and mri-cgcm3 models were slightly 

higher than in the ccsm4 model.  

 

 

In all climate scenarios, median annual loads for the BAU and proForest scenarios 

showed similar distribution patterns in all the three decades with median of around 5 ×

105 kg (Figure 4.9). Under the proAg scenario, both the median and variance were larger 

than under BAU and proForest scenarios (Figure 4.9). For the ccsm4 and gfdl-esm2m 

models, annual loads in decades of 2031 – 2040 and 2041 – 2050 showed a slight increase 

compared with the decade of 2021 – 2030. However, the mri-cgcm3 did not show this 

pattern.  

Figure 4.8 Projected annual NO3-N load boxplot under different climate change and LUCC scenarios 

for the period of 2021 – 2050 
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Quarterly NO3-N loads between 2021 and 2050 in all scenarios showed a 

consistent pattern although with different magnitudes (Figure 4.10). The highest loads 

were in Q1 and Q4 and lowest loads in Q2 and Q3 (i.e. parabolic). Otherwise, trends 

were similar to the annual loads. All climate scenarios showed similar distributions in 

the same quarter. Under proAg, quarterly loads were higher than the corresponding 

quarterly loads of BAU and proForest, and with bigger ranges. 
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O
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) 

GCM models 

Figure 4.9 Projected annual NO3-N boxplot under different climate change and LUCC scenarios 

for decades of 2021 – 2030, 2031 – 2040 and 2041 – 2050 
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The 3 GCM models (ccsm4, gfdl-esm2m and mri-cgcm3) result were grouped on 

RCPs to reduce feature dimensions for quarters’ loads in each decade (Figure 4.11). 

Under all LUCCs, medians of Q1 to Q4 also form parabola shape in the 3 decades, with 

Q1 and Q4 higher than Q2 and Q3.  

 

Under BAU and proForest, quarterly loads showed similar distribution in the 3 

decades for all RCPs. Under proAg, generally quarterly loads in the decade of 2031 – 
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Figure 4.10 Projected quarterly NO3-N boxplot under different climate change and LUCC scenarios. 

Q1 is from January to March, Q2 is from April to June, Q3 is from July to September, and Q4 is 

from October to December 
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2040 and 2041 – 2050 were higher than the corresponding quarterly loads in the decade 

of 2021 – 2030. In the same decade and LUCC, different RCPs had similar load 

distributions for the same quarter, indicating RCPs had slight influences on quarterly 

loads.  
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Figure 4.11  Projected quarterly NO3-N boxplot under different LUCC scenarios for decades of 

2021 – 2030, 2031 – 2040 and 2041 – 2050, for each RCP scenario, all 3 GCMs data were merged 

in each box. 
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We used the standard deviation of annual NO3-N loads to compare which factors 

– LUCC scenario, RCP scenario, or GCM choice – were dominant for creating variability 

in NO3-N loads during 2021 - 2050 (Figure 4.12). Most of the variation in NO3-N loads 

was responding to LUCC scenario (medians standard deviation was around 3 ×105 kg). 

Much less variation in NO3-N loads was in response to the climate data associated with 

the RCPs and GCMs (Figure 4.12). However, there was more climate-induced variation 

in NO3-N loads in the proAg scenario than in the proForest or BAU scenarios (Figure 

4.12). BAU and proForest had similar, and relatively low standard deviations in response 

to RCPs and GCMs when compared to the proAg standard deviations. Our results 

indicate that LUCCs are the dominant factor for NO3-N loading rather than responses to 

climate. However, the wider spread and higher median standard deviations in the proAg 

scenario indicates that future climate change could play an important role in the proAg 

LUCC.  
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4.3.3. Projected NH4-N 

Annual NH4-N loads were differentially impacted by the different LUCCs 

(Figure 4.13), with different trends between 2021 – 2050. Under BAU, annual NH4-N 

loads increased slightly in all climate. Under proAg, annual NH4-N loads dramatically 

increased from approximately 2.2×105 kg in 2021 to approximately 3.2 ×105 kg in 
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Figure 4.12 Annual NO3-N standard deviation of different factors. The top row shows the standard 

deviation of LUCCs, the middle row shows the standard deviation of RCPs and the bottom row 

shows the standard deviation of GCMs 
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2050 under all climate scenarios. Under all climate scenarios, the rate of the proAg 

increase was steeper from 2021 to 2030 than in subsequent decades. Under proForest, 

annual NH4-N loads fluctuated around 2.4×105 kg without increasing trends in all 

climate scenarios.  
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Figure 4.13 Projected annual NH4-N under different climate change and LUCC scenarios from 2021 

to 2050 
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Median annual NH4-N loads for the period of 2021 – 2050 (Figure 4.14) were 

greatest for proAg, followed by BAU and then proForest. The same order also applied to 

annual loads spread under the 3 LUCCs. The three GCMs showed similar trends within 

each LUCC. Similarly, annual loads were similar among all four RCPs. These results 

indicate that LUCCs had a stronger influence on NH4-N load than climate during 2021 – 

2050.  

 

 

 

 

Annual loads in each decade between 2021 - 2050 revealed some decadal patterns 

(Figure 4.15). Under BAU, annual NH4-N loads increased slightly from the 1st decade to 

the 3rd decade. Under proAg, annual NH4-N loads increased sharply from the 1st decade 

to the 3rd decade. Under proForest, annual NH4-N loads were similar across all three 

decades. One notable characteristic is that the variation in annual NH4-N loads in the 1st 

decade was wider than the 2nd and 3rd decades under proAg scenario.  

 

 

 

Figure 4.14 Projected annual NH4-N load boxplot under different climate change and LUCC 

scenarios for the period of 2021 – 2050 
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Quarterly NH4-N loads for 2021 – 2050 under all climate and LUCC scenarios 

were lowest in Q2, which was consistent with quarterly NO3-N load characteristics 

(Figure 4.16). Under the same LUCC, however, there were no substantial differences in 

quarterly NH4-N loads among the different climate scenarios for the same quarter (Figure 
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Figure 4.15 Projected annual NH4-N load boxplot under different climate change and LUCC 

scenarios for decades of 2021 – 2030, 2031 – 2040 and 2041 – 2050 
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4.16). Under the same climate scenario, quarterly load under proAg was the largest, with 

BAU as the 2nd largest, and proForest as the lowest.  

  

 

 

Under BAU, quarterly NH4-N load generally increased slightly from the 1st 

decade to the 3rd decade for the same quarter under all RCPs; Under proAg, quarterly 

NH4-N load increased dramatically from the 1st decade to the 3rd decade for the same 
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Figure 4.16 Projected quarterly NH4-N load boxplot under different climate change and LUCC 

scenarios. Q1 is from January to March, Q2 is from April to June, Q3 is from July to September, 

and Q4 is from October to December 
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quarter under all RCPs; Under proForest, quarterly NH4-N loads were comparable in the 

3 decades for the same quarter (Figure 4.17). In the 3 decades, Q2 NH4-N loads were 

lowest compared with other quarterly loads.  

 

 

We used annual NH4-N standard deviation to compare which factors were 

dominant for producing variation in NH4-N load during 2021 - 2050 (Figure 4.18). The 

largest standard deviations were associated with LUCC (Figure 4.18). Standard 

deviations for annual NH4-N loads were much smaller for RCP scenarios and different 
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Figure 4.17 Projected quarterly NH4-N load boxplot under different LUCC scenarios for decades of 

2021 – 2030, 2031 – 2040 and 2041 – 2050, for each RCP scenario, all 3 GCMs data were merged in 

each box. 
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GCMs (Figure 4.18). However, as for annual NO3-N loads there was more climate-

induced variation for annual NH4-N loads in the proAg scenario than in the proForest or 

BAU scenarios (Figure 4.18). BAU and proForest had similar, and relatively low 

standard deviations in response to RCPs and GCMs compared to proAg, indicating that, 

while LUCCs are the dominant factor for NH4-N loading, the wider spread and higher 

median standard deviations in the proAg scenario for RCPs and GCMs indicates that 

future climate change could play an important role in the proAg LUCC.  
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Figure 4.18 Annual NH4-N standard deviation of different factors. The top row shows the standard deviation 

of LUCCs, the middle row shows the standard deviation of RCPs and the bottom row shows the standard 

deviation of GCMs 
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4.4. Discussion 

4.4.1. RHESSys performance on streamflow and nitrogen 

Although RHESSys has been widely used for watershed simulation (Godsey et 

al., 2014; Hanan et al., 2017; Hwang et al., 2008; Martin et al., 2017; Saksa et al., 2017), 

most have used it for streamflow simulation. Few have used it to study terrestrial carbon 

(Vicente-Serrano et al., 2015) or streamflow nutrient loads (Hanan et al., 2017). 

Therefore, as an eco-hydrological model, the strength of RHESSys as a biogeochemistry 

model has not been widely validated or applied. C. L. Tague and Band (2004) applied 

RHESSys in a small forest watershed for NO3-N simulation, but the simulated NO3-N 

loads were much higher than observed NO3-N – some simulated NO3-N loads were 7 

times observed loads or even higher. Hanan et al. (2017) used RHESSys to study fire 

impacts on nitrogen export in a California watershed, but simulated nitrogen export was 

not verified with observed nitrogen data.  Overall, the ability of RHESSys to accurately 

simulate watershed N loads has not been verified. 

 

We systematically evaluated RHESSys performance for simulating streamflow, 

NO3-N and NH4-N after incorporating land use and management data in Missisquoi 

River watershed. We found that, for nutrient export, model simulations generally 

captured the observed patterns, but R2 values were low during the validation period 

except for NHd-N. This indicates that RHESSys lacks some mechanisms for simulating 

nutrient processes. One possible reason for the discrepancy is that the model does not 

have a sediment module, so transport of particulate nutrients is not simulated in 

RHESSys. A second potential reason is that RHESSys has not fully incorporated nutrient 
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in-stream routing process. Thus, there are no in-stream nutrient transformations, 

including nitrogen mineralization and nitrification. The third potential reason is that, 

currently, to calculate total soil nutrient content, the vertical distribution of nutrients in 

soil is assumed to decay exponentially. In this way, when soil nutrients in one patch are 

transported to a neighbor patch through groundwater flow, the nutrient vertical 

distribution of current patch will be redistributed based on the exponential function. This 

vertical distribution of nutrients may not reflect the real nutrient vertical movement. In 

addition, RHESSys runs at a daily time step, but there is a user-defined routing time for 

one day (currently at 24 times/day) to achieve model stability. The combined effects 

could lead to nutrient export simulation errors. Therefore, future work could reconstruct 

the soil nutrient vertical distribution framework and take into account of in-stream 

routing processes to improve the nutrient export simulation results.  

 

Another potential restriction on using RHESSys to study nutrient export is that 

the model input data requires spatially explicit land management practices for 

agricultural land, such as fertilizer application date and amount, harvest date etc. The 

finest spatial-scale for land management in RHESSys is patch-level. Such extensive data 

collection may not available. In this study, we did not have sufficient land management 

data for the Missisquoi river watershed. We therefore applied our survey data from a 

subset of farmlands in the watershed to the whole watershed. In addition to the data 

sources, there is no standard procedure how to use the land management data in 

RHESSys. Future efforts should focus on improving the RHESSys biogeochemistry 

module performance. 
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4.4.2. Climate change and LUCC impacts on Missisquoi river watershed nitrogen 

export   

Using projected climate scenarios and LUCC simulations generated by an agent-

based land transition model (Y. Tsai et al., 2015), we found that LUCC was the dominant 

factor rather than climate change for NO3-N and NH4-N export. In this study, the median 

annual NO3-N load (2021 – 2050) under proAg was two times larger than the medians 

under BAU and proForest scenarios. Similarly, the median annual NH4-N load under 

proAg (2021 – 2050) was 1.16 times larger than the median under the BAU and 1.20 

times larger than the median under proForest scenario. The large impact of LUCC is 

likely because agricultural land is a large non-point nitrogen source due to fertilizer and 

manure applications (Fan & Shibata, 2015). Thus, more agricultural land means more 

nitrogen inputs to the watershed. However, NO3-N and NH4-N export did not increase at 

the same rate under the proAg scenario. NO3-N export initially increased more quickly 

than NH4-N export. This is likely because plants have uptake preference. And current 

land use change transition can change plants to unmatured states. The unmatured states 

need several years to grow and then its uptake ability grows along the time.   

 

In addition, we compared annual NO3-N and NH4-N standard deviation of 

LUCCs, RCPs and GCMs (Figure 4.12 and Figure 4.18). The standard deviation of RCPs 

and GCMs were lower than the LUCCs, indicating LUCCs were the dominant factor for 

creating variation in NO3-N and NH4-N loads rather than climate. The standard deviation 

of annual loads across RCPs was comparable to those across GCMs, indicating that 

climate impacts on nitrogen load were comparable with GCM model usage. This 
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uncertainty associated with GCM choice could mask the climate change impacts on 

nitrogen load, meaning more GCMs need to be used to reduce the uncertainty from 

GCMs. One interesting finding was that proAg scenario had higher standard deviation 

than BAU and proForest. This suggests that climate may play a more important role in 

driving nitrogen loads in proAg than in BAU or proForest.  

 

 

4.4.3. Limitations  

Although this study followed the advanced philosophy of simulating real-world 

dynamic processes, there are still some limitations. The limitations can be categorized 

into three main categories: model input data, RHESSys intrinsic processes and simulation 

process.  

 

Some model input data limitations are common across model applications, but 

some are specific to this study. First, spatial data aggregation is based on majority rule 

and this process may have caused some information loss, e.g., regarding soil texture and 

land use. Second, climate reanalysis data may have contained inaccuracies. These two 

limitations are common across model simulations. The specific limitation to this study is 

from fertilizer application data. Because spatially explicit fertilizer application data is not 

available, we assumed all agricultural land had the same land management practices. This 

could be a significant uncertainty source for simulating nitrogen export. 

 

As discussed above, intrinsic limitations for RHESSys include no stream-routing 

processes, assuming soil nutrient content always follows an exponential decay function, 
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which result in unreasonable vertical nutrient movement, no separate calibration 

procedures for nutrients and no widely verified ecosystem module performance on 

carbon and nitrogen simulation.   

 

Simulation limitations include short term observation data and LUCC transitions 

at the land use change year. Only two years of stream NO3-N and NH4-N observations 

were collected for this study. And the low determined coefficient between simulated and 

observed nutrient loadings likely introduced uncertainty.  

Our simulations are also limited by abrupt LUCC transitions during the land use 

change year. In this study, we changed patch land use code based on a new land use map 

in the transition year. This can make the patches with new land use characteristics. 

However, we kept the patch state variables as the same as before land use change. For 

example, if a patch changed from grass land to forest land, the patch will carry grass 

patch states into forest patch. And grass pools will go to corresponding forest pools. If 

forest pools are not balanced well, the forest patch growth could be affected in the next 

few years.  To overcome this limitation, more efforts need to put into ecosystem 

simulation processes in RHESSys.   
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4.5. Conclusion 

 

This study coupled LUCC and climate change to study their impacts on nitrogen 

loads in the Missisquoi River watershed with RHESSys. The study evaluated RHESSys 

performance for simulation of streamflow nitrogen loads. Although simulated nutrient 

loads generally captured the observed patterns, the R2 values were low in the validation 

period, indicating more work is needed to improve the nitrogen simulation modules. 

Another focus of this study was how climate change and LUCC might interact to impact 

on nitrogen loads in the Missisquoi River watershed. Major results were: (i) Fertilizer 

application in agricultural lands is a major source for nitrogen export, therefore, LUCC 

scenarios with more agricultural land had higher nitrogen loads. Indeed, LUCC scenarios 

had larger impacts on nitrogen loads than climate change; (ii) Climate variation in the 

RCPs and GCMs had comparable impacts on nitrogen loads, suggesting that both caused 

substantial variation in nitrogen loads; (iii) In the proAg LUCC scenario, climate had 

larger impacts on N loading than in the other two LUCC scenarios. This suggests that 

further changes in climate might have larger impacts on agricultural nitrogen loading 

than in other land use types. Our resultsindicated BAU or proForest in Missisquoi 

watershed were acceptable for Lake Chaplain water quality, while proAg would export 

too much nitrogen and lead to water quality deterioration. 
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CHAPTER 5. CLIMIATE ACHANGE AND LUCC IMPACTS ON DISSOVLED 

PHOSPHORUS USING RHESSYS-P: A NEW RHESSYS MODEL WITH 

DISSOVLED PHOSPHORUS MODULE  

 

5.1 Introduction 

Phosphorus is an essential element for life (Correll, 1998), but excess phosphorus 

entering freshwater aquatic systems can cause eutrophication, which has become a 

worldwide environmental problem (Han et al., 2011; Huang & Hong, 2010; Ulen et al., 

2007). Particulate and dissolved phosphorus (DP) are the two forms of phosphorus 

exported to aquatic systems. Particulate phosphorus is accompanied by soil erosion. 

Globally, soil erosion accounts for 2.1-3.9 Tg yr-1 organic phosphorus and 12.5-22.5 Tg 

yr-1 inorganic phosphorus flux (Quinton et al., 2010). Dissolved phosphorus is the total 

phosphorus in solution which can pass 0.45 μm filter (Haygarth & Sharpley, 2000). In 

aquatic systems, dissolved phosphorus is readily available for algal growth and can 

directly accelerate eutrophication (Ekholm et al., 1999). 

 

Non-point phosphorus sources, especially non-point agricultural sources, are 

considered major contributors to excess phosphorus loads (Zhernwei Li et al., 2015; 

Ongley et al., 2010; Ulen et al., 2007). Because agricultural land has been identified as a 

significant phosphorus source area due to fertilizer application (Fan & Shibata, 2015), 

land use/cover change (LUCC) is an important factor in determining watershed 

phosphorus loads. LUCC can also change phosphorus loadings by affecting hydrologic 

processes, which can alter the phosphorus transport processes. 
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At the same time, climate change may impact watershed phosphorus export (Fan & 

Shibata, 2015; Mehdi et al., 2015; Ockenden et al., 2017; Sha et al., 2018) by changing 

precipitation amount and patterns, which can alter phosphorus biogeochemistry and 

transport processes leading to phosphorus load change. For example, Sha et al. (2018) 

found that a hotter and wetter climate will generate more total dissolved phosphorus in a 

sub watershed of Yangtze River basin. In contrast, Mehdi et al. (2015) found that climate 

change will reduce annual total phosphorus loads by 2050 due to lower streamflow. These 

contrasting results demonstrate the complexity of climate change impacts on phosphorus 

loads. In reality, climate change and LUCC are highly likely to happen concurrently. 

Therefore, studying their combined impacts on phosphorus load can provide insights for 

future phosphorus loads. 

 

At the watershed scale, models are important tools to understand phosphorus 

export for water quality management. Generally, such models have three categories: 

Simple statistical models, semi process-based models and process-based models. A 

simple statistical model such as the Export Coefficient Model (ECM) (Malve et al., 

2012), uses a statistical relationship between land use and nutrient loads. While this 

model is easy to use, ECM is area specific and does not take account eco-hydrologic 

processes, which restricts its applications. In comparison, semi process-based models 

have moderate computation complexity and don’t need extensive input data. These 

models can simulate key phosphorus dynamics, such as sources and transport. Examples 

of semi-process-based models are the Spatially and Temporally Distributed Empirical 
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model for Phosphorus Management (STEM-P) (S. Li et al., 2017) and SPAtially 

Referenced Regression On Watershed attributes (SPARROW) (Kim et al., 2017). 

Process-based models are the most complex models but incorporate main eco-hydrologic 

processes. Models in this category can help users understand phosphorus 

biogeochemistry and provide insights for watershed management practices. Many 

climate change and land use/cover change impacts on watershed phosphorus loads have 

been studied with models in this category.  

 

RHESSys is a process-based spatially distributed eco-hydrological model, which 

has integrated watershed hydrology, carbon, and nitrogen processes. However, 

phosphorus has not been simulated in RHESSys. DayCent (Parton et al., 1998) is a non-

spatially explicit terrestrial ecosystem model that simulates carbon, nitrogen and 

phosphorus. RHESSys and DayCent have a similar carbon and nitrogen framework, 

which provides the potential to integrate the phosphorus module into RHESSys. In this 

study, we constructed a model, RHESSys-P by integrating dissolved phosphorus module 

from DayCent into RHESSys. Then, we used RHESSys-P to study how climate change 

and LUCC will jointly impact on dissolved P loads in the Missiquoi River watershed 

from 2021 to 2050. We expected LUCC would be a dominant factor impacting DP loads 

rather than climate change, because the main DP source is from agricultural land fertilizer 

application.    
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5.2 Theory and methodology of RHESSys-P 

Briefly, in the new version of RHESSys, hereafter RHESSys-P, phosphorus was coupled 

with carbon processes to simulate phosphorus interactions between plants and soil. The 

current water routing method in RHESSys was be used to route dissolved phosphorus. 

Since the current RHESSys version does not model sediment, the phosphorus module only 

includes Dissolved Inorganic Phosphorus (DIP) and Dissolved Organic Phosphorus 

(DOP). The following sections will detail the phosphorus module development, including 

infrastructure (data structure for phosphorus), soil-plant continuum processes and 

phosphorus routing processes.  

 

5.2.1 Basin routing 

Water and nutrient routing occur at the basin level in RHESSys. Within 

RHESSys, two approaches are used for routing. The first uses the quasi-spatial 

TOPMODEL (Beven & Kirkby, 1979), and the second is an explicit routing model 

adapted from Distributed Hydrology Soil Vegetation Model (DHSVM) (Wigmosta et al., 

1994). RHESSys-P uses explicit DHSVM for routing. The utility function cf 

(CREATEFLOWPATHS) in RHESSys generates the flow table, which describes patch 

connectivity.  

 

Within a basin, routing starts from the highest elevation patch and then iterates 

through all patches in the order of patch elevation (Figure 5.1). Every patch routes water 

and nutrient to its neighbor patches through subsurface and surface flow. Once the water 

and nutrients reach the stream patch, they automatically exit the basin outlet.  
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In RHESSys, there are three types of patches: land patches, road patches, and 

stream patches. However, in practice, due to the small size of road pixels, the aggregation 

process to create patches often masks out the road patches. Therefore, RHESSys-P only 

processes phosphorus routing for land and stream patches.  

 

 

 

Figure 5.1 Explicit routing scheme for RHESSys-P, adjusted from Parton et al. (1996) 
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Figure 5.2 Land patch phosphorus routing processes. a. For a specific patch (central patch), flow table 

indicates the flow direction and flow proportion to the central patch neighbors. b. Subsurface routing 

occurs at the saturated flow layer, water and phosphorus flow from the central patch to the neighbor 

patch. c. For the central patch, if the unsaturated water (and rootzone water for vegetation patch) is 

greater than the patch saturation deficit, return flow occurs. Groundwater with phosphorus moves up 

to the patch surface. d. If the central patch has return flow, aboveground excess water flows to its 

neighbor patch surface, and then the surface water on the neighbor patch infiltrates into the soil. 

 

 

 

 

 

 

5.2.1.1 Land patch routing 

Land patch routing includes subsurface flow and surface flow. Figure 5.2 shows 

the land patch routing process. For a specific patch, which we will call the central patch, 
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the patch has its downstream neighbor patch connectivity defined by the flow table. For 

both subsurface and surface flow, the flow table also indicates the proportion of flow 

each neighbor can receive from the central patch. The proportion each neighbor patch 

receives is denoted as , where i is the neighbor patch index. For a central patch, all of 

its neighbors  sum to 1. In Figure 5.2, for example, possible  values for the two 

neighbor patches are  and , indicating that neighbor 1 receives 60% of 

the total flow out of the central patch and neighbor 2 receives 40%.  

 

Subsurface routing 

Subsurface flow occurs at the saturated layer. The flow quantity from the central 

patch to a neighbor patch is determined by equation (1) (C. L. Tague & Band, 2004).  

 

       (1) 

 

Where  is the saturated flow quantity from the central patch to a neighbor 

patch, , is the transmissivity between the central patch and the neighbor patch, 

 is the slope between the two patches, which is also assumed to be the local 

hydrologic gradient and  is the flow width between the central patch and neighbor 

patch.  

 

i
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The soil transmissivity, , 
is calculated with equation (2) and is the integration 

of soil conductivity from the bottom of soil to the water table depth. 

       (2) 

where  is the water table depth, and  is the saturated hydrologic 

conductivity at the depth z.  is assumed to follow an exponential decay as in 

equation (3): 

       (3) 

where  is the saturated hydrologic conductivity at the soil surface, which is 

defined in soil properties or defined by user. is the soil depth, and  is the decay 

coefficient of hydraulic conductivity with depth.  

 

In the RHESSys and RHESSys-P code, flow quantity between patches is not 

calculated directly with equation (1).  In the code, the total amount of subsurface flow 

out of the central patch is calculated, and then distributed according to the neighbor patch 

  value.  

 

Soil phosphorus is assumed to decline exponentially with soil depth as in equation 

(4): 

       (4) 
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where  is the soil phosphorus amount at the depth ,  is the soil 

phosphorus amount at the surface,  is the soil phosphorus decay coefficient, and  

is the soil depth.  

 

Using equation (4), total soil phosphorus can be computed as equation (5):  

       (5) 

where  is the total soil phosphorus amount, and  is the soil depth.  

 

In RHESSys-P,  is a state variable for a given patch. After rearranging 

equation (5),  is expressed as equation (6): 

      (6) 

 

With equation (6), soil phosphorus for any soil layer can be calculated with 

equation (7): 

 (7) 

where  is the total phosphorus amount from soil depth  to . 

 

Soil phosphorus below the water table has two states: adsorbed or in solution. 

The adsorbed state is phosphorus adsorbed to soil particles. The adsorbed phosphorus of 
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any layer under water table does not move with lateral flow and is determined by equation 

(8):  

     (8) 

where  is the adsorbed phosphorus amount for the soil layer from 

depth  to ,  is the soil average porosity,  is the soil layer bottom depth,  is 

the soil layer top depth,  is the soil-specific coefficient describing how much 

phosphorus can be adsorbed by unit weight soil, and  is soil bulk density.  

 

Adsorbed phosphorus below the water table is expressed as . It is 

calculated by plugging , and  into equation (8), where  is the soil 

depth,  is the water table depth.  

 

Solution state phosphorus is the remaining phosphorus, which is assumed to be 

well mixed in the saturated water. Solution state phosphorus is also called available 

phosphorus, because solution state phosphorus can be routed to neighbor patches. The 

available phosphorus of any layer under water table is calculated by equation (9): 

     (9) 

where  is the solution state phosphorus of the layer from soil depth  

to ,  is the soil layer top depth,  is the soil layer bottom depth,  is the 
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soil phosphorus from soil depth  to  calculated by equation (7),  is the 

absorbed state phosphorus amount from soil depth  to  calculated by equation (8).  

 

Equation (9) gives a general form for the available phosphorus of any layer. A 

special form is the available phosphorus in the saturated layer,  ,  which is 

calculated with equation (9) by plugging in , and . 

 

With subsurface flow  and saturated layer solution state phosphorus

, the phosphorus routing from the central patch to its neighbor patch can be 

calculated with equation (10): 

      (10) 

where  is the phosphorus amount moving from central patch to its neighbor 

patch through subsurface flow, is the saturated flow quantity from the central patch 

to a neighbor patch, and is the saturated layer water quantity in the central patch. The 

transported phosphorus, , will be added to the neighbor soil phosphorus pool,  

is the central patch area. 
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Surface routing (overland flow) 

If the unsaturated water (plus rootzone water for vegetation patch) is greater than 

the saturation deficit, return flow occurs (Figure 5.2 c). Return flow, , is calculated 

with equation (11): 

 

      (11) 

where  is the return flow quantity,  is the unsaturated soil layer water, 

 is the rootzone layer water for vegetation land use, and  is the patch water 

saturation deficit.  

 

RHESSys-P describes soil porosity using equation (12): 

        (12) 

where  is the soil porosity at soil depth ,  is a soil specific parameter 

describing the soil surface porosity, and  is the soil porosity decay coefficient.  

 

For the saturated layer, integration of equation (12) provides the water content 

for the layer as equation (13): 

  (13) 

where  is the total porosity from depth  to ,  is the starting depth, 

and  is the ending depth.  
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For return flow, RHESSys-P assumes that the return flow source is from the top 

soil layer, specifically, from soil surface to some depth . Using the porosity 

equation (14),  is calculated as equation (14): 

      (14) 

The return flow layer is from the soil surface to . The return flow  is 

computed using equation (13) and substituting in  for  and for . Soil 

phosphorus in the return flow layer, ,  is calculated with equation (7) by 

substituting  for  and for .  The adsorbed phosphorus in the return layer, 

, is calculated with equation (8) by substituting  for  and  

for . Equation (9) with  and , is used to calculate the available 

phosphorus in the return flow layer, . Then,  is moved to the 

central patch surface with return flow, and the water  is added to the central patch 

detention store pool with equation (15): 

       (15) 

where  is the new detention store water quantity after return flow moves to 

the surface,  is the old detention store water quantity before return flow moves to the 

surface,  is the return flow. The available phosphorus in the return flow, 
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, is added to the central patch phosphorus surface store pool with equation 

(16):  

       (16) 

where  is the new patch surface phosphorus amount after return flow moves 

to the surface,  is the old patch surface phosphorus amount before return flow moves 

to the surface,  is the available phosphorus in the return flow layer. The 

surface phosphorus is considered well mixed in the patch detention store water.  

 

If the new detention store water  is greater than the detention store size , 

the central patch can’t hold the water quantity, and the excess water  in equation 

(17) is routed to its neighbors through overland flow: 

 

       (17) 

where  is the quantity of water exceeding the detention store size,  

is the new quantity of detention store water, and  is the patch detention store size.  

 

The excess water, , and the phosphorus it contains is routed to its 

neighbors as overland flow based on the neighbor patch  value from the flow table. 

Once the neighbor patch receives the overland flow, the neighbor updates its detention 

store and surface phosphorus. Then, the neighbor patch computes infiltration, and with 
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infiltration, surface phosphorus enters to neighbor patch soil phosphorus pool (Figure 5.2 

d).  

 

5.2.1.2 Stream patch routing 

The stream patch routing process is similar to the land patch routing with minor 

differences. The biggest difference is that stream patches route water and phosphorus as 

streamflow directly. Figure 5.3 shows the stream routing processes. Although the stream 

patch still has neighbors, the stream patch does not route water and phosphorus to its 

neighbors and neighbor connectivity is only used to compute subsurface flow. Similar to 

land patches, stream patches have subsurface and surface routing processes.  

 

Subsurface routing 

For a specific stream patch, which we will call the central patch (Figure 5.3 a), 

the quantity of subsurface water routed to its neighbors is computed with equation (1). 

The amount of phosphorus in the subsurface flow is computed with equation (10). Unlike 

land patch routing, the calculated “subsurface flow” is assumed to be streamflow for that 

day (Figure 5.3 b).  

 

Surface routing 

If a stream patch has return flow, the same procedure as for land patch return flow 

is used to calculate return flow and the phosphorus brought up to the surface with return 

flow (Equation 11). After return flow is calculated, if the surface detention store is greater 
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than the patch detention store size, excess flow with phosphorus is streamflow for that 

day (Figure 5.3 c).  

 

Figure 5.3 Stream patch routing processes. a. For a specific patch (central patch), it has neighbors 

from flow table. b. Subsurface routing occurs at the saturated flow layer, water and phosphorus flow 

from the central patch and routes as streamflow directly. c. For the central patch, if return flow occurs. 

Groundwater with phosphorus moves up to the patch surface. And then excess water from the patch 

surface routes as streamflow. 
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After processing each stream patch in the basin, streamflow and phosphorus from 

each stream patch is added up and the sum is the daily streamflow and phosphorus output 

for that day.  

 

5.2.2 Hillslope 

The hillslope spatial unit has two major water fluxes (Figure 5.4). The first is 

bypass flow, meaning a portion of the hillslope surface water enters the deep ground 

water pool through soil macro pores. Surface phosphorus is assumed to be well mixed in 

the surface water, and the bypass flow proportionally adds hillslope surface phosphorus 

into the deep ground water phosphorus pool. The bypass flow amount is determined by 

the coefficient gw1, which is a parameter to be calibrated.  

 

The second hillslope water flux is the base flow, the portion of the deep ground 

water that flows to stream as base flow. The phosphorus in the deep ground water store 

is assumed to be well mixed, so the phosphorus entering the stream with base flow is 

proportional to the base flow. The portion of the deep ground water that flows to stream 

as base flow is determined by another coefficient gw2, which is also a parameter to be 

calibrated.  



106 

 

 

Figure 5.4 Water flux on hillslope. Bypass flow is the water on the hillslope surface entering deep 

ground water store through macro pores and the flow is determined by the coefficient gw1, and a 

portion of deep ground water moves to the stream as streamflow and the portion is determined by 

the coefficient gw2 

(https://pdfs.semanticscholar.org/presentation/0c6c/c80fb1dec4bfc8a32528cb3a99a4411610ed.pdf). 

 

 

5.2.3 Base station 

 

The base station in RHESSys includes spatially explicit time-series climate data 

and dated agricultural management inputs (fertilizer, irrigation). Although climate data 

is necessary for model run and dated input data is optional.  Base stations don’t belong 

to any specific hierarchical unit (basin, hillslope, zone, patch or stratum), but a base 

station can be attached to any hierarchical unit. In most RHESSys applications, base 

stations are attached to zones, and are mainly used to provide climate data (Tmin, Tmax 

and precipitation) for zones. Although the standard version of RHESSys has the potential 

to provide fertilizer data, there is no clear procedure for using the base stations to provide 
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fertilizer data. Since fertilizer is a key source for phosphorus, we developed a method to 

use spatial-temporal fertilizer application data in RHESSys-P (also applicable for 

RHESSys), and phosphorus fertilizer functions were added in RHESSys-P to process 

agriculture land use fertilizer application.  

 

 

5.2.3.1 Two-level base station construction 

In order to use spatial-temporal fertilizer data, we developed a method called the 

“two-level base station construction”. Level one base station construction is based on 

climate data (real climate station data or reanalysis grid data). This level of base station 

construction is the same as constructing a base station in standard RHESSys. Level two 

base station construction is based on the level one base station map but uses an 

agricultural land use map to construct the level two base station map.  

 

Level 1 base station map 

To create the base station map, weather stations or climate reanalysis grid data 

are used to create Thiessen polygons (Figure 5.5 a).  In RHESSys-P, zones are the 

hierarchical unit for processing climate data. Each zone uses the climate base station for 

the Thiessen polygon in which it is located (Figure 5.5 b). If the zone lies in multiple 

Thiessen polygons, majority rule is used to determine which climate base station is used.  
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Figure 5.5 Level one base station map. a. Climate base stations are used to create Thiessen polygons. 

b. RHESSys-P zones use the climate base station based on the polygon ID, which is the same as the 

base station ID. In the example above, zone1 and zone2 both use the climate base station data associated 

with polygon 1. 

 

 

Land management scheme 

Before constructing the level two base station map, a land management map 

needs to be created. For agricultural land use, different land may have different fertilizer 

application dates, amounts or harvest dates. The combination of all the land management 

practices is called the land management scheme (Figure 5.6).  

 

The items in the land management scheme are defined by users. Commonly used 

items include fertilizer application (NO3-N, NH4-N, DIP, DOP), and harvest date. Non-

agricultural land uses are set to 0, which has no management practices. For agricultural 
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land use in the study basin, a scheme must be created with details based on the 

agricultural land management practices (Figure 5.6). 

 

Figure 5.6 Agricultural land use management schemes include different user-defined land use 

management practices, including fertilization amounts, types, dates and harvest dates. Scheme 0 has 

no management practices and is used for non-agriculture land. Any difference between two agriculture 

land management practices leads to a different scheme. In this example, Scheme 1 has a different DOP 

application amount from Scheme 2. 

 

 

 

Figure 5.7 shows an example of the scheme map creating process and how the 

spatial data is linked with the schemes using polygon 1 as an example. The land use map 

is first reclassified to agricultural and non-agricultural land (Figure 5.7 a). The 

agricultural land is then further divided into different schemes based on the agricultural 

land management (Figure 5.7 b).  
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Figure 5.7 Land management scheme creating process, using one Thiessen polygon as an example. a. 

Divide the study area into agricultural and non-agricultural land. b. Divide the agricultural land into 

different schemes based on the land management. 

 

 

 

 
Level 2 base station map 

Once the land management scheme map is created, concatenating the level 1 base 

station map with the scheme map creates level 2 base station map for each pixel (Figure 

5.8). If we assume there are N schemes and the number N has n digits, the level 2 base 

station map is calculated with equation (18) using GIS raster calculation:  

       (18) 

where  is the level 2 base station raster map, and  is the level 1 base station 

raster map, and  is the scheme raster map. A raster calculation with equation (18) 

1 10nL2 L scheme=  +

L2 1L

scheme
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generates the level 2 base station map (Figure 5.9). Each pixel value in the level 2 base 

station map contains the appropriate climate and land management information. 

 

 

Figure 5.8 Level 2 base station map pixel value is the concatenation of climate base station and 

management scheme. 

 

 

 

Within the level 2 base station map, a climate station is assigned to each pixel 

using equation (19): 

     (19) 

where  is the climate base station ID,  is the function to 

extract integer value,  is the level 2 base station map, and  is the digit number of 

the total number of schemes. Each pixel is assigned a management scheme using 

equation (20):   

 

 

_ _ int( 2 10 )nclimate station ID L= 

_ _climate station ID int

2L n



112 

 

      (20) 

where  is the land management scheme ID,  is the function to 

calculate the remainder. Through the encoding and decoding procedures, RHESSys-P 

can process the spatial-temporal input data. 

 

 

 

Figure 5.9 Level 2 base station map creating process.  a. Overlap the level 1 base station map on the 

scheme map. b.  Concatenating level 1 base station map pixel value with scheme map pixel value to 

create the level 2 base station map. 

 

 

 

 

5.2.4 Patch 

The patch is the basic spatial simulation unit in RHESSys-P. We added several 

phosphorus pools, processes and fluxes at this level. The added phosphorus pools include 

the soil surface phosphorus pool, litter phosphorus pool, soil phosphorus pool and soil 

_ 2 mod 10nscheme ID L=

_scheme ID mod
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organic matter (SOM) phosphorus pool. Added phosphorus processes include rock 

weathering, surface phosphorus infiltration, decomposition of litter and fertilizer 

application (Figure 5.10).   

 

 

Figure 5.10 Phosphorus pools and fluxes in RHESSys-P, the figure is adjusted from BiomeBGC 

manual document. 

 

 

 

 

 

5.2.4.1 Patch phosphorus pools 

Soil surface phosphorus pool 

The soil surface phosphorus pool is the pool for phosphorus on the soil surface. 

When the patch detention store is zero (i.e., there is no surface water), phosphorus in the 
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pool stays static. When the patch detention store has water, surface phosphorus is 

assumed to be well mixed in the surface water, and the surface phosphorus can move into 

the soil with infiltration or move to neighbor patch’s surface phosphorus pool with 

overland flow.  

 

Litter phosphorus pool 

The litter pool contains phosphorus in dead fallen leaves, branches, or fine roots. 

Litter is categorized into four types: labile litter, unshielded cellulosic litter, shielded 

cellulosic litter, and lignin litter. The four litter types are numbered 1, 2, 3, and 4 

respectively (Figure 5.11). Phosphorus is determined by the carbon and phosphorus ratio 

of each pool. Dead leaf C:P ratio varies with vegetation: grass C:P ratio is 565 and tree 

C:P ratio is 1218 (Sun et al., 2017). The C:P ratios for the remaining litter types are fixed 

at 500 as in the DayCent model (Parton et al., 1998).  
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Figure 5.11 Litter (Lit) and soil organic matter (SOM) decomposition pathways (adjusted from 

BiomeBGC manual document). The value in the oval indicates the base fraction litter or SOM 

decomposes, the value with the heterotrophic respiration arrow indicates the base fraction used for 

respiration in the decomposition process. The actual fraction value is adjusted with water and 

temperature conditions.  Lit1, Lit2, Lit3 and Lit4 are the 4 litter types; SOM1, SOM2, SOM3 and 

SOM4 are the 4 SOM types. 

 

 

Soil phosphorus pool 

The soil phosphorus pool is for belowground phosphorus. Soil phosphorus is 

assumed to decline exponentially with soil depth as in equation (4). Any change in the 

soil phosphorus pool generates a new phosphorus profile distribution, whether the change 

is at the soil surface (return flow) or at the bottom of soil (subsurface flow). The DIP of 

soil phosphorus pool in vegetation root zone is the phosphorus supply for vegetation.  
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Soil organic matter phosphorus pool 

Soil organic matter (SOM) phosphorus originates from the structural components 

of vegetation. In RHESSys-P, there are four types of soil organic matter based on their 

recycling rate (Figure 5.10): fast, medium, slow and recalcitrant. These four types are 

also labeled as 1, 2, 3 and 4, respectively (Figure 5.11).  Soil organic matter phosphorus 

is determined by fixed C:P ratios, which are 50, 150, 150 and 150 for fast, medium, slow 

and recalcitrant pools respectively as in the DayCent model (Parton et al., 1998). 

 

5.2.4.2 Patch phosphorus processes 

 

Rock weathering 

Rock weathering releases DIP to the patch surface phosphorus pool on a daily 

time step. The weathering rate is a property of soil type. 

 

Surface phosphorus infiltration 

In RHESSys, water in the patch detention store infiltrates into soil with Phillips’s 

infiltration equation (C. L. Tague & Band, 2004). Since the surface phosphorus is 

assumed to be well mixed in the patch surface detention store, surface phosphorus enters 

soil phosphorus pools proportionally with infiltration.  
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Fertilizer application  

Every patch is attached to a level-2 base station, which provides user-defined 

fertilizer application data. When a fertilizer application event happens, the specified 

amount phosphorus enters the soil phosphorus pool on that specified day.  

 

Decomposition 

Litter and SOM decompositions drive phosphorus fluxes among litter phosphorus 

pools and SOM phosphorus pools (Figure 5.11). The potential phosphorus flux between 

two pools is calculated with equation (21):  

  (21) 

 

where   is the potential mineral phosphorus flux from pool 1 to pool 

2 without soil DIP limit,  is the carbon loss in pool 1,  is the 

respiration fraction on the decomposition pathway from pool 1 to pool 2,  is the 

ratio of carbon and phosphorus in pool 2, and  is the ratio of carbon and phosphorus 

in pool 1.  

 

A positive  value indicates phosphorus immobilization, which 

means the decomposition process needs soil DIP to maintain the C:P ratio in pool 1 and 

pool 2. When soil DIP is not limiting, immobilization proceeds with the potential rate. 

When soil DIP is limiting for immobilization, a coefficient is used to adjust the flux; A 

negative  value indicates phosphorus mineralization, which means that 

after maintaining the C:P ratio in pool 1 and pool 2, there is excess phosphorus in the 

_ 1 2 1_  * (1.0 - _ 2 - ( 2/ ))/ _pmpf p p p closs rf p1p cp_p cp_p1 cp p2=

_ 1 2pmpf p p
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decomposition process. The excess phosphorus (DIP) enters the soil phosphorus pool. 

Since mineralization does not require soil phosphorus, mineralization always occurs at 

its potential rate. 

 

 

5.2.5 Canopy strata 

The canopy strata level has the same spatial extent as the patch and is used to 

model plants living on the patch. Plants phosphorus pools were added to RHESSys-P, 

including leaf phosphorus pool, stem phosphorus pool, fine root phosphorus pool, course 

root phosphorus pool.  We also added plant phosphorus fluxes, including plant growth, 

mortality, course woody debris decay, leaf fall and cropland harvest. The plant 

phosphorus fluxes (Figure 5.10) are coupled with plant carbon flux following the C:P 

ratios shown in Error! Reference source not found. (Sun et al., 2017).  

 

Table 5.1 Different components C:P ratio values for vegetation types 

  Deciduous Coniferous Shrubland Grassland 

Leaf 338 656 393 320 
Wood 3125 3125 1875 1875 

Root 513 975 513 513 
 

Plant growth 

Photosynthesis assimilates carbon into plants, and the potential carbon 

assimilation rate is calculated with Farquhar model (C. L. Tague & Band, 2004). Using 

the C:P ratio, potential phosphorus demand is calculated. Since nitrogen and phosphorus 

can limit plant growth, the following method is used to resolved nitrogen and phosphorus 
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limitation interactions. In RHESSys-P, if both nitrogen and phosphorus can satisfy plant 

growth, plants grow at the potential rate; if either one or both can limit plant growth, the 

most limiting nutrient determines plant growth.  

 

Once the plant growth rate is determined, the assimilated plant phosphorus is 

allocated to leaf phosphorus pool, stem phosphorus pool, fine root and course root 

phosphorus pool based on the allocation coefficient in RHESSys vegetation library files.  

 

Mortality process 

Mortality applies to all plant components on a daily time step following a 

mortality coefficient set in the vegetation library files. In this process, the dead leaf 

phosphorus and fine root phosphorus flows into the patch litter phosphorus pool; dead 

stem phosphorus and course root phosphorus flows into the coarse woody debris 

phosphorus pool. 

 

Coarse woody debris decay  

Coarse woody debris decay is the physical fragmentation of coarse woody debris 

into litter (Figure 5.11). Coarse woody debris phosphorus flows into the four litter pools 

following C:P ratios.  

 

Leaf fall and Harvest  

For plants with a leaf fall season (e.g. deciduous forest), leaves fall in a specific 

time window. In the leaf fall process, leaf phosphorus flows to the patch litter pool. 
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Harvest only occurs in agricultural lands. Users can specify harvest dates through the 

land management schemes. When harvest occurs, all aboveground plant phosphorus is 

removed from the aboveground phosphorus pools.  

 

 

5.3. Data and methods 

5.3.1. Study area 

The Missisquoi River watershed is located along the border of the US and Canada 

covering 2,200 km2 (Figure 5.12). The altitude in this area ranges from 17 m to 1172 m. 

In 2001, the predominant land cover was forested (~ 70%). Pasture/hay land cover was 

~14% and crop land cover was ~5%.   The Missisquoi River drains into Missisquoi Bay, 

which is in the northern part of Lake Chaplain.  

 

A USGS streamflow gauge (#04294000) is located at 44°55'00" N and 73°07'44" 

W (North American Datum 1927) near the Missisquoi river outlet. The gauge records 

daily streamflow data from March 1st, 1990 until now. The Lake Champlain Long-term 

Monitoring program also set up a sampling point at the streamflow gauge and recorded 

nutrient data from 1990 – Now 

(https://anrweb.vermont.gov/dec/_dec/LongTermMonitoringLakes.aspx.) 
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Figure 5.12 Missisquoi river watershed location, USGS gauge #04294000 is located at the outlet of 

Missisquoi river 

 

 

5.3.2. Data 

5.3.2.1 Climate data  

RHESSys-P requires at least daily minimum temperature (Tmin), daily maximum 

temperature (Tmax) and daily precipitation as climate data input. Historical climate data 
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are from Daymet version 3 (Thornton et al., 2017), which provides 1-km grid daily data 

from 1980 to 2016 for North America. Because future projected downscaled climate data 

from general circulation model (GCM) have much courser spatial resolution (1/8 degree), 

Daymet data were resampled at 1/8 degree to be consistent with projected climate data 

(Figure 5.13).  

 

Three GCM models were chosen based on the model credibility for Northeast 

United States (Thibeault & Seth, 2015):  ccsm4, mri-cgcm3, and gfdl-esm2m. Each GCM 

has four projected climate datasets from 2020 – 2050 based on the four Representative 

Concentration Pathways (RCPs): RCP2.6, RCP4.5, RCP6.0 and RCP8.5. All climate 

data were downscaled to 1/8-degree bias correction with constructed analogs dataset (Zia 

et al., 2016). Thus, in total, 12 climate scenarios were used for future climate data.  

 

 

Figure 5.13 RHESSys input data. (a). 1/8 degree grid data used, the grid center points were used to 

generate Thiessen polygons for spatial climate data input. (b). Missisquoi river watershed land cover, 

U.S. side is from the year 2001, and Canada side is from the year 2000.  (c). Missisquoi river 

watershed surface soil texture map. 
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5.3.2.2 Land use/cover data 

The land use/cover map combined the US portion (National Land Cover 

Database, 2001) and Canadian portions (circa 2000, http://www.geobase.ca/) of the 

Missisquoi River watershed.  This land use/cover map was used for RHESSys calibration 

with historical climate data and gauge data (Figure 5.13).  

 

For the future period (2020 – 2050), we used ILUTABM model (Y. S. Tsai et al., 

2015) to generate three different land use scenario maps (Figure 5.14): Business As Usual 

(BAU), Prefer Forest (proForest) and Prefer Agriculture (proAg). The ILUTABM model 

can output land use map every year, but for this study, we outputted one land use map 

every 10 years. Thus, for each land use scenario, there were three land use maps for the 

period of 2020 to 2050 (Figure 5.14). Prior to model input, all land use/cover data were 

reclassified as RHESSys land use/cover types. 

 

http://www.geobase.ca/
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Figure 5.14 Projected land use of the year 2021, 2031 and 2041 for the three land use scenarios: 

Business As Usual, prefer forest and prefer agriculture. 

 

 

5.3.2.3 Other input data 

For the Missisquoi watershed, a Digital Elevation Model (DEM) of 1 arc-second 

(approximate 30 meters) from the American National Elevation Dataset was used (Figure 

5.12).  The DEM was used to generate slope, aspect, west and east horizon grid data. 

Surface soil texture data were from Vermont Center for Geographic Information 
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(http://vcgi.vermont.gov/) and Soil Landscapes of Canada 

(http://sis.agr.gc.ca/cansis/nsdb/slc/index.html). Agriculture land management practice 

data (fertilizer/manure application, harvest date) were from surveys (Department of Plant 

and Soil Science, the Universithy of Vermont)). Due to lack of spatial agriculture land 

management practice data, we assumed all agriculture land had the same management 

practices. Atmospheric nitrogen deposition data was from National Atmospheric 

Deposition Program (http://nadp.slh.wisc.edu/). The total nitrogen deposition for 

Missisquoi river watershed is 1g N/m2/year.  

 

 

5.3.3. Experiment design for climate change and LUCC impacts assessment 

We spun-up the RHESSys model for about 1500 years to let plants and soil 

carbon, nitrogen and phosphorus pools reach equilibrium states. Then, the spun-up model 

was calibrated for streamflow and DP at the outlet of Missisquoi river watershed. Finally, 

with the calibrated parameter set, the model was run with different climate and LUCC 

scenarios. In this study, 12 climate scenarios (three GCMs with four RCPs for each 

GCM) and 3 LUCC scenarios were used, so 36 total climate-LUCC scenarios were used. 

 

5.3.3.1 Calibration and validation 

Four parameters were used to calibrate RHESSys-P: m, K, gw1 and gw2. m is the 

decay of hydraulic conductivity with depth (dimensionless), K is the surface lateral 

hydraulic conductivity (m/day), gw1 is the proportion of net inflow water moving to the 

deep ground water store (dimensionless), and gw2 is the proportion of water from deep 

http://vcgi.vermont.gov/
http://sis.agr.gc.ca/cansis/nsdb/slc/index.html
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ground water store moving to the stream. The four parameter ranges used in this study 

were m (0 – 0.2), K (0 – 300), gw1 (0 – 0.9) and gw2 (0 – 0.9) (Saksa et al., 2017). 

 

Monte Carlo simulations were used to calibrate RHESSys-P 5040 parameter sets 

were generated using Latin-Hypercube sampling technique with even distribution for 

each parameter over the parameter range. Then the 5040 parameter sets were used to 

drive RHESSys-P model on the NCAR Cheyenne cluster (Laboratory, 2017). Nash-

Sutcliff coefficient (NSE) was used to assess parameter sets performance.  

 

Streamflow and streamflow DP were calibrated with the data from 2002.1.1 to 

2004.12.31. The model was validated with DP data from 2009.1.1 to 2010.12.31. Model 

fit during the calibration and validation periods was assessed using the Nash-Sutcliffe 

efficiency value (NSE) and RMSE. NSE is in the range of −  to 1, NSE = 1 means 

perfect match and NSE = 0 means the model performance is equivalent to the average of 

observed data, and NSE < 0 means model performance is worse than the average of 

observed data. A threshold value of 0.6 for daily streamflow NSE is considered good fit 

(Guilbert, 2016). RMSE measures the average differences of simulated and observed 

data. The smaller the better.  

 

 

5.3.3.2 Future projection under different climate and LUCC scenarios 

Once the best parameter set was determined, it was used to drive RHESSys-P for 

all projected scenarios. For all scenarios, the historical land use (US 2000, and Canada 
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2001) was used to run 2011.1.1 to 2020.12.31 for model warm up. From 2021.1.1, 

projected land use of 2021 was used to run RHESSys-P until 2050.12.31; The land use 

map was updated every 10 years. The same processes were applied to other land use 

transition years.  

 

In RHESSys-P, the worldfile is used to describe basin states. Land use change 

can affect 3 items in the worldfile: the base station a patch attached to, patch land use 

type, and patch vegetation type. Base station controls the agricultural land management 

practices, such as fertilizer application. Land use type controls common land 

management configurations and vegetation type controls vegetation physiology 

characteristics. Changing these 3 items reflects the LUCC in the RHESSys-P model.  

 

At the land use transition year, a new worldfile with new land use map was used 

to compare with old worldfile (with old land use map). If any of the 3 items were different 

for the same landscape unit, the item value from new worldfile was used to replace the 

corresponding value in the old worldfile. In this way, land use change was integrated into 

model configuration. 

 

 

5.3.3.3 Future projection results analysis 

We used boxplots to show multiple temporal streamflow distribution 

characteristics under all climate change and LUCC scenarios. To test our hypothesis, we 

used annual streamflow standard deviations of RCPs, GCMs and LUCCs to study which 
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factor was the dominant impacting factor on streamflow. This analysis further factored 

climate into RCPs and GCMs and would provide insights on climate change impacts on 

streamflow.  

 

 

 

5.4 Results 

5.4.1 Calibration and validation 

In the streamflow calibration period, the Nash-Sutcliffe efficiency value (NSE) 

was 0.59 (Figure 5.15 a) and the RMSE was 1.8088 mm. In the validation period, NSE 

was 0.50 (Figure 5.15 b) and the RMSE was 1.6938 mm, and the R2 of simulated vs 

overserved flow was 0.528 (Figure 5.15 e).  In both calibration and validation periods, 

simulated DP basically captured the observed DP. In the calibration period, the NSE was 

0.41 and RMSE was 0.00024 g/m2. In the validation period, the NSE was 0.78, RMSE 

was 0.00014 g/m2 and the R2 of simulated vs overserved DP was 0.788 (Figure 5.15 f).  
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Figure 5.15 Streamflow, streamflow DP calibration and validation results at the outlet of Missisquoi 

River watershed. (a). Streamflow calibration from 2002.1.1 to 2004.12.31. (b). Streamflow validation 

from 2009.1.1 to 2010.12.31. (c). Streamflow DP calibration from 2002.1.1 to 2004.12.31. (d). 

Streamflow DP validation from 2009.1.1 to 2010.12.31. (e). 1:1 line for simulated and observed 

streamflow for validation period. (f). 1:1 line for simulated and observed streamflow DP for validation 

period. 
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5.4.2 Projected DP  

Annual DP loads had different time-series trends under different LUCCs during 

2021 – 2050 (Figure 5.16). Annual DP loads under BAU had a very gentle increasing 

trend with around 3.6 × 104 kg at the beginning and 4.0 × 104 kg at the end of simulation 

period for all climate scenarios. Annual DP loads under proAg increased dramatically 

from around 3.6 × 104 kg in the year of 2021 to around 1.5 × 105 kg in all climate 

scenarios. Annual DP loads under proForest were relatively stable, fluctuating around 

3.0 × 104 kg without an increasing or decreasing trend between 2021 – 2050 in all 

climate scenarios. Under the same LUCC, the 3 GCM models had comparable annual 

loads. This characteristic also applies to the 4 RCPs for the same GCM under the same 

LUCC.  
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The medians and ranges in annual DP load also indicated that LUCC had a large 

impact on loads (Figure 5.17).  Annual DP loads under BAU had medians around 4.0 × 

104 kg with medium range in the 3 LUCCs. Annual DP loads under proAg had medians 

around 1.0 × 105 kg with widest range in the 3 LUCCs. Annual DP loads under proForest 

had medians around 3.0 × 105 kg with smallest range of the 3 LUCCs. Under the same 

LUCC, the annual loads under the 3 GCMs generally had similar distributions for each 

D
P

 (
kg

) 

Year 

Figure 5.16 Projected annual DP load under different climate change and LUCC scenarios from 2021 

to 2050 
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RCP. Similarly, under the same LUCC and GCM, DP loads for all RCPs under BAU and 

proForest had similar distributions. However, annual loads proAg for different RCPs had 

variance up to around 2.0 × 104 kg. 

 

  

 

Decadal annual DP loads increased in BAU and proAg scenarios, but there was 

no apparent trend for proForest under any climate scenario (Figure 5.18).  Under BAU, 

medians were around 3.8 × 104 kg in the 1st decade, then shifted to 4.0 × 104 kg in the 

2nd decade, and finally to the 4.1 × 104 kg in the 3rd decade. Under proAg, medians were 

around 5.0 × 104 kg in the 1st decade, then jumped to around 1.0 × 105 kg, and finally 

reached 1.3× 105 kg. Under proForest, medians were all around 3.0 × 104 kg in the 3 

decades.  

 

In addition to the medians, annual load ranges had different patterns in the 3 

decades for 3 LUCCs. Annual load ranges under BAU and proForest were consistent 

across the 3 decades. Annual load ranges under proAg shifted during the 3 decades: the 

Figure 5.17 Projected annual DP load boxplot under different climate change and LUCC scenarios 

for the period of 2021 – 2050 
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1st decade had a medium interquartile of around 2.0 × 104 kg, and the interquartile 

increased to around 4.0 × 104 kg in the 2nd decade, and the interquartile shrank to around 

1.8 × 104 kg in the 3rd decade. 

 

Under BAU and proForest scenarios, all GCMs had similar patterns across the 3 

decades for each RCP (Figure 5.18). For proAg scenarios, annual load patterns under 

different GCMs and RCPs were different across the decades. In the 1st decade, annual 

loads were similar for all 3 GCMs under the same RCP; In the 2nd decade, annual load 

distribution for the 3 GCMs under the same RCP were still comparable but with some 

exceptions, e.g. gfdl-esm2m under RCP45 has wider ranges than ccsm4 and mri-cgcm3. 

The 4 RCPs for the same GCM model had different patterns; In the 3rd decade, climate 

influences on annual loads were similar to the 2nd decade. 
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Quarterly DP loads revealed that DP export was typically higher in Q2 and Q3 

than in Q1 and Q4 (Figure 5.19). Although there were slight variations among LUCC 

scenarios, this pattern generally held across LUCC scenarios, RCPs and GCMs (Figure 

5.19). Compared with BAU and proForest, quarterly loads under proAg were higher for 

the same quarter.  
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GCM models 

Figure 5.18 Projected annual DP load boxplot under different climate change and LUCC scenarios 

for decades of 2021 – 2030, 2031 – 2040 and 2041 – 2050 
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The quarterly loads under 3 GCMs were merged for the same RCP to examine 

decadal quarterly loads characteristics (Figure 5.20). Under BAU and proForest, the 

quarterly loads in the 3 decades had similar patterns and magnitudes under the same RCP. 

Medians of quarterly loads formed a parabolic shape in each of the 3 decades under all 

RCPs, with Q1 and Q4 loads lower than Q2 and Q3 loads.  
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) 

Figure 5.19 Projected quarterly DP load boxplot under different climate change and LUCC 

scenarios. Q1 is from January to March, Q2 is from April to June, Q3 is from July to September, 

and Q4 is from October to December 
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In contrast, under proAg, the quarterly loads had different patterns in the 3 

decades. In the 1st decade, quarterly loads had a slight increasing trend for all RCPs with 

medians around 1.0 × 104 kg; In the 2nd decade, medians of quarterly loads increased 

compared to in the 1st decade. Medians of quarterly loads trends were different for the 

RCPs (Figure 5.20). Under RCP2.6, the 4 quarterly loads were comparable; for other 3 

RCPs, the medians increased in the first 3 quarters and then dropped in Q4; in the 3rd 

decade, Q1 and Q4 loads under the same RCP were comparable with the corresponding 

load in the 2nd decade. However, Q2 and Q3 loads dramatically increased, especially Q3 

compared with corresponding quarterly loads in the 2nd decade. The quarterly load 

changes formed a parabola, with lower loads in Q1 and Q4 than Q2 and Q3.  
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We used annual DP standard deviation to compare which factors – climate, land 

use, or GCM choice – caused the largest variations in DP load during 2021 - 2050 (Figure 

5.21). Across RCPs and GCM models, LUCC caused the most variation in DP load 

(Figure 5.21), with similar distributions and medians around 4.0 × 104 kg. RCPs and 

GCMs caused substantially less variation in DP loads, although there was more variation 

in response the RCP and GCM choice in the proAg scenarios (Figure 5.12). Our results 

D
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Figure 5.20 Projected quarterly DP load boxplot under different LUCC scenarios for decades of 2021 

– 2030, 2031 – 2040 and 2041 – 2050, for each RCP scenario, all 3 GCMs data were merged in each 

box. 
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therefore indicate that LUCCs were the dominant factor for DP load rather than responses 

to variations in climate.  
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Figure 5.21 Annual DP standard deviation of different factors. The top row shows the standard 

deviation of LUCCs, the middle row shows the standard deviation of RCPs and the bottom row 

shows the standard deviation of GCMs 
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5.4 Discussion 

5.3.1 Performance and limitation of RHESSys-P 

We developed a process-based RHESSys-P model by integrating the DayCent 

phosphorus module into the RHESSys model. The DayCent phosphorus module provides 

dissolved phosphorus processes at the RHESSys patch level, and RHESSys takes care of 

phosphorus distribution in the soil and transport processes across the landscape. Since 

RHESSys-P is based on the RHESSys framework, RHESSys-P has inherited limitations. 

For example, RHESSys-P does not include particulate phosphorus export and does not 

have in-stream routing processes.  One important limitation is the fertilizer/manure 

application data source, since we used survey data and assumed application rate were the 

same for all agricultural land, this definitely brought some uncertainty. Another 

important limitation is from the downscaled climate data. The GCM climate data were 

downscaled to 1 / 8 degree. Winter et al. (2016) pointed the downscaled data absolute 

bias was noisy at low elevations, and the climate data could be underestimated or 

overestimated without clear relationship with elevation. The uncertainty in precipitation 

can directly affect watershed water input and change the streamflow, which further affect 

the DP load. 

 

However, our simulation results are promising. RHESSys-P captured observed 

DP dynamics during the validation period with an R2 of 79%.  Because we only tested 

the model in Missisquoi River watershed with limited observational data, the model still 

needs verification in more study areas with observed data. Regardless, our results suggest 
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that this model provides an alternative tool for phosphorus research and management at 

the watershed level.  

 

 

5.3.2 Climate change and LUCC impacts on DP load  

Under the combined impacts of climate change and LUCC, land use had larger 

impacts on dissolved phosphorus loads than did a changing climate. While dissolved 

phosphorus loads under the proForest land use scenario remained relatively stable under 

all climate scenarios from 2021 to 2050, dissolved phosphorus loads increased under 

BAU and proAg scenarios. Dissolved phosphorus loads under BAU increased slightly 

over time under all climate scenarios; Dissolved phosphorus loads under the proAg 

scenario increased dramatically over time under all climate scenarios, so that the annual 

load in 2050 was around 4 times larger than the annual load in 2021. My results therefore 

suggest that land use is a dominant factor for dissolved phosphorus load compared with 

climate change. However, this does not mean climate change is not important for 

dissolved phosphorus load. In the boxplot for the period of 2021 – 2050 (Figure 5.17), 

dissolved phosphorus load medians under proAg varied by about 20%, but with no 

consistent trends across GCMs.  

 

Compared with nitrogen, phosphorus biogeochemistry cycle has no gaseous 

phase. Nitrogen can be lost to the atmosphere as N2 or N2O via denitrification; but 

phosphorus cannot be lost in this way. Phosphorus inputs are from rock mineralization 

and fertilizer/manure application. Phosphorus can then be taken up by plants or 
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transported with water through the watershed into rivers or other surface waters. The 

increase of agricultural land and fertilizer/manure application reveals the reason why the 

dissolved phosphorus in final year is around 4 times as the load in 2021.  

 

Our results indicate that dissolved phosphorus has clear seasonal patterns, with 

quarter 2 and quarter 3 generally having the highest seasonal loads, which is consistent 

with fertilizer application time. This suggests that fertilizer application management 

practices can help reduce dissolved phosphorus loads. Local agencies could help farmers 

to choose fertilizer application days according to weather to reduce runoff. 

 

In addition, the annual DP standard deviation analysis also clearly indicated 

LUCC was the dominant factor on DP load. However, climate had larger impacts in the 

proAg than BAU and proForest scenarios, suggesting that further climate changes have 

important impacts on DP load in agricultural lands. Thus, the interactions of LUCC and 

climate change should not be ignored. 

 

 

5.5 Conclusion 

This chapter developed a process-based RHESSys-P model by integrating the 

DayCent phosphorus module into RHESSys model. Our simulation results were 

promising. In both calibration and validation periods, simulated DP basically captured 

the observed DP. In the calibration period, the NSE was 0.41 and the RMSE was 0.00024 

g/m2. In the validation period, the NSE was 0.78, the RMSE was 0.00014 g/m2 and the 
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R2 of simulated vs overserved DP was 0.788.  Because we only tested the model in 

Missisquoi River watershed with limited observed data, the model still needs verification 

in more study areas with observed data. Regardless, our results suggest that this model 

provides an alternative tool for phosphorus research and management at the watershed 

level.  

 

We used RHESSys-P to study the climate change and LUCC impacts on 

dissolved phosphorus load in Missisquoi River watershed for the period of 2021 – 2050. 

Major findings from this research are: (i) LUCC was the dominant factor for dissolved 

phosphorus loading, however, climate change impacts on dissolved phosphorus 

shouldn’t be ignored, especially in agricultural lands. (ii) In the simulation period of 2021 

– 2050, annual loads were stable under proForest for all climate scenarios; Annual loads 

under BAU increased slightly for all climate scenarios; And annual loads under proAg 

dramatically increased, so that the load in final simulation year was 4 times that in the 

beginning year. (iii) Dissolved phosphorus loads in all scenarios generally showed a clear 

seasonal pattern, with higher loads in quarter 2 and quarter 3, when fertilizers are 

typically applied, than in quarter 1 and quarter 4. Our results indicated that BAU or 

proForest in Missisquoi watershed were acceptable for Lake Chaplain water quality, 

while proAg would export too much phosphorus and lead to water quality deterioration. 
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CHAPTER 6: CONCLUSION 

This dissertation studied Missisquoi River watershed responses to climate change 

and Land Use/Cover Change (LUCC) with RHESSys model. Studied responses included 

watershed streamflow and streamflow NO3-N, NH4-N and Dissolved Phosphorus (DP). 

The dissertation contributions fall in to three categories: RHESSys model verification, 

model development and model applications.  

 

6.1 Model verification 

Although RHESSys has been used in several study areas, it is still used by a 

relatively small community model compared with the Soil and Water Assessment Tool 

(SWAT) model. Most of the published RHESSys papers studied streamflow at watershed 

outlet. Very few papers used RHESSys to study aquatic nitrogen and DOC even though 

RHESSys simulates NO3-N, NH4-N, DOC. Chapter 3 and chapter 4 systematically 

evaluated the ability of the RHESSys model to accurately simulate streamflow, NO3-N, 

and NH4-N. 

 

Streamflow simulation performance was generally satisfactory. The NSE was 

0.59 for daily streamflow during the calibration period of 1992.1.1 – 1994.12.31, and 

0.52 during the validation period of 1995.1.1 – 1998.12. 31. However, we noticed that 

performance was dependent on individual year. For example, NSE was 0.41 for the 

calendar years of 1993 and 1998, but was 0.77 for the calendar year of 1994. The exact 

reason why RHESSys has such variable performance is not clear, but the results indicate 

multiple calibration years are necessary for RHESSys. Using a single year for calibration 
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could lead to lower NSE values in the following validation and application periods. 

Furthermore,  the mismatch between the input data temporal scale and simulation time 

step. In this study, precipitation is daily, but RHESSys runs hourly processes internally. 

When lacking hourly time step data, RHESSys assumes the precipitation is evenly 

distributed throughout the day. This assumption will underestimate rain intensity, 

especially for storms, and likely reduces the ability of the model to capture observed high 

streamflow. In addition, due to the lack of in-stream processes, once the water reaches 

streams, the water and the nutrient in it are automatically exited at the outlet.  

 

Streamflow NO3-N and NH4-N simulations were also conducted in this 

dissertation. Generally, simulated results captured observed patterns but with some 

errors. In the validation period, the R2 was low for NO3-N. NH4-N had a higher R2 value 

of 0.494. These results suggest that model improvement and verification work need to be 

done for accurate nitrogen simulation work. Potential areas for improvement include 

improved nutrient distribution in the soil from the current exponential decay with soil 

depth to avoid inappropriate nutrient vertical movement, adding a sediment module to 

incorporate the particulate nutrient transport, and incorporating in-stream routing 

processes and biogeochemical transformations. One additional improvement I want to 

emphasize is the calibration procedure. RHESSys only provides a standard calibration 

procedure for streamflow, but no such procedures are available for nutrient calibration. 

In this dissertation, we followed the streamflow calibration procedure to select the best 

parameter set by multiple goals – streamflow, NO3-N and NH4-N. In contrast, the SWAT 

model gives a step by step procedure for calibration with one goal in each step, in this 
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way, researchers can calibrate the model with one goal in each step for better calibration 

performance for multiple goals. A multiple-goal calibration procedure for RHESSys 

would be a good tool for improving model performance. To achieve this goal, nutrient-

related parameter sensitivity analysis needs to be performed; Another useful addition 

would be a procedure detailing how to set up the initial conditions for different nutrient 

pools. 

 

6.2 Model development – RHESSys-P 

We developed a model RHESSys-P, which integrated the DayCent phosphorus 

module into RHESSys. The RHESSys-P model can simulate Dissolved Organic 

Phosphorus (DOP) and Dissolved Inorganic Phosphorus (DIP) in a watershed and output 

daily streamflow. To better represent the significant phosphorus source – agricultural 

land, we also developed a method that allowed the model to take in a spatially explicit 

time series of land management practices, such as fertilizer application date and amount, 

harvest date. This method can also be applied for nitrogen fertilizer application.  

 

We tested the phosphorus simulation performance of RHESSys-P in the 

Missisquoi River watershed. Due to a lack of observed data, we combined the DIP and 

DOP pools as Dissolved Phosphorus (DP) to evaluate the model performance. DP was 

calibrated with the data of year 2002 – 2004 and validated with the data of year 2009 - 

2010. In both calibration and validation periods, simulated DP basically captured the 

observed DP. In the validation period, the R2 of simulated vs observed DP was 0.788.  
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As noted in the previous section, RHESSys-P has similar future improvement 

needs as RHESSys, such as improving the distribution of soil phosphorus, including a 

sediment module, incorporating in-stream routing and biogeochemical process, and 

developing a calibration procedure. 

 

6.3 Model applications 

The primary scientific questions for this dissertation were how climate change 

and LUCC affect watershed hydrology and nutrient dynamics. I used RHESSys and 

RHESSys-P to evaluate climate change and LUCC impacts. I used three GCM models 

to provide climate change projections: ccsm4, mri-cgcm3, and gfdl-esm2m. Each GCM 

had 4 projected climate datasets from 2021 – 2050 under four Representative 

Concentration Pathways (RCPs). The ILUTABM model (Y. S. Tsai et al., 2015) was 

used to generate three different land use scenarios maps: Business As Usual (BAU), 

Prefer Forest (proForest) and Prefer Agriculture (proAg). The strength of this framework 

was that it incorporated dynamic LUCC change into climate change model simulations.  

 

The major conclusions are: climate had larger impacts than LUCC on streamflow, 

although there were no consistent impacts of the different RCPs by 2050; Fertilizer 

application was a major source for nitrogen export, therefore, LUCC scenarios with more 

agricultural land had higher nitrogen loads. Thus, LUCC scenarios had larger impacts on 

nitrogen loads than climate change; LUCC was the dominant driver of dissolved 

phosphorus loading, however, climate impacts on dissolved phosphorus shouldn’t be 

ignored. 
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APPENDIX (RHESSys-P variable list) 

Variable Description Units 

 The proportion of flow the ith neighbor can 

receive from the central patch 

DIM 

 The saturated flow quantity from the central 

patch to a neighbor patch 

m3 day-1 

 The transmissivity between the central patch 

and the neighbor patch 

m2 day-1 

 The slope between the two patches DIM 

 The flow width between the central patch 

and neighbor patch 

m 

 The water table depth m 

 The soil depth m 

 The saturated hydrologic conductivity at the 

depth z 

m day-1 

 The saturated hydrologic conductivity at the 

soil surface 

m day-1 

 The decay coefficient of hydraulic 

conductivity with depth 

DIM 

 The soil phosphorus amount at the depth  kgP m-2 

 The soil phosphorus amount at the surface kgP m-2 

 The soil phosphorus decay coefficient DIM 

 The total soil phosphorus amount kgP m-2 

 The total phosphorus amount from soil 

depth  to  

kgP m-2 

 The absorbed phosphorus amount for the 

soil layer from depth  to  

kgP m-2 

 The soil-specific coefficient describing how 

much phosphorus can be absorbed by unit 

weight soil 

DIM 

 The soil bulk density kg m-3 

 The solution state phosphorus of the layer 

from soil depth  to  

kgP m-2 

 The phosphorus amount moving from 

central patch to its neighbor patch through 

subsurface flow 

kgP 

 The saturated flow quantity from central 

patch to a neighbor patch 

m3 

   

   

i

,c nQ

,c nT

,tan c n

,c nw

satZ

z

( )satsK z

0satsK

m

( )Psoil z z

surfaceP

decayP

Psoil

1 2_P z zsoil −

1z 2z

1 2_absorbed z zP −

1z 2z

absorbRateP

b

1 2_avail z zP −

1z 2z

,c nP

,c nQ
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Variable Description Units 

 The saturated layer water quantity in the 

central patch 

m3 

 The central patch area m2 

 The return flow quantity m 

 The unsaturated soil layer water m 

 

 The rootzone layer water for vegetation land 

use 

m 

 The patch water saturation deficit m 

 The soil porosity at soil depth z % 

 The soil surface porosity % 

 The soil porosity decay coefficient DIM 

 The total porosity from depth  to  % 

 The bottom depth of return flow layer  m 

 The new detention store water quantity after 

return flow moves to the surface 

m 

 The old detention store water quantity 

before return flow moves to the surface 

m 

 The new patch surface phosphorus amount 

after return flow moves to the surface 

kgP m-2 

 The old patch surface phosphorus amount 

before return flow moves to the surface 

kgP m-2 

 The water quantity exceeding the detention 

store size 

m 

 The patch detention store size m 

 The potential mineral phosphorus flux from 

pool 1 to pool 2 without soil DIP limit 

kgP m-2 

 The carbon loss in pool 1 kgC m-2 

 The respiration fraction on the 

decomposition pathway from pool 1 to pool 

2 

% 

 The ratio of carbon and phosphorus in pool 

2 

DIM 

 The ratio of carbon and phosphorus in pool 

1 

DIM 

 

satQ

patchS

returnQ

unsatQ

rootzoneQ

satW

( )n z

0n
p

1 2z zTn − 1z 2z

returnz
'

detQ

detQ

'

surfP

surfP

_det excessQ

detS

_ 1 2pmpf p p

1_p closs

_ 2rf p1p

2cp_p
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