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ABSTRACT

Excessive rates of channel adjustment and riverine sediment export represent
societal challenges; impacts include: degraded water quality and ecological integrity,
erosion hazards to infrastructure, and compromised public safety. The nonlinear nature of
sediment erosion and deposition within a watershed and the variable patterns in riverine
sediment export over a defined timeframe of interest are governed by many interrelated
factors, including geology, climate and hydrology, vegetation, and land use. Human
disturbances to the landscape and river networks have further altered these patterns of water
and sediment routing.

An enhanced understanding of river sediment sources and dynamics is important
for stakeholders, and will become more critical under a nonstationary climate, as sediment
yields are expected to increase in regions of the world that will experience increased
frequency, persistence, and intensity of storm events. Practical tools are needed to predict
sediment erosion, transport and deposition and to characterize sediment sources within a
reasonable measure of uncertainty. Water resource scientists and engineers use
multidimensional data sets of varying types and quality to answer management-related
questions, and the temporal and spatial resolution of these data are growing exponentially
with the advent of automated samplers and in situ sensors (i.e., “big data”). Data-driven
statistics and classifiers have great utility for representing system complexity and can often
be more readily implemented in an adaptive management context than process-based
models. Parametric statistics are often of limited efficacy when applied to data of varying
quality, mixed types (continuous, ordinal, nominal), censored or sparse data, or when
model residuals do not conform to Gaussian distributions. Data-driven machine-learning
algorithms and Bayesian statistics have advantages over Frequentist approaches for data
reduction and visualization; they allow for non-normal distribution of residuals and greater
robustness to outliers.

This research applied machine-learning classifiers and Bayesian statistical
techniques to multidimensional data sets to characterize sediment source and flux at
basin, catchment, and reach scales. These data-driven tools enabled better understanding
of: (1) basin-scale spatial variability in concentration-discharge patterns of instream
suspended sediment and nutrients; (2) catchment-scale sourcing of suspended sediments;
and (3) reach-scale sediment process domains. The developed tools have broad
management application and provide insights into landscape drivers of channel dynamics
and riverine solute and sediment export.



CITATIONS

Material from this dissertation has been published in the following form:

Underwood, K. L., Rizzo, D. M. Schroth, A. W. Dewoolkar, M. M.. (2017). Evaluating
spatial variability in sediment and phosphorus concentration-discharge relationships
using Bayesian inference and self-organizing maps. Water Resources Research. doi:
10.1002/2017WR021353.

i



ACKNOWLEDGEMENTS

The river has not only been a focus of my professional and academic careers, it is
an apt metaphor for life’s journey - sometimes flowing fast and turbulent, other times
more quiescent, allowing for contemplation and reflection. In this present eddy of life, I
would like to extend my thanks to those who have inspired this body of work and helped
me to complete it. Foremost, | am indebted to my advisor and mentor, Donna Rizzo, for
her dedication, expert knowledge, and artful guidance. | am grateful to my co-advisor,
Mandar DewoolKkar, for his generosity of spirit and expert navigation of the academic
process. | appreciate the contributions of my additional committee members, Beverley
Wemple, Arne Bomblies, and Julia Perdrial, who have helped to guide this research and
offered critiques that have greatly improved the manuscripts. Co-authors Andrew
Schroth and Mike Kline were instrumental to the research presented in Chapters 2 and 4.
Andrew’s insightful comments were helpful in posing a link between our results and the
bloom dynamics of Lake Champlain. Mike’s contributions to river science and
conservation have led to much improved flood resilience for Vermont communities. My
previous river work under Mike’s leadership and in the company of many professional
colleagues too numerous to mention was instrumental in my decision to return to
graduate school to learn new statistical techniques for analysis of complex natural
systems. Early in my return to academics, Joan “Rosie” Rosebush, helped me to clear the
cob-webs from my neural synapses to refresh my calculus skills. 1 am grateful for her

encouragement and expert tutelage.

1



The field monitoring underlying our research based in the Mad River watershed
would not have been possible without the support of my colleague, now post-doctoral
scholar, Scott Hamshaw. He preceded me down-river in this doctoral journey, and has
been gracious to point out the “rocks” and “strainers”, guiding me toward the smooth and
clear water. To other fellow graduate students, I thank you for your companionship and
helpful advice along the way: Jody Stryker, Justin Guilbert, Nikos Fytilis, John Hanley,
lan Anderson, Luke Howard, Jim Montague, Saleh Alghamdi, Matt Trueheart, Jeremy
Matt, Lindsay and Bobby Worley and Doug Denu. We were aided in the field and lab by
many capable students and interns, including Jordan Duffy, Alex Morton, Baxter Miatke,
Kira Kelley, Marisa Rorabaugh, Hanna Anderson, Thomas Bryce and Thomas Adler. It
was fun to share this brief time with you and | will enjoy seeing your many contributions
to the water resources fields in years to come. Landowners and stakeholders in the Mad
River valley were especially welcoming, and were kind to grant us permission to sample
and monitor on their properties.

Finally, this dissertation is dedicated to my parents, John and Peg, who continue to

model integrity, community service, and intellectual curiosity.

v



TABLE OF CONTENTS

CITATIONS. ...ttt sttt sttt ii
ACKNOWLEDGEMENTS ...ttt sss st ss s sssss s s snsans iii
LIST OF FIGURES ...ttt sttt viii
LIST OF TABLES ..ottt st Xiv
CHAPTER 1. INTRODUCTION AND COMPREHENSIVE LITERATURE
REVIEW ...ttt s sttt 1
Motivation and ReSearch ODJECHIVES............coveveirveiereieeeee et 1
Organization OF DISSEITALION ...........cc.vevieeiieieieiie e s s saes 5
Sediment Connectivity at the Catchment Scale.............ccoooeveieveieeicveeeeeeeeeee e 7
Hot spots and Ot MOMENLS ...........co.oviveiieeeee e 14
Cold spots and Cold MOMENLS .........c.cevieeiiieiieee e 15
Sediment (dis)connectivity and the sediment delivery ratio .............cccccocoevvrvernnneee. 19
Sediment Erosion, Transport and Deposition within Stream Networks......................... 21
Watershed and Channel StrESSOIS...........ccvieririririeeicrte et esnees 23
Channel evolution MOGEIS ..o 23
Sediment ProCess OMAINS ...........cc.cviveveivevieeieee et 26
Linear Methods for Data Analysis and Classification.............cccccceevieieicrercieiererennns 28
Bivariate MEtNOGS..........c.iuieiririiree et 28
MUILIVATAte MELNOUS ..ottt 30
Non-Parametric, Nonlinear, Data-driven Methods for Classification............................ 33
Machine-learning clustering and classifiCation...........cccccoeviereierrieneieneeseesenens 34
Bayesian apPrOACNES...........covuevivevceeeeeevee ettt 35
RETEIENCES. ...ttt nses 36

CHAPTER 2. EVALUATING SPATIAL VARIABILITY IN SEDIMENT AND
PHOSPHORUS CONCENTRATION -DISCHARGE RELATIONSHIPS USING

BAYESIAN INFERENCE AND SELF-ORGANIZING MAPS ... 48
ADSEIACT ...ttt 48
INEFOTUCTION ..ottt bttt bbbt 49
MBENOAS ..ottt bbbttt aeas 57

SEUAY ATBA ..ttt bbb s et et a s s s e s naseee 57
Watershed CharaCteriStiCs .........cooieiiieiiueieieieieicee e 59
Bayesian Linear REQIESSION ...........ciuevivevieeieieiee ettt 62



SOM Model DEVEIOPMENL ...ttt
RESUILS AN DISCUSSION.......cueuiiiiiireieireireie ettt enseens
Models of Concentration-Discharge Dynamics Revealed by BLR ........................
SOM Clustering of Watersheds for PP and DP ...........cccoooovieieeiceeieeeeeeeens
Conclusions and IMPIICALIONS..........c.ccceieieiieiee e see
ACKNOWIEAGEMENLS ...ttt
SUPPOrtiNg INFOIMALION ..o

RETEIENCES ...ttt et ee e et e e et e e e et eeeee et es et eeeneaaeseaeeeeeeneneeeseeaenaens

CHAPTER 3. A BAYESIAN UN-MIXING MODEL TO DISCERN
SUSPENDED SEDIMENT SOURCES IN A GLACIALLY-CONDITIONED
CATCHMENT L.ttt

ADSEFACT ..ottt sttt bttt bbb eae
INEFOTUCTION ..ottt bbb aaes
STUAY ATBA ...ttt bbb s s s s e s s s s nanses
MIBENOAS ..ottt sttt
Un-mixing Model Overview and Fingerprint Selection............ccccccooeeeiveierrenneae.
Target SaMpPle COHECTION ..o
Source SAMPIE CONECLION ..........o.oveeieceeeee e
Meteorologic and hydrologic data collection ..............ccoooeueoiveeeeicceeeeeeee
ANAIYLICAl METNOUS..........oeiii s
Statistical analyses to finalize fingerprints...........cccoeveverveieeveeceeeeeceeeeeee e,
Bayesian un-mixing model COMPULALION............cccooiveiiveiireeieiceeeeeeeeee s
RESUILS ..ottt n s
Hydrologic characterization and specification of models...........cccccooceveerverrirriennnns
Catchment-scale, event-scale sSource asCription............c.ccoceeeveeeveereeeeeeieneesrenenn,
Tributary-scale, Summer 2015 SOUrce ascription ...........cccoccevveverveveneeveeeensneerneenane,
Tributary-scale, Autumn 2015 SOUrce asCription..........ccccoveveverevnvereenenssrseeseenen,
Additional information from ratio of 7Be/210PDXS........ccccevverierreevieeeeireane,
DISCUSSION......vuiiieieeisieeee ettt se ettt et s ettt sse s ensensen
Comparison to regional STUAIES .........c.cccveviivereiieeeeteeete ettt
Uncertainties and LimItationS...........cccoernrnieirisinsnseeeississeseis s ssssssens
Management IMPIICALIONS ...........c.coueviveirieiceetecte s
Future reSearch direCHIONS..........ccoveueieeieieieiee ettt nasss
CONCIUSIONS ...ttt sttt
ACKNOWIBAGEMENTS.......ovieieitecteeee ettt
SUPPOrting INFOIMALION ..ottt



RETEIEINCES ...ttt e et ee e et e et e e e e e e e e et e e et ee e e eeeaeeseeeeeesaeeeseeaeeaens 173

CHAPTER 4. ANALYSIS OF REACH-SCALE SEDIMENT PROCESS
DOMAINS IN GLACIALLY-CONDITIONED CATCHMENTS USING SELF-

ORGANIZING MAPS ...ttt sttt ss s s ess st ssnns 181
ADSTFACT ...t 181
INEFOAUCTION ..ottt sttt 183
STUAY ATBA ...ttt bbb s b s st s s ba s s s sasaaes 188
IMIBENOUS ...ttt 190

Assessment of geomorphic CONAItioN .........c..ccoevivevieieicieeeeeee e, 190
Assignment of sediment regime Class ..., 194
Pre-processing input data for SOM training .........ccceeevvierrrersieeeesee s 197
Clustering algorithm ...ttt 198

SOM computation, training and cluster validation..............c.cccccooevereeeeeeerennennene, 201
RESUILS ...ttt nnen 203
GeomOrphiC CONAITION .........oovieevieceeceeeee ettt 203
Sediment regime classifiCation..............coooeveiiveicieeeeeceee e, 204
CIUSEEIING OULCOIMES ...ttt sttt 211
DISCUSSION......vuieiieieieeicteiie ettt sse bbbt s st s s s st s s st nsens 220
Refinement of sediment regime classifications...........ccccooeveeivereicceicceeceeee 220
Uncertainty in sediment regime classifications............cccoceeveieieieveieciensieieenennns 221

SOM advantages for VISUAIIZatioN .............cceveeirieiinieieieeeee e 226
Management IMPICALIONS............ccooeviveieieieectee et 228
CONCIUSIONS ...ttt sttt 231
ACKNOWIBAGEMENTS.......oovieie ettt sttt 233
SUPPOItiNg INFOIMALION ... 234
RETEIENCES. ...ttt nsen 246
CHAPTER 5. CONCLUSIONS AND FUTURE DIRECTIONS ........cccoovieieierererreee, 255
COMPREHENSIVE BIBLIOGRAPHY ..ottt 258

vii



LIST OF FIGURES

Figure 1.1. Sediment source (Zone 1), transfer (Zone 2) and response (Zone 3)
regions of a catchment classified by Schumm (1984), as modified by the Federal

Interagency Stream Restoration Working Group (FISRWG, 1998). ........cccccovvvevrerrinnne.

Figure 1.2. Conceptual diagram of processes active at the ecotone between

hydrogeomorphic units that manifest in erosional or depositional features. ....................

Figure 1.3. Sediment exhaustion model in a nested basin, after Ballantyne (2002)
depicting (a) the differential sediment export from headwaters versus lowlands;
and (b) the effects of a perturbation (e.g., extreme flood) impacting the

headwaters, leading to renewed sediment Yields.............coooeeviveeieeeeeeeeeeeee e,

Figure 1.4. Continuum of stream types in mountainous rivers after Montgomery

& BUTFINGLON (1997)...eeiieeeeee et

Figure 1.5. Schematic of a channel evolution model for an unconfined, alluvial

channel after (Schumm et al., 1984) modified from (VTDEC, 2016). ........cccceeevevrrerneee.

Figure 1.6. Fluvial sediment process domains (modified after Montgomery,

(oL 1<) SO

Figure 2.1. Comparison of best-fit simple (blue line) and segmented (black line)
regression models for logio-transformed Total Suspended Solids (TSS)
concentration vs daily mean discharge data for Winooski River (n=261) for 1992-
2015. Data points were fit with Bayesian linear regression methods. Threshold
(d) of segmented model depicted as solid vertical line (mode) and dashed vertical
line (mean) with gray shading indicating the 95% credible interval of the posterior
distribution. Regression parameters are annotated, including the intercept (o) for
each model, and pre-threshold (f1_I) and post-threshold slopes (51 _I1) of the

SEPMENTEU MOUEL. ...ttt s s

Figure 2.2. Locations of the 18 study area watersheds in the Lake Champlain

Basin. Watershed identifications are keyed to Table 1. ........ccccorvieieirieiricreieeeeeine,

Figure 2.3. Identification of segmented regression models of log10C-10g10Q
relationships, including (a) conceptual models of nine types identified by Moatar
et al. [2017], modified to depict a variable threshold position (vertical dashed
line) and colored indication of dominant export regime of pre- or post-threshold
segment: hydrologic (blue) and reactive (red) ; (b) variations on Models A and |
suggested by this study and discerned through examination of posterior
distribution of model parameters for BLR; and (c) relative abundance of model

types exhibited by study area watersheds for TSS, PP, and DP........c..cccccoevevirverirnrnnnnee.

viii

...... 8

w13

w24

w27

...58



Figure 2.4. Box plots of: (a) f1 and (b) fo regression parameters by constituent

(TSS, PP, and DP) for the most frequently-encountered logi0C-logi0Q

relationships in the Lake Champlain Basin (Models A and D). Letter symbols

denote C-Q regression model type after Figure 3. Bottom panels display the ratio

of threshold Q to median Q (c) by constituent and (d) by constituent for Model

TYPES A QNG D oottt 70

Figure 2.5. Plot of regression slope (51) vs. CV ratio to visualize export regime

for TSS (top panels), PP (middle), and DP (bottom) from 18 LCB watersheds,
respectively, (using presentation style of Musolff et al. (2015)). Simple regression

data are presented in panels a, ¢ and e; segmented regression data are presented in

panels b, d, and f, with metrics for pre-threshold data (down-directed triangle)

plotted separately from post-threshold data (up-directed triangle). Vertical

whiskers span the 95% credible intervals around the estimate of 1 defined by

BLR. Bounds in the upper left and lower right of each panel are defined solely by

CVg and g1 (not CVc), and have been derived from the mean and standard

deviation of Q from Boquet data (see Musolff et al., (2015) for further discussion).......... 76

Figure 2.6. Particulate Phosphorus SOM clustering outcomes for Lake

Champlain Basin tributaries, including (a) SOM lattice (see Supplementary Figure

2.S2 and Text 2.S2); (b) basin location map color-coded by SOM cluster

assignment and keyed to C-Q regression model types; (c) variable bar plots by

cluster (n = number of basins per cluster; y-axis represents range-normalized

values; refer to Section 2.4). Note: for clarity of presentation, variable plots have

been rendered using different vertical scales. Panel (d) depicts mean annual flux

of TSS (left) and PP (right) in metric tons per year (mT/year) by SOM cluster.

Color shading relates to clusters in panels a - ¢. Letter symbols denote C-Q

regression model type after Figure 2.3. Flux estimates are from Medalie (2014). ............. 82

Figure 2.7. Dissolved Phosphorus SOM clustering outcomes for Lake Champlain

Basin tributaries, including (a) SOM lattice; (b) basin location map color-coded

by SOM cluster assignment and keyed to C-Q regression model types; (c) variable

bar plots by cluster (n = number of basins per cluster; y-axis represents range-

normalized values; refer to Section 2.4). Note: for clarity of presentation, variable

plots have been rendered using different vertical scales. Panel d depicts mean

annual flux in metric tons per year (left) and concentration in milligrams per liter

(right) of DP by SOM cluster. Color shading relates to clusters in panels a - c.

Letter symbols denote C-Q regression model type after Figure 3. Flux and

concentration estimates are from Medalie (2014). ... 83

Figure 2.S1. Decision tree for classification of concentration-discharge model
types after Moatar et al., [2017] with reference to the posterior distribution
quantiles for model parameters from Bayesian Linear Regression. .........c.ccccovevveereennnee. 104

X



Figure 2.52. Conceptual diagram of Self-Organizing Map used to cluster study
area watersheds into distinct sediment and nutrient flux regimes based on physical

and hydrological VariabIEs. ...

Figure 2.S3. Bivariate plots of post-threshold vs. pre-threshold regression slope
() for Total Suspended Solids (top), Particulate Phosphorus (middle), and
Dissolved Phosphorus (bottom). Vertical and horizontal whiskers indicate the
95% credible interval on the estimate of the mean value of the regression slope
parameter derived from Bayesian Linear Regression. Gray shading indicates
range from zero to f1 = |0.2| - defined by previous researchers as a “cutoff” value
defining the difference between accretionary (or dilutionary) C-Q response and a

stable response. Letters define model types after Figure 3 of the main manuscript. .....

Figure 2.54. Location of 18 study area basins in the Lake Champlain region, with
C-Q model types assigned, using Bayesian Linear Regression for Total
Suspended Solids/ Particulate Phosphorus/ Dissolved Phosphorus. Model types

are defined in Figure 3 of the main ManuUSCIIPL. .........cccovrveieiicieeee e

Figure 2.S5a. Monthly distribution of daily mean flows exceeding the basin-
specific threshold defined using Bayesian Linear Regression of
logioConcentration vs logioDischarge for 18 study area basins: Total Suspended

SO0IOS. ettt ettt e et e et et e et e et en et aner et ee et enete s e et eaeaten et eneeeaeaeanenens

Figure 2.S5b. Monthly distribution of daily mean flows exceeding the basin-
specific threshold defined using Bayesian Linear Regression of
logioConcentration vs logioDischarge for 18 study area basins: Particulate

PROSPNOTUS. ...ttt sttt st bbb

Figure 2.55c. Monthly distribution of daily mean flows exceeding the basin-
specific threshold defined using Bayesian Linear Regression of
logioConcentration vs logioDischarge for 18 study area basins: Dissolved

PROSPNOTUS. ...ttt sttt bbbt bbb

Figure 3.1. Location of study area including (a) US and Northeastern US context;
(b) Mad River watershed; and (c) longitudinal profile of the main stem and three
sampled tributaries. Capital letters A through D are keyed to supplementary

TADIE 3.8 ettt et ettt e et et et et et e et et et e e eaene e et eteeeaeneeaeeneneaes

Figure 3.2. Location of target sampling sites in the (a) Mad River watershed
using time-integrated passive samplers constructed after (b) Phillips et al., 2000 or
(c) Borg, 2010. Example deployments of the (d) low-flow Phillips sampler, (e)

high-flow Phillips sampler, and (f) Borg Sampler.........cocoieievieiienieeereseesee

Figure 3.3. Location of fingerprint samples by source type collected in the Mad

RIVEE WALETSNEM. ...ttt et et e et e e e e et e e et ea e e eaeeeeeeeeeeeeeeeeeeeaeeaeanena

..105

...106

..107

..108

..109

..110

..138



Figure 3.4. Bivariate plot of radionuclide activities by source group and target

SUSPENAE SEAIMENTS. ..ottt bbbt

Figure 3.5. Bivariate plots of mean radionuclide activities by source group and
target suspended sediment — bracket test to determine fingerprint suitability —

pairing (a) 7Be and (b) 137Cs Versus 210PDXS.........cccccevveinrernieinieirieissesse s

Figure 3.6. Daily mean flow during study period (water years 2014-2016) at
USGS Gauging Station (#04288000) on Mad River at Moretown. Gray shading

indicates time intervals of passive sampling for suspended sediments. .........................

Figure 3.7. Un-mixing model scenarios involving separate suspended-sediment

sampler deployments (i.e., targets). Additional model details provided in the text.....

Figure 3.8. Source apportionment results for Mad River main stem target, Model
A; spanning two 24-hour summer 2015 storm events; bars depict median value;
whiskers denote 75" and 25" quartiles on posterior distribution of parameter

BSTIMIALE ..ottt et et e e e et e e e e e e e s eseeeaeeee s eeseseseseaseseasesenseneneaseseasesansensasaneneasenerenas

Figure 3.9. Source apportionment results for tributary target, summer 2015,
Model B; bars depict median value; whiskers denote 75" and 25" quartiles on

posterior distribution of parameter eStIMALe............c.ccovevieeieieieieeeeeeee s

Figure 3.10. Source apportionment results for tributary target, autumn 2015,
Model C bars depict median value; whiskers denote 75" and 25" quartiles on

posterior distribution of parameter eStIMALe. ..........c.ccovevieieieveieeeeeee s

Figure 3.11. Ratios of "Be/ 2!°Phys in suspended sediment targets collected using
passive samplers from the Mad River and three tributaries. Indicated dates refer

to deployment end dates. Horizontal line marks the overall mean ratio value...............

Figure 4.1. Location of study area watersheds across surface water basins and
biogeophysical regions in Vermont. Watershed numbers are keyed to

Supplementary Table 4.S1. ...t

Figure 4.2. Schematic of typical cross section for six sediment regime classes.
Class abbreviations are described in the text. Color scheme corresponds to Table

B2 o

Figure 4.3. Architecture of Self-Organizing Map illustrating the competitive
algorithm. Weights of the best matching unit (BMU) and lattice nodes within a
user-specified neighborhood (N¢) surrounding the BMU are updated to make

... 143

...145

....189

...195

them more similar to values of the INPUL VECTON . ..........cc.coeviiveicieieceeee e 200

xi



Figure 4.4. Distribution of bedforms by: (a) slope — relative roughness plot; and
(b) sediment regime class (n=193). Braided and cascade bedforms omitted from
PANEL A, ..ottt bbbt 203

Figure 4.5. Box plots displaying range and central tendency of geomorphic and

hydraulic variables by assigned sediment regime class. Solid, black horizontal

line depicts median value; diamond symbol depicts arithmetic mean of non-

transformed values. Blue horizontal lines depict threshold values discussed in the

text. Unique letters indicate statistically-significant differences between class

means by ANOVA/Tukey HSD on transformed variables. .........c...cccovveeievivernicenneenennn. 207

Figure 4.6. Coarse-tune SOM clustering outcomes for study area reaches,

including (a) converged SOM lattice; and (b) component planes for select input

variables, in which the color scheme represents a “heat map” grading from low

(cool blue tones) to high (warmer red tones) range-normalized values for each
independent variable. Component planes for additional variables are presented in
SUPPIEMENTAIY FIGUIE S2. ...ttt 213

Figure 4.7. Coarse-tune SOM clustering outcomes for study area reaches,

including (a) converged SOM lattice; and variable bar plots by cluster for (b)
vertically-stable reaches in confined settings, Clusters 4 and 5; (c) vertically-

stable reaches in unconfined settings, Clusters 6 and 7; (d) vertically-disconnected
reaches in unconfined settings, Clusters 1, 2 and 3 (n = number of reaches per

cluster; y-axis represents range-normalized values); (e) summary of expert-

assigned sediment regimes DY CIUSTEN. ..........cieviveiiieieeeee et 215

Figure 4.8. Reach observation numbers color-coded by expert-assigned sediment
transport regime (see key above) plotted to SOM to visualize where observations
Clustered on the COArse-tUNE SOM ..o st saes 217

Figure 4.9. Fine-tune SOM clustering outcomes for study area reaches, including

(a) converged SOM lattice; (b) variable bar plots by cluster; and (c) reach

observation numbers plotted to lattice, color-coded by expert-assigned sediment

TrANSPOIT FEOIME. .....vieeieteicte ettt bbb bbb bbb sa s b s ansans 219

Figure 4.10. Representation of (a) sediment regime classes by channel evolution
stage (Schumm et al., 1984) superimposed on (b) the fine-tune SOM lattice; and
(C) SOM COMPONENTE PIANES. ... 227

Figure 4.11. Channel-bed SSP estimated for a range of modeled return interval
storms in contiguous reaches of the Mad River, VT with differing channel
configurations (IR, ER). ...ttt st 229

Figure 4.S1. Box plots of reach geomorphic variables by expert-assigned
SEAIMENT FEYIME CIASS. ...t a s asans 241

xii



Figure 4.52. Component planes for each of the 13 input variables to the coarse-

tune SOM. Color scheme represents a “heat map” grading from low (cool blue

tones) to high (warmer red tones) range-normalized values for each independent

VANADIE. ...t bbb 244

Figure 4.S3. Component planes for each of the 10 input variables to the fine-tune

SOM. Color scheme represents a “heat map” grading from low (cool blue tones)

to high (warmer red tones) range-normalized values for each independent

VAETADIE. ...ttt ettt sttt 245

xiii



LIST OF TABLES

Table 2.1. Physical characteristics of Study Area watersheds, Lake Champlain
BASIN ...ttt 60

Table 3.1. Summary of radionuclide activities in source and target samples.................... 143

Table 3.2. Model A source apportionment results for Mad River main stem two
June 2015 sequential storms; proportions by source group presented with 95%
CrEdIDIE INTEIVAL ...ttt 147

Table 3.3. Model B source apportionment results for composite of Shepard, Mill,

Folsom tributaries during four-week deployment spanning two June 2015

sequential storms; proportions by source group presented with 95% credibility

INEEIVAL ...ttt bttt 149

Table 3.4. Model C source apportionment results for composite of Shepard, Mill,
Folsom tributaries during fall deployment from 7/9 to 12/26/15 sample recovery
principally from storms in late Oct through Dec; proportions by source group

presented with 95% credibility INterval............ccooovieiieiicceee e 151
Table 4.1. Geomorphologic and hydraulic variables used to classify sediment

TEOIME. oottt a b s b a e s b s bt b s b s b s b e b e b s s b st s e s s s nee 192
Table 4.2. Geomorphic characteristics of sediment regime classes. Class

abbreviations are described iN the TEXL.........cooieveiiieice e 193
Table 4.3. Characteristics of study area reaches. .........c.cocoeeveveieieieiereesesseseeseseenaes 203
Table 4.S1. Physical characteristics of study area watersheds. ............ccccoooeveveieieeicrreinnes 240

xXiv



CHAPTER 1. INTRODUCTION AND COMPREHENSIVE
LITERATURE REVIEW

Motivation and Research Objectives

Enhanced sediment loading from rivers is a widespread phenomenon, associated
with significant impacts to instream conditions as well as to receiving water bodies
including both freshwater lakes and coastal estuaries (National Research Council, 2000).
In the United States, more than 140,000 river miles have been identified nationally as
threatened or impaired by sediment (USEPA, 2016). Sediment loading may cause a
variety of impacts, including degraded instream and near-shore habitats, compromised
drinking water quality, and loss of reservoir capacity. Nutrients are often associated with
sediment loaded to rivers from streambank erosion and surface runoff (Dubrovsky et al.,
2010; Howarth et al., 1996; National Research Council, 2000), either as a result of
current land use practices or legacy accumulations (James, 2013). Excess levels of
phosphorus and nitrogen, can lead to enhanced eutrophication of receiving water bodies,
fish kills from hypoxia, and harmful algae blooms that may interfere with drinking-water
and recreational uses and present a human health risk (Anderson et al., 2002). Over
112,000 river miles in the US have been impacted by nutrients (USEPA, 2016). In
addition to sediment impacts on water quality, excessive rates of landscape erosion and
channel adjustment present a challenge to society in terms of erosion hazards to
infrastructure, compromised public safety, and degraded ecological integrity (Rapp &
Abbe, 2003; Poff et al., 1997; Pringle, 2003).

A better understanding of sediment transport dynamics would help to identify

critical catchment locations and time periods responsible for disproportionate fluxes of



sediment and associate pollutants. Knowledge of these so called “hot spots” and “hot
moments” (McClain et al., 2003; Heathwaite et al., 2000) would help to inform best
management practices for reductions in sediment and nutrient loading and to mitigate
fluvial erosion hazards.

Water resource managers and stakeholders need tools to model and predict
sediment erosion, transport and deposition and to characterize sediment sources within a
reasonable measure of uncertainty and help optimize river management. However, rivers
are complex, nonlinear systems (Phillips, 2003) and sediment dynamics exhibit high
variability over spatial and temporal scales (Fryirs, 2013; Walling, 1983; Dubrovsky et
al., 2010). Spatial variability exists in the nature, distribution and magnitude of both
source areas and transport pathways. Heterogeneous properties of topography, soils,
vegetation and land use influence transport and transfer pathways and mechanisms, and
moderate a complex cascade (Burt & Allison, 2010) of sediment and associated nutrients
through the catchment (Fryirs, 2013; Dubrovsky et al., 2010). Glacially-conditioned,
mountainous rivers are particularly vulnerable to adjustment and sediment export due to
their topographic setting, close coupling of hillslope and channel processes, and
reworking of glacial legacy sediments (Church & Ryder, 1972; Ballantyne, 2002).
Human disturbances to the landscape and river networks have also altered hydrologic and
sediment connectivity within catchments with resulting controls on source and sink
dynamics (Walter & Merritts, 2008; Noe & Hupp, 2005). Temporally, processes
governing the flux of sediment and nutrients are driven by stochastic inputs of climate
and hydrology (Benda & Dunne, 1997). Interannual changes in climate or land cover,

seasonal fluctuations in hydrology, vegetation, biological uptake, and human activities on
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the landscape, and event-based changes in hydrology influence both the production and
transport of nutrients and sediment (Dubrovsky et al., 2010), leading to considerable
variability in sediment/nutrient flux over time. Recovery times from natural and human
perturbations, and in response to extreme floods (Costa & O’Connor, 1995), may extend
100 years or more in humid temperate regions (Wolman and Gerson, 1978), such as the

Northeastern United States.

Given the complexity of river dynamics, stakeholders face significant challenges
when trying to prioritize the allocation of limited resources to achieve reductions in
sediment and pollutant loading or identifying infrastructure at enhanced risk of failure
from fluvial erosion during extreme flood events. Water resource scientists and
engineers use multidimensional data of varying types and quality to model sediment
dynamics and answer management-related questions, and the temporal and spatial
resolution of this data is growing exponentially with technological advances. For
example, with the advent of automated samplers and in situ sensors, more studies are
making use of high-frequency monitoring data (Bende-Michl et al., 2013; Isles et al.,
2015). Similarly, the increasing availability of high-resolution topographic data sourced
from satellite imagery, airborne and terrestrial light detection and ranging systems, and
unmanned aerial systems photogrammetry (Bizzi & Lerner, 2013; Hamshaw et al., 2017),
has enabled remote-sensing methods for assessing erosion and deposition in the active
river corridor. This increasing availability of data has the potential to improve model

predictions for improved water resource management.

These high-resolution spatial and temporal data sets (i.e., “big data’) require new

computational tools for data reduction and analysis (Kirchner et al., 2004) that are able to
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incorporate the nonlinear nature of hydrologic and sediment/solute responses (so called
“gray-box” methods of Kirchner, 2006). Physically-based, distributed models are able to
forecast sediment concentration and flux; but the accuracy and calibration are resource-
intensive, making such models typically less transferable among watersheds or regions
(Todini, 2007). On the other hand, data-driven statistical models can be more readily
implemented and have the appeal of representing system complexity in simple ways

(McDonnell et al., 2007), although they are more limited in their prediction capabilities.

In consideration of the nonlinear complexity of sediment dynamics, this
dissertation examines the application of machine-learning clustering or classification
algorithms (so-called, smart classifiers) and Bayesian inference as two such data-driven
approaches to improve our understanding of riverine sediment flux. The following

questions have motivated this research:

1. Can smart classifiers, utilizing machine-learning algorithms, improve
upon conventional (parametric) classification methods to mine watershed metrics and
predict concentration-discharge (C-Q) relationships associated with sediment and

sediment-related constituents?

2. Can Bayesian techniques model threshold effects in C-Q regressions to
improve the utility of regression metrics to discern between hydrologically-dominated
and biogeochemically-dominated phases of constituent export (adapted from Musolff et

al., 2015 and Thompson et al., 2011)?



3. Can Bayesian inference be leveraged to address uncertainty in un-mixing
models to discern the relative contributions of suspended sediment sources at a watershed

scale?

4. Given that sediment sources and sinks along a river network are highly
variable in both space and time, can “hot spots” and “hot moments” be predicted using

smart classifiers?

5. Can the process of training and testing data-driven models elicit
information regarding the relative importance of various hydrologic and geomorphic
drivers of sediment erosion and deposition in catchments, and scale-dependent

phenomena, thereby guiding water resource management priorities?

Organization of Dissertation

Following a review of the current literature, I illustrate the application of smart
classifiers and Bayesian statistical techniques to multidimensional data sets
characterizing riverine-sediment source and flux at three different scales: basin,
catchment, and reach (Chapters 2 — 4). As a test bed for these tools, we focus our
applications on the glacially-conditioned, montane regions of Vermont in the
Northeastern United States. Chapter 2 examines sediment and nutrient concentration-
discharge dynamics at a basin scale, using the Lake Champlain Basin study region, by
applying a framework of Bayesian statistics and neural network clustering. I use a
Bayesian segmented linear regression approach to identify different functional stages of
sediment and phosphorus export, where “reactive” versus “hydrologically-driven” stages
of constituent export are dominant. | then apply a nonparametric clustering and data
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visualization approach, using a Self-Organizing Map (SOM), to yield insights into
nonlinear combinations of independent variables that appear to be driving basin-scale
differences in mean annual flux and concentration of sediment and phosphorus. Spatial
variability in sediment and nutrient flux across the basin is reviewed, along with
management implications for the tributary watersheds in the context of ecological
balance in the receiving water, Lake Champlain.

At the catchment scale, in Chapter 3, I illustrate the value of Bayesian statistical
techniques to address uncertainty in an un-mixing model to discriminate between surface
and subsurface sources of fine particulates (clay, silt, fine sand) carried in suspension by
ariver. The study focuses on the Mad River watershed in north-central Vermont and
compares suspended sediment flux between catchment and tributary scales during
moderate-sized, mid-summer storm events, and examines summer versus autumn
seasonal differences at the tributary scale.

Chapter 4 demonstrates the utility of SOMs for data visualization and
interpretation to characterize and predict differences in reach-scale fluvial geomorphic
form and dominant adjustment processes in response to natural and human perturbations.
The process of SOM training identifies a parsimonious set of geomorphic and hydraulic
variables that meaningfully separate reaches into sediment process domains constituting
net sources or sinks of coarse and fine sediment on a mean annual temporal scale. The
data set comprises stream geomorphic data from six Vermont catchments distributed
across several biogeophysical regions, and SOM outcomes represent proof-of-concept for

future automation of classifications leveraging state-wide geomorphic databases. Finally,



Chapter 5 concludes with a summary of this dissertation and identifies opportunities for
future research.

An enhanced understanding of river sediment sources and dynamics is important
for stakeholders, and will become more critical under a nonstationary climate, as
sediment yields are expected to increase in regions of the world that will experience
increased frequency, persistence, and intensity of storm events (IPCC, 2014), including
the northeastern US (Collins, 2009; Guilbert et al. 2015; Guilbert et al. 2014). Data-
driven statistical methods and smart classifiers, similar to those demonstrated in the
chapters below, have great utility for representing system complexity, and can be readily

implemented in an adaptive management context to complement process-based models.

Sediment Connectivity at the Catchment Scale
Sediment is a critical component of the physical framework of catchments and
plays an important role in biogeochemical cycling of nutrients and other elements. While
the classical delineation of a catchment into the source, transfer, and response zones of
Schumm (1984) is useful for characterizing sediment sourcing and storage at a broad scale
(Figure 1.1), greater refinement of landscape variability is needed for optimal management

of water resources.
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Figure 1.1. Sediment source (Zone 1), transfer (Zone 2) and response (Zone 3) regions of
a catchment classified by Schumm (1984), as modified by the Federal Interagency
Stream Restoration Working Group (FISRWG, 1998).



Sediment connectivity has been defined as the “connected transfer of sediment
from a source to a sink in a system via sediment detachment and sediment transport,
controlled by how the sediment moves between all geomorphic zones in a landscape”
(Bracken, et al., 2014). Sediment movement through the catchment has been
conceptualized as a cascade (Dietrich & Dunne, 1978; Burt & Allison, 2010), whereby
sediment is alternately stored and mobilized on its journey from the headwaters to the
watershed outlet as linkages between landscape units are disconnected and reconnected,
and the strength of those linkages is altered (Fryirs et al., 2007; Fryirs, 2013). Sediment
connectivity is controlled by the physical and topographic nature of landscape units that
make up a catchment, their configuration, and the dynamic flow paths between them
(Hooke, 2003; Fryirs, 2013).

Thorp et al. (2006) has conceptualized the catchment as a mosaic of
hydrogeomorphic units of relatively uniform composition, structure, and function that
differentially impact sediment connectivity. In mountainous catchments, bedrock
influences sediment connectivity by controlling the overall topography and relief, which
in turn controls valley confinement, offering frequent vertical and lateral armoring in the
river networks draining the landscape. In the Northeastern US, surficial sediments and
soils present in the landscape reflect the glacial and post-glacial history of the region, and
the diversity of sediments left behind by multiple glacial advances and retreats,
temporary high-elevation lakes, and outwash channels (Stewart & MacClintock, 1969).
In the current hydrologic regime, surficial sediments have been reworked to varying
extents by gravitational and fluvial processes, yielding colluvial and alluvial deposits and

erosional landforms.



Macro-scale hydrogeomorphic units characterizing humid-temperate,

mountainous provinces include:

Slopes are moderate to extremely steep (>2%) land surfaces that dominate the
catchment aerial extent. In the headwaters, hillslope topography is largely
controlled by the structure and composition of the underlying bedrock. Slopes
can also be found at the ecotones between hydrogeomorphic units such as
where terraces grade downhill to meet an adjacent floodplain, or where the
floodplain transitions to the channel at a streambank.

Plains are shallow-gradient (<3%) land surfaces of varying genesis and
extent. Floodplains are low-lying land areas present along segments of the
river network in catchment areas characterized by lesser longitudinal gradients
and greater valley confinement ratios (>2; VCR = valley width / channel
width). Floodplains are composed predominantly of contemporary or
Quaternary alluvial deposits, and may be punctuated along their length by
bedrock-controlled valley constrictions or channel-spanning bedrock
exposures. Terraces are higher in elevation than floodplains and are
frequently found along the margins of river valleys at the transition between
hillslope and floodplain environments. Terraces are formed either by glacial
processes (e.g., kame terraces, kame delta complexes, post-glacial lake
deposits and deltas) or more recent fluvial processes. Abandoned stream
terraces have been formed through the process of floodplain development in

Quaternary or Holocene times (Stewart & MacClintock, 1969).
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e Fluvial network- The fluvial network comprises the complete river network
from disperse points of initiation in the headwaters to the catchment outlet,
and includes the subunits of the active channel/ hyporheic zone, the
parafluvial zone and the riparian zone. Ephemeral or perennial elements of
the fluvial network traverse and connect all of the other hydrogeomorphic unit
types composing the catchment. The fluvial network is dominated by alluvial
sediments; however it is not uncommon for glacial tills to be exposed along
the banks of headwater streams, and for stream segments to impinge upon
hillslopes or terraces composed of glacio-lacustrine, glacio-fluvial sediments
or bedrock.

Flow paths connect these hydrogeomorphic units, and represent linkages between
sediment sources and sinks. They operate both within and between hydro-geomorphic
units — at local and zonal scales (Harvey, 2002) and can be classified on a continuum
between diffuse (e.g., distributed overland flow) and concentrated (e.g., ephemeral or
perennial channel) (Poeppl, et al., 2012; Croke et al., 2005). Source-sink linkages can
also be classified on a continuum from fully-connected to disconnected over varying

timescales (Harvey, 2002; Fryirs et al., 2007).

Sediment flow paths in humid temperate regions are driven both by gravitational
processes (e.g., debris slides and debris flows) and by hydrologic processes (e.g., rill and
gully erosion, streambank erosion) — with aeolian processes constituting a driver of
relatively minor significance in the current regime. Sediment flow paths are
predominantly a function of hydrologic connectivity, as saturation overland flow regimes

dominate (Dunne and Black, 1970; Croke et al., 2013; Bracken & Croke, 2007). Given
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the latitude and elevation of mountainous catchments of the Northeast, solid states of
water and related processes (frost, freeze-thaw cycles, snow pack, anchor ice, ice jams)
provide additional controls on hydrologic (and sediment) connectivity (Turcotte et al.,

2011; Prowse & Culp, 2003).

Flow paths operate in four dimensions — vertical, lateral, longitudinal and
temporal (hydrologic) (Ward, 1989). On slopes, processing of sediment in the vertical
dimension is minimized in favor of the lateral and longitudinal directions, given the
shallow depths to confining layers and steep gradients. Vertical processing is
predominant on terrace units of glacial-fluvial origin (e.g., kame terraces, delta and fan
deposits), given the planar surfaces and the highly permeable nature of sediments
comprising the terraces. In contrast, vertical processing of sediment on terraces of
glacio-lacustrine origin is minimal due to the predominance of fine-grained silts and clays
comprising these terraces and their low infiltrative capacity (e.g., hydrologic soil groups
C and D; USDA, 1986). Floodplains are dominated by lateral and longitudinal flow
paths. In the fluvial network of mountainous catchments, longitudinal transport of
sediment, including the upstream-to-downstream linkages and tributary-to-main stem
linkages (Fryirs, 2007), is a dominant flow path, though significant sediment is processed

in the lateral dimension through interactions with the parafluvial and riparian subunits.

At a given point along a flow path, the power to entrain and transport sediment is
directly proportional to the gradient of that path and the contributing area. At a broader
scale, the juxtaposition of slopes and plains and the sequencing of these
hydrogeomorphic units along the flow path will govern the dominant process of sediment

transport: either erosional or depositional. Transitioning from a plain to a downhill slope,
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stream power increases and the process would tend toward erosional (as mediated by the
erosion resistance of the boundary materials which itself is a complex function of many
variables including composition, grain size, and vegetation) (Figure 1.2a). Conversely,
when transitioning from a downhill slope to a plain, stream power decreases, transport
capacity decreases, and deposition is induced (Figure 1.2b). The configuration and
sequencing of hydrogeomorphic units and flow paths along the fluvial network are

unique to a given catchment and to a specified hydrologic domain.

(a) (b)
c C
° - o
b= plain = -
> " > )
@ % @ =R
Ecotone w =N w
plain
B —
(]
3 2
o e} .
[ . a negative slope
positive slope
1S S
©
Stream o o
= =1
Power v 2]

Distance Distance
Hydrogeomorphic
Unit  Erosional Feature Depositional Feature
slopes: landslides, rills debris cones/ alluvial fans
plains:  gullies deltas, terraces
fluvial network: headcuts, cut banks aggradational bars, slackwater deposits

Figure 1.2. Conceptual diagram of processes active at the ecotone between
hydrogeomorphic units that manifest in erosional or depositional features.
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Hot spots and hot moments

The rate of sediment transfer can be especially important at the boundaries

between hydrogeomorphic units (or ecotones), constituting a disproportionately high rate

of transfer, or “hot spot” (McClain, 2003). Through hot-spot processes, a relatively small

areal percentage of the catchment may be responsible for a majority of the eroded

sediment volume. For example,

Landslides commonly form at the ecotone between hillslopes and channels
(Figure 1.a). Landslides are episodic, and most often controlled by the interacting
forces of gravity and hydraulic shear from streamflow at the toe of the slope.
Microscale hydrology (e.g., saturation effects on pore pressure and failure
mechanisms) and nature and degree of vegetative cover also play mediating roles.
Eroding streambanks form at the ecotone between floodplains (or terraces) and
channels. Streambanks yield sediment through a combination of gravitational
(vertical) forces and shear (lateral/longitudinal) forces — mediated by vegetative
effects (roughness) and micro-scale hydrology (e.g., matric potential).

Gullies commonly form at the ecotone between terraces and floodplains. Steep
terrace side slopes result in increased transport capacity; soils comprising these
terraces are often unconsolidated and erodible, or may be comprised of finer
grains (glaciolacustrine).

Rills form along slopes where overland flow is concentrated and runoff velocity
exceeds the threshold of erosion of the underlying sediment (mediated by

vegetation).
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e Khnickpoints (head-ward migrating head cuts) form in coarse bed sediment within
the fluvial network where a local increase in slope has manifest as a result of local
erosion or deposition patterns (mediated by large woody debris and/or bedrock

exposures).

These critical source areas (Heathwaite et al., 2000) — where sediment (or
sediment-bound pollutant) sources overlap with an activated hydrologic transport
pathway(s) - may also vary in time (hot moments; McClain, 2003). Within a normal flow
year, the bankfull flow event (~Q 1.5) is responsible for a majority of the sediment
mobilized through the river network. Gullies along terrace side slopes are initiated or
enlarged during summer convective storms by intense rainfall and runoff. Extreme
events may represent a hot moment on a multi-annual time scale, that are responsible for
mobilizing additional sediment. For example, Tropical Storm Irene (August 2011) was a
>200-year event that resulted in significant rejuvenation of landslides and alluvial fan
deposits along New England’s stream channels and floodplains (Yellen et al., 2014;

Dethier, 2016).

Cold spots and cold moments

Various landforms may impede hydrologic and sediment flow paths; these “cold
spots” operate at various spatial scales and may be composed of glacial or paraglacial
sediments (Church & Ryder, 1972). Cold spots may persist as either long-term sinks or
short-term stores of sediment (Meade, 1982; Fryirs, 2013), and the length of these cold
moments is highly variable. The role of cold spots and cold moments in the overall
sediment cascade will be a function of their position in the catchment relative to other

landscape units (e.g., context, degree of [de]coupling) as well as the hydrologic domain
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(from event to regime scales) (Harvey, 2002; Michaelides & Wainright, 2002; Hooke,

2003; Fryirs, et al., 2007). With the onset of a flow event of sufficient magnitude, all or

portions of these sediment sinks located proximal to active (or newly-activated)

hydrologic flowpaths may become sources of sediment — thus, cold spots can be readily

transformed into hot spots.

Various macro-to micro-scale landscape features can serve as impediments to

hydrologic and sediment flow paths (Bracken & Croke, 2007) - termed “buffers, barriers

and blankets” by Fryirs et al. (2007):

Buffers are “landforms that prevent sediment from entering the channel network”

serving as impediments to lateral and longitudinal flow paths (Fryirs et al., 2007).

Floodplains and terraces can serve as buffers, particularly when they are
positioned between a hillslope source of sediment and the channel at the transition
from steep, valley-confined settings and much lower-gradient, unconfined
settings. These deposition zones often take the form of alluvial fans or debris
cones (Figure 1.2b) that were originally deposited during a previous, more intense
hydrologic regime (Bierman et al., 1997). In the current regime, extreme storm
events result in episodic rejuvenation of these landforms (Jennings, 2001,
Bierman et al., 1997). Macro-scale buffers are generally found in the middle to
lower reaches of a watershed. At the meso- to micro-scale, discontinuous pockets
of floodplain can serve as localized buffers along headwater tributaries in discrete
locations where valley confinement and longitudinal gradients are relaxed.

Sediment can be tied up in these buffer features for significant timeframes (up to
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10% years), and overtopping or reworking of these landform sediments generally
requires an extreme flood event (Fryirs et al., 2007).

Barriers are landforms or features that disconnect sediment transport in the
longitudinal direction (Fryirs et al., 2007). Natural barriers include macro- to
micro-scale features operating in the floodplain and fluvial network, and include
bedrock nickpoints or gorges and bedrock-controlled valley pinch points that
control local base levels in the longitudinal profile of the channel. Aggradation is
induced upstream of these features generating sediment stores that persist over
long time scales (10° years) and contribute to floodplain genesis. These features
are highly resistant to erosion and can be considered permanent over historic
timescales. At smaller timescales (up to 10? years) and localized spatial scales
within the active channel and parafluvial zone, sediment stores are built behind
channel-spanning large woody debris jams and boulder grade controls. These
features are common in forested headwater channels where the channel widths are
generally less than the typical height of trees and where bedrock-cascade and
boulder step/pool channel bedforms are common (Benda et al, 2005; Montgomery
& Buffington, 1997). Sediment slugs (often generated by colluvial processes
along closely-coupled hillslopes) can also serve as transient barriers to sediment
connectivity and will eventually be reworked by future high-flow events.

Channel segments of markedly reduced transport capacity (e.g., braided channels,
or single-thread channels with high width/depth ratios) can also cause
discontinuities in downstream sediment transport. These channel forms are

common at transitions from hillslopes to floodplains or from hillslopes to alluvial
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fans or other terrace features. Debris jams, sediment slugs, and braided channel
segments are frequently reworked and can induce sudden channel avulsions or
break-outs in higher-flow conditions (Montgomery & Buffington, 1997; Williams
& Costa, 1998; Fryirs et al., 2007).

Blankets are features that influence sediment movement in the vertical dimension
at the surface-subsurface interface, in floodplains and in the fluvial network
(Fryirs et al., 2007). In the floodplain, blankets can include such meso- to micro-
scale features as sediment sheets or slackwater deposits which may persist for up
to hundreds of years and are reworked periodically by higher-flow or extreme
events. In the fluvial network, blankets may include channel-bed armoring in the
stream, or fine-grained sediment infill in the channel bed or local depressions of
the stream or parafluvial zone. These features of the active channel and
parafluvial zone are more frequently reworked. Cobble or gravel bed armoring
will persist until a flow of sufficient transport capacity can breach the armoring
(10° to 102 years). Fine-grained stores of sediment on bars in the channel or in
localized depressions in the parafluvial zone (e.g., bankfull-accesible flood
chutes) are easily reworked by flows of sufficient stage (event-based to decadal
timescales) and thus represent shorter-term stores of sediment. Between
mobilizing events, these fine-grained blanket features reduce the exchange rates
of water and thereby influence sediment / nutrient/ element cycling in the

hyporheic zone.
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Sediment (dis)connectivity and the sediment delivery ratio

The degree to which sediment flow paths are connected, and not blocked by
buffers, barriers and blankets, will determine the extent of the catchment which is directly
contributing sediment to the fluvial network and the efficiency with which that sediment
is being conveyed to the catchment outlet over a given timeframe. The “effective
catchment area” (Harvey, 2002) — or sum of the activated hydrologic (and sediment)
transport pathways - varies with time (event, season, water year, climate/hydrologic
regime) (Poff et al., 1997; Thoms & Parsons, 2003) and is further conditioned by
magnitude and frequency patterns (Wolman & Miller, 1960) and antecedent states.

Variable source area concepts advanced by Dunne & Black (1970) suggest that
runoff contributing areas vary temporally in accordance with changing magnitude and
intensity of precipitation, regulated by antecedent degree of soil saturation (Walling,
1971; Moore et al., 1976). An expanding variable source area may re-connect previously
disconnected sediment (pollutant) source areas leading to changes in the effective
catchment area with regard to sediment delivery.

As a consequence of this spatial and temporal variability in sediment sourcing and
transport, sediment load exported from a catchment is less than the load delivered to the
downstream receiving water (Williams, 1983). If the sediment cascade is integrated to
the basin scale, one can represent the suspended sediment yield from a glacially-
conditioned landscape as an exhaustion model (Figure 1.3; after Ballantyne, 2002). This
model assumes an exponential decay of sediment from the landscape, which is predicated
on the assumption of a finite store of sediment and a stationary climatic regime.

Sediment transfer rates decline over time as the sediment stores are depleted and/or as
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vegetation matures on the landscape leading to reduced entrainment of sediment. The
decline of sediment yields is more pronounced for small, headwater basins that have
steeper slopes, minimal floodplains, and whose channel network is more closely coupled
with hillslopes. Whereas at points in the basin with a larger cumulative drainage area, the
rate of decline in sediment yield is much more gradual. In this way, suspended sediment
yields at a given time since glaciation (t1 in Figure 1.3a) can be higher in the lowland part
of a basin than they are in the headwaters. This is a pattern reflected in glacially-
conditioned basins of northwestern North America (Church and Slaymaker, 1989) but has
yet to be defined for previously-glaciated basins of the Northeastern US.

With continued climate change, higher magnitude and duration of runoff will
generate increased stream power leading to increased gullying, and erosion of sediments
from the land surface, roads, ditches, landslides and streambanks. Long-term sinks or
shorter-term stores of sediment will be increasingly converted to sources of sediment at
the growing interface between hydrogeomorphic units. Source and sink roles of river
corridor features will also vary temporally with differing magnitude and stage of
hydrologic events. During a flow event of sufficient magnitude, all or portions of those
sediment (and nutrient) sinks located proximal to active or newly-activated flow paths
may become sources of sediment (Fryirs et al., 2007, Harvey, 2002) and associated
nutrients. The exact distribution of sources and sinks across the catchment may be
difficult to predict, but it may be possible to estimate net sediment yields on a basin scale.
Figure 1.3b depicts a system wide perturbation (e.g., extreme storm event) that
preferentially impacts the headwater reaches of a nested basin, leading to a sudden

rejuvenation of sediment erosion, as areas of glacial sediment previously disconnected
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from the channel are accessed by higher flows. It is likely that increased frequency,
intensity and magnitude of storms in coming decades (Guilbert et al, 2015) will
rejuvenate erosion processes in headwater regions where hillslopes are closely coupled
with stream channels. Such a pattern was evident, for example, during Tropical Storm

Irene in the Connecticut River basin (Yellen et al., 2014).
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Figure 1.3. Sediment exhaustion model in a nested basin, after Ballantyne (2002)
depicting (a) the differential sediment export from headwaters versus lowlands; and (b)
the effects of a perturbation (e.g., extreme flood) impacting the headwaters, leading to
renewed sediment yields.
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Sediment Erosion, Transport and Deposition within Stream Networks
In the humid temperate climate of the Northeast, land areas that are the most
hydrologically connected to the stream network will be the predominant contributor of
water and sediment (and associated nutrients) (Dunne & Black, 1970; Harvey, 2002;
Fryirs, 2013). This hydrologically-connected region, composed of the channel,
floodplain, riparian zone and hyporheic zone, has been termed the river corridor
(National Research Council, 2002). Patterns of sediment flux and channel adjustment
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within the river corridor exhibit high variability across spatial and temporal scales
(Walling, 1983; Fryirs, 2013), as a function of both watershed-level and reach-level
processes that alter flow and sediment inputs, combined with reach-scale modifiers of
stream power and boundary resistance. Many factors, including the geologic setting,
climate and hydrology, vegetation, and land use, combine in nonlinear ways (Benda &
Dunne, 1997; Fryirs, 2013) to govern reach-scale adjustments in channel dimensions,
profile and planform over time. The present channel form is the manifestation of various
channel-floodplain processes occurring over a range of flows (Pickup & Rieger, 1979).
Thus, both the spatial and temporal context (Wohl, 2018) are important determinants of
the present channel-floodplain form and dominant adjustment process(es) that

characterize a given process domain.

Working in Northwest US, Montgomery and Buffington (1997) identified reach
types for mountainous catchments that range on a continuum from supply-limited to
transport-limited (Figure 1.4), within the broader catchment classifications of source,

transfer and response zones (Schumm, 1984).

Bedrock Alluvial Colluvial

|
| |

Step- Plane- Pool- Dune- . ]
Bedrock Cascade Pool Bed Riffle Ripple Braided Colluvial
Supply-limited Transport-limited

Figure 1.4. Continuum of stream types in mountainous rivers after
Montgomery & Buffington (1997).
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Watershed and channel stressors

Over geologic and historic time frames, river corridors are subjected to natural
and human disturbances, or stressors, that operate at both watershed and channel scales to
influence the sediment source, transport and deposition conditions of these reaches.
Watershed-scale stressors in temperate humid climates of the Northeastern US commonly
include glacial and post-glacial processes (Bierman et al, 1997), historic deforestation in
the 19™ century followed by reforestation in the 20™ century (Foster & Aber, 2004) and
increasing urbanization (Booth, 1990). Additionally, since the 1970s, regions of the
northeast have experienced an increasing trend in precipitation intensity, frequency and
persistence (Collins, 2009; Guilbert et al., 2015) and associated increasing trends in
streamflow (Hodgkins & Dudley, 2011). Channel-scale stressors may include:
channelization and straightening to remove meanders; selective removal of large boulders
and woody debris; gravel mining; dredging and windrowing, berming and armoring; and
floodplain encroachments by railroads, roads, and urban development (Kline & Cahoon,
2010; Noe & Hupp, 2005). Depending upon their magnitude, extent, and the resistance
offered by boundary conditions, watershed and channel stressors can lead to enhanced

degrees channel adjustment.

Channel evolution models

The sequence of vertical and lateral channel adjustments in response to natural
and human stressors have been described in terms of channel evolution models (Schumm,
et al., 1984; Simon and Hupp, 1986; Rosgen, 2006), which outline a trajectory of channel
change that can be interpreted both in time and space. Common to each of these models

is the possibility of a quasi-equilibrium state where the stream power produced by the
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volume and slope of the water come into balance with the resistance created by the
quantity and caliber of the sediment under transport and that offered by geologic and
vegetative boundary conditions (Lane, 1955). Such a condition would describe the
channel in Stage 1 of Figure 1.5, after Schumm, Harvey and Watson (1984), where the

channel is vertically well-connected to its surrounding floodplain.

Original
floodplain

I e 1 (head-cutting)

L«
(bank failure)

Original
floodplain

New
floodplain

STABLE

\Y

Figure 1.5. Schematic of a channel evolution model for an unconfined, alluvial channel
after (Schumm et al., 1984) modified from (VTDEC, 2016).

This model then depicts a channel evolving through three unstable forms before
returning to a quasi-equilibrium state at Stage V. Stage Il results when a watershed or
channel disturbance changes the balance between sediment supply and sediment transport
capacity, leading to degradation or scouring of the bed. A stressor of sufficient
magnitude may cause upstream migration of this incision process (or, head-cutting),

leading to a vertical disconnection of the channel from the floodplain. As a consequence,
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streambank heights exceed the critical height, and are induced to fail under geotechnical
forces, which leads to widening (Stage I11). Because an over-widened channel has an
increased wetted perimeter, reduced hydraulic radius, and a decreased competence to
transport sediment, widening gives way to aggradation as the dominant process in Stage
IV. Eventually, the channel narrows and forms an incipient floodplain, often at a lower

elevation than the original Stage I channel.

Channel evolution models most often describe stages of channel response to a
single stressor or disturbance. In reality, rivers are integrating a myriad of stressors
overlapping in time and space, and may adjust to an external stressor(s) in complex ways
based on: the magnitude, intensity and duration of stressor; lag effects; intrinsic and
extrinsic thresholds; self-reinforcing or self-limiting feedbacks; and the presence of
antecedent conditions or contingencies (Bull, 1979; Chappell, 1983; Phillips, 2003;
Toone et al., 2014). This has led others to suggest multiple scenarios of channel

succession (e.g., Rosgen, 2006).

Noting the present stage of a channel in the context of a given channel
evolutionary model is useful for identifying a probable trajectory of change in the face of
projected increases in magnitude, frequency, and duration of extreme events or additional
human-caused watershed and channel disturbances. Various field assessment techniques
have been developed to classify river reaches in terms of their stability or sensitivity to
adjustment, following the assumption that dominant adjustment process and degree of
stability can be inferred from observations of channel form (Pfankuch, 1975; Nanson &
Croke, 1992; Rosgen, 1996; Montgomery & Buffington, 1997; Raven et al, 1998 [River

Habitat Survey]; Brierley & Fryirs, 2005; Rinaldi et al., 2013). Typically, these protocols
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involve compilation of metrics and descriptors from a combination of remote-sensing
work and direct field observations and surveys. Insights gained from these assessments
have led to the theory that river networks comprise a longitudinal array of hydro-
geomorphic units of relatively uniform composition, structure, and function, or “process
domains” that differentially impact sediment connectivity (Montgomery, 1999;

Brardonini & Hassan 2007; Lisenby and Fryirs, 2016).

Occurrence of a given reach-based sediment regime is the manifestation of
various governing variables operating in nonlinear, complex ways. Classification
schemes thus should consider both the vertical and lateral dimensions of sediment
(dis)connectivity in the context of varying degrees of channel confinement by valley
walls (hillslope-channel coupling in narrowly-confined to semi-confined settings) and the
vertical-lateral connectivity to floodplain (floodplain-channel coupling in unconfined
settings). The spatial arrangement of reach-based sediment regime can then be

considered in the longitudinal, or stream-network, context.

Sediment process domains

Montgomery (1999) has offered the concept of sediment process domains to
describe recognizable and predictable zones of the fluvial network “characterized by
distinct suites of geomorphic processes” that “govern physical habitat type, structure, and
dynamics” and which are manifest in response to patterns of disturbance. The process
domains of Montgomery (1999) focused primarily on natural disturbance regimes to
include effects of flooding, debris flows, mass failures and avalanches (Figure 1.6) and
were developed for unglaciated catchments. The process domain framework was later

extended to glacially-conditioned landscapes for mountainous catchments of British
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Columbia (Brardonini & Hassan, 2006) and catchments of lower relief in the Laurentian
Great Lakes (Phillips & Desloges, 2014a), using slope-area analysis. The concept has
been invoked: to help explain sediment dynamics in bedrock canyons of the Colorado
Rocky Mountains (Wohl, 2010); to distinguish sediment patterns in headwater reaches
with alluvial versus glacial provenance in the same study area (Livers & Wohl, 2015);
and to define channel adjustment typologies as a function largely of width-to-depth ratio,
drainage area, stream power and substrate size in (Lisenby and Fryirs, 2016). Various
metrics have been explored in these studies to classify river networks into fluvial process
domains, using Frequentist statistical techniques and maximum-likelihood models, as
discussed in the next sections. Typically, multiple topographic, geomorphic and

hydraulic variables are required to distinguish between domains (Livers and Wohl, 2015).

Hollows

Channel
Colluvial
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Avalanches
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Confined alluvial

channels Debris flows

Unconfined Flooding
alluvial channels

Natural
Channel migration Disturbance

Channel avulsion Processes
Flooding

Figure 1.6. Fluvial sediment process domains
(modified after Montgomery, 1999).

To integrate multivariate hydraulic and geomorphic data in a classification system
of reach-based fluvial process domains, water resource managers are in need of

computational tools and predictive models to enhance our understanding of sediment
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transport processes at both reach and network scales, and how these processes drive (and

are driven by) channel evolution.

Linear Methods for Data Analysis and Classification

Linear methods employed in data science for data reduction and clustering or
classification aim to separate observations into two or more classes based on a linear
combination of features. Methods are numerous and include discriminant analysis (DA),
principal components analysis (PCA), and logistic regression. Various forms of the
Generalized Linear Model (Nelder & Wedderburn, 1972) have also been used to infer
relationships between response variable(s) and explanatory variables to gain insights into
a system, including linear regression, multiple linear regression, log-linear regression,

One-way ANOVA, and the t-test.

These parametric statistical techniques have been applied to infer relationships
between riverine sediment flux and various physical and biogeochemical characteristics
of catchments. A comprehensive review is beyond the scope of this dissertation, but a

few examples are presented below.

Bivariate methods

At a catchment scale, the parsimonious sediment (and nutrient) rating curve - i.e.,
log(C) = log(fo) + S1 log(Q) - has been used to examine between-watershed differences
in sediment and solute production (e.g., Walling, 1977; Vogel et al., 2005). Sediment
and nutrient regression parameters have been interpreted to suggest drivers of underlying
processes (Syvitski et al., 2000; Asselman, 2000; Godsey et al., 2009; Basu et al., 2011).

While prediction does not necessarily suggest causation, the coefficient (log So) and
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exponent (f1) in this linear model can be interpreted to suggest something about the
system properties (Asselman, 2000; Syvitski et al., 2000) and encapsulate the
“biogeochemical filtering” of the watershed in question (Gall et al., 2013). The intercept
of the linear regression model represents the background sediment (or solute)
concentration delivered from the catchment source regions and explained by variables
other than changing discharge proximal to the gaging location. In the context of
sediment transport modeling, the regression intercept reflects the capacity of the
watershed to produce and transport fine sediment (Asselman, 2000). It has been
characterized as an “index of sediment supply” (Wang et al., 2008) or a “baseline supply
parameter” (Krishnaswamy et al., 2000), and may be a function of particle size and
weathering intensity in the source catchment, as moderated by vegetative controls or

human disturbances.

On the other hand, the regression slope parameter reflects the rate at which the
energy of flowing water is transferred to its physical surroundings to entrain and transport
sediment (or sediment-bound constituents) and to accomplish geomorphic change
(Krishnaswamy et al., 2000; Wang et al., 2008). The regression slope can be thought of
as an index of the river’s erosive power, with higher values (i.e., steeper slopes)
indicating greater sediment transport capacity, and may also reflect the degree to which
additional sources of sediment (or sediment-related constituents) become available to the
river at higher flow stages (Asselman, 2000). Flatter regression slopes can be
characteristic of rivers where sediment continues to be transported even under lower
discharge conditions — as a function of either ample supply or easily-entrained particle

size in the source areas, or both (Asselman, 2000).
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Similarly, researchers have examined bivariate relationships to infer drivers for
coarse sediment erosion, transport and deposition at a reach scale. For example, valley
morphology has been identified as a controlling variable for the depositional versus
erosional tendencies of river reaches (Weber and Pasternak, 2017). Recently, derived
measures of reach-based stream power (including reach-to-reach ratios or differentials)
have been examined for possible correlations to field-based or remotely-sensed measures
of geomorphologic form to better understand and classify process and sediment transport
regime. Yochum et al. (2017) used a cumulative logit model to predict six ordinal classes
of geomorphic change from channel gradient and differential specific stream power
(SSP) and total stream power (TSP). Similarly, Parker et al (2014) have used a ratio of
downstream-reach to upstream-reach SSP to predict erosion or deposition dominance,
where reaches were defined by a zonation algorithm applied to SSP values calculated at
50 m intervals. Working in VT and CO streams across a range of confinement conditions
and slopes, Gartner et al (2015) demonstrated that TSP gradients were useful predictors
of lateral sediment inputs (mass-wasting and bank erosion along increasing TSP

gradients) and exports (e.g., floodplain deposits along decreasing TSP gradients).

Multivariate methods

Because riverine sediment dynamics result from a complex interaction of
hydrologic, hydraulic, and biogeochemical factors, they are best modeled using
multivariate statistical methods and models. At a catchment scale, linear un-mixing
models have been employed to unravel the disparate sources of sediment production and
transport (Collins & Walling, 2002; Walling, 2013). To estimate the relative proportions

of various terrestrial sediment sources contributing to the load of suspended sediment at a
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catchment outlet, researchers have utilized a wide variety of tracer types, from
geochemical constituents (Collins et al., 1997), to fallout radionuclides (Walling &
Woodward, 1992), to sediment color (Martinez-Carreras, 2010), to stable isotopes of C
and N (Fox & Papanicolaou, 2008), or a combination of multiple types in a “composite
fingerprint” (Walling et al., 1993; Koiter et al., 2013). Typically, a subset of tracers with
power to differentiate between sources is identified using Kruskal-Wallis-H test followed
by stepwise discriminant function analysis (Collins et al. 1997). A multivariate un-
mixing model is then employed to: (i) link the tracer signature of the suspended sediment
transported to the outlet (target material) back to the tracer signature(s) of the source-type
sediments; and in so doing, (ii) determine the relative proportions of each sediment

source (i.e., source apportionment). The model is a mass balance equation:

Y = ZSkka
k

subject to the following constraints:
YK P, =1 and Px =0,

where Y is the tracer concentration measured in the target (suspended solids at the
catchment outlet), S is the tracer concentration in source-area sediments, P is the
proportional sediment contribution of each modeled source, and k is an index of source
areas (Cooper et al., 2014). Since S and Y are known quantities for a given suite of
tracers, and P is unknown, an inverse mass balance problem is solved (Fox &

Papanicolaou, 2008). Frequentist un-mixing models utilizing Maximum Likelihood
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optimization methods have been widely applied (Collins et al., 1997) to minimize the

sum or squared residuals (SSR), computed as:
2
SSR = Z§=1 [Y; — 2K_18iPe]

In the above equations, Y is the tracer concentration measured in suspended solids; S is
the modeled tracer concentration in source-area sediments, j is a tracer index, k is an
index of source areas; and P is the proportional sediment contribution of each modeled

source (Cooper et al., 2014).

The outcome of a least-squares optimization is a set of estimates for model
parameters that make the observed results (tracer concentrations in the target) most
probable. With any un-mixing model, there is uncertainty in the source apportionment
results, related to natural variability or errors introduced by sampling methods, laboratory
methods, as well as the chosen model structure and parameterization. This uncertainty is
not well captured by the point estimates and associated confidence intervals generated

through conventional, Frequentist methods.

At the reach scale, Brardonini & Hassan (2007) applied multivariate discriminant
analysis (DA) paired with PCA to channel and floodplain metrics for dimension
reduction and classification of process domains, identifying a variation on the
downstream continuum of stream types of Montgomery & Buffington (1997), related to
legacy glacial landforms in British Columbia. Phillips and Desloges (2014) used k-
means clustering, PCA, and DA to analyze geomorphic parameters and classify alluvial

channels from a glacially-conditioned setting in southern Ontario. Their analysis (limited
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to low-gradient, single-thread, channels in unconfined settings) identified four broad

channel-floodplain types.

Traditionally, linear un-mixing models and simple and segmented regression
models have been favored for their relative parsimony and simplicity. However, least-
squares methods are susceptible to influence by outliers, and these Frequentist methods
are subject to limitations where model parameters do not conform to Gaussian
distribution, or where input data are sparse. Consequently, data-driven, nonparametric

modeling approaches have been adopted with increasing frequency.

Non-Parametric, Nonlinear, Data-driven Methods for Classification
Nonparametric statistical techniques are a helpful alternative to parametric
methods of classification, since they relax the requirements that data follow a given
distribution and offer greater robustness to outliers. Recent advances in computational
power have overcome one of their disadvantages (computational time) compared to GLM

classification methods.

Nonparametric methods for clustering and classification have emerged in the
literature with applications to modeling sediment and nutrient dynamics in rivers. For
example, “functional stages” of sediment and nutrient export were defined using
hierarchical clustering techniques to result from unique combinations of source strength
and connectivity, entrainment or mobilization conditions, and transport mechanisms; and
these functional stages were found to vary in both space and time (Bende-Michl et al.,
2013). Atareach scale, Bizzi & Lerner (2013) used a classification tree to define four

classes of erosion or deposition dominance based on channel confinement and differential
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values of total stream power (TSP) and specific stream power (SSP). Similarly, a tree
was applied by Livers and Wohl (2015) within each of two process domains (glacial,
fluvial) to determine variables with power to distinguish stream types after Montgomery
& Buffington (1997), including slope, channel geometry, stream power and substrate
size. With the wide-spread availability of commercial and open-source software tools,
hierarchical clustering methods and classification trees are simple to apply, but can be
subject to overfitting and may not be easily transferable to other data sets or regions.
Moreover, both parametric and conventional nonparametric statistical techniques are
often of limited efficacy when applied to data of varying quality, mixed data types
(continuous, ordinal, nominal), censored or sparse data. Data-driven methods including
machine-learning algorithms and Bayesian statistical approaches have advantages over
these more conventional methods for data reduction and visualization, and for addressing
uncertainty.
Machine-learning clustering and classification

The Self-Organizing Map (SOM) is a type of neural network (or machine-
learning algorithm) with advantages for clustering or classification of multivariate
observations and for exploratory data analysis and visualization of complex, nonlinear
systems. A detailed description of the SOM algorithm and computational considerations
are provided in Chapter 4. SOMs have advantages over other methods for data
visualization and interpretation (Alvarez-Guerra, et al., 2008), and have demonstrated
superior performance over parametric methods where data contain outliers or exhibit high
variance (Mangiameli et al., 1996). SOMs have been used to classify or cluster

multivariate environmental data, including instream species richness (Park et al., 2003),
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fish community distribution patterns (Stojkovica et al., 2013), alluvial fan types
(Karymbalis et al., 2010), lake chemistry data associated with harmful algal blooms
(Pearce et al., 2011, 2013), estuary sediment samples (Alvarez-Guerra et al., 2008), and
watershed-based ecoregions (Tran et al., 2003). Research applications of SOMs to
hydrologic and geomorphic data have been more limited. Ley and others (2011) applied
SOMs to hydrologic time series data to classify runoff response, and riverine habitats
were classified using an SOM by Fytilis and Rizzo (2013). Rarely, however, have neural
networks been used to cluster observations at basin or reach scales into groups exhibiting
similar sediment (and nutrient) export regimes or similar erosion and deposition
characteristics (Besaw et al., 2009) — and this paucity of riverine research applications
motivated the research presented in Chapters 2 and 4.
Bayesian approaches

As an alternative to maximum-likelihood / Frequentist modeling methods, new
methods have emerged that apply Bayes rule to make inferences about a system. Bayes
rule states that the probability of a model, given the observed data (i.e., the posterior:
p[Model|Data]) can be calculated as the product of the prior belief in the model (i.e.,
p[Model]) and a quotient of the likelihood (p[Data|Model]) and the marginal likelihood
(p[Data]:

p(Data|Model) * p(Model)

t =
p(Model|Data) (Data)

The posterior distribution on model parameters is approximated using Markov Chain
Monte-Carlo methods. Vague priors can be established for model parameters so that the

posterior distributions are influenced most by the data themselves (Gelman et al., 2004).
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On the other hand, for sparse, or unbalanced data sets, the priors can be informed by prior
study or a preponderance of expert opinion.

Given their advantages, and with the advent of faster computational abilities,
Bayesian methods have been increasingly applied to the study of hydrology and riverine
sediment and nutrient dynamics: to estimate values of regression parameters for simple
linear models of stage-discharge relationships (Moyeed and Clark, 2005); an eight-
parameter load rating curve for nutrients (Vigiak and Bende-Michl, 2013), and for the
identification of threshold position in segmented regression models for nitrogen-
discharge patterns (Alameddine et al., 2011; Qian and Cuffney, 2012; Qian and
Richardson, 1997).

At the catchment scale, Bayesian statistical methods have increasingly been used
in un-mixing models to discern relative sources of suspended sediment export (Fox and
Papanicolaou, 2008; Koiter et al., 2013, D’Haen et al., 2013; Dutton et al., 2013; Barthod
et al., 2015). Cooper and others (2014) note that a “Bayesian approach is advantageous
over Frequentist methods as it enables all known and residual uncertainties associated with
the mixing model and the data set to be coherently translated into parameter probability
distributions in a hierarchical framework.” Additional advantages of the Bayesian
framework include the flexibility to incorporate prior information (Owens et al., 2015).

More details of the Bayesian un-mixing model are provided in Chapter 3.
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CHAPTER 2. EVALUATING SPATIAL VARIABILITY IN SEDIMENT AND
PHOSPHORUS CONCENTRATION -DISCHARGE RELATIONSHIPS USING
BAYESIAN INFERENCE AND SELF-ORGANIZING MAPS
Abstract

Given the variable biogeochemical, physical, and hydrological processes driving
fluvial sediment and nutrient export, the water science and management communities need
data-driven methods to identify regions prone to production and transport under variable
hydro-meteorological conditions. We use Bayesian analysis to segment concentration-
discharge linear regression models for total suspended solids (TSS) and particulate and
dissolved phosphorus (PP, DP) using twenty-two years of monitoring data from eighteen
Lake Champlain watersheds. Bayesian inference was leveraged to estimate segmented
regression model parameters and identify threshold position. The identified threshold
positions demonstrated a considerable range below and above the median discharge —
which has been used previously as the default breakpoint in segmented regression models
to discern differences between pre- and post-threshold export regimes. We then applied a
Self-Organizing Map (SOM), which partitioned the watersheds into clusters of TSS, PP
and DP export regimes using watershed characteristics, as well as Bayesian regression
intercepts and slopes. A SOM defined two clusters of high-flux basins, one where PP flux
was predominantly episodic and hydrologically-driven; and another in which the sediment
and nutrient sourcing and mobilization were more bimodal, resulting from both hydrologic
processes at post-threshold discharges and reactive processes (e.g., nutrient cycling or
lateral/vertical exchanges of fine sediment) at pre-threshold discharges. A separate DP
SOM defined two high-flux clusters exhibiting a bimodal concentration-discharge

response, but driven by differing land use. Our novel framework shows promise as a tool
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with broad management application that provides insights into landscape drivers of riverine
solute and sediment export.
Introduction

The river network is an integrator of spatiotemporal variability in catchment
properties. Stakeholders face significant challenges to model the export of sediment and
nutrients based on concentration-discharge relationships measured at a catchment outlet,
and to prioritize the allocation of limited resources to achieve reductions in sediment and
pollutant loading. Given the regulatory context of Total Maximum Daily Loads
(TMDLs) in the US and the Water Framework Directive in the European Union, there
has been a recent focus on quantifying loads of solutes and sediment. Yet as research
becomes increasingly interdisciplinary in nature, a more holistic approach to
investigating catchment dynamics has returned emphasis to concentration-discharge
relationships and what they may reveal about biogeochemical filtering processes at
multiple spatiotemporal scales (Basu et al., 2011; Gall et al., 2013). Better understanding
of concentration-discharge dynamics will help identify critical catchment locations and
time periods (“hot spots” and “hot moments”) responsible for disproportionate fluxes of
solutes and sediment, inform best management practices, and thereby optimize overall
reductions in loading at broader temporal and spatial scales (McClain et al., 2003;
Heathwaite et al., 2000).

Practitioners need models that predict spatiotemporal variability in concentration-
discharge relationships and their linkage to catchment characteristics and processes - and
at the same time deal with large amounts of data that vary in type and spatial-temporal

resolution. Physically-based, distributed models are able to forecast constituent
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concentration and flux, but accuracy and calibration are resource-intensive, making such
models typically less transferable among watersheds or regions (Todini, 2007). On the
other hand, data-driven models can be more readily implemented and have the appeal of
representing system complexity in simple ways (McDonnell et al., 2007), although they
are more limited in their prediction capabilities. Ideally, stakeholders are guided by a
combination of model types. With the advent of automated samplers and in situ sensors,
an increasing number of studies have leveraged high-frequency monitoring data to
develop conceptual models that further refine our understanding of temporal and spatial
patterns in concentration-discharge dynamics (e.g., Lloyd et al., 2016; Bende-Michl et al.,
2013).

Parametric statistical techniques have been applied to infer relationships between
water quality and various biogeochemical characteristics of catchments using
concentration (C) —discharge (Q) or load-discharge relationships. The parsimonious
sediment (and nutrient) rating curve - i.e., log(C) = log(fo) + S1 1og(Q) - has been used to
examine between-watershed differences in sediment and solute production (e.g., Walling,
1977; Vogel et al., 2005). Sediment and nutrient regression parameters have been
interpreted to suggest drivers of underlying processes (Syvitski et al., 2000; Asselman,
2000; Godsey et al., 2009; Basu et al., 2011). While prediction does not necessarily
suggest causation, the coefficient (log fo) and exponent (f1) in this linear model can be
interpreted to suggest something about the system properties (Asselman, 2000; Syvitski et
al., 2000) and encapsulate the “biogeochemical filtering” of the watershed in question
(Gall et al., 2013). The intercept of the linear regression model represents the

background sediment (or solute) concentration delivered from the catchment source
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regions and explained by variables other than changing discharge proximal to the gaging
location. In the context of sediment transport modeling, the regression intercept reflects
the capacity of the watershed to produce and transport fine sediment (Asselman, 2000).
It has been characterized as an “index of sediment supply” (Wang et al., 2008) or a
“baseline supply parameter” (Krishnaswamy et al., 2000), and may be a function of
particle size and weathering intensity in the source catchment, as moderated by
vegetative controls or human disturbances.

On the other hand, the regression slope parameter reflects the rate at which the
energy of flowing water is transferred to its physical surroundings to entrain and transport
sediment (or sediment-bound constituents) and to accomplish geomorphic change
(Krishnaswamy et al., 2000; Wang et al., 2008). The regression slope can be thought of
as an index of the river’s erosive power, with higher values (i.e., steeper slopes)
indicating greater sediment transport capacity, and may also reflect the degree to which
additional sources of sediment (or sediment-related constituents) become available to the
river at higher flow stages (Asselman, 2000). Flatter regression slopes can be
characteristic of rivers where sediment continues to be transported even under lower
discharge conditions — as a function of either ample supply or easily-entrained particle
size in the source areas, or both (Asselman, 2000). Previous studies have used the slope
value from a concentration-discharge regression to classify catchments on a continuum
between accretionary (> 0) and dilutionary (< 0) (Basu et al., 2010; Gall et al., 2013).
Godsey et al., (2009) proposed that chemostatic watershed responses (i.e., constant
concentration with increasing discharge) could be defined by an absolute value less than

0.2 (i.e., near-zero regression slope). Subsequent work (Thompson et al., 2011; Basu et
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al., 2010), however, clarified that at low slope values, constituent concentrations can still
exhibit considerable variance around a central tendency (i.e., chemodynamic response).
Moreover, as the slope value approaches zero, concentration becomes decoupled from
discharge as an explanatory variable; the coefficient of determination (r?) value becomes
nonsignificant, and the linear regression slope loses importance in the interpretation of
the concentration-discharge relationship.

Instead, the coefficient of variation (CV) ratio (i.e., CV of concentration vs. CV of
discharge) has been promoted to characterize the concentration-discharge relationship on
a continuum from episodic (chemodynamic) to chemostatic (Thompson et al., 2011).
Thompson et al., (2011) classified North American catchments with varying hydrologic,
geologic, topographic and land use settings based on a bivariate plot of CV ratio and
normalized constituent export for total phosphorus and total suspended solids (among
other constituents). Those watersheds with higher normalized export exhibited
chemostasis (low CV ratios), which can be attributed to legacy stores of nutrients with an
anthropogenic source (Basu et al., 2011) or geogenic constituents (Godsey et al., 2009).
Building on this approach, Musolff et al. (2015) used a bivariate plot of CV ratios and
regression slope to cluster humid temperate catchments into five constituent export
regimes. Categories ranged from strongly chemodynamic responses, termed “threshold-
driven” (with strongly positive regression slopes) or “reactive” (with smaller absolute
values of the regression slope, either positive or negative), to less chemodynamic
responses with a concentration-discharge correlation that is either weak (“chemostatic™)

or strong, ranging from accretionary (termed “mobilization”) to “dilution” driven.
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These studies employed slope and intercept parameters developed from simple
linear regression models. Often, however, concentration-discharge (C-Q) relationships
show variability across the discharge distribution (Zhang et al., 2016) or exhibit threshold
effects (Meybeck and Moatar, 2012) that would be better modeled with a segmented
regression. Segmented linear C-Q responses may result from temporal or spatial
discontinuities in sediment and solute transport - either from natural conditions (e.g.,
bedrock nickpoints, or sudden reduction in gradient) or human modifications (e.g., dams)
(Wang et al., 2008; Toone et al., 2014; Williams and Wolman, 1984). A segmented linear
pattern may also result from sudden depletion of sediment/solute supply relative to
discharge, or dilution effects (Shanley et al., 2011; Meybeck and Moatar, 2012).

Solute-export plots developed on slope and intercept parameters from simple
regression models in the style of Musolff et al. (2015) or Thompson et al. (2011) may not
adequately characterize solute export conditions for basins that exhibit significant
threshold effects (Figure 2.1). Segments before and after a threshold will have different
slope and intercept values, suggesting different sediment/solute export regimes (or
functional stages) for pre- and post-threshold flow conditions. Application of a
segmented regression method will not only improve model fit, it can provide greater
insight into landscape drivers of the C-Q response, and suggest management strategies
appropriate to different functional stages (Bende-Michl et al., 2013).

However, it can be difficult to determine the optimal discharge value for the onset
of threshold effects, and to identify the nature of the transition as either stepped,
transitional or continuous (Qian and Cuffney, 2012). Moatar et al., (2017) have

presented a review of nine, single-threshold, C-Q patterns based on fixed segmentation at
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the median discharge value on a log-log plot (Meybeck and Moatar, 2012), although they
acknowledge the actual inflection point in the slope of the C-Q relationship may vary
from the median Q value. Methods have been developed to define a threshold using both
parametric (Ryan et al., 2002 - bootstrapping) and Bayesian techniques (Alameddine et
al., 2011; Qian and Cuffney, 2012; Qian and Richardson, 1997); but relatively few
studies have focused on determining the hydrologic, hydraulic and biogeochemical
processes that may account for these threshold effects, or dominate during pre- and post-

threshold phases (Wang et al., 2008; Ryan et al., 2002; Moatar et al., 2017).
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Figure 2.1. Comparison of best-fit simple (blue line) and segmented (black line)
regression models for logio-transformed Total Suspended Solids (TSS) concentration vs
daily mean discharge data for Winooski River (n=261) for 1992-2015. Data points were
fit with Bayesian linear regression methods. Threshold (¢) of segmented model depicted
as solid vertical line (mode) and dashed vertical line (mean) with gray shading indicating
the 95% credible interval of the posterior distribution. Regression parameters are
annotated, including the intercept (fo) for each model, and pre-threshold (51_I) and post-
threshold slopes (51_I1) of the segmented model.
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We use a Bayesian regression method in this work to facilitate selection of the
threshold position, and quantify the uncertainty on the estimated threshold, as well as
other regression parameters. Generation of a posterior joint distribution for each model
parameter, and the ability to define a credible interval for the estimate at a chosen
probability level, permits explicit estimation of uncertainties associated with the model
selection and the data (e.g., variance introduced by sampling and analytical methods
(Qian et al., 2005)). This approach provides more information than a Frequentist
approach to simple (or segmented) regression that generates a single point estimate of the
central tendency of model parameters. Bayesian frameworks have the added advantage
of allowing for non-normal distribution of residuals and greater robustness to outliers
(Gelman et al., 2004). Bayesian methods have been applied to estimate values of
regression parameters for simple linear models of stage-discharge relationships (Moyeed
and Clark, 2005); an eight-parameter load rating curve for nutrients (Vigiak and Bende-
Michl, 2013), and segmented regression models for nitrogen-discharge patterns
(Alameddine et al., 2011; Qian and Richardson, 1997).

C-Q dynamics result from a complex interaction of hydrologic, hydraulic, and
biogeochemical processes. “Functional stages” of sediment and nutrient export have been
defined using hierarchical clustering to result from unique combinations of source
strength and connectivity, entrainment or mobilization conditions, and transport
mechanisms; and these functional stages vary in both space and time (Bende-Michl et al.,
2013). Self-organizing maps (SOMs) are data-driven, nonparametric techniques well-
suited for classifying or clustering data of varying types (e.g., continuous, ordinal,

nominal), scales and distributions. SOMs have advantages over other methods for data
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visualization and interpretation (Alvarez-Guerra, et al., 2008), and have demonstrated
superior performance over parametric methods where data contain outliers or exhibit high
variance (Mangiameli et al., 1996). SOMs have been used to classify or cluster
multivariate environmental data, including instream species richness (Park et al., 2003),
fish community distribution patterns (Stojkovica et al., 2013), alluvial fan types
(Karymbalis et al., 2010), lake chemistry data associated with harmful algal blooms
(Pearce et al., 2011, 2013), estuary sediment samples (Alvarez-Guerra et al., 2008),
watershed-based ecoregions (Tran et al., 2003), and riverine habitats (Fytilis and Rizzo,
2013). While SOMs have been applied to hydrologic time series data to classify runoff
response (Ley et al., 2011), the authors are not aware of research that has applied a neural
network to cluster basins into sediment and nutrient export regimes.

In this work, we combine the application of a Bayesian segmented linear regression
technique paired with an SOM to cluster patterns in C-Q relationships as a function of
catchment properties for a humid-temperate study area located in a previously-glaciated,
mountainous region of the Northeastern US. The purpose of this research was two-fold:
(1) to model threshold effects in C-Q regressions using Bayesian techniques to enhance the
utility of regression metrics to suggest watershed variability in hydrologically- and
biogeochemically-driven impacts on C-Q dynamics; and (2) examine the ability of various
watershed metrics to predict C-Q relationships and characterize between-watershed

comparisons of sediment and nutrient flux or concentration.
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Methods
Study Area

The study area consists of 18 tributary basins of Lake Champlain that drain
portions of Vermont and New York in the northeastern US, as well as the province of
Quebec in Canada (Figure 2.2). In recent decades, this largely mesotrophic lake has been
impacted by an increasing frequency of harmful algal blooms in its eutrophic bays, and is
the subject of a TMDL for phosphorus (Smeltzer et al., 2012). Eighteen of the Lake
Champlain tributaries have been monitored for more than 25 years (Medalie et al., 2012)
and were selected for this study for their sufficient duration of flow gaging and water
quality records (Kennard et al., 2010). The selected basins range in size from 137 to
2,754 km? and represent a wide range of geologic settings and land cover / land use
conditions.

The Lake Champlain Basin (LCB) was previously glaciated, and spans
biogeophysical regions from the Green Mountains in Vermont to the Adirondack
Highlands in New York, separated by the Champlain Valley Lowland in the north-central
basin and Taconic Mountains and Vermont Valley in the south end of the basin merging
with the Hudson Valley Lowland (Stewart and MacClintock, 1969). Elevations in the
study basins range from 1,339 m at Mount Mansfield in the Winooski Basin of Vermont,
and 1,629 m at Mount Marcy in the Ausable River basin of New York, to 29 m at the
average water level of Lake Champlain. The climate is characterized as humid
temperate, with mean annual precipitation (MAP) ranging from over 1,270 mm along the

north-south trending spine of the Green Mountains to a low of 813 mm in the Champlain
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Figure 2.2. Locations of the 18 study area watersheds in the Lake Champlain Basin.
Watershed identifications are keyed to Table 1.
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Valley (Randall, 1996). Within a typical year, a majority of the runoff from Lake
Champlain tributaries occurs between ice-out and late spring (Shanley and Denner, 1999).
The hydrologic regime is characterized by variable hydrologic source areas attributed to
saturation-excess flow regimes (Dunne and Black, 1970). Flow in some of the basins is
regulated to varying degrees by hydroelectric dams that operate in run-of-river mode
(Supplemental Table 2.S1). In recent years, these basins have been impacted by extreme
events, including Tropical Storm Irene (August 2011) in central and southern Vermont and
floods of 1996 and 1998 in northeastern New York.
Watershed Characteristics

Various hydrologic, topographic, geologic and land use characteristics were
developed for the 18 tributary basins (Table 2.1). Land use in the selected watersheds
ranges from 3.3 to 54% agricultural and 33 to 89% forested. Urban land uses, including
transportation corridors, range from 4.4 to 14% (Troy et al., 2007). Flow-normalized
total suspended solids (TSS), particulate phosphorus (PP), and dissolved phosphorus
(DP) flux and concentration data for each basin were compiled from Medalie (2014) for
each available year (1990 - 2012 for PP and DP; 1992 — 2012 for TSS). PP was derived
as the difference of measured total and DP (filtered to < 0.45 um). Flow-normalization
was achieved using Weighted Regressions on Time, Discharge, and Season (Hirsch et al.,
2010); and data thus reflect interannual variability in constituent flux and concentration
attributed to factors other than flow variability. To facilitate between-watershed
comparisons, mean annual constituent flux was normalized by basin area to generate a
mean annual, flow-normalized, yield (in mT/km?/yr for TSS and in kg/ km?/yr for PP and

DP; Table 2.S2).
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Table 2.1. Physical characteristics of Study Area watersheds, Lake Champlain Basin

Mean Percent of Land Use 9
Total  Annual Peak Hydrologic
Drainage  Precip- Flow Basin Drainage  Soil Group A Water/ Agri- Dev-
Map Area ® itation® Anomaly® Relief ¢ Density ® & B Soils f  Wetland Forest culture eloped
Key Tributary (km?) (mm) () (m)  (km/km?) (%) (%) (%) (%) (%)
6 Ausable 1,334 1,164 16.0 1,598 1.08 26.5 3.0 89.1 3.3 45
7 Bouquet 708 1,051 14.7 1,446 1.18 30.0 15 87.4 6.3 4.6
1 Great Chazy 778 848 11.8 1,139 1.54 38.7 3.7 68.7 21.9 5.6
16 Lamoille 1,870 1,198 10.7 1,309 1.89 24.4 2.3 39.1 44.4 14.2
14 LaPlatte 137 1,002 21.9 468 2.05 8.1 2.2 75.5 13.9 8.2
13 Lewis 207 1,074 19.1 736 2.32 28.5 4.2 61.6 25.6 8.2
5 Little Ausable 193 850 21.2 619 1.23 55.0 14 71.5 194 7.8
2 Little Chazy 140 917 14.1 429 1.37 451 3.5 58.4 30.7 7.3
12 Little Otter 188 974 14.7 380 3.08 15.2 3.4 33.0 54.0 9.4
9 Mettawee 1,063 1,228 17.7 1,117 1.36 25.6 2.7 59.1 29.3 8.9
17 Missisquoi 2,232 1,050 11.3 1,146 1.57 333 1.9 73.0 18.8 6.2
11 Otter 2,442 1,239 3.5 1,260 1.99 27.8 3.3 62.9 25.7 8.0
18 Pike 662 1,184 12.0 681 1.23 71.4 2.3 52.6 37.7 7.0
10 Poultney 719 1,120 15.3 800 1.65 13.0 5.0 66.0 20.9 8.0
8 Putnam 160 1,103 17.6 678 1.33 36.2 4.2 87.2 3.8 44
4 Salmon 175 913 20.1 693 1.42 55.4 2.2 77.9 11.0 9.0
3 Saranac 1,589 1,070 6.1 1,451 0.93 26.6 9.8 81.0 3.9 5.3
15 Winooski 2,754 1,163 10.3 1,307 1.77 18.1 15 76.6 9.9 11.7

Source: (WBD) 1:24,000 scale

PRISM data for 1981 - 2010 obtained through USGS Streamstats of Vermont (Olson, 2014) and New York (Lumia et al., 2006)

Ratio of mean annual peak flow to mean annual flow for the period from 1990-2012 (except Little Ausable (wy1992-2012) and Pike (wy2001-2015))
Source: 10m Digital Elevation Models

Total length of National Hydrography Dataset (NY, Que) or Vermont Hydrography Dataset stream network mapped in each basin, normalized by basin area
Sources: SSURGO (NY and VT), Canadian National Soil Database (Que), and STATSGOO02 (Franklin County portion of the Saranac River basin in NY)
Source date: 2001; Developed category includes Open-Urban and Roads; Agriculture includes Brush/Transitional; from (Troy et al., 2007)

«Q —h ®© o O T @
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Additionally, slope (1) and intercept (logio(f0)) values from Bayesian linear
regression models were developed for the time series of TSS, PP, and DP concentration
(C) —discharge (Q) data (see next section). These data were included as indicators of the
sediment and nutrient export regimes of the watersheds (Vogel et al., 2005; Asselman,
2000). C-Q data were sourced from long-term monitoring data sets of instantaneous
concentrations (VTDEC, 2015) and daily mean flows (USGS, 2016). Velocity- and depth-
integrated composite samples were collected approximately monthly, targeting a mixture
of flow conditions (VTDEC, 2015). PP/DP and TSS were sampled approximately 12 and
10 times per year, respectively. In the few cases (1.8% for TSS, 0.3% for DP/PP) where
constituents were reported below the detection limit (i.e., 1 mg/L for TSS, 5 pg/L for
DP/PP), a value one half the respective detection limit was substituted. C and Q data
were logio—transformed to meet homoscedasticity assumptions for application of linear

models.

Coefficient of Variation (CV) of the C and Q time series (non-transformed), were
each calculated as the series standard deviation, o, normalized by the series mean, p:

g

CV =

A CV ratio was then generated to evaluate the temporal inequality between CV of the

two variables, C and Q:

e _ 9c, Fe

CVq uc oQ )
Pre- and post-threshold values (i.e., Segment | and Il of the segmented regression model;
Figure 2.1) were treated independently.
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A flow duration curve for each basin was constructed from existing USGS records
of mean daily Q for years 1990 through 2015 (Medalie, 2014; USGS, 2016; Centre
d’Expertise Hydrique Québec, 2016). The threshold value determined from Bayesian
linear regression (next section) was normalized in two ways to enable between-basin
comparisons of the threshold magnitude: (a) as a ratio to the median Q; and (b) expressed
as a quantile of flow based on the flow duration curve.

Bayesian Linear Regression

Model Development

Segmented rating curves were developed via Bayesian linear regression (BLR)
methods on the time series of C data (TSS, PP, DP) and mean daily Q data from the 18
tributaries for years 1990 through 2015. BLR provided a framework for identifying
thresholds (Qian and Cuffney, 2012), and defining credible intervals around the estimated
values for threshold, intercept, and pre- and post-threshold slopes (Figure 2.1). Bayesian
models also permitted the seamless back-transformation of error terms addressing bias
introduced when using log-transformed regressors (Stow et al., 2006; Koch and Smillie,
1986), and allowed for the explicit estimation of sources of uncertainty in the C-Q
relationships (Schmelter et al., 2012). Concentration was modeled as a power function of
discharge:

Ct = Bo fl >
where C is the sediment or solute concentration, and Q is the river discharge for a
specified time interval, t. Rating curves were developed as the logarithm (base 10) of

instantaneous concentration, C, regressed on the logio of daily mean discharge, Q:

log10Ce = logi0Po + P1log10(Qr) + €.
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Logio (o) - commonly simplified to fo - is the model intercept and f1 is the slope
of the regression line, which describes the predicted change in log-C with each
incremental increase in log-Q. The error term, g, then reflects scatter about the regression
line and encapsulates all other sources of variance in sediment (nutrient) C with Q, such
as differences in constituent availability due to seasonal effects and antecedent
conditions. This error term also includes measurement error of model parameters. The
following segmented linear regression model was applied to all time series data:

y ~N (Uy, 6y?), where:

_{ Bot+ Pix+ & if x < ¢ (Segment]I)
o .30+(,31+ 6)x+ € if x = ¢ (SegmentIl)

and where y refers to the response variable (logio C); X is the explanatory variable (logio
Q); My and a2 are the mean and variance of the response variable, respectively; ¢ is the
threshold value of Q; 9 is the change in slope past the threshold; and ¢ is the model error.
For those watersheds not exhibiting a strong threshold C-Q response, the above model
collapses to a simple linear regression, signified by a near-zero value for 8. The Bayesian
framework includes prior knowledge on model parameters (i.e., fo, f1. 1, 62, ¢, 8) through
the specification of parameter distributions. Vague priors were established for all
parameters so that the posterior distributions would be influenced most by the data
themselves (Gelman et al., 2004).

Model Diagnostics and Evaluation Criteria

The posterior distributions on the pre-threshold (51_I) and post-threshold (81_I1)
regression slope parameters for each BLR model run were evaluated as either flat,

inclined positively (accretionary), or inclined negatively (dilutionary). If the 95%
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credible interval (Cl) on the posterior distribution of the mean of £1 included a zero value,
the segment slope was deemed flat, or near-zero. The posterior quantiles on the delta (3)
parameter of the model were also examined to determine whether the 95% CI excluded a
value of zero. Inclusion of a zero value in the CI for 6 would suggest no significant
difference between the slopes of Segments | and 11, and a simple regression model might
equally-well characterize the C-Q relationship. A decision tree for model assignment is
included in supplemental Figure 2.S1.

Post-hoc analysis of model assignments was performed comparing means of basin
characteristics by model type using one-way Analysis of Variance (ANOVA) methods
followed by Tukey Honest Significant Differences (HSD) tests between individual group
means. For those variables that were not normally distributed (as tested by Shapiro-
Wilks method), nonparametric methods were applied (Kruskal-Wallis). Model
assignments were also compared on a univariate basis for correlations to physical and
hydrological variables, applying Pearson methods (or the nonparametric Spearman’s rank
method when underlying data were not normally distributed). Statistical tests were
performed in JMP (v. 12.0, SAS Institute, Cary, North Carolina).

Model Computation

BLR model fitting and parameter estimation were carried out using Markov-chain
Monte Carlo (MCMC) methods. A Gibbs sampler was used to obtain samples from the
posterior distribution and estimate the mean, mode, quantiles and credible intervals for
each model parameter. MCMC sampling was implemented in R (R Core Development
Team, 2016) using JAGS (Plummer, 2003) through interfaces developed in software
packages, including “rjags” (Plummer, 2016), “runjags” (Denwood, 2016), and “coda”
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(Plummer et al., 2006). R code for the BLR model is provided in the supplementary
material. Sampling was conducted with four parallel chains initialized with random
number generators, for 100,000 iterations with a thinning factor of 10, after discarding
the initial 5,000 iterations for adaptation and burn-in phases. Convergence was
confirmed by visual examination of trace plots and the Gelman-Ruben statistic (Gelman
and Rubin, 1992); i.e., potential shrink reduction factor less than 1.1. Measures of chain
stability and accuracy included Monte-Carlo standard errors (or estimated SD of the
sample mean in the chain) and effective sample size (or number of iterations normalized
by autocorrelation of chains).
SOM Model Development

Supplementary material (Figure 2.S2) contains a conceptual diagram of the SOM
used to cluster the study area basins into distinct sediment and nutrient flux regimes
based on physical and hydrological variables. Individual observations (vector of input
variables, in this case, physical characteristics of the watersheds such as MAP, basin
relief, drainage density, etc.) are clustered into output categories (in this case, dominant
annual-average sediment or nutrient flux). Details of the SOM algorithm, computational
methods, and cluster validation techniques are provided in supplementary materials.

The final input data comprise seventeen variables, including metrics describing
hydrologic, topographic, geologic and land use characteristics of the 18 tributary basins
(Table 1) and selected parameters derived from regressions of C on Q for TSS, PP and

DP. Inputs were range normalized (Alvarez-Guerra et al., 2008) as follows:

(x; — min(x;))
(max(x;) — min( x;))’

norm(x;) =
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Clusters were examined post hoc for their ability to predict loading, by comparing
mean annual TSS/PP/DP concentration, flux, and yield (Table 2.S2) between clusters.
Flux and yield values were log-transformed to ensure normality for application of
ANOVA methods. For each input variable, the intra-cluster mean (on a normalized
scale) was plotted against the overall mean, and the magnitude and direction relative to

the overall mean was examined to better understand variables driving the clustering.

Results and Discussion

Models of Concentration-Discharge Dynamics Revealed by BLR

BLR methods identified six general C-Q patterns for the LCB watersheds out of
the nine classifications proposed by Moatar et al., (2017) (Figure 2.3a, Tables 2.S3a, b,
c). For TSS, the best fit of C-Q data for six of the basins was provided by Model A (i.e.,
an upward-inclined pre-threshold segment, and upward inclined post-threshold segment,
or “up-up” pattern), while ten basins exhibited a Model D (flat-up) response and two
were classified as Model B (up-flat). Given the close correlation of PP to TSS (average
R? = 0.81; range: 0.50 to 0.93), model assignments for PP C-Q patterns were nearly
identical, with four exceptions. The PP model differed from the TSS model for
Mettawee, Little Ausable, and Pike (all D models) and Salmon (A; Table 2.S3b). A
majority of the C-Q responses for DP was classified as Model D (12); additional DP
responses were classified as Model G (3), E (2) or C (1), characterized by a down-up,
flat-flat, or up-down pattern, respectively.

Our BLR methods permitted the definition of subclasses on the C-Q Model A and

I, extending the classification of Moatar et al., (2017) (Figure 2.3b and 2.3c).
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Examination of the posterior for model parameter, 3, allowed us to determine if
regression slopes were credibly different before and after the indicated threshold. A
steeper post-threshold slope (relative to the pre-threshold value) classified the response as
either Model A2 (accretionary) or 12 (dilutionary); a lesser post-threshold slope defined
Model A3 or 13. In the case of no credible difference between the slopes of Segments |
and 1l (i.e., 95% CI includes zero), the model type was classified as either A1
(accretionary) or 11 (dilutionary). For TSS and PP, respectively, 28% and 22% of our

basins were distinguished as having a Model A2 C-Q response.
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Figure 2.3. Identification of segmented regression models of logi10C-log10Q relationships,
including (a) conceptual models of nine types identified by Moatar et al. [2017],
modified to depict a variable threshold position (vertical dashed line) and colored
indication of dominant export regime of pre- or post-threshold segment: hydrologic
(blue) and reactive (red) ; (b) variations on Models A and | suggested by this study and
discerned through examination of posterior distribution of model parameters for BLR;
and (c) relative abundance of model types exhibited by study area watersheds for TSS,
PP, and DP.
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A degree of uncertainty in model assignment arose in five cases for DP and two
for PP. For all model types other than A1, E, and 11, the posterior on the delta (5)
parameter should exclude zero (Figure 2.51). However, this was not always the case.

For example, the DP C-Q response for Little Otter was assigned to Model D based on a
95% ClI for the pre-threshold slope that included zero and for the post-threshold slope that
excluded zero. However, the 95% CI for & spanned zero, suggesting no significant
difference between the slope values, and that a simple model (A1) could fit the data
nearly as well. Similarly, Model Al could have been substituted for Model D for
Poultney (DP), Boquet (DP), Great Chazy (DP), Pike (PP), and Putnam (PP); and Model
E rather than H could have fit the DP data nearly as well for Putnam (Model E rather than
H). Several factors may have contributed to this uncertainty. Little Otter and Putnam are
small basins that tend to exhibit weaker C-Q correlations (Syvitski et al., 2000).
Uncertainty in the DP model assignments may have arisen due to the generally weaker
correlation of this solute to Q (i.e., lower 1 values), as compared to sediment. Finally, in
the cases of Poultney and Putnam, representativeness of the C-Q time series may have
influenced model assignment, as the highest flows are somewhat underrepresented in the
available records for these basins (Table 2.54).

Overall, the C-Q responses for TSS and PP were dominated by positive slopes
including Models A (33 and 28%, respectively) and D (56%, 72%). We attribute this
accretionary pattern to the relative abundance of suspended sediments in these post-
glacial basins and to legacy stores of phosphorus. A threshold effect in the C-Q response
for TSS (and by extension, PP and other sediment associated constituents) is not

uncommon (Hicks, 2000; Meybeck and Moatar, 2012). A similar distribution of TSS
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models (62% D and 21% A) was observed by Moatar et al., (2017) in a sampling of 293
gaging stations in French basins ranging from 50 to 110,000 km?. The C-Q responses for
DP in our study area basins were also dominated by positive slopes. Dilutionary effects
were relatively uncommon and limited to DP Models C and G for our LCB study area. In
this regard, our results differed from those of Moatar et al. (2017), who evaluated a close
analog to DP, namely, PO4s*. The majority of their basins exhibited a stable or declining
C trend with Q (Models E, H, or I), while our basin responses were dominated by an
accretionary hydrologic response for DP at high flows (67% Model D and 17% G). Our
model assignments may not be directly comparable, since we applied Bayesian inference
of the 95% CI on the posterior of £1, and Moatar et al., (2017) used an absolute value of
0.2 for p1 to distinguish accretionary or dilutionary behavior from a stable response.
However, our £1_I1values (mean of posterior distribution) for DP ranged from 0.22 to
0.46, with one exception: 0.13 for Little Otter. Figure 2.S3 illustrates pre- and post-
threshold values for our 18 basins with whiskers denoting the 95% CI on parameter
estimates relative to the traditional value of 0.2.

Regression Slopes

Pre-Threshold
For TSS, ten basins had a flat or nearly-flat pre-threshold segment (Model D);
values of $1_I for these basins ranged from -0.28 to 0.48 (Figure 2.4a). However, the
95% CI of the posterior distribution of f1_I spanned zero, suggesting that a zero value is
also possible. Six basins exhibited a C-Q pattern with a moderately- to strongly-inclined
pre-threshold slope (either Model Al or A2) with f1_I values ranging from 0.28 to 0.87,

and with the 95% CI on these estimates excluding a zero value. The mean f1_I value (i
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Figure 2.4. Box plots of: (a) 1 and (b) So regression parameters by constituent
(TSS, PP, and DP) for the most frequently-encountered log10C-10g10Q
relationships in the Lake Champlain Basin (Models A and D). Letter symbols
denote C-Q regression model type after Figure 3. Bottom panels display the ratio
of threshold Q to median Q (c) by constituent and (d) by constituent for Model
types A and D.

= 0.57) for Model A2 basins was significantly different (ANOVA, p<0.05) and greater
than the mean f1_1 value for Model D basins (1 = - 0.01). The one Model Al and two
Model B basins had £1_I values in a range comparable to the Model A2 basins (Table
S3a). Similarly, for PP, the f1_I values for Model A2 basins (1 = 0.42; range: 0.21 to
0.54; n=4) were significantly different (ANOVA, p<0.05) and higher than values for
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Model D basins (1= 0.02; range: -0.19 to 0.27, n=13). The one Model Al basin had a
11 value comparable to the Model A2 basins. For DP, pre-threshold slopes were
largely flat or declining. Model D fit a majority of the basins, with g1_I values (1 = 0.03;
range: -0.07 to 0.13; n=12) comparable to those of PP and TSS (Figure 2.4a).
Post-Threshold

For both TSS and PP, the range of values for post-threshold slope, p1_Il, was
higher for Model A basins than D basins (Figure 2.4a). For TSS, the group mean value
for Model A2 basins (i = 1.8; range: 0.99 to 2.4; n = 5) was greater than Model D basins
(u=1.1; range: 0.41 to 1.6; n = 10; ANOVA, p<0.10). Two Model B basins had
statistically-significant (p<0.10) lower post-threshold slopes than either A2 or D basins,
with g1_I1 values of -0.28 and 0.5. For PP, Model A2 basins (i = 1.5; range: 0.68 to 2.3;
n = 4) were greater than Model D basins (i = 0.86; range: 0.21 to 1.4; n = 13; ANOVA
p<0.10). For DP, post-threshold slopes (i = 0.31; range: 0.13 to 0.46; n=12) were less
than TSS and PP, although still weakly accretionary. Our Model D values for f1_II
(mean of posterior distribution) ranged from 0.22 to 0.46, with one exception: 0.13 for
Little Otter.

Regression Intercepts

Mean values of o were not significantly different between model groups
(ANOVA, p > 0.05), but PP and DP model intercepts were higher than TSS intercepts
(Figure 2.4b). When considering sediment-related constituents for all 18 basins on a
univariate basis (Spearman’s rank correlation, p<0.10), the TSS and PP /o values
correlated negatively to basin relief (-0.469, -0.542) and positively to drainage density

(0.511, 0.452). The intercept values for the solute, DP, were negatively correlated to total
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drainage area, MAP, and basin relief (-0.550, -0.480, -0.689). Additionally, the percent
land cover in agricultural use showed a significant positive correlation (0.488) to DP fo
value. Intercept values for all three constituents (TSS, PP, DP) showed strong positive
correlations to mean concentrations of total calcium (0.608, 0.701, 0.641), and mean total
calcium (TCa) concentration, itself, was strongly correlated, in a negative sense, to total
drainage area (-0.647) and basin relief (-0.845).

Findings for TSS are somewhat inconsistent with some other studies, which
identify basin area as a significant factor inversely correlated to the regression intercept
for sediment (Syvitski et al., 2000; Nash, 1994). For example, in a study of 57 North
American river gaging stations (on 49 rivers) with upstream drainage areas ranging from
720 to 1,680,000 km?, Syvitski et al. (2000) reported a negative correlation between
mean annual discharge (MAQ); as a proxy for basin size) and o, with MAQ explaining up
to 65% of variance in fo. With the addition of basin relief, the explained variance in the
intercept increased by 5% to 70%. Our study found a moderately strong negative
correlation to Total Drainage Area (Pearson r = -0.507) for PP, but this relationship was
weaker for TSS (r = -0.362). Differences between our results and those of Syvitski et al.
(2000) may be related to the wide range of basin sizes examined in the latter study. If
their data set is restricted to basins of comparable size (i.e., less than 5,000 km?, n = 11),
a similar negative correlation value is obtained (r = -0.413). Notably, all the intercept
values calculated by Syvitski et al. (2000) were less than zero, while our intercept values
included a mix of positive and negative values. Syvitski et al. (2000) values were based
on simple linear regressions, which may underestimate the fo value in threshold-affected

watersheds. Employing segmented regressions has allowed for a less constrained
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interpretation of fo relative to other basin variables, wherein the So value is less tied to the
magnitude of 1. In other words, under the constraint of simple linear regression, an
increase in S1 will necessarily be associated with a decrease in fo (Warrick, 2014;
Asselman, 2000). Under a segmented model fit, the magnitude of fo is less constrained
by collinearity with the post-threshold slope, p1_II (see Figure 2.1), and thus more useful
for characterizing export dynamics.

Threshold magnitude and frequency

Model types were further reviewed for differences in threshold magnitude and
frequency by examining the threshold value expressed as a ratio to the median Q (Tables
2.S3a, b, c) and computing the percentage of time that the threshold is exceeded.
Notably, threshold positions identified for TSS/PP/DP models by our BLR methods,
demonstrated a considerable range below and above the median Q (Figure 2.4c). The
threshold position expressed as a ratio to the median Q was particularly high for two TSS
Model B basins, one TSS Model A2 basin, PP Model Al, and DP Model E (comprising
the outliers in Figure 2.4c).

The ten TSS Model D basins (i = 1.2; 0.5 to 2.7) generally had lower threshold
positions than Model A2 basins (i1 = 4.0; 2.3 to 7.4; Figure 2.4d) and group means were
statistically different (Wilcoxon rank-sum, p<0.05). Consequently, the percentage of
time that the TSS threshold was exceeded was greater for Model D basins (17 to 72%)
than for Model A2 basins (2 to 20%), (Wilcoxon, p<0.05). Thus, D basins are spending a
relatively large amount of time in a functional stage characterized by positive C-Q
correlation. The one Al basin had a threshold position similar to the A2 basins. Two

Model B basins (Little Ausable and Salmon) had very high threshold positions, exceeded
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less than 2% of the time, beyond which C-Q data transitioned from a positive correlation
to a flat response. The PP C-Q response reflected a similar pattern, with Model D basins
exhibiting significantly lower threshold positions than Model A2 basins. No significant
difference between DP models was observed for threshold ratios, which ranged widely
from 0.2 to 9.9 times the median Q. DP Model D basins had a similar central tendency
and range of threshold ratio as their TSS and PP counterparts (Figure 2.S3b).

On a univariate basis, the TSS and PP threshold ratios were positively correlated
to the slope of the pre-threshold segment (0.712, 0.571, Wilcoxan, p<0.05), since Model
A2 basins (with higher threshold positions) are characterized by inclined pre-threshold
slopes while Model D basins (with lower threshold positions) have near-flat pre-threshold
slopes. DP threshold ratios were positively correlated to the post-threshold regression
slope - a reflection of the fact that a majority of those basins with thresholds above the
median Q were classified as either Model D or G, which demonstrate a positive C-Q
relationship for the post-threshold segment.

Sediment and solute export regimes

Regression and variance metrics can be used to classify sediment and nutrient
export regimes of catchments on a continuum from chemodynamic to chemostatic, and
from positive to negative correlation of the log C-Q relationship. We have adapted the
bivariate plot of 1 and CV ratio suggested by Musolff et al. (2015) as a convenient way
to compare our results to theirs, and to highlight the advantages of a segmented
regression model for discerning variable export regimes for pre- and post-threshold flow
stages. Musolff et al. (2015) identified two overlapping zones for chemodynamic

response of TSS and total phosphates, denoting export regimes dominated by “threshold-
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driven” and “reactive” processes, with the latter straddling the g1 = 0 line (Figure 2.5a).
Their conceptual model defined “threshold-driven” responses as being episodic in nature
with a strongly-positive relationship between C and Q (i.e., high 1 value). These are
systems in which C variability is driven predominantly by Q variability, and both Musolff
et al. (2015) and Thompson et al. (2011) mapped TSS to this category. To avoid
confusion, and for consistency with Moatar et al., (2017), we have used a more
generalized term - “hydrologic”-ally-driven (Figure 2.5) — for rivers that plot to this zone,
since use of the term “threshold-driven” by Musolff et al. (2015) does not appear to
suggest a prerequisite that all watersheds of this zone exhibit a distinct threshold(s) in the
C-Q pattern. For example, a Model A, E or | response could plot to this zone. In
contrast, “reactive” responses reflect processes that are more independent of fluctuating
Q and that are characterized by rapid instream cycling (Musolff et al., 2015). Musolff et
al. (2015) and Thompson et al. (2011) identified ammonium and phosphates in this
category, citing the importance of biologically- and chemically-mediated processes in
controlling C. Similarly, Moatar et al., (2017) identified a weak C-Q relationship
(“reactive” response) for TSS at flows below the median Q, and suggested the importance
of biochemical processes in regulating TSS concentration at these low-flow stages. In the
context of sediment and sediment-related constituents, we expand the definition of
“reactive” export regimes to include the array of biologically-, chemically- and
physically- mediated processes that are responsible for the removal (uptake) or return
(release) of constituents from advective transport (Fisher et al., 1998). Thus, for PP and
TSS, “reactive” could include non-chemical and non-biological processes that are largely

decoupled from Q, such as lateral and vertical exchanges of fine sediment and associated
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Figure 2.5. Plot of regression slope (1) vs. CV ratio to visualize export regime for TSS
(top panels), PP (middle), and DP (bottom) from 18 LCB watersheds, respectively, (using
presentation style of Musolff et al. (2015)). Simple regression data are presented in
panels a, ¢ and e; segmented regression data are presented in panels b, d, and f, with
metrics for pre-threshold data (down-directed triangle) plotted separately from post-
threshold data (up-directed triangle). Vertical whiskers span the 95% credible intervals
around the estimate of 1 defined by BLR. Bounds in the upper left and lower right of
each panel are defined solely by CVq and f1 (not CVc), and have been derived from the
mean and standard deviation of Q from Boquet data (see Musolff et al., (2015) for further
discussion).
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constituents between the water column and the stream bed, channel margin deposits,
disconnected flood chutes or floodplain (Boano et al., 2014; Karwan and Saiers, 2009;
Skalak and Pizzuto, 2010).

Figure 2.5 illustrates bivariate plots for TSS, PP, and DP from our 18 LCB
tributaries based on simple linear regression (Figure 2.5a, c, €) and segmented regression
(Figure 2.5b, d, f). Overall, a stronger C-Q relationship is suggested by data points
derived from a segmented regression than is revealed by the simple regression results
(supplementary Text 2.S3), leading to greater dispersion on the f1 / CV ratio plot. (Select
data points with very high g1 or CV values plot off the chart and are not represented in
Figure 2.5 for image clarity). For TSS and PP, post-threshold data generally have higher,
positive £1 values and thus plot above the pre-threshold points, which tend to assemble
close to the horizontal line marking a zero value for $1. In the case of DP, the points
assemble closer to the zero line, reflecting the generally lower g1 values for this solute.

Figures 2.5b, 2.5d and 2.5f also help visualize the uncertainty on the pre- and
post-threshold S1 parameter explicitly estimated from our BLR approach, and how this
was leveraged to classify model types (Figure 2.3a and 2.3b) as well as assign a
“reactive” or “hydrologic”-ally-driven export regime (Musolff et al., 2015). The posterior
distribution of the £1_1 (or f1_II) parameter available from the BLR was examined, and if
the 95% CI spanned a value of zero, the point was classified as “reactive” and color-
coded red. Otherwise, the point was classified as “hydrologic”-ally-driven and coded
blue.

For TSS and PP, the C-Q relationship of the pre-threshold stage in some cases

plots to the “reactive” zone, rather than the “hydrologically-driven” zone (i.e., the Model
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D basins). During the low-flow functional stage, C dynamics are nearly independent
from Q (i.e., r? values for logC-logQ regressions are very low); and therefore, 1 metrics
provide minimal information for interpretation (Thompson et al., 2011). These basins
are distinguished from the Model Al and A2 basins in which the pre-threshold points
were classified as “hydrologic”-ally-driven (color-coded blue) and f1 values defined
some credibly positive slope, ranging on a continuum from modestly to substantially
accretionary. For TSS, two basins exhibited a “reactive” post-threshold slope (Model B).
For both basins (Salmon and Little Ausable), the indicated threshold is high (greater than
10 times the median Q), and the pattern may reflect particle exhaustion at these highest
discharges. In the case of Little Ausable, the apparent C-Q pattern may also be a function
of having poor sample representation from these highest flow ranges (Table 2.54). For
DP, a majority of the pre-threshold stages were classified as “reactive” (Models D or E);
a few basins demonstrated a hydrologically-driven response at low flows — either
accretionary (Model C) or dilutionary (Model G). Similarly, most basins exhibited a
hydrologically-driven post-threshold response (Model D or G), although a few were
either dilutionary (Model C) or stable (Model E). Two basins have a pre- or post-
threshold value that is negative and greater in absolute value than 0.2 (Otter Model C and
Little Chazy Model G).

Previous researchers (Thompson et al., 2011; Basu et al., 2010; Musolff et al.,
2015) have suggested an absolute value of 0.2 for the regression slope as a “cut-off” to
distinguish between reactive and hydrologic response. Bayesian inference provides an
alternative, data-driven approach for interpretation of the regression slope parameter,

which also offers insight into the uncertainty of model assignment. Interestingly, most of
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our model assignments employing BLR conformed to this rule of thumb, with
accretionary or dilutionary responses defined by a mean of the posterior on 51 values >
|0.2|. Generally speaking, the uncertainty of the f1 estimate, or length of whiskers
defined by the Bayesian credible interval, is greater in magnitude for the pre-threshold
slopes than the post-threshold slopes for all three constituents. This finding may reflect
seasonal shifts in “reactive” vs. “hydrologic” process dominance at these low flows, as
moderated by factors such as temperature, plant growth, and aquatic biota. For example,
recent research, aided by high-frequency sampling, suggests that the transition between
functional stages is dynamic and driven largely by meteorological variables such as
antecedent moisture or rainfall intensity, rather than being predominantly a function of
basin-scale physical features (Bieroza and Heathwaite, 2015; Bende-Michl et al., 2013).
Additionally, interannual shifts in threshold position may be contributing to uncertainty
in the B1 estimate (e.g., due to river system responses to extreme events, changing land
use patterns or progressive implementation of watershed restoration projects and best
management practices) (Zhang et al., 2016).

Thus, while previous research has suggested that TSS and PP C-Q patterns are
consistently hydrologically-driven at a basin scale (Musolff et al., 2015), our BLR
approach suggests that TSS and PP export regimes can exhibit more complexity. In some
threshold-affected systems, low discharge ranges may comprise a distinct functional
stage that is more dominated by reactive processes, including and facilitated by lateral
and vertical exchanges of fine sediment within the hyporheic and parafluvial zones which
temporarily remove constituents from advective flow. In this context, the river corridor

can be viewed as a reactor facilitating changes in particulate P concentration, as opposed
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to just a vessel for transport (Withers and Jarvie, 2008; Harvey and Gooseff, 2015;
Mullholand et al., 1997).

The variance in threshold position among watersheds is a reflection of the
duration of time that each watershed stays in a particular functional stage of
sediment/nutrient flux. For example, although not a focus of this current study, the
seasonal distribution of flows that exceed the PP threshold may influence the relative
annual flux among basins. A cursory review of 1990-2015 discharge data indicates that
the PP Model D basins spend a majority of their time (>50%) in the pre-threshold,
reactive, functional stage during the months of June through October (Figure 2.S5). Most
of the basins are also dominantly in this reactive functional stage during the month of
February (all except Poultney). Some of the Model D basins (Great Chazy, Little Otter,
Mettawee, and Winooski) spend a majority of all months except April in this reactive
functional stage; these are basins with a particularly elevated threshold position exceeded
between 13 and 29% of the time on an annual basis. The latter three basins have some of
the highest mean annual concentrations of PP (Table 2.S2). Future application of our
novel approach will examine seasonal variation in threshold position and functional
stages of nutrient and sediment export.

SOM Clustering of Watersheds for PP and DP

By pre-classifying our eighteen LCB tributaries into distinct C-Q patterns, relying
on Bayesian inference, we have improved the utility of regression metrics to suggest
between-watershed differences in drivers and capacity for system export of sediment and
phosphorus. This expanded set of regression metrics can be included, alongside other

basin metrics, as inputs to a SOM for grouping our humid temperate basins by constituent
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export regime. Our main intent was to discern whether the combination of watershed
characteristics and export regime was responsible for greater or lesser flux of PP and DP
to Lake Champlain. For example, it is conceivable that a basin that exhibits a strong
sediment/PP C-Q response but has low overall P source strength due to land cover
patterns, may generate low overall flux to LCB. Conversely, a basin with high sediment
and P source strength may generate low flux to LCB if there are aspects of topography,
climate, or geomorphic setting that enhance storage or attenuation of sediment/ PP within
the river network leading to a weaker C-Q response (i.e., lower f1). Therefore, we
included both watershed characteristics (i.e., precipitation, discharge, soils, land cover,
etc.) and export regime metrics as inputs to a PP SOM and DP SOM, in order to model
these nonlinear, epistatic relationships, and cluster the basins by overall average annual
flux of TSS and PP to Lake Champlain.

For each constituent, the 18 basins were assigned to three distinct clusters and
multivariate input data (Tables 2.1 and 2.S3a, b, c) have been reduced to a 2-D lattice for
visualization: a 3x6 lattice for PP (Figure 2.6a) and a 4x4 lattice for DP (Figure 2.7a).
The column-to-row ratio for theses lattices approximated the ratio of the first two
principal components of the input data (5.7/ 3.4 for PP; 4.3/3.2 for DP; PCA on
correlations), as per Cereghino and Park (2009). Clustering outcomes were slightly
different for each constituent (Figures 2.6b, 2.7b), driven by differing combinations of

input variables (Figures 2.6¢, 2.7¢).
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Figure 2.6. Particulate Phosphorus SOM clustering outcomes for Lake Champlain Basin
tributaries, including (a) SOM lattice (see Supplementary Figure 2.52 and Text 2.S2); (b)
basin location map color-coded by SOM cluster assignment and keyed to C-Q regression
model types; (c) variable bar plots by cluster (n = number of basins per cluster; y-axis
represents range-normalized values; refer to Section 2.4). Note: for clarity of
presentation, variable plots have been rendered using different vertical scales. Panel (d)
depicts mean annual flux of TSS (left) and PP (right) in metric tons per year (mT/year) by
SOM cluster. Color shading relates to clusters in panels a - ¢c. Letter symbols denote C-
Q regression model type after Figure 2.3. Flux estimates are from Medalie (2014).
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Figure 2.7. Dissolved Phosphorus SOM clustering outcomes for Lake Champlain Basin
tributaries, including (a) SOM lattice; (b) basin location map color-coded by SOM cluster
assignment and keyed to C-Q regression model types; (c) variable bar plots by cluster (n
= number of basins per cluster; y-axis represents range-normalized values; refer to
Section 2.4). Note: for clarity of presentation, variable plots have been rendered using
different vertical scales. Panel d depicts mean annual flux in metric tons per year (left)
and concentration in milligrams per liter (right) of DP by SOM cluster. Color shading
relates to clusters in panels a - ¢. Letter symbols denote C-Q regression model type after
Figure 3. Flux and concentration estimates are from Medalie (2014).
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PP SOM Results

ANOVAS revealed significant differences between mean cluster values for flow-
normalized flux of both TSS and PP (p<0.10; Figure 2.6d), but not for mean annual
concentration or yield (p > 0.10). Post-hoc testing applying Tukey HSD showed that the
mean flux values for Clusters 1 and 3 were higher than, and statistically different from,
Cluster 2 for both PP and TSS (p<0.10). Larger basin sizes were generally associated
with greater flux of TSS and PP. However, Clusters 1 and 3 comprised basins of similar
size, but clustered separately.

Cluster 1 and 3 basins each exhibit strong threshold effects in the C-Q response
for both TSS and PP: Model A2 for Cluster 1 and Model D for Cluster 3, except
Mettawee in Cluster 3, which was classified as Model A2 for TSS. While both Cluster 1
and 3 basins demonstrated higher-than-average flux of PP and TSS (Figure 2.6d), a
different combination of variables appears to be driving this pattern in each case (Figure
2.6¢). These two clusters share some variables in common — including, higher-than-
average values for basin relief and MAP.

Variables that distinguish these two higher-loading Clusters (1 and 3) from each
other (i.e., variables that trend in opposite directions from the overall mean) include the
regression intercepts for both TSS and PP and the post-threshold response for PP (Figure
2.6¢). Cluster 1 (Model A2) basins appear to have greater transport capacity (larger p1_lI
values) relative to Cluster 3 (mostly Model D) basins (Figure 2.4d). However, threshold
position as a ratio to the median Q was higher for Cluster 1 than 3 basins, although not
significantly so (ANOVA/ Tukey HDS, p > 0.10). This would mean that transport of

sediment and sediment-bound P occurs disproportionately during less-frequent, higher-
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magnitude flows in these Model A2 basins — i.e., they exhibit a more episodic C-Q
response than Model D basins, and could be considered supply-limited with respect to
TSS and PP (Thompson et al., 2011; Basu et al., 2011). Importantly, Model A2 basins
also have steeper pre-threshold slopes relative to Model D basins. Therefore, small
discharge events are more impactful on TSS and PP export than similar magnitude events

in Model D basins.

Cluster 1 basins appear to have a much lower range of S values for each
constituent than their Cluster 3 counterparts, reflecting a lower baseline supply of
suspended sediment and particle-bound P in the former group. The lower-than-average
Lo values for TSS and PP (as well as the higher-than-average f1 values previously noted)
in Cluster 1 basins (Saranac, Lamoille, and Missisquoi) may also be related to instream
impoundments (Table 2.S1) and the possible storage of fine sediments and PP behind
dams at least during low to moderate flow stages. For example, Wang et al., (2008) noted
a stepped decrease in the intercept parameter for C-Q regressions developed for TSS time
series data on the Yangtze River in China, as instream impoundments were constructed to
support generation of hydropower. At the same time, they attributed observed increases
in A1 to the increased erosive power in the lower reaches of the Yangtze River in China,
resulting when upstream impoundments sequestered sediments and led to decreased
downstream concentrations of suspended sediments (so-called, “hungry water” effects of
Kondolff (1997)). Elevated 1 values in impounded rivers have also been attributed to
effects of diminished sediment storage capacity of instream reservoirs (Zhang et al.,

2016).

85



Cluster 3 basins tend to be dominated by lower-infiltration soils (exhibit lower
percentages of HSG A and B soils). This is likely a reflection of their geographic
position with near-lake areas located in the Champlain Valley or Vermont Valley/
Taconic biophysical regions. These regions are associated with silt and clay deposits
from postglacial freshwater and brackish-water lake episodes that inundated the valley to
higher stages than the present Lake Champlain (Stewart and MacClintock, 1969).
Similarly, Medalie (2013) noted a significant correlation between physiographic province
and both concentration (Kruskal-Wallis p = 0.092) and flux (p = 0.045) of total
phosphorus. This difference between Cluster 1 and Cluster 3 basins is particularly
illustrated when comparing the Winooski basin (Cluster 3) to Lamoille and Missisquoi
basins (Cluster 1). Despite similar size, relief, MAP, and impoundment / flow regulation
status, these basins clustered differently for PP, driven in large part by differences in o
values which resulted in their assignment to different regression model types (e.g.,
Winooski, TSS_ fo = +0.37, Model D vs. Lamoille and Missisquoi values of -0.67 and -
0.29, Model A2). This higher-than-average baseline supply of sediment (and PP) for
Winooski basin, could reflect the fact that, on a basin scale, Winooski has a somewhat
greater dominance of lower-infiltration soils (lower percentage of HSG A and B soils)
than Lamoille or Missisquoi (Table 2.1). This pattern may also reflect differential source
regions and connectivity of PP and TSS (Doyle et al., 2005) and may be a function of
between-watershed differences in the dominant geomorphic state of the channel
(aggradational vs. incisional) (Kline and Cahoon, 2010; Roy and Sinha, 2014) and
duration of recovery time for vegetative boundary conditions following extreme flood

events (Wolman and Gerson, 1978).
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Post-threshold CV ratios for PP (and TSS) were elevated in Cluster 1 basins
relative to the average for each of the other clusters. This pattern hints at the importance
of less frequent, higher-magnitude storms in producing suspended sediment and
sediment-bound P in these basins. Also, in our study area, impounded and/or regulated
rivers did tend to have lower CVq values than non-regulated rivers (Wilcoxan, p<0.10),
which would contribute to somewhat elevated CV ratios for both TSS and PP, and further
promote the importance of low-frequency, higher-magnitude storms for sediment and
sediment-bound P export (Meade, 1982).

Cluster 2 basins had lower flux of TSS and PP than Clusters 1 and 3 (Figure
2.6d). Cluster 2 basins are generally smaller in size (137 to 778 km?) with C-Q
relationships representing a mix of Model types (A1, A2, B, D). They have higher
background supplies of TSS and PP (elevated fo values), and are generally of lower relief
with lower MAP. Mean values for relief and MAP are significantly different (ANOVA,
p<0.05) and lower for Cluster 2 than Cluster 1 (and 3). Cluster 2 basins exhibit lower-
than-average post-threshold f1 values for both TSS and PP, perhaps related to lesser
stream power that would be expected from the combination of smaller basin size, lower
relief and lesser MAP. Cluster 2 basins are also characterized by less-than-average
forest cover and somewhat greater-than-average percentage of agricultural land use
(although land use is not a significant factor driving clustering). Interestingly, while
Cluster 2 basins overall contribute smaller loads of TSS and PP than Cluster 1 or 3 basins
(likely related to their smaller size), they are characterized by a mean annual PP
concentration range that is higher than that of the Cluster 1 basins (though the overall

cluster means are not significantly different at a = 0.10) and statistically different than
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mean PP concentration for Cluster 3 (ANOVA, p<0.05). This result may be due to the
fact that even at low flow ranges, these basins have sufficient power to entrain and
mobilize fine particles and associated P from legacy stores (i.e., elevated fo values)
derived from the erodible glacio-lacustrine soils and sediments of the Champlain Valley.

DP SOM Results

The DP SOM also clustered basins into three groups, but the group composition
varied somewhat from that generated by the PP SOM (Figure 2.7). Log-transformed DP
(and TSS) flux values for Clusters 2 and 3 were higher than Cluster 1, although
statistically significant only between groups 2 and 1 (ANOVA/ Tukey HSD, p<0.10).
Notably, these are nearly the same basins that comprised the high-flux clusters for PP,
with the exception of Poultney and Mettawee (compare Figures 2.6 and 2.7). In contrast,
DP concentrations were higher for Cluster 1 than Clusters 2 and 3, and the means
between Clusters 1 and 3 were significantly different (p<0.05) (Figure 2.7d). There were

no significant differences between mean cluster values for DP yield (p > 0.10).

The higher-flux basins of Clusters 2 and 3 tended to have higher-than-average
basin relief and MAP, which can be attributed in part to their larger total drainage area
(Figure 2.7b). Cluster 2 basins were larger than Cluster 3 basins, which themselves were
larger than Cluster 1 basins, and the difference between group means was statistically
significant (ANOVA/Tukey HSD, p<0.05). Basins in Clusters 2 and 3 also tended to
have lower than average regression intercept values, suggesting lower baseline supplies
of DP. Interestingly, they also exhibited higher values for the slope parameter on the
post-threshold segment of the TSS C-Q regression. This may reflect enhanced sediment

transport capacity of these basins, given their higher-than-average relief, which itself is
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correlated to greater MAP (Pearson r = 0.480 for all 18 basins). To some degree,
elevated S1_Il values may also reflect greater availability of TSS sources (e.g., enhanced
floodplain connection) at higher flow stages (Asselman, 2000). We speculate that higher
availability of TSS, could lead to reduced DP flux as a result of sorption (i.e., nutrient
cycling).

Land use appears to contribute to differences between higher-flux Clusters 2 and
3 and suggests alternate sources of DP. Cluster 2 basins tended to be more developed
and less forested, while the opposite was true for Cluster 3 basins, and the difference
between cluster means was significant in each case (p<0.10 for forested, p<0.01 for
developed). Cluster 2 basins (Otter, Winooski and Lamoille) include the urban centers of
greater Burlington, Montpelier, Rutland and Middlebury, which are serviced by
wastewater treatment facilities. The mean value of post-threshold regression slopes for
Cluster 2 basins is greater than Cluster 1 basins, though not significant (p = 0.18),

suggesting a more hydrologically-driven transport of DP for these basins.

The lower-flux basins of DP Cluster 1 are characterized by lower-than-average
relief and MAP. In contrast to the other basins, they have elevated fo values for both TSS
and DP, indicating higher baseline supplies of these constituents. Higher DP S values
may also be a reflection of the higher-than-average agricultural land use in Cluster 1
basins. Although it was not an input to the SOM, the mean concentration of total calcium
(TCa) appears to have been a latent variable driving clustering of basins for DP. Cluster
1 had significantly higher mean TCa than Cluster 2 and 3 basins (ANOVA/ Tukey HSD,
p<0.05). Elevated TCa concentrations and TSS fo values for TSS in Cluster 1 basins

may both be a reflection of their geographic position within the Champlain Valley or
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Vermont Valley/ Taconic biophysical regions, characterized by carbonate bedrock and
erodible glacio-lacustrine sediments. Thus, DP in these Cluster 1 basins may be
attenuated through sorption to, or biogenic co-precipitation with, calcite-bearing particles
(Moatar et al., 2017). While Cluster 1 basins are responsible for generally lower flux of
DP to Lake Champlain (due largely to their smaller size), they do however, exhibit higher

DP concentrations than either Cluster 2 or 3 basins (Figure 2.7d).

Sediment and solute export regimes revealed by SOM clustering

Nonparametric SOM clustering results suggest that different functional stages of
C-Q are responsible for the flux of sediment and nutrients to Lake Champlain from
different basins. For TSS and PP, two unique clusters of high-flux basins were identified.
In the first group, sediment and sediment-bound P flux is hydrologically-driven and
disproportionately occurring during relatively infrequent, high-magnitude runoff events.
During hydrologically- and hydraulically-dominated functional stages, TSS and PP are
entrained and mobilized as a result of stream bed scour, streambank collapse, rill erosion,
gully formation, floodplain scour (where hydrologically connected), and mass movement
of strath terraces or closely-coupled hillsides (Baker, 1977; Nanson, 1986; Benda and
Dunne, 1997; Trimble, 1997; Walling and He, 1999; Walling et al., 1999). In the stream
channel, sediment and solute transport would be more dominated by advective forces in a
downstream direction than by diffusive or dispersive forces in either a lateral or vertical
direction (Ward, 1989). Accretionary and hydrologically-dominated patterns may also
result from progressive or sudden release of sediments from instream impoundments at
high flows (Meade, 1982; Wang et al., 2008). The inclined pre- and post-threshold stages

of these Model A2 watersheds may reflect suspended sediments liberated from a two-
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phase bedload transport regime where sediments accumulated in the channel between
storm events are more readily moved, while the second phase consists of additional fines
liberated from disturbance of a coarse streambed armor layer (Jackson and Beschta,
1982; Ryan et al. 2002; Reid et al., 1997), or as stabilizing biofilms or aquatic vegetation
are breached (Lawler et al., 2006). Alternatively, this pattern may simply reflect
expansion of the variable source area with increasing stage (Dunne and Black, 1970;
Asselman, 2000).

In the second group, the sourcing and mobilization of sediment and P are more
bimodal, resulting from both hydrologic processes at post-threshold discharges and
reactive processes (such as nutrient cycling or lateral/vertical exchanges of fine sediment)
that dominate at pre-threshold discharges. For these basins exhibiting a “reactive” export
regime in pre-threshold flow stages (i.e., near-flat trends in C with increasing Q), the
vertical and lateral components of flow appear to gain influence relative to longitudinal
(i.e., downstream) components. This may be due, in part, to lesser overall magnitudes of
discharge, but may also reflect different hydrogeomorphic patterns in these rivers (i.e., an
enhanced degree of floodplain connection, greater diversity of channel and bed forms,
greater percentage of instream storage from impoundments or channel-contiguous
wetlands than their “hydrologically-driven” counterparts). Research suggests that
biogeochemical and physical processes other than advection dominate these reactive
functional stages, such as: hyporheic exchange (Karwan and Saiers, 2009); vertical
exchange or filtering (Boano et al., 2014); lateral exchange with fine-grained channel
margin deposits (Skalak and Pizzuto, 2010; Withers and Jarvie, 2008); microscale

bedform migration (Pizzuto, 2014; Harvey et al., 2012); and attenuation in instream
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wetlands (e.g., Qian and Richardson, 1997), impoundments (Wang et al., 2008), or
transient storage areas behind large woody debris jams (Wohl and Beckman, 2014).
Lagged groundwater recharge from antecedent storms (Bieroza and Heathwaite, 2015)
may cause short-term dilutionary effects that contribute to variability in pre-threshold
TSS and PP C patterns. It is also possible that some of the more elevated concentrations
result, not from reactive processes, but from hydrologically-driven sediment transport
when the turbidity measured at the basin outlet has been generated by localized storms
from distal areas of the basin (Lawler et al., 2006; Bieroza and Heathwaite, 2015). We
speculate that this reactive functional stage of sediment/nutrient flux could also include
bioturbation by wildlife (e.g., beavers and benthic organisms) as cited in Boano et al.,
(2014) and humans (e.qg., active ditching of first order streams that deliver suspended
sediments during low-flow time periods), based on direct observations from these basins.
DP export to Lake Champlain from high-flux basins appears to result largely from
a mix of hydrologic processes at post-threshold discharges and reactive processes
(nutrient cycling) at pre-threshold discharges. Hydrologic phases of transport appear to
be dominantly accretionary in nature. This result contrasts somewhat with findings of
Moatar et al., (2017) who noted chemostatic or dilutionary responses in a majority of
their study basins. The accretionary response in our study area may reflect sourcing and
mobilization of DP: (1) from impoundments at high flow stages; (2) from wastewater
treatment facilities or combined sewer outflows at higher discharges; (3) from increased
connections to channel-contiguous wetlands at higher flow stages; (4) or from tile
drainage systems. Two high-flux DP clusters appear to be distinguished by basin-scale

land use, with developed uses associated to one cluster, and agricultural uses more
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prevalent in the other. Still, post-threshold 1 values for DP are generally much lower
than p1 values for PP (Figure 2.4a). This observation is also reflected in the lower overall
flux estimates for DP as compared to PP (i.e., compare Figure 2.6d to 2.7d).
Conclusions and Implications

We have outlined a methodological approach to expand upon previous
classification schemes for sediment and solute export from catchments (Musolff et al.,
2015; Thompson et al., 2011; Zhang et al., 2016; Moatar et al., 2017), with a focus on
suspended solids and particulate and dissolved phosphorus. Using the Lake Champlain
Basin to examine concentration-discharge dynamics, our method leveraged information
from Bayesian inference to achieve estimation of segmented regression model
parameters, and identify threshold position to avoid potential bias in manual threshold
selection. Notably, threshold positions identified by our BLR methods, demonstrated a
considerable range below and above the median Q — which has been used by previous
researchers (Moatar et al., 2017; Meybeck and Moatar, 2012) as a default break-point to
classify segmented C-Q regression models and discern differences between pre- and post-
threshold export regimes. The BLR approach identified different functional stages of
TSS, PP and DP export, in that a probability distribution on pre- and post-threshold
regression slopes from a segmented regression model could be interpreted to discern
between “reactive” and “hydrologically-driven” stages of constituent export. We
extended the term “reactive” export regime to include the array of biologically-,
chemically- and physically-mediated processes that are responsible for the uptake or

release of constituents from advective transport.
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Additionally, this study has applied a nonparametric clustering and data
visualization approach, using an SOM, to yield insights into nonlinear combinations of
independent variables that appear to be driving basin-scale differences in mean annual
flux and concentration of sediment and phosphorus. Though further testing with greater
numbers of basins would be useful, the SOM results helped define two unique clusters of
high-flux basins for TSS and PP. In the first group, sediment and sediment-bound P flux
is hydrologically-driven and disproportionately occurring during relatively infrequent,
high-magnitude runoff events. In the second group, the sourcing and mobilization of
sediment and P are more bimodal, resulting from both hydrologic processes at post-
threshold discharges and reactive processes (such as nutrient cycling or lateral/vertical
exchanges of fine sediment) that dominate at pre-threshold discharges. The former
functional stage generates an acute flux response and may be more consequential in the
context of loading to the lake (e.g., TMDLs and sediment budgets). However, the latter
functional stage generates a more chronic concentration response that may be of greater
concern in the context of ecological balance in the receiving waters (Bende-Michl et al.,
2013). For example, in a hydrodynamically and ecologically diverse receiving water like
Lake Champlain (Xu et al., 2015a, 2015b), understanding and predicting the magnitude,
timing and location of these episodic vs. chronic inputs of nutrients is critical to
projecting riverine load impacts on lake water quality and ecosystems across both time
and space (Giles et al., 2016; Isles et al., 2017). Shallow segments of the lake, where P
availability and ecosystem productivity are most impacted by benthic P loading (Isles et
al., 2015), large PP loads from episodic high-flow events can remain potentially

bioavailable for years to decades; but chronic inputs will also accumulate over time and
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persist in these environments (Isles et al., 2017, Zia et al., 2016). Deeper sections of the
lake could be more impacted by chronic inputs of DP, as even during large events,
particulate phosphorus quickly settles to depths where it is no longer potentially
bioavailable to phytoplankton, and the short term (days to months) cycling of potentially
dissolved riverine nutrients tends to govern nutrient ratios and bioavailability (Isles et al.,
2017).

Insights into landscape drivers of concentration-discharge patterns provided by
this BLR-SOM approach can also aid water resource managers. For example, different
management strategies would be warranted for each of the high-flux basin clusters for
PP, based on differences in the identified export regimes. Emphasis could be placed on
diverting, detaining and attenuating storm-water flows and restoring and enhancing
connections to floodplains and channel-contiguous wetlands in PP Cluster 3 (Model A2)
basins, where flux is more episodic in nature, hydrologically-driven and
disproportionately occurring during relatively infrequent, high-magnitude runoff events.
Whereas, source reduction and other best management practices to buffer and disconnect
sediment and PP source regions from the stream network would be more appropriate in
PP Cluster 1 (Model D) basins characterized by greater baseline (legacy) supplies of
these constituents. Similarly, DP clustering results that distinguish groups of high-flux
basins by association with different land use patterns, may suggest differences in DP
source types (e.g., point vs diffuse) and focus restoration or remediation efforts,
accordingly. A better understanding of between-watershed differences in the functional
stages of constituent export is also important in a nonstationary climate to anticipate

spatially and temporally variant sensitivities to increased frequency, persistence, and
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intensity of storm events (Guilbert et al., 2015) and projected increases in dry summer
conditions (Guilbert et al., 2014).

This data-driven, nonparametric approach to classification of export regimes can
be particularly useful in an adaptive management context, as analysis is easily updated
with new estimates of physical and chemical data. Computation methods (Section 2.3.2)
can be adapted to handle censored data (Kruschke, 2015). The Bayesian framework
offers particular flexibility for study areas with sparse C-Q data. Our methods used
vague priors on parameter estimates, so that the data would drive the estimates (Gelman
et al., 2004). However, this technique could also be used with informative priors for
watersheds with limited C-Q data. For example, analysis could apply the basin-scale
posterior range for regression parameters as a prior on BLRs to estimate C-Q
relationships at a sub-watershed scale, provided that biogeophysical characteristics of the
two scales are similar. In a temporal context, our basin-scale estimates could be used as
prior information in a hierarchical model of C-Q regressions by season (subject of a
pending future publication).

