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ABSTRACT 

 

Protein is an important fraction within bovine milk. This milk protein is not only 
vital for calf growth and development, but also includes bioactive proteins and peptides 
that have been shown to enhance the health of animals and humans. Research efforts are 
focusing on factors, such as nutrition, that can influence the quantity and profile of 
proteins within the bovine milk proteome. The research outlined herein investigated the 
impact of diet on the bovine milk proteome. The first experiment examined whether 
dietary inclusion of grape marc (GM), a condensed tannin (CT) containing by-product 
from the viticulture industry, could alter the bovine milk proteome through altered 
nitrogen (N) metabolism. In this experiment, 10 lactating Holstein cows were fed either 
2.0 kg dry matter (DM)/ cow/ day of beet pulp: soy hulls in a 50% mixture (control), or 
1.5 kg DM/ cow/ day of GM as part of a balanced dairy cow ration for a 28-d trial. Milk 
samples were obtained for analysis of the high- and low-abundance protein fractions. 
Skimmed milk samples collected for high-abundance protein analysis were measured 
using high performance liquid chromatography (HPLC), and liquid-chromatography 
tandem mass spectrometry (LC-MS/MS) was used to identify proteins in the low-
abundance protein enriched fraction. Skimmed milk samples collected for low-abundance 
milk protein analysis were fractionated and enriched to remove higher abundance 
proteins. Enriched milk samples were then digested and labeled with isobaric tandem 
mass tags (TMT) prior to protein identification using LC-MS/MS analysis. There were no 
changes in the high-abundance protein fraction in response to diet; however, 16 of 127 
low-abundance proteins were identified at different relative-abundances due to diet (P ≤ 
0.05). While there were no alterations in the metabolic or N status of animals due to GM 
supplementation, the 12% change in the low-abundance milk protein fraction highlighted 
the potential for dietary alteration of the bovine milk proteome. 
 
 A second experiment evaluated the inclusion of alternative forage crops (AFC) 
as a means to alter the bovine milk proteome. In this experiment, both the skimmed milk 
and milk fat globule membrane (MFGM) protein fractions were included in analysis. 
Milk samples were collected from 16 lactating Jersey cattle included in a 21-d grazing 
experiment, where cows were offered one of two diets. The control group (CON, n=8) 
grazed a grass-legume pasture mixture containing orchardgrass (Dactylis glomerata), 
timothy (Phleum pratense), Kentucky bluegrass (Poa pratensis), and white clover 
(Trifolium repens). The treatment group (AFC, n=8) grazed a similar base pasture that 
was strip-tilled with oat (Avena sativa), buckwheat (Fagopyrum esculentum), and 
chickling vetch (Lathyrus sativus) so that the AFC species comprised 10% of the AFC 
group’s pasture DM intake (DMI). Milk samples were collected for HPLC analysis of the 
high abundance milk proteins, and LC-MS/MS analysis of the low abundance protein 
enriched skim milk fraction and MFGM-associated protein fraction. Cows that grazed 
pastures containing AFC had higher αs1-CAS content (P = 0.005), and higher relative-
abundances of 7 low-abundance proteins within the skim milk and MFGM fractions (P ≤ 

0.05). While it is plausible that the inclusion of AFC in pasture increased nutrient 
availability to the mammary gland, the specific mechanisms that could have caused the 
shifts observed remain unclear. Further investigation is necessary to fully understand the 
role of diet and the milk protein profile. 
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CHAPTER 1: LITERATURE REVIEW 

There is growing interest to further elucidate factors that influence the bovine 

milk proteome due to the presence of bioactive proteins and peptides. Nutrition is one 

of many known factors that can alter milk composition, and there is growing evidence 

suggesting a relationship between diet and the composition of the milk protein profile, 

(also known as the milk proteome). This relationship between nutrition and the milk 

proteome is of particular interest as it could allow producers the opportunity to 

naturally influence the presence of bioactive proteins and peptides in milk; however, 

the mechanisms and drivers of this relationship are unclear. This review will discuss the 

composition of the bovine milk proteome, summarize findings relating to dietary 

alteration of the bovine milk proteome, and discuss some potential feeding strategies 

that may impact the proteomic composition of milk. 

1.1 Bovine milk 

1.1.1 Composition 

Bovine milk is recognized as a nutritionally-significant food source for the 

neonatal calf. Total solids account for approximately 12% of bovine milk with roughly 

4% fat content, 3.2% protein content, 5% lactose, and the remaining content comprising 

of vitamins and minerals (Mills et al., 2011); however, content is variable with a 

reported average of 3.2% protein, 3.6% fat, and 4.7% lactose (Pereira, 2014). In 

addition to the nutritional significance of milk for calf nutrition, it also serves an 

important medium for transferring other components involved in calf growth and 

development. Colostrum, for example, is the only source for transfer of the adaptive 
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immune response in newborn ruminants since their placental structure does not allow 

for the transfer of immunoglobulins from maternal blood flow (Larson et al., 1980). 

Considering the composition of bovine milk, it has also been considered to be a 

plentiful source of nutrition for human nutrition. For example, dairy products constitute 

one of the largest sources of dietary saturated fat in human diets (Shingfield et al., 

2008). Bovine milk is also an important source for protein, which has been augmented 

in terms of proportion in human diets through the use of different nutritional 

supplements and products (Korhonen, 2009; Mills et al., 2011). While the protein 

content is only around 3.2% in bovine milk, it is the composition within the protein 

profile itself that is of significant interest due to the content of bioactive proteins and 

peptides. Hence, further attention has been paid towards the bovine milk proteome. 

1.1.2 Bioactive proteins and peptides in milk 

 Bioactive proteins can be defined as proteins that possess roles beyond nutrition 

(Lonnerdal, 2013). In bovine milk, many different bioactive proteins and peptides have 

been identified. Bioactive peptides in milk are released from their native protein structure 

post-consumption in the gastrointestinal tract (GIT) through hydrolysis via proteolytic 

enzymes (Mills et al., 2011). Examples of bioactive peptides include those derived from 

casein (CAS) proteins, such as αs1-Casokinin-5, which has exhibited angiotensin 

converting enzyme (ACE) activity (Clare and Swaisgood, 2000). Irascidin is another 

casein peptide derived from αs1-CAS that has been shown to exhibit antimicrobial 

properties (Lopez-Exposito and Recio, 2008). Some bioactive proteins present in milk are 

entirely resistant to proteolysis, further suggesting biological significance (Korhonen, 

2009; Mills et al., 2011; Lonnerdal, 2013). Lactoferrin and lactadherin are two examples 
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of proteins that are largely resistant to mediated enzymatic degradation in the GIT, and 

are known to exhibit biological responses post-consumption (Mills et al., 2011; 

Vanderghem et al., 2011; O’Riordan et al., 2014). Furthermore, it has been established 

that post-translational modification of proteins and peptides can further enhance their 

functionality. In bovine milk for example, the glycosylation of bioactive proteins 

lactoferrin and lactadherin, has been suggested to provide some resistance to hydrolysis 

in the GIT (O'Riordan et al., 2014). Bioactive proteins and peptides in bovine milk have 

been reported in the literature to play significant roles in the body. Characterized 

functions include, but are not limited to, growth, cellular signaling, antimicrobial, 

immunomodulatory, and anti-carcinogenic properties (FitzGerald and Meisel, 2003; 

Kilara and Panyam, 2003; Yamamoto et al., 2003; FitzGerald et al., 2004; Gauthier et al., 

2006; Lopez-Fandino et al., 2006; Pihlanto, 2006; Lopez-Exposito and Recio, 2008).  

More comprehensive characterization of the bioactive proteins and peptides within 

bovine milk is ongoing with effort to further understand the functions and classifications 

of specific bioactive proteins and peptides. 

1.1.3 Bovine milk protein profile (proteome) 

1.1.3.1 High-abundance proteins 

 CAS proteins comprise 80% of bovine milk protein content with the remaining 

20% being classified as whey proteins (D'Amato et al., 2009). CAS are phosphoproteins 

that are synthesized within mammary epithelial cells (MECs), and are present in unique 

micelle formations due to their hydrophobic properties (Livney, 2009).  There is a 

number of different CAS isoforms including α CAS (α-s1 CAS, and α-s2 CAS), β, and κ 

CAS, as well as γ-CAS which is released in milk via hydrolysis with the enzyme plasmin 
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from the β-CAS structure (DePeters and Cant, 1992). Within the whey fraction, α-

lactalbumin (α-LA), and the A and B variants of β-lactoglobulin (β-LGA, β-LGB) are 

present in the highest concentrations comprising of 25% and 50% of the total whey 

fraction, respectively (Roncada et al., 2012). Due to their higher concentrations, CAS 

proteins, α-LA, and both variants of β-LG are classified as high-abundance proteins in 

bovine milk.  

1.1.3.2 Low-abundance proteins 

The remaining proteins found within the whey fraction of bovine milk constitute 

the low-abundance protein fraction. Low-abundance proteins include a diverse protein 

fraction with origins ranging from within and outside of the MEC as well as possessing 

an array of functions and properties, some of which are known bioactives even at minor 

concentrations as was compiled in a review by Mills et al. (2011). Examples of low-

abundance proteins include mammary-associated serum amyloid A (SAA3), lactoferrin, 

zinc-alpha-2-glycoprotein (ZAG), and lactoperoxidase, all of which have been 

consistently identified in the bovine milk proteome. It has been demonstrated in the 

literature that MECs will utilize peptides circulating in blood as a source of amino acids 

for protein synthesis, of which requires specific transport mechanisms that could provide 

a route of transfer for low-abundance proteins to enter into milk if not utilized or 

synthesized by the MEC (Bequette et al., 1998). Additionally, it has been established that 

paracellular and transcellular pathways are utilized by the MEC in order to transport 

nutrients, predominately the latter form using secretory vesicles, which could be a 

feasible mode of entry for non-mammary derived proteins to enter into milk (Shennan 

and Peaker, 2000). 
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1.1.3.3 Milk fat globule membrane (MFGM) associated proteins 

 When milk fat is synthesized on or within the outer surface of the smooth 

endoplasmic reticulum within the MEC, it is released into the cytosol as a lipid droplet 

with an outer layer of proteins before further aggregating into larger droplets (Cavaletto 

et al., 2008). The larger lipid droplets are then secreted from the apical surface of the 

MEC into the alveolar lumen (Figure 1.1). While being released from the MEC into the 

alveolar lumen, the phospholipid bilayer membrane of the MEC along with integral 

proteins envelopes the milk fat droplet in an exocytotic manner (Cavaletto et al., 2008). 

The milk fat globule membrane (MFGM) surrounds the triacylgylcerol core and contains 

a diverse number of low-abundance proteins within the MFGM itself (Spitsberg, 2005; 

Cavaletto et al., 2008; Vanderghem et al., 2011). Cytosolic contents can also be 

occasionally captured and incorporated into the MFGM during apical secretion from the 

MEC, this cytosolic inclusion is commonly known as a cytoplasmic crescent (Cavaletto 

et al., 2008). High-abundance proteins have been identified within the MFGM; while 

Reinhardt et al. (2006) suggested that the identification of major milk proteins in the 

cytosolic crescent were contaminants, it could be possible for high-abundance proteins to 

be entrapped within the MFGM as a result from cytoplasmic crescent formation. The 

MFGM proteome is largely populated with butyrophilin, mucins, xanthine 

dehydrogenase/ oxidase, and CD36, all of which are known to exhibit bioactive 

properties (Spitsberg, 2005; Cavaletto et al., 2008; Dewettinck et al., 2008). While only 

constituting 1-4% of the total bovine milk proteome (Cavaletto et al., 2008; Yang et al., 

2015), the bioactivity of several MFGM proteins have been 
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Figure 1.1. Milk fat globule membrane (MFGM) synthesis in a mammary epithelial cell 
(MEC). Milk fat synthesis begins in the mammary epithelial cell (MEC) on the surface of 
the smooth endoplasmic reticulum (SER) where 1) lipid droplets are released into the 
cytosol surrounded by a phospholipid monolayer with polar proteins. The micro droplets 
will 2) adjoin in the cytosol while migrating to the apical surface of the MEC. After 
which, the milk fat globule is 3) surrounded by the MEC’s phospholipid bilayer 
membrane originating from the apical surface. The resulting secretion is the milk fat 
globule membrane (MFGM) which comprises of a lipid droplet surrounded by a tri-layer 
membrane (green layer, SER; black layer, MEC cell membrane) that contains integral 
and surface proteins. Incorporation of cytosolic contents during secretion into the alveolar 
lumen is known as the 4) cytoplasmic crescent (adapted from Cavaletto et al. 2008, and 
Cebo 2012).   
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extensively outlined in the literature (Spitsberg, 2005, O'Riordan et al., 2014). 

Additionally, researchers have demonstrated the diversity and complexity of the MFGM 

proteome by identifying hundreds of different proteins. Reinhardt et al. (2006) identified 

120 proteins in MFGM, whereas Yang et al. (2015) identified 520 proteins in the MFGM 

across multiple mammalian species including dairy cattle.  

 The unique tri-layer membrane structure of the MFGM has been suggested to 

offer partial protection for the proteins and peptides from hydrolysis in the GIT post-

consumption, and could consequently provide an effective route to the small intestine for 

absorption (Dewettinck et al., 2008; Vanderghem et al., 2011). The structure and 

organization of some proteins within the MFGM can partially prevent exposure to 

hydrolytic enzymes within the GIT; including lactadherin, xanthine dehydrogenase and 

oxidase, which were only partially hydrolyzed when MFGM was digested in-vitro 

(Vanderghem et al., 2011; Ye et al., 2011). 

1.1.4 Milk proteomic approaches 

 Due to its’ complexity, several different analytical techniques have been 

developed to characterize the bovine milk proteome. Proteomics has been emerged as an 

entire research discipline in protein biology, and has been effectively used as a technique 

to examine the bovine milk proteome (Roncada et al., 2012). Additionally, the use of 

techniques such as bottom-up proteomics, where proteins are broken down into peptides 

before identification, has allowed researchers to expand the number of proteins identified 

in experiments (Twyman, 2014). To date, researchers have been successful in identifying 

thousands of proteins in bovine milk using proteomic approaches; however, the 
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methodology has been variable across studies. Important factors to consider when using 

proteomics are sample preparation to isolate the proteins within a sample, as well as 

further separation of the proteins and subsequent identification (Twyman, 2014).  

Steps to fractionate bovine milk are needed to enhance the identification of low-

abundance proteins (Roncada et al., 2012). Most analytical methods now begin with a 

light centrifugation step that separates milk into three distinct layers: the cream layer, the 

fluid phase, and a pellet; where the fat layer comprises of low-abundance proteins within 

the MFGM, high abundant and low abundant proteins are contained in the fluid phase, 

and the pellet mainly comprises of cells (Nissen et al., 2013). Following the sample 

preparation, the fractionation of the selected layer into more specific fractions prior to 

physical separation and identification of proteins occurs. Isolation of the low-abundance 

proteins in the fluid phase can be accomplished either through acid precipitation, ultra-

centrifugation, microfiltration, or a combination thereof (Nissen et al., 2013). Nissen et 

al. (2013) characterized the proteins present in two of these distinct layers (the fluid 

phase, the cell pellet) in addition to using a non-fractionated sample as a control. Further 

characterization of the whey fraction was also conducted to compare three different 

fractionation techniques: acidification, microfiltration, and centrifugation. Using 2D-LC-

MS/MS analysis, 376 distinct proteins were identified in total, and ultracentrifugation at 

100,000xg was the most effective method to expand the identification of low-abundance 

proteins in the fluid phase (Nissen et al., 2013).  

 To further fractionate samples, several different approaches have been used to 

separate proteins in complex biological samples, including two-dimensional gel 

electrophoresis (2DE) SDS-PAGE and ion-exchange both cationic and anionic in nature. 
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2DE methodology was first applied to fractionate bovine milk in 1982 (Roncada et al., 

2012), and has been used by many investigators, including Reinhardt and Lippolis (2006) 

who identified 120 proteins in the MFGM (Reinhardt and Lippolis, 2006). Some 

disadvantages to 2DE include issues with resolution, sensitivity, and accurate 

representation (Twyman, 2014). Reinhardt and Lippolis (2006) described previous 

research where 2DE resulted in limited number of unique MFGM proteins identified (6-

45 different MFGM proteins) which was likely related to the loss of membrane proteins 

due to either difficulties with getting proteins into solution prior to isoelectric focusing, or 

precipitation of membrane proteins at the isoelectric focus point; however, they addressed 

those problems by using SDS-PAGE to improve solubility issues with membrane 

proteins. Furthermore, they utilized high performance liquid chromatography (HPLC) 

and tandem mass spectrometry (MS/MS) to improve resolution that is normally lost 

during 2DE workflows (Reinhardt and Lippolis, 2006).   More recently, Li et al. (2015) 

identified 13 unique protein spots using 2DE that varied in abundance from different 

dietary treatment groups, and further validated their results with western blotting. 

Another proteomics separation approach includes multi-dimensional liquid 

chromatography (Le et al. 2011), which is often coupled to mass spectrometry 

instruments (Twyman, 2014). There are several different types of chromatography that 

utilize different biochemical properties to allow for separation of proteins including 

affinity chromatography based on ligand-binding properties, size exclusion 

chromatography, ion exchange chromatography in varying different degrees, and 

reversed phase chromatography (Twyman, 2014). For example, Le et al. (2011) analyzed 

the bovine milk and colostral proteome while utilizing an ion-exchange approach 
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resulting in the identification of 293 proteins, 36 and 40 of which were uniquely 

identified in colostrum and milk samples, respectively.  

 More recently, an enrichment technique that utilizes affinity based ligand 

binding has been used to fractionate the higher-abundance proteins from the low-

abundance proteins through the use of combinatorial peptide ligands. The ProteoMiner 

kit (Biorad; Hercules, CA) utilizes a library of combinatorial peptide ligands in bead form 

to concentrate low-abundance proteins in samples. Higher abundance proteins will bind 

with high affinity to specific ligands in the beads, and are eluted through a series of 

washes; hence, leaving behind a concentrated sample of low-abundance proteins 

(Righetti and Boschetti, 2008; Fonslow et al., 2011).  D’Amato et al. (2009) identified 

149 low-abundance proteins using ProteoMiner as a step in their proteomic approach. 

Tacoma et al. (2016) also incorporated ProteoMiner treatment prior to SDS-PAGE 

separation, and identified 935 low-abundance proteins in the skim milk fraction.  

Protein identification in recent years has significantly improved through the use of 

mass:charge ratio (m/z) determination by mass spectrometry, which allows for accurate 

calculation and determination of molecular masses (Twyman, 2014). It is common to 

analyze samples using a label-free approach; however, the use of isobaric labeling has 

become increasingly used. Yang et al. (2015) identified 520 proteins in the MFGM of 

samples obtained from several mammalian species, which were labeled with isobaric tags 

for relative and absolute quantification (iTRAQ; Applied Biosystems, Foster City, CA) 

and were separated using strong cationic-exchange chromatography before further 

separation and identification using LC-MS/MS. Much like iTRAQ, Tandem Mass Tags 

(TMT; Thermo Scientific, Rockford, IL) have also been used in other proteomic-based 
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experiments with success. Recently, Tacoma et al. (2017b) utilized TMT labeling to 

identify 162 proteins in skimmed colostrum samples that were subjected to different heat 

treatment times. Isobaric tagging has provided researchers a better method by which to 

distinguish differences between multi-plexed samples by evaluating the relative-

abundance of labeled proteins when compared to a specific label. This is a particularly 

useful tool in treatment comparisons, for example when comparing the relative 

abundance of proteins in milk samples collected from cows consuming different diets. 

1.2 Dietary factors influencing milk composition 

Nutrition is one factor that can influence milk composition. The mechanisms of 

nutritional impact on the composition of bovine milk are important to understand in 

order to create predicted and consistent responses. Producers are often times 

compensated based on specific milk components, including protein (Jones and 

Heinrichs, 2017). Therefore, having a better understanding of how feeding can affect 

milk composition can provide financial gains for producers, as well as provide 

producers with an avenue to naturally alter their milk composition. There are numerous 

studies and reviews on the effects of diet and specific milk components (Sutton 1989; 

DePeters and Cant, 1992).  A review by Sutton (1989) summarized the effects of diet 

on milk composition, and identified milk fat as having the greatest potential for dietary 

alteration citing forage:concentrate as one of the possible mechanisms. For example, it 

had been demonstrated elsewhere that reductions of the forage:concentrate ratio 

resulted in decreased milk fat concentration with pronounced reductions when forage 

proportions fell below 50% on a dry matter (DM) basis (Journet and Chilliard, 1985; 

Thomas and Martin, 1988). The review further noted that milk protein was marginally 
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impacted by dietary protein, noting that severe deficits in dietary protein generally 

resulted in lower (0.1 - 0.2% decreases) milk protein content (Gordon, 1977). Similarly, 

Jenkins and McGuire (2006) outlined research that aligned with Sutton’s hypotheses: 

milk fat has the greatest potential for change as a result from alterations in diet, 

followed by milk protein; however, lactose is very unlikely to change. Another 

extensive review by DePeters and Cant (1992) also highlighted the important role of 

dietary energy in milk protein concentration, identifying a positive correlation between 

energy intake and milk protein percent (r = 0.42) with 0.015% increases in milk protein 

percent for every megacalorie increase in net energy (Emery, 1978). These increases in 

milk protein percent were also in conjunction with increases in milk yield as well 

(Emery, 1978). It appears that total milk protein content and yield can be difficult to 

influence through diet; however, research has demonstrated changes in the composition 

of the milk protein fraction as a result from diet. 

1.3 Dietary factors influencing the bovine milk proteome 

 In 1999, Christian et al. reported changes in the CAS and whey protein profiles 

when animals consumed diets that contained varying forms of available energy and 

protein (Christian et al., 1999). Friesian as well as Friesian-Jersey cross-bred cattle were 

used in three different 34-day experiments, where they were fed varying degrees of 

energy and protein. In the first experiment, cows were either fed a control diet of silage 

and pasture hay, and treatment cows were fed energy as oats, wheat, or barley and protein 

in the form of protected sunflower meal in the first experiment. During the second 

experiment, cows were fed different protein supplements including canola meal, 

cottonseed, and lupin with wheat as the energy source. Varying degrees of lupin and 
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wheat were fed to cows during the third experiment (Christian et al., 1999).  In this series 

of experiments, these researchers observed changes in the CAS of milk with increases in 

total CAS concentration (g/kg) from cows consuming wheat in the first experiment, and 

lupin in the second experiment when compared to the control, as well as increases in the 

whey concentration (g/kg) when cows consumed diets that contained wheat in the first 

experiment, and lupin in the second experiment compared to the control diet (Christian et 

al., 1999). Additional differential changes occurred in the CA composition as a result 

from diet, including shifts in α-s1 CAS and α-s2 CAS. The changes observed in milk 

protein composition from these experiments suggest that they occurred as a result from 

dietary alteration of protein availability and energy supplementation.  

 More recently, Li et al. (2015) observed changes in protein composition through 

offering dairy cattle varying combinations of energy and protein fractions in the diet. 

Holstein cows were included in 21 day periods as part of a 4x4 latin square design, and 

were fed diets that were 1) synchronized for rapid fermentation using steam-flaked corn 

(SFC) and solvent-extracted soybean meal (SSBM) (diet B), 2) fine ground corn (FGC) 

and heat-treated soybean meal (HSBM) were synchronized for slow fermentation (diet 

C), 3) unsynchronized for rapid fermentation using SFC and HSBM (diet D), or 4) slow 

fermentation using FGC and SSBM (diet A; Li et al., 2015). The authors reported 

increases in proteins including zinc-alpha-2-glycoprotein (ZAG) and α-LA when diets 

were synchronized for rapid energy and N (diets B and D), suggesting a dietary role in 

the composition of the bovine milk proteome (Li et al., 2015).   

 Tacoma et al. (2017a) further examined the effects of varying proportions of 

dietary RDP and RUP on the bovine milk proteome. Six Holstein cows were used in a 
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double-crossover design with 3 periods lasting 21 days each, and were fed diets that were 

formulated with either a higher dietary inclusion of RDP through the use of urea, soybean 

meal, and canola meal or RUP through the use of bypass amino acid supplements. Total 

casein content was higher from cows fed a higher RDP diet, suggesting that altering RDP 

and RUP can affect downstream nutrient availability for MEC utilization and synthesis of 

mammary milk proteins (Tacoma et al., 2017a). Despite the alterations in the diet and 

changes in the high-abundance proteins, it appeared that diet had no effect on the low-

abundance protein fraction in this study. When considering that the animals in both 

treatment groups were fed isonitrogenous and isoenergetic diets, it appears that protein 

type alone may not be sufficient to alter the bovine milk proteome (Tacoma et al., 2017a). 

The data from Tacoma et al. (2017a) aligns with the suggestion by Sutton (1989) where it 

was suggested that no direct connection between dietary RDP and RUP fractions on milk 

protein (Sutton, 1989), which is contrary to the work by Christian et al. (1999) and Li et 

al. (2015) when examining solely the dietary protein alterations. 

 However, based on the conclusions from Christian et al. (1999) and Li et al. 

(2015), it appears that the potential for altering the proteomic content of milk through 

dietary means cannot be changed through dietary protein type alone, but could potentially 

occur by also altering the amounts of energy as well. Although it is not well understood, 

Li et al. (2015) cited N-synchronization, or the establishment of a synchrony pattern 

between energy and nitrogen in the diet (Cabrita et al., 2006), as a possible dietary 

mechanism for altering bovine milk protein composition. It is plausible, and hence 

important to consider, that the relationship between dietary protein and available energy 
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could be responsible for altering the proteomic composition of bovine milk, not simply 

the individual components. 

1.4 Nitrogen metabolism in ruminants 

1.4.1 Overview 

 Aside from the unique process of microbe-mediated carbohydrate fermentation, 

the rumen microbes also impact protein digestion absorptive profiles and subsequent 

metabolism. The RDP portion of dietary crude protein is susceptible to degradation by 

microbial proteolytic enzymes, resulting in polypeptides and free amino acids. The free 

amino acids also face two fates in the rumen: incorporation into microbial protein, or 

deamination resulting in ammonia and carbon-backbones in the form of carboxylic acids 

(Van Soest, 1994). The released ammonia can be absorbed from the rumen and into the 

bloodstream where it is either recycled or excreted, or the microbes can utilize this 

ammonia along with the carboxylic acids and ATP as substrates for microbial protein 

synthesis. While RDP undergoes drastic changes in amino acid profile due to microbial 

degradation and yields microbial protein, RUP remains intact and untouched as it passes 

through the rumen. Both microbial protein and digestible RUP are then digested in the 

abomasum and upper small intestine before amino acids, peptides, and proteins in some 

instances are absorbed across the lower small intestine. 

1.4.2 Microbial protein 

 The resulting flow of amino acids from digestion, also known as duodenal 

amino acid flow, derives its’ amino acid composition from RUP, endogenous protein, and 

microbial protein (Sok et al., 2017). Microbial protein accounts for a significant 
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contribution of amino acid supply for ruminant animals (Firkins, 1996), where some 

authors have claimed microbial protein accounting for at least 65% of the amino acid 

supply being absorbed in the small intestine (Clark et al., 1992). In an attempt to 

understand the composition of microbial protein, researchers are beginning to consider 

the importance of different fractions contributing to microbial protein in the rumen 

including protozoa, which may be contributing 10-30% of the total amino acid supply in 

the duodenal flow (Sok et al., 2017). Considering the importance of microbial protein’s 

contribution to the total amino acid duodenal flow available for absorption, focus has 

been turned towards utilizing diet to influencing the output of microbial protein for 

consequent improvements in production. Including feeding practices that allow for 

maximum microbial protein synthesis as a result from substrate availability in the rumen 

with dietary N and energy. 

1.4.3 Nitrogen synchronization theory 

 The establishment of a synchronization pattern between energy and nitrogen (N) 

availability in the diet is defined as the N Synchronization Theory (Cabrita et al., 2006), 

and it can be achieved by changing dietary ingredients, altering feeding patterns and 

frequencies, or a combination of these options. It has been described that establishing a 

synchronized diet can potentially increase microbial protein output by increasing 

microbial capture of N. Furthermore, if such theory holds true, N synchronization may 

increase fermentation efficiency and ultimately improve feed utilization (Cabrita et al., 

2006). Although there is evidence to support this theory, there are also a number of 

extraneous variables and contradictory results surrounding this theory. Dewhurst et al. 

(2000) cited an experiment conducted by Rooke et al. (1987) that supported N 
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synchronization theory with increases in microbial protein synthesis through the 

supplementation of glucose and casein; however, they summarized a number of other 

studies that yielded mixed results, including one from Kim et al. (1999) where there were 

no changes in microbial N as a result from synchrony. Furthermore, another review by 

Cabrita et al. (2006) cited a number of studies that evaluated the alteration of forage and 

concentrate proportions in the diet on rumen N synchronization, and it was concluded 

that factors including forage intake and subsequent fermentation rate, the chemical 

composition of the concentrate that was used, and the interaction between the forage and 

concentrate added confounding variables, thereby making it difficult to assess whether 

the effects observed were truly a result of synchrony (Hagemeister et al., 1981; Rode et 

al., 1985; Sniffen and Robinson, 1987; McAllan et al., 1988; Yang et al., 2001). While 

the research on N synchronization is limited and inconclusive, there is some speculation 

that ruminants may have developed a mechanism to avert the inefficiencies in N capture 

as a result from asynchronization; however, further research is needed (Cabrita et al., 

2006). 

1.5 Altered protein digestion by dietary inclusion of condensed tannins 

 Collectively, tannins are polyphenolic compounds in plants; however, they are 

well studied for their ability of precipitating proteins in solution (Cabrita et al., 2006). 

Tannins have two distinct forms: hydrolysable and condensed tannin(s) (CT) (Acamovic 

and Brooker, 2005; Waghorn, 2008; Nudda et al., 2015). While hydrolysable tannins 

induce toxicity after degradation in the GIT, CT in moderate concentrations can alter N 

absorption patterns in ruminant animals without adverse effects (Acamovic and Brooker, 

2005). CT have been found in pasture grasses and legumes, as well as by-products such 
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as grape marc (Waghorn et al., 1987; Makkar, 2003). When consumed, unbound CT can 

form a stable CT-protein complex through binding in a neutral pH environment (ranging 

from 3.5-7.0) in the GIT ultimately making them unavailable for further degradation and 

absorption until the pH deviates from a neutral range (< 3.5, > 8.5), in which case 

dissociation has been shown to occur (Waghorn, 2008; Woodward et al., 2009; 

Greenwood et al., 2012; Nudda et al., 2015). This CT-protein binding has been observed 

in ruminant species, and it is hypothesized that some CT may bind to proteins in the 

reticulorumen making proteins unavailable for microbial degradation due to the lack of 

enzymes necessary to inhibit or degrade the binding process and associated complex 

respectively (Waghorn et al., 1987; Nudda et al., 2015). It has been further proposed that 

pH changes further along the GIT can cause the dissociation of CT-protein complexes, 

and previous research has further supported this theory (Waghorn et al., 1987; Makkar, 

2003; Nudda et al., 2015). By binding to proteins in the rumen, CT-inclusive diets alter N 

metabolism by decreasing RDP available to the rumen microbes, and effectively 

increasing the degradable RUP fraction available for proteolysis by the animal in the 

abomasum and small intestine (Waghorn et al., 1987; Makkar, 2003). 

1.6 Impact of Grape marc on nitrogen metabolism 

Grape marc (GM) is defined as the byproduct of viticulture consisting of seeds, 

skins, and occasionally stems resulting from grape pressing (Moate et al., 2014). In 

viticulture, 1 ton of grapes are required to produce 150 gallons of wine pressing 

(Gerling, 2011). Generally, 10-20% of the harvested grape weight remains after 

pressing (Ben-Gera and Kramer, 1969). To further place this into perspective, the US 

state of Vermont harvested an average of 376 tons (752,000 lbs) or roughly 341,818 kg 
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of grapes in the 2015 and 2016 seasons (Keough, 2017), leaving behind an estimated 

range of 34,182 – 68,364 kg of GM. On a national level in 2015, the United States 

produced around 425,533 - 851,066 tons of GM from 4,255,330 tons of grapes for wine 

production (USDA, 2017). The remaining GM faces two fates: repurpose, or disposal. 

When discarded or composted due to lack of use, GM can be detrimental to the 

environment (Tsiplakou and Zervas, 2008). Hence alternative uses have been 

implemented, such as the incorporation into livestock feeding practices in the dairy 

industry. Research has revealed that GM is an effective supplement for dairy producers 

due to its’ availability, low-cost, and lack of known negative detriments to total milk 

production (Nudda et al., 2015). GM generally has a low dry matter (DM) content, but 

contains notable amounts of fiber, lignin, and varying degrees of ether extract (seeds) 

as well as water soluble carbohydrates (WSC) especially in instances when grape 

pressing is not thorough, resulting with remaining intact grapes (Nudda et al., 2015; 

Manso et al., 2016). In addition to being a source of fiber, and WSC in some cases, 

other compounds in GM have been identified with potentially beneficial nutritive 

effects. 

GM is also rich in various different polyphenols, including CT, that have an 

array of bioactivity including antiatherosclerotic, antibacterial, anticarcinogenic, and 

anti-inflammatory properties (Moate et al., 2014; Santos et al., 2014). Furthermore, GM 

is rich in various forms of vitamin E and linoleic acid, which have known antioxidant 

characteristics (Nudda et al., 2015). Other potentially beneficial compounds are present 

in GM at smaller concentrations, including anthocyanins, which have been attributed to 

having anti-inflammatory, anti-carcinogenic, and even anti-mutagenic activities among 
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others (Yi et al., 2009). The varying abundances of these different bioactive 

components in feedstuffs such as GM can provide other beneficial implications beyond 

improving the health and production of animals, including potential environmental 

benefits. Moate et al. (2014), for example, reported 20% and 23% lower methane (CH4) 

production in cows that were fed dried GM and ensiled GM, respectively. While CT 

have been proposed to cause the changes in N-metabolism, Moate et al. (2014) were 

unable to definitively conclude which component caused the decreases in CH4; 

however, they hypothesized that either the fat content, lignin, DL-tartaric acid, or the 

CTs could be responsible for their observations (Moate et al., 2014).  Furthermore, 

Greenwood et al. (2012) reported a lower output of urinary N due to altered N 

partitioning in cows that consumed GM on pasture (Greenwood et al., 2012). The 

observations made in that experiment were likely a result from the CTs in the GM, 

which provides another example for the potential of CT-containing feeds to alter animal 

metabolism including N partitioning in ruminants. 

1.7 Inclusion of alternative forage crops to alter nitrogen partitioning in grazing 

livestock 

 While by-products like GM are effective in altering N metabolism, there are 

other feedstuffs that can reach levels of efficacy, including different forage species. 

Alternative forage crops (AFC) are warm-season grasses and legumes that are 

incorporated into pastures, some of which contain secondary plant compounds that can 

alter N metabolism in ruminants (Ramirez-Restrepo and Barry, 2005). The practice of 

including AFC species into pasture has been increasingly utilized by pastoral dairy 

systems, especially organic dairy farms in the northeastern United States, where 
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producers are challenged with a decreased period of growth in cool-season grass species 

during the late spring and early summer (known as the summer slump). Considering the 

grazing requirements established by the USDA for organic producers where 30% of an 

animal’s total dry matter intake (DMI) needs to originate from pasture during the 120 day 

grazing season (USDA 2010), maintaining pasture mass for optimal DMI can prove to be 

challenging during the summer months. Along with increased pasture biomass available 

for consumption, the incorporation of AFC species in a traditional grass-legume pasture 

has a number of potential benefits for pastoral dairy farmers including an increased 

drought resistance due to their genetic adaptations in warmer climates (Tilman and 

Downing, 1994). 

 Since warm season AFC species are able to adapt and thrive in warmer climates, 

the opportunity for improved chemical composition during the summer months can allow 

for the opportunity to improve animal production. Totty et al. (2013) utilized alternative 

pasture species as means for improving N utilization in grazing animals through the use 

of high-sugar ryegrass, chicory, plantain, and birdsfoot trefoil. Three different treatment 

groups were allocated in this experiment: a perennial ryegrass and white clover group 

(RG), a high-sugar perennial rygegrass and white clover group (HS), and a diverse 

pasture group using alternative pasture species as described (HSD). Cows grazing HSD 

pasture produced more milk at 16.9 L/d (compared to 15.2 L/d RG and 14.7 L/d HS), had 

a higher milk protein content at 655g/d (628 g/d RG and 616 g/d HS), and had a reduced 

urine N percent at 0.34% (0.57% RD and 0.58% HS) (Totty et al., 2013). The work 

presented by Totty et al. (2013) outlines the potential for improving milk production 

through the use of AFC. In addition to providing improved nutrient supply during the 
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summer months, some AFC-species are known to contain other phytochemicals that can 

influence production, including CT (Ramirez-Restrepo and Barry, 2005), perhaps 

allowing for the opportunity to naturally influence milk composition through feeding. For 

example, Kalber et al. (2013) reported improved milk quality when cows consumed 

buckwheat silage, a CT-containing AFC species, including a higher content of poly 

unsaturated fatty acids (PUFA) and improved cheese making properties (Kalber et al., 

2013). These experiments provide further evidence for the opportunity to influence milk 

production in animals through the inclusion of CT-containing feeds in the diet. To date, 

the proteomic evaluation of milk protein composition as a result from incorporating AFC 

species in pasture has yet to be investigated.  

1.8 Conclusions 

 Total milk protein content is difficult to change using diet; however, it is 

apparent that the milk proteomic composition itself has the potential to change as a 

function of diet. Moreover, there are more studies suggesting that milk proteomic 

composition can be altered by changing dietary availability of N and energy; however, 

there has yet to be any research examining the effects of the bovine milk proteome in 

response to supplementing feeds that contain CT, which present the opportunity to alter N 

partitioning in ruminants. 

1.8.1 Hypothesis 

 Dietary intervention through the inclusion of either GM (Chapter 2) or AFC 

(Chapter 3) will alter the bovine milk proteome fractions. It can be further hypothesized 

that these changes will occur due to changes in N partitioning (Chapter 2). 
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1.8.2 Objectives 

 Our objectives include measuring the high and low-abundance protein profiles 

in milk samples (Chapters 2 and 3), as well as measuring changes in metabolic and N-

status from lactating dairy cows (Chapter 2). 
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CHAPTER 2: DIETARY GRAPE MARC ALTERS THE BOVINE MILK 

PROTEOME 

2.1 Abstract 

Grape marc (GM) is a viticulture by-product comprising of the remaining skins, 

stems, and seeds after pressing that has been used as a supplement in livestock feeding 

practices due to its’ low-cost. The objective of this experiment was to determine whether 

feeding GM, a condensed tannin (CT)-containing feed, to lactating dairy cows would 

alter the milk proteome through changes in nitrogen (N) partitioning. Ten lactating 

Holstein cows blocked by days in milk (141 ± 37 d) in a complete randomized block 

design, and fed a total mixed ration (TMR) diet top-dressed with either 1.5 kg dry matter 

(DM)/cow/day GM (GM group; n=5) or 2.0 kg DM/cow/day of a 50: 50 beet pulp: soy 

hulls mix (control group; n=5). Dry matter intake (DMI) was recorded daily, milk yield 

was recorded thrice weekly at AM and PM milkings along with sample collections for 

general components analysis through the Dairy Herd Improvement Association (DHIA; 

Lancaster, PA). Blood samples were collected once weekly after AM and PM milkings 

for analysis of metabolite concentrations including glucose, urea nitrogen, and non-

esterified fatty acids (NEFA). 24-h urine and fecal collections were obtained on d 28 for 

additional analysis of N parameters. Milk samples collected for HPLC analysis of high-

abundance proteins were collected on the covariate (D0) as well as the sample collection 

period (d 21-28). Additional samples from the collection period were used for subsequent 

liquid chromatography tandem mass spectrometry (LC-MS/MS) analysis of the low-

abundance enriched protein fraction. Milk samples were pooled within cow according to 
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yield and skimmed; one skimmed sample was subjected to HPLC analysis whereas the 

other was used for LC-MS/MS analysis followed by fractionation and enrichment for the 

low-abundance protein fraction using ProteoMiner prior to trypsin digestion and isobaric 

tandem mass tag labeling. SEQUEST and Mascot databases were used to search the 

resulting product ion spectra on Proteome Discoverer 1.4. Results were analyzed using 

PROC MIXED in SAS 9.3. Despite the lack of changes observed in DMI, metabolic, and 

N status, 16 of the 127 proteins were different across treatments. Roughly 12% of the 

bovine milk proteome changed in this study, suggesting that feeding GM to lactating 

dairy cattle can alter the milk protein profile, though the mechanisms are still unclear. 

Additionally, our study aligns with other literature emphasizing the use of GM as an 

effective supplement without having any detriments on milk production. 

2.2 Introduction 

In bovine milk, there are a number of bioactive proteins and peptides that can 

elicit responses when consumed, including growth, cellular signaling, 

immunomodulation, antimicrobial, and even anti-cancer functions (Korhonen, 2009; 

Mills et al., 2011). Bioactive peptides are released from their native protein after being 

hydrolyzed by proteolytic enzymes in the digestive tract during digestion of the dietary 

milk, while bioactive proteins remain functionally intact as they have been shown to be 

resistant to proteolysis (Korhonen, 2009; Mills et al., 2011). There has been growing 

interest for enhancing proteins and peptides present in milk for human consumption due 

to their bioactivity; hence, much attention has been turned towards understanding the 

factors influencing this proteome. 
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Stage of lactation, genetics, and nutrition are known to influence the 

composition of the bovine milk proteome (Christian et al., 1992; Le et al., 2011; Yang et 

al., 2015; Tacoma et al., 2016). Nutritional factors are of particular interest since animal 

nutrition is a variable and important component in farm management. Ruminants possess 

a unique digestive tract that allows for pre-gastric fermentation and degradation of 

feedstuffs that are chemically available for the microbial population within the rumen, 

while any digestible feed components that are resistant to microbial breakdown in the 

rumen are not digested until the gastric compartment of the stomach, known as the 

abomasum. Hence, the proportions of nutrients that are available or unavailable for 

rumen-microbial utilization within the diet can substantially alter the absorbed nutrient 

profile and post-absorptive metabolism. One such example of a differentially utilized 

dietary nutrient is protein, in which the rumen degradable protein (RDP) fraction is 

available for microbial degradation unlike the rumen undegradable protein (RUP) 

fraction, which remains intact until gastric digestion in the abomasum. 

Recently, Li et al. (2015) observed that offering dairy cattle varying degrees of 

ruminally-available diets by way of energy and RDP resulted in an increase in specific 

milk proteins, including zinc-alpha-2-glycoprotein (ZAG) and alpha-lactalbumin (α-LA), 

implying that diet impacts the bovine milk proteome. Earlier, Christian et al. (1999) 

observed changes in milk casein fractions when cows were fed diets with varying degrees 

of lupin and wheat, effectively altering the proportions of RDP and RUP; and a similar 

trend was observed by Li et al. (2015). The work done by Christian et al. (1999) and Li et 

al. (2015) highlights the potential for altering the proteomic composition of bovine milk 
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as a result of dietary RDP and RUP, likely by altering post-absorptive nitrogen (N) 

metabolism. 

Grape marc (GM), or pomace, is a byproduct of the viticulture industry 

consisting of the remaining skins, stems, and seeds of the grapes after pressing for wine. 

The United States harvested 4,561,040 tons of grapes for wine-making in 2014 (USDA, 

2015); of this, 10-20% of the original grape weight is typically leftover after processing 

(Ben-Gera and Kramer, 1969). With a calculated 827,536,853 kg of GM to dispose of 

annually, the wine-making industry has sought out ways to utilize the byproduct; 

however, much of the grape pomace is composted and it is considered a pollutant 

(Tsiplakou and Zervas, 2008; Santos et al., 2014). As a result, GM has been incorporated 

livestock feeding practices, including the dairy industry, due to its low-cost and regional 

availability (Nudda et al., 2015; Manso et al., 2016). Supplementing GM in dairy diets 

also appears to have no impact on milk production. Nudda et al. (2015) reported no 

change in milk production when feeding 300 g GM, and Santos et al. (2014) also reported 

no differences in milk composition when diets included ensiled GM at amounts of 50, 75, 

and 100 g/kg DM (Santos et al., 2014; Nudda et al., 2015). 

GM contains polyphenolic compounds, including condensed tannin(s) (CT) that 

provide an array of bioactivity (Waghorn, 2008; Nudda et al., 2015). CT are secondary 

plant metabolites that bind to proteins in the digestive tract, making them unavailable for 

further degradation and absorption (Waghorn et al., 1987; Nudda et al., 2015). This CT-

protein binding capability is known to occur in the rumen, and the binding has been 

reported as irreversible by microbial activity since the enzymes necessary to degrade CT 
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are not produced by the rumen microbes (Makkar, 2003). It has been hypothesized, 

however, that some CT may release the bound protein as a result of pH changes further 

downstream in the gastrointestinal tract, such as in the abomasum (Waghorn et al., 1987; 

Nudda et al., 2015). Various polymers of CT will bind to proteins at a pH range of 3.5-

7.0 to form a stable complex, and have been shown to dissociate when the pH deviates 

from the ideal range (< 3.5 or > 8.5) (Waghorn et al., 1987). By binding to proteins in the 

rumen, CT-inclusive diets alter the N metabolism in ruminants by decreasing the RDP 

fraction, and thereby increasing the RUP fraction available for proteolysis by the animal 

in the abomasum and small intestine (Waghorn, 2008). Shifting sites of N uptake, as well 

as the amount and profile of protein available in the small intestine for absorption also 

impacts animal-derived products, such as milk, as has been observed when feeding other 

CT-rich feeds, including birdsfoot trefoil (Woodward et al., 2009), red clover (Lee et al., 

2009), and chicory (Totty et al., 2013) for example (Acamovic and Brooker, 2005). 

Moreover, we propose that feeding a CT-containing feedstuff, like GM, may alter outputs 

of specific proteins into milk such as described by Li et al. (2015) by decreasing the 

proportion of RDP as a result of CT-binding. 

The hypothesis of the research described herein was that dietary 

supplementation of GM to lactating dairy cows would alter the bovine milk proteome, 

including ZAG and α-LA, via changes in N partitioning. The objectives of this study 

were to i) determine the high- and low-abundance protein enriched profiles in milk using 

proteomic approaches and summarize ontological functions of the identified proteome, 

and ii) assess concurrent changes in N partitioning by measuring indicators of N status in 

milk, plasma, urine, and feces.  
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2.3 Materials and Methods 

2.3.1 Animals, Diet, and Experimental design 

This trial and all of the procedures were done in accordance with the 

Institutional Animal Care and Use Act (IACUC) at The University of Vermont 

(Burlington, VT; IACUC approval number 16-064). Ten mid-lactation Holstein cows 

were blocked based upon parity (1.2 ± 0.4), DIM (147 ± 37 d), and daily milk yield (41.3 

± 5.4 kg) and included in a randomized complete block design for a 28 d trial. The 

experiment consisted of a 21 d adaptation period followed by a 7 d sample collection 

period. All cows were housed in tie-stalls at the Paul R. Miller Research and Education 

Center (The University of Vermont, Burlington, VT). All cows were milked at 4:00 h and 

16:00 h daily.  

Cows had free access to water and were fed a total mixed ration (TMR) diet. 

Each cow was given their entire weighed daily base ration, which included grass silage, 

corn silage, and a mash, once daily at 5:00 h. A weighed amount of concentrate pellet 

was mixed into the base ration four times daily (3:30 h, 10:00 h, 15:30 h, and 22:00 h). 

Total daily feedstuff allowances per cow are listed in Table 1. Treatments were dietary 

supplements, where cows received once a day either 1) a beet pulp:soy hulls (50:50, BP) 

mixture at 2.0 kg DM/cow/day, or 2) GM at 1.5 kg DM/cow/day (Table 1) at 5:00 h for 

the duration of the 28 d trial. GM was sourced from a local vineyard (Shelburne 

Vineyard, Shelburne, VT), and stored on-farm under a covered landing in 1 tonne harvest 

bags.  
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Diet refusals from each cow were collected daily before feeding (5:00 h) and 

weighed, then a subsample was stored at -20°C for further analysis. Samples were later 

dried at 65°C for 48-72 h for determination of individual DMI. Feed samples were also 

collected weekly across the 28 d period and composited within feedstuff for wet-

chemistry analysis (Dairy One Lab, Ithaca, NY; Table 2.1). 

2.3.2 Condensed Tannin content of GM 

GM samples, collected once weekly, were stored at -20°C until later analysis of 

CT content as per methods previously described (Sarneckis et al., 2006; Mercurio et al., 

2007) with minor modifications. Briefly, a composite of the weekly samples was created 

and then blended using a Bella Rocket Blender (Sensio, Montreal, QC, Canada), and  

homogenized using a Qiagen TissueLyserII at 30 Hz for 3 min (Qiagen, Hilden, 

Germany). Ten mL of 50% ethanol solution were then added to 1 g of the homogenate, 

vortexed, and placed on a shaker for 1 h. Centrifugation immediately followed at 4,695xg 

for 10 min at room temperature. The supernatant was removed and analyzed using a 

Methyl Cellulose Precipitable Tannin Assay (MCP) as previously outlined (Sarneckis et 

al., 2006; Mercurio et al., 2007). 

2.3.3 Plasma 

Blood samples were collected from the coccygeal vessel in heparinized and 

ethylenediaminetetraacetic acid-coated (EDTA) vacutainers (BD, Franklin Lakes, NJ) 

after AM and PM milking during the covariate period (D0), and d 21 and 28 of the 

sample collection period. Samples were immediately placed on ice and centrifuged at 

3000xg for 15 min at 4°C. Plasma was harvested and stored at -20°C until further 
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analysis. Samples were analyzed using commercially available kits for plasma urea 

nitrogen (PUN; Teco Diagnostics, Anaheim, CA), glucose (Sigma Aldrich, St. Louis, 

MO), and non-esterified fatty acid (NEFA; Zenbio, Research Triangle Park, NC) 

concentrations. 

2.3.4 Urine and Feces 

Total urine and fecal collections from each cow were completed on d 28. Urine 

was collected using modified urine cup collectors as previously described (Lascano et al., 

2010). Briefly, cows were fitted with urine collection devices attached to 40 L carboys 

containing 100% sulfuric acid (H2SO4,;Fisher Scientific, Pittsburgh, PA) to acidify the  

urine to a pH < 4 as it was collected from each animal. The H2SO4 was incrementally 

added to the carboys during the sampling period, totaling 350 mL. At the end of the 24 h, 

the urine collected from each animal was mixed thoroughly, the total weight was 

recorded, and a subsample was collected. Feces was collected via free-catch onto tarps 

behind the cows, and transferred to holding bins for each animal during the 24 h 

collection period. The fecal matter was mixed thoroughly, the total weight was recorded, 

and a subsample for each cow was collected. All urine and fecal subsamples were stored 

at -20°C until being submitted for wet-chemistry analysis (Dairy One, Ithaca, NY). 

Endpoint measures included urine urea, urine ammonia, urine CP, fecal N, and fecal 

ammonia N. 

2.3.5 Milk Sampling 

Milk yield was recorded at each milking, and samples were collected from each 

cow using continuous in-line samplers at AM and PM milkings. Three milk samples were 
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collected from each cow during D0 and during the endpoint sample collection period (d 

21-28) for further analyses. One set of milk samples were transferred into tubes 

containing the preservative bronopol at the time of milking, stored at 4°C, and submitted 

for commercial analysis of milk fat, protein, somatic cell count (SCC) and milk urea 

nitrogen (MUN) content to the DHIA (Lancaster, PA). The two additional samples 

collected, one for HPLC analysis (5 mL) and one liquid chromatography tandem mass 

spectrometry (LC-MS/MS) analysis (30 mL), were immediately placed into a dry 

ice/ethanol bath on-farm before being stored at -20°C (HPLC analysis) and -80°C (LC-

MS/MS analysis). 

2.3.6 Analysis of high-abundance milk proteins using HPLC methodology 

Milk samples collected for HPLC analysis of the high-abundance milk proteins, 

including α-s1, α-s2, β and κ-caseins (CAS), α-LA, and the A and B variants of β-

lactoglobulin (β-LGA, and β-LGB, respectively) were thawed overnight at 4°C. Samples 

collected during D0 were pooled within day according to milk yield, while the samples 

collected on d 21-28 of the experiment were pooled within cow as a proportion of milk 

yield. Samples were then centrifuged at 4,000xg for 10 min at 4°C to allow for separation 

of the cream layer. The skim milk fraction was processed and analyzed using HPLC as 

previously described (Bordin et al., 2001; Tacoma et al., 2016). Briefly, a reducing buffer 

containing dithiolthreitol (DTT), 6 M guanidine-HCl, and 5 mM trisodium citrate in 

water was added to each sample. Samples were then vortexed and left in the fridge to 

incubate overnight. After incubation, a volume of buffer without the reducing agent DTT 

was added to each sample and the solution was filtered through a 0.45 μm syringe filter 

(Sartorious. Göttingen, Germany) into a borosilicate test tube. The filtrate was transferred 
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to autosampler vials for subsequent HPLC analysis (Shimadzu Corporation, Kyoto 

Japan). Separations were completed according to methods previously described by 

Bordin et al. (2001) on a C4 reversed-phase microbore analytical column (150 × 2.1 mm, 

300 Å pore diameter and 5 μm particle size, Yydac 214 MS, Grace Davison, MD, USA). 

2.3.7 Preparation of low-abundance protein enriched milk fraction 

Milk samples collected during the sampling period (d 21-28) for the 

identification of low-abundance enriched proteins through LC-MS/MS analysis were 

thawed overnight at 4°C and were composited by milk yield. Protein fractionation and 

enrichment were performed as previously described (Tacoma et al., 2016). Briefly, a 

protease inhibitor (Protease Inhibitor Cocktail, Sigma, Milwaukee, WI) was added at 0.24 

mL per g of protein, followed by centrifugation at 4,000xg for 10 min at 4°C to allow for 

separation of the cream layer. Skim milk samples were depleted of casein by calcium 

dichloride precipitation followed by ultracentrifugation at 189,000xg for 70 min at 4°C. 

The supernatant was stored at -80°C prior to lyophilization and reconstitution in PBS. 

The protein concentration of the reconstituted samples was determined using the 

bicinchoninic acid assay (BCA; Pierce, Rockford, IL) using bovine serum albumin as the 

standard. Samples were enriched using a ProteoMiner kit (BioRad, Hercules, CA) as per 

manufacturer’s instructions. Eluted samples were analyzed for protein concentration 

using BCA. 1 μg of baker’s yeast GAPDH (S. cerevisiae; Glyceraldehyde-3-phosphate 

Dehydrogenase; Sigma-Aldrich, St. Louis, MO) was added to 99 μg of each sample, and 

each of the samples (100 μg total) were digested with trypsin followed by labeling using 

isobaric Tandem Mass Tags (TMT) as per manufacturer’s instructions (product #90113; 



   42

Thermo Scientific, Rockford, IL). Samples were then combined in equal parts, and the 

10plex was kept at -80°C until subsequent LC-MS/MS. 

2.3.8 Liquid Chromatography – Mass Spectrometry 

Four μL of the TMT reaction mixture were dried under vacuum and labeled 

peptides were resuspended in 10 μL of 2.5% acetonitrile (CH3CN) and 2.5% formic acid 

(FA) in water for subsequent liquid chromatography-mass spectrometry (LC-MS) 

analysis. LC-MS-based peptide identification and quantification was performed on the Q-

Exactive mass spectrometer coupled to an EASY-nLC (Thermo Fisher Scientific, 

Waltham, MA).  Five μL of the sample was loaded onto a 100 μm x 120 mm capillary 

column packed with Halo C18 (2.7 μm particle size, 90 nm pore size, Michrom 

Bioresources, CA, USA) at a flow rate of 300 nL/min. Peptides were separated using a 

gradient of 2.5-35% CH3CN/0.1% FA over 150 min, 35-100% CH3CN/0.1% FA in 1 min 

and then 100% CH3CN/0.1% FA for 8 min, followed by an immediate return to 2.5% 

CH3CN/0.1% FA and a hold at 2.5% CH3CN/0.1% FA. A nanospray ionization source 

introduced the peptides into the mass spectrometer through the use of a laser pulled ~3 

μm orifice with a spray voltage of 2.0 kV. Mass spectrometry data was acquired in a 

data-dependent manner using “Top 10” acquisition mode with lock mass function 

activated (m/z 371.1012; use lock masses: best; lock mass injection: full MS), in which a 

survey scan from m/z 350-1600 at 70,000 resolution (AGC target 1e6; max IT 100 ms; 

profile mode). Following data acquisition, 10 higher-energy collisional dissociation 

MS/MS scans were performed on the most abundant ions at 35,000 resolution (AGC 

target 1e5; max IT 100 ms; profile mode). An isolation width of 1.2 m/z and a normalized 

collisional energy of 35% was used to obtain MS/MS scans, and dynamic exclusion was 
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enabled (peptide match: preferred; exclude isotopes: on; underfill ratio: 1%; exclusion 

duration: 30 sec). SEQUEST and Mascot search engines were used for the subsequent 

product ion spectra on Proteome Discoverer 1.4 (Thermo Fisher Scientific, Waltham, 

MA, USA) against a curated Bovine Uniprot (Bos taurus database; UP000009136; 

24,346 entries; downloaded Dec. 9, 2015) with sequences in forward and reverse 

orientations. To verify effective tryptic digestion and subsequent labeling of peptides, the 

product ion spectra were re-searched against a saccharomyces cerevisiae database. 

Search parameters were as follows: full trypsin enzymatic activity, maximum missed 

cleavages = 2, and peptides MW between 350 to 5000; mass tolerance at 20 ppm for 

precursor ions and 0.02 Da for fragment ions, dynamic modifications on methionines 

(+15.9949 Da: oxidation), Dynamic TMT6plex modification (The TMT6plex and 

TMT10plex have the same isobaric mass) on N-termini and lysines (229.163 Da), as well 

as static modification on cysteines (+57.021 Da).  Percolator node was used to limit the 

false positive (FP) rates to less than 1% in the data set. Reporter Ion Quantification Node 

in Proteome Discoverer 1.4 was used for quantification purposes. All of the acquired 

protein identification and quantification information (< 1% FP; with protein grouping 

enabled) was exported to Excel spreadsheets. Relative fold-change values of the proteins 

identified within each animal were compared against values from each of the control 

cows for data generated using both the bos taurus and saccharomyces cerevisiae 

databases. Saccharomyces cerevisiae GAPDH (Accession numbers: P00359 and P00360) 

and bos taurus GAPDH (Accession number: P10096) search results shared one common 

amino acid sequence (LTGMAFR); therefore, protein P10096 was excluded from 

bioinformatics. 
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2.3.9 Bioinformatics 

Milk proteins identified by LC-MS/MS analysis that were classified as 

uncharacterized through Proteome Discoverer 1.4 were identified using basic local 

alignment search tool (BLAST) (Camacho et al., 2009). Proteins that were identified as 

affected by dietary treatment through statistical analysis were matched to their associated 

annotated functions using gene ontology (GO) through The PANTHER Classification 

System (Mi et al., 2017). Proteins were annotated to their biological process, molecular 

function, cellular component, and protein class and graphed in Prism 7 (GraphPad 

Software Inc, La Jolla, CA) according to their percent of gene hits against total number of 

function hits as calculated from PANTHER. Additional protein-protein interaction 

analysis was conducted through STRING (Szklarczyk et al., 2015) within Cytoscape 

(Cytoscape 3.5.1; La Jolla, CA) (Shannon et al., 2003) using a STRING app (Szklarczyk 

et al., 2017) to generate a network of interactions. 

2.3.10 Calculation of nitrogen intake, excretion, and retention 

Daily N intake (g) of each cow was calculated by multiplying DMI (g) by the 

CP content (% of DM) of the feed, and dividing by 6.25 to determine g N/d intake. Daily 

fecal N output (g) of each cow was calculated by multiplying the weight of feces 

collected after 24 h by the fecal N %. Daily urine N output (g) of each cow was obtained 

by multiplying the weight of urine collected after 24 h by the urine CP %, and dividing 

by 6.25 to obtain the estimated g N/d excretion in urine. Daily milk N output (g) of each 

cow was calculated by dividing the milk protein yield (g) of the cow by 6.38 to obtain g 

N/d secretion in milk. The N retention of each cow was then calculated by subtracting the 

g N/d excreted in urine, feces and milk from the g N/d intake. 
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2.3.11 Statistical Analysis 

The replicate number for this study was calculated at 80% power, whereby 5 

cows per treatment were required to detect a 45% difference in urine N content at 20% 

CV as observed in previous research examining intake of polyphenolic containing feeds  

on N output of lactating dairy cattle (Lee et al., 2009). The PROC MIXED procedure was 

used in SAS version 9.4 (SAS Institute, Cary, NC) to perform repeated measures 

ANOVA on DMI, milk components, and plasma results. Treatment, day, and a day x 

treatment interaction were used as fixed effects. D0 was included as a covariate in each of 

these models. PROC MIXED model was also used in SAS version 9.4 for analysis of the 

endpoint values for high-abundance proteins and urine and fecal parameters with 

treatment included as a fixed effect. Fold change of each milk protein identified by LC-

MS/MS was calculated relative to each control sample, and milk proteins were then 

statistically analyzed as repeated measures with treatment included as a fixed effect. 

Conditional formatting was performed in Excel (v.14.2.2.) to generate a three-way color 

scale heat map hybridized with the table listing relative fold change values. Significant 

differences were declared if P ≤ 0.05. 

2.4 Results 

2.4.1 Nutrient composition, DMI, and CT content of GM 

There were no differences in DMI between treatment groups (Table 2.4). The 

CT concentration was 4.29 g/kg of GM, equaling an estimated total intake of 6.38 g CT 

daily (Table 2.1). 
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2.4.2 Urine and Fecal Samples 

Urine urea, ammonia, and CP were not different between treatment groups 

(Table 2.2). Additionally, there were no differences in fecal N and fecal ammonia N 

concentrations (Table 2.2). 

2.4.3 Plasma 

There were no differences in PUN concentrations (Table 2.3). Plasma glucose 

levels, as well as NEFA concentrations were not different between treatment groups 

(Table 2.3). 

2.4.4 Milk yield and components 

Total milk yield (kg/d), as well as the content (%) and yield (kg/d) of milk fat 

and protein were not affected by treatment (Table 2.4). There were no additional 

differences observed in other milk parameters including MUN and somatic cell count. 

2.4.5 Nitrogen partitioning 

 
There was no difference in N intake (g N/d), g N/d in urine, feces, or milk, or g 

N/d retained across treatments (Table 2.2). 

2.4.6 High-abundance milk protein concentrations determined by HPLC 

analysis 

There were no differences in the milk concentrations of α-s1, α-s2, β or κ- CAS, 

α-LA, β-LGA, or β-LGB across treatment groups (Table 2.5).  
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2.4.7 Low-abundance protein enriched milk fraction 

A total of 127 proteins were identified (Supplementary Table 2.1); and of those, 

16 were affected by treatment (Table 2.6).  

2.4.8 Bioinformatic analysis 

Gene ontology analysis of the 16 affected proteins revealed cellular process (GO 

term: 0009987; 25.6%) as the most prominent term for biological process, followed by 

metabolic process (GO term: 0008152; 12.8%), response to stimulus (GO term: 0050896; 

12.8%), and localization (GO term: 0051179; 12.8%; Figure 2.1, Table 2.7). Accounting 

for 50% of the 16 proteins, catalytic activity (GO term: 0003824) was the most annotated 

molecular function term. Cellular component analysis categorized 28.6% of the proteins 

as extracellular (GO term: 0005576) and an additional 21.4% were identified to be of 

membrane origin (GO term: 0016020). Additionally, the most prominent protein classes 

included: transporter (GO term: PC00227; 23.1%), oxioreductase (GO term: PC00176; 

15.4%), transfer/ carrier protein (GO term: PC00219; 15.4%), and enzyme modulator 

(GO term: PC00095; 15.4%) classifications. 

STRING analysis identified a network interaction between 9 of the proteins 

affected by dietary treatment (Figure 2.2): complement component C9 (C9), clusterin 

(CLU), sulfhydryl oxidase (QSOX1), serum albumin (ALB), kininogen-1 (KNG1), 

cystatin-C (CST3), platelet glycoprotein 4 (CD36), apolipoprotein E (APOE), and ATP-

binding cassette sub-family G member 2 (ABCG2) nodes. 
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2.5 Discussion 

In this study, the objectives were to identify shifts in the bovine milk proteome 

of cows fed GM compared to control cows using proteomic approaches and to assess 

differences in N partitioning between the two groups of cows. There have been several 

studies evaluating the effects of diet on total bovine milk protein content (Depeters and 

Cant, 1992), and more recent research has confirmed that changes in milk protein 

composition itself can be achieved through dietary intervention (Li et al., 2015). It is 

evident from other studies that altering primary nutrient fractions, including the dietary 

protein fraction, can shift the milk proteome (Sutton, 1989; Christian et al., 1999; Li et 

al., 2015). To further validate those findings, the research described herein focused on the 

utilization of the byproduct GM as a means to alter the milk proteome, since it is a 

byproduct that has shown promising results in altering N metabolism (Greenwood et al., 

2012).  

No changes in N partitioning were observed in the current study, and this is 

likely due to a low-dietary inclusion of GM as well as a low CT content in the GM in the 

diet. Feeding 1.5 kg GM/d was likely not enough to elicit changes in N metabolism as 

seen in previous studies, for example where GM was fed to grazing cows (Greenwood et 

al., 2012). With a concentration of 4.29 g CT/kg GM, the CT concentration of the GM 

used in our study was very low compared to other studies (Waghorn et al., 1987; 

Greenwood et al., 2012). Previous studies have also outlined the potential variability of 

CT binding (Acamovic and Brooker, 2005), and this variability could also have been a 

factor in the current results. While there is evidence suggesting that protein-CT 

complexes dissociate in the abomasum of ruminants, it has also been hypothesized that 
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some CT can re-associate with proteins downstream in the digestive tract such as the 

small intestine, and thus inhibiting intestinal proteolysis and absorption (Acamovic and 

Brooker, 2005). Alternatively, the CT may be binding the proteins with such astringency 

that prevents dissociation entirely. While it has also been suggested that CT can inhibit 

carbohydrate digestion in the rumen (Susmel and Stefanon, 1993), protein binding is the 

predominate effect, which further demonstrates that the binding properties of CT in vivo 

are not entirely predictable because of differential substrate preferences (Acamovic and 

Brooker, 2005). Furthermore, there could also be other interactions with free tannins in 

the small intestine limiting nutrient absorption by affecting digestive tract permeability 

and enzymatic activity (Acamovic and Brooker, 2005). 

Although there were no changes in metabolic or N status, the current study did 

identify 16 proteins that were affected by dietary treatment, including the higher relative 

abundance of two bioactives defined in literature, serum amyloid A protein (SAA3) 

(Mills et al., 2011) and butyrophilin subfamily 1 member A1 (BTN) (Spitsberg, 2005). 

SAA3 in blood has been classically known as a marker of inflammation; 

however, there is also evidence suggesting direct antimicrobial activity (Molenaar et al., 

2009; Mills et al., 2011). It is now accepted that SAA3 also originates from the mammary 

gland, and it has been shown that mammary-derived SAA3 exhibits an extra-mammary 

protective response against microbial infection (Molenaar et al., 2009). It has been further 

proposed that the antimicrobial role of SAA3 is included in a more generalized host 

response that affects the binding properties of pathogens (Mills et al., 2011). Similarly to 

SAA3, the relative abundance of BTN was also higher in milk samples from GM-fed 

cows compared to control cows. Though BTN is the major protein associated with the 
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milk-fat globule membrane (MFGM) (Spitsberg, 2005), its presence in non-fat milk 

fractions has previously been reported (Nissen et al., 2013) and is in agreement with the 

current study. Characterization of BTN functionality apart from its function in milk fat 

globule stability has led to the identification of numerous roles of BTN family members, 

including an important role in immune cell activation (Arnett and Viney, 2014). The 

higher relative abundance of these two immunomodulatory proteins (2.13 fold increase in 

BTN, 1.76 fold increase in SAA3) occurs alongside with shifts in known blood proteins, 

including von Willebrand factor A domain-containing protein, platelet glycoprotein 4, 

kininogen-1 and serum albumin. While all of these proteins have previously been 

identified in ProteoMiner-treated milk fractions, (Molinari et al., 2012; Tacoma et al., 

2016) the current finding that GM treatment affected their relative abundance in milk 

suggests that perhaps paracellular or transcytotic passage of these extracellular proteins 

across the mammary epithelium was changed, which are known mechanisms of blood-

milk protein connectivity (Shennan and Peaker, 2000; Monks and Neville, 2004; 

Kobayashi et al., 2013). Of the 16 milk proteins altered by dietary treatment, 28.6% were 

of extracellular origin, with another 21% of membrane origin (Figure 2.1), 15% of the 

treatment affected proteins being annotated as transfer/carrier proteins, which include 

proteins that carry substances and do not involve transmembrane transport, and 23% of 

the proteins annotated as protein class transporter, which do include proteins with 

transmembrane activity (Figure 2.1; Mi et al., 2017).. The immune- and transport- related 

protein classification suggested by The PANTHER Classification System is further 

supported by STRING analysis, which revealed that 9 of the treatment-affected proteins 

had one or multiple interactions with other proteins (nodes) altered by the diet (Figure 2), 
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including immune-related proteins such as complement component C9 (C9), clusterin 

(CLU), and apolipoprotein E (APOE).  

The mechanism(s) driving the shifts in the milk proteome observed in the 

current study are less clear. Scrutiny of the diet and treatment impacts yields three 

potential mechanistic hypotheses. One dietary fraction that could have contributed to the 

differences observed in the milk proteome is the fiber content, particularly the lignin 

content. Lignin is an indigestible phenolic compound often associated with the cellulose 

fraction of the feed, (Susmel and Stefanon, 1993) and GM-fed cows consumed 

approximately 400 g/d more lignin from their supplement as compared to the control 

cows (Table 2.8). It is plausible that lignin could have had a small impact on DMI and 

nutrient uptake, ultimately impacting mammary nutrient availability. However, plasma 

metabolites, including glucose and NEFA, were not affected by treatment and these 

parameters would reflect any deficit.  

A second hypothesis addressing the possible mechanisms of diet-induced milk 

proteome shifts in the current study is that other phytochemicals apart from CT, such as 

anthocyanins, which are rich in grape pomace (Yi et al., 2009) but were not measured in 

this study. Anthocyanins have been documented to have several human health impacts, 

including immunomodulation (He and Giusti, 2010), which could in part explain the 

observed differences in the milk proteome of GM-fed cows compared to control cows. 

Based on research by Yi et al. (2009), the anthocyanin content of the GM would be 

approximately 0.1%, equating to an intake of roughly 1.8 g anthocyanins per treatment 

cow per day in the current study. According to Hosoda et al. (2012), no difference in 

DMI or milk production was observed when lactating cows consumed an additional 14.9 
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g/d of anthocyanin in an enriched corn silage. Though there were some effects of 

treatment on digestibility in the study by Hosoda et al. (2012), the anythocyanin intake 

was an estimated 88% higher in their study compared to the current study. Therefore, the 

anthocyanin content was likely too low to alone induce the observed changes in the milk 

proteome observed in the research described herein. 

A third possible mechanism is highlighted after more intense scrutiny of the 

results, and aligns with our original hypothesis. Despite conducting a statistical analysis 

to determine the appropriate number of animals to use for this study, statistical tendencies 

(0.05 < P < 0.10) were observed in the present study, including lower milk yield (P = 

0.07; Table 4) from cows fed GM, and higher g/d fecal N output (P = 0.09; Table 2) from 

GM-fed cows. Higher fecal N output by GM-fed cows is in line with previous literature, 

(Greenwood et al., 2012) and agrees with the idea that highly astringent CT from GM 

may irreversibly bind with ingested proteins or quickly re-associate with proteins post-

ruminally, ultimately making the bound proteins, peptides and amino acids unavailable 

for absorption in the small intestine (Acamovic and Brooker, 2005). A reduction in 

intestinal absorption of these N-containing compounds would create the higher fecal N 

loss observed, and would also explain the tendency for milk yield to decrease in cows 

that were fed GM. The lack of difference observed in plasma and milk N may be because 

these two fractions have larger N pools that are supplemented by hepatic, muscle, and 

renal metabolism. If a higher CT-concentration was used in the diet, it is plausible that a 

more clear relationship between N partitioning and changes in the milk proteome could 

be observed. 



   53

2.6 Conclusions 

In the present study, the effect of dietary GM on the bovine milk proteome was 

evaluated. This study did not observe any changes in N partitioning as a result of GM 

intake. Despite the low CT content of the GM, 16 proteins in the low-abundance enriched 

milk protein fraction were affected by diet. Bioinformatic analysis of these 16 proteins 

suggested that many of these proteins are not of intracellular origin, and several plasma-

associated proteins were identified in the milk. Our observation that dietary GM intake 

affected the abundance of these proteins could indicate a change in passage of these 

proteins across the blood – milk barrier. The hypothesized mechanisms relating dietary 

GM to the proteomic composition of milk could not be confirmed, and further 

investigation to clarify this relationship is needed. 
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Table 2.1 Ingredients and chemical composition of experimental diets 

Ingredient (kg DM/day) Control GM 

Corn silage 9.0 9.0 

Concentrate 8.8 8.8 

Grass silage 4.2 4.2 

Mash 1.9 1.9 

Grape marc (GM) 0.0 1.5 

Beet pulp/ soy hulls (BP) 2.0 0.0 

DM (%) 50.54 47.48 

aNDFom (% DM) 34.33 33.85 

Crude protein (% DM) 15.73 16.01 

Non-fiber carbohydrate (% DM) 39.57 39.13 
Ether extract (% DM) 4.13 4.77 

GM CT content (g CT/kg GM) 0.00 4.29 
Concentrate comprised of wheat middlings, pellet steam flaked corn, soybean meal, 

distillers grains, fine ground corn meal. Mash comprised of ground fine corn grain (28%), 

canola meal solvent (12.5%), soybean meal solvent (8.9%), and Rumensin® (270 

mg/day). aNDFom, Ash-corrected Neutral Detergent Fiber (NDF). CT, condensed 

tannins. 
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Table 2.2 Urine and fecal N parameters of lactating Holstein dairy cows fed a diet 
supplemented with either grape marc (GM) or a beet pulp: soy hulls mixture (control) 

  Control GM SE P-value 

urine urea (%) 0.06 0.02 0.027 0.34 
urine ammonia (%) 0.01 0.01 0.002 0.20 
urine crude protein (%) 5.36 6.06 0.680 0.49 
fecal nitrogen (%) 0.37 0.39 0.021 0.41 
fecal ammonia N (%) 0.03 0.03 0.002 0.29 
     
dietary nitrogen intake (g N/d) 619.4 606.3 32.75 0.78 
milk nitrogen output (g N/d) 193.4 194.3 16.28 0.97 
fecal nitrogen output (g N/d) 136.6 175.0 14.24 0.09 
urine nitrogen output (g N/d) 155.5 151.1 23.02 0.90 

retained nitrogen (g N/d) 133.9 86.0 46.23 0.48 
Least square means reported for Control and GM groups. Expressed as percent of DM. 

SE, standard error. 

 

Table 2.3. Plasma metabolite concentrations of lactating Holstein dairy cows fed a diet 
supplemented with either grape marc (GM) or a beet pulp: soy hulls mixture (control) 

  Control GM SE P-Value 
PUN (mg/mL) 10.21 9.93 0.49 0.71 
Plasma glucose (mg/mL) 54.66 55.00 0.02 0.90 
NEFA (μM) 27.37 26.46 2.82 0.83 

Least square means reported for Control and GM groups. SE, standard error; PUN, 

plasma urea nitrogen; NEFA, non-esterified fatty acids. 
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Table 2.4. Dry matter intake, milk yield, and milk components of lactating dairy Holstein 
dairy cows fed a diet supplemented with either grape marc (GM) or a beet pulp: soy hulls 
mixture (control) 

  Control GM SE P-value 

DMI (kg/day) 25.83 26.61 0.93 0.57 

Milk yield (kg/day) 39.87 36.22 1.22 0.07 

Milk components (%) 
      Milk fat 4.10 3.86 0.16 0.32 
      Milk protein 3.34 3.43 0.04 0.13 

Milk components yield (kg/day) 
      Milk fat 1.62 1.38 0.85 0.10 
      Milk protein 1.32 1.23 0.05 0.19 
     
MUN (mg/dL) 12.80 13.46 0.43 0.32 

SCC (Cells x1000) 83.15 76.12 24.99 0.85 
Least square means reported for Control and GM groups. SE, standard error; DMI, dry 

matter intake; MUN, milk urea nitrogen; SCC, somatic cell count. 
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Table 2.5. High-abundance protein concentrations from lactating Holstein dairy cows fed 
a diet supplemented with either grape marc (GM) or a beet pulp: soy hulls mixture 
(control) 

Milk protein (mg/mL skim 
milk)   Control GM SE P-value 

Casein      

α-S1 CAS 13.02 13.42 0.22 0.24 
α-S2 CAS 1.78 1.78 0.05 1.00 
β-CAS 17.94 18.48 0.28 0.23 
κ-CAS 5.55 5.65 0.09 0.43 
Whey 
α-LA 3.01 3.00 0.01 0.55 
β-LGA 3.20 3.16 0.07 0.70 

β-LGB   3.39 3.33 0.02 0.10 
Least square means reported for Control and GM groups. SE, standard error. CAS, 

casein; β-LGA, β-Lactoglobulin variant A; β-LGB, β-Lactoglobulin variant B. 
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Table 2.6. 16 Low-abundance enriched proteins identified in milk samples at 
significantly different relative-abundances collected from lactating Holstein dairy cows 
fed a diet supplemented with either grape marc (GM) or a beet pulp: soy hulls mixture 
(control) 

Accession 
number Protein Control GM SE P-Value 
Q03247 Apolipoprotein E  1.01 1.43 0.083 0.002 

Q3MHN2 Complement component C9  1.06 0.73 0.086 0.012 

P17697 Clusterin  1.04 1.42 0.073 0.014 
P18892 Butyrophilin subfamily 1 member A1  1.17 2.13 0.319 0.015 
F1MM32 Sulfhydryl oxidase  1.07 0.77 0.088 0.019 
Q4GZT4 ATP-binding cassette sub-family G 

member 2  
1.11 1.62 0.210 0.021 

F1MIT3 von Willebrand factor A domain-
containing protein 8  

1.41 13.97 3.519 0.022 

M0QW03 TPA: prolactin-like protein 1.06 1.53 0.159 0.025 
P01035 Cystatin-C  1.17 0.67 0.126 0.030 
P02769 Serum albumin  1.30 0.66 0.180 0.032 
F1MMW8 Serum amyloid A protein 1.09 1.76 0.235 0.033 
F1MNV5 Kininogen-1  1.15 0.75 0.131 0.036 
P26201 Platelet glycoprotein 4  1.44 2.79 0.518 0.040 
F1N6D4 Sodium-dependent phosphate transport 

protein 2B  
1.47 2.90 0.565 0.042 

F1MUP9 synaptic vesicle membrane protein 
VAT-1 homolog  

1.02 1.26 0.081 0.044 

Q0V8M0 Protein KRI1 homolog  1.02 1.16 0.033 0.046 

Least square means reported for Control and GM groups expressed as relative-
abundance. SE, standard error. 
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Table 2.7. GO annotation of the 16 Low-abundance enriched proteins identified in milk samples at significantly different relative-
abundances collected from lactating Holstein dairy cows fed a diet supplemented with either grape marc (GM) or a beet pulp: soy 
hulls mixture (control) 

    Gene Ontology 
Accession 

number Protein 
Biological 

Process 
Molecular 
Function Cellular Process Protein Class 

Q03247 Apolipoprotein E  

Anion transport, 
Biosynthetic 
process, Catabolic 
process, Cell 
differentiation, Cell 
growth, Cellular 
component 
biogenesis, Cellular 
component 
morphogenesis, 
Cholesterol 
metabolic process, 
Homeostatic 
process, Negative 
regulation of 
apoptotic process, 
Nervous system 
development, 
Protein metabolic 
process, Response to 
stress, Single-

Enzyme activator 
activity, Lipid 
binding, Lipid 
transporter activity, 
Oxioreductase 
activity, Receptor 
binding, 
Transferase activity 
(transferring acyl 
groups) 

Extracellular space, 
Macromolecular 
complex 
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multicellular 
organism process 

Q3MHN2 
Complement 
component C9  

Cell-cell adhesion, 
Immune system 
process, Signal 
transduction 

P17697 Clusterin  

P18892 

Butyrophilin 
subfamily 1 
member A1  

Cellular defense 
response, Cellular 
process, Exocytosis, 
Intracellular 
transport protein, 
Proteolysis, System 
development 

Ubiquitin-protein 
ligase activity 

Ubiquitin protein 
ligase 

F1MM32 Sulfhydryl oxidase  Cellular process 

Oxioreductase 
activity, Protein 
disulfide isomerase 
activity 

Golgi apparatus, 
Cytoplasm, 
Extracellular space, 
Integral to 
membrane Oxidase 
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Q4GZT4 

ATP-binding 
cassette sub-
family G 
member 2  

Catabolic process, 
Cellular process, N 
compound metabolic 
process, 
Nucleobase-
containing 
compound metabolic 
process, Phosphate-
containing 
compound metabolic 
process, Response to 
stimulus 

ATPase activity 
(coupled to 
transmembrane 
movement of 
substances), Lipid 
transporter activity, 
Pyrophosphatase 
activity, 
Transmembrane 
transporter activity 

Apical part of cell, 
Integral to 
membrane, Plasma 
membrane, Protein 
complex 

ATP-binding 
cassette (ABC) 
transporter 

F1MIT3 

von Willebrand 
factor A domain-
containing protein 8  

M0QW03 
TPA: prolactin-like 
protein Cellular process Growth factor activity, Hormone activity 

Growth factor, 
Peptide hormone 

P01035 Cystatin-C  Proteolysis 
Cysteine-type endopeptidase inhibitor 
activity, Protein binding 

Cysteine protease 
inhibitor 

P02769 Serum albumin  Transport 
Transfer/ carrier 
protein 

F1MMW8 
Serum amyloid 
A protein 

Cellular component 
movement, 
Localization, 
Locomotion, 
Response to external 
stimulus Extracellular space 

Apolipoprotein, 
Defense/immunity 
protein, Transporter 



 

 

62
 

F1MNV5 Kininogen-1  

Blood coagulation, 
Cellular calcium ion 
homeostasis, 
Cellular process, 
Regulation of 
biological process, 
Response to stress, 
Single-multicellular 
organism process 

Cysteine-type 
endopeptidase 
inhibitor activity Extracellular space 

P26201 
Platelet 
glycoprotein 4  

Cell adhesion, 
Cellular process, 
Macrophage 
activation Receptor activity Receptor 

F1N6D4 

Sodium-
dependent 
phosphate 
transport protein 
2B  

Anion transport, 
Cellular process, 
Homeostatic 
process, Phosphate 
ion transport 

Cation 
transmembrane 
transporter activity 

Apical part of cell, 
Cell projection, 
Cytoplasm, 
Organelle, Plasma 
membrane 

Enzyme modulator, 
Transporter 

F1MUP9 

synaptic vesicle 
membrane protein 
VAT-1 homolog  

Apoptotic process, 
Carbohydrate 
metabolism process 

Oxioreductase 
activity 

Dehydrogenase, 
Reductase 

Q0V8M0 
Protein KRI1 
homolog          
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Table 2.8. Chemical composition of supplements 

  Control GM 

dry matter (%) 90.1 30.2 
crude protein (% DM) 9.9 12.8 
ADF (% DM) 41.3 44.2 
aNDFom (% DM) 50.5 53.2 
lignin (% DM) 3.0 30.2 
NFC (% DM) 30.8 20.1 
starch (% DM) 6.8 19.9 
crude fat (% DM) 1.4 9.4 

ash (% DM) 7.45 4.52 
 

aNDFom, ash-corrected neutral detergent fiber; ADF, acid-detergent fiber; NFC, non-

fiber carbohydrate; GM, grape marc; BP, beet pulp: soyhulls mixture.
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Figure 2.1. Gene ontology (GO) representing the biological processes, molecular 
functions, cellular components, as well as protein classes of proteins identified by LC-
MS/MS that were different between treatment groups. 
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Figure 2.2. STRING map illustrating the relationship between proteins characterized by GO analysis, including complement 
component C9 (C9), clusterin (CLU), sulfhydryl oxidase (QSOX1), serum albumin (ALB), kininogen-1 (KNG1), cystatin-C (CST3), 
platelet glycoprotein 4 (CD36), apolipoprotein E (APOE), and ATP-binding cassette sub-family G member 2 (ABCG2). 
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CHAPTER 3: COMPARATIVE ANALYSIS OF THE SKIM MILK AND MILK 

FAT GLOBULE MEMBRANE PROTEIN FRACTIONS PRODUCED BY 

JERSEY COWS GRAZING DIFFERENT PASTURE FORAGE CROPS 

3.1 Abstract 

The objective of this experiment was to determine whether the inclusion of 

alternative forage crops in pasture grazed by lactating Jersey cattle would alter the bovine 

milk proteome they produce. Sixteen lactating Jersey cows were blocked by days in milk 

(143 ± 58 DIM) for a 21-day pasture-based experiment. Cows received a partial mixed 

ration (60% of total dry matter intake, DMI) and had access to one of two pasture 

treatments for grazing (40% of total DMI). The control animals (CON, n=8) were offered 

a grass-legume pasture mixture, which included orchardgrass (Dactylis glomerata), 

timothy (Phleum pratense), Kentucky bluegrass (Poa pratensis), and white clover 

(Trifolium repens). The treatment group (AFC, n=8) were offered the same base pasture 

strip-tilled with the AFC crops oat (Avena sativa), buckwheat (Fagopyrum esculentum), 

and chickling vetch (Lathyrus sativus) so as to represent 10% of their pasture DMI. Milk 

samples were collected during AM and PM milkings on d 19-21 for milk proteomic 

analysis. In total, three milk samples were composited within cow according to milk 

yield. One of these skimmed milk samples was used for high-abundance milk protein 

analysis using high-performance liquid chromatography. The second skimmed sample 

was subjected to low-abundance protein identification using liquid chromatography 

tandem mass spectrometry (LC-MS/MS) analysis. The fat layer was collected from the 

third sample via centrifugation at 3000xg for 15 min at 4° for analysis of the low-

abundance enriched protein fraction within the milk fat globule membrane (MFGM) 
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using LC-MS/MS analysis. There was a higher concentration (mg/mL of skim milk) of 

the high-abundance protein α-s1 CAS in milk from AFC cows (P = 0.005). Using LC-

MS/MS methodology, 53 proteins were identified in the skim milk fraction, and 245 in 

the MFGM-protein associated fraction. Two proteins were altered by diet in the skim 

fraction, and five in the MFGM fraction; these seven affected proteins were all higher in 

relative-abundance in milk from the AFC cows compared to the control cows. While the 

mechanism(s) responsible for the changes observed in the seven proteins remain 

unknown, the results of this study highlight the need for continued investigation into 

dietary influences of the bovine milk proteome. 

3.2 Introduction 

 The northeastern United States faces challenges with maintaining optimal dry 

matter intake (DMI) of grazing dairy cattle due a decrease in the growth of cool season 

grasses (CSG) in the late spring and summer months. One method that has been 

implemented to alleviate this loss of DM availability is to increase pasture biomass 

through the inclusion of alternative forage crops (AFC) into pasture, which include non-

traditional grasses, legumes, and grain crops. The incorporation of AFC species in 

pasture can effectively increase pasture biomass when CSG growth is limited in the 

summer months, but can also provide benefits such as drought resistance through 

increasing biodiversity (Tilman and Downing, 1994), and lower feed costs for pastoral 

producers (Pereira et al., 2013).  

 The inclusion of AFC in pasture can also affect the nutrients available to the 

animal. Milk production can be modified as a result from changes in the absorbed 
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nutrient profile and post-absorptive metabolism, which has been reported in other pasture 

based studies (Miller et al., 2001; Totty et al., 2013). While parameters, such as milk 

yield, can be influenced by the total energy and protein availability from the diet 

(Christian et al., 1999; Li et al., 2015), the milk profile may be more subject to changes 

induced by a specific dietary nutrient profile (Jenkins and McGuire 2006). Additionally, 

secondary phytochemicals, including condensed tannin(s) (CT) and other phenolic 

compounds within various AFC species, can modify nutrient absorption and metabolic 

patterns when consumed, which is considered to be a benefit depending on the base 

forage diet (Waghorn et al., 1987; Makkar, 2003; Acamovic and Brooker, 2005). Since 

some AFC species are known to contain a nutritive profile that is unique to traditional 

pasture grasses, the altered nutritive profile lends the potential for alterations in 

metabolism and production when consumed (Ramirez-Restrepo and Barry, 2005; Totty et 

al., 2013). For example, Christian et al. (1999) reported changes in the casein and whey 

content of bovine milk as a result of varying inclusions of wheat and lupin, two different 

AFC options, in the diet. Recent research has been devoted to investigating the effects of 

nutrient profile of the diet on the bovine milk proteome, which yielded variable results 

(Li et al., 2015; Tacoma et al., 2017a); however, none of these experiments were 

performed in grazing systems.  

 Growing interest in the bovine milk proteome stems from identification of the 

bioactivity of specific proteins within the milk protein fraction (Mills et al., 2011). 

Bovine milk is comprised of high-abundance proteins, including caseins (CAS), α-

lactalbumin (α-LA), and β-lactoglobulin (β-LG), as well as low-abundance proteins 
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(D'Amato et al., 2009). Bioactive peptides are released after hydrolysis of native protein 

structures within both the high- and low- abundance fractions, while the low abundance 

protein fraction also includes bioactive proteins that are resistant to enteric proteolysis 

(Claire and Swaisgood, 2000; Lopez-Exposito and Recio 2008; Korhonen, 2009; 

Lonnerdal, 2013; O’Riordan et al., 2014). Immunomodulation, anti-microbial, growth, 

and anti-cancer properties are examples of the functions associated with bioactive 

proteins and peptides in milk (FitzGerald and Meisel, 2003; Kilara and Panyam, 2003; 

Yamamoto et al., 2003; FitzGerald et al., 2004; Gauthier et al., 2006; Lopez-Fandino et 

al., 2006; Pihlanto, 2006; Lopez-Exposito and Recio, 2008). 

 While the skim milk fraction contains an array of these bioactive compounds, 

the milk fat globule membrane (MFGM) is another specific protein-containing milk 

fraction of interest due to its known bioactive profile (Spitsberg, 2005). The unique 

structure of the MFGM provides some form of protection for the integral proteins against 

hydrolysis in the gastrointestinal tract (GIT) after consumption (Vanderghem et al., 2011; 

Ye et al., 2011). Although the MFGM proteome only constitutes roughly 1-4% of the 

overall bovine milk proteome (Yang et al., 2015), there are a number of potent bioactive 

proteins and peptides present (Spitsberg, 2005; Vanderghem et al., 2011). A review by 

Spitsberg (2005) described many of the MFGM associated bioactive proteins that have 

been shown to exhibit immunomodulatory, antimicrobial, anti-cancer, and other 

biological properties. Butyrophilin (BTN), for example, is a common MFGM-associated 

protein that is higher in abundance relative to other proteins in the MFGM fraction. 

Additionally, BTN has been characterized with properties including immunomodulation 
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where some research has suggested its role in decreasing the onset of multiple sclerosis in 

experimental models (Stefferl et al., 2000; Mana et al., 2004). Since the MFGM is 

associated with milk fat production, it is feasible that increases in milk fat output could 

increase the abundance of bioactive proteins and peptides in milk. Furthermore, increases 

in milk fat production has been observed from animals grazing pasture (Stergiadis et al., 

2015).  

 The hypothesis of this study is the inclusion of AFC species in pasture, which 

can alter the post-absorptive nutrient composition via secondary compounds such as CT, 

will alter the skim milk and the MFGM-associated protein fractions of the bovine milk 

proteome from lactating Jersey cattle as a result of the nutritive profile absorbed. The 

objective of this study was to utilize proteomic approaches to characterize changes in the 

composition of the bovine milk proteome when cows grazed pastures containing AFC.  

3.3 Materials and Methods 

3.3.1 Animals, Design, and Diets 

From a larger experiment, a subset of sixteen lactating Jersey cattle were 

blocked by milk yield (18.1 ± 3.9 kg), days in milk (143 ± 58; DIM), parity (1.4 ± 53 

lactations), and stratified within block across treatments in a 21-d randomized complete 

block design conducted in the summer months of 2015 as described previously (Juntwait 

et al., 2016). All procedures from this larger experiment were completed as approved by 

the University of New Hampshire’s Institutional Animal Care and Use Committee. Cows 

were fed a partial mixed ration at 60% of their daily DMI, and for the remaining 40% of 

daily DMI, cows grazed pasture. Control cows (CON; n=8) grazed pasture that contained 
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orchardgrass (Dactylis glomerata), timothy (Phleum pratense), Kentucky bluegrass (Poa 

pratensis) along with the legume white clover (Trifolium repens). The treatment group 

(AFC; n=8) grazed CON pasture that was strip-tilled with buckwheat (Fagopyrum 

esculentum), chickling vetch (Lathyrus sativus), and oat (Avena sativa) to represent 10% 

of their daily DMI. PMR and pasture nutrient compositions, as well as botanical 

composition proportions are reported previously by Juntwait et al. (2016). 

3.3.2 Sampling 

Milk samples were obtained on d 19-21 of the experiment. Three subsamples 

were collected from each cow, flash frozen on farm in a dry ice/ethanol bath, and 

transported on dry ice to The University of Vermont for analysis. One subsample (~15 

mL) collected for high-performance liquid chromatography (HPLC) quantification of 

high-abundance proteins was stored at -20°C, while two other subsamples (~100 mL 

total) were collected for liquid chromatography tandem mass spectrometry (LC-MS/MS) 

analysis of the low-abundance proteins in the skim milk and MFGM fractions, and were 

stored at -80°C until further analysis. 

3.3.3 HPLC quantification of high-abundance milk proteins 

Milk samples collected for HPLC analysis were thawed overnight at 4°C, pooled 

within cow according to milk yield, and centrifuged at 4,000xg for 10 min at 4°C. The 

skimmed milk was then prepared and analyzed as previously described (Tacoma et al., 

2016). 
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3.3.4 Preparation of the low-abundance protein enriched skim milk fraction 

Subsamples collected for LC-MS/MS skim protein analysis were pooled within 

cow according to milk yield. Additionally, a universal control was also generated by 

pooling milk from each control cow according to milk yield; which was later used to 

compare relative-fold abundance changes in proteins across all samples. Composite 

samples from each cow, as well as the universal control, were fractionated, enriched, 

digested, labeled with isobaric tandem mass tags (TMT; Thermo Fisher Scientific, 

Waltham, MA), and analyzed according to established methods as previously outlined 

(Tacoma et al., 2017b). Two 9-plexes were generated in this experiment, each including 

the universal control, and a random subset of eight samples. The 9-plexes were then 

submitted to the Vermont Genetics Network Proteomics Facility (The University of 

Vermont, Burlington, VT) for LC-MS/MS analysis as previously described (Tacoma et 

al., 2017b). 

3.3.5 Liquid chromatography – tandem mass spectrometry  

LC-MS/MS analysis was conducted as previously described (Tacoma et al., 

2017b). Briefly, a Q-Exactive mass spectrometer coupled to an EASY-nLC (Thermo 

Fisher Scientific, Waltham, MA) was used for peptide identification and quantification. 

Subsequent product ion spectra were searched against SEQUEST and Mascot search 

engines on Proteome Discoverer 1.4 (Thermo Fisher Scientific, Waltham, MA, USA) 

against a curated Bovine Uniprot (Bos taurus database; UP000009136; 24,346 entries; 

downloaded Dec. 9, 2015) with sequences in forward and reverse orientations.  Samples 

were also searched against a yeast database (S. cerevisiae) for validation of the yeast 
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GAPDH (glyceraldehyde-3-phosphate dehydrogenase; S. cerevisiae; Sigma-Aldrich, St. 

Louis, MO) insertion. Quantification was performed using Reporter Ion Quantification 

Node in Proteome Discoverer 1.4. All of the protein identification and quantification 

information (<1% false positive; with protein grouping enabled) was exported to Excel 

spreadsheets. The universal control was used as a common denominator for expressing 

the relative-fold change values of the proteins identified within each animal. 

3.3.6 Isolation of the MFGM-associated protein fraction 

The third set of subsamples collected for protein profiling in the MFGM fraction 

was thawed overnight at 4°C and pooled within cow according to milk yield. Of the milk 

samples retained for MFGM proteome analysis, one AFC sample was not included due to 

improper thawing. To the remaining 15 samples (8 CON, 7 AFC), a Protease Inhibitor 

Cocktail (Sigma, Milwaukee, WI) was added at 0.24 mL per g of protein. The MFGM 

was isolated according to previously published methods (Yang et al., 2015) with some 

modifications. Samples were centrifuged at 3000xg at 4°C for 15 min. The skim layer 

was discarded, and the cream layer was incubated with 5 volumes of phosphate-buffered 

saline solution at 37°C for 20 min, followed by centrifugation at 3000xg for 30 min at 

4°C. This wash and centrifugation step was repeated three times to remove residual CAS 

proteins. Following, the recovered cream was incubated with 10 volumes of lysis buffer 

(50mM Tris-HCl at pH 7.4, 4% SDS (w/v) solution) for 1 h at room temperature with 

periodic vortexing every 10-15 min for 10-15 s. After incubation, samples were then 

placed in a water bath at 95°C for 5 min followed by centrifugation at 12,000xg at 4°C 

for 15 min. The residual fat was removed and lysates were centrifuged again. The lysates 
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were then precipitated in acetone at a 1:6 ratio (lysate: acetone) at -20°C for 20 h. A 

universal control was generated prior this step by pooling an equal volume of supernatant 

from each control. Following the precipitation, samples were centrifuged at 14,000xg at 

4°C for 40 min using a Sorvall BR-C4 centrifuge (Thermo Scientific, Waltham, MA), 

and the pellet was re-suspended in radioimmunoprecipitation assay buffer (Sigma 

Aldrich, Saint Louis, MO) as well as the re-addition Protease Inhibitor Cocktail and 

stored at -80°C until protein quantification. The bicinchoninic acid assay (Pierce, 

Rockford, IL) was used to quantify protein concentrations with bovine serum albumin as 

the standard. 

3.3.7 SDS PAGE separation of MFGM-associated protein fraction 

Quantified samples were separated by SDS-PAGE using a total of two gels. 

Reducing sample buffer (5 X; Thermo Scientific, Rockford, IL) was added to each 

sample in a 1:5 ratio to 49 μg of sample plus 1 μg of S. cerevisiae (baker’s yeast) 

GAPDH (Sigma-Aldrich, St. Louis, MO) and the mixture was heated at 90°C for 3 min. 

After cooling to room temperature, the samples were loaded onto a precast 12% 

polyacrylamide gel (Biorad, Hercules, CA). Proteins were electrophoresed for 15 min at 

200 V. Gels were stained in Coomassie Blue (Biorad, Hercules, CA) overnight and gel 

images were obtained from scanning prior to excision. 

3.3.8 In-gel digestion of the MFGM-associated protein fraction 

The gel lanes were excised into three segments according to their molecular 

weights (I, heavier in weight, upper portion of the gel; II, medium weight, middle portion 

of the gel; III, lighter in weight, lower portion of the gel) and subjected to trypsin 
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digestion protocols, as described previously (Tacoma et al., 2016) except for using 

triethylammonium bicarbonate as buffer instead of ammonium bicarbonate.    

3.3.9 Isobaric TMT labeling of MFGM-associated protein fraction 

Isobaric TMT labeling of the protein samples were performed according to the 

manufacturers’ protocols with minor modifications. Briefly, dried peptides in gel slices I 

and III, and gel slice II from each sample were resuspended in 25 and 50 µL of 

triethylammonium bicarbonate, respectively. After resuspension, 10 and 20 µL of TMT 

reagents (0.8 mg dissolved in 41 µL of acetonitrile (CH3CN)) were added to gel slices I 

and II, and gel slice II, respectively, followed by briefly vortexing and an incubation for 

1.5 h at room temperature. Following, 5% hydroxylamine was added to quench the 

reactions. One-third of the total reactions were combined resulting in three 9-plex 

reactions (I, II, III) from gel 1 and three 8-plex (I, II, III) from gel 2. The mixtures were 

dried down and stored at -80°C until LC-MS/MS analysis at the Vermont Genetics 

Network Proteomics Facility (The University of Vermont, Burlington, VT) as described 

above. 

3.3.10 Bioinformatic analysis of identified proteins 

Uncharacterized protein sequences were identified using BLAST (Camacho et 

al., 2009). Identified proteins were then annotated according to their biological processes, 

molecular functions, and cellular components through gene ontology (GO) using the 

PANTHER Classification System (Mi et al., 2017). The percent of gene hits against total 

number of functional hits as calculated by PANTHER were used to generate grouped bar 

graphs in Prism 7 (GraphPad Software Inc, La Jolla, CA). A Venn diagram was 
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generated using the VennDiagram package in R (R Core Team, Vienna, Austria) using 

the accession numbers from the proteins identified in the skim and MFGM fractions 

(Team, 2015). Further STRING (Szklarczyk et al., 2015) analysis was also conducted to 

measure possible protein-protein interactions within a STRING plug-in app (Szklarczyk 

et al., 2017) for Cytoscape (Cytoscape 3.5.1; La Jolla, CA) (Shannon et al., 2003). 

Customized networks were generated within Cytoscape for the skim and MFGM 

fractions, as well as a network illustrating the proteins identified in both fractions. 

3.3.11 Statistical Analysis 

A PROC MIXED procedure was used in SAS 9.4 (SAS Institute, Cary, NC) to 

statistically analyze the protein data generated by HPLC and LC-MS/MS analysis with 

treatment used as the fixed effect. 

3.4 Results 

3.4.1 Milk yield and components 

 Milk yield (kg/d) was not altered by diet in this experiment (Table 3.1). Milk fat 

percentage was higher in milk from cows that grazed pastures containing AFC (P = 0.01) 

compared to CON cows. Milk protein percent and yield (kg/d) as well as fat yield (kg/d) 

were not affected by dietary treatment. Somatic cell count (SCC), was not different 

across treatment groups. 

3.4.2 HPLC quantification of high-abundance proteins 

The concentration of α-S1 CAS was 15% higher in milk from AFC cows at 14.4 

mg/mL compared to 12.2 mg/mL in the CON cows (P = 0.005, Table 3.2). There were no 
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differences in α-s2, α-LA, β CAS, κ CAS, β-LGA, and β-LGB concentrations across 

treatments. 

3.4.3 The low-abundance protein enriched fraction in skim milk 

A total of 53 proteins were identified in the low-abundance protein enriched 

skim milk fraction (Supplementary Table 3.1). Two of these proteins were higher in cows 

grazing AFC pasture compared to the CON cows (Table 3.3), including beta-2-

microglobulin (P = 0.009) and polymeric immunoglobulin receptor (P = 0.04).  

3.4.4 MFGM-associated protein fraction 

A total of 245 proteins were identified in the MFGM-associated protein fraction 

(Supplementary Table 3.2), 5 of which were present at higher abundance in cows grazing 

AFC pasture compared to the CON cows (Table 3.3; P ≤ 0.05).  

3.4.5 Bioinformatic analysis of the skim milk and MFGM-associated protein 

fractions 

 Cellular process (GO term: 0009987) was the most annotated biological process 

term of the proteins identified using GO. Cellular process was annotated to 15.1% and 

26.9% of the proteins identified in the skim milk and MFGM-associated protein fractions, 

respectively (Figure 3.1). Biological regulation (GO term: 0065007), response to stimulus 

(GO term: 0050896), and metabolic process (GO term: 0008152), respectively, 

proceeded cellular process for the skim milk fraction proteins; whereas localization (GO 

term: 0051179), metabolic process, and response to stimulus followed cellular process for 

the MFGM-associated protein fraction. Catalytic activity (GO term: 0003824) and 

binding (GO term: 0005488) were the most annotated molecular function terms for the 
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skim milk and MFGM proteins, accounting for 45.7% and 34.3%, respectively, in the 

skim fraction and 38.1% and 30.5%, respectively, in the MFGM fraction. Additional 

molecular function terms that were annotated for MFGM proteins and not the skim 

proteins included structural molecule activity (GO term: 0005198), translation regulator 

activity (GO term: 0005198), and channel regulator activity (GO term: 0016247).  

According to cellular component annotation of the skim milk protein fraction, 61.5% 

were annotated with the extracellular region (GO term: 0005576) followed by membrane 

(15.4%; GO term: 0016020), and macromolecular complex (11.5%; GO term: 0032991). 

The MFGM cellular component annotation noted 43% as having a cell part (GO term: 

0044464) annotation, followed by organelle (24.7%; GO term: 0043226), and 

macromolecular complex (16.1%). Additional cellular component terms that were 

annotated for the MFGM-associated protein fraction, but not the skim milk fraction, 

included synapse (GO term: 0045202), and cell junction (GO term: 0030054). 

Of the proteins identified by LC-MS/MS analysis in the skim milk and MFGM-

associated protein fractions, 24 proteins were present in both fractions (Figure 3.2). 

Further STRING analysis revealed a network of proteins (nodes) with several interactions 

from curated databases in both the MFGM-associated and skim milk protein fractions, 

and also revealed the interactions between the shared proteins (nodes) identified in both 

fractions (Figure 3.3). 

3.5 Discussion 

 This experiment examined the inclusion of buckwheat (Fagopyrum esculentum), 

chickling vetch (Lathyrus sativus), and oat (Avena sativa) as AFC species in grazed 
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pasture, which could be used as a means to alter the bovine milk proteome within both 

the skim milk and MFGM-associated protein fractions. These AFC species are known to 

contain varying degrees of polyphenolics (Ramirez-Restrepo and Barry, 2005; Kalber et 

al., 2013), which have been shown to alter animal metabolism and could thereby 

influence production, potentially including the milk protein profile (Greenwood et al., 

2012; Li et al., 2015). The impact of pasture diversity has yielded mixed results in terms 

of its impact on milk production, general component content, as well as yield (Lee et al., 

2009, Totty et al., 2013, Stergiadis et al., 2015). However, the present study aimed to 

investigate the impact of including AFC in pasture on the milk protein profile. 

 The milk components were largely unchanged when cows grazed AFC pasture 

compared to the CON cows, with exception to an increase in milk fat percent in cows 

grazing AFC pasture (P = 0.01; Table 3.1). This finding is in agreement with previous 

research that investigated the milk composition in response to dairy cows grazing 

different pasture allowances, where milk fat yield increased when animals consumed 

more pasture (Stergiadis et al., 2015). Since the remaining milk components, including 

milk protein percent and yield, as well as SCC were not different between treatment 

groups, only the proteomic compositional changes within the high and low-abundance 

protein fractions will be discussed. 

 The content of α-s1 CAS was higher in milk from cows that consumed AFC in 

pasture. Higher CAS content implies an increase in nutrient supply to the mammary 

gland for mammary protein synthesis; for example, a summary on diet and milk protein 

output highlighted how increased energy concentration in the diet can result in an 
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increased milk protein content (Emery, 1978). Furthermore, increases in milk casein 

content have also been observed in a recent report by Tacoma et al. (2017a) where 

varying degrees of rumen-degradable and rumen-undegradable protein were used. As 

reported by Juntwait et al. (2016), the nutrient composition of the summer AFC species 

on pasture showed some slight differences in protein content (14.5% DM versus 12.9% 

DM in CON pasture), as well as starch content (2.2% DM versus 1.0% DM in CON 

pasture). Although a higher starch content could have increased metabolizable energy 

availability and potentially microbial protein synthesis potential, the differences in starch 

at present were minimal; therefore, starch content is unlikely to be the sole factor 

explaining the differences observed. Furthermore, the possibility of a higher starch 

content increasing energy availability is conflicted when considering the higher lignin 

content in the AFC pasture (9.1% DM versus 4.3% DM in CON pasture). Lignin is 

known to inhibit fermentation in the rumen, which can ultimately limit downstream 

nutrient availability (Susmel and Stefanon, 1993). Therefore, it is difficult to determine 

which specific dietary-derived nutrients in this experiment could have contributed to the 

increased α-s1 CAS content 

 A total 53 proteins were identified in the skim milk fraction and 245 proteins 

were identified in the MFGM-associated protein fraction. Furthermore, a total of 24 

proteins were present in both the skim milk and MFGM-associated protein fraction 

(Figure 3.2; Table 3.4). While there were a total of 7 proteins in both fractions that were 

higher in relative abundance from cows that grazed AFC pasture, the bovine milk 

majority of the proteome in this study was unaffected. It is plausible that a higher nutrient 
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availability could ultimately alter the quantity of low-abundance milk proteins; however, 

it is difficult to identify the specific nutrient(s) responsible for the changes observed in 

this experiment as aforementioned. For example, Li et al. (2015) reported increases in 

whey proteins when cows were fed diets that were formulated for fast energy and 

nitrogen release, citing nitrogen synchrony as a possible mechanism allowing for 

increases in microbial protein synthesis and therefore altering the amino acid profile 

absorbed in the small intestine. However, the exact underlying mechanisms relating diet 

to proteomic composition has yet to be characterized. Since the proteome was largely 

unchanged in this study, the proteomic composition of the skim milk fraction and 

MFGM-associated fraction was further investigated to better characterize and understand 

the identified proteins. 

 In the skim milk fraction, two proteins were identified in higher relative-fold 

abundance in the AFC group: beta 2-microglobulin (B2M; P = 0.009) and polymeric 

immunoglobulin receptor (PIgR; P = 0.036; Table 3.3). B2M is a component associated 

with the major histocompatibility complex I and has been detected in all body fluids as 

well as the surfaces of nucleated cells (Bourantas et al., 1999). PIgR is another immune-

related protein that is associated with IgA production in the small intestine (Asano and 

Komiyama, 2011).  

 Sodium/ nucleoside cotransporter, endoplasmin, glycerol-3-phosphate 

acyltransferase 1, mitochondrial, lactoperoxidase, and puromycin-sensitive 

aminopeptidase were higher in relative-abundance within in the MFGM-associated 

protein fraction from animals grazing AFC-containing pasture (Table 3.3). 
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Lactoperoxidase is a known bioactive enzyme that exhibits antimicrobial properties, and 

has been identified in the skim fraction as well as the MFGM-associated protein fraction 

(Mills et al., 2011).  

 Between the two fractions, a total of 24 proteins were identified in the skim milk 

and MFGM-associated protein fractions. Additionally, both of these proteome fractions 

also appeared to have some similar functionality profiles as GO revealed through 

PANTHER (Figure 3.1). Cellular and metabolic process were two of the most annotated 

terms for biological process across both the skim milk and MFGM-associated protein 

fractions, and both catalytic activity and binding where prominent GO terms for 

molecular function in both skim and MFGM fractions. There were a few examples of 

divergence in GO terms for both proteomes where under biological process annotations 

such as immune system process (GO term: 0002376), which was higher in the skim 

proteome when compared to the MFGM proteome (7.5% vs 2.0%). This could imply that 

there are more proteins present in the skim milk fraction that are associated with 

immunity and immunomodulatory properties. An interactomics based study from Zhang 

et al. (2017) highlighted changes throughout lactation in human and bovine milk samples 

in both the skim and MFGM fractions, and GO analysis similarly revealed a higher 

biological process annotation for immune-related activity in the skim milk protein 

fraction in both human and bovine samples. Conversely under the biological process 

annotations, cellular component organization or biogenesis (GO term: 0071840) was 

annotated for 8.9% of the proteins in the MFGM fraction compared to 2.2% in the skim 

milk fraction; which aligns with the biochemistry of MFGM formation taking place 
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within the mammary epithelial cell starting on the apical surface of the smooth 

endoplasmic reticulum (Cavaletto et al., 2008). Due to the mechanism of secretion, it is 

probable for proteins that are associated with cell component organization or biogenesis 

to be incorporated into the MFGM during formation.  

 As expected, cellular component annotations were largely unique when 

comparing the skim milk and MFGM fractions. Over 60% of the skim milk proteins were 

annotated with the extracellular region. In contrast, 43% and 24% of the MFGM proteins 

were annotated with the cell part and organelle regions, respectively, which aligns with 

the literature outlining the formation of the MFGM itself (Cavaletto et al., 2008). Despite 

the differences observed in cellular component annotation between the skim milk and 

MFGM fractions, macromolecular complex (GO term: 0032991) was annotated with 

close similarity relative to the other terms in both skim milk and MFGM fractions (11.5% 

and 16.1% respectively). A macromolecular complex can refer to any macromolecule 

adjoining together in a stable assemblage, and it is possible for proteins to adjoin together 

in such a manner (Mi et al., 2017). This annotation supports the idea that protein-to-

protein interactions are occurring in both the skim milk and MFGM fractions. 

 The customized networks generated by STRING within Cytoscape revealed a 

number of interactions between the proteins (nodes) in both skim milk and MFGM 

fractions (Figure 3.3). The skim milk proteins were largely shown to interact with serum 

albumin, annotated as ALB, where 19 out of the 38 nodes were displayed interaction(s) 

with ALB. Unlike the skim milk fraction, the interactions observed within the MFGM 

fraction were very diverse with little evidence for any clear patterns. Similarly to the 



 

89 
 

skim fraction, serum albumin (ALB) was a common denominator in many of the 

interactions displaying connections with 54 of the 194 nodes; however, there were other 

proteins that displayed several interactions including heat shock protein HSP 90-alpha 

(HSP90AA1) where 57 nodes displayed interaction(s). Protein HSP90AA1 works as a 

chaperone that assists other proteins with maturation, regulates target proteins, and 

provides structural maintenance according to STRING (Szklarczyk et al., 2015). Along 

with protein HSP90AA1, there are other proteins present within the MFGM STRING 

network that display a large number of interactions, which further iterates the complexity 

and diversity of the MFGM fraction. 

 In this experiment, the effects of including AFC in pasture on subsequent 

proteomic composition of the bovine skim milk and MFGM profiles were evaluated. 

With exception to milk fat percentage, changes were not observed in general milk 

components or yield; however, some changes in the milk protein profiles were observed 

across treatments with higher contents of high-abundance proteins and higher relative-

abundances of low-abundance proteins in milk from AFC cows. This data does provide 

further evidence for dietary influence on the bovine milk protein profile. However, to 

date, a definitive mechanistic pathway(s) has yet to be identified and confirmed as the 

means for the changes observed. This experiment, along with the others aforementioned, 

aligns with the need for further scrutiny of the underlying physiology and possible 

mechanisms for further explanation of the changes observed in proteomic profiles. 
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Table 3.1. Milk yield and components from cows that grazed either CON or AFC 
pastures 

        
P-value 

 

  CON AFC SE Block Treatment 

Milk Yield (kg/d) 17.6 18.6 0.89 0.631 0.507 

Milk Components (%) 
Milk Fat 4.36 4.79 0.09 0.555 0.019 

Milk Protein 3.52 3.63 0.04 0.141 0.152 

Milk Components 
(kg/d) 

Milk Fat 0.78 0.88 0.04 0.540 0.215 
Milk Protein 0.63 0.66 0.03 0.378 0.494 

SCC (Cells x 1000) 123.8 200.8 61.41 0.079 0.409 

Least square means reported for CON and AFC groups. SE, standard error; ECM, 

energy-corrected milk; SCC, somatic cell count. 
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Table 3.2. High-abundance protein concentrations from cows that grazed either CON or 
AFC- supplemented pastures 

Casein (mg/mL) CON AFC SE P-value 

κ-CAS 7.37 8.49 0.039 0.06 
α-s2 CAS 1.50 1.43 0.085 0.56 
α-s1 CAS 12.17 14.35 0.464 0.005 
β-CAS 13.53 14.43 0.323 0.07 
Whey (mg/mL) 

α-LA 1.00 1.00 0.045 1.00 
β-LGB 1.97 2.10 0.453 0.85 

β-LGA 2.90 3.02 0.486 0.86 

Least square means reported for CON and AFC groups. SE, standard error; CAS, casein; 

β-LGB, β-Lactoglobulin variant B; β-LGA, β-Lactoglobulin variant A. 

 

 

 

 

 

 

 

 

 

 

 

 



 

 
 

92
 

Table 3.3. Proteins affected by diet as identified by LC-MS/MS analysis in the skim milk fraction and milk fat globule membrane 
(MFGM) associated protein fraction in cows that grazed either CON or AFC pastures 

Fraction Accession Protein Control AFC SE* Control SE AFC SE P-value 

Skim Milk 
P01888 Beta-2-microglobulin  1.32 1.91 0.137     0.009 

P81265 Polymeric immunoglobulin receptor  1.35 2.56 0.368     0.036 

MFGM F1MGR1 Sodium/nucleoside cotransporter  1.08 1.33 0.066 0.058 0.027 

Q95M18 Endoplasmin  0.74 1.11 0.102 0.090 0.034 

F1MDT6 
Glycerol-3-phosphate acyltransferase 
1, mitochondrial  0.88 1.07 0.053 0.047 0.034 

P80025 Lactoperoxidase 0.82 1.28 0.127 0.112 0.034 

E1BP91 puromycin-sensitive aminopeptidase 0.87 1.27   0.122 0.108 0.049 

Least square means reported for the CON and AFC groups expressed as relative-abundance. SE, standard error. SE column marked 

by asterisk (*) represents the SE from the skim milk fraction results. 
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Table 3.4. The 24 common proteins identified by LC-MS/MS analysis in both the skim 
milk and milk fat globule membrane (MFGM) associated protein fractions from cows 
that grazed either control (CON) pasture or pasture strip-tilled with alternative forage 
crops (AFC) 

Accession Protein 

F1MMW8 Serum amyloid A protein 
F1MUT3 Xanthine dehydrogenase/oxidase  
F1N726 Pancreatic secretory granule membrane major glycoprotein GP2 precursor 
G3MXB5 Immunoglobulin IgA heavy chain constant region, partial  
G5E513 IgM heavy chain constant region, secretory form, partial 
G5E5T5 immunoglobulin M heavy chain secretory form 
P00711 Alpha-lactalbumin  
P01888 Beta-2-microglobulin  
P02662 Alpha-S1-casein  
P02663 Alpha-S2-casein  
P02666 Beta-casein 
P02668 Kappa-casein  
P02769 Serum albumin  
P10790 Fatty acid-binding protein, heart  
P11151 Lipoprotein lipase  
P15497 Apolipoprotein A-I  
P18892 Butyrophilin subfamily 1 member A1  
P24627 Lactotransferrin  
P80025 Lactoperoxidase 
P80195 Glycosylation-dependent cell adhesion molecule 1  
P81265 Polymeric immunoglobulin receptor 
Q32PA1 CD59 molecule, complement regulatory protein  
Q95114 Lactadherin  

Q95122 Monocyte differentiation antigen CD14  
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A) 

 
Figure 3.1 A. The gene ontology (GO) annotations of the proteins identified by LC-

MS/MS analysis in both skim milk and milk fat globule membrane (MFGM) samples as 

according to their biological process. 
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B) 

 
Figure 3.2 B. The gene ontology (GO) annotations of the proteins identified by LC-

MS/MS analysis in both skim milk and milk fat globule membrane (MFGM) samples as 

according to their molecular function. 
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C) 

 
Figure 3.3 C. The gene ontology (GO) annotations of the proteins identified by LC-

MS/MS analysis in both skim milk and milk fat globule membrane (MFGM) samples as 

according to their cell component. 
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Figure 3.4. Venn diagram outlining the 24 conserved proteins between both the skim and 
MFGM fractions as identified by LC-MS/MS analysis. 
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Figure 3.3 A. STRING network of the proteins identified in the skim milk protein 

fraction by LC-MS/MS analysis. 
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B)   
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Figure 3.3 B. STRING network of the proteins identified in the milk fat globule membrane (MFGM) associated protein fraction by 
LC-MS/MS analysis. 
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C) 
 

 

Figure 3.5 C. STRING network of the shared proteins identified in both fractions by LC-
MS/MS analysis. 
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CHAPTER 4. GENERAL DISCUSSION AND CONCLUSIONS 

4.1 General Discussion 

 The literature and projects presented in this thesis have outlined possible 

evidence linking diet to the proteomic composition of bovine milk, focusing on the 

investigation of dietary inclusion of GM or AFC and their impact on the milk proteome. 

 As described in Chapter 2, there were no changes in the metabolism or N status 

of the cows as a result from GM inclusion in the diet. Additionally, there was a relatively 

small inclusion of CT in the diet when compared to other studies, where N partitioning 

was altered (Greenwood et al., 2012). Despite this lack of change in N partitioning, about 

12% of the low-abundance proteins identified in this study was differentially altered as a 

result of GM in the diet. Further bioinformatic analysis suggested an interaction-based 

relationship between many of the affected proteins; however, there was no significant 

pathway or mechanism identified that could help explain the findings observed.  

 Similarly, we investigated the impact of cows grazing AFC in pasture on the 

milk proteome in Chapter 3. By expanding our proteomic analysis to include the MFGM-

associated protein fraction, we were hoping to identify more shifts in the proteome. 

Despite the additional characterization of the MFGM-associated protein fraction, the 

results from this second experiment showed very little change in the milk proteome from 

both skim milk and MFGM fractions in response to diet. The high-abundance protein, α-

s1 CAS, was higher in cows that grazed AFC pastures.  Additionally, the affected low-

abundance proteins in the skim and MFGM fractions were all higher in relative-

abundance in cows grazing AFC compared to cows that grazed traditional pasture which 
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did not contain alternative forage. Although the cows grazing AFC pasture had a higher 

α-s1 CAS content, as well as higher relative-fold abundances of beta-2-microglobulin and 

polymeric immunoglobulin receptor in the skim milk fraction, and lactoperoxidase in the 

MFGM fraction, the rest of the proteome was largely unchanged. Furthermore, it is 

unclear what role (if any) diet may have served in altering those proteins. 

4.2 Dietary limitations and implications in this research 

While measures were taken to eliminate confounding variables, there were some 

limitations that were encountered that make interpretation of the mechanistic drivers 

difficult to isolate and asses. In Chapter 2, the smaller inclusion of GM likely explains the 

lack of response in metabolic and N parameters. The CT concentration of the GM in the 

first experiment was 4.29 g CT per kg of GM, which equates to an approximate daily 

intake 6.44 g CT per cow. This is lower than what has been reported elsewhere in the 

literature (Greenwood et al., 2012), and is a probable explanation to the lack of response 

when cows consumed GM.  

Another limitation with the CT content relates to the unpredictable binding 

properties. While CT are known to bind to proteins in a neutral environment and 

dissociate when the pH deviates (Waghorn et al., 1987), astringency has been shown to 

prevent dissociation of the CT-protein complex (Acamovic and Brooker, 2005). 

Alternatively, if the CT-protein complex can dissociate in the abomasum as a result from 

a decreased pH, it is unclear as to whether the CT remain un-bound as they pass through 

the remainder of the GIT. Hence, it is possible for proteins to re-associate with unbound 

CT after being hydrolyzed in the abomasum. Furthermore, free CT can alter the 
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permeability of the small intestine and decrease the absorption of peptides and amino 

acids in the GIT further inhibiting proper intestinal absorption (Acamovic and Brooker, 

2005).  

 While the lower concentration of CT in the GM was a limitation in the first 

experiment for influencing the bovine milk proteome, it is important to reiterate that a 

low-level inclusion of GM still serves a useful purpose in the dairy industry relating to 

nutritional management. Our results support the use of GM as a supplement in lactating 

dairy cow rations since it did not negatively impact production, which has been observed 

elsewhere (Santos et al., 2014; Nudda et al., 2015). Furthermore, it is possible that other 

compounds present in GM could alter production, including anthocyanins (Yi et al., 

2009); however, they were not measured in these experiments.  

During the second experiment (Chapter 3), the AFC used were strip-tilled into 

the pasture to account for approximately 10% of the total pasture content. The relatively 

small inclusion of AFC could offer partial explanation for why there were only minimal 

changes observed in the proteomic composition of milk. However, despite the small 

inclusion, there were changes in milk fat percentage as well as α-s1 CAS content. The 

lignin content was higher in the AFC pasture, which is a known limitation for rumen 

fermentation and consequent animal metabolism (Susmel and Stefanon, 1993). Yet, it is 

not likely that lignin allowed for any of the shifts in milk content observed in this 

experiment, including higher milk fat and α-s1 CAS content. Another dietary-related 

limitation in this study relates to unavailable DMI data. It is important to make note of 

intake during any experiment involving dietary manipulations as intake per se affects the 
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outcome measures of an experiment. For example, it is possible that the cows grazing 

AFC pastures had an increased DMI when compared to animals on the CON pasture. If 

this were to hold true, then the observations made in this experiment could be a result of 

increased intake in the AFC group and not strictly due to the altered nutritive profile. 

4.3 Methodology related limitations that could impact interpretation of the results  

 Methyl cellulose has been used to bind and precipitate CT from grape juices, 

wine, and grape homogenates; and hence, the methyl cellulose precipitation assay has 

been developed to determine CT content in GM (Sarneckis et al., 2006). Epicatechin 

standards in solution were used to generate a concentration curve for the calculation of 

CT concentrations; however, there are multiple different polymers of CT present in GM. 

While the use of epicatechin standards as part of the methyl cellulose precipitation assay 

has been well-established, it is possible that the use of a specific CT polymer yields a 

limitation in analyzing CT content. 

 Another methodology-related limitation includes the use of two different milk 

samples to examine the bovine milk proteome in Chapter 3. It cannot be guaranteed that 

the same proteins are present in one composited milk sample versus another composited 

milk sample, even if the milk is from the same animal on the sampling time points. 

Future studies examining both skim and MFGM fractions for low-abundance protein 

analysis should carefully take this into consideration during isolation procedures. Ideally, 

one composited milk sample should be used to subsequently fractionate and analyze these 

milk fractions. 
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4.4 Other indications of nitrogen fractions and flow for future directions  

While the alteration of N metabolism through diet could be a sufficient method 

in manipulating the bovine milk proteome as aforementioned, recent studies have yet to 

validate this potential relationship. If such a relationship were to hold true, it could be 

determined by measuring N metabolism using the methods described in the first 

experiment with some modifications. While measuring N in the milk, plasma, and total 

24-h urine and fecal samples are effective, it is also important to evaluate the outflow of 

microbial protein from the rumen as a result from altering N patterns. This can be 

achieved through measuring purine derivatives in urine. Nucleic acids leaving the rumen 

are absorbed in the small intestine and metabolized, with derivatives being excreted in 

urine as hypoxanthine, xanthine, allantoin, and uric acid (Chen and Gomes, 1995). 

Nucleic acids leaving the rumen are assumed to be of microbial origin due to the 

degradation of purines that otherwise occur in the rumen (Chen and Gomes, 1995). 

Purine derivatives can be measured in acidified urine samples and used in a calculation to 

provide an estimate of microbial protein synthesis. Using these calculations, future 

research could consider the supply of microbial protein leaving the rumen when 

evaluating the changes in the bovine milk proteome in response to dietary manipulation. 

4.5 Limitations and opportunities in proteomic methodologies 

 The proteomic workflow applied to the present experiments involved extensive 

fractionation of the low-abundance skim milk fractions starting with calcium dichloride 

precipitation followed by ultra-centrifugation. Afterwards, ProteoMiner treatment was 

used to further enrich the samples for low-abundance proteins. While we were successful 
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in characterizing a fraction of low-abundance proteins, dynamic range was lost in these 

experiments likely due to the lack of a multi-step separation procedure. To better access 

the proteome of interest, mass spectrometry-based proteomics requires high resolution in 

samples as a result from separation; therefore, multi-dimensional or multiple separation 

techniques are necessary to help yield a higher dynamic range in samples (Twyman, 

2014). It would be ideal to incorporate a separation step following calcium dichloride 

precipitation/ ultracentrifugation such as gel electrophoresis using SDS-PAGE, where 

proteins are separated based on mass. Multi-dimensional liquid chromatography can be 

employed as a method of separation as well, but this analysis is costly and time 

consuming in comparison to SDS-PAGE.  

 Following SDS-PAGE, the use of the ProteoMiner kit (Biorad; Hercules, CA) is 

effective in further separating proteins as part of a multi-step workflow (Tacoma et al., 

2016). ProteoMiner utilizes combinatorial peptide ligands in bead form for protein 

binding in complex biological solutions (D'Amato et al., 2009). Each bead contains its 

own ligand for specific peptides, and the beads collectively provide a diverse library of 

combinatorial peptide ligands for different proteins to bind with high affinity; hence, 

allowing for proteins that are present in higher abundance to quickly saturate their 

specific beads with many of the same protein being left unbound (Righetti and Boschetti, 

2008). The unbound proteins are then washed away, leaving behind a sample that 

contains less of the higher abundant proteins thereby enriching the low-abundance 

proteins. This process is accomplished in part by overloading the ProteoMiner columns 

which allows for oversaturation of the beads, as opposed to other similar affinity-based 
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chromatography methods (D'Amato et al., 2009). While ProteoMiner has been 

successfully utilized to enrich low-abundance proteins within a sample, the binding 

properties of the beads are not entirely predictable. For instance there are peptide ligands 

that also have very close similarity, some only having a single amino acid difference, and 

hence, one peptide ligand can have binding interactivity with multiple proteins (Righetti 

and Boschetti, 2008). Additionally, due to ProteoMiner’s reliance on affinity-based 

binding, factors including protein quantity, concentration, and dynamic range can affect 

the number of proteins that are removed; all of which are expected to vary between 

biological samples (Fonslow et al., 2011).  

 While ProteoMiner offers advantages similar to affinity-based liquid 

chromatography through the use of a simpler kit-format, the consistency of the binding 

needs to be investigated and validated. If properly used as a second step in a multi-step 

fractionation workflow, ProteoMiner could be successfully implemented as an effective 

method to characterize changes in the low-abundance proteome. Future directions could 

focus towards developing combinational peptide ligand beads that are specific for 

biological samples such as milk. Perhaps each bead can be functionally developed to bind 

with high-abundance proteins using a very competitive affinity. Furthermore, 

downstream validation of such a technology could lead to the possibility of introducing 

specific concentrations of beads to proportionally represent the onset of high-abundance 

proteins. In bovine milk, it is well established that caseins represent 80% whereas 20% 

comprise the remaining whey proteins. Furthermore, the high-abundance proteins 

including α-LA, β-LGA, and β-LGB comprise 90% of the bovine milk proteome with the 
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remaining 10% being low-abundance proteins. It could be possible to apply 

combinatorial peptide ligand beads in concentrations that are specific to bovine milk 

allowing for a more selective approach in removing higher-abundance proteins; however, 

extensive development is needed to do so.  An alternative to ProteoMiner could include 

more selective techniques such as charged-based chromatography separation (anionic and 

cationic), as well as using immunodepletion methods through the development of 

antibodies for capturing specific proteins. Furthermore, it would be best to implement a 

validation step such as western-blotting to confirm the identity of proteins as determined 

by LC-MS/MS. 

 Recently, the high-throughput analysis of proteins across multiple samples has 

been utilized in proteomic work flows through the incorporation of stable isotopes 

(Christoforou and Lilley, 2012). This process of isobaric labeling has become widely 

available in kit form allowing for researchers to increase analytical speed by multiplexing 

samples, and it has also allowed for more sample types to be analyzed in quantitative 

experiments as opposed to previous approaches that utilize stable isotope labeling with 

amino acids in cell culture (SILAC) (Christoforou and Lilley, 2012). Nevertheless, there 

are some significant issues with isobaric labeling using TMT or iTRAQ including 

missing values across complex samples, incomplete labeling, decreased accuracy and 

precision during MS analysis (Christoforou and Lilley, 2012). While the use of isobaric 

labeling has been applied in animal proteomics, including the bovine milk proteome 

elsewhere (Roncada et al., 2012; Yang et al., 2015; Tacoma et al., 2017b), it is possible to 
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see decreases in the dynamic range of the milk proteome due to the aforementioned 

limitations. 

4.6 Conclusions 

Characterizing the factors that influence the composition of the bovine milk 

proteome, including bioactive proteins and peptides, is an important step forward in 

interpreting the proteome. Nutrition is a known factor that can influence lactation, and a 

number of different studies have evaluated, and confirmed, a relationship between diet 

and the proteomic composition of bovine milk. Therefore, better understanding the 

complexity of the interactions within the bovine milk proteome can help scientists 

understand how factors such as diet can affect the composition, which in turn can 

potentially provide an application for manipulation through dietary intervention. Our 

experiments presented in this thesis do not fully support N partitioning as a mechanism 

for the changes observed; thereby, rejecting the original hypothesis. While the changes 

observed in proteomic composition of the high and low-abundance proteins in bovine 

milk were likely altered in response to diet, it appears that N metabolism was not directly 

related to the shifts. Further investigation is necessary in order to fully characterize the 

underlying mechanisms involved, including reevaluating the effects of N metabolism. 
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