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ABSTRACT 

The aminoacyl-tRNA synthetases are a family of enzymes involved in the 
process of translation, more specifically, ligating amino acids to their cognate tRNA 
molecules. Recent evidence suggests that aminoacyl-tRNA synthetases are capable of 
aminoacylating proteins, some of which are involved in the autophagy pathway. Here, 
we test the conditions under which E. coli and human threonyl-tRNA synthetases, as 
well as hisidyl-tRNA synthetase aminoacylate themselves. These reactions are ATP 
dependent, stimulated by Mg2+, and are inhibited by increasing cognate tRNA 
concentrations. These data represent the foundation for future aminoacylation 
experiments, specifically delving into the relationship between the autophagy pathway 
and the aminoacylation of proteins.  

 
Additionally, we provide evidence of the inhibitory abilities of the anti-bacterial 

β-lactone obafluorin on both E. coli and human threonyl-tRNA synthetases. Further, we 
also show that the benzoate obafluorin analog EHTS-1 significantly inhibits E. coli 
threonyl-tRNA synthetase but not the human enzyme. These data could be useful in 
determining the potential for obafluorin and EHTS-1 as anti-bacterial and possibly anti-
angiogenic drugs.   
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 CHAPTER 1: INTRODUCTION 

1.1. The Primary Function of Aminoacyl-tRNA Synthetases 

1.1.1. Aminoacyl-tRNA Synthetases Are Instrumental in Translation 

Translation, the process of converting the language of nucleic acids into a 

sequence of amino acids, is crucial for all forms of life and is dependent on amino acids 

being charged onto their cognate tRNA molecules with fidelity to the genetic code. 

Aminoacyl tRNA synthetases (ARS) are a class of enzymes whose canonical function is 

to ligate an amino acid onto the 3’ end of the corresponding tRNA molecule, assisting in 

the translation of the universal genetic code. Due to this pivotal role in the translational 

process, ARS are conserved across all the kingdoms of life1.  

ARSs are divided into two classes based on several criteria. Class I ARSs are 

mostly monomeric, bind tRNA in the minor groove of their acceptor stems, and attach 

the amino acid to the 2’ hydroxyl group of tRNA while class II ARSs are mostly dimeric 

or multimeric, bind tRNA in the major groove of their acceptor stems, and attach the 

amino acid to the 3’ hydroxyl group of tRNA2–5. Class I synthetases tend to interact with 

the less polar and larger amino acids while class II synthetases tend to interact with the 

more polar and smaller amino acids. Active site architecture also plays a role in 

synthetase classification; class I synthetases contain a Rossmann fold, which is shared 

with kinases and dehydrogenases, while class II synthetases have a six-stranded 

antiparallel β-sheet fold surrounded by α-helices in their active sites2,4. Research 

indicates that the separate classes of ARSs may have originated from opposite strands of 

the same ancestral gene6,7. 
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ARSs add amino acids to their cognate tRNA molecules in a two-step reaction3, 

shown below:  

I) Amino acid + ATP ⇌⇌⇌⇌ Aminoacyl-AMP + PPi 

II) Aminoacyl-AMP + tRNA ⇌⇌⇌⇌ Aminoacyl-tRNA + AMP 

 

Figure 1. The Mechanism of the Aminoacylation Reaction8. Adapted from Li et al., 2015.  

In the first step, the ARS ‘activates’ the amino acid as the carbonyl group of the amino acid 

attacks the α-phosphate group of ATP, producing an aminoacyl-adenylate intermediate and 

a pyrophosphate (PPi) molecule (Figure 1). The aminoacyl-adenylate intermediate remains 

non-covalently bound to the synthetase following the first of the two-step reaction. In the 

second step, the 2’ or 3’ hydroxyl group of the adenine of the tRNA molecule’s CCA 

acceptor stem will attack the carbonyl carbon of the amino acid in the aminoacyl-adenylate, 

releasing the aminoacylated tRNA molecule and an AMP molecule (Figure 1). This 

reaction is crucial for protein translation, because the formation of a peptide bond between 
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two free amino acids is thermodynamically unfavorable3. When coupled with the 

hydrolysis of ATP to AMP and PPi, the ΔGᵒ’ for the formation of aminoacyl-tRNA is close 

to zero, which then allows the hydrolysis of PPi to 2Pi to drive the reaction forward. 

Because of this hydrolysis, the equivalent of 2 ATP molecules are consumed in the 

aminoacylation reaction.  

 Because of their pivotal role in carrying out the genetic code, aminoacylation 

reactions must occur with a high rate of fidelity to minimize translational errors. 

Mischarged amino acids and translational errors have been associated with cell death in 

microbes and disease in humans9–11. ARSs can distinguish amino acids with discrimination 

factors from 10,000-100,000, making errors in only 1 of 40,000 aminoacylation 

reactions12,13. This is facilitated by the ‘double-sieve model’ editing process, first 

postulated by Fersht in 1979, by which larger amino acids are first discriminated by the 

active site of the enzyme before smaller near-cognate amino acids are filtered out by a 

secondary editing domain14,15. Fersht published in 1976 that valyl-tRNA synthetase 

(VARS) was capable of forming a threonyl adenylate but would not catalyze the formation 

of threonyl-tRNAVal 16. The editing process for the smaller near-cognate amino acids will 

either be pre-transfer, where the near-cognate aminoacyl adenylate is hydrolyzed, or post-

transfer, where the bond between the mischarged tRNA and the near-cognate amino acid 

is hydrolyzed. Enzyme kinetics and the presence of tRNA have been determined as 

deciding factors in whether pre- or post-transfer editing will occur, with pre-transfer editing 

occurring only when the rate of transfer is significantly slow17.  
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 Despite performing their canonical function of aminoacylating tRNA, non-

canonical functions have been discovered for many of the ARSs. These non-canonical 

functions include regulation of both glucose and amino acid metabolism, organ 

development, angiogenesis, inflammatory responses, stress responses, apoptosis, and 

immune responses18. These secondary functions can also be carried out by alternatively 

spliced or proteolytically cleaved fragments of the full length protein19.  

1.1.2 Aminoacyl-tRNA Synthetases in Disease  

Given the essential role of ARS in protein translation, it is unsurprising that 

disrupting ARS function often results in abnormal cellular homeostasis and disease. 

ARSs must not only charge tRNA with amino acids, they must do so with high fidelity, 

and problems with either ARS function or editing could manifest with a phenotype. High 

levels of mischarged amino acids have been shown to cause toxic effects in both 

prokaryotic and eukaryotic cells9–11,20. A study of the effects of increased amino acid 

levels on an editing-defective LeuRS mutant E. coli strain demonstrated that increased 

mischarged-tRNA levels inhibited the growth of affected cells11. Several different 

cytoplasmic ARS have been linked to tumor progression, due in part to their crucial 

function in protein synthesis, supporting cancer proliferation and suppressing apoptotic 

signals21,22.  

Both dominant and recessive ARS mutations have been linked to a variety of 

human diseases, which often involve neurological dysfunction9,23. Dominant ARS 

mutations are associated with the peripheral neuropathy known as Charcot-Marie-Tooth 

disease (CMT), while recessive mutations often cause profound neurodevelopmental 
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disease characterized by microcephaly and epilepsy9,23. CMT is an inherited disease of 

the peripheral nervous system that causes degeneration of distal motor and sensory 

neurons in a length dependent manner24. This eventually leads to muscle weakness and 

atrophy in the legs and arms9,24. In 2003, Antonellis et al. discovered the first ARS 

mutations associated with CMT, identifying four glycyl-tRNA variants25. Since then, 

mutations in lysyl-tRNA synthetase, alanyl-tRNA synthetase, tyrosyl-tRNA synthetase, 

histidyl-tRNA synthetase (HARS) and tryptophanyl-tRNA synthetase have been linked 

to CMT9,26. Although it may seem likely that a unifying pathogenic mechanism links 

ARS to CMT, some reports suggest that reduced aminoacylation and defective global 

protein synthesis may not be the underlying cause26,27.  

In addition to dominant ARS mutations linked to CMT, a number of recessive 

and compound heterozygous mutations have been linked to severe neurodevelopmental 

phenotypes that often include microcephaly. Microcephaly is a condition where the brain 

does not develop properly, resulting in a smaller head circumference28. This can cause 

impaired cognitive development, slowed speech and motor functions, seizures, balance 

issues and other neurological problems in patients. Several novel VARS variants have 

recently been identified in patients displaying microcephaly, which was also linked to 

early-onset epilepsy23. The families of these patients are largely consanguineous, where 

VARS had previously been identified as a candidate ‘disease gene’29. The identified 

variants are dispersed throughout the VARS coding sequence, many of which were 

predicted by comparison to T. thermophilus VARS to affect aminoacylation substrate 

recognition or protein structure. Though modeling in zebrafish and yeast 
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complementation assays indicate that the underlying mechanisms of these mutations are 

likely a decrease of protein function, that has yet to be tested explicitly30. 

1.1.3 Threonyl-tRNA Synthetase 

Threonyl-tRNA synthetase (TARS) is a class II ARS that charges threonine (Thr) 

onto tRNAThr 31. Like most class II synthetases, TARS functions as a dimer. Each 

monomer has 4 domains: 2 N-terminal domains, the catalytic domain, and the anticodon 

binding domain31. The catalytic core of the enzyme contains the active site that is 

responsible for the recognition of Thr and ATP, the synthesis of the adenylate 

intermediate, and the transfer of the charged amino acid to tRNAThr. Zinc serves as a 

cofactor for TARS, and is found near its ATP binding site32. This ion is coordinated by 

a water molecule and three residues of the protein, and is necessary for TARS 

function31,32. The positive charge of the Zinc ion allows it to interact with hydroxyl 

groups of amino acids, which allows TARS to distinguish between the Thr and Valine 

(Val), which are structurally similar but differ in a hydroxyl group. The N2 domain of 

TARS is involved in the hydrolysis of erroneously aminoacylated Ser-tRNAThr 

complexes as a part of TARS’ ‘fine sieve’ post-transfer editing mechanism15,32,33. 

In addition to this editing function, TARS is one of the several ARS that have been 

related to angiogenesis, which is the process of blood vessel growth from the existing 

vascular network34,35. TARS is secreted out of the cell via an unknown mechanism to 

stimulate angiogenic extracellular signaling events34. Chicken embryos treated with 

exogenous TARS display expanded vasculature in chorioallantoic membrane assays, and 

application of TARS inhibitors in both zebrafish and endothelial cell tube formation assays 
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decrease cell migration, supporting the pro-angiogenic effects of TARS34,36. This 

secondary function in angiogenesis likely plays a role in the association between ARS and 

tumor progression, as inducing angiogenesis is one of the hallmarks of cancer37. 

1.2 Enzyme Kinetics 

1.2.1 Enzyme Kinetics 

Enzymes are essential for life, and thus it is important for us to understand them 

and the rates at which they work.  Enzyme kinetics seeks to understand the affinities that 

substrates have for their enzymes and the maximum reaction rate that an enzyme can 

achieve38. In 1913, Leonor Michaelis and Maud Menten hypothesized that there was a 

general theory of enzyme rates, with several assumptions. They assumed that enzyme (E) 

and substrate (S) reversibly associate in forming an enzyme substrate complex (ES), which 

then forms product (P) in the second step of reaction, as shown in the equation:  

 

Next, the steady-state assumption assumes that [ES] reaches and stays at a constant value 

in this system, meaning that ES is formed at a rate equal to the sum of ES dissociating to 

E+S and ES being converted into E+P. Finally, Michaelis-Menten kinetics assumes that 

the rate of back reaction (k -2) is small relative to the rate of the reaction catalyzed by the 

enzyme (k2) (because enzymes can catalyze both the forward and reverse reactions). To 

account for this we measure initial reaction velocities, where the enzyme has maximum 

substrate concentrations and no product, minimizing the back reaction. This results in the 

Michaelis-Menten equation: 
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In this equation Vmax is the maximum velocity that can be reached by a certain 

concentration of enzyme at saturating enzyme conditions, v is the reaction velocity and Km 

is the substrate concentration at ½ of the reaction’s Vmax. Km is approximately inversely 

related to the affinity that a substrate has for its enzyme, depending on the rates of ES 

association (k1) and dissociation (k -1), and the rate of E+P formation (k2) according to the 

following equation: 

�� �
�� � ��

��
 

The Michaelis-Menten equation can be represented graphically with a Michaelis-Menton 

plot, with [S] on the x-axis and v on the y-axis (Figure 2) 

 

Figure 2. An example Michaelis-Menten plot showing Vmax, Km, v, and [S]39. 

Because of the fact that the Vmax value for a Michaelis-Menten plot depends on the 

experimental enzyme concentration Vmax is often converted to the enzyme’s turnover 

number (kcat), which is the number of substrate molecules converted into product per 

enzyme over time38. Experimentally, a Michaelis-Menten plot is derived from many 
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individual progress curves. By plotting product produced over time in a progress curve and 

taking the slope from that curve (v), we can use this data as an individual point in our 

Michaelis-Menten curve. After making many progress curves at many different substrate 

concentrations, we can combine them to make the curve.  

Adding inhibitors to the Michaelis-Menten reaction conditions can change the 

apparent Vmax and Km values for the reaction depending on the type of inhibitor added 

(Table 1).  

Table 1. The four main types of inhibitors, their effects on the Vmax and Km values of a Michaelis-

Menten Plot, and the explanation for their effects38.  

Type of Inhibitor Effect on Vmax Effect on Km Explanation 

Competitive None  Increased Though the inhibitor will bind and 
inhibit its substrate, increasing 
substrate concentration will 
prevent it will outcompete it. This 
means that with enough substrate 
the enzyme can still reach Vmax, 
resulting in an increased Km 

apparent. 
Pure non-

competitive 
(Inhibitor binding 
doesn’t change 
substrate binding) 

Decrease None Non-competitive inhibitors will 
lower the number of enzyme 
molecules available to perform the 
reaction (lowering Vmax) without 
changing the enzyme’s affinity for 
its substrate (Km) 

Mixed non-

competitive 
(Inhibitor may 
preferentially bind 
the E or ES complex) 

Decrease May decrease 
Km 

Depending on the inhibitor’s 
affinity for the E or ES complexes, 
Km may decrease. Mixed 
inhibitors will lower Vmax by 
lowering the amount of active 
enzyme.  

Uncompetitive Decreased Decreased Since uncompetitive inhibitors 
only interact with the ES complex, 
this increases the enzyme’s 
affinity for substrate through 
LeChatlier’s principle (decreasing 
Km). Vmax is also decreased 
because IES complex formation 



 
 

10 
 

does not lead to product 
formation. 

 

Using a combination of kinetic and structural data for a given enzyme, one could discern 

the type of inhibition that a particular inhibitor exerts on its target enzyme40. In addition to 

classification based on their mechanism of interacting with their target enzymes, some 

inhibitors are also classified by their time-dependence or the binding strength of the 

inhibitor41. Slow binding inhibitors bind or dissociate from their target enzymes slowly, 

complicating the process of determining the affinity of the inhibitor for its target enzyme. 

There are several different mechanisms of slow binding inhibition aside from the classic 

reversible mechanism of41: 

 

A slow binding inhibitor can act through an induced fit mechanism, where it will form an 

initial binary complex (governed by the rates k3 and k4) before the enzyme undergoes a far 

slower isomerization step, as shown below41: 

 

Slow binding inhibitors can also act through mechanisms of conformational selection, 

where either the enzyme or the inhibitor will isomerize between multiple forms in solution, 

and only one of these isomers will interact with its binding partner. In these cases, the slow 

isomerization limits the rapid formation of the EI complex. Only the mechanism for 
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enzyme isomerization is shown, because small molecule inhibitors do not often undergo 

this isomerization41.  

 

Because it takes time for the free and bound versions of the inhibitor to reach an 

equilibrium, progress curves of slow binding inhibitors can display two different velocities. 

These velocities are vi, the initial velocity of the reaction before the inhibitor starts to 

interact with the enzyme (which is identical to that of the uninhibited reaction), and vs, the 

steady state velocity after the free and bound inhibitor states have reached equilibrium 

(Figure 3).  

 

Figure 3. The effects of a slow binding inhibitor on a progress curve. Two progress curves, one without 
an inhibitor and one with a slow binding inhibitor. The two slopes of the slow binding inhibitor curve are 

labeled as vi and vs.  
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To combat this, when collecting experimental progress curve data researchers can pre-

incubate the enzyme with the inhibitor prior to adding other reaction reagents. This will 

only work for some inhibitor types and needs to be done in the absence of substrate in the 

case of competitive inhibitors.  

 Some inhibitors bind to their target enzyme with such an affinity that the 

assumptions used to calculate Ki values are no longer valid41. Such affinity is usually the 

result of having very slow dissociation rates for the EI complex. Slow binding inhibitors 

are often tight binding inhibitors as well. In these cases, the inhibitor will display a slow 

rate of association for the E+I complex (kon), but an even slower dissociation rate (koff) 

from the E+I complex. This allows the inhibitor to have a high affinity for its target enzyme 

despite having a very slow rate of association41.  

1.2.2 Inhibitors of Threonyl-tRNA Synthetase  

There are several known inhibitors of TARS. Borrelidin is a macrolide-

polyketide, a large cyclic 18-membered lactone ring (Figure 4).  

 

Figure 4. The Structure of two TARS inhibitors, Borrelidin and the Borrelidin Derivative BC194 42. 

 

Produced by Streptomyces rocheii, borrelidin has been shown having anti-malarial, anti-

angiogenic, anti-fungal, and anti-tumor effects, in addition to inhibitory effects on TARS43–
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47. Borrelidin is a slow, tight binding inhibitor of TARS that displays non-competitive 

mechanisms of interaction, and will severely denature the enzyme over time40,48. This 

means that borrelidin inhibits TARS more the longer they’re incubated together, and that 

once bound it has a low rate of dissociation from the enzyme. Borrelidin binds close to the 

zinc ion in the active site of E. coli TARS, interacting with Thr-307, His-309, Cys-334, 

Pro-335, Leu-489, and Leu-49340. Because of its inhibitory effects on TARS, borrelidin 

has undesired cytotoxic effects. BC194 is a borrelidin derivative that exhibits decreased 

cellular toxicity compared to that of borrelidin42. BC194 has a 4-membered carbon ring at 

carbon 17 instead of the 5-membered ring seen in borrelidin (Figure 4).  

Obafluorin is a β-lactone, first isolated from Pseudomonas fluorescens in 

198449,50 (Figure 5).  

 

Figure 5. The Chemical Structure of the TARS Inhibitor Obafluorin.51 

 

Obafluorin exhibits antibacterial activity against a range of bacteria, including 

Staphylococcus aureus, E. coli, and Enterobacter cloacae49. Despite being a β-lactone, 

obafluorin exhibits relative susceptibility to hydrolysis via β-lactamases and is sensitive to 
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acidic conditions, which may indicate its instability compared to other β-lactones49,52. 

Obafluorin was recently hypothesized to be an inhibitor of TARS and has not yet been 

kinetically characterized52. A recent analysis of the obafluorin synthesis gene cluster 

reveals a gene coding for a TARS paralog, ObaO (unpublished data from the Wilkinson 

lab). This paralog may serve as a means of conferring obafluorin resistance to Pseudomoas 

fluorescens, if it is not susceptible to TARS inhibition. ObaO differs from wild-type TARS 

in a single cysteine (Cys) residue in its active site, which is substituted for a Val residue in 

ObaO. This may indicate where obafluorin interacts with TARS and its mechanism of 

inhibition. EHTS-1, a benzoate analog of obafluorin, may have inhibitory effects on TARS 

like those hypothesized about obafluorin.    

1.3 Aminoacylation as a Means of Post-Translational Modification 

1.3.1 Post-Translational Modification Can Affect Protein Function 

Proteins perform most of the processes that occur both intracellularly and 

extracellularly in organisms. Though the diversity of the proteome and the protein 

functions found throughout the proteome is large, the number of protein coding genes is 

noticeably smaller53. This is accomplished through several different mechanisms ranging 

from alternate promoter sequences and alternative splicing at the level of mRNA to post-

translational modification (PTM) at the level of protein. PTM is the covalent 

modification of amino acid side chains or peptide linkages in a protein, and there are 

hundreds of different PTMs that can occur across the proteome. PTMs can have many 

different effects on a protein depending on both the target protein and the modification, 

as well as the organism that the modification is occurring in, as the systems for PTM of 
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proteins are slightly different between prokaryotes and eukaryotes53,54. These effects 

include but aren’t limited to changing the conformation of a protein, creating docking 

sites for other proteins, changing the catalytic efficiency of an enzymatic protein, or 

changing a protein’s cellular localization. PTMs are generally reversible, which is 

important in the context of cellular signaling. A reversible PTM is more likely to be able 

to change on a shorter time-frame and thus be more sensitive to cellular conditions than 

an irreversible PTM or just protein levels in general, which would require protein 

synthesis, degradation or re-localization to alter the signal that the protein is propagating. 

PTMs like the proteolysis of peptide bonds in converting apoenzymes to holoenzymes 

are irreversible, and thus are likely slower to respond to the changing cellular 

environment than reversible PTMs like phosphorylation, acetylation, or ubiquitination53. 

Though this reversibility is important in the context of cellular signaling, it can also make 

it difficult to detect PTMs via methods like x-ray crystallography or mass spectrometry. 

To prevent deacetylation or removal of similar post-translational modifications of 

proteins experimentally, we could minimize sirtuin activity via sirtuin inhibitors like EX-

527 or sirtinol55,56.  

1.3.2 Aminoacylation of Proteins 

In 1997, Sylvie Gillet demonstrated that E. coli Methionyl Aminoacyl-tRNA 

Synthetase (MetRS) could auto-aminoacylate57. This occurs via a covalent isopeptide 

bond forming between the carboxylate of the amino acid and the ε-NH2 group of a lysine 

residue. This modification lowered the enzyme’s ability to perform both ATP isotopic 

exchange and to aminoacylate tRNAMet. Since then, other authors have demonstrated that 
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other ARS and ARS paralogs, like Bacillus stearothermophilus MetRS and an 

Escherichia coli lysyl aminoacyl-tRNA synthetase (KARS) paralog, are capable of 

aminoacylating other proteins (the KARS paralog is only known to aminoacylate E. coli. 

elongation factor P) by the same mechanism of isopeptide bond formation with the ε-

NH2 group of a lysine residue discussed in Gillet’s 1997 paper57–59.  

In 2017, He et al. published NMR and mass spectrometry data detailing that all 

twenty amino acids were identified as modifiers of lysine residues, using a documented 

multi-specific amidase60,61. This suggested that the implications of the previous work in 

protein aminoacylation were broader than expected, that all of the ARS are capable of 

aminoacylating the ε-NH2 group of lysine residues, and that the modifications can be 

removed by deacetylases like Sirtuin1 or Sirtuin3 via the normal deacetylation 

mechanism60. Aminoacylation of proteins by ARS may represent a novel PTM that is 

directly sensitive to amino acid levels and thus could be used as a mechanism for amino 

acid sensing.  

1.4 Autophagy 

1.4.1 Overview of Autophagy 

Autophagy is a process of cellular recycling, where macromolecules in the cell 

are degraded to their fundamental parts62,63. There are several different subtypes of 

autophagy, which are either selective (removing unnecessary or harmful materials from 

the cell) or bulk (recycling cellular materials for the purpose of maintaining amino acid, 

lipid, and nucleotide level homeostasis, triggered by starvation conditions) autophagy62. 

There are three subtypes of autophagy: macroautophagy – the breaking down of damaged 
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cell organelles or unused proteins, microautophagy – the direct and largely random 

engulfment of cytoplasmic material into a lysosome, and chaperone-mediated autophagy 

– the recognition and selection of cytosolic proteins that are then sent to lysosomes for 

degradation62,64,65. Here, the term autophagy is used to refer to the process of 

macroautophagy. 

Autophagy is generally regulated by the ATG genes, over 30 of which have been 

described66. These generally display distinct similarity across human and yeast genomes. 

Autophagy begins with the construction of a vesicle precursor membrane called the 

preautophagosome (PAS), which will grow and start to isolate macromolecules in the 

cytoplasm as the structure becomes an autophagosome62,66,67 (Figure 6). This 

autophagosome will then fuse with a lysosome, which contains enzymes that facilitate 

the degradation of the contents of the autophagosome, thus facilitating the breakdown 

and recycling of cellular constituents to their basic metabolites.  

 

Figure 6. A visual representation of the autophagy pathway. 
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Under starvation conditions, AMPK activates ULK1, which begins the nucleation 

of inositol-modified membrane components into the PAS through ULK1 

phosphorylating ATG13 and VSP34 in the PI3 kinase complex. In this step, 

phosphatidylinositol 3-phosphate (PIP3) is added to the PAS. This structure is then 

elongated by incorporating additional material to generate a phagopore/isolation 

membrane. During this step, 1A/1B light chain 3b (LC3) conjugated to phosphatidyl 

ethanolamine is incorporated into the structure along with the ATG12-ATG5-ATG16L1 

complex, which assists in the conjugation of LC3 to phosphatidyl ethanolamine (PE)66. 

As macromolecules start to become isolated by the growing phagophore, the generally 

non-selective cargo of the soon-to-be autophagosome are tagged with poly-ubiquitin 

chains that are selective for autophagy and are conjugated to LC3s with the help of 

autophagy receptor and adaptor proteins66,68,69. The autophagosome is then fully 

extended to complete the double walled vesicular structure that is the autophagosome.  

Under conditions of amino acid sufficiency, mTORC1 (mammalian target of 

rapamycin complex 1) (a protein complex containing the serine/Thr kinase mammalian 

target of rapamycin) will phosphorylate and inhibit ULK1. mTORC1 is typically thought 

of as one of the key regulators in the initiation of autophagy due to its relationship with 

ULK1 and amino acid sensing.  Despite this, it is poorly understood how mTORC1 reacts 

to amino acid levels70. Currently, mTORC1 is only known to sense leucine and arginine 

levels, but is not activated when deprived of the other 18 amino acids71. Analysis of 

recent mass spectrometry data suggests that many components of the autophagy 

machinery may interact with and are aminoacylated by various ARS60,72. For example, 
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TARS, VARS and LARS have been suggested to aminoacylate ATG101 from the ULK1 

complex, AMPK, and PI3 kinase. If these modifications had an effect on autophagy 

levels, they would provide a rapid and direct means for the autophagy pathway to sense 

the amino acid pool, as well as fill in the current gap in our knowledge of how mTORC1 

serves as the amino acid sensor for the autophagy pathway.  

1.4.2 Autophagy in Disease  

Due to autophagy’s intrinsic link to the degradation of proteins and the 

accumulation of macromolecules in the cell, autophagy and proteins related to the 

autophagy pathway have been implicated in several different diseases66,73. These range 

from neurodegenerative diseases like Crohn’s disease and Alzheimer’s disease to 

diabetes66.  

Crohn’s disease has been linked to duplications in the IRGM gene, which is 

involved in the initiation of autophagy74,75. In addition, a single nucleotide polymorphism 

in ATG16L1, a protein that mediates the conjugation of PE to LC3 in autophagy’s response 

to pathogens, has also been associated with Crohn’s disease76–78. Several downregulating 

variants in the ATG7 gene promoter, which regulates the expression of a key protein in 

autophagosome formation, have been identified in patients with Parkinson’s disease79. An 

upregulating variant in the ATG5 gene promoter has also been identified in a patient with 

Parkinson’s disease80. Problems in the presenilin genes are the most common cause of 

familial Alzheimer’s disease81. Deficiency in presenilin1 has been linked to the improper 

translocation of the V0a1 subunit of the H+ -ATPase proton pump, resulting in improper 

acidification of the lysosome and in turn abnormal autophagy. Finally, autophagy has been 
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implicated in type 2 diabetes mellitus and the accumulation of human islet amyloid 

polypeptide in pancreatic β cells, which cause functional impairment and loss of β cells66.  

In addition to this, the autophagy pathway and its proteins have been demonstrated 

as having both tumor suppressive and tumor proliferative effects depending on the phase 

of tumorigenesis82. Autophagy upregulation can provide established tumors decreased 

sensitivity to normally fatal environmental stimuli and can confer starvation resistance. 

This aids in tumor progression, particularly in tumors undergoing the mesenchymal to 

endothelial transition (MET)82,83. On the other hand, Becn1+/- mice (Becn1-/- mice are fatal) 

can spontaneously develop several different types of malignancies82,84,85. The tumor 

suppressive properties of autophagy in the early phases of tumorigenesis have several 

possible mechanisms, including: suppression of reactive oxygen species (which have 

genotoxic effects), destroying micronuclei (which arise in conditions of cell-cycle 

perturbation), and controlling the levels of ras homology family member A (which is 

involved in cytokinesis)82.  

1.5 Thesis Objectives 

Here we demonstrate the specific autoaminoacylation activity of both E. coli and 

human TARS, as well as E. coli histidyl aminoacyl-tRNA synthetase (HARS) using 

procedures modified from Yanasigawa et al., 201059. These reactions were ATP 

dependent, and in the cases of the TARS enzymes were inhibited by tRNAThr and the 

TARS inhibitors obafluorin and BC194. Here we also demonstrate the inhibitory effects 

of obafluorin on both E. coli and human TARS activity and determine an IC50 value for 

each enzyme.  
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CHAPTER 2: EXPERIMENTAL PROCEDURES AND MATERIALS 

2.1 Protein Purification  

The assays that comprise the body of this thesis utilize purified ARS enzymes, 

which were overexpressed in E. coli and purified using an ÄKTA purification system as 

described in previous publications86–88. All purified proteins were expressed in pET 

vectors and transformed into Veggie BL21(DE3) Competent Cells (Millipore) or 

NovaBlue (Millipore) E. coli cells. Cells were grown in luria broth from stocks kept at -

80ᵒC and expression of our target proteins was induced with isopropyl β-D-1-

thiogalactopyranoside (IPTG) at an OD600 of between 0.4-0.6 A.  All our proteins were 

His tagged, and thus were purified using a HisTrap HP 5 mL nickel-affinity column (GE 

Healthcare) on an ÄKTA purifier system (GE Healthcare). Following purification, our 

samples were dialyzed with SnakeSkin 10K MWCO Dialysis tubing (Thermo Scientific), 

concentrated using Amicon Ultra 15 centrifugal filters (Millipore) and had their 

concentrations determined using a Nano-Drop spectrophotometer system.  

2.2 In vivo tRNAThr Transcription and Purification 

To obtain purified tRNAThr for our kinetics and aminoacylation assays, tRNAThr 

was overexpressed in E. coli and purified by gel electrophoresis and electrolution as 

described in previous works from the Francklyn Lab89,90. E. coli tRNAThr was expressed 

in BL21 E. coli cells, and purified via phenol chloroform extraction. The tRNAThr was 

then precipitated overnight in 2.5x volume ethanol and 0.1x volume sodium acetate and 

subjected to centrifugation. After washing the pellet with 75% ethanol, the pellet was 
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resuspended in 10 mM HEPES pH 6. This sample was then mixed with 6X blue loading 

dye and loaded into a large urea gel (6.5% polyacrylamide (19:1 

acrylamide:bisacrylamide), 8 M urea, and 0.5 M sodium acetate pH 5). The gel was run 

at 50 watts until the dye front almost ran off the gel, at which point the gel was imaged 

via a UV light box and the tRNAThr band was identified. This band was excised, chopped 

and placed into an electroeluter apparatus (Whatman/Schleicher & Schuell) overnight. 

After electroelution, the purified sample was again precipitated with 2.5x volume ethanol 

and 0.5x volume sodium acetate and then resuspended in TE6 buffer.     

2.3 ARS Kinetics Assay 

To measure the effects of obafluorin on TARS’ canonical tRNA charging 

activity, an assay modified from Ruan et al., 2005 was used, where active enzyme was 

incubated with its necessary substrates and its activity measured 14C labeled Thr and a 

liquid scintillation counter40. Purified TARS protein (10 nM) was pre-incubated with 

varying concentrations of obafluorin for 10 minutes. After pre-incubation, TARS and 

obafluorin were added to a master reaction mixture with the final concentrations of 100 

mM HEPES pH 7, 4 mM ATP, 10 mM MgCl2, 50 µM 14C labeled Thr (Moravek), and 5 

µM tRNAThr. This mixture was then incubated for 10 minutes, with time points being 

taken at 1, 2.5, 5, and 10 minutes. At each time point, three 5 μl aliquots were spotted 

onto 5% TCA presoaked 3MM Whatman paper (Sigma-Aldrich). After letting the spots 

dry, the Whatman paper was washed three times with 5% TCA, and once with 95% 

ethanol. Whatman paper was dried and the counts on each square of paper analyzed with 
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a liquid scintillation counter using Hydrofluor Liquid Scintillation Fluid (National 

Diagnostics). 

2.4 Autoaminoacylation Assay 

To measure levels of ARS autoaminoacylation, enzyme was incubated with its 

necessary substrates in a protocol modified from Yanasigawa et al., 2010, and was 

visualized the reaction via gel electrophoresis and autoradiography (autorad)59. Purified 

TARS (10 µM) was combined with 50 mM Tris HCL pH 7.5, 50 µM 14C labeled Thr 

(Moravek), 4 mM ATP, 10 mM MgCl2, 5 mM βME, and 5 µg/mL pyrophosphatase 

(Thermo Scientific). This mixture was incubated in a 37˚C water bath for 2-6 hours, with 

time points taken at key intervals. These time points were quenched in 4X SDS PAGE 

sample buffer (200 mM Tris pH 6, 4% SDS, 4 mg/mL bromphenol, 4% βME, 40% 

glycerol, and 0.004% pyronin Y) and then run on an 8% SDS PAGE gel. This gel was 

fixed in a 50% methanol/10% acetic acid solution for 20 minutes and then dried in a 40% 

glycerol/10% ethanol solution for 30 minutes. This dry gel was then imaged by exposing 

a kodak phosphor screen (BioRad) to the gel for 62 hours and developing the screen on 

a Pharos FX phosphoimager system (BioRad). Results were quantified using the volume 

analysis tools in QuantityOne (BioRad).    
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CHAPTER 3: AUTOAMINOACYLATION OF AMYINOACYL-TRNA 

SYNTHETASES 

3.1 Introduction 

 The current hypothesis of how ARSs could serve as a mechanism of sensing 

amino acid levels in the autophagy pathway relies on ARSs being able to aminoacylate 

proteins. This was already demonstrated in He et al., 2017, but has yet to be individually 

validated for both TARS and HARS60. Among the many targets of each enzyme 

identified in He et al., 2017, both TARS and HARS aminoacylate themselves, making 

themselves the easiest targets to use to validate this function. Using an 

autoaminoacylation procedure modified from Yanasigawa et al., 2010, the 

autoaminoacylation abilities of several different ARSs were tested in various conditions, 

addressing the substrates necessary for the reaction and the effects of tRNA on the 

reaction. 
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3.2 E. coli ARS Results 

 To validate the requirements for the E. coli TARS’ protein aminoacylation 

reaction, autoaminoacylation assays were performed with varying concentrations of 

enzyme, Mg2+, and ATP. These assays revealed that the reaction is dependent on the 

presence of ATP, and is sensitive to Mg2+ concentrations.  (Figure 7).   

 
Figure 7. E. coli TARS is capable of autoaminoacylation. N = 2 An autoradiograph showing E. coli 

TARS autoaminoacylation at 0 and 6 hours varying (from left to right) enzyme concentration (0 or 10 µM), 
ATP concentration (0 or 4 mM) and Mg2+ concentration (0 or 10 mM).  

 

Though there was no MgCl2 added to the reaction mixture for the ‘No MgCl2’ condition, 

we did not test whether the reaction would occur with no Mg2+ present (for example 

ensuring that there is no Mg2+ in our ATP salt), and thus cannot say whether the reaction 

can occur without Mg2+.  
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Following this, we were interested in the time frame of this reaction. To test this, 

we performed an autoaminoacylation assay, taking time points at 0, 0.25, 0.5, 1, 2, 3, 4, 

and 6 hours (Figure 8a). Graphing this autorad data reveals that the reaction reaches its 

peak progress at 2 hours (Figure 8b). Following this, levels of aminoacylated TARS 

decrease and eventually plateau around 4 hours.  

 
Figure 8. The time frame of the E. coli TARS autoaminoacylation reaction. N = 2. a) An 

autoradiograph showing eight time-points (increasing left to right) taken at during an E. coli TARS 
autoaminoacylation assay. b) A progress curve for a six-hour long E. coli TARS autoaminoacylation assay 

in units of autorad detected radiation (U). 
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With a better understanding of the kinetics of the reaction, we next wanted to 

see the effects of increasing tRNAThr concentration on the rate of the aminoacylation 

reaction. Adding 10 µM tRNAThr to an autoaminoacylation assay resulted in decreased E. 

coli TARS autoaminoacylation (Figure 9a). Again, graphing this autorad data reveals that 

tRNAThr greatly decreases the autoaminoacylation effects of E. coli TARS (Figure 9b).  

 
Figure 9. tRNAThr decreases E. coli TARS autoaminoacylation. N=1  

a) An autoradiograph showing eight timepoints (increasing left to right) of a three-hour long 
autoaminoacylation assay without tRNA. b) An autoradiograph showing eight timepoints (increasing left to 

right) of a three-hour long autoaminoacylation assay with 10 µM tRNA. c) Two E. coli TARS 
autoaminoacylation progress curves, one with 10 µM tRNA, and one without, shown in units of autorad 

detected radiation (U).  
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Finally, the specificity of the E. coli TARS autoaminoacylation reaction was 

tested. To test this, two side by side aminoacylation assays were run, one with TARS and 

Thr, and the other with TARS and His. This assay revealed that the reaction is in fact Thr 

specific, as there are only bands in the autorad in the timepoints that contain Thr (Figure 

10).  

 
Figure 10. E. coli TARS autoaminoacylation is Thr specific. N=1. An autoradiograph with two E. coli 

TARS autoaminoacylation assays, one (the left four lanes) with Thr (50 µM), the other (the right four 
lanes) with His (50 µM). 
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After finding the requirements for E. coli TARS’ autoaminoacylation reaction 

and confirming its specificity, E. coli HARS was tested to confirm the requirements for 

its autoaminoacylation reaction. To test this, an autoaminoacylation assay with available 

E. coli HARS was performed, varying concentrations of ATP. As anticipated, E. coli 

HARS was also capable of autoaminoacylation, and like autoaminoacylation of E. coli 

TARS, autoaminoacylation of E. coli HARS is also ATP dependent (Figure 11a). The 

specificity of the HARS autoaminoacylation reaction was also tested via two side by side 

autoaminoacylation reactions, one with His and the other with Thr. This showed that, like 

E. coli TARS, E. coli HARS protein aminoacylation activity is specific to its cognate 

amino acid (Figure 11b). 

 

 
Figure 11. E. coli HARS is capable of specific autoaminoacylation with His. a) An autoradiograph 

showing E. coli HARS autoaminoacylation at 0 and 6 hours varying (from left to right) enzyme 
concentration (0 or 10 µM) and ATP concentration (0 or 4 mM). b) An autoradiograph with two E. coli 
HARS autoaminoacylation assays, one (the left four lanes) with His (50 µM), the other (the right four 

lanes) with Thr (50 µM).  
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This set of experiments supported that both E. coli TARS and E. coli HARS are 

capable of autoaminoacylation. These reactions have a reproducible time frame and are 

both cognate amino acid specific and ATP dependent, likely occurring through the same 

mechanism undergone in the aminoacylation of their cognate tRNA molecules.  

3.3 Human TARS Results 

 To validate human TARS’ protein aminoacylation abilities and the conditions 

under which it autoaminoacylates, autoaminoacylation assays were performed with 

varying concentrations of Mg2+, and ATP. These assays did support human TARS being 

able to autoaminoacylate, though there was some protein aggregation (Figure 12).   

 

Figure 12. Human TARS is capable of autoaminoacylation. N=3. An autoradiograph showing human 

TARS autoaminoacylation at 0 and 6 hours varying (from left to right) enzyme concentration (0 or 13 µM), 
Mg2+ concentration (0 or 10 mM) and ATP concentration (0 or 4 mM).  

 
Rather than showing up as a strong band at the molecular weight of human TARS (75 kDa), 

there are strong bands barely in the very top of the gel, and a faint band at 75 kDa. These 

results showed up consistently across all three of these experiments, and were not fixed 

with increased reducing agent or increased time denaturing at 90ᵒC before SDS PAGE. 
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Regardless, the data show that human TARS autoaminoacylation is ATP dependent, and 

is sensitive to decreased Mg2+ concentrations. To test whether the TARS’ 

autoaminoacylation abilities are specific to Thr, two side by side autoaminoacylation 

assays were run with human TARS, one with Thr and one with Val. This revealed that like 

protein aminoacylation by E. coli TARS, protein aminoacylation via human TARS is 

specific to Thr (Figure 13).  

 

 
Figure 13. Human TARS autoaminoacylation is Thr specific. An autoradiograph with two human 
TARS autoaminoacylation assays, one (the left four lanes) with Thr (50 µM), the other (the right four 

lanes) with Val (50 µM).  

 
These experiments also showed that the bands at the top of the autoradiograph are likely 

aggregates of human TARS and that their formation is likely time dependent. Next, we 

wanted to test the effects of tRNAThr on human TARS autoaminoacylation, which we 

accomplished by running an aminoacylation assay with 10 µM tRNAThr and comparing it 

to human TARS lanes without tRNAThr. Just like we see in E. coli TARS, the presence of 

tRNAThr decreases TARS autoaminoacylation (Figure 14a). When counted via a volume 

analysis tool in QuantityOne, we see that the in the presence of tRNAThr, human TARS 
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autoaminoacylation only reaches 80% of that reached by the reaction without tRNAThr 

present (Figure 14b). These experiments appeared to have less aggregated 14C labeled 

TARS than previous experiments with the human enzyme. This may be due to increased 

mixing of the reaction reagents during its 2-hour incubation at 37ᵒC. 

 
Figure 14. tRNAThr decreases human TARS autoaminoacylation. N=3 a) An autoradiograph with three 

human TARS autoaminoacylation assays, one (the left four lanes, time increasing left to right) with 
tRNAThr (15 µM), one (the center lane) with no tRNA, and the last (the right four lanes, time increasing left 
to right) with tRNAThr (15 µM). b) The average progress curve of human TARS in the presence of tRNAThr 
compiled from three autoaminoacylation assays. This curve is normalized to the activity of a human TARS 

autoaminoacylation assay without tRNAThr, incubated for two hours. Error bars represent the standard 
deviation for each time point.  

 
From these experiments we confirmed that human TARS is capable of 

autoaminoacylation as published in He et al., 201760. Like the bacterial enzyme, this 

reaction is both Thr specific and ATP dependent, but is more susceptible to protein 

aggregation in our assay than the bacterial enzyme. Autoaminoacylation of human TARS 
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is also decreased by tRNAThr. Human TARS’ specificity to Thr, dependence on ATP, and 

susceptibility to increasing tRNA concentration all suggest that these reactions are likely 

occurring through the same mechanism of TARS’ canonical function of tRNAThr 

aminoacylation.  
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CHAPTER 4: CHARACTERIZING THE INHIBITORY EFFECTS OF 

OBAFLUORIN ON THREONYL-TRNA SYNTHETASE ORTHOLOGS.  

4.1 Introduction 

 Obafluorin is a β-lactone with a nitrobenzene and an ortho-benzenediol on either 

side of the β-lactone50. β-lactams and β-lactones are known for their potential as 

antibiotics, due to the mechanism of penicillin (a β-lactam) in inhibiting cell wall 

synthesis by preventing cross-linking of the forming peptidoglycans91. Obafluorin was 

identified as an antibacterial agent in 1984, but it was not until a recent analysis of the 

biosynthetic obafluorin operon that a possible mechanism of action was hypothesized for 

its antibacterial effects49,50,52. Within obafluorin’s biosynthetic operon lies the gene 

ObaO, which encodes a TARS paralog of the same name (ObaO). One hypothesis for the 

function of this gene is that it may be an obafluorin resistant TARS paralog, as this would 

be necessary for Pseudomonas fluorescens to still produce tRNAThr and thus have normal 

protein translation if obafluorin did inhibit TARS. 

 Borrelidin, an 18-membered macrolide compound with a five-membered ring 

attached to it at carbon 17, was isolated from Streptomyces rocheii in 194946. Since then, 

its anti-malarial, anti-angiogenic, anti-fungal, and anti-tumor effects have been shown, 

the mechanism of these being its inhibition of TARS43–47. Like borrelidin, obafluorin may 

be a slow, tight binding inhibitor of TARS, but is yet to be kinetically characterized. To 

test the possible inhibitory effects of obafluorin on both bacterial and human TARS, we 

employed ARS kinetics assays and a wide range of obafluorin concentrations, allowing 

us to calculate the IC50 values for both enzymes.  
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4.2 Results 

 To validate obafluorin’s hypothesized inhibitory effects on E. coli TARS’ 

canonical function, four ARS kinetics assays were run, each with a different 

concentration of obafluorin (0 nm, 10 nm, 100 nm, and 1 µM). Increasing obafluorin 

concentration resulted in decreasing bacterial TARS activity, demonstrated by decreased 

progress curve slopes (Figure 15).  

 
Figure 15. E. coli TARS is inhibited by obafluorin. N=3 Pmol of tRNA charged over time for four 

different ARS kinetics assays with E. coli TARS, each with a different concentration of obafluorin, shown 
in the figure key on the right. Error bars represent the standard error for each time point. 

 
To better understand the inhibitory potential of obafluorin on bacterial TARS, more ARS 

kinetics assays were performed, but this time with seven different obafluorin 

concentrations and the end goal of creating an IC50 curve for obafluorin on bacterial 

TARS. Again, increasing obafluorin concentrations correlated with decreased bacterial 

TARS activity (Figure 16). From these data collected with 10 nM E. coli TARS, an IC50 

value of 1.325*10-7 M (132.5 nM) was calculated (Figure 16) (Table 2).  
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Figure 16. Obafluorin’s IC50 with E. coli TARS. An IC50 curve for E. coli TARS with fractional 
velocity plotted against molar obafluorin concentration on a logarithmic scale. This curve was calculated 

from N=3 progress curve data with seven different obafluorin concentrations. 

 

Table 2. Obafluorin IC50 values for E. coli and human TARS. Enzyme concentration, IC50 values and 
R2 values from IC50 curves for both E. coli and human TARS. Experiments for IC50 curves were 

performed with N=3.  

 E. coli TARS  Human TARS 

Enzyme concentration 10 nM 5 nM 

IC50 1.325*10-7 M (132.5 nM) 2.396*10-8 M (23.96 nM) 

R2 value (non-linear fit, 

variable slope, four parameters) 
0.9682 0.9683 

  

Obafluorin’s inhibitory potential on human TARS was then tested with seven ARS 

kinetics assays, each with a different obafluorin concentration (figure 17a). From this 

data collected with 5 nM human TARS, an IC50 value of 2.396*10-8 M (23.96 nM) was 

calculated (Figure 17b) (Table 2).  
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Figure 17. Obafluorin inhibits human TARS. a) Pmol of tRNA charged over time for seven different 
ARS kinetics assays with human TARS, each with a different concentration of obafluorin, shown in the 
figure legend on the right. Error bars represent the standard error for each time point. N=3 b) An IC50 

curve for human TARS with fractional velocity plotted against molar obafluorin concentration on a 
logarithmic scale. This curve was calculated from N=3 progress curve data with seven different obafluorin 

concentrations. 
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Finally, the inhibitory potential of a benzoate obafluorin analog, EHTS-1, was 

tested for both bacterial and human TARS. ARS kinetics assays were performed with 

three different EHTS-1 concentrations for both bacterial and human TARS, yielding 

interesting results. EHTS-1 did not have a statistically significant inhibitory effect on 

human TARS (Figure 18a). The bacterial enzyme on the other hand did have significantly 

decreased activity in the presence of EHTS-1 (Figure 18b).  

 

Figure 18. EHTS-1 inhibits E. coli TARS but not human TARS. a) Three ARS kinetics assay progress 
curves with E. coli TARS, each with a different obafluorin concentration. Error bars represent the standard 

error for each time point. Each curve was calculated from data of N=3. b) Three ARS kinetics assay 
progress curves with human TARS, each with a different obafluorin concentration. Error bars represent the 

standard error for each time point. Each curve was calculated from data of N=3. 

 
 Overall, many ARS kinetics assays across a range of obafluorin concentrations 

indicate that obafluorin does inhibit both E. coli and human TARS. Additionally, the 

benzoate obafluorin analog EHTS-1 did not have a statistically significant effect on 

human TARS, but did result in a significant decrease in E. coli TARS activity.  
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CHAPTER 5: DISCUSSION AND FUTURE DIRECTIONS 

5.1: Autoaminoacylation 

In this study, we validate and expand upon the finding of He et al., 2017, who 

described that ARS are capable of aminoacylating proteins. We find that E. coli TARS 

and HARS, as well as human TARS are capable of autoaminoacylation, and described 

the conditions required for this reaction to occur. The ATP dependence, activity increase 

in the presence of Mg2+, specificity for each ARS’s cognate amino acid and inhibition of 

TARS autoaminoacylation by increasing tRNAThr concentrations suggest that this 

reaction occurs through the same mechanism as ARS’s canonical tRNA charging 

function. This differs from the mechanism of protein aminoacylation discussed in Vo et 

al., 2018, where the protein ANKRD16 functions as a sink for Ser that has been 

mischarged by AlaRS92. When graphing aminoacylated E. coli TARS over time we 

observed a decrease in aminoacylated TARS after 3-4 hours of incubation (Figure 8b and 

9b). This decrease in autoaminoacylation levels indicates that some of the isopeptide 

bonds formed in the aminoacylation reaction will break over time, and the plateau in 

aminoacylated TARS levels following it indicates that the reaction might reach an 

equilibrium between aminoacylated and un-aminoacylated ARS. In 1997 Gillet et al. 

demonstrated that aminoacylated MetRS displayed decreased aminoacylation 

functionality, supporting this hypothesis that the reaction reaches an equilibrium between 

unlabeled ARS and aminoacylated ARS that have decreased activity57.  

Though these findings are important in and of themselves, their implications about 

ARS as a means of post-translationally modifying proteins are far broader. If ARS are 
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capable of aminoacylating proteins, not only does this mean there is a new mechanism for 

PTM of proteins, there is also a new mechanism for PTM of proteins that is directly related 

to the amino acid pool of the cell60. This would allow aminoacylation to function as a signal 

for amino acid starvation or amino acid sufficiency conditions and play a role in the amino 

acid metabolism of the cell. Among the many aminoacylated proteins identified in 

Behrends et al. 2010, several pieces of the autophagy machinery are likely aminoacylated72. 

These include ATK101 from the ULK1 complex, PRKAG1 and 2 from AMPK γ, and 

ATG14, which is a part of the PI3K complex72,93. In a state of cellular amino acid 

sufficiency, ARS could label these proteins to propagate the amino acid sufficiency signal 

through the autophagy pathway, inhibiting it. In a state of cellular amino acid starvation, 

ARS would not be able to aminoacylate these pieces of autophagy machinery, allowing 

them to perform their typical function in the initiation of autophagy. Interestingly, ARS 

aminoacylation of proteins seems to be conserved between both prokaryotes (E. coli) and 

eukaryotes (humans). This points to this mechanism and PTM being very old, likely having 

a diverse range of functions across the tree of life94.  

 One limitation to the methods employed in our study is the high background signal 

seen in our autoradiographs. Even after ensuring that our k-screens were blanked, and both 

the k-screens and cassettes were not radioactive, the background signal persisted in our 

autoradiographs. The background signal is likely a consequence of long k-screen exposure 

times (~60-80 hours) with a relatively weak radioisotope (14C). With a stronger 

radioisotope we would see higher signal-to-noise ratio, which would allow QuantityOne to 

set a lower background radiation level while still showing where the signal was 
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concentrated on the screen. This does not diminish the impact of our findings, as there is a 

clear and quantifiable difference between conditions where autoaminoacylation was 

occurring and where it was not.   

 Alongside attempting to minimize background radiation in our autoradiographs, 

we would also like to test the effects of the TARS inhibitors BC194 and obafluorin on the 

autoaminoacylation reaction, as well as the effect of adding catalytically dead TARS 

mutants to the reaction mixture.  By varying the concentration of catalytically dead TARS 

mutants in the reaction mixture, we could make a Michaelis-Menton curve for the reaction, 

as the catalytically dead mutants act exclusively as substrates for the reaction.  

 These autoaminoacylation experiments have been a piece of a much larger work 

that has the overarching goal of identifying the mechanisms underlying amino acid sensing 

in the autophagy pathway. Here, we have provided control experiments that confirm the 

results from Behrends et al., 2010 and He et al., 201760,72. We would like to continue 

experiments like these by testing the ability of ARS to aminoacylate the components of the 

autophagy machinery put forth in Behrends et al., 2010, for example TARS aminoacylating 

a bacterially-expressed ULK1 catalytic domain construct72. Using immunoaffinity 

purification methods we could selectively purify ULK1 or other crucial components of 

autophagy machinery in both fed and starved conditions and compare whether the protein 

is aminoacylated via mass spectrometry to determine whether the modification is a function 

of the nutritional states of the cell. Alternatively, following immunoaffinity purification of 

components of autophagy machinery from amino acid starved conditions we could 

incubate the purified protein with select ARSs and either radiolabeled or ‘cold’ amino acid, 
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and detect the aminoacylation of these proteins by SDS page and autoradiography or mass 

spectrometry respectively.  

Preliminary western blotting data indicates that leucine (Leu) or Thr depletion and 

TARS knockdown via siRNA significantly increase phosphorylated ULK1 (p-ULK1) at 

S555, indicating activation of autophagy. (Figure 19).  

 
Figure 19. Amino acid depletion and TARS knockouts increase p-ULK1. a) Western blots against P-

ULK1 (S555), TARS, P-AMPK, and β-tubulin in full media, and Thr and Leu deplete medias.  b) 

Quantified western blot data showing phospho-AMPK (pAMPK), pULK1, and TARS levels in Thr and 
Leu starved media after 1 and 3 days. c) A bar graph showing normalized p-ULK1 levels from SKOV-3 
cells in control media, Torin1 (an mTOR inhibitor) treated media, or amino acid starved media (EBSS) 

transfected with either control siRNA or siTARS.   

 Using human ovarian cancer cell lines (SKOV and PC12), siRNA against specific ARS,  

and amino acid rich and depleted medias, we will assess which ARSs and amino acids are 

most important in the process of autophagy initiation, detecting changes between fed and 

starved via well-validated autophagy assessment assays, including autophagy specific 

dyes95, comparing free LC3 levels (a standard indicator of autophagy levels in the 

autophagy literature) vs LC3 levels in autophagosomes96, or monitoring LC3 I maturation 
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to LC3 II97. We expect these experiments to support the essential branched chain amino 

acids being particularly crucial in the initiation of autophagy.  

5.2: Obafluorin 

In this study, we confirmed that obafluorin is an inhibitor of both E. coli and 

human TARS, and calculated IC50 values for obafluorin with both enzymes (1.325*10-7 

M (132.5 nM) at 10 nM enzyme concentration, and 2.396*10-8 M (23.96 nM) at 5 nM 

enzyme concentration respectively) (Table 2). We also showed that ETHS-1, a benzoate 

analog of obafluorin, did not have a statistically significant inhibitory effect on human 

TARS, but did result in a significant decrease in E. coli TARS activity. 

TARS inhibitors often display antibacterial activities, including obafluorin 49. 

This means that there is some potential for obafluorin and obafluorin analogs as 

antibacterial drugs, depending on their selectivity for the human and bacterial enzymes. 

Though calculated for different concentrations of enzyme (10 nM for E. coli and 5 nM for 

human), our preliminary data suggest that the human enzyme may have a higher affinity 

(lower IC50) for obafluorin than the bacterial enzyme. These data need more replicates and 

statistical support before publication, but if true, would indicate that obafluorin may not be 

useful as an antibacterial drug for use in humans, but may prove useful as an anti-

angiogenic drug. TARS is among the several synthetases that have been implicated in 

angiogenesis, which when dysregulated is one of the hallmarks of cancer34,37. As a 

compound that has slightly more affinity to the human enzyme than the bacterial enzyme, 

obafluorin may prove useful as an anti-angiogenic drug with minimal off-target, gut-

microbiota side effects. Alternatively, our data show that EHTS-1 had no significant 
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inhibitory effects on the human enzyme, but did significantly inhibit the bacterial enzyme 

(Figure 18). If supported with more replicates, enzyme concentrations and inhibitor 

concentrations, EHTS-1 could prove useful as an antibacterial drug for human use in the 

future.  

This does bring up one drawback to our current data, the number of replicates 

necessary for statistical support of our data. Particularly highlighted in our EHTS-1 data 

with E. coli TARS (which shows that 100 nM EHTS-1 inhibited E. coli TARS significantly 

more than 1 µM EHTS-1 did), and in our obafluorin and human TARS IC50 curve (where 

the 5 µM obafluorin concentration had a negative fractional velocity), we need to repeat 

our experiments with more replicates, different enzyme preps, and more inhibitor 

concentrations to ensure accurate and reproducible IC50 values. Additionally, unpublished 

data from the Wilkinson lab has identified a gene encoding a TARS paralog within the 

cluster of genes involved with the obafluorin synthesis machinery. This enzyme, called 

ObaO, is largely similar to bacterial TARS, but has a Cys residue substituted for a Val. We 

hypothesize that this TARS paralog may be obafluorin resistant, and this Cys � Val 

substitution may be important for obafluorin resistance. We have been provided pET28a 

vectors that contain ObaO, ObaO with its Val substituted for a Cys, and E. coli TARS with 

its Cys substituted for a Val by the Wilkinson lab, and in future experiments we plan to test 

the effects of obafluorin on these three enzymes.   

5.3: Closing Remarks 

ARSs are a family of enzymes that are of critical importance for translation, 

attaching a specific amino acid to its cognate tRNA molecule. Recent ARS developments 
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range from elucidating their role in diseases from cancer to peripheral neuropathy, to 

exploring them as a means to post-translationally modify other proteins. This function is 

likely conserved across both prokaryotic and eukaryotic ARSs, opening up an incredibly 

diverse array of protein targets for ARSs to aminoacylate. Additionally, the discovery of 

new ARSs inhibitors that have different affinities for each ARSs ortholog offers unique 

possible solutions to the many diseases associated with ARSs. Here we have helped 

develop our understanding of ARSs as post-translational modifiers of pieces of the 

autophagy machinery and the novel TARS inhibitor obafluorin, expanding the already 

complex web of interactions and pathways that ARSs are involved in, and raising 

valuable questions that warrant the continued study of this diverse group of enzymes.  
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APPENDIX: CHARACTERIZING THE ACTIVITY OF VALYL-TRNA 

SYNTHETASE MUTANTS 

Intro: 

As a result of ARSs integral role in protein translation and their growing list of 

secondary functions, many ARS have been implicated in many different diseases, ranging 

from cancer and autoimmune diseases to neurodegenerative diseases9,21. Both dominant 

and recessive pathogenic variants have been identified in ARS genes from patients with 

disorders presenting neurological features. These range from diseases with peripheral 

neuropathies like Charcot Marie Tooth Syndrome98–100, to congenital visual impairment 

with progressive microcephaly101, and developmental delays with progressive 

microcephaly and intractable seizures102,103. Recently, several novel VARS variants were 

identified in mainly consanguineous families, two families of which were previously 

reported as VARS being a candidate ‘disease gene’29. Several of these mutant variants were 

tested via yeast complementation assays and in zebrafish models, demonstrating that these 

variants likely lead to a loss of protein function and that VARS deficiency mirrors some of 

the main characteristics of the human disease. To supplement the yeast complementation 

data and further support the recently identified VARS variants cause a loss of function, we 

performed in vitro activity assays on patient-derived fibroblasts and lymphoblasts. Our 

assays supported the hypothesis that these new VARS variants have a loss of function and 

that they may be contributing to the phenotypes displayed by the patents.  If it was the case 

that the parents did not have 100% activity compared to control, this would suggest that 

there is a threshold below which loss of aminoacylation activity causes disease phenotype, 
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and mutations that allow aminoacylation function above this threshold will be non-

pathogenic.  Determining this threshold could be useful for predicting the possible 

phenotypes that could manifest in a patient containing specific mutations.   

Methods:  

 These protocols were modified from the aminoacylation protocol described in 

Puffenberger et al. 2012. Control ATCC cells and patient derived cell samples were grown 

in Dulbecco’s Modified Eagle Medium, high glucose (Gibco®) enriched with 10% heat-

inactivated Fetal Bovine serum (FBS) (Gibco®), 1% L-glutamine (Life Technologies), 1% 

penicillin-streptomycin (Life Technologies) conditions for fibroblasts and RPMI 1640 

Medium (Gibco®), enriched with 10% heat-inactivated FBS (Gibco®), 1% L-glutamine 

(Life Technologies), 1% penicillin-streptomycin (Life Technologies) and 1% sodium 

pyruvate (Life Technologies) conditions for lymphoblasts. Following washes with 

Dulbecco’s phosphate buffered saline, cells were lysed in protease inhibitor cocktail 

(Sigma), 50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM dithioreitol, and 0.5% Triton X-

100 and protein concentration was measured via Bradford assay. Lysates were mixed to 

make 100 mM HEPES pH 7.2, 30 mM KCl, 10 mM MgCl2, 107 µM total human placental 

tRNA, 2 mM ATP, 50 µM 14C-labeled valine (282.8 mCi/mmol). These mixes were 

incubated at 37 ᵒC with timepoints taken at 1, 2.5, 5 and 10 minutes of incubation. These 

timepoints were quenched when spotted onto 3MM Whatman filter paper pre-soaked with 

5% TCA. This filter paper was washed three times with 5% TCA, and once with 95% 

ethanol before having its radiation quantified via liquid scintillation. The specific activity 
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for each sample was calculated from linear fits of progress curve data, and was 

subsequently corrected for total protein concentration.  

Results and Discussion: 

 Using the above assay on the available patient lymphoblasts and fibroblasts, all 

the patient cells tested showed decreased VARS activity (Figure 20).  

 

Figure 20. Patient cells have decreased VARS activity. VARS and TARS activity levels measured from 
control or patient cell cell lysates. Error bars represent the standard error for each data set. Fibroblast data is 

in a), lymphoblast data is in b).  

 
In the fibroblasts, patients 4 and 5 (heterozygous carrying the 

p.Leu78Argfs*35/p.Arg942Gln variants) each display significantly decreased activity 

compared to control cells, approximately 25% and 12.5% respectively (Figure 20a).   
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Looking at the lymphoblasts, Patients 1 and 2 (heterozygous carrying the 

p.Leu434Val/p.Gly828Ser variants) had approximately 50% VARS activity compared to 

their parents (who did not display the phenotype but were heterozygous carrying the wild-

type allele and either the p.Leu434Val or p.Gly828Ser variant) (Figure 20b). Patient 9 

(carrying homozygous p.Arg404Trp variant) had approximately 25% VARS activity 

compared to the mother and father. The heterozygosity of each parent (having one wild-

type allele and either p.Leu434Val or p.Gly828Ser each) raises the question as to whether 

the parents have the same activity levels as a control cell line that is homozygous for wild-

type VARS. If it was the case that the parents did not have 100% activity compared to 

control, this would suggest that there is a threshold of aminoacylation activity for 

displaying a phenotype, which could in turn be useful for predicting the possible 

phenotypes that could manifest in a patient containing specific mutations.   

 These results support the variants expressed in the tested patient cells being loss 

of function variants, and along with zebrafish and yeast complementation data collected 

for these variants, suggest that these variants may be the mechanism underlying 

neurological disease phenotypes displayed by these families30.  This was among the first 

kinetic assays of VARS in association neurological disease, and provides us some basis for 

possible prediction of phenotypes that may be associated with ARS variants, better 

understanding the phenotypes of the afflicted patients, and perhaps future therapies for the 

observed phenotypes.  
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