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ABSTRACT 

 

Nosocomial lung infections are a growing concern in the United States, with more 

than 300,000 cases reported annually. More than 30 % of which are caused by the Gram-
negative bacteria, Pseudomonas aeruginosa and Klebsiella pneumoniae. Similarly, 
Gram-negative bacteria establish chronic infections in individuals with cystic fibrosis 
(CF) that are difficult or impossible to eradicate. P. aeruginosa has historically been one 

of the most prevalent pathogens of adults with CF. However, as antipseudomonal therapy 
has improved, more antibiotic resistant species have taken hold, including 
Stenotrophomonas maltophilia, which now colonizes more than 10 % of individuals with 
CF. Regardless of the cause or source, Gram-negative respiratory infections are 

becoming increasingly difficult to treat due to the rising incidence of multiple drug 
resistance among these organisms. To aid in the development of new therapeutics, a 
greater understanding of how these organisms transition from the environment to the host 
lung is needed. Here we utilized a combination of transcriptomics and molecular genetics 

to examine how P. aeruginosa, K. pneumoniae, and S. maltophilia, recognize and exploit 
the host lung milieu during the initiation of infection.  

One of the first components of the host lung environment that aspirated bacteria 
are exposed to is pulmonary surfactant (PS). This phospholipid-rich substance coats the 

distal airways of the lung and is thought to contain molecular cues that facilitate lung 
colonization by pathogenic bacteria. Here, we characterized the transcriptional response 
of K. pneumoniae to purified PS to examine how this organism interreacts with the host 
lung during colonization. This work revealed numerous virulence and colonization-

related genes that are expressed by K. pneumoniae under these conditions. We also tested 
the contribution of other surfactant-induced transcripts to K. pneumoniae pathogenesis 
using engineered gene deletion strains and a mouse model of pneumonia. This work 
revealed the polyamine efflux pump, MdtJI, and glycine betaine transporter, ProU are 

required for K. pneumoniae virulence. 
Phosphatidylcholine is the primary constituent of PS. P. aeruginosa is capable of 

completely metabolizing the phosphocholine head group of this lipid, and readily does so 
when exposed to PS. We previously observed that the most highly expressed genes in P. 

aeruginosa in response to PS were those involved in the catabolism of a downstream 
choline metabolite, sarcosine. Although our group had previously characterized the 
choline catabolic pathway of P. aeruginosa, the transcriptional regulation of sarcosine 
catabolism was not known. We utilized a genetic screen to identify the regulator 

controlling the expression of the sarcosine catabolic genes in P. aeruginosa. This 
regulator, which we named SouR (Sarcosine oxidase utilization Regulator) is the first 
sarcosine-responsive regulator to be characterized. 

The thick, viscous mucus (sputum) that accumulates within the CF lung serves as 

the primary nutrient source for microbes colonizing the CF lung. Here, we characterized 
the transcriptional responses of three S. maltophilia strains during growth in synthetic CF 
sputum media (SCFM2) to gain insight into how this organism interreacts with the host 
lung. We also compared the SCFM2 transcriptomes of two S. maltophilia CF isolates 

with the SCFM2 transcriptome of the acute infection model strain, K279A. This revealed 
CF isolate-specific signatures in gene expression that reflect adaptation to the CF lung. 
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CHAPTER 1: 

 

Introduction 

 

1.1 Multiple drug resistance: A serious threat to public health 

 The spread of antibiotic resistant bacteria poses one of the greatest current threats 

to global health (1, 2). More than 2 million drug resistant infections are reported in the 

United States each year that are directly responsible for more than 23,000 deaths (3). 

Antibiotic-resistant infections cause a significant financial burden on the United States 

healthcare system due to their association with extended hospital stays, longer courses of 

treatment, additional hospital visits, and increased mortality (2, 4). The additional 

medical costs associated with treating antibiotic resistant infections has been estimated at 

more than 20 billion dollars in the United States annually (5).  

 As current antibiotics continue to lose their effectiveness, treatment options are 

becoming increasingly limited. The steady rise of multidrug-resistant (MDR) Gram-

negative bacteria is particularly worrisome, especially among healthcare-associated 

opportunistic pathogens (6, 7).  To highlight the MDR organisms posing the greatest 

threats to public health, the Infectious Disease Society of America devised the acronym, 

“ESKAPE” to distinguish these bacteria (8). Four out of the six “ESKAPE” pathogens 

are Gram-negative species, including: Pseudomonas aeruginosa, Klebsiella pneumoniae, 

Acinetobacter baumannii, and Enterobacter spp.(8).  
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 Nosocomial infections are the sixth leading cause of death in the United States, 

claiming nearly 100,000 lives each year (9, 10). Infections of the lower respiratory tract 

(pneumonia) are the most dangerous type of hospital acquired infection and were 

attributed to the death of 36,000 individuals in the United States in 2002 (10), the most 

recent year such data has been compiled. Nearly 300,000 cases of nosocomial pneumonia 

are reported in the United States annually, of which Klebsiella pneumoniae and 

Pseudomonas aeruginosa are responsible for more than 30 % (7, 11, 12). Infections with 

either species are often complicated due to drug resistance against multiple classes of 

antibiotics. 

 The emergence of MDR in K. pneumoniae was first observed in the early 1980’s 

with clinical isolates harboring plasmids carrying multiple antibiotic modifying enzymes  

including extended spectrum β-lacatamases (ESBLs) that confer resistance to 

cephalosporins and penicillins  (13, 14). A 2013 report from the Center for Disease 

Control suggests that more than 20 % of K. pneumoniae clinical isolates in the United 

States now harbor at least one ESBL (14, 15). Carbapenem resistance in K. pneumoniae 

has spread throughout the world at an alarming rate through horizontal transfer events 

mediated by plasmids and transposons (16-19). As of 2013, 11% of K. pneumoniae 

infections in the United States were carbapenem resistant (15). Infections with 

carbapenem-resistant K. pneumoniae (CRKP) are associated with extremely high 

treatment costs and mortality rates approaching 50 % (20, 21). CRKP strains are 

frequently resistant to nearly all classes of antibiotics, and are often only treatable with 

the “last resort” drug, colistin (22, 23). Unfortunately, the overuse of colistin has resulted 

in resistance and lead to the emergence of K. pneumoniae infections that are no longer 



3 
 

treatable (22, 24, 25). Resistance against colistin in K. pneumoniae is most often 

mediated through mutations within genes that control LPS lipid A remodeling (26, 27), 

although plasmid-borne resistance was detected several years ago (28) and has since 

spread at a terrifying rate (29).  

 More than 13 % of all P. aeruginosa infections are considered MDR in nature due 

to resistance to three or more classes of antibiotics (3). P. aeruginosa is intrinsically 

resistant to numerous antibiotics largely due to a combination of low outer membrane 

permeability, a chromosomally encoded β-Lactamase (ampC), and numerous multidrug 

efflux pumps (30). Drug resistance in P. aeruginosa is frequently acquired through 

mutations within the promoter regions of antibiotic resistance genes that result in elevated 

expression (31). This phenomenon is often observed in genes encoding the Mex-family 

multiple drug efflux pumps, which result in acquired resistance to cephalosporins, 

meropenem, and fluoroquinolones (32-34), as well as ampC, which confers resistance to 

cephalosporins and penicillins when over-expressed (34, 35). P. aeruginosa resistance to 

fluoroquinolones is also mediated through mutations within DNA topoisomerases that 

inhibit the binding of these antibiotics (36). Furthermore, mutations that result in the loss 

of oprD expression confer resistance against numerous antibiotics, including imipenem 

(37). Aside from mutations, P. aeruginosa strains also acquire multi-drug resistance 

through horizontal transfer of plasmids that harbor antibiotic-modifying enzymes, 

including carbapenemases (18, 31). 

 Other environmental MDR Gram-negatives are also emerging as serious 

nosocomial respiratory pathogens, including Stenotrophomonas maltophilia (38, 39). S. 

maltophilia is intrinsically resistant to nearly all classes of antibiotics due to low outer 
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membrane permeability, coupled with an armament of ten multidrug efflux pumps, two 

broad spectrum β-lactamases, and several aminoglycoside modifying enzymes that are all 

encoded within this organism’s core genome (39, 40). Due to the extensive antibiotic 

resistance profile of S. maltophilia, therapeutic options for these infections are extremely 

limited, with trimethoprim/sulfamethoxazole (TMP/SMX) being the treatment of choice 

(39, 40). Unfortunately, resistance to these drugs is emerging via efflux pump 

overexpression and the spread of antibiotic modifying enzymes carried in class 1 

integrons (41, 42).  

 Recent reports have indicated that the susceptibility of S. maltophilia to 

TMP/SMX has dropped to 90 % in some regions (40, 43). Similarly, pan antibiotic 

resistant strains of P. aeruginosa and K. pneumoniae have been isolated in the clinical 

setting (23, 44, 45). The emergence of untreatable Gram-negative pathogens highlights 

the urgent need for new therapeutics-the development of which could be greatly 

facilitated through characterizing the initiation of infection by these organisms in vitro. 

 

1.2 Opportunistic respiratory tract infections associated with MDR pathogens  

MDR Gram-negative species typically possess lower virulence potential than their 

non-MDR counterparts and mostly cause respiratory tract infections in individuals with 

chronic lung disease or weakened immune systems following antibiotic treatment. These 

infections are common in the nosocomial setting and in individuals with Cystic Fibrosis 

(CF). In each type of infection, the host exhibits specific immune deficiencies that 

promote lung colonization and infection by distinct MDR Gram-negative species. An 
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overview of the innate immune defenses within the respiratory tract that must be 

overcome by these organisms to cause infection is briefly summarized below in section 

1.21. This is immediately followed by brief descriptions of nosocomial pneumonia and 

CF that center on the immune deficiencies within each host that promote infection by 

MDR pathogens. 

 

1.2.1 The innate immune defenses of the respiratory tract 

 Following deposition into the lung, inhaled or aspirated bacteria must overcome 

detection and clearance by the innate immune system in order to colonize and establish 

an infection. This includes killing mediated by numerous antimicrobial peptides, the 

complement system, phagocytic cells, and alveolar epithelial cells. These components of 

the innate immune system are briefly discussed below in the context of Gram-negative 

respiratory tract infections, and are also summarized in Figure 1.1. 

 The surfaces of the respiratory tract are coated with numerous antimicrobial 

peptides that are secreted by alveolar epithelial cells, macrophages, and activated 

neutrophils that serve to kill or inhibit the growth of aspirated or inhaled pathogens (46, 

47). Notable antimicrobial peptides within the lung include lysozyme, defensins, 

cathelicidin, which are thought to act synergistically to kill invading microbes through 

permeabilizing or disrupting bacterial cell membranes (46, 48). Lactoferrin is also found 

within the respiratory tract and serves to inhibit bacterial growth by sequestering iron 

cations (48, 49). 
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 The complement system is a major component of the innate immune defenses 

against pathogenic microbes that enter the lung and serves to detect and promote bacterial 

clearance via opsonization and also coat bacteria to be targets of the membrane attack 

complex (MAC) once they breach the endothelial barrier (50). This proteolytic cascade is 

activated by three distinct biochemical processes, including the classical (antibody 

mediated), alternative, and lectin-mediated pathways (50). Regardless of the mechanism 

of initiation, in the lung lumen complement activation stimulates a proteolytic cascade 

that leads to neutrophil recruitment and the opsonization of Gram-negative bacteria (47, 

50). 

 Several notable lectins are found within the lung milieu that promote 

opsonization and stimulate the compliment cascade. Two of the most critical effectors 

within the lung are the pulmonary surfactant-associated collectins, SP-A, and SP-D, 

which are pattern recognition receptors (PRR) that bind to carbohydrate structures on 

bacteria to promote opsonization by alveolar macrophages or recruited neutrophils (47, 

51). Other important PRR’s of the innate immune system within the respiratory tract 

include mannose binding protein and ficolin, which recognize polysaccharides on 

bacterial cell surfaces to promote their opsonization and stimulate the classical 

compliment cascade via C-reactive protein (CRP) (47). 

 Alveolar macrophages are likely the first immune cells to recognize inhaled or 

aspirated bacteria through detection of pathogen-associated molecular patterns (PAMPs) 

mediated by TLRs that are expressed on their cell membrane (52). Macrophages 

specifically recognize Gram-negative bacteria through TLR4 and TLR5-mediated 

signaling in response to lipopolysaccharide (TLR4) and flagellin (TLR5), which in turn 
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activates these cells (52). Once activated, macrophages release pro-inflammatory 

cytokines that recruit neutrophils, increase their own phagocytic capacity and induce 

reactive nitrogen species production, and stimulate alveolar epithelial cells to secrete 

antimicrobial peptides (47, 52). 

 Neutrophils infiltrate the lung in response to cytokines and proinflammatory 

signals released by activated alveolar macrophages. These cells serve a critical role 

during respiratory tract infection and act as the primary leukocytes responsible for killing 

extracellular bacteria. Neutrophils kill bacteria through a variety of mechanisms, 

including phagocytosis, respiratory bursts, degranulation of secretory vesicles containing 

proteases, and through the generation of neutrophil extracellular traps (NETs) (47, 53). 

 Epithelial cells within the lung also play several distinct roles in preventing 

bacterial colonization of the respiratory tract. The mucociliary escalator consists of 

ciliated epithelial cells that line the bronchioles and serve a critical clearance function 

through synchronized uni-directional cilia beating that serves to transport inhaled or 

aspirated bacteria bound to mucin from the peripheral airways, through the central 

airways, and up through the trachea where these secretions can be expectorated or 

swallowed (54). Furthermore, alveolar epithelial cells express TLR4 and TLR5 (55), and 

secrete antimicrobial peptides in response to signaling mediated by alveolar macrophages 

(47). Type II alveolar epithelial cells form lamellar bodies that secrete the phospholipid-

rich substance, pulmonary surfactant, which coats the alveolar surfaces (56). Aside from 

lowering the surface tension within the lung, pulmonary surfactant contains the SP-A and 

SP-D collectins and limits airway inflammation (57, 58).  
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1.2.2 Nosocomial pneumonia 

Pneumonia is the primary cause of death due to bacterial infection in the United 

States (59, 60). Approximately 300,000 cases of nosocomial pneumonia occur annually, 

which are associated with crude mortality rates ranging from 23-50 % (59, 61, 62). 

Nosocomial pneumonia is defined as pneumonia developing at least 48 h following 

admission into the hospital (63). Ventilator-associated pneumonia (VAP) is a specific 

subset of nosocomial pneumonia that typically arises 48-72 h following endotracheal 

intubation, and is associated with increased mortality rates (63). More than 50 % of all 

antibiotics prescribed in the intensive care unit (ICU) are administered for treating 

respiratory tract infections (12). Not surprisingly, infections with MDR Gram-negative 

species are common in nosocomial pneumonia and are typically “late-onset” in nature, 

occurring 4-7 days following hospital admission (7, 63, 64). 

Mechanical ventilation is the greatest risk factor associated with developing 

nosocomial pneumonia due to inhibited lung clearance, potentially damaged/torn 

epithelium resulting from intubation, and prolonged non-ambulatory periods (7, 61). 

Other risk factors associated with developing MDR pneumonia include: antibiotic 

treatment within 90 days prior to hospital admission, prolonged hospital stays (>5 days), 

pre-existing immunosuppressive diseases/therapies that compromise the immune system, 

and extremes in age (61, 63). Early-onset nosocomial pneumonia is most often caused by 

Staphylococcus aureus, Haemophilus influenzae, and drug-sensitive Enterics, including: 

K. pneumoniae, Escherichia coli, Enterobacter spp., and Serratia spp.. Late-onset 

pneumonia is most often caused by MDR Gram-negative species, such as: P. aeruginosa, 
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K. pneumoniae, A. baumannii, and S. maltophilia (7).  The prevalence of each species in 

nosocomial pneumonia are listed in Table 1.1. 

 

1.2.3 Cystic Fibrosis  

Cystic Fibrosis (CF) is the most common lethal genetic condition affecting the 

Caucasian population and afflicts more than 70,000 individuals worldwide (65). The 

disease is characterized by mutations within the gene encoding the cystic fibrosis 

transmembrane conductance regulator (CFTR) that result in impaired chloride and 

bicarbonate transport across the epithelial cells lining several organ systems (65, 66). 

Within the respiratory tract, lack of functional CFTR manifests in reduced airway surface 

water activity that impairs mucociliary clearance and causes the accumulation of viscous 

mucus in the airways, ultimately creating an environment that permits colonization by 

aspirated or inhaled microbes (65, 67). Furthermore, defective ion transport results in a 

hypertonic environment within the CF lung that impairs innate immune function through 

disrupting the activity of antimicrobial peptides (68). Individuals with CF also elicit a 

chronic neutrophil-driven inflammatory response to pathogens that is characterized by the 

excessive infiltration of these cells into the lung coupled with their impaired clearance 

(69, 70). Unfortunately, these neutrophils exhibit defective phagocytic killing capabilities 

and invoke substantial proteolytic damage to the respiratory tract (69, 70). Collectively, 

these environmental conditions promote chronic respiratory tract infections in individuals 

with CF that lead to progressive lung damage and declining respiratory function that 

eventually lead to death (54, 66). 
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 Respiratory tract infections in individuals with CF begin shortly after birth and are 

initially caused by professional pathogens, such as H. influenzae and S. aureus (71). 

However, by adulthood, more than 50 % of CF patients become chronically infected with 

P. aeruginosa, and these infections are closely associated with declining lung function 

and ultimately death in their third decade of life (72, 73). Other MDR Gram-negative 

bacteria also emerge later in CF disease progression and establish chronic infections, 

including: Burkholderia cenocepacia, Stenotrophomonas maltophilia, and 

Achromobacter xylosoxidans (65, 74). The prevalence of S. maltophilia within the CF 

population has more than tripled over the last decade, largely due to this organism’s 

extensive drug-resistance profile and the success of antipseudomonal therapies (38, 39). 

Recent reports have indicated that more than 13% of the worldwide CF population is 

infected with S. maltophilia (74, 75). 

   

1.3 MDR pathogen interactions with the host 

1.3.1 Pseudomonas aeruginosa  

1.3.1.1 Nosocomial pneumonia 

P. aeruginosa is most often encountered in the soil and a range of aquatic 

environments. Under these diverse environmental conditions, P. aeruginosa evolved an 

arsenal of weapons to evade or kill single-celled predatory protists. This machinery 

serves an important secondary purpose in P. aeruginosa and permits immune disfunction 

and virulence during acute infections in immunocompromised hosts. 
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P. aeruginosa encodes several secretion systems that transport a variety of lytic 

enzymes and toxins during acute respiratory tract infections. The type III secretion 

system serves as this organism’s primary virulence determinant and functions through 

forming a needle-like apparatus that directly injects effector proteins into epithelial cells 

lining the respiratory tract and phagocytic cells of the innate immune system (76). Four 

effector proteins have been characterized that are transported by this system, including 

three toxins (ExoS, ExoT, and ExoY) which disrupt actin polymerization and stimulate 

apoptosis in target cells, and the phospholipase ExoU which elicits a pro-inflammatory 

response and causes target cell lysis (76, 77). Regulation of this system is complex, and 

subjected to multiple levels of control primarily in response to host cell contact and 

calcium levels in the environment (78, 79). Downstream of these signals, transcription of 

the type III secretion apparatus is primarily regulated by the AraC family regulator, ExsA 

(78). The expression of ExsA is autoregulated, and positively regulated by the TetR-

family regulator, PsrA in response to long chain fatty acids (80), as well as negatively 

regulated by ExsD and PtrA (79).  

P. aeruginosa also utilizes two type II secretion systems to deliver at least 14 

cytotoxic effector proteins into the lung milieu that invoke tissue damage, increase 

inflammation, and disrupt immune function (81). Exotoxin A is one such effector, that 

inhibits host elongation factor EF2 resulting in cell death (82). Other well-characterized 

effectors include the quorum-regulated LasB elastase and Protease IV, which degrade the 

SP-A and SP-D collectins in pulmonary surfactant and disrupt phagocytosis by alveolar 

macrophages (83, 84). The hemolytic phospholipase C, PlcH, is also transported via type 

II secretion and degrades phosphatidylcholine and sphingomyelin in pulmonary 
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surfactant, leading to increased inflammation and disrupted surfactant function (85). plcH 

expression is influenced by the PhoPQ two component system in response to magnesium 

availability (79), and positively regulated by the AraC-family transcription regulator, 

GbdR, in response to the choline catabolites, glycine betaine and dimethylglycine (86). 

The degradation of sphingomyelin within the respiratory tract by PlcH liberates the 

potent antimicrobial sphingosine, which is also degraded by P. aeruginosa through the 

activities of enzymes positively regulated by the AraC-family regulator, SphR (87).  

P. aeruginosa also synthesizes several quorum-regulated cytotoxic molecules that 

contribute to pathogenesis during acute respiratory tract infection (79, 81). These include 

the phenazine, pyocyanin, which gives P. aeruginosa characteristic blue-green 

pigmentation and causes detrimental effects on cells of the innate immune system 

through inducing oxidative stress and disrupting catalase activity, inhibiting macrophage 

phagocytosis, and inducing neutrophil apoptosis (88, 89). P. aeruginosa also synthesizes 

hydrogen cyanide during acute infection that is also thought to contribute to host cell 

cytotoxicity and immune disfunction (90). 

The expression of type 4 pili and flagella are subjected to quorum and cyclic-di-

GMP mediated regulation in P. aeruginosa (79, 91). Aside from their respective 

functions in twitching and swimming motilities, flagella and pili also facilitate host 

colonization and biofilm formation through mediating adhesion to host epithelial cells 

and mucus within the respiratory tract (81, 91). Flagella are highly immunogenic (92) and 

are also required for type III secretion function during acute infections (76, 78). 

Moreover, biofilms are generated by P. aeruginosa during chronic respiratory tract 

infections that are associated with decreased antibiotic susceptibly and enhanced 
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resistance against clearance by the host immune system (81). A summary of the 

interactions between P. aeruginosa and the host during acute pneumonia is provided in 

Figure 1.2. 

1.3.1.1 Chronic CF infection 

 Numerous studies have examined the phenotypic and genotypic changes that 

occur within P. aeruginosa over the course of chronic CF infection. Collectively, this 

work revealed that P. aeruginosa adapts to growth within the CF lung to become less 

inflammatory, less virulent, slower growing, and more drug resistant as a result of 

selection pressures imposed by host immune system and repeated antibiotic therapy (93). 

This adaptive process is facilitated through the accumulation of mutations within DNA 

repair genes that result in the development of hypermutator strains (94). A hallmark of 

CF adapted P. aeruginosa strains is the adoption of hypermucoid phenotypes that often 

result from mutations within the antisigma factor, mucA which de-repress envelope stress 

response genes and promote the overproduction of the exopolysaccharide, alginate (93). 

As a result, hypermucoid strains are less susceptible to recognition and clearance by the 

immune system. Furthermore, disruption of mucA results in the elevated expression of 

stress response genes that confer enhanced resistance against reactive oxygen and 

nitrogen species (ROS & NOS) (93). Diminished biofilm production also arises in P. 

aeruginosa CF isolates resulting from the loss of flagella and twitching pili due to the 

highly immunogenic properties of these structures. In addition, CF-adapted P. aeruginosa 

strains become less cytotoxic over the course of chronic infection through the loss of type 

III secretion (95), which is thought to be driven by the immunostimulatory properties of 
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the effector proteins as well as the inability to adhere to target cells following the loss of 

flagella and twitching pili (96).  

 

1.3.2 Klebsiella pneumoniae 

In contrast with P. aeruginosa, K. pneumoniae utilizes a different approach to 

overcome the host immune defenses within the lung. Rather than kill or disrupt the 

activity of resident leukocytes, K. pneumoniae evades detection by the host defenses. K. 

pneumoniae increases capsule production during infection to avoid recognition through 

toll-kike Receptor (TLR)-mediated signaling and the complement system (14, 97). 

Environmental selection pressures resulting from interactions with their opportunistic 

hosts, phage, and protists has resulted in tremendous variation in the glycans expressed 

by K. pneumoniae (98), with nearly 80 serotypes being recognized clinically(14). 

Nevertheless, nearly 70 % of hypervirulent K. pneumoniae strains express capsule with 

either K1 or K2 serotypes that produce sialic acid-containing capsule saccharides which 

serve to impair detection by phagocytes by mimicking the sialic acid glycan linkages that 

coat alveolar epithelial cells (99, 100). Capsule synthesis in K. pneumoniae is primarily 

regulated by the RcsAB two-component phosphorelay system which detects 

perturbations within the cell membrane that can be invoked by a variety of environmental 

stressors, including antimicrobial peptides (101, 102). In addition, capsule production is 

also influenced by the iron and oxidative stress responsive transcription regulator, IscR 

(103). Other regulatory systems also impinge on the expression of the cps gene cluster 

and are associated with hypercapsule production, including the plasmid-borne rmpA and 
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rmpA2 transcription regulators that respond to environmental stimuli including glucose 

and iron (104-106).  

K. pneumoniae can further evade detection by the host through modifying the 

structure of LPS to forms not recognized by receptors of the innate immune system. 

Within the respiratory tract, K. pneumoniae has been shown to alter its lipid A structure 

to include a 2-hydoxyacyl modification that reduces the inflammatory response (107). 

The addition of 4-amino-4-deoxy- l -arabinose (Ara4N) to lipid A also occurs in K. 

pneumoniae during respiratory tract infections and provides resistance against cationic 

antimicrobial peptides that is required for virulence (101). Lipid A modification in K. 

pneumoniae requires crosstalk between the PhoPQ and PmrAB two component systems 

in response to low pH, magnesium, phosphate, and iron availability (108, 109). However, 

the environmental signals and transcription regulators that dictate modification specificity 

are largely unknown. Nevertheless, lipid A hydroxylation was recently shown in 

Salmonella enterica to be directed by Fnr and ArcA in response to oxygen availability 

(110). 

Iron is a limiting nutrient that is required for bacterial growth. Within mammalian 

systems, extracellular iron is bound to the transport protein, transferrin, that also serves a 

secondary innate immune function through sequestering this cation from potential 

pathogens (49). Nevertheless, pathogenic bacteria secrete iron-scavenging siderophores 

to steal this vital resource from the host. However, the host secretes iron transport 

proteins with higher affinity during infection such as lactoferrin to restrict bacterial 

growth (49). Neutrophils within the respiratory tract also secrete lipocalin 2 during 

infection which serves to further starve bacteria of iron by binding to, and inactivating, 
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siderophores (111). To circumvent these host defenses, K. pneumoniae secretes multiple 

structurally distinct iron-chelating siderophores including enterobactin, which has a 

higher affinity for iron than lactoferrin, and yersiniabactin, which is not inhibited by 

lipocalin 2 (112, 113). Furthermore, hypervirulent, hyper-encapsulated strains of K. 

pneumoniae isolated from respiratory tract infections often express a third siderophore, 

aerobactin (114). As is the case with other Enterics, iron acquisition is transcriptionally 

regulated by IscR and Fur in K. pneumoniae, in response to iron availability (103). 

Interactions with the host and indwelling devices have been shown to induce type 

3 fimbriae-mediated biofilm formation in K. pneumoniae. Type 3 fimbriae, or Mrk 

fimbriae, have been extensively studied in K. pneumoniae and facilitate cell adhesion to a 

range of biotic and abiotic substrates including type IV & type V collagen, silicone, and 

hard plastics (115-118). Although type 3 fimbriae are not directly involved in K. 

pneumoniae virulence, their requirement for colonization and persistence in catheter-

associated urinary tract infections (CAUTI) has been demonstrated by multiple groups 

(119, 120), and these structures are believed to play analogous roles in ventilator 

associated pneumonia (VAP) (14). Transcriptional regulation of the mrk locus is not well 

understood, but is dependent on the intracellular accumulation of the secondary 

messenger, cyclic-di-GMP and the activities of multiple integrated regulatory networks 

(121-127). Extensive research efforts have determined that the LuxR-family transcription 

regulator MrkI directly interacts with the PilZ-domain containing MrkH protein upon 

cyclic-di-GMP accumulation to stimulate type 3 fimbriae locus transcription, while the 

MrkJ phosphodiesterase degrades cyclic-di-GMP to repress transcription from the mrk 

promoter (121, 124, 126, 127). Surprisingly however, the environmental signals and 
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diguanylate cyclases acting upstream of MrkH/I and MrkJ to promote type 3 fimbriae 

expression are still largely unknown, particularly in the context of infection. Recent 

reports however, have identified oxidative stress and iron-responsive transcription 

regulators that indirectly influence the expression of these adhesins (123, 125, 128). The 

known virulence factors of K. pneumoniae are summarized in Figure 1.3. 

 

1.3.3 Stenotrophomonas maltophilia 

1.3.3.1 Nosocomial pneumonia 

 Little is known regarding the molecular interactions that occur between S. 

maltophilia and the host during infection. S. maltophilia infections are often associated 

with underlying malignancies and prior broad-spectrum antibiotic therapy in severely 

immunodeficient individuals (40). Several groups have used mouse models of acute 

pneumonia to examine the pulmonary immune response mounted against S. maltophilia. 

These studies collectively revealed that S. maltophilia elicits an excessive 

proinflammatory response that results in prolonged neutrophil recruitment and activation 

(129-131). This aberrant response is thought to be driven by TNFα overproduction by 

alveolar macrophages resulting from enhanced TLR4-mediated signaling due to 

structural heterogeneity within the LPS of S. maltophilia (130). TLR5-mediated signaling 

is also thought to substantially contribute to this proinflammatory response (131), which 

is predicted to further exacerbate immune function in patients with CF. 

 The low virulence of S. maltophilia in mammalian models (129, 132) has 

hindered research efforts into understanding pathogenicity mechanisms as a lung 
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infection model that supports net bacterial growth does not exist. Nevertheless, tissue 

culture-based approaches have been useful in identifying virulence-associated genes and 

characterizing their potential contributions to pathogenesis. S. maltophilia clinical 

isolates cultured on airway epithelial cells demonstrated that this organism secreted 

enzymes with lytic and cytotoxic capacities (133). The activity of these enzymes was 

later determined to be dependent on the expression of the Xps type II secretion system of 

S. maltophilia (134), which secretes the StmPr1, StmPr2, and StmPr3 proteases that cause 

cell rounding, actin rearrangements, and cell death of airway epithelial cells in vitro (135, 

136). Although the in vivo contribution of these secreted proteases to virulence is 

uncertain, serological evidence indicates that the StmPr1 protease is expressed by S. 

maltophilia during acute and chronic respiratory tract infections (130), and is likely to 

contribute to airway inflammation (136).  

 The ability of S. maltophilia to generate biofilms on a range of biotic and abiotic 

surfaces is thought to contribute to pathogenesis through facilitating deposition into the 

respiratory tract, increasing resistance to antibiotics, and inhibiting killing/clearance by 

the immune system (38, 39). S. maltophilia readily adheres to and generates biofilms on 

surfaces associated with the respiratory tract, including cultured human bronchial 

epithelial cells (137), CF-derived bronchial epithelial cells (138), and mouse tracheal 

mucus (139). While biofilm formation in S. maltophilia is poorly understood, adherence 

to cultured respiratory tract epithelial cells and mouse endotracheal mucus has been 

shown to be flagella-dependent (138-140). Several studies have examined the 

environmental conditions influencing biofilm production in S. maltophilia, and identified 

mildly acidic pH, temperatures between 32 ˚C and 37 ˚C, and aerobic conditions as 
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strong stimulators of biofilm formation (141). Similarly, the concentrations of phosphate, 

iron, and chloride ions have also been shown to influence biofilm production in this 

organism (39, 142). Cellular motility and biofilm formation in S. maltophilia was 

recently determined to be controlled through cyclic-di-GMP-mediated signaling via the 

BmsRT two component system, with additional regulatory input from several other 

factors that have not yet been identified (143). Not surprisingly, cell motility and biofilm 

formation are also influenced by quorum signaling, which is mediated through a DSF 

(diffusible signal factor) system in S. maltophilia and other Xanthomonads via RpF-1 in 

response to the fatty acid, cis-11-methyl-2-dodecenoic acid (144). Figure 1.4 summarizes 

the known or suspected virulence factors of S. maltophilia. 

 

1.3.3.2 Chronic CF infection 

Like P. aeruginosa, S. maltophilia is believed to adapt to the CF lung over the 

course of chronic infection. S. maltophilia is also thought to lose motility and the capacity 

to form surface-attached biofilms within the CF lung, most likely due to selection 

pressures associated with the immunogenic properties of this organism’s flagellin. 

Furthermore, S. maltophilia clinical CF isolates exhibit higher mutation frequencies 

relative to strains of environmental origin (145), and also generate hypermutator 

phenotypes during chronic infection through mutations within mismatch repair genes 

including mutS, mutL, and uvrD (145-148). The development of such strains is believed 

to promote intrastrain phenotypic diversity and increased antibiotic resistance that 

typifies S. maltophilia CF infections (148). Multiple lines of evidence suggest that like P. 
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aeruginosa, S. maltophilia also decreases the expression of virulence factors over the 

course of chronic infection. Studies examining the virulence phenotypes of S. maltophilia 

clinical CF isolates have identified numerous strains lacking protease activity that often 

correlate with frameshift and nonsense mutations in the genes encoding the StmPr1 and 

StmPr2 secreted serine proteases (146, 147). These observations are also backed by 

serological evidence, as antibody titers against the StmPr1 protease have been shown to 

diminish over time during chronic CF infection (130). Interestingly however, S. 

maltophilia does not adopt the hypermucoid phenotype that characterizes CF-adapted P. 

aeruginosa strains, which likely contributes to the increased airway inflammation and 

systemic neutropenia associated with these chronic infections.  

 

1.4 The host as a nutrient source  

 The ability to obtain nutrients from the host is critical to the success of pathogenic 

bacteria during infection (149). Despite this long-standing knowledge, the metabolic 

requirements of bacteria during infection remains poorly understood (150). This is 

especially true among extracellular opportunistic pathogens of environmental origin that 

have evolved outside of their incidental host, and are capable of metabolizing an 

enormous variety of carbon and nitrogen sources for growth.  

As antibiotics continue to lose their effectiveness clinically, the need for 

alternative therapeutics becomes more and more imperative. One promising treatment 

strategy involves designing therapeutics that alter or disrupt the metabolism of 

pathogenic bacteria during infection through either inhibiting growth or increasing the 
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efficacy of antibiotics. The potential success of such treatments was recently 

demonstrated in vitro in P. aeruginosa, where the authors observed that the addition of 

fumarate to bacterial culture media greatly enhanced this organism’s susceptibility to the 

antibiotic, tobramycin-the drug of choice for treating chronic P. aeruginosa CF infections 

(151). Below, the host-derived molecules that are known to be metabolized by P. 

aeruginosa, K. pneumoniae, and S. maltophilia during acute and chronic respiratory tract 

infections are briefly summarized.  

 

1.4.1 P. aeruginosa  

 P. aeruginosa actively degrades phospholipids and proteins within pulmonary 

surfactant during acute infection. Phosphatidylcholine comprises roughly 70 % of the dry 

weight of pulmonary surfactant, making it one of the most abundant extracellular nutrient 

sources available to bacteria growing within the lumen of the lung. During infection, P. 

aeruginosa secretes the hemolytic phospholipase C, PlcH, to liberate phosphocholine 

(81), which is then further degraded to obtain the osmoprotectant, glycine betaine (86, 

152). P. aeruginosa is also capable of further catabolizing glycine betaine as a carbon and 

nitrogen source, and a transcriptional profiling study with purified pulmonary surfactant 

demonstrated that this occurs in vitro (87). PlcH activity, in combination with the neutral 

ceramidase, CerN, within the lung also degrades sphingomyelin found in pulmonary 

surfactant, leading to the release of the antimicrobial, sphingosine. To circumvent 

sphingosine-mediated killing, P. aeruginosa expresses sphA and sphBCD, which are 

thought to prevent sphingosine-mediated disruption of the cell membrane and degrade 
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this sphingosine, respectively (87). Aside from metabolizing phospholipids within 

surfactant, P. aeruginosa also secretes LasA, LasB, and Protease IV during acute 

respiratory tract infection that degrade the four surfactant-associated proteins found 

within pulmonary surfactant (83, 84).  

 Hypoxic microenvironments exist in mucus plugs found within the CF lung due to 

continuous reactive oxygen and nitrogen species production by activated neutrophils 

(153, 154). Chronic respiratory bursts mediated by these lymphocytes have been shown 

to generate nitrate as a biproduct, which is abundant in the CF lung, and actively utilized 

as a terminal electron acceptor by P. aeruginosa to permit anaerobic growth in these 

anoxic microenvironments (155, 156). The capacity of P. aeruginosa to utilize nitrate for 

anaerobic respiration within the CF lung has been suggested to promote persistence and 

survival against clearance by the host immune system (155, 157). In addition, 

transcriptional profiling studies performed with native and synthetic CF sputum revealed 

that the amino acids: alanine, proline, and arginine, are likely to serve as the preferred 

nutrient sources of P. aeruginosa during growth within the CF lung (158, 159). 

Moreover, the importance of alanine catabolism to P. aeruginosa fitness has been 

demonstrated in a rat model of chronic lung infection (160).  

  

1.4.2 K. pneumoniae 

Few investigations have examined the metabolic requirements of K. pneumoniae 

that permit colonization and growth during infection. Outside of the lung, the use of 

allantoin as a carbon and nitrogen source has been linked to K. pneumoniae virulence in a 
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liver abscess model of infection (161). Within the respiratory tract, an in vivo transposon-

based genetic screen revealed the necessity of endogenous branched chain amino acid 

production to K. pneumoniae fitness during acute pneumonia (162). In a separate study, a 

Pld1-family phospholipase D was demonstrated to be required for K. pneumoniae 

virulence in a mouse model of acute pneumonia (163). While the substrate of this enzyme 

has yet to be conclusively identified, thin layer chromatography, bioinformatics, and trans 

complementation experiments suggest that this phospholipase participates in the 

metabolism of phosphatidylglycerol and cardiolipin (163). Phosphatidylglycerol is 

prevalent within the respiratory tract as a major constituent of pulmonary surfactant (58), 

which could be an important nutrient source for K. pneumoniae during infection. 

 

1.4.3 S. maltophilia 

Perhaps unsurprisingly, the metabolic requirements and nutritional preferences of 

S. maltophilia during infection have never been investigated. Since S. maltophilia is a 

methionine auxotroph and obligate aerobe (39), it is assumed that aerophilic conditions 

and the ability to obtain this amino acid from the host are prerequisite to this organism’s 

success during infection. Since S. maltophilia lacks canonical virulence factors, targeting 

the metabolic pathways used by this organism during infection could be a promising 

avenue for developing alternative therapeutics.  
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1.5. Dissectible models of the lung for examining host-pathogen interactions 

Opportunistic pathogens require specific conditions within their 

immunocompromised hosts to cause disease, which can be difficult and sometimes 

impossible to replicate in in vivo animal infection models. Such is the case for modeling 

the damaged, inflamed conditions of the adult CF lung that exists prior to the 

establishment of chronic P. aeruginosa or S. maltophilia infections. Similarly, accurate 

mouse pneumonia models do not exist for examining the pathogenesis mechanisms of 

bacteria with low virulence potential, including P. aeruginosa and S. maltophilia which 

fail to grow in the lungs of healthy mice. Nevertheless, mouse pneumonia models that 

measure relative bacterial clearance rates as a proxy for virulence have proven useful for 

identifying genes and metabolic pathways that influence the pathogenesis of these 

organisms.  

Despite their utility, animal lung infection models often fail to reveal the 

mechanistic contribution of virulence-associated genes to the pathogenesis of these 

bacteria (150). As a result, we often know the identity of many of the genes that permit 

virulence within organisms like P. aeruginosa, but have a limited understanding of their 

function, or how interactions with the host influence their expression in vivo. Bacterial 

transcriptomics-based studies using molecularly defined components of the host lung 

environment have been particularly effective in elucidating the bacterial response to the 

host and identifying the host-derived signals that promote pathogenesis (86, 87, 157-159, 

164, 165). Below, pulmonary surfactant and synthetic CF sputum are described as 

dissectible models of the lung infection milieus for examining bacterial interactions with 

the host during pneumonia and chronic CF infection. 
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1.5.1 Pneumonia: purified pulmonary surfactant 

Pulmonary surfactant serves as an initial point of contact for aspirated or inhaled 

pathogens upon deposition into the lung. This phospholipid-rich mixture coats the 

alveolar surfaces at the air-liquid interface and serves to reduce surface tension within the 

lung to prevent collapse following expiration (58, 166). Pulmonary surfactant also 

modulates the activity of inflammatory cells and directly participates in the innate 

immune response through the activities of the surfactant-associated collectins, SP-A and 

SP-D (57, 167, 168). Extracellular bacteria growing within the lung are constantly 

exposed to pulmonary surfactant, and this substance is thought to serve as a nutrient 

source for these organisms during colonization and early in infection. 

Pulmonary surfactant contains nearly one hundred unique components, including 

four surfactant associated proteins (SP-A, SP-B, SP-C, SP-D), as well as a much larger 

lipid fraction comprising the bulk of this substance. Dipalmitoylphosphatidylcholine and 

mixed-tail phosphatidylcholines are the major lipid constituents of surfactant, making up 

nearly 70 % of the total lipid content, followed by phosphatidylglycerol, 

phosphatidylinositol, phosphatidylethanolamine, and sphingomyelin. Pulmonary 

surfactant additionally contains various free fatty acids, triglycerides, and neutral lipids 

such as cholesterol that make up the remainder of this substance (Figure 1.5) (56, 58, 

169).   

Several purified pulmonary surfactant preparations are commercially available 

that are used clinically to treat infant respiratory distress syndrome (170, 171). In addition 

to their clinical use, purified pulmonary surfactant preparations have proven their value to 

researchers seeking to understand how respiratory pathogens interact with the host at the 
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site of infection. Previous transcriptional profiling studies by our group with the purified 

surfactant preparation, Survanta, led to the determination that the detection of 

sphingosine and the metabolism of the choline moiety of phosphatidylcholine by P. 

aeruginosa are both independently required for full virulence in a mouse model of acute 

pneumonia (86, 87, 152). In a thematically similar study, Ishii et al. determined that fatty 

acids within pulmonary surfactant invoked a membrane stress response in Staphylococcus 

aureus, and also identified a novel virulence determinant implicated in this process (165). 

Together, these studies demonstrate the utility of purified pulmonary surfactant 

preparations for identifying and dissecting host-lung pathogen interactions in the context 

of acute infection. 

 

1.5.2 The CF lung: Synthetic Cystic Fibrosis Sputum Media (SCFM2) 

The thick, viscous mucus that accumulates within the CF lung is comprised of 

heavily glycosylated mucin, high molecular weight DNA, serum components, and cell 

debris resulting from chronic infection (158, 159). This substance is expectorated as 

sputum and serves as the primary nutrient source for microbes colonizing the CF lung. 

Moreover, sputum has been shown to contain many of the host-derived signals that 

promote the virulence-associated phenotypes of CF pathogens such as P. aeruginosa and 

Burkholderia cenocepacia (159, 164, 172, 173).  

Several artificial sputum medias have been developed for use in CF pathogen-host 

interaction studies in attempts to circumvent the difficulties associated with obtaining, 

purifying, and standardizing sputum from patients with CF. Of these various formations, 
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synthetic cystic fibrosis sputum media (SCFM2) most accurately reflects native CF 

sputum (158, 174). This defined media was developed in two stages, and contains the 

average concentration of each amino acid, ion, and other carbon/nitrogen sources in CF 

sputum, as measured via mass spectrometry in sputum samples collected from twelve 

individuals with CF (158). Phosphatidylcholine, mucin, and extracellular DNA were later 

added to this media in order to more closely reflect the bacterial growth milieu within the 

CF lung (174). The composition of this media, referred to as “SCFM2,” is shown in 

Table 1.2. SCFM2 affords a powerful, dissectible, model for understanding how CF 

pathogens interact with this critical aspect of the host lung environment.  

 

1.6 Dissertation Overview 

 The increasing prevalence of MDR respiratory pathogens poses a serious threat to 

public health and has made it clear that new treatments are required to treat these 

infections. To aid in the development of new therapeutics, a greater understanding of how 

these organisms transition from the environment to the host lung is needed. The research 

described in the following chapters focuses on expanding our knowledge of how P. 

aeruginosa, K. pneumoniae, and S. maltophilia recognize, exploit, and adapt to the host 

lung environment. These chapters are introduced and briefly summarized below. 

Extensive research efforts have revealed many of the virulence and metabolism-

related genes within P. aeruginosa that influence pathogenesis in both acute and chronic 

respiratory tract infections. Despite this knowledge, many of the regulatory systems 

within P. aeruginosa that coordinate virulence and metabolism during infection have not 
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been characterized. As mentioned in above, phosphatidylcholine comprises the bulk of 

human pulmonary surfactant and serves as an important source of choline for P. 

aeruginosa during infection (58, 152). We previously observed that the most highly 

expressed genes by P. aeruginosa following exposure to pulmonary surfactant were those 

involved in the catabolism of a downstream choline metabolite, sarcosine. Although our 

group had earlier characterized the choline catabolic pathway of P. aeruginosa, the 

transcriptional regulation of sarcosine catabolism was not known. In Chapter 2 of this 

dissertation, we describe the identification and characterization of SouR as the first 

known sarcosine-responsive transcription regulator. We also identified a formaldehyde-

responsive transcription regulator, GfnR, that controls the metabolism of formaldehyde 

released through the oxidative demethylation of sarcosine and glycine betaine. 

 In contrast with P. aeruginosa, the interactions between K. pneumoniae and the 

host lung environment are far less understood. In Chapter 3, we characterized the 

transcriptional response of K. pneumoniae to purified bovine pulmonary surfactant to 

gain insight into how this organism interreacts with this critical aspect of the lung 

environment. This work revealed that pulmonary surfactant invokes a transcriptional 

response in K. pneumoniae that supports host colonization, adaptation, and virulence in 

vivo. We also determined that pulmonary surfactant promoted type 3 fimbriae-mediated 

biofilm formation in K. pneumoniae and identified two components of pulmonary 

surfactant that drive this response (phosphatidylcholine and cholesterol). We also 

examined the contribution of metabolism-related surfactant-induced transcripts to K. 

pneumoniae pathogenesis using engineered gene deletion strains and a mouse model of 

pneumonia. In doing so, we identified the polyamine efflux pump, MdtJI, and the glycine 
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betaine transporter, ProU as required for K. pneumoniae virulence within the respiratory 

tract. 

Finally, in Chapter 5 we characterized the transcriptional responses of three S. 

maltophilia strains during growth in synthetic CF sputum media (SCFM2) to examine 

how this organism interreacts with the host and utilizes nutrients within the CF lung. 

These efforts led to the identification of nearly 250 transcripts expressed by all three 

strains that largely reflect nutrient utilization by S. maltophilia during CF lung infection. 

In this chapter, we also compared the SCFM2 transcriptomes of two S. maltophilia CF 

isolates with the SCFM2 transcriptome of the acute infection model strain, S. maltophilia 

K279A. This revealed CF isolate-specific signatures in gene expression reflective of 

adaptation to the CF lung, including the repression of genes involved in cell motility and 

biofilm formation, and increased expression of oxidative stress-related genes as well as 

alternative cytochromes associated with growth in microaerophilic environments. Finally, 

we also demonstrated that these transcriptional changes correlated with phenotypes 

observed in vitro, as the S. maltophilia CF isolates failed to form surface-adhered 

biofilms in SCFM2 and were less susceptible to killing via oxidative stress than K279A.  

 This work collectively provides novel insight into the interactions occurring 

between P. aeruginosa, K. pneumoniae, and S. maltophilia and the host during the 

initiation of lung infection. Using a combination of molecular genetics and 

transcriptomics, we revealed novel transcription regulators involved in the detection of 

the host, as well as metabolism and virulence-associated genes within these MDR Gram-

negative lung pathogens that will be the subject of future research endeavors.  
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1.7 Chapter 1 Figures 

Figure 1.1 Airway immune defenses protecting against bacterial infections. 

Aspirated or inhaled bacteria entering the lung must overcome significant immune 

defenses to colonize and initiate infection. Bacteria entering the lung become trapped 

within the mucus layer and cleared from the respiratory tract via the mucociliary 

escalator. Numerous antimicrobial peptides are also found within the airways that serve 

to lyse bacterial pathogens through disrupting their cell membranes. Bacteria within the 

lung are also recognized by the complement system and collectins found within 

surfactant, that result in opsonization and clearance by macrophages or infiltrating 

neutrophils. Flagella and LPS on the surfaces of Gram-negative bacteria are recognized 

by TLR’s expressed by alveolar epithelial cells and resident macrophages that invoke a 

pro-inflammatory response. During infection, activated alveolar macrophages secrete 

cytokines and pro-inflammatory signals that recruit neutrophils to the respiratory tract to 

kill and clear these bacteria. Figure adapted from: Gellatly & Hancock (81) and reused 

with permission from the publisher. 

 

Figure 1.2 Known virulence factors of Pseudomonas aeruginosa. 

P. aeruginosa encodes a multitude of virulence factors that serve to disrupt host immune 

function and invoke tissue damage during acute respiratory tract infections. Following 

contact with host cells, P. aeruginosa injects several cytotoxins through a type III 

secretion system that impair phagocytosis and trigger apoptosis. P. aeruginosa also 

utilizes two type II secretion system to deliver a variety of phospholipases, proteases, and 

toxins into the lung milieu that cause significant tissue damage. These enzymes degrade 
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the phospholipids and proteins within pulmonary surfactant and damage epithelial cell 

membranes. P. aeruginosa also secretes pyocyanin during infection which disrupts the 

electron transport chain in host cells and impairs the immune response through inhibiting 

catalase activity and triggering neutrophil apoptosis. Flagella and type 4 pili are also used 

by P. aeruginosa during acute infection to adhere to host cells and trigger type III 

secretion activity. The immunostimulatory nature of these structures significantly 

contribute to inflammation during infection. Figure reused with permission from the 

publisher(81). 

 

Figure 1.3 Known virulence factors of Klebsiella pneumoniae 

K. pneumoniae possesses four types of virulence factors that allow this organism to 

generate biofilms on a variety of surfaces, elude detection by the immune system, and 

obtain iron from the host during infection. K. pneumoniae is able to adhere to a variety of 

biotic and abiotic surfaces via type 1 and type 3 fimbriae. K. pneumoniae is able to evade 

detection by the host during infection via capsule production and various LPS lipid A 

modifications. K. pneumoniae also secretes multiple structurally distinct iron-chelating 

siderophores that circumvent the hosts ability to sequester iron, including enterobactin, 

which has a higher affinity for iron than lactoferrin, and yersiniabactin, which is not 

inactivated by lipocalin 2. Hypervirulent strains of K. pneumoniae are distinguished from 

classical strains by the overproduction of K1 or K2 serotype capsules and the expression 

of additional siderophores, such as aerobactin and salmochelin. Figure reused with 

permission from the publisher (14).  
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Figure 1.4 Known virulence factors of Stenotrophomonas maltophilia. 

Little is known regarding the molecular interactions that occur between S. maltophilia 

and the host during infection. However, flagella and fimbriae are expressed by S. 

maltophilia that facilitate colonization of various medical devices, deposition within the 

lung, and adherence to alveolar epithelial cells during infection. The expression of these 

appendages, coupled with the structural heterogeneity found within S. maltophilia’s LPS, 

invoke an excessive pro-inflammatory response during infection that exacerbates 

neutropenia and inflicts tissue damage. In addition, S. malophilia utilizes a type II 

secretion system to deliver several proteases into the host lung milieu that induce alveolar 

epithelial cell rounding and apoptosis. The extreme intrinsic drug resistance exhibited by 

S. maltophilia is also thought to provide a competitive advantage against more virulent, 

drug-susceptible species that facilitates infection of patients following antibiotic therapy.  

 

Figure 1.5 Composition of pulmonary surfactant.  

Pulmonary surfactant contains nearly one hundred unique components, including four 

surfactant associated proteins (SP-A, SP-B, SP-C, SP-D), and larger lipid fraction that 

comprises nearly 90 % of the dry weight of this substance. Within the lipid fraction, 

dipalmitoylphosphatidylcholine (DPPC) and mixed-tail phosphatidylcholines (PC) are 

the major constituents, making roughly 70 % of the total lipid content. Other 

phospholipids are also found within pulmonary surfactant, including 

phosphatidylglycerol (PG), phosphatidylinositol (PI), phosphatidylethanolamine (PE), 

and sphingomyelin (SPM). Free fatty acids, triglycerides, and neutral lipids such as 
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cholesterol (Chol) are also found within this substance. Figure reused with permission 

(175). 
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1.8 Chapter 1 Tables 

Table 1.1 Prevalence of the ten most common pathogens isolated from patients with 

nosocomial pneumonia. 

The worldwide and regional incidence of pathogens isolated from more than 31,000 

patients hospitalized with pneumonia between 2004 and 2009. This data was collected 

and compiled via the SENTRY Antimicrobial Surveillance Program. Table reused with 

permission from the publisher (7). 

 

Table 1.2 Composition of Synthetic Cystic Fibrosis Sputum Media (SCFM2) 
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Figure 1.1 Airway immune defenses protecting against bacterial infections. 
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Figure 1.2 Known virulence factors of Pseudomonas aeruginosa  
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Figure 1.3 Known virulence factors of Klebsiella pneumoniae 
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Figure 1.4 Known virulence factors of Stenotrophomonas maltophilia  
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Figure 1.5 Composition of pulmonary surfactant 
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Table 1.1 Prevalence of the ten most common pathogens isolated from patients  with 

nosocomial pneumonia  
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Table 1.2 Composition of Synthetic Cystic Fibrosis Sputum Media II (SCFM2) 

Amino acids (mM) Ions (mM) 

Serine 1.4 Na+ 66.6 

Threonine 1.0 K+ 15.8 

Alanine 1.8 NH4
+ 2.3 

Glycine 1.2 Ca2+ 1.7 

Proline 1.7 Mg2+ 0.6 

Isoleucine 1.1 Cl− 79.1 

Leucine 1.6 NO3
− 0.35 

Valine 1.1 PO4
3− 2.5 

Aspartate 0.8 SO4
2− 0.27 

Glutamate 1.5     

Phenylalanine 0.5     

Tyrosine 0.8 Other   

Tryptophan 0.01 Glucose  3.2 mM 

Lysine 2.1 Lactate 9.0 mM 

Histidine 0.5 FeSO4  3.6 μM 

Arginine 0.3 DNA  0.6 mg/ml 

Ornithine 0.7 Mucin 5.0 mg/ml 

Cysteine 0.2 Phosphatidylcholine 0.1 mg/ml 

Methionine 0.6 GlcNAc  0.3 mM 
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2.1 Abstract  

Sarcosine (N-methylglycine) is present in many environments inhabited by 

Pseudomonas and is likely most often encountered as an intermediate in the metabolism 

of choline, carnitine, creatine, and glyphosate. While the enzymology of sarcosine 

metabolism has been relatively well studied in bacteria, the regulatory mechanisms 

governing catabolism have remained largely unknown. We previously determined that 

the sarcosine catabolic operon (sox operon) of P. aeruginosa is induced by the AraC-

family regulator GbdR in response to glycine betaine and dimethylglycine. However, 

induction of these genes was still observed in response to sarcosine in a gbdR deletion 

mutant, indicating that an independent sarcosine-responsive transcription factor also 

acted at this locus. Our goal in this study was to identify and characterize this regulator. 

Using a transposon-based genetic screen, we identified PA4184, or SouR (Sarcosine 

oxidation & utilization Regulator), as the sarcosine-responsive regulator of the sox 

operon, with tight induction specificity for sarcosine. The souR gene is required for 

appreciable growth on sarcosine as a carbon and nitrogen source. We also characterized 

the transcriptome response to sarcosine governed by SouR using microarray analyses and 

performed electrophoretic mobility shift assays to identify promoters directly regulated 

by this transcription factor. Finally, we characterized PA3630, or GfnR (Glutathione-

dependent formaldehyde neutralization Regulator), as the regulator of the glutathione-

dependent formaldehyde detoxification system in P. aeruginosa that is expressed in 

response to formaldehyde released during the catabolism of sarcosine. This study 

expands our understanding of sarcosine metabolic regulation in bacteria through the 
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identification and characterization of the first known sarcosine-responsive transcriptional 

regulator.  

 

Importance  

The Pseudomonas aeruginosa genome encodes many diverse metabolic pathways, yet 

the specific transcription regulators controlling their expression remain mostly unknown. 

Here we used a genetic screen to identify the sarcosine-specific regulator of the sarcosine 

oxidase operon, which we have named SouR. SouR is the first bacterial regulator shown 

to respond to sarcosine and it is required for growth on sarcosine. Sarcosine is found in 

its free form and is also an intermediate in the catabolic pathways of glycine betaine, 

carnitine, creatine, and glyphosate. The similarity of SouR to the regulators of carnitine 

and glycine betaine catabolism suggests evolutionary diversification within this 

regulatory family to allow response to structurally similar but physiologically distinct 

ligands.  
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2.2 Introduction 

 Pseudomonas aeruginosa and other bacteria from similar environments are 

capable of utilizing sarcosine (N-methylglycine) as a carbon and nitrogen source for 

growth (1-3). Sarcosine is present in many environments inhabited by Pseudomonads, 

and it is also produced as an intermediate in the metabolism of choline, carnitine, 

creatine, and glyphosate (Fig. 2.1A). Choline is abundant in many eukaryote-associated 

environments including clinically important sites of opportunistic infection by P. 

aeruginosa, such as the lung (4), where phosphatidylcholine constitutes an estimated 

85% of the dry weight of human pulmonary surfactant (5). Within this environment, P. 

aeruginosa acquires choline from phosphatidylcholine via the virulence factors 

phospholipase C (PlcH) and phosphorylcholine phosphatase (PchP) (6, 7). Burns and 

deep lacerations also expose P. aeruginosa to readily available sarcosine precursors, 

including carnitine in muscle tissue and choline released from damaged cell membranes 

(7, 8). Furthermore, Pseudomonas putida and some isolates of P. aeruginosa can 

metabolize creatine to generate sarcosine (9-11), while other Pseudomonads obtain 

sarcosine through metabolism of the herbicide glyphosate (12-14).  

 Aerobic bacterial sarcosine catabolism proceeds via oxidative demethylation 

catalyzed by one of two classes of sarcosine oxidase. Monomeric sarcosine oxidases are 

the simplest form of these enzymes and produce glycine, hydrogen peroxide, and 

formaldehyde from sarcosine (15). In contrast, heterotetrameric sarcosine oxidases 

(TsoX) are more complex and assimilate the N-methyl group of sarcosine into the C1 

carbon pool through a 5,10-methylenetetrahydrofolate intermediate instead of releasing it 

as formaldehyde (15, 16). In P. aeruginosa and a variety of soil bacteria, TsoX is 



59 
 

encoded in an operon as soxBDAG (Fig. 2.1B), along with a serine 

hydroxymethyltransferase glyA1, and the 10-formyltetrahydrofolate hydrolase purU2 

(17-19), which together function to transform sarcosine into metabolites used for energy 

production and biosynthesis. In the absence of sufficient tetrahydrofolate, TsoX 

demethylation of sarcosine releases formaldehyde (15, 16), and P. aeruginosa and other 

Proteobacteria encode a sarcosine-inducible glutathione-independent formaldehyde 

dehydrogenase (fdhA) adjacent to the soxBDAG locus that converts formaldehyde to 

formate and generates reducing potential through NADH synthesis (20).  

Although the enzymology of sarcosine catabolism has been relatively well studied 

in bacteria, the regulatory mechanisms governing this process are largely unknown. We 

previously determined that expression of the sox operon of P. aeruginosa is induced in 

response to glycine betaine and dimethylglycine through the AraC-family regulator, 

GbdR (21, 22). Consistent with previous reports however (1, 2), we also observed 

induction of this operon in response to sarcosine in a gbdR deletion mutant, indicating 

that an independent sarcosine-responsive transcription factor also acts at this locus (21).  

Here we report the identification and characterization of the first known 

sarcosine-responsive transcription factor, PA4184, which we have named SouR 

(Sarcosine oxidation & utilization Regulator). SouR regulates the soxBDAG operon in P. 

aeruginosa, and we have determined that it is necessary for appreciable growth when 

sarcosine is utilized as a sole carbon and nitrogen source. We further determined that 

transcriptional activation by SouR is specific for sarcosine and characterized the 

transcriptome response to sarcosine governed by this regulator. During this research we 

also characterized PA3630, which we have named GfnR (Glutathione-dependent 
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formaldehyde neutralization Regulator), as the regulator of the glutathione-dependent 

formaldehyde detoxification system in P. aeruginosa that is expressed during the 

catabolism of sarcosine. 

    

2.3 Materials and Methods 

2.3.1 Bacterial strains and growth conditions  

P. aeruginosa PA14 wild-type, transposon mutants, and deletion strains (Table 

2.S1) were maintained on Lennox Broth (LB) or Pseudomonas Isolation Agar (PIA) 

supplemented with 50 µg/mL gentamicin when appropriate. E. coli strains used in this 

study (Table 2.S1) were maintained on LB supplemented with gentamicin (7 µg/mL 

liquid, 10 µg/mL agar) or carbenicillin (100 µg/mL) when necessary. During genetic 

manipulations, selection for P. aeruginosa over E. coli was performed using PIA 

supplemented with 50 µg/mL gentamicin. Growth and selection conditions used in the 

genetic screen are described in detail below. Growth and transcriptional induction assays 

in P. aeruginosa were performed using MOPS (morpholinepropanesulfonic acid) 

minimal media (23) as modified by our group (8, 24, 25). 

2.3.2 Construction of deletion strains, complementation constructs, and the 

sarcosine oxidase operon reporter  

All amplifications and cloning steps were performed using Q5 DNA polymerase 

and restriction enzymes purchased from New England Biolabs (Ipswitch, MA). General 

nucleic acid procedures were performed using Qiagen kits unless otherwise noted. The 
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gene numbers generally referred to in this study are based on the PAO1 orthologs. 

Sequences for the primers used to generate each construct are listed in Table 2.S2. 

In-frame chromosomal deletions of souR (PA4184) and gfnR (PA3630) were 

created using splice overlap extension (SOE) as previously described using pMQ30-

based allelic replacement (26). Briefly, two ~ 1Kb regions directly upstream and 

downstream of the gene to be deleted were amplified from PA14 genomic DNA with 

primers PA14_9770KO_F1, PA14_9770KO_R1, PA14_9770KO_F2, 

PA14_9770KO_R2, and PA3630KO_F1, PA3630KO_ R1, PA3630KO_F2, 

PA3630KO_R2, ligated into pCR-Blunt (Invitrogen), and transformed into E. coli DH5α 

cells. After selection on kanamycin and plasmid preparation, overlap extension products 

were excised with XbaI and HindIII, gel purified, and ligated into similarly cut pMQ30 

before being transformed into DH5α cells. Transformants were selected on LB with 10 

µg/mL gentamicin, and plasmid DNA was purified from resistant colonies to generate the 

pGW008 (∆souR) and pGW023 (∆PA3630) deletion constructs. pGW008 and pGW023 

were electroporated into the conjugative E. coli S17/λpir strain. Donor S17/λpir strains 

were mixed with recipient PA14 strains, and single-crossover mutants were selected for 

growth on PIA supplemented with 50 µg/mL gentamicin. Recombinants were verified by 

PCR after selecting for loss of sacB by growth on 5% sucrose LB plates lacking sodium 

chloride (26, 27) to yield  strains GGW034 (PA14 ∆souR), GGW036 (PA14 ∆gbdR 

∆souR), GGW076 (PA14 ∆gfnR), and GGW078 (PA14 ∆gbdR ∆gfnR).  

The souR complementation construct included the souR open reading frame and 

native promoter cloned into pMQ80 using primers with engineered KpnI and HindIII 

restriction sites (PA14_9770_RescueF & PA14_9770_RescueR). This construct was 
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designated pGW007 (pSouR). Complementation of the ∆gnfR strain was achieved by 

chromosomal integration of the gfnR ORF and its native promoter at the attTn7 site as 

described by Choi (28). Briefly, the PA3630 gene and promoter region were amplified 

from PA14 genomic DNA using the primers PA3630_RescueF & PA3630_RescueR, 

which incorporated flanking HindIII and KpnI restriction sites. The amplified product 

was digested, ligated into similarly cut pUC18-mini-Tn7T-Gm, transformed into DH5α, 

and transformants were selected for gentamicin resistance. This construct was designated 

pGW024. pGW024 and pTNS2 were co-electroporated into the target strains as 

previously described (28, 29). 

Chromosomal soxB’-lacZYA-‘soxG operonic reporter strains were engineered 

through allelic replacement using a pMQ30-based strategy (26). Briefly, ~1 kb regions 

upstream of the soxB translational start site and ~ 1kb downstream of the soxG stop 

codon were amplified from PA14 genomic DNA with SOE-based primers (soxKO_F1, 

soxKO_R1, soxKO_F2, soxKO_R2) incorporating an engineered NcoI site into the 

overlap portion of the construct, ligated, transformed, and the resultant plasmid purified 

as described above. This plasmid was linearized between the soxB and soxG fragments 

with NcoI and treated with Klenow to generate blunt ends, which allowed ligation of 

lacZYA (obtained from pMW5 following KpnI & EcoRI digestion and Klenow 

treatment). Following transformation into DH5α cells, plasmid DNA was purified, 

digested with KpnI and HindIII to excise soxB’-lacZYA-‘soxG for ligation into similarly-

cut pMQ30, yielding pGW005. pGW005 was transformed into E. coli S17/λpir 

(GGW040) and mixed with PA14 recipient strains to create the chromosomal soxB’-
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lacZYA-‘soxG strains, which are effectively ∆soxBDAG and cannot grow on sarcosine, as 

lacZYA has replaced most of the operon. 

2.3.3 Genetic screen to identify the sarcosine -responsive regulator of soxBDAG 

expression 

Transposon mutagenesis was performed on PA14 ∆gbdR soxB’-lacZYA-‘soxG 

(GGW039) via conjugation with E. coli SM10 harboring pBT20, a Mariner-based 

transposon, using methods modified from Kulasekara et al (30, 31). Briefly, the 

transposon donor was grown overnight on LB agar supplemented with 100 µg/mL of 

carbenicillin while GGW039, the recipient, was cultured on PIA. After 24 hours, cells of 

each species were scraped from the plates and resuspended in LB broth to final 

concentrations of 40 (donor) and 20 (recipient) OD600 units. For mating, equal volumes of 

each strain were mixed and 50 µl aliquots were spotted onto LB agar and incubated for 

two hours at room temperature. To simultaneously select for P. aeruginosa transposon 

integrants and conduct the screen, cells from the conjugation mix were resuspended in 2 

mL of MOPS and 400 µl plated on PIA with 50 µg/mL of gentamicin, 100 µg/mL of X-

gal, and in the presence or absence of 2 mM sarcosine. Colonies exhibiting low or no β-

galactosidase activity were tested by Miller assay in liquid media (as described below), 

before identifying the transposon insertion sites using two rounds of PCR with a TnM 

specific forward primer (Rnd1-TnM20) and an arbitrary primer (Rnd1-PA-Arb-2), 

followed by a second round of amplification using the Rnd2-TnM20 and Rnd2-Arb-

primer primer set as previously described (31, 32). Sequencing was performed using the 
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TnM specific primer, BT20TnMSeq (31) and reads were mapped to their respective loci 

within PA14 and PA01 genomes using the BLAST function on the Pseudomonas genome 

database (33).  

2.3.4 Testing activation specificity of SouR  

The small molecule specificity required for SouR-dependent activation was examined 

using β-galactosidase assays as described previously (7, 22). GGW039 (PA14 ∆gbdR 

soxB’-lacZYA-‘soxG) was grown overnight at 37 ºC on a rotating wheel in MOPS 

supplemented with 25 mM sodium pyruvate and 5 mM D-glucose. Cells were collected 

by centrifugation, washed in MOPS, and resuspended in either MOPS 20mM pyruvate or 

MOPS 20 mM pyruvate plus 1mM of either glycine betaine, dimethylglycine, sarcosine, 

ethylglycine, or glycine. Inductions were then carried out at 37 ºC on a shaker set to 170 

RPM for 3 hours before β-galactosidase activity was measured according to Miller (34).  

2.3.5 Growth Assays 

Growth assays were performed as previously described (8). Briefly, strains were 

grown overnight at 37 ºC on a roller drum in MOPS media supplemented with 25 mM 

sodium pyruvate and 5 mM D-glucose. Cells were collected by centrifugation, washed 

with MOPS (with no carbon source), resuspended, and added to 48-well tissue culture 

plates to a final optical density of 0.05 OD600 units in MOPS supplemented with 40 mM 

of sarcosine as the sole carbon and nitrogen source or 40mM of sodium pyruvate in 



65 
 

MOPS with ammonium chloride as the nitrogen source.  Growth was measured by OD600 

using a Synergy 2 Biotek plate reader. 

2.3.6 MBP-SouR fusion construct and protein purification 

A maltose binding protein-SouR fusion (MBP-SouR) was engineered into the 

pMALc2x vector as previously described for AraC-family transcription factors (22, 35). 

Briefly, souR was amplified from genomic DNA with primers (souR_MBP_F & 

souR_MBP_R) designed to exclude the start codon and incorporate flanking restriction 

sites to facilitate ligation in-frame with the MBP ORF, generating pGW015. Following 

cloning in E. coli DH5α, purified pGW015 was transformed into chemically competent 

T7 lysY/Iq E. coli (New England Biolabs) to generate the MBP-SouR expression strain, 

GGW47.  

GGW47 was induced with 1 mM IPTG for 3 h at 37 ºC. Cells were collected by 

centrifugation, rinsed twice in MOPS, and resuspended in 3 mL of cold (150 mM) Tris 

HCl, (pH 7.2) containing Halt 1x protease inhibitor cocktail (Thermo Scientific). Cells 

were lysed using a French-Press, DNaseI treated, and sheared using a 21 gauge needle. 

Following centrifugation at 4ºC and 13,000 rpm, the soluble fraction was applied to a 3 

mL amylose resin column (New England Biolabs). The column was rinsed four times 

with 6 mL of column buffer (20 mM Tris HCl, 150 mM NaCl, 1 mM EDTA [pH 7.4]) 

before protein was eluted in amylose elution buffer (20 mM Tris HCl, 150 mM NaCl, 1 

mM EDTA, 10 mM maltose [pH 7.4]). Elution fractions were evaluated by SDS-PAGE. 

Fractions containing MBP-SouR were pooled and dialyzed against 20 mM Tris-HCl, pH 
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7.5 at 4°C in a 10 kDa molecular weight cutoff Slide-A-lyzer cassette (Pierce). Protein 

aliquots were stored frozen at -80°C until use.  

 

2.3.7 Electrophoretic Mobility Shift Assays 

EMSAs were performed as previously described (22) using DNA probes spanning 

the promoter of potential SouR regulon members. Probes were constructed by PCR 

amplification, where one of the primers was 5’-biotinylated (IDT), and were 

subsequently purified using Qiagen’s PCR Clean Up Kit. EMSAs were conducted using 

the Pierce Lightshift kit following the manufacturer’s instructions with changes made as 

previously described (22), and salmon sperm DNA (Invitrogen) substituted for 

poly(dIdC) at a final concentration of 500 ng/µL. Binding, electrophoresis, and detection 

were done as previously described (22). The sequences of each primer used in the 

construction of EMSA probes for adhC (PA3629-prom-5'-biotin, PA3629-prom-3'), 

glyA1 (glyA1-prom-5’-biotin & glyA1-prom-3’), PA2762 (PA2762-prom-5’-biotin & 

PA2762-prom-3’), sdaB (cbcX-prom-5’-biotin & cbcX-prom-3’), and the negative 

control dhcA (PA1999-prom-3’ & PA1999-prom-5’-biot) are listed in Table S2.  

 

2.3.8 Promoter Mapping 

To identify the SouR and GbdR binding region within the sarcosine oxidase 

operon promoter, full length and truncated PglyA1 fragments were engineered into the 



67 
 

pMW5 lacZYA reporter vector. Briefly, the region upstream of glyA1 was amplified from 

PA14 genomic DNA using primers that incorporated flanking HindIII and KpnI 

restriction sites (PglyA1_F1, PglyA1_50bp_del_F2, PglyA1_100bp_del_F3, 

PglyA1_150bp_del_F4, & PglyA1_R). Amplicons were digested and ligated into 

similarly cut pMW5 creating the plasmids pGW011 through pGW014. Following 

transformation into DH5α and verification, these plasmids were transformed into PA14 

wild type, ∆gbdR, ∆souR, and ∆souR∆gbdR strains via electroporation. PglyA1 induction 

was measured in response to 1 mM pyruvate, sarcosine, or glycine betaine as described 

above, with the addition of 20 µg/mL of gentamicin, and β-galactosidase activity 

quantified according to Miller (34). 

 

2.3.9 Growth conditions and RNA preparation for microarrays and quantitative 

RT-PCR 

PA14 ∆gbdR and PA14 ∆gbdR ∆souR (and PA14 ∆gbdR ∆gfnR for qRT-PCR) 

were grown overnight in 3 mL of MOPS minimal medium supplemented with 20 mM 

sodium pyruvate and 5 mM D-glucose at 37 °C on a rotating wheel. Cells were collected 

by centrifugation, washed with pre-warmed MOPS, and resuspended in MOPS with 20 

mM sodium pyruvate at an OD600 of 0.6. Six hundred microliters of each strain was then 

added to 12-well tissue culture plates containing 600 µL of pre-warmed MOPS with 20 

mM sodium pyruvate and 2 mM sarcosine, or MOPS with 20 mM sodium pyruvate (no 

induction control) to achieve a final OD600 of 0.3. Inductions were carried out for 3 hours 
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at 37 ºC, shaking at 170 rpm. Following induction, cells were collected by centrifugation, 

resuspended in 400 µL of fresh MOPS, and mixed with 800 µL of RNA Protect Bacterial 

Reagent (Qiagen). The cells were again centrifuged, and the supernatant decanted before 

the pellets were frozen at -80 °C. 

RNA was prepared using a Qiagen RNeasy kit following the manufacturer’s 

protocol with the following changes. Prior to extraction, cell pellets were resuspended in 

200 µL of TE supplemented with 3 mg/mL lysozyme and incubated at room temperature 

for 20 minutes. An on-column DNase I treatment was performed before the RNA was 

eluted in RNase-free water. Samples were then treated a second time with RNase-free 

DNase I (NEB) and incubated for 1 hour at 37 ºC before a second round of RNeasy 

column purification was performed.  

2.3.10 Microarray methodology 

Microarray analysis was performed by the Vermont Genetics Network Microarray 

Facility using Affymetrix Pseudomonas aeruginosa PAO1 gene chips and DNA probes 

generated by the NuGEN Pico system. Each condition was analyzed in duplicate, and 

signals from all probes for a given gene were averaged into one probe intensity using the 

Expression Console and Transcriptome Analysis Console software package version 2.0 

(Affymetrix). Potential SouR regulon members were identified as those exhibiting at least 

a 2.5-fold change in detection between sarcosine induced and control cultures using 

RMA analysis and a p value <0.05. Array data is available in the GEO database under 

accession number GSE72613. 
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2.3.11 Quantitative RT-PCR 

 Growth conditions and RNA preparations were carried out as described above (in 

biological triplicate). cDNA was generated using Superscript IV with the 5′-

NSNSNSNSNS-3′ primer previously described (36) and 20 ng of total RNA isolated 

from each strain under each condition. Quantitative PCR was performed with technical 

duplicates using Luminaris HiGreen fluorescein qPCR master mix (Thermo Fisher), and 

primers described previously (22). Due to difficulties in the amplification of sdaB with 

Taq-based Luminaris mix, quantitative PCR was performed with NEB’s Q5 2x MM 

supplemented with SYBR Green I nucleic acid gel stain (Thermo Fisher) at a final 

concentration of 0.2X. For each gene, transcript abundance was determined using a five-

step standard curve dilution series with cDNA from the ∆gbdR strain exposed to 

sarcosine (the highest responding strain and condition) as described previously (22). Each 

sample for each transcript was normalized to its cognate rplU abundance before 

conversion to relative expression based on the average expression level in the non-

induced control sample (pyruvate) of each strain.  

2.3.12 Formaldehyde susceptibility assay 

PA14 WT, ∆gfnR, ∆gfnR attTn7::gfnR, and ∆gfnR attTn7::EV (empty site) strains  

were grown overnight at 37 ºC in MOPS media supplemented with 25 mM sodium 

pyruvate and 5 mM glucose. Cells were collected by centrifugation, washed with fresh 

MOPS media, and resuspended in 48-well tissue culture plates to a final optical density 

of 0.05 OD600 units in MOPS containing 20 mM sodium pyruvate and 5 mM glucose, or 
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MOPS with 20 mM sodium pyruvate, 5 mM D-glucose, and 0.75 mM formaldehyde. 

Susceptibility to formaldehyde was assessed by growth in the presence of formaldehyde 

through OD600 using a Synergy 2 Biotek plate reader. The concentration of formaldehyde 

utilized in this assay was arrived at by titrating the ability of PA14 WT to grow in MOPS 

media with 25 mM sodium pyruvate and 5 mM glucose supplemented with 0.25 mM, 0.5 

mM, 0.75 mM, or 1.0 mM formaldehyde. The highest formaldehyde concentration that 

did not impede growth of PA14 WT after 24 hours under these conditions was then 

chosen for assessing the susceptibility of gfnR deletion and complementation strains. 

 

2.4 Results 

2.4.1 Identification of the sarcosine-responsive regulator of the sarcosine catabolic 

operon. 

Our previous work demonstrated that while GbdR could control the sarcosine 

oxidase operon, soxBDAG could still be induced in a gbdR deletion strain in response to 

sarcosine (21), Indicating that an unidentified sarcosine-responsive transcription factor 

regulated the sarcosine oxidase genes. The sarcosine oxidase operon consists of glyA1-

soxBDAG-purU2 (PA14_71460-PA14_714530, PA5415-PA5420), which we will refer to 

as the sox operon, and is controlled from the PglyA1 promoter. To identify the sarcosine-

responsive regulator of the sox operon, an operonic lacZYA transcriptional reporter was 

engineered into the sox locus of a ∆gbdR strain, generating both a reporter and a 

simultaneous deletion of most of the operon (∆gbdR soxB’-lacZYA-‘soxG). This parent 

strain was mutagenized with the Mariner transposon from pBT20, and approximately 
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60,000 transposon insertion mutants were screened for their ability to cleave X-gal in 

response to sarcosine. In total, 23 colonies were identified that failed to induce β-

galactosidase in the presence of sarcosine. Sixteen of these mutants carried unique 

insertions in the lacZYA locus, while seven unique insertions mapped within PA14_09770 

(PA4184), predicted to encode an AraC-family transcription regulator. The unique 

insertion rate into lacZYA and PA4184 suggests that the screen was saturated for 

identification of activators.  

An ortholog search of PA4184 against the Pseudomonas genome database (33) 

revealed the widespread conservation of this gene among sequenced Pseudomonads. 

Unique to P. aeruginosa however, PA4184 is part of an operon with a gene PA4183 

(PA14_09780) (Fig. 2.1B) encoding a protein of unknown function exhibiting modest 

structural homology with the glyoxylase I-family of enzymes. A reciprocal BLASTP 

search of PA4183 against the genome database failed to identify homologs outside of P. 

aeruginosa.  

 

2.4.2 PA4184 is a sarcosine -responsive transcription regulator  

The induction specificity of PA4184 was examined through β-galactosidase 

assays performed using the same reporter strain described above (∆gbdR soxB’-lacZYA-

‘soxG) with sarcosine or structurally related compounds. Glycine betaine, 

dimethylglycine, glycine, and pyruvate failed to induce transcription of the sox operon, 

while incubation with sarcosine, and to a lesser extent, the synthetic compound 

ethylglycine, resulted in induction of β-galactosidase activity (Fig. 2.2A). This induction 
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was dependent on PA4184, as the same assay conducted in the PA4184 deletion strains 

yielded no β-galactosidase activity (Fig. 2.2B and data not shown). Moreover, 

transcription from the soxBDAG operon in response to sarcosine was restored in a ∆gbdR 

∆PA4184 soxB’-lacZYA-‘soxG strain carrying PA4184 on a plasmid under the control of 

its native promoter (Fig 2.2B). These results confirm that PA4184 is required for 

transcriptional induction of the sarcosine oxidase operon in response to sarcosine. 

Furthermore, the ability of ethylglycine to stimulate transcription from this promoter 

implicates the necessity of the secondary amine moiety in the recognition of the inducing 

compound by PA4184. Based on this data, and the growth data reported below, we 

renamed PA4184 as souR (sarcosine oxidation and utilization Regulator), which encodes 

an AraC-family transcription regulator. 

 

2.4.3 souR is essential for growth on sarcosine as a sole carbon and nitrogen source   

P. aeruginosa can use sarcosine as a sole carbon and nitrogen source for growth 

(1). To assess the requirement for souR in the metabolism of sarcosine by P. aeruginosa, 

growth assays were performed with WT, ∆gbdR, ∆souR, and ∆gbdR∆souR strains 

cultured in MOPS minimal media with sarcosine as the sole carbon and nitrogen source. 

Deletion of souR resulted in substantial growth defects compared to WT, and there was 

no detectable growth in the ∆gbdR∆souR double deletion mutant (Fig. 2.3A). The 

necessity of souR for this activity was confirmed by trans-complementation with a 

plasmid carrying souR with its native promoter, which restored growth (Fig. 2.3B). All 

deletion strains grew similarly to WT when cultured in MOPS media supplemented with 
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pyruvate and ammonium chloride as carbon and nitrogen sources, respectively, indicating 

that the observed growth defects are sarcosine-specific (Fig. 2.3).  

 

2.4.4 SouR and GbdR bind within the same region of PglyA1 

We previously determined that GbdR recognizes a binding site within the 

promoter of glyA1 using an electrophoretic mobility shift assay (EMSA) with a maltose 

binding protein-GbdR fusion (22). Here we show that a maltose binding protein-SouR 

fusion also binds the promoter of glyA1 and that this binding was sensitive to competition 

with unlabeled PglyA1 DNA (Fig. 2.4A). As previously reported for MBP-GbdR (17), the 

MBP-SouR DNA interaction was not affected by the presence of sarcosine (data not 

shown). Promoter mapping was used to determine where the SouR and GbdR binding 

sites were within PglyA1. Serial truncations of PglyA1 were engineered into the pMW5 

promoter-less lacZ reporter plasmid and transformed into ∆gbdR and ∆souR cells. In both 

scenarios, deletion of the region upstream between -210 and -158 bp from the glyA1 

translational start site resulted in loss of induction of β-galactosidase activity in response 

to sarcosine (in ∆gbdR) and glycine betaine (in ∆souR), indicating that SouR and GbdR 

require the same region of the promoter (Fig. 2.4B). SouR and GbdR appear to function 

independently at this promoter and either can support induction in response to their 

cognate inducing molecule (Fig. 2.4C). The full promoter deletion series in each of the 

four strains shown in Fig. 2.4C are presented in Fig. 2.S1. These data demonstrate that 

the minimal requirements for induction by GbdR or SouR are present between -210 and -

158.  
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2.4.5 Characterization of sarcosine -induced transcripts and determination of the 

SouR regulon 

Using Affymetrix P. aeruginosa microarrays, we characterized the transcriptional 

response of P. aeruginosa ∆gbdR and ∆gbdR∆souR in the presence and absence of 

sarcosine, which allowed us to distinguish SouR-dependent transcriptional changes from 

the total cellular response to sarcosine. Potential SouR regulon members were those 

transcripts exhibiting at least a 2.5-fold induction in the ∆gbdR strain (souR intact) and no 

induction in the ∆gbdR∆souR strain in response to sarcosine. 

The ∆gbdR and ∆gbdR∆souR strains revealed no statistically significant 

differences in their expression profiles during exposure to MOPS pyruvate media (not 

shown, see GSE72613). In contrast, the transcriptional responses of the two strains to 

sarcosine were markedly different. As expected from the results of the genetic screen, 

transcription of the sox operon (PA5415-PA5420) and the glutathione-independent 

formaldehyde dehydrogenase (fdhA) were induced in the strain expressing SouR 

(∆gbdR), when compared to the MOPS-pyruvate control (Table 2.1). Sarcosine also 

induced expression of the glutathione-dependent formaldehyde detoxification system 

encoded by PA14_17410 and adhC (PA3628 and adhC) in a SouR-dependent manner 

(Table 2.1). Since sarcosine catabolism by Pseudomonas species is known to generate 

formaldehyde (15), the expression of a second detoxification system was not completely 

unanticipated. In the souR deletion strain (∆gbdR∆souR), sarcosine failed to induce 

transcription of the sox operon, fdhA, or the glutathione-dependent formaldehyde 



75 
 

detoxification operon. Surprisingly, the dipeptide transport operon, encoding the opdP 

porin and associated ABC transporter genes exhibited a roughly four-fold increase in 

expression over the pyruvate control in the absence of SouR and the presence of 

sarcosine (Table 2.1).  

 

2.4.6 Testing SouR binding to the promoters of potential regulon members  

A short induction period (3 hours) was used in our microarray studies to limit the 

expression of genes involved in secondary processes downstream of sarcosine 

metabolism. Nevertheless, alterations within the transcriptome could reflect the response 

to metabolic intermediates generated during sarcosine catabolism, including 

formaldehyde, glycine, serine, and pyruvate (Fig. 2.1A). Therefore, EMSAs were 

performed with MBP-SouR and biotinylated probes from the adhC and sdaB promoter 

regions to determine if they were directly bound by SouR. Although expression of the 

serine dehydratase transcript sdaB, failed to surpass our 2.5 fold cut off (2.32 fold 

change), we included the promoter of this gene in our EMSAs because sdaB has 

previously been identified as a member of the GbdR regulon and plays a critical role in 

the conversion of serine to pyruvate during sarcosine metabolism (22).  As shown in Fig. 

2.5, MBP-SouR specifically bound to the promoters of glyA1, adhC, and sdaB, but not to 

the promoter region of dhcA (negative control (8, 22)). 
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2.4.7 Effects of SouR regulon members and sarcosine -induced genes on sarcosine 

catabolism 

The genes encoded within the sox operon and their respective roles in the 

metabolism of sarcosine have been well characterized (3, 15, 17, 18). However, the 

contributions of the other genes in the sarcosine regulon: PA4183, the glutathione-

dependent formaldehyde detoxification system (PA3628 & adhC), and the sarcosine-

induced dipeptide porin and transport system (PA4501-06) in the metabolism of sarcosine 

were unknown. To determine the requirement for these genes in this process, transposon 

mutants were selected from the PA14 transposon mutant library (37) and screened for 

their ability to grow in MOPS minimal media using 40 mM sarcosine as the sole carbon 

and nitrogen source. With the exception of soxA::TnM, all of the TnM disruption mutants 

from the sarcosine regulon tested were capable of utilizing sarcosine as a carbon and 

nitrogen source to some extent (Fig. 2.6). However, growth was significantly slower than 

the positive growth control strain, dhcA::TnM, for all strains except for opdP::TnM (Fig. 

2.6). As a whole, this data indicates that the glutathione dependent formaldehyde 

detoxification genes, PA4183, sdaB, souR, and gbdR are not absolutely necessary for the 

metabolism of sarcosine but are important for achieving optimal growth under these 

conditions. 
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2.4.8 PA3630 encodes the transcription regulator of the glutathione -dependent 

formaldehyde detoxification genes 

Although EMSAs demonstrated a clear interaction between MBP-SouR and the 

promoter region of the glutathione-dependent formaldehyde detoxification operon 

(PA3628 & adhC), we suspected that the divergently transcribed LysR-family 

transcription factor encoded by PA3630 (Fig. 2.1B) might also influence the expression 

of these genes in response to formaldehyde generated endogenously through the 

metabolism of sarcosine. Evidence for this function is supported by a search of PA3628, 

adhC, and PA3630 using the String database (38), which revealed that the synteny of 

these genes is conserved among hundreds of Proteobacterial taxa. To test the role of 

PA3630 in the cellular response to formaldehyde, an unmarked deletion of PA3630 was 

generated. Growth of this strain was severely attenuated compared to WT when cultured 

in minimal media containing 0.75 mM formaldehyde. Moreover, integration of PA3630 

at the attTn7 site restored growth of the deletion strain to wild-type levels (Fig. 2.7). 

These data suggest that PA3630 encodes a formaldehyde-responsive regulator of the 

glutathione-dependent formaldehyde detoxification genes and we propose the name, 

GfnR (Glutathione-dependent formaldehyde neutralization Regulator), to reflect this 

function. 

 

2.4.9 Confirmation of SouR and GfnR regulon members  

 Quantitative RT-PCR was performed to confirm the expression of SouR regulon 

members identified through microarray, as well as to distinguish the regulatory 
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contribution of GfnR from SouR in the expression of the glutathione-dependent 

formaldehyde detoxification system in response to sarcosine. While the expression of 

sdaB and the sox operon was induced by sarcosine in a SouR-dependent manner, 

induction of adhC was more stochastic, as a greater than two-fold increase in expression 

was only observed in half of the ∆gbdR replicates exposed to sarcosine (3 out of 6 

biological replicates) (Table 2.2). However, induction of adhC and PA3628 was not 

observed in the ∆gbdR∆gfnR strain in response to sarcosine (Table 2.2), indicating that 

the expression of the glutathione-dependent formaldehyde detoxification system is likely 

induced by GfnR in response to formaldehyde generated through sarcosine catabolism. 

 

2.5 Discussion 

Pseudomonas aeruginosa is ubiquitous in nature and is often described as an 

optimal exploiter of nutrient pulses largely as a result of the diverse metabolic potential 

encoded within its genome. Related to this metabolic flexibility, close to 10% of P. 

aeruginosa’s genes are predicted to encode transcription factors (39), many of which 

likely allow this organism to sense potential nutrient sources and regulate enzymatic 

pathways to exploit a variety of metabolic niches. Sarcosine is present in a range of 

environments inhabited by P. aeruginosa, although it is likely encountered most often as 

an intermediate metabolite of glycine betaine, carnitine, glyphosate, or creatine 

catabolism (6-14, 22)(Fig. 2.1A). We propose the capacity to sense and metabolize 

sarcosine as providing Pseudomonas with a fitness advantage in certain environments 
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through the ability to fully catabolize a carbon and nitrogen source that competitors 

cannot.  

In this study, we utilized a genetic screen to identify an AraC-family transcription 

factor SouR (PA4184) as the sarcosine-responsive regulator of sarcosine catabolism in P. 

aeruginosa. SouR is required for appreciable growth when sarcosine is utilized as a sole 

carbon and nitrogen source, and transcriptional induction is limited to sarcosine, a natural 

metabolite, and ethylglycine, a non-natural sarcosine analog. Together, these data support 

SouR as the first known sarcosine-responsive transcription factor. While previous work 

by Nishiya and Imanaka reported SoxR as a repressor of monomeric sarcosine oxidase in 

Arthrobacter spe4, the authors noted that sarcosine failed to relieve repression in vitro 

(40). Moreover, a follow up study determined that soxR and the monomeric sarcosine 

oxidase genes clustered with genes involved in the degradation of creatinine and creatine 

(41). Since sarcosine is generated during creatine metabolism, it is therefore likely that 

either creatinine or creatine acts as the inducing ligand of SoxR in Arthrobacter.  

While all Pseudomonads sequenced to date encode clear orthologs of SouR, only 

P. aeruginosa isolates carry this gene as part of a two gene operon with PA4183. PA4183 

encodes a protein of unknown function that shares modest structural similarity with 

members of the glyoxylase I family of enzymes (PF00903). The lack of genus-wide 

conservation of PA4183 outside of P. aeruginosa suggests that this gene is likely to play 

an accessary role in the metabolism of sarcosine, and growth assays performed with a 

PA4183 transposon mutant support this theory (Fig. 2.6). However, we have no current 

hypothesis as to the role of PA4183 in P. aeruginosa sarcosine catabolism. 
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 SouR is a member of the glutamine amidotransferase I-like transcription regulator 

(GATR) subfamily of the AraC regulator family (CD03137). Little is known about this 

group aside from their widespread distribution among Gram-negative taxa. Like other 

members of the AraC family, GATRs exhibit a two-domain layout with a C-terminal 

AraC-like helix-turn-helix DNA binding domain. Unlike other members of the AraC 

family, the amino terminal domain is a glutamine amidotransferaseI-like domain (42), 

likely involved in the recognition of the inducing molecules. Pseudomonas species 

encode a number of GATRs, with seven members conserved among the core genomes of 

sequenced and annotated P. aeruginosa isolates. Interestingly, multiple GATRs regulate 

glycine betaine acquisition and catabolism in P. aeruginosa, with the GATR member 

GbdR controlling glycine betaine catabolic genes in response to glycine betaine and 

dimethylglycine (21, 22), and the GATR member CdhR regulating the carnitine catabolic 

pathway in response to carnitine (8).  

Evidence suggests that SouR and CdhR may be paralogs of GbdR that arose 

through gene duplication. SouR and CdhR display close homology to GbdR (58% and 

62% similarity, respectively) and their phylogenetic distribution hints to shared common 

ancestry, as orthologs of SouR and CdhR are present only in taxa that also encode the 

glycine betaine catabolic pathway regulated by GbdR. In contrast, GbdR orthologs are 

widespread in taxa that lack clear SouR and CdhR orthologs. Here, we have shown that 

SouR and GbdR both regulate the expression of the glyA1 promoter (the promoter of the 

sox operon), and we determined that they likely recognize the same binding region (Fig. 

2.4B-C, Fig. 2.S1). We are currently investigating whether CdhR and GbdR also regulate 

genes from the same binding region in one or more promoters. Such co-regulation may 
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indicate a hierarchy of binding priority contributing to regulation as a means to control 

flux through the intermediate metabolite pools in the glycine betaine catabolic pathway. 

Additional transcripts regulated by SouR were identified through microarrays, 

EMSAs with MBP-tagged SouR, and quantitative RT-PCR, which point to additional 

overlap between the GbdR and SouR regulons. The serine dehydratase, sdaB is a member 

of the GbdR regulon (22), and we were initially surprised that sarcosine failed to induce 

transcription of this gene above our expression fold-change cut-off in our microarrays, as 

the activity of this enzyme links sarcosine catabolism to central metabolism by 

converting serine generated from glycine and 5,10-methyltetrahydrofolate via GlyA1 

(Fig. 2.1A), to pyruvate and ammonium. However, the expression of SdaB did increase 

2.3-fold in response to sarcosine, hence we included the promoter of this gene in our 

EMSAs with MBP-tagged SouR. In doing so, we determined that SouR, like GbdR, 

could bind the promoter region of sdaB (Fig. 2.5). Furthermore, quantitative RT-PCR 

revealed that the expression of sdaB is induced by SouR in response to sarcosine (Table 

2.2). Thus, the expression cut-off used in our microarrays (2.5-fold change) was likely 

conservative and additional less dramatically induced SouR regulon members, like sdaB, 

might exist. 

Our microarrays also revealed that the dipeptide transport system (PA4501-06) 

was induced by sarcosine in the ∆gbdR∆souR strain, but not in the ∆gbdR strain. 

Regulation of this system is complex and expression has been shown to be influenced by 

numerous dipeptides as well as the amino acid arginine (43-45). Similarly, the substrate 

specificity of the OpdP porin (PA4501) and associated transporter proteins has recently 

been examined and the system was found to be implicated in the uptake and metabolism 
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of over one hundred unique dipeptides (46). Growth assays performed with an opdP 

transposon disruption mutant revealed a wild-type growth phenotype when utilizing 

sarcosine as a sole carbon and nitrogen source, indicating that this system does not 

contribute significantly to the catabolism of this molecule (Fig 2.6). We instead 

hypothesize that the opdP operon might be induced in the ∆gbdR∆souR genotype as a 

consequence of perceived nutrient deprivation and/or this strain’s inability to metabolize 

sarcosine. In the latter scenario, we speculate that the accumulation of sarcosine within 

the cytosol might promote detection by the low specificity regulator governing 

expression of the dipeptide transport operon. 

 Glycine betaine and sarcosine catabolism in proteobacterial species generates 

formaldehyde in the absence of tetrahydrofolate (15, 17). However, these bacteria also 

encode a sarcosine-inducible glutathione-independent formaldehyde dehydrogenase 

(fdhA) that functions in converting formaldehyde to formate (20). Our microarrays 

revealed that a second formaldehyde detoxification system is expressed during sarcosine 

catabolism in P. aeruginosa. adhC and PA3628 encode a glutathione-dependent 

formaldehyde dehydrogenase and formate esterase that are nearly universally conserved 

among Gram-negative bacteria. This system has been well characterized in 

Proteobacteria and has been demonstrated to function in protecting cells against the 

effects of intracellular formaldehyde (20, 47). Interestingly, while EMSAs revealed that 

MBP-tagged SouR is capable of binding to the promoter region of the adhC and PA3628 

operon, qRT-PCR data suggests that expression of these genes is likely influenced by a 

second regulator in response to formaldehyde production (Figure 2.5A & Table 2.2). 

Searching the Pseudomonas genome database, we identified an uncharacterized LysR-
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family regulator  (PA3630) that is divergently transcribed from the PA3628 and adhC 

operon in all Pseudomonas genomes annotated to date (33). Moreover, a study in 

Pseudomonas putida revealed that the expression of this transcription factor is 

upregulated along with the (then uncharacterized) glutathione-dependent formaldehyde 

detoxification operon following exposure to formaldehyde (48).  

Here, using formaldehyde susceptibility challenge with chromosomal deletion and 

complementation strains, we have shown that GfnR (PA3630) is required for optimal 

growth of P. aeruginosa in the presence of formaldehyde (Fig. 2.7). Alternative 

regulatory mechanisms have been described for the glutathione-dependent formaldehyde 

detoxification system in Proteobacteria, including the frmR repressor of E. coli (47) and 

the fhlRS two-component sensor system of Paracoccus denitroficans (49). Nevertheless, 

a synteny search on the String database (38) revealed widespread conservation of gfnR 

orthologs in association with the detoxification genes among hundreds of taxa, indicating 

that the LysR-family regulatory mechanism is likely prevalent among Proteobacteria.  

 To summarize, this study has expanded our understanding of how sarcosine 

metabolism is transcriptionally regulated in P. aeruginosa. SouR is the first sarcosine-

responsive transcription factor to be described and we speculate that this regulator arose 

from GbdR as a means for Pseudomonas species to independently detect this 

intermediate of glycine betaine and creatine degradation in the environment. Finally, we 

identified GfnR as the regulator of the glutathione-dependent formaldehyde 

detoxification system in P. aeruginosa and determined that homologs are widespread 

among proteobacterial taxa.  
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2.7 Chapter 2 figures 

Figure 2.1 Sarcosine catabolism in Pseudomonas species. (A) Diagram of sarcosine 

catabolism in P. aeruginosa and related species. Environmental sources of sarcosine that 

can be metabolized by Pseudomonas species are shown, along with structure of sarcosine 

and the names of each enzyme involved in the conversion of sarcosine into glycine, 

serine, and pyruvate. (B) Genomic depiction of the sarcosine catabolic operon in wild-

type P. aeruginosa and the altered locus that functions as the transcriptional reporter 

strain in this study. (C) Genomic arrangement of the souR locus and glutathione-

dependent formaldehyde detoxification system genes in P. aeruginosa. 

 

Figure 2.2 Activating ligand specificity and necessity of SouR for sarcosine 

dependent induction of the sox operon. (A) Results from β-galactosidase assay of 

∆gbdR soxB’-lacZYA-‘soxG exposed in MOPS pyruvate (Pyr) to 1mM of either glycine 

betaine (GB), dimethylglycine (DM), sarcosine (Sarc), ethylglycine (EG), glycine (Gly), 

or no compound (Pyr) as a control. For convenience, the structures for sarcosine and 

ethylglycine are shown over their respective bars. (B) Results of β-galactosidase assay of 

∆gbdR∆souR soxB’-lacZYA-‘soxG exposed in MOPS pyruvate (Pyr) +/- 1 mM sarcosine 

(Sarc) with the addition of the empty vector (pMQ80) or the plasmid carrying souR and 

its native promoter (pSouR). Statistical significance was determined using one-way 

ANOVA with Dunnett’s post-test with the uninduced (Pyr) condition being the 

comparator for all other data. p-value summaries: n.s. = not significant; *** for p<0.001; 

**** for p<0.0001. The data shown are representative of three independent experiments 

and error bars represent standard deviation.  
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Figure 2.3 The role of souR during growth on sarcosine. (A) Culture density (OD600) 

after 24 hours of growth in wild type, ∆gbdR, ∆souR, and ∆gbdR∆souR cells in MOPS 

minimal media without nitrogen supplemented with either 20 mM pyruvate and 10 mM 

ammonium chloride (P), or 40 mM sarcosine (S). (B) Culture density (OD600) after 24 

hours of growth in ∆gbdR∆souR transformed with the empty vector (pMQ80) or souR 

with its native promoter (pSouR). Statistical significance determined using two-way 

ANOVA with a Tukey’s post-test for (A) and with a Sidak’s post-test for (B). p-value 

summaries: n.s. = not significant; *** for p<0.001. The data shown are the summary of 

three independent experiments each with three biological replicates, therefore error bars 

represent standard errors of the means.  

 

Figure 2.4 SouR interaction with the PglyA1 promoter. (A) Electrophoretic mobility 

shift assay (EMSA) performed with MBP-SouR (SouR) and biotinylated PglyA1 probe. 

Data is representative of four independent experiments performed with two separately 

purified batches of MBP-SouR. The presence (+) or absence (-) of unlabeled competitor 

(comp) PglyA1 probe is noted below each lane. (B) Results from β-galactosidase assay for 

promoter mapping to identify regions within PglyA1 required for souR- and gbdR-

dependent induction. The ∆gbdR cells were exposed to 1 mM sarcosine (S, light bars) 

and ∆souR cells were exposed to glycine betaine (G, dark bars) and compared to controls 

with pyruvate. The size of each PglyA1 promoter construct is noted as the beginning 

position relative to the glyA1 translational start site. Fold induction was calculated as a 

multiple of the pyruvate condition for each strain. (C) Results from β-galactosidase assay 
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for the -210 PglyA1 promoter in wild type, ΔsouR, ΔgbdR, and ΔsouR ΔgbdR. Cells were 

induced as in panel (B) and presented as Miller units. The data shown are representative 

of three biological replicates and error bars represent standard deviation.  

 

Figure 2.5 SouR binding to promoters of potential regulon members. Electrophoretic 

mobility shift assays (EMSAs) with purified MBP-SouR and biotinylated probes of 

promoter regions from operons induced by sarcosine. Each panel represents a separate 

biotinylated probe, with dhcA included as a negative control.  The MBP-SouR 

concentrations (nM) are listed below each lane. Data is representative of at least three 

independent experiments with two separate batches of purified MBP-SouR.  

 

Figure 2.6 Role of SouR and sarcosine regulated genes during growth on sarcos ine .  

Culture density (OD600) after 24 hours of growth in MOPS minimal media without 

nitrogen supplemented with either 20 mM pyruvate and 10 mM ammonium chloride (top 

panel) or 40 mM sarcosine (bottom panel) for the transposon insertion mutants labeled on 

the x-axis. The dhcA insertion mutant is known not to have a role in this pathway and 

served as the positive growth control (no growth defect). Statistical significance 

determined using one-way ANOVA with Dunnett’s post-test with growth in the dhcA 

mutant being the comparator for all other data. p-value summaries: n.s. = not significant; 

** for p<0.01; *** for p<0.001. The data shown are the summary of three independent 

experiments each with three biological replicates, therefore error bars represent standard 

errors of the means. 
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Figure 2.7 The role of gfnR during growth in the presence of formaldehyde. Culture 

density (OD600) after 24 hours of growth in MOPS minimal media 20 mM sodium 

pyruvate and 5 mM D-glucose in the presence (+) and absence (-) of 0.75 mM 

formaldehyde for wild-type, ∆gfnR, ∆gfnR attTn7::gfnR, and ∆gfnR attTn7::EV (empty 

site) strains. The data are representative of three separate experiments and error bars 

represent standard deviation. 

 

Figure S2.1 PglyA1 promoter mapping of sarcosine or glycine betaine  induced SouR 

and GbdR-dependent induction. Results from β-galactosidase assay of the four 

promoter truncation constructs (noted as bases upstream of the translational start site) in 

each of the four strains listed below the x-axis. The data shown are representative of three 

biological experiments and error bars represent standard deviation. 
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2.8 Chapter 2 tables 

Table 2.1 Transcript changes (fold abundance) related to sarcosine and SouR. 

Table 2.2 Effect of souR mutation on sarcosine regulation of regulon members. 

Table 2.S1 Bacterial strains and plasmids used in this study. 

Table 2.S2 Primers used in this study. 
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Figure 2.1 Sarcosine catabolism in Pseudomonas species. 
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Figure 2.2 Activating ligand specificity and necessity of SouR for sarcosine dependent 

induction of the sox operon. 
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Figure 2.3 The role of souR during growth on sarcosine. 
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Figure 2.4 SouR interaction with the PglyA1 promoter. 
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Figure 2.5 SouR binding to promoters of potential regulon members. 
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Figure 2.6 Role of SouR and sarcosine regulated genes during growth on sarcosine. 
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Figure 2.7 The role of gfnR during growth in the presence of formaldehyde. 
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Figure S2.1 PglyA1 promoter mapping of sarcosine or glycine betaine induced SouR and 

GbdR-dependent induction. 
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Table 2.1 Transcript changes (fold abundance) related to sarcosine and SouR  

 

     ΔgbdR 2 ΔgbdRΔsouR  Sarc   

Gene # Gene Name            Sarc:Pyr Sarc:Pyr ΔgbdR:ΔgbdRΔsouR  

 
Transcripts increased in abundance (fold induction over pyruvate): 
 

PA1168    -1.8   -2.5   -1.8         
PA1247 aprE   1.6  3.1   -2.4 
PA1250 aprI   2.4  2.8   -2.4 
PA2513 antB   -1.9  -12.2   2.4 

PA3628    4.2  -1.3   5.2 
PA3629 adhC   3.4  -1.1   3.6 
PA4385 groEL   1.1  3.3   -2.3 
PA4386 groES   1.3  3.5   -2.2 

PA4498 mdpA   1.2  2.8   -2.6 
PA4501 odpD   1.4  3.6   -3.4 
PA4502    1.1  4.2   -4.0 
PA4504    1.4  5.0   -4.3 

PA4505    1.1  4.1   -3.9 
PA4506    1.1  4.6   -4.6 
PA4761 dnaK   -1.1  3.1   -2.7 
PA5415 glyA1   2.7  1.1   2.7 

PA5416 soxB   3.5  1.1   4.0 
PA5417 soxD   12.3  -1.1   11.6 
PA5418 soxA 3   3.1  1.0   2.1 
PA5419 soxG   8.0  1.1   8.2 

PA5420 purU2   8.3  1.1   10.2 
PA5421 fdhA   5.5  1.1   5.4 
 

 
1 all bolded changes are >2.5 fold different and significant with p-values < 0.05.  
2 the top line denotes the fixed strain or treatment in the column, the bottom lists the 
comparison being made in the data. Abbreviations: sarcosine (Sarc), pyruvate (Pyr). 
3 signal from the soxA probe is low due to poor hybridization.  
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Table 2.2 Effect of souR mutation on sarcosine regulation of regulon members. 

 

Transcript       ΔgbdR  ΔgbdRΔsouR   ΔgbdRΔgfnR  

 
soxA   32.9 (8.0)** 2  1.11 (0.2)   31.0 (11.0)** 
   
adhC   3.60 (2.8) 3  1.23 (0.2)   1.21 (0.3)  

 
sdaB   5.40 (2.4)*  0.73 (0.1)             not determined 
 
1 Relative expression calculated based on the expression in WT pyruvate normalized to 
the rplU transcript.  
2 Data analyzed using one-way ANOVA within each transcript using a Dunnett’s-
corrected post-test with the pyruvate condition as the comparator. p-value abbreviations: 

* (<0.05); ** (<0.01); unmarked relative expression numbers are not statistically 
significant. 
3 the adhC transcript is stochastically induced under these conditions and while not 
different using the above parametric analysis, the data are not normally distributed. 

Analysis with the non-parametric Mann-Whitney test shows significance (p=0.026). 
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Table 2.S1 Bacterial strains and plasmids used in this study. 

Designation       Genotype or description  Reference or Source  

P. aeruginosa strains 
MJ101   PA14 wild type    (50) 
MJ285   ΔgbdR in MJ285    (7) 
GGW039   soxB’-lacZYA-‘soxG in MJ285  This study 

GGW034    ∆souR in MJ101    This study  
GGW036   ∆souR in MJ285    This study 
GGW076    ∆gfnR in MJ101    This study 
GGW078   ∆gfnR in MJ285    This study 

 
E. coli strains 

NEB5α   fhuA2 Δ(argF-lacZ)U169 phoA  
glnV44 Φ80Δ (lacZ)M15 gyrA96  

recA1 relA1 endA1 thi-1 hsdR17  NEB 
S17-1 λpir   thi pro hsdR- hsdM+ ΔrecA  

RP4-2::TcMu-Km::Tn7   (51) 
T7 Express   See manufacturer    NEB 

GGW040   pGW005 in S17-1 λpir   This study 
GGW031   pGW008 in S17-1 λpir   This study 
GGW064   pGW024 in S17-1 λpir   This study 
MJ500   pBT20 in SM10 λpir    (13, 30) 

GGW047   pGW015 in T7 Express   This study 
  
Plasmids 

pMQ30   suicide vector, GmR, sacB   (26) 

pMQ80   High copy Pseudomonas vector, GmR (26) 
pUC18-mini-Tn7T-Gm  attTn7 integration vector, GmR  (28) 
pTNS2   carrying the attTn7 transposase  (29) 
pMW5     lacZYA reporter plasmid GmR   (7) 

pMALc2X       MBP-fusion vector, ApR   NEB 
pKH10   MBP-GbdR expression vector  (22) 
pGW005   soxB’-lacZYA-‘soxG in pMQ30  This study 
pGW007   souR complementation in pMQ80  This study 

pGW008   souR (PA14_9770) in pMQ30  This study 
pGW023   gfnR (PA14_17380) in pMQ30  This study 
pGW024   gfnR (PA14_17380) in    This study 

pUC18-mini-Tn7T-Gm    

pGW011   PglyA1 -210 to +1 in pMW5   This study 
pGW012   PglyA1 -158 to +1 in pMW5   This study 
pGW013   PglyA1 -104 to +1 in pMW5   This study 
pGW014   PglyA1 -67 to +1 in pMW5   This study 

pGW015   souR (PA14_17380) in pMALc2X  This study 
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Table 2.S2 Primers used in this study. 
Primer Name  Sequence         
SoxKO-F1  aagcttCTACCGGGCTGATCGACTAC 

SoxkO-R1                AAGTACGAAGGCGACTCGACCATGGTGGTGGATGCTCCTGAACTGTT 
SoxKO-F2  CCATGGTCGAGTCGCCTTCGTACTTACTTCTGGCTCTGGTTGCAG 

SoxKO-R2  ggtaccTTGCACTGGAAAGTCGTCTG 
PA14_9770 KO F1 CCG GGA GGT GGG TTA CTT TC 
PA14_9770 KO R1 CTT CAG ACT CCG ACT GCC GCG CGC TGA AAC GCC TTC TTT CCA T 

PA14_9770 KO F2 CGCGGCAGTCGGAGTCTGAAGGCAACGTCCGC CGACGAAATG  
PA14_9770 KO R2 CCG CCG ACA GCG TAT AAG GA 
PA14_9770 Rescue F GCT CGG TAC CCA TGG AAA GAA GGC GTT TCA GCG CCG 

PA14_9770 Rescue R GCC AAG CTT TCA TTT CGT CGA GCG GAC GTT GCC 
PglyA1_F1  TGT ATT AAG CTT GGT GTT CTC GCA AGA CGA AGA GC 

PglyA1_50bp_del_F2  TGT ATT AAG CTT CCG CAT CGG TTG CCG AAT CCC AC 
PglyA1_100bp_del_F3 TGA TAT TAA GCT TGC ATA GGC ATC TGG GCC GGC AGG 
PglyA1_150bp_del_F4 TCG CTA TTA AGC TTC GCT GGC AAA GGG ACC GCG TGT 

PglyA1_R1  ATA TCA AGG TAC CAT TCC GGC GCG GTT CCG GCG C 
souR_MPB_F (Ecor1) TTT CAG AAT TCG AAA GAA GGC GTT TCA GCG CCG C 
souR_MPB_R (BamHI) CTA GAG GAT CCT CAT TTC GTC GAG CGG ACG TTG CCG 

PA3630KO_F1  CAT TCG GGC CCA TCC AGA AGA T 
PA3630KO_ R1  CGCGCGGCCTTCGCAGGCTGCAACTGGTGGACTATCTCAAG GAA 

PA3630KO_F2  AGG CCT GCG AAG GCC GCG CGG AGG AAA CGC CCA TGC GTT CG 
PA3630KO_R2  TTG TCG TAG TCC TTC GGA TTG ATG 
PA3630 RescueF KpnI CATGGTACCGCGAAGGCGACGGCGGCACGGG 

PA3630 Rescue R HindIII CATAAGCTT G CGA CCA GAA CCT CAC CAG GTA G 
PA3630 KO screen F GGA CAG ACC TTC CTG CAA CA 
PA3630 KO screen R CAG AGG TAC ATG ACG CGT GG 

PA2762_F1  GGCAAGTGGGAGGTGAACTA 
PA2762_R1  AAGTACTTGCGCACCGTCTC 

rplU_F1   GCAGCACAAAGTCACCGAAGG 
rplU_R1   CCGTGGGAAACCACTTCAGC 
sdaB_F1  CATGGAATGGGTCAACCTGT 

sdaB_R1  AGATCGAGGCGTTCTTCTTG 
soxA_F1  GTTCCTCAACCGGGTCTACA 
soxA_R1  ATTCGGTCTGGTGGTACAGC 

PA3630_F1  GTG CGG CAA GTG CAA ATT CT 
PA3630_R1  GGG GCA TCC TTG GGA ATC TT 

PA3629-prom-5'-biotin 5'biotin-CGC TCT TCC AGG CGG GCG ACC TGG C 
PA3629-prom-3'  ATA GGT ACC GAT GGA AGC CGG CGG GCC G 
PA2762-prom-5’-biotin 5’biotin-CAGGAAGGCAGTGGATGAAT 

PA2762-prom-3’  CCTTTGCCTGTGGTGGAC 
glyA1-prom-5’-biotin 5'biotin-GTGTTCTCGCAGGACGAAG 
glyA1-prom-3’  CTTTGCCAGCGATGGTATG 

cbcX-prom-5’-biotin 5'biotin-GAACTCCTCTGCAGGGTAAGG 
cbcX-prom-3’  CCGGCAAAGACCACTATGAT 

PA1999_prom_R1_KpnI GGATggtaccCTCTTCCGGCTCTTGTGATT 
PA1999_F_biot  GAGGCTTTCCTCCAGGCTCT 
TnM5 amp F  TAC AGT TTA CGA ACC GAA CAG GC 

SouR tnm R  GAA GAA CAG GCG AAC GCA TC 
PA4183 TnM R  TTC TTG GTG CGC TTT GGT TG 
GbdR TnM R  TGG CAT AGC CCC CAA TTT GT 

sdaB TnM R  AGG CCT GCA GAT GAT GTT GG 
PA2762 TnM R  CTC CCA GCG TTC GTA GTT CA 
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OpdP TnM R  TTG GGA ATG CGG AAG GTG AA 
soxA TnM R  GTG GTG GTT CAT CCA GTC GT 

GfnR TnM R  GGA CAG ACC TTC CTG CAA CA 
adhC TnM R  TCT CGA CAT AGC TCG GCA AC 
dhcA Tnm R  GGA CTC GAC AAG CGA GTA GG 

Rnd1 TnM20   TATAATGTGTGGAATTGTGAGCGG 
Rnd1 PA Arb primer 2 GGCCACGCGTCGACTAGTACNNNNNNNNNNACGCC 

Rnd2 TnM20  ACAGGAAACAGGACTCTAGAGG 
Rnd2 Arb primer  GGCCACGCGTCGACTAGTAC 
BT20TnMSeq  CACCCAGCTTTCTTGTACAC 
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3.1 Abstract 

The interactions between Klebsiella pneumoniae and the host environment at the site of 

infection largely unknown. Pulmonary surfactant serves as an initial point of contact for 

inhaled bacteria entering the lung and is thought to contain molecular cues that aid 

colonization and pathogenesis. To gain insight into this ecological transition, we 

characterized the transcriptional response of K. pneumoniae MGH 78578 to purified 

pulmonary surfactant. This work revealed changes within the K. pneumoniae 

transcriptome that likely contribute to host colonization, adaptation, and virulence in vivo. 

Notable transcripts expressed under these conditions include genes involved in capsule 

synthesis, LPS modification, antibiotic resistance, biofilm formation, and metabolism. In 

addition, we tested the contributions of other surfactant-induced transcripts to K. 

pneumoniae survival using engineered isogenic KPPR1 deletion strains in a murine 

model of acute pneumonia. In these infection studies we identified the MdtJI polyamine 

efflux pump and ProU glycine betaine ABC transporter as significant mediators of K. 

pneumoniae survival within the lung and confirmed previous evidence for the importance 

of de novo leucine synthesis to bacterial survival during infection. Finally, we determined 

that pulmonary surfactant promoted type 3 fimbriae-mediated biofilm formation in K. 

pneumoniae and identified two surfactant constituents, phosphatidylcholine and 

cholesterol, that drive this response. This study provides novel insight into the 

interactions occurring between K. pneumoniae and the host at an important infection site 

and demonstrates the utility of purified lung surfactant preparations for dissecting host-

lung pathogen interactions in vitro. 
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3.2 Introduction 

Klebsiella pneumoniae is a Gram-negative opportunistic pathogen that causes an 

estimated 8-10% of nosocomial infections in the United States and Europe (1-3). K. 

pneumoniae is often found in the environment (4-6) and is also a frequent colonizer of 

the human gastrointestinal tract (7, 8). Infections by this bacterium occur in a range of 

tissues within immunocompromised individuals, with the urinary and respiratory tracts 

being the most prevalent (1, 2, 9). Pulmonary infections caused by K. pneumoniae are 

particularly concerning and are associated with high levels of morbidity and mortality. 

Unfortunately, treatment options for combating these infections are becoming 

increasingly limited due to the widespread development of drug resistance (10-12). The 

recent emergence of colistin resistance in K. pneumoniae, coupled with the increasing 

prevalence of extended spectrum beta lactamase (ESBL) and carbapenemase-producing 

strains suggest that new therapeutics are urgently needed (13-15). Despite the clinical 

significance of K. pneumoniae, little is known about its interaction with the host lung 

environment during infection. K. pneumoniae transcriptional changes occurring following 

inhalation and deposition into the lung are likely associated with adaptation and niche 

colonization. Therefore, characterizing this ecological transition is critical to our 

understanding of the infection process.  

One of the first aspects of the host lung environment encountered by inhaled 

bacteria is pulmonary surfactant. This phospholipid-rich mixture coats the alveolar 

surfaces at the air-liquid interface and serves to reduce surface tension within the lung to 

prevent collapse following expiration (16, 17). Aside from this mechano-physical role, 

lung surfactant also modulates the activity of inflammatory cells and directly participates 
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in the innate immune response via two surfactant-associated collectins (SP-A and SP-D) 

(18-20). Lung surfactant contains roughly one hundred unique components, including a 

minor proteinaceous fraction consisting of four surfactant associated proteins (SP-A, SP-

B, SP-C, SP-D), as well as a much larger lipid fraction comprising nearly 90% of the dry 

weight of this substance. Within the lipid fraction, dipalmitoylphosphatidylcholine and 

mixed-tail phosphatidylcholines are the major constituents, making up nearly 80% of the 

total lipid content, followed by phosphatidylglycerol, phosphatidylinositol, 

phosphatidylethanolamine, and sphingomyelin. Also present within the lipid fraction are 

fatty acids, free triglycerides, and neutral lipids such as cholesterol (17, 21, 22).   

Pathogenic bacteria entering the host lung must generate an appropriate 

transcriptional response to successfully transition to this environment and avoid clearance 

by the innate immune system. Recognition of components within lung surfactant has 

been associated with the survival and virulence of several other opportunistic pathogens, 

perhaps unsurprisingly, given the locale of this substance at the respiratory surfaces of the 

alveoli and terminal bronchioles. Previous transcriptional profiling studies by our group 

with purified lung surfactant led to the determination that the detection of sphingosine 

and the metabolism of the choline moiety of phosphatidylcholine by Pseudomonas 

aeruginosa are both independently required for full virulence in a mouse model of acute 

pneumonia (23-25). Similarly, work by Ishii et al. concluded that fatty acids within lung 

surfactant invoked a membrane stress response in Staphylococcus aureus and identified a 

novel virulence determinant implicated in this process (26).  

Based on these studies, purified lung surfactant represents a critical, yet 

experimentally tractable, aspect of the host lung environment that offers an attractive in 
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vitro model to examine host-pathogen interactions occurring during the onset of 

infection. Here, we characterized the transcriptional response of K. pneumoniae MGH 

78578, a multidrug resistant clinical isolate (27), to purified bovine lung surfactant 

(Survanta). This transcriptomic-based strategy allowed us to determine that numerous 

characterized virulence and fitness-related genes of K. pneumoniae are expressed in 

response to lung surfactant, including those involved in capsule synthesis, biofilm 

formation, antibiotic resistance, LPS modification, and metabolism (1, 2, 9). We also 

tested the contributions of some of the identified genes to survival in a mouse model of 

acute pneumonia. We identified the MdtJI polyamine efflux pump and ProU glycine 

betaine ABC transporter as significant mediators of K. pneumoniae survival within the 

lung and confirmed the importance of endogenous leucine synthesis for K. pneumoniae 

survival during infection. An additional goal of this study was to identify the constituents 

within lung surfactant that induced expression of K. pneumoniae virulence-associated 

transcripts. Here, we have shown that at least two components of lung surfactant, 

phosphatidylcholine and cholesterol, promoted type 3 fimbriae expression. 
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3.3 Results 

3.3.1 Lung surfactant alters expression of K. pneumoniae metabolism pathways and 

virulence factors 

Our goal was to characterize the transcriptional changes occurring within K. 

pneumoniae resulting from exposure to purified lung surfactant. To accomplish this, we 

performed microarray analysis using a custom Affymetrix GeneChip designed for the K. 

pneumoniae MGH 78578 (ATCC 700721) genome and RNA collected from cells that 

were cultured in MOPS minimal media containing lactate as a carbon source with or 

without purified bovine lung surfactant (Survanta). Under these conditions, 89 transcripts 

exhibited more than a two-and-a-half-fold change in expression (P<0.05) between the 

presence and absence of lung surfactant. Eighty of these genes increased in expression in 

response to surfactant, while nine genes were repressed. A summary of these changes is 

shown in Figure 3.1A & B, with transcripts categorized into groups reflecting their 

known or bioinformatically predicted function (28-30). The 25 most highly expressed 

transcripts are also shown in Table 3.2, while a full list of the transcriptional changes 

occurring within K. pneumoniae in response to Survanta can be found in Supplementary 

Table 3.1. 

Fifteen percent of the genes expressed by K. pneumoniae in response to Survanta 

are predicted to function in phospholipid and fatty acid metabolism. FadR regulon 

members are well represented among this group, with six β-oxidation-related genes 

(fadBA, fadHIJ, fadE) (31) exhibiting between 3.8- and 12.3-fold increases in transcript 

abundance in response to surfactant. In addition, the four genes within the Kpn_02053-56 
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operon displayed between 5 and 19.2-fold increases in abundance under these conditions. 

Encoded within this operon are a predicted citrate permease-like transporter and 

orthologs of genes found within the dehydroxycarnitine and 3-hydroxybutryate 

metabolism gene clusters of P. aeruginosa PAO1, reflecting their probable function in 

the uptake and metabolism of short chain fatty acids (32, 33). 

Other changes within the K. pneumoniae transcriptome reflect global alterations 

in nitrogen metabolism. Glutamate synthase, gltD, the glutamine ABC transporter 

permease, glnP, and the nitrogen regulatory protein, glnK, exhibited between 2.6 and 3.1-

fold increases in transcript abundance in response to lung surfactant, indicative of 

fluctuations in nitrogen pool homeostasis. Other transcriptional changes reflect the 

accumulation, metabolism, and excretion of polyamines during growth in lung surfactant. 

Notably, increases in the abundance of several putrescine-inducible transcripts (34, 35) 

were observed, including the mdtJI polyamine efflux pump and yneI succinate 

semialdehyde dehydrogenase [5.6 to 2.7-fold increase].  

Exposure to lung surfactant also altered the expression of metabolic transcripts in 

K. pneumoniae in unexpected ways. Interestingly, Survanta stimulated the transcription 

of genes involved in the synthesis of branched chain amino acids (BCAA), including the 

valine-pyruvate transaminase, avtA [2.6-fold increase] and leuABCD leucine synthesis 

operon [2.9 to 2.3-fold increase]. In addition, repression of the phenylacetic acid 

(paaCDFEFIK) and histidine (hutUIH) catabolism gene clusters was observed [6.7 to 3-

fold decrease].  

Numerous oxidative stress-related transcripts were also induced by K. 

pneumoniae in lung surfactant, potentially in response to elevated reactive oxygen 
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species generated through the β-oxidation of fatty acids. Transcription of nemAR, 

encoding the oxidative stress-responsive regulator, NemR, and reactive-electrophile 

neutralizing N-ethylmaleimide reductase, NemA (36, 37), increased 2.8 and 7.4-fold, 

respectively, under these conditions. Other oxidative stress response genes were also 

expressed including, ybbL (2.5-fold increase) and a hydrogen peroxide-inducible gene of 

unknown function, ybjM [2.9-fold increase] (38, 39). 

Other aspects of the K. pneumoniae transcriptional response to lung surfactant are 

reflective of metabolic/cytosolic stress. Notably, transcription of the multiple drug 

resistance and acid response regulator (40-42), evgA increased 3.5-fold in response to 

surfactant exposure. Transcription of the glycine betaine ABC transporter, proVWX (43), 

also increased 4-fold, suggesting that the lipid-rich environment of lung surfactant 

invokes osmotic stress in K. pneumoniae.  Two tRNA nucleotide modification enzymes 

were also induced under these conditions, with queC and gidA exhibiting 5.4 and 2.8-fold 

increases in transcript abundance, respectively (44, 45). Finally, transcription of genes 

associated with antibiotic resistance were also upregulated, including the 23S ribosomal 

RNA methylation enzyme (yfgB) and aminoglycoside 3'-phosphotransferase, strB [2.6 to 

2.7-fold increase] (46, 47).  

Lung surfactant also induced transcriptional changes within K. pneumoniae 

associated with colonization, virulence, and immune evasion. Exposure to Survanta 

induced the expression of type 3 fimbriae encoded by the mrkABCDF gene cluster [6.7 to 

2.6-fold increase] (48). Similarly, a 5.4-fold increase in transcript abundance was 

observed for a cyclic-di-GMP phosphodiesterase (KPN_01159) that has been implicated 

in promoting mrK operon expression in vitro (49). Increased transcription of genes 
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encoded within the capsular polysaccharide synthesis (cps) region were also observed 

following exposure to surfactant, including ugd, Kp52D, and KPN_02483 [2.6 to 6.2-fold 

increase]. Two other capsule synthesis genes, KPN_02503 & KPN_02506 (50), also 

exhibited statistically significant increases in transcript abundance, but failed to surpass 

our 2.5-fold change cutoff for inclusion in this study [2.0 & 2.1-fold increase]. Lung 

surfactant also invoked transcriptional changes within K. pneumoniae indicative of LPS 

modification. A 3.1-fold increase in transcript abundance was observed for arnA, whose 

product participates in conferring resistance to cationic peptides and polymyxin B 

through the addition of 4-amino-4-deoxy-L-arabinose (Ara4N) to lipid A (51-53).  

 

3.3.2 Validation of Microarray Data 

Quantitative RT-PCR was used to confirm the Survanta-induced transcriptional 

changes within K. pneumoniae that we identified through microarray and to determine 

conservation of these responses in KPPR1. To accomplish this, RT-PCR was performed 

on K. pneumoniae MGH 78578 and KPPR1 RNA collected from three additional 

Survanta induction experiments as described in the methods section. The relative 

abundance of seven transcripts were examined, representing nearly 10% of the genes 

identified through microarray as induced under these conditions. Genes for analysis were 

chosen to represent a range of cellular functions, including: fatty acid and phospholipid 

metabolism (fadB & Kpn_02053), biofilm formation (mrkA), branched-chain amino acid 

synthesis (leuA), nutrient uptake (proV), polyamine efflux (mdtJ), and LPS modification 

(arnA). As shown in Figure 3.2, all transcripts examined exhibited greater than a two-
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fold increase in expression in response to Survanta, in close agreement with the 

microarray data. For the five primers that produced correct amplicons, all showed 

induction, with leuB and arnA showing higher relative induction in KPPR1. 

 

3.3.3 Surfactant-induced transcripts contribute to K. pneumoniae fitness during 

lung infection 

The contributions of other surfactant-induced transcripts to K. pneumoniae lung 

pathogenesis were explored using engineered K. pneumoniae gene deletion strains in a 

mouse oropharyngeal aspiration model of acute pneumonia. Due to the historic usage of 

KPPR1 as the model for Klebsiella lung infection, gene deletions were engineered into 

KPPR1 (ATCC 43816) (1, 54-58). KPPR1 and MGH 78578 share a high level of gene 

conservation with 88% of open reading frames being considered orthologous (59). More 

importantly, this genetic similarly is reflected within the surfactant microarray data where 

81% of transcripts expressed by MGH 78578 under these conditions are also encoded 

within the genome of KPPR1.  

Exposure to lung surfactant induced the expression of the leucine synthesis gene 

cluster (leuABCD) in both strains of K. pneumoniae (Figure 3.2). The importance of 

branched chain amino acid synthesis to K. pneumoniae during pulmonary infection was 

recently demonstrated through an in vivo genetic screen that recognized the ilvADE 

isoleucine and valine synthesis gene clusters as required for pathogenesis, and also noted 

that leuABCD disruption mutants displayed competitive fitness defects in vivo (60). 

Therefore, we generated a leuABCD deletion strain to determine if the defect was 
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absolute or only manifests in competition with the WT. Deletion of leuABCD resulted in 

a nearly a fifty-fold decrease in bacterial CFU in the lung compared to the WT strain 

(48.98-fold decrease in CFU, p value = 0.0048) (Figure 3.3A). Interestingly, although the 

total number of immune cells in the bronchoalveolar lavage fluid (BALF) collected from 

mice infected with the ΔleuABCD strain were similar to those infected with KPPR1 WT, 

the composition of the infiltrating leukocytes differed. BALF collected from mice 

infected with the deletion strain demonstrated a reduction in neutrophilic response to the 

mutant strain, likely as a consequence of reduced bacterial CFU (Figure 3.3B).  

The mdtJI operon encodes a small multi-drug resistance (SMR-family) efflux 

pump that was first implicated in resistance to deoxycholate and SDS in E. coli (61). 

More recent reports have indicated that MdtJI primarily functions in the excretion of the 

polyamines spermidine and putrescine (35, 62). Polyamines have been recognized as 

important mediators of virulence in numerous bacterial genera including Shigella, 

Salmonella, and Staphylococcus (63), leading to our interest in exploring the potential 

contribution of MdtJI to K. pneumoniae fitness during infection of the lung. As shown in 

Figure 3.4A, deletion of mdtJI resulted in more than a ten-fold decrease in bacterial lung 

burden relative to the WT strain 24 h post inoculation (10.86-fold decrease in CFU). 

Interestingly, BALF collected from mice infected with KPPR1 ΔmdtJI contained 

significantly fewer infiltrating leukocytes, neutrophils, and macrophages than mice 

infected with the WT strain (Figure 3.4B).  

The ProU (proVWX) ABC transporter was the most highly induced metabolite 

acquisition system expressed by K. pneumoniae following exposure to Survanta. The role 

of this transporter has been extensively studied in Escherichia coli and Salmonella 
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typhimurium and participates in the uptake of glycine betaine from the environment 

during periods of osmotic stress (43, 64). Phosphatidylcholine is the most abundant 

phospholipid in lung surfactant, and has previously been shown to serve as an important 

source of the osmoprotectant, glycine betaine, that is required for Pseudomonas 

aeruginosa fitness within the lung (24). We were therefore curious to determine if ProU-

mediated glycine betaine uptake also contributed to K. pneumoniae fitness during lung 

infection. As shown in Figure 3.5A, deletion of proV resulted in a significant decrease in 

bacterial lung burden compared to the WT KPPR1 strain 24 H post inoculation (6.99-fold 

decrease in CFU). Examination of immune cells in BALF collected from these mice 

indicated that deletion of proV altered polymorphonuclear leukocyte recruitment (Figure 

3.5B). It is important to note for the CFU changes reported for these three strains that 

although we suggest a survival difference, we have not enumerated CFU in the BALF or 

other body compartments and it therefore remains a formal possibility that localization is 

affected instead of, or in addition to survival.  

 

3.3.4 KPPR1 isogeneic deletion strains exhibit wild type growth kinetics in TSB 

Our K. pneumoniae gene deletion strains were assessed for general growth defects 

in nutrient rich media to ensure that the decreased CFU counts we observed in vivo were 

not a consequence of generalized growth defects. In order to address this question, the 

growth of KPPR1 WT and engineered gene deletion strains were measured in tryptic soy 

broth (TSB), the media used to culture the bacteria prior to inoculation into mice. As 

shown in Figure 3.6, the growth kinetics of all deletion strains closely mirrored the WT 
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strain. We were also interested in exploring the impact that deletion of these genes had on 

the ability of K. pneumoniae to grow in the presence of Survanta. However, both K. 

pneumoniae MGH 78578 and KPPR1 failed to effectively utilize Survanta as a nutrient 

source in a range of medias, including: LB, TSB, R2A, MOPS, and M63 (data not 

shown). Specifically, addition of Survanta to either these rich or minimal media 

formulations did not result in increase or decrease of CFU counts compared to the media 

without Survanta. 

 

3.3.5 Some Survanta-induced transcripts are expressed in response to specific lung 

surfactant components 

 An additional goal of this study was to identify the molecules within lung 

surfactant that promoted K. pneumoniae virulence gene expression. The ability of 

individual constituents of lung surfactant to stimulate mrkA, proV, and mdtJ transcription 

was examined through quantitative RT-PCR. For these experiments, RNA was collected 

from K. pneumoniae MGH 78578 cells grown in MOPS minimal media and subsequently 

exposed to individual components found within lung surfactant, or lactate as a control. 

Compounds tested included phosphatidylcholine, diacylglycerol, palmitate, sphingosine, 

cholesterol, in addition to choline and ethanolamine, which have previously been shown 

to induce fimbriae expression in enterohemorrhagic E. coli (65). Exposure to cholesterol 

and phosphatidylcholine stimulated transcription of mrkA, but none of the individual 

compounds tested significantly induced transcription of mdtJ or proV (Figure 3.7).  
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3.3.6 Surfactant-induced biofilm formation is mediated by type 3 fimbriae  

Both our microarrays and subsequent qRT-PCR revealed that the type 3 fimbriae 

gene cluster (mrkABCDF) is expressed by K. pneumoniae MGH 78578 and KPPR1 

following exposure to lung surfactant (Figures 3.1, 3.2, and Table 3.2). In addition, our 

gene induction experiments indicated that two constituents of lung surfactant, 

phosphatidylcholine and cholesterol, induced transcription from the mrkA promoter 

(Figure 3.7). We were therefore curious to determine if these observations were reflected 

through increased biofilm production. To address this question, we cultured K. 

pneumoniae MGH 78578, KPPR1 WT, and KPPR1 ΔmrkABC in minimal media in the 

presence and absence of Survanta, phosphatidylcholine, or cholesterol, then quantified 

the resultant biofilm material adhered to the plastic culture wells the following day 

through crystal violet staining assay.  

As shown in Figure 3.8A, exposure to Survanta, phosphatidylcholine, and 

cholesterol resulted in significant increases in biofilm production in K. pneumoniae MGH 

78578 and KPPR1. The biofilms generated by KPPR1 under these conditions were 

notably less robust than those produced by MGH 78578. These observations can be 

explained in part by the hypermucoid phenotype of KPPR1 (cpsK2 serotype (56)) relative 

to MGH 78578 (cpsK52 serotype(66)), since capsule production is known to negatively 

impact biofilm formation in K. pneumoniae (67, 68). Furthermore, deletion of the 

mrkABC fimbria genes in KPPR1 disrupted biofilm formation at the air liquid interface in 

the presence of lung surfactant, and resulted in a substantial reduction in adhered biofilm 

material compared to the WT strain in every condition tested (Figure 3.8A). These data 
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indicate that lung surfactant-induced biofilm formation is primarily mediated by type 3 

fimbriae. 

 

3.4 Discussion 

Our understanding of the genetic factors influencing Klebsiella pneumoniae 

pathogenesis has significantly improved in recent years (1, 9). In vivo genetic screens and 

deep sequencing have been particularly effective in identifying genes associated with K. 

pneumoniae fitness during infection in a range of tissue types (42, 69-72). Bachman and 

colleagues recently applied this methodology to uncover numerous K. pneumoniae genes 

that contribute to pathogenesis within the lung (60). Despite these advances, there is still 

much that we do not understand regarding the role K. pneumoniae’s response to the host 

environment plays in shaping colonization and pathogenesis. 

Lung surfactant serves as an initial point of contact for inhaled bacteria entering 

the lung, particularly those in small aerosol droplets, and likely contains molecular cues 

that influence colonization and pathogenesis. Our group has demonstrated the utility of 

the lung surfactant preparation, Survanta, for dissecting host-lung pathogen interactions 

in P. aeruginosa. We previously showed that lung surfactant led to induction of 

transcripts involved in the detection of sphingosine and the metabolism of choline, and 

that both of these pathways were required for P. aeruginosa survival in a mouse model of 

acute pneumonia (23, 24). We also showed that the utilization of phosphatidylcholine 

metabolites in lung surfactant by P. aeruginosa promoted virulence factor expression 
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(25), and directly contributed to the loss of surfactant function during murine infection 

(73).  

In this study, we expanded on our previous efforts with P. aeruginosa and 

characterized the transcriptional changes within Klebsiella pneumoniae MGH 78578 

resulting from exposure to Survanta. We observed numerous alterations within the K. 

pneumoniae transcriptome that likely promote colonization, adaptation to the host, and 

virulence in vivo. Notable transcripts expressed by K. pneumoniae under these conditions 

include genes involved in capsule synthesis, LPS modification, antibiotic resistance, and 

biofilm formation (Figures 3.1 & 3.2). Furthermore, a sizeable fraction of the transcripts 

identified through this work indicate that the lipid-rich environment of lung surfactant 

invokes significant membrane, cytosolic, and oxidative stress in K. pneumoniae (Figure 

3.1B & Table 3.2). These results parallel our earlier findings in P. aeruginosa (23, 25), 

and support similar observations in Staphylococcus aureus (26), suggesting that lung 

surfactant is likely to promote the expression of virulence and stress-related genes in a 

range of lung pathogens.  

 

3.4.1 Lung surfactant-induced transcripts contribute to K. pneumoniae survival 

during acute murine pneumonia 

We also demonstrated that lung surfactant-induced transcripts contribute to K. 

pneumoniae survival and resulting inflammation during acute pneumonia. For these 

experiments, we focused on metabolism-related genes induced by surfactant. 
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Our interest in BCAA synthesis and the role these genes play in bacterial fitness 

during infection stems from our observation that lung surfactant specifically stimulated 

transcription of the leucine synthetic operon (leuABCD) in K. pneumoniae. In contrast, 

the expression of other amino acid anabolic pathways were not altered by lung surfactant 

under these conditions. The mechanism driving this induction is unclear, but lung 

surfactant metabolism by K. pneumoniae could invoke a specific, previously unknown 

need for increased leucine synthesis. The ability to synthesize BCAAs during infection is 

known be critical for the survival and virulence of several bacterial lung pathogens, given 

its scarcity in the lung environment (60, 74-76). The necessity of BCAA synthesis for K. 

pneumoniae during pulmonary infection was recently highlighted through an in vivo 

transposon mutant screen that recognized ilvADE and leuABCD gene disruption mutants 

displayed competitive fitness defects in the murine lung (60). Results from our mouse 

infections with an engineered leucine auxotroph of K. pneumoniae support these earlier 

findings, and confirm that BCAA biosynthesis is required for both fitness and survival in 

the absence of competition during lung infection (Figure 3.3), suggesting that, like in 

other bacterial lung pathogens, loss of leucine synthesis is deleterious to survival in the 

lungs. 

Polyamines have been recognized as significant mediators of bacterial virulence 

and often have pleiotropic effects on pathogenesis (63, 77). Within enteric species, the 

accumulation of putrescine and spermidine has been shown to promote biofilm formation 

in Yersinia pestis, type 3 secretion system expression in Salmonella typhimurium, and 

increased resistance to reactive oxygen species in Shigella flexneri during macrophage 

infection (78-80). Surprisingly however, the influence of polyamines on K. pneumoniae 
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survival had not previously been explored. Here, we have shown that deletion of the 

genes encoding the spermidine and putrescine efflux pump, mdtJI (35, 62), resulted in a 

significant defect in K. pneumoniae survival relative to the parental WT strain in our 

murine model of pneumonia (Figure 3.4). We propose two potential explanations for 

these observations. First, putrescine and spermidine are present on the outer membranes 

of enteric species and have been shown to alter membrane permeability through 

modifying the charge and shape of porins in E. coli (81, 82). Likewise, the presence of 

these polyamines on the outer membrane surface of P. aeruginosa has been shown to 

protect against oxidative stress and antibiotic-mediated killing (83). Therefore, MdtJI-

mediated polyamine efflux could similarly facilitate resistance against oxidative killing in 

K. pneumoniae. Second, polyamines secreted by bacteria and fungi have been shown to 

interfere with the innate immune response by disrupting polymorphonuclear leukocyte 

(PMN) function (84-87)(88).  

Our lung surfactant lipid induction experiments failed to reveal any individual 

components within surfactant that stimulated transcription of mdtJI (Figure 3.7). The 

expression of this pump is primarily regulated by the intracellular concentration of 

putrescine (35). However, transcription of mdtJI has also been shown to be stimulated by 

deoxycholate and bile salts in S. flexneri (35), suggesting that this efflux pump could also 

be induced by membrane stress or other environmental cues. We predict that the 

expression of mdtJI in K. pneumoniae under these conditions could either be a 

consequence of membrane stress or the metabolism of multiple components within lung 

surfactant. 
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The ProU (proVWX) ABC transporter has been well characterized in E. coli and 

S. typhimurium, and functions in the uptake of the osmoprotectant glycine betaine under 

periods of osmotic stress (43, 64). Phosphatidylcholine is the most abundant phospholipid 

within lung surfactant and serves as a vital precursor of glycine betaine for P. aeruginosa, 

the accumulation of which is required for bacterial survival in the lung (24). The survival 

defect we observed in the K. pneumoniae ΔproV strain in our acute murine pneumonia 

model is in close agreement with these earlier findings, and suggests that the ability to 

obtain glycine betaine from phosphatidylcholine is likely important for other Gram-

negative respiratory pathogens as well (Figure 3.5). Host-derived glycine betaine has 

additionally been shown to promote K. pneumoniae success at other sites of infection. An 

in vivo screen previously revealed that proV gene disruption mutants displayed a 

competitive fitness defect in the colon and liver (42), indicating that glycine betaine 

likely serves as a preferred osmoprotectant for K. pneumoniae during infection.  

It is important to note that not all surfactant-induced transcripts expressed by K. 

pneumoniae contribute to bacterial fitness during lung infection. The products of the five 

gene Kpn_02053-5 operon are predicted to function in the uptake and metabolism of 

short chain fatty acids (28, 29), and represent the most highly induced transcript 

expressed by K. pneumoniae in response to lung surfactant (Figure 3.1 & Table 3.2). 

Despite the dramatic increase in transcription of this operon in response to lung 

surfactant, the deletion strain exhibited no defect in bacterial lung burden compared to the 

WT strain 24 H post inoculation. Similar results were also observed in a ΔfadBA strain, 

indicating that the metabolism of fatty acids within lung surfactant does not directly 

contribute to K. pneumoniae fitness during acute pneumonia (data not shown). The lack 
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of a phenotype for these highly expressed transcripts is not unexpected, as there is no 

evidence of a direct relationship between gene expression and fitness phenotype in 

bacterial lung infections to date (89). 

 

3.4.2 Lung surfactant promotes type 3 fimbriae expression and biofilm formation in 

K. pneumoniae 

Exposure to lung surfactant induced type 3 fimbriae-mediated biofilm formation 

in K. pneumoniae MGH 78578 and KPPR1 (Figure 3.8). Type 3 fimbriae (Mrk fimbriae) 

have been extensively studied in K. pneumoniae and facilitate cell adhesion to a range of 

biotic and abiotic substrates including type IV & type V collagen, silicone, and hard 

plastics (90-93). Although type 3 fimbriae are not directly involved in K. pneumoniae 

virulence, their requirement for colonization and persistence in catheter-associated 

urinary tract infections (CAUTI) has been demonstrated by multiple groups (94, 95).

 Transcriptional regulation of type 3 fimbriae expression in K. pneumoniae is 

complex and governed by multiple integrated regulatory networks, including being 

dependent on the coordinated activities of MrkH and MrkI in response to the intracellular 

accumulation of the secondary messenger, cyclic-di-GMP (96, 97). Surprisingly, the 

environmental signals and regulatory networks acting upstream of MrkHI that drive type 

3 fimbriae expression are largely unknown, particularly in the context of infection. 

Recent reports have identified iron and oxidative stress-responsive transcription 

regulators that modulate mrk fimbriae expression (98-100), and Chet et al. also identified 

bile salts as stimulators of type 3 fimbriae-mediated biofilm formation (101). Here, we 
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expand on these previous findings and report that at least two components of lung 

surfactant, phosphatidylcholine and cholesterol, promote type 3 frimbriae transcription 

and biofilm formation in K. pneumoniae (Figures 3.7 & 3.8).  

 

3.4.3 Conclusions 

In summary, we characterized the transcriptional response of K. pneumoniae 

MGH 78578 to the lung surfactant preparation, Survanta. This work revealed numerous 

transcripts expressed by K. pneumoniae in response to lung surfactant that reflect 

metabolic adaptation, stress resistance, virulence, and host colonization. We also 

demonstrated that some surfactant-induced transcripts contribute to bacterial survival in 

vivo in a mouse model of acute pneumonia. Through this effort we confirmed the 

necessity of BCAA synthesis to K. pneumoniae success during infection and provided 

novel evidence suggesting that glycine betaine uptake and polyamine efflux also 

contribute to Klebsiella survival during respiratory tract infection. Finally, we identified 

multiple components within lung surfactant that stimulate type 3 fimbriae-mediated 

biofilm formation. This study provides novel insight into the interactions occurring 

between K. pneumoniae and the host at an important infection site. This work, together 

with our previous studies in P. aeruginosa highlight the utility of using lung surfactant to 

uncover important aspects of host-lung pathogen interactions in vitro. 
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3.5 Methods 

3.5.1 Bacterial strains and compounds  

K. pneumoniae KPPR1 (ATCC 43816) and K. pneumoniae MGH 78578 (ATCC 

700721) were maintained on Lysogeny Broth (LB), Lennox formulation, supplemented 

with 200 µg/mL of hygromycin B when appropriate. All cloning steps were performed 

with E. coli DH5α λpir, while E. coli S17-1 λpir was used for conjugation with K. 

pneumoniae. Both E. coli strains were maintained in LB, supplemented with 150 µg/mL 

of hygromycin B, when appropriate. The purified bovine pulmonary surfactant 

preparation, Survanta (Beractant, AbbVie, Lake Bluff, IL) was utilized for our surfactant-

response microarrays and biofilm experiments. Survanta is an organic extraction of lung 

surfactant from cows and as such is missing the polar surfactant proteins involved in 

pulmonary defense (SP-A and SP-D) as well as most antimicrobial peptides (including 

defensins) and antimicrobial proteins present in the lung lining fluid (ex. lysozyme), thus 

it is composed of the lipids naturally present in lung surfactant along with the 

hydrophobic proteins SP-B and SP-C. Because it is an organic extraction product, 

physiological concentrations of salts and dissolved polar compounds are added back by 

dilution of this product into minimal media. Lung surfactant constituents used in our gene 

induction assays were purchased from Avanti Polar Lipids (Alabaster, AL) and Sigma-

Aldrich (St. Louis, MO). 
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3.5.2 Construction of K. pneumoniae gene deletion strains 

Gene deletion strains in K. pneumoniae KPPR1 were generated through allelic 

exchange facilitated by the suicide vector, pGW65. To create pGW65, pMQ310 and 

pMQ30 (102, 103) were first digested with NcoI and KpnI (New England Biolabs, 

Ipswich, MA). The 3.9 kbp fragment of pMQ310 carrying the hygromycin B resistant 

cassette and R6Kγ origin and the 4.6 kbp fragment of pMQ30 carrying the sacB 

counterselectable marker were gel extracted using Thermo-Fisher’s GeneJET kit 

(Waltham, MA), and subsequently ligated together before transformation into chemically 

competent DH5α-λpir. Gene deletion constructs were engineered into this vector using 

the molecular cloning methodology previously described with pMQ30 (103, 104). 

Briefly, ~1 kbp fragments immediately upstream and downstream of the gene (or genes) 

targeted for deletion were amplified using the primers listed in Supplementary Table 

3.2. For each deletion construct, tailed primers were used to facilitate the fusion of each 

fragment via overlap extension PCR as well as ligation into pGW65 through incorporated 

flanking restriction sites. Ligation reactions were then chemically transformed into 

DH5α-λpir cells and transformants were selected for on LB supplemented with 150 

µg/mL of hygromycin B. Plasmid DNA was harvested from these colonies by Miniprep 

(Qiagen) and verified by restriction digest.  

Deletion constructs were subsequently transformed into chemically competent 

S17-1 λpir E. coli and mobilized into K. pneumoniae KPPR1 via conjugation (105). 

Following overnight incubation at 37 °C, merodiploids were selected by plating on 

MOPS minimal agar supplemented with 200 µg/mL of hygromycin B and 25 mM sodium 

pyruvate. To select for the ΔleuABCD strain, 0.5% casamino acids was added to this 
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media. KPPR1 merodiploids that arose the next day were then restreaked onto this media 

to ensure S17-1 λpir E. coli cells were not carried over. A second round of recombination 

was then permitted by first growing hygromycin B-resistant colonies overnight in LB 

containing 200 µg/mL of the antibiotic, diluting the overnight 1:500, and growing to mid-

log phase in LB in the absence of hygromycin B. Dilutions of this culture were then 

plated on low salt LB agar containing 6% sucrose and incubated overnight at 25°C as 

suggested (105). Sucrose resistant colonies arising 24 h later were screened via PCR for 

deletion of the gene(s) of interest with primers listed in Supplementary Table 3.2.  

 

3.5.3 Growth conditions and RNA purification for microarrays/qRT-PCR 

K. pneumoniae MGH 78578 was grown overnight at 37 °C in modified MOPS 

(morpholinepropanesulfonic acid) minimal media (106, 107), supplemented with 25 mM 

lactate and 5 mM D-glucose. The following day, cells were collected by centrifugation, 

washed with 1 mL of MOPS media, and resuspended in MOPS containing 4 mM lactate 

to achieve an OD600 of 0.6. These cultures were then mixed 1:1 with MOPS media 

containing 4 mM lactate, or the same media supplemented with Survanta (AbbVie, Lake 

Bluff, IL) at a dilution of 1:50 to reflect the physiological concentration of PS in the 

airway surface liquid (15 mg/mL). Cultures were incubated at 37 °C shaking at 170 RPM 

for 4 h, at which point the cells here harvested via centrifugation and immediately lysed 

in ~85°C RNAzol RT (Sigma-Aldrich, St. Louis, MO), and frozen at -80°C. RNA 

extractions were first performed using Zymo Research’s RNA mini-prep kit (Irvine, CA) 

following the manufacturers provided protocol. The resulting RNA was then incubated 
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for one hour with DNaseI (NEB) before being re-purified using RNeasy columns 

(Qiagen) to remove small RNAs in preparation for microarrays as we have done 

previously (23, 108). The quality of each RNA sample was then assessed via Agilent 

BioAnalyzer and quantified through Qubit fluorometer.  

 

3.5.4 Survanta microarray methodology  

Microarrays were performed by the UVM Advanced Genome Technology Core 

using a custom Affymetrix chip containing probes specific to the genomes of Klebsiella 

pneumoniae MGH 78578, Stenotrophomonas maltophilia K279A, Burkholderia 

thailandensis E264, and Pseudomonas aeruginosa PA14 (109). Arrays were performed in 

biological duplicate, with RNA collected from two independent Survanta induction 

experiments that were performed on separate days. K. pneumoniae cDNA hybridization 

was performed simultaneously with a 1:1 mixture of Survanta-induced 

Stenotrophomonas maltophilia K279A cDNA (cultured under the same conditions) per 

manufacturer’s recommendation. Each condition was analyzed in duplicate, with probes 

for each gene averaged into one probe intensity using the Affymetrix Expression Console 

and Transcriptome Analysis Console software packages (version 3.0). Surfactant-altered 

transcripts were identified as those exhibiting at least a 2.5-fold change in signal between 

the two conditions as determined using robust multi-array average (RMA) analysis and P 

value of <0.05. The array data has been submitted to the GEO database under accession 

number GSE110628.  
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3.5.5 Quantitative RT-PCR 

Total RNA was prepared from three additional Survanta inductions with K. 

pneumoniae MGH 78578 as described above. Twenty nanograms of RNA from each 

sample was then utilized as template for cDNA synthesis using Superscript IV and 

random hexamers (Thermo-Fisher), per manufacturer’s instructions. Quantitative PCR 

was performed using the resulting cDNA in technical duplicate with primers listed in 

supplementary table 1 and NEB’s Q5 2x master mix supplemented with SYBR green I 

nucleic acid gel stain (Thermo-Fisher) at a concentration of 0.2x, as we have done 

previously (108). A standard curve dilution series was generated for each primer set to 

determine transcript abundance (110). Values for each reaction were normalized to 

Kpn_04184, which exhibited no change in expression between conditions in the Survanta 

microarrays. Fold change for each transcript was determined by dividing normalized 

surfactant-exposed values by their corresponding control condition values. Absence of 

reverse transcriptase during cDNA synthesis resulted in no product from any primer set 

using the isolated RNA.  

 

3.5.6 Mouse Infections 

Infections were performed as previously described (57, 73). Briefly, K. 

pneumoniae KPPR1 WT and isogenic deletion strains were grown in TSB overnight, 

normalized by OD600, harvested via centrifugation, washed in 2 mL of PBS, and finally 

resuspended in PBS to achieve 2 x 103 CFU per 50 µL. For each strain, the actual input 
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inoculum was determined by serial dilution plating on LB agar. Eight to ten-week-old 

adult male C57Bl/6J mice (Jackson Laboratories, Detroit, MI) were briefly anesthetized 

with isoflurane and inoculated with 2 x 103 CFU of either KPPR1 WT or isogenic 

deletion strains through oropharyngeal aspiration. Twenty-four hours later, mice were 

euthanized via sodium pentobarbital delivered through intraperitoneal injection, 

Bronchoalveolar lavage fluid was then collected, and lungs were then quickly removed, 

placed into 1 mL of cold PBS, and immediately homogenized.  

Serial dilutions of the resulting lung homogenates were plated on LB agar to 

determine bacterial burden by counting CFU. White blood cell content within the BAL 

fluid was enumerated manually. Infections were performed at least three times with 3-4 

mice per strain per experiment. In each case, paired infections were performed with one 

gene deletion strain and the parental WT strain for comparison of lung CFU.  

 

3.5.7 Growth Assays  

Growth assays were conducted with K. pneumoniae KPPR1 WT and isogenic 

deletion strains as we have done previously with P. aeruginosa (104). Briefly, KPPR1 

WT and our isogenic deletion strains were grown overnight at 37 °C on a roller drum in 

MOPS minimal media supplemented with 20 mM lactate and 5 mM D-glucose. In the 

case of KPPR1 ΔleuABC, 0.5% casamino acids was added to this media to permit growth. 

The following day, cells were collected via centrifugation, washed with 1 mL MOPS 

media, and resuspended in TSB at a final optical density of 0.05 OD600 units. Growth 

assays were performed three time, each with technical triplicates, in 48-well tissue culture 
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plate and growth was determined by OD600 using a Synergy 2 plate reader (Biotek). 

Growth assays in Survanta were conducted as above, except growth was quantified by 

serial dilution plating, as Survanta is a colloidal suspension and prevents growth 

assessment by OD600. 

 

3.5.8 Gene induction assays with components of lung surfactant 

To identify the transcript-inducing molecules within lung surfactant, quantitative 

RT-PCR was performed on K. pneumoniae MGH 78578 RNA collected from cells 

exposed to 1 mM phosphatidylcholine, sphingosine, cholesterol, diacylglycerol, 

palmitate, choline, ethanolamine, or no compound as a control. For these experiments, K. 

pneumoniae was first grown overnight in MOPS minimal media as described above. The 

following day, cells were collected by centrifugation, washed in 1 mL MOPS, and 

resuspended in MOPS 20 mM lactate to achieve a final OD600 of 0.3. One milliliter 

aliquots of this culture were then added to a plastic culture dish with wells containing 

these compounds deposited via the evaporation of ethanol, and incubated for 4 h at 37 °C 

and 170 RPM. Following the induction period, RNA was purified from these cells, cDNA 

was synthesized, and quantitative PCR was performed as described above.  

 

3.5.9 Biofilm assay 

K. pneumoniae MGH 78578, KPPR1 WT, and KPPR1 ΔmrkABC were grown 

overnight at 37 °C on a roller drum in MOPS minimal media supplemented with 20 mM 

sodium pyruvate and 5 mM glucose. The following day, cells were collected by 
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centrifugation, washed in 1 mL of MOPS media, and adjusted to an OD600 of 0.1. Each 

strain was then added 1:1 to either MOPS media containing 20 mM sodium lactate in 

addition to the same media supplemented with Survanta to achieve a final surfactant 

dilution of 1:50. The OD600-adjusted cultures were also diluted 1:1 in the same media 

(MOPS 20 mM sodium lactate), and added to wells of a 48 well dish containing 

phosphatidylcholine or cholesterol that were deposited the night prior through ethanol 

evaporation. These cultures were incubated for 18 h at 37 °C and agitated at 170 RPM to 

loosely reflect the continuous aeration and mixing of surfactant that occurs within the 

lung. Following the incubation, the cell suspension was removed from the wells and the 

remaining biofilm material stained using 0.1% crystal violet, followed by water rinse, and 

solubilization of the remaining crystal violet in 30% acetic acid (111). Biofilm was 

quantified by measuring A550 using a Biotek Synergy 2 plate reader. This experiment was 

performed four times with technical triplicates of each experiment.  

 

3.5.10 Statistical analysis and data visualization 

 All statistical analyses and figure generation were performed using GraphPad 

Prism Version 7.0, unless otherwise noted. Microarray analysis and statistical assessment 

was performed through RMA using Affymetrix’s Expression Console and Transcriptome 

Analysis Console software packages (version 3.0) as described above. Gene functional 

classification was done by manually combining related GO, COG, and KEGG predictions 

into more general functions. 
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3.7 Chapter 3 figures 

Figure 3.1. K. pneumoniae MGH 78578 transcriptome changes in response to lung 

surfactant.  (A) Volcano plot of transcripts detected through microarray as exhibiting 

more than a 2.5-fold change in expression (P < 0.05) following exposure to Survanta. (B) 

Survanta-regulated transcripts were categorized into groups reflecting their known or 

bioinformatically-predicted functions. The color coding of the categories is the same for 

both panels. 

 

Figure 3.2. qRT-PCR validation of induced transcripts in K. pneumoniae following 

exposure to lung surfactant. The relative abundance of seven Survanta-induced 

transcripts detected through microarray were re-examined using quantitative RT-PCR 

with RNA collected from three independent Survanta induction experiments as described 

in the methods section. Genes for analysis were chosen to represent a range of cellular 

functions, including: lipid metabolism (fadB & Kpn_02053 (dhcA)), biofilm formation 

(mrkA), branched-chain amino acid synthesis (leuA), nutrient uptake (proV), polyamine 

efflux (mdtJ), and LPS modification (arnA). Raw transcript values were normalized to 

Kpn_04184, which exhibited no change in expression between conditions in our 

microarrays. We examined expression in both MGH78578 (M) and KPPR1 (K), though 

our primers designed for fadB and Kpn_02053 in MGH 78578 were not usable in KPPR1 

due to multiple products (noted with the # symbol). Statistical analysis was conducted via 

two-way analysis of the variance (ANOVA) with a Sidak’s post-test analyzing in-strain 

changes comparing expression from survanta additions to the lactate-alone condition. The 

data shown summarizes three independent Survanta induction experiments, and statistical 
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significance is indicated as follows: *, p < 0.05; **, p < 0.01; ***, p < 0.001; and ****, p 

< 0.0001. 

 

Figure 3.3. Leucine biosynthesis by K. pneumoniae is required for virulence during acute 

pneumonia. (A) Adult male C57BL/6 mice were infected via oropharyngeal aspiration 

with either K. pneumoniae KPPR1 WT or KPPR1 ΔleABCD. Colony forming units 

(CFU) per lung were measured 24 h post instillation. (B) White blood cells were 

enumerated within the bronchoalveolar lavage fluid collected from each infected mouse. 

The total WBC, Macrophage, and PMN cell counts are shown. The data shown 

summarizes three independent experiments, with statistical significance being determined 

through unpaired t-test.  The arithmetic mean is depicted for each strain, with counts from 

individual mice represented by individual points. Statistical significance is depicted as 

follows: *represents P < 0.05, **represents P < 0.01.  

 

Figure 3.4. The MdtJI-polyamine efflux pump contributes to K. pneumoniae fitness 

during acute pneumonia. (A) Adult male C57BL/6 mice were infected via oropharyngeal 

aspiration with either K. pneumoniae KPPR1 WT or KPPR1 ΔmdJI. Colony forming 

units (CFU) per lung were measured 24 h post instillation. (B) White blood cells were 

enumerated within the bronchoalveolar lavage fluid collected from each infected mouse. 

The total WBC, Macrophage, and PMN cell counts are shown. The data shown 

summarizes three independent experiments, with statistical significance being determined 

through unpaired t-test.  The arithmetic mean is depicted for each strain, with counts from 
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individual mice represented by individual points. Statistical significance is depicted as 

follows: *represents P < 0.05, **represents P < 0.01, and ***represents P < 0.001. 

 

Figure 3.5. The ProU glycine betaine ABC transporter (proVWX) contributes to K. 

pneumoniae fitness during acute pneumonia. (A) Adult male C57BL/6 mice were 

infected via oropharyngeal aspiration with either K. pneumoniae KPPR1 WT or KPPR1 

ΔproV. Colony forming units (CFU) per lung were measured 24 h following instillation. 

(B) White blood cells were enumerated within the bronchoalveolar lavage fluid collected 

from each infected mouse. The total WBC, Macrophage, and PMN cell counts are shown. 

The data shown summarizes four independent experiments, with statistical significance 

being determined through unpaired t-test. In each panel, the arithmetic mean is depicted 

for each strain, with counts from individual mice represented by individual points. 

Statistical significance is depicted as follows: *represents P < 0.05, **represents P < 

0.01. 

 

Figure 3.6. KPPR1 isogenic deletion strains exhibit wildtype growth kinetics in TSB.  

The growth of KPPR1 WT and gene deletion strains in TSB was measured via OD600 

over an 18 h period. The growth curves shown are representative of three independent 

experiments, with error bars indicating standard deviation.  

Figure 3.7. Constituents of lung surfactant stimulate K. pneumoniae gene expression. 

Gene induction assays were performed for 4 h with K. pneumoniae MGH 78578 in 

MOPS minimal media containing lactate, and individual compounds found within PS. 

RNA collected from these inductions was then used for quantitative RT-PCR, with raw 
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transcript values normalized to Kpn_04184. The data shown encompasses three separate 

experiments. Statistical analysis was performed via two-way ANOVA and Dunnett’s 

multiple comparison test, using the uninduced (lactate-alone) condition as the 

comparator. For this analysis, the Kpn_04184-adjusted transcript values in the uninduced 

(lactate-alone) condition were first set to one for comparison. Statistical significance is 

depicted as follows: *represents P < 0.05, **represents P < 0.01. 

 

Figure 3.8. Type 3 fimbriae mediate biofilm formation in response to lung surfactant. K. 

pneumoniae MGH78578, KPPR1, and KPPR1 ΔmrkABC were cultured in MOPS 

minimal media containing 20 mM lactate in the presence and absence of Survanta, 

phosphatidylcholine, and cholesterol. After 18 h, the extracellular material remaining 

adhered to the culture dish was stained with 0.1% crystal violet. (A) Representative 

crystal violet-stained biofilms generated by each strain under these culturing conditions. 

(B) Biofilm-adhered crystal violet was solubilized with 30% glacial acetic acid, and 

quantified through measuring the absorbance at 550 nanometers. The data shown is the 

summary of four individual experiments that were performed in technical triplicate, with 

error bars representing standard deviation. Statistical analysis was performed using the 

MOPS lactate condition of each strain as the comparator via one-way ANOVA and 

Dunnett’s multiple comparison test for K. pneumoniae MGH 78578, and two-way 

ANOVA with Sidak’s multiple comparison test for KPPR1 WT and KPPR1 ΔmrkABC. 

Statistical significance is specified as follows: *represents P < 0.05, **represents P < 

0.01, ***represents P < 0.001, and ****represents P < 0.0001. 
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3.8 Chapter 3 Tables 

Table 3.1. Bacterial strains and plasmids used in this study. 

Table 3.2. Summary of the 25 most highly induced transcripts expressed by K. 

pneumoniae MGH 78578 in response to lung surfactant.  

Table 3.S1. K. pneumoniae MGH 78578 transcriptional response to lung surfactant.  
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Figure 3.1. K. pneumoniae MGH 78578 transcriptome changes in response to lung 

surfactant.   
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Figure 3.2. qRT-PCR validation of induced transcripts in K. pneumoniae following 

exposure to lung surfactant. 
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Figure 3.3. Leucine biosynthesis by K. pneumoniae is required for virulence during acute 

pneumonia. 
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Figure 3.4. The MdtJI-polyamine efflux pump contributes to K. pneumoniae fitness 

during acute pneumonia. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



146 
 

 

Figure 3.5. The ProU glycine betaine ABC transporter (proVWX) contributes to K. 

pneumoniae fitness during acute pneumonia. 
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Figure 3.6. KPPR1 isogenic deletion strains exhibit wildtype growth kinetics in TSB.   
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Figure 3.7. Constituents of lung surfactant stimulate K. pneumoniae gene expression. 
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Figure 3.8. Type 3 fimbriae mediate biofilm formation in response to lung surfactant. 

 

 

 

 

 



150 
 

 

Table 3.1. Bacterial strains and plasmids used in this study. 
Designation   Genotype or description  Reference/source 

 

K. pneumoniae strains 
GGW112   MGH 78578   ATCC 700721 
GGW231   KPPR1    ATCC 43816 

GGW178   ∆proV in GGW231  This study 
GGW180   ∆leuABCD in GGW231 This study 
GGW192   ∆mrkABC in GGW231 This study 
GGW194    ∆mdtJI in GGW231  This study 

 
E. coli strains 

DH5α λpir sup E44 ΔlacU169 (ΦlacZΔM15) Bio-Rad  
   recA1 endA1 hsdR17 thi-1, 

gyrA96relA pir 
NEB5α  fhuA2 Δ(argF-lacZ)U169 phoA  NEB 

glnV44 Φ80Δ (lacZ)M15 gyrA96 
recA1 relA1 endA1 thi-1 hsdR17   

S17-1 λpir thi pro hsdR- hsdM+ ΔrecA 
RP4-2::TcMu-Km::Tn7αλpir  (112) 

GGW166  pGW74 in S17-1 λpir   This study 
GGW168  pGW76 in S17-1 λpir   This study 

GGW172  pGW78 in S17-1 λpir   This study 
GGW186  pGW79 in S17-1 λpir   This study 

 
Plasmids 

pGW65  suicide vector, R6Kγ   This study 
ori, HmR, sacB        

pGW74  proV-SOE in pGW65   This study 
pGW76  leuABCD-SOE in pGW65  This study 

pGW78  mdtJI-SOE in pGW65   This study 
pGW79  mrkABC-SOE in pGW65  This study 
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Table 3.2. Summary of the 25 most highly induced transcripts expressed by K. 

pneumoniae MGH 78578 in response to lung surfactant.  

 

Fold Increase Gene ID  Alternate Name  Function   
19.16 KPN_02053  dhcA   acetyl-CoA transferase subunit 
12.25 KPN_04340  fadB  3-hydroxyacyl-CoA dehydrogenase 
12.06 KPN_00235  fadE  acyl-CoA dehydrogenase 

11.69 KPN_02054  dhcB  acetyl-CoA transferase beta subunit 
8.68  KPN_02058     lysR-family transcription regulator 
8.41  KPN_02055  atoB  beta-ketothiolase 
7.41  KPN_01989  nemA  N-ethylmaleimide reductase 

6.67  KPN_03278  mrkC  type 3 fimbrial assembly chaperone 
6.16  KPN_02505  Kp52D           glycosyltransferase: capsule synthesis 
5.96  KPN_04339  fadA  acetyl-CoA acetyltransferase 
5.94  KPN_02057  bdhA  short chain dehydrogenase 

5.58  KPN_01635  yneI  putative aldehyde dehydrogenase 
5.40  KPN_01159    cyclic di-GMP phosphodiesterase 
5.36  KPN_00406  queC  7-cyano-7-deazaguanine synthase 
5.04  KPN_02056  bdhB          3-hydroxybutyryl-CoA dehydrogenase 

4.93  KPN_02724  fadI  acetyl-CoA acetyltransferase 
4.68  KPN_01565  mdtJ  polyamine efflux pump subunit 
4.44  KPN_03277  mrkB  type 3 fimbrial usher protein 
4.41  KPN_01316    hypothetical protein 

4.00  KPN_03008  proV  glycine betaine ABC transporter  
3.99  KPN_02723  fadJ  enoyl-CoA hydratase 
3.88  KPN_pKPN5p08207   hypothetical protein 
3.82  KPN_03510  fadH  2,4-dieonyl-coa reductase 

3.65  KPN_01727    hypothetical protein 
3.49  KPN_01676    hypothetical protein 
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Table 3.S1. K. pneumoniae MGH 78578 transcriptional response to lung surfactant. 

Fold Change 

(survanta 

over lactate) 

 

Gene Title  

 

Locus Tag 

 

Target Description 

19.16 dhCA KPN_02053 putative acetyl-CoA:acetoacetyl-CoA 
transferase alpha subunit 

12.25 fadB KPN_04340 4-enzyme protein: 3-hydroxyacyl-CoA 

dehydrogenase 
12.06 fadE KPN_00235 acyl-CoA dehydrogenase 

11.69 dhCB KPN_02054 putative acetyl-CoA:acetoacetyl-CoA 
transferase beta subunit 

8.68 KPN_02058 KPN_02058 putative transcriptional regulator (LysR 
family) 

8.41 atoB KPN_02055 beta-ketothiolase 

7.41 nemA KPN_01989 N-ethylmaleimide reductase 

6.67 mrkC KPN_03278 putative bacterial pili assembly 
chaperone 

6.16 Kp52D KPN_02505 Possible glycosyltransferase 

5.96 fadA KPN_04339 acetyl-CoA acetyltransferase 

5.94 KPN_02057 KPN_02057 short chain dehydrogenase 

5.58 yneI KPN_01635 putative aldehyde dehydrogenase 

5.4 KPN_01159 KPN_01159 hypothetical protein 

5.36 queC KPN_00406 putative (aluminum) resistance protein 

5.04 bdhB KPN_02056 3-hydroxybutyryl-CoA dehydrogenase 

4.93 fadI KPN_02724 acetyl-CoA acetyltransferase 

4.68 mdtJ KPN_01565 multidrug transport protein (SMR 
superfamily) 

4.44 mrkB KPN_03277 putative fimbrial usher protein 

4.41 KPN_01316 KPN_01316 hypothetical protein 

4 proV KPN_03008 ATP-binding component of transport 
system for glycine 

3.99 fadJ KPN_02723 bifunctional fatty acid oxidation 
complex protein 

3.88 KPN_pKPN5
p08207 

KPN_pKPN5
p08207 

hypothetical protein 

3.82 fadH KPN_03510 2,4-dienoyl-CoA reductase 

3.65 KPN_01727 KPN_01727 hypothetical protein 

3.49 KPN_01676 KPN_01676 hypothetical protein 

3.47 evgA KPN_03480 putative bacterial regulatory protein 

3.44 KPN_04108 KPN_04108 putative inner membrane protein 

3.37 yjcB KPN_04460 hypothetical protein 

3.36 KPN_02822 KPN_02822 putative glycoside hydrolase 
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3.34 yehS KPN_02561 hypothetical protein 

3.32 mrkD KPN_03279 putative fimbrial-like protein 

3.22 KPN_pKPN3

p05887 

KPN_pKPN3

p05887 

transposase 

3.19 yfeH KPN_04411 putative cytochrome oxidase 

3.14 arnA KPN_03845 hypothetical protein 

3.14 thiL KPN_00375 thiamine biosynthesis protein ThiI 

3.11 glnp-like KPN_pKPN5
p08192 

hypothetical protein 

3.09 pheS KPN_02176 phenylalanyl-tRNA synthetase alpha 
subunit 

3.07 yjbD KPN_04410 hypothetical protein 

3.06 KPN_03102 KPN_03102 putative cytoplasmic protein 

3.03 zupT KPN_03453 zinc transporter ZupT 

2.92 leuB KPN_00079 3-isopropylmalate dehydrogenase 

2.91 KPN_01393 KPN_01393 hypothetical protein 

2.91 lamB KPN_04425 maltoporin precursor 

2.9 pdhR KPN_00117 transcriptional regulator of pyruvate 
dehydrogenase 

2.89 ybjM KPN_00879 hypothetical protein 

2.85 KPN_01370 KPN_01370 hypothetical protein 

2.83 gidB KPN_04145 glucose-inhibited division protein B 

2.83 KPN_02483 KPN_02483 Possible glycosylhydrolase 

2.79 nemR KPN_01988 hypothetical transcriptional regulator 

2.78 ychJ KPN_02205 hypothetical protein 

2.74 glnK KPN_00413 nitrogen regulatory protein P-II 2 

2.74 KPN_01160 KPN_01160 hypothetical protein 

2.73 KPN_02440 KPN_02440 putative bacterial regulatory protein 

2.73 mdtI KPN_01566 multidrug transport protein (SMR 
superfamily) 

2.72 mqo KPN_01554 malate:quinone oxidoreductase 

2.71 KPN_pKPN3
p05873 

KPN_pKPN3
p05873 

putative alginate lyase 

2.7 KPN_00759 KPN_00759 putative IS1 transposase 

2.68 ybjN KPN_00884 putative sensory transduction regulator 

2.67 strB KPN_pKPN5
p08180 

streptomycin resistance protein B 

2.66 KPN_04560 KPN_04560 putative arginine-binding periplasmic 
protein 

2.65 fic KPN_03553 hypothetical protein 

2.64 gltd KPN_03625 glutamate synthase 
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2.61 KPN_01878 KPN_01878 putative transcriptional regulator 

2.61 KPN_01729 KPN_01729 carbohydrate kinase 

2.61 KPN_00524 KPN_00524 putative bacterial extracellular solute-

binding protein 
2.6 yfgB KPN_02847 putative pyruvate formate lyase 

activating enzyme 2 

2.59 stbE KPN_00262 putative fimbriae 

2.59 KPN_02063 KPN_02063 putative acetyl transferase 

2.59 KPN_pKPN5

p08193 

KPN_pKPN5

p08193 

hypothetical protein 

2.58 avtA KPN_03936 valine--pyruvate transaminase 

2.57 ygjP KPN_03514 hypothetical protein 

2.57 ugd KPN_02493 UDP-glucose dehydrogenase 

2.56 catC KPN_01874 putative muconolactone delta-
isomerase 

2.55 mrkA KPN_03276 putative fimbrial-like protein 

2.55 secM KPN_00101 SecA regulator SecM 

2.54 nrdI KPN_03005 hypothetical protein 

2.53 fhuA KPN_00165 outer membrane pore protein 

2.53 secA KPN_00102 translocase 

2.52 KPN_00213 KPN_00213 D- and L-methionine transport protein 
(ABC superfamily 

2.51 ybbL KPN_00468 putative ATP-binding component of a 
transport system 

-3.04 hutI KPN_00792 Imidazolonepropionase 

-3.17 hutH KPN_00796 histidine ammonia lyase 

-3.55 paaK KPN_01479 phenylacetate-CoA ligase 

-5.06 paaF KPN_01474 probable enoyl-CoA hydratase 

-5.08 hutU KPN_00795 putative urocanase 

-5.23 paaC KPN_01471 phenylacetic acid degradation protein 

-5.35 paaI KPN_01477 phenylacetic acid degradation protein 

-5.86 paaE KPN_01473 probable phenylacetic acid degradation 

NADH oxidoreductase 

-6.65 paaD KPN_01472 phenylacetic acid degradation protein 
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Table 3.S2. Primers used in this study. 

 
 

 

 

 

Primer Name Sequence Function
KpprI_leuABCD_KO_F1_PvuI aatcgatcgAGACGCACAGATGGAACACG leuABCD gene deletion construct

KpprI_leuABCD_KO_SOE_R1 gccacgcatcaacggtcCTACTGGCTCATGGTTTGGATCCTT leuABCD gene deletion construct

KpprI_leuABCD_KO_SOE_F2 taggaccgttgatgcgtggcGCAAGCTGCCGGCGTTTATG leuABCD gene deletion construct

KpprI_leuABCD_KO_R2_PvuI taacgatcgTCCTGGCAGAGCTCAAGAATAC leuABCD gene deletion construct

KpprI_proV_R2_KpnI aataggtaccAAGGGCGAGTGAgAAGCCCC proV  gene deletion construct

KpprI_proV_KO_SOE_F2 gTGActgTAGGTGTGAGTCaGCGAGGGGGTGAATCATGGCTGA proV  gene deletion construct

KpprI_proV_SOE_R1 tGACTCACACCTAcagTCAcGCCATGCAATAGAGAAGTTCCTG proV  gene deletion construct

KpprI_proV_KO_F1_SphI atagcatgcTTCGCGTCTTTACCGGATTGA proV  gene deletion construct

KpprI_mrk_KO_F1_bamHI ataggatccGATGGCGCTGATGGGATTGA mrkABC  gene deletion construct

KpprI_mrk_KO_SOE_R1 gctctagcgtcacactcacgtCATTGCCATTTCCTTGTCAGAG mrkABC  gene deletion construct

KpprI_mrk_KO_SOE_F2 acgtgagtgtgacgctagagcTAAGTGACGTTAAAAGGCCGGG mrkABC  gene deletion construct

KpprI_mrk_KO_R2_kpnI taaggtaccGGTTCATAGCCACCGCATCCA mrkABC  gene deletion construct

KpprI_mdtJI_KO_F1_xmaI taTcccgGGATGGCGCCCATACCTTCTAC mdtJI  gene deletion construct

KpprI_mdtJI_KO-SOER1 gctgcgcagTCAtcgTTAactCATGATCCCTTCTCCTGCTTGAGA mdtJI  gene deletion construct

kpprI_mdtJI_KO_SOEF2 agtTAAcgaTGActgcgcagcTGACGTCTCGCCGCCTGCAAAG mdtJI  gene deletion construct

KpprI_mdtJI_KO_R2_xmai AAATcccgggAGCACAAGCAGAACACTGGT mdtJI  gene deletion construct

KpprL_leu_KO_scrn_F CCGCCTGGATTACTTCAATGTC PCR screen for gene deletion

KpprI_leu_KO_scrn_R CGATATCCGTTGCCAGACCAA PCR screen for gene deletion

VK055_413-5_KO_scrnR GTTCACGGGTCAGCATCTCA PCR screen for gene deletion

VK055_413-5_KO_scrnF CTGGTCAAAGGCTGGAAAGC PCR screen for gene deletion

kppr1_proV_KO_scrnR TCAATCGAGACAATCCCGACA PCR screen for gene deletion

KpprI_proV_KO_scrnF CAGGCGAAGCATCAACGCA PCR screen for gene deletion

KpprI_mrkC_KO_scrnF GTAGGCGGGTCGGATAACAG PCR screen for gene deletion

KpprI_mrkC_KO_scrnR CGCTTCTTTCACCGAGACCT PCR screen for gene deletion

KpprI_mdtJI_KO_scrnR CCAGGGACAGAATGCCGTA PCR screen for gene deletion

KpprI_mdtJI_KO_scrn_F CTATGCGTTGTGGGAAGGG PCR screen for gene deletion

Kpn_mdtJ_qRT_R TTTTTCTGGGTGCCGGACTT qRT-PCR

Kpn_leuB_qRT_F ACCAGCCAGTATGACGTTGG qRT-PCR

Kpn_leuB_qRT_R AGCCCCTGATACAGTTTGGC qRT-PCR

Kpn_04184_qRT_F CGC TGG TTG AGG CAT TTA TT qRT-PCR

Kpn_04184_qRT_R GCT GAA CAT GGC TAA CTG AC qRT-PCR

Kpn_proV_qRT_F CAT GGT TCG CCT TCT CAA TC qRT-PCR

Kpn_proV_qRT_R AAG GAC TGA AAA ACC ATC GC qRT-PCR

Kpn_02789_qRT_F CCA TCC GTT TGC TGT TAC TG qRT-PCR

Kpn_02789_qRT_R CCG TTT TTG ACG AAG ATG CT qRT-PCR

Kpn_mrkB_qRT_F TAA AGA GAC GCT GTG GTG GC qRT-PCR

Kpn_mrkB_qRT_R TTG ATG GCG AGA CTA CTG CC qRT-PCR

Kpn_fadB_qRT_F AAG ATG TCG AGA CGC CGA AG qRT-PCR

Kpn_fadB_qRT_R GGT TTC CGC TAG TAC GGC TT qRT-PCR

Kpn_02053_qRT_F CCATTTGTTCACGGGTCAGC qRT-PCR

Kpn_02053_qRT_R CGGCCGACACTACATCCTT qRT-PCR

Kpn_03845_qRT_R ATG CTC AAC GTC CTG GTA GC qRT-PCR

Kpn_03845_qRT_F CTG CGA CGG GCA GAT CAT TA qRT-PCR
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4.1 Abstract 

Stenotrophomonas maltophilia is an MDR respiratory pathogen of environmental 

origin that has more than tripled in prevalence in patients with Cystic Fibrosis (CF) over 

the last decade. Sputum serves as the primary nutrient source for microbes colonizing the 

CF lung and has been shown to contain many of the host-derived signals that drive the 

virulence-associated phenotypes of several CF pathogens. Here, we characterized the 

transcriptional responses of three S. maltophilia strains during growth in synthetic CF 

sputum media (SCFM2) to gain insight into how this organism interreacts with the host in 

the CF lung. These efforts led to the identification of 238 transcripts expressed by all 

three strains that reflect nutrient utilization by S. maltophilia during CF lung infection. 

We also compared the SCFM2 transcriptomes of two S. maltophilia CF isolates with the 

SCFM2 transcriptome of the acute infection model strain, S. maltophilia K279A. In 

doing so, we identified CF isolate-specific signatures in gene expression that are 

suggestive of adaptation to the CF lung, including the repression of genes involved in cell 

motility and biofilm formation, increased expression of oxidative stress-related genes, 

and increased expression of alternative cytochromes associated with growth in low 

oxygen environments. Many of these transcriptional changes correlated with phenotypes 

observed in vitro, as the CF isolates failed to form surface-adhered biofilms in SCFM2 

and were inherently more resistant to oxidative stress than K279A. Collectively, this 

work provides novel insight into the interactions occurring between S. maltophilia and 

the CF lung environment and revealed potential virulence factors and metabolism-related 

genes that will be the subject of future research efforts. 
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4.2 Introduction 

Cystic Fibrosis (CF) is the most common lethal genetic condition affecting the 

Caucasian population and is caused by mutations within the cystic fibrosis 

transmembrane conductance regulator (CFTR) that result in impaired chloride and 

bicarbonate transport across the epithelial cells lining several organ systems. Lack of 

functional CFTR within the respiratory tract leads to the accumulation of thick, viscous 

mucus in the airways that impairs mucociliary clearance and dampens the innate immune 

response. These conditions promote chronic respiratory tract infections that lead to 

progressive lung function decline, and eventually death (1, 2). While Pseudomonas 

aeruginosa and Staphylococcus aureus remain the most common bacterial pathogens in 

adults with CF, improvements in clinical care practices and antipseudomonal therapeutic 

strategies have led to the emergence of other multi-drug resistant (MDR) respiratory 

pathogens in individuals with CF (3-5).  

Stenotrophomonas maltophilia is an MDR respiratory pathogen of environmental 

origin that has more than tripled in prevalence in patients with CF over the last decade (6, 

7). Current estimates indicate that more than 13 % of the worldwide CF population is 

infected with S. maltophilia, a figure that is expected to climb in coming years (4, 8). 

Despite this alarming increase in respiratory tract colonization frequency, there is still 

debate over the role of this organism in CF pathogenesis (9, 10). Recent reports, however, 

have concluded that infection with S. maltophilia is correlated with an elevated risk of 

acute exacerbation requiring hospitalization, acceleration in lung function decline, and 

respiratory failure requiring lung transplant (11, 12).  
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Several studies have examined the virulence-associated phenotypes of S. 

maltophilia CF isolates and the genotypic evolution of this organism over the course of 

chronic infection (13-16). While these studies have provided valuable insight into S. 

maltophilia adaptation to the CF lung, the molecular mechanisms permitting lung 

colonization and virulence have remained largely unknown. The low virulence of S. 

maltophilia in mammalian models (17, 18) has hindered research efforts into pathogenic 

mechanisms as a lung infection model that demonstrates bacterial growth does not exist.  

Nevertheless, invertebrate infection models, bioinformatics, and tissue culture-based 

approaches have been useful in identifying virulence-associated genes including a variety 

of secreted proteases and hydrolytic enzymes, adhesins, and siderophores (19-25).  

However, it is important to note that many of these studies were performed under 

in vitro conditions that fail to reflect the host environment at the site of infection. The 

molecular interactions between S. maltophilia and the host are largely unknown. 

Environmental conditions such as the composition and availability of nutrients, osmotic 

conditions, oxygen tension, and pH significantly influence gene expression and therefore 

impinge upon the virulence of pathogenic bacteria. Characterizing S. maltophilia 

interactions with the host environment is thus critical to our understanding of the 

mechanisms permitting colonization and infection of the CF lung. 

The thick, viscous mucus that characterizes the CF lung is expectorated as 

sputum, and is comprised of mucin, high molecular weight DNA, serum components, and 

cell debris resulting from chronic infection. This complex milieu serves as the primary 

nutrient source for microbes colonizing the CF lung and has been shown to contain many 

of the host-derived signals that promote the virulence-associated phenotypes of CF 
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pathogens such as P. aeruginosa and Burkholderia cenocepacia (26-29). In this study, we 

sought to examine how S. maltophilia interacts with and utilizes this important aspect of 

the CF lung environment. To accomplish this, we characterized the transcriptional 

responses of S. maltophilia K279A and two S. maltophilia CF isolates during growth in 

synthetic cystic fibrosis sputum media (SCFM2), a defined media developed to closely 

resemble the composition of native CF sputum (30, 31). These efforts led to the 

identification of potential virulence genes and metabolic pathways that likely contribute 

to S. maltophilia fitness within sputum. Furthermore, we compared the gene expression 

profiles of both S. maltophilia CF isolates with the acute infection model strain S. 

maltophilia K279A. In doing so, we identified CF isolate-specific signatures in gene 

expression that are suggestive of adaptation to the CF lung, including the repression of 

genes involved in cell motility/biofilm formation, increased expression of oxidative 

stress-related genes in addition to a cytochrome associated with growth in low oxygen 

environments. Many of these transcriptional changes correlated with phenotypes 

observed in vitro, as the CF isolates failed to form surface-adhered biofilms in SCFM2 

and were inherently more resistant to oxidative stress than K279A. Collectively, this 

work provides novel insight into the interactions occurring between S. maltophilia and 

the CF lung environment and identified potential virulence factors and metabolism-

related genes that will be the subject of future research efforts. 
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4.3 Materials and Methods 

4.3.1 Bacterial strains and media 

Stenotrophomonas maltophilia K279A (ATCC BAA-2423), a clinical bacteremia isolate 

and model strain, and two S. maltophilia cystic fibrosis isolates, AU30115 (GW273) & 

AU32848 (GW275) were included in this study. AU30115 (GGW273) and AU32848 

(GW275) were obtained from the library of John LiPuma (University of Michigan), and 

were selected from a small set of CF isolates for their genetic tractability, antibiotic 

susceptibility profiles, and capacity to grow in minimal media. S. maltophilia strains were 

maintained in LB (Luria Broth), and modified MOPS minimal media supplemented with 

40 mM sodium lactate, 5 mM glucose, and 250 µM L-methionine. Gene induction and 

metabolomic experiments were performed using synthetic CF sputum media (SCFM2), 

prepared as described by Turner et. al (31). As a control condition for these experiments, 

S. maltophilia strains were cultured in modified MOPS minimal media containing 4 mM 

sodium lactate and 250 µM L-methionine. 

 

4.3.2 Genomic DNA extraction from Stenotrophomonas maltophilia CF clinical 

isolates and Illumina sequencing library preparation 

Genomic DNA was purified from GW273 and GW275 cultures that were grown in LB 

for 18 h on a roller drum at 37˚C through CTAB extraction. Co-purified RNA was 

removed from the genomic DNA samples by treatment with RNaseA/T1 (NEB), and the 

samples were then assessed for integrity through Bioanalyzer and quantified using a 

Qubit fluorometer as we have done previously (32).  
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4.3.3 Growth Conditions and RNA purification for RNA-Seq  

S. maltophilia K279A, GW273, and GW275 were grown overnight at 37 ˚C in MOPS 

minimal media supplemented with 40 mM sodium lactate, 5 mM D-glucose, and 500 µM 

L-methionine. The following day, the cultures were collected through centrifugation, 

washed twice with 1 ml of MOPS media, and resuspended in freshly prepared SCFM2 

(31) and MOPS media supplemented with 4 mM lactate and 250 µM L-methionine at a 

final concentration of 0.3 OD600 units. Each strain was cultured in technical duplicate per 

condition for 4 h at 37 ˚C while shaking at 170 RPM. Following the induction period, 

cells were collected via centrifugation and immediately resuspended in 800 µl of ~80 ˚C 

RNAzol. Total RNA was then extracted from these samples using Zymo Research’s 

RNA Miniprep Kit. Residual genomic DNA was removed from each sample through 

DNaseI treatment (NEB), and the RNA was re-purified using Qiagen’s RNeasy kit as we 

have done previously (32). The quality of each resulting RNA sample was then assessed 

via Agilent Bioanalyzer and quantified through Qubit fluorometer.  

 

4.3.4 RNA-seq library preparation  

The purified RNA was treated with Ribo-Zero Gold Epidemiology kit (Illumina) 

following manufacturer’s instructions. The RNA was fragmented using the NEBNext 

Magnesium RNA Fragmentation Module (33) with a 3 min incubation at 94°C followed 

by a cleanup step using the RNA Clean & Concentrator-5 (Zymo Research). Double-

stranded, tagged cDNA was generated from 50ng of fragmented RNA as previously 

described (34, 35).  
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A qPCR assay was performed on the cDNA samples to determine the correct number of 

cycles required to generate the final sequencing library as well as to assess the efficacy of 

normalization and enrichment (34). The final library was created by PCR amplifying the 

samples with the full-length sequencing adapters and 6-mer ScriptSeq (Epicentre) 

barcodes. Following PCR, the samples were cleaned, and size selected in a two-step 

cleanup using 0.75 volumes of AMPure XP beads followed by 0.15 volumes to achieve a 

final library with an average size of ~330bp. Libraries were combined with 12 samples 

each, in equal amounts and concentrated using the DNA Clean & Concentrator-5 (Zymo 

Research). Prior to sequencing the final libraries were quantified using qPCR. Combined 

libraries were sequenced on an Illumina NextSeq using 75 cycle kits. Samples were 

loaded at 1.8 pM and 75 base single-end reads were obtained. RNA-seq was performed in 

biological duplicate for each strain and each condition, using RNA collected from two 

independent SCFM2 induction experiments that were performed on separate days. 

 

4.3.5 RNA-Seq data processing & analysis  

Quality assessment of raw sequencing data was assessed using FastQC (v. 0.11.6) (36). 

Adapters and low-quality sequences were removed using Trimmomatic (v. 0.38) 

removing TruSeq SE adapters, clipping 3 bp from the leading and trailing ends, and a 

sliding window of 4:15 to a minimum length of 36 bp (37). Post-trimming quality was 

again assessed via FastQC prior to mapping and assembly. Transcriptome assembly and 

quantification was performed using Rockhopper2, a program targeted at bacterial 

transcriptome analysis and using the default parameters with verbose output (38, 39). 
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Reads from each sample were mapped to the reference genome of Stenotrophomonas 

maltophilia strain K279A in order to improve annotation and utility of results (40). 

Differential gene expression was calculated using the raw counts from Rockhopper and 

normalized to library size using edgeR (38, 41). Only genes with at least 2 counts per 

million (cpm) and occurred in at least 2 samples were included in analysis in order to 

reduce noise. Expression was calculated as SCFM2 over lactate treatments, both within 

isolates and globally in order to establish responses specific to clinical isolates in addition 

to those in specific to media type. Significance was established at P-adjusted value of 

<0.05 after Benjamini & Hochberg correction (FDR <0.05). 

 

4.3.6 Assessment of S. maltophilia resistance to oxidative stress 

S. maltophilia K279A, GW273, and GW275 were cultured in LB overnight on a roller 

drum at 37 °C. The following day, dilutions of these cultures were grown in LB until 

cells achieved log phase of growth. Cells from each were then collected by centrifugation 

and washed with DPBS, and then adjusted to an OD600 of 0.5 in DPBS. Fifty microliters 

of cells from each strain were then added in technical duplicate to 50 µl of DPBS 

supplemented with hydrogen peroxide to achieve final concentrations of 0, 2, 4, and 8 

mM. These cultures were then incubated at 37°C for 2 hours without shaking, and 

surviving CFU counts were determined through serial dilution. Percent survival was 

reported as a percent of the survival observed in the 0 mM hydrogen peroxide condition 

for each strain. Statistical significance was determined using 2-way ANOVA with 

Tukey’s post-test for multiple comparisons. 
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4.3.7 Assessment of S. maltophilia biofilm formation in SCFM2 

S. maltophilia K279A, GW273, and GW275 were cultured overnight at 37 °C on a roller 

drum in MOPS minimal media supplemented with 25 mM lactate, 5 mM glucose, and 

500 µM L-methionine. The following day, cells from each culture were collected via 

centrifugation, washed in MOPS media, and then adjusted to an OD600 of 0.5 units. Each 

OD600-adjusted culture was then added 1:10 to fresh SCFM2 media prepared as described 

above. These cultures were then incubated for 18 h at 37 °C and agitated at 170 RPM to 

reflect the partial aeration and mixing that occurs within the lung. Following incubation, 

the suspended cells were removed from the culture dish, the wells washed, and the 

biofilm material remaining adhered to the wells was stained with 0.1% crystal violet, 

incubated for 15 minutes, and then thoroughly rinsed with water (42). This experiment 

was performed three times. 

 

4.4 Results 

4.4.1 S. maltophilia response to synthetic cystic fibrosis sputum media 

Our primary goal in the study was to characterize the conserved transcriptional 

response of S. maltophilia during growth in media closely resembling the nutrient and ion 

content found in the lungs of individuals with cystic fibrosis. To accomplish this, we used 

RNA-Seq to measure the transcriptional responses of two S. maltophilia clinical CF 

isolates and the model strain S. maltophilia K279A during growth in SCFM2 compared 

to MOPS lactate minimal media as a control condition. The CF isolates, GW273 and 

GW275, were chosen for inclusion in this study for their ability to grow in minimal 
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media as well as their antibiotic resistance profiles and genetic tractability. S. maltophilia 

K279A, an acute bacteremia isolate, was included in this study because it is the standard 

lab strain, and it represents a recent colonizing strain that has not undergone selection 

pressure to adapt to the CF lung environment.  

Comparing the aggregate responses of each S. maltophilia strain to SCFM2 

relative to the aggregate responses to MOPS lactate media, we identified 238 shared 

genes that exhibited greater than a 2.5-fold increase in transcript abundance in response 

to SCFM2 (p<0.05). These changes represent the “conserved” S. maltophilia response to 

SCFM2 and are described in further detail below. A summary of the conserved 

transcriptional changes is found in Figure 4.1, with transcripts categorized into groups 

reflecting their known, or bioinformatically predicted function (43-46). The 50 most 

highly induced transcripts within the conserved S. maltophilia response to SCFM2 can be 

found in Table 4.1.  Since the control condition for our analysis was MOPS minimal 

media supplemented with lactate and ammonia as sole carbon and nitrogen sources, the 

genes repressed during growth in SCFM2 were not addressed in our analysis as they 

largely reflect housekeeping genes and general metabolism involved in lactate and 

ammonia utilization. Nevertheless, a complete listing of the S. maltophilia conserved 

transcriptional response to SCFM2 can be found in Supplementary Table 4.1, while the 

individual transcriptional responses of each strain are summarized in Supplementary 

Figure 4.1.  
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4.4.1.1 SCFM2 alters S. maltophilia metabolism 

Growth under oxygen limiting conditions 

Nearly thirty transcripts were expressed by S. maltophilia that reflect changes in 

cellular metabolism to support survival and growth under microaerophilic conditions. 

Nineteen genes within the membrane-associated nitrate reductase locus (Smlt2764-82) 

exhibited between 4.68 and 21.64-fold increases in transcript abundance, while 

transcription of the sulfite reductase operon, cysJ-Sm2763, increased 1064.48 and 777.72-

fold, suggesting that nitrate and sulfite are likely utilized by S. maltophilia as electron 

sinks to regenerate NAD+ and NADP+ under these conditions (47). Also expressed was 

the formate dehydrogenase, fdnHI, that permits the use of formate as an electron donor 

when nitrate is used as an electron acceptor under oxygen-limiting conditions [4.47 & 

4.94-fold increase] (48). In addition, SCFM2 also stimulated transcription of the 

cytochrome bd-II oxidase operon, (cydC cydD, Smlt3284, appD), whose products permit 

the generation of a proton motive force in low oxygen environments to facilitate 

oxidative phosphorylation [3.10 to 3.80-fold increase] (49).  

 

SCFM2 induces the expression of numerous hypothetical nutrient transporters 

Fourteen uncharacterized genes related to nutrient uptake were expressed by all 

three S. maltophilia strains during growth in SCFM2. Nine genes encoding hypothetical 

TonB-dependent receptor proteins exhibited between 2.58 and 7.01-fold increases in 

transcript abundance. Also expressed within the conserved response were five genes 

encoding uncharacterized porins and ABC transporter-related proteins [2.48 to 5.67-fold 

increases in abundance]. 
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Amino acid metabolism 

Seventeen transcripts related to the metabolism of amino acids were induced by 

all three S. maltophilia strains during growth in SCFM2. These findings mirror similar 

observations in Pseudomonas aeruginosa (30) and suggest that amino acids also serve as 

preferred carbon and nitrogen sources for S. maltophilia during growth in the CF lung. 

Eight of the transcripts expressed by S. maltophilia under these conditions function in the 

metabolism of branched chain amino acids, including the Smlt0237-9 and Smlt4338-41 

operons [8.10 to 19.85-fold increase], and leucine responsive regulatory protein, lrp 

[2.87- fold increase]. Also expressed were genes related to the metabolism of tyrosine 

and phenylalanine, with hmgA, hppD, maiA, and fahA exhibiting between 3.89 to 13.53-

fold increases in transcript abundance. Other transcripts related to the metabolism of 

amino acids expressed during growth in SCFM2 reflect the catabolism of alanine and 

serine, (dadAX), proline, (putA), methionine (metH2), and glycine (gcvP) [2.49 to 13.73-

fold increase].  

 

Phosphatidylcholine catabolism 

Seven transcripts related to fatty acid metabolism (psrA, fadBA, fadH, bpoA, fadE, 

Smlt3352) were also expressed, indicating that S. maltophilia actively degrades 

phosphatidylcholine during growth in SCFM2 [3.20 to 9.04-fold increase in transcript 

abundance]. Other SCFM2-induced transcripts suggest that the liberated phosphocholine 

head group is also metabolized by S. maltophilia to obtain the osmoprotectant, glycine 

betaine. Transcription of the glycine betaine/proline transporter, proP, increased 6.64-
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fold while genes within the choline oxidase operon, betI and betB, increased 3.54 & 2.0-

fold respectively. 

 

DNA metabolism 

Exposure to SCFM2 also stimulated transcription of several genes related to the 

metabolism of purines and pyrimidines, suggesting that S. maltophilia utilizes 

extracellular DNA as a nutrient source during growth in CF sputum. Specifically, 

transcription of five NrdR regulon members was observed, including multiple 

ribonucleotide reductase genes (nrdEF, nrdB1) and associated thioredoxin (trxA) and 

flavodoxin (Smlt2840) genes [2.94 to 5.26-fold increase in expression]. Other nucleotide 

metabolism-related genes expressed by S. maltophilia under these conditions include the 

glutamine amidotransferase, guaA, nucleoside hydrolase, Smlt1222, and nucleotide 

pyrophosphatase, Smlt1449 [3.18 to 3.86-fold increase]. 

 

Mucin degradation 

Previous studies have indicated that S. maltophilia is capable of degrading mucin 

(50). Mucin is the most abundant host-derived protein in CF sputum, and the only protein 

present in SCFM2. Our gene expression data support these earlier observations and 

suggest that this glycoprotein is actively metabolized by S. maltophilia during growth in 

SCFM2. Four uncharacterized proteases were expressed under these conditions, 

including a secreted M14-like carboxypeptidase encoded by Smlt0603 [2.88-fold 

increase], and three type V secretion system autotransporters with serine protease 
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(Smlt4145 & Smlt1350) and clpP/crotonase-like (Smlt1001) N-terminal domains [5.27 to 

9.09-fold increases in transcript abundance] (19).  

 

N-acetylglucosamine & sugar metabolism 

SCFM2 also induced the expression of six genes involved in the uptake and 

metabolism of N-acetylglucosamine, including nagPRB2AX and nagK2 (2.58 to 5.25-fold 

increase in expression) (51). Genes related to the metabolism of sugars absent in SCFM2 

were also expressed, including the alpha-1,2-mannosidase, mnnA, mannoside-specific 

TonB receptor, Smlt2179, and maltooligosyltrehalose trehalohydrolase, Smlt2759 [2.53 to 

4.07-fold increase]. The role of these genes during growth in SCFM2 is unclear but could 

relate to the degradation of glycan linkages present on mucin.  

 

Cation transport 

Two cation transport systems were expressed by all three S. maltophilia strains 

during growth in SCFM2, including the high affinity ATP-driven potassium transporter, 

kdpABC [5.28 to 6.89-fold increase], and low affinity phosphate transporter system 

encoded by Sm1705 & pitA [2.68 and 3.00-fold increase].  

 

4.4.1.2 Stress response 

A significant fraction of the transcripts expressed by S. maltophilia during growth 

in SCFM2 reflect several distinct stress responses. Six transcripts involved in the heat 

shock/unfolded protein response were expressed by all three S. maltophilia strains during 
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growth in SCFM2. Specifically, the dnaJ/dnaK and groEL/groES chaperonin systems 

exhibited between 2.6 and 13.46-fold increases in transcript abundance. In addition, 

transcription of the heat shock proteins, hslU and htpG displayed 2.60 and 5.94-fold 

increases in expression under these conditions. 

Seven transcripts within the conserved S. maltophilia response to SCFM2 reflect 

metabolic stress related to the accumulation of excess nitrogen. Most notably, the SMR-

family polyamine efflux pump encoded by mdtJI exhibited nearly a 300-fold increase in 

transcript abundance. Similarly, transcription of two hypothetical LysE-family amino 

acid efflux pumps, Smt1238 and Smlt3365, increased 99.97 and 2.57-fold during growth 

in SCFM2. Also expressed under these conditions, were the adiC arginine/agmatine 

antiporter, adiA arginine decarboxylase, and associated cation efflux pump encoded by 

Smlt2941 that have also been implicated in acid resistance [5.37 to 8.83-fold increases] 

(52).  

Other transcriptional changes indicate that growth in SCFM2 invokes oxidative 

stress in S. maltophilia. Most notably, the glutathione-dependent formaldehyde 

detoxification genes encoded by adhC, Smlt3977, and fghA exhibited between 2.93 and 

3.35-fold increases transcript abundance. Transcription of the reactive oxygen species 

neutralizing manganese superoxide dismutase, sodA, also increased 3.5-fold under these 

conditions(53, 54). 

Several genes associated with antibiotic resistance were also expressed by all 

three S. maltophilia isolates during growth in SCFM2. Included within this group are the 

aminoglycoside resistance gene, Smlt3615, and sugE, encoding an SMR-family efflux 

pump conferring resistance to quaternary ammonium compounds [3.09 and 2.76-fold 
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increases in transcript abundance] (55, 56). In addition, transcription of an 

uncharacterized fusaric acid-like drug efflux system encoded by Smlt4660-3, was also 

induced during growth in SCFM2 [3.00 to 4.36-fold increase] (56).  

 

4.4.1.3 SCFM2 alters S. maltophilia motility/biofilm gene expression  

Elements of the S. maltophilia conserved transcriptional response to SCFM2 also 

reflect changes in cell motility. Transcription of the type IV twitching pili assembly genes 

encoded within the pilMNOPQ, pilHIJ, and ppdD operons exhibited between 2.83 and 

3.98-fold increases in transcript abundance under these conditions. The functional 

consequences of these transcriptional changes are unclear, as type IV pili mediate 

twitching motility, surface attachment during the initiation of biofilm formation, and cell 

to cell adhesion during biofilm maturation.  

 

4.4.2 S. maltophilia isolates exhibit distinct gene expression profiles during growth in 

SCFM2 

The second major goal of this study was to identify CF-isolate specific transcripts 

expressed during growth in SCFM2 that could reflect adaptation to the host lung 

environment. To address this question, we compared the SCFM2 transcriptional 

responses of S. maltophilia GW273 and GW275 with that of the model strain K279A. 

These efforts led to the identification of 85 transcripts that exhibited similar expression 

patterns in the CF isolates that were not shared with K279A. More specifically, twenty-

nine transcripts within the CF isolates exhibited more than a 2.5-fold increase in 
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expression relative to K279A, while the remaining 56 transcripts exhibited at least a 2.5-

fold decrease in expression relative to K279A (P<0.05). A summary of these 

transcriptional changes can be found in Figure 4.2, with genes categorized into groups 

reflecting their known, or bioinformatically predicted function(43-46). The top 25 

transcripts exhibiting the greatest changes in expression relative to S. maltophilia K279A 

can be found in Tables 4.2 & 4.3, while a complete listing can be found in 

Supplementary table 4.2.   

 

4.4.2.1 S. maltophilia CF isolates exhibit altered expression of metabolism-related 

transcripts 

One of the most striking differences between the CF isolates and K279A’s 

responses to SCFM2 involve the expression of transcripts related to nutrient acquisition. 

Three uncharacterized OMP family genes exhibited between 22.07 and 4.04-fold 

increases in expression in the CF isolates relative to K279A during growth in SCFM2, 

including Smlt2944, Smlt3805, and Smlt4119. Similarly, six transcripts including an 

uncharacterized ABC transporter system (Smlt4100, Smlt4102, Smlt4103) and three 

TonB-dependent receptor genes (Smlt0461, Smlt3478, Smlt4387) exhibited significantly 

lower levels of expression in the CF isolates relative to K279A under these conditions.  

Most strikingly, the transcript abundance of TonB-dependent receptor gene encoded by 

Smlt4387 was more than 190-fold higher in K279A relative to GW273 and GW275 

during growth in SCFM2.  
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Several metabolism-related transcripts expressed by the CF isolates during growth 

in SCFM2 support adaptation to the host lung environment. Expression of prpB, 

encoding a 2-methylisocitrate lyase that functions in the metabolism of the mucin 

catabolite, proprionic acid, increased nearly ten-fold in the CF isolates relative to K279A 

(50).  It was previously determined that the ability of P. aeruginosa to synthesize 

riboflavin was required for this organism’s fitness during growth in SCFM2 (31). 

Surprisingly, growth in SCFM2 induced the expression of two transcripts involved in the 

biosynthesis of riboflavin, ribE & ribB, in the S. maltophilia CF isolates [6.49 & 5.94-

fold more transcripts relative to K279A].  

The CF isolates also exhibited distinct expression patterns in genes related to 

cation transport. In particular, the CF isolates likely maintain larger manganese pools 

during growth in SCFM2 than K279A, as evidenced by the more than 47-fold decrease in 

expression of the manganese efflux pump, yebN, and 2.52-fold increase in the manganese 

uptake protein, mntH, relative to K279A. The CF isolates also expressed a predicted low 

affinity iron permease gene, Smlt4069, that was not induced by SCFM2 in K279A [3.20-

fold difference]. Finally, the CF isolates expressed significantly lower levels of genes 

associated with phosphate uptake compared to K279A, including: pstS, pstC, pstB, phoU, 

and oprP [4.84 to 12.80-fold lower transcript abundance]. 
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4.4.2.2 S. maltophilia CF isolates express fewer transcripts related to cell motility 

and biofilm formation 

S. maltophilia K279A expressed significantly higher levels of thirty transcripts 

related to flagellar synthesis and type IV pili assembly relative to the CF isolates during 

growth in SCFM2. More specifically, 26 flagellar synthesis genes in K279A exhibited 

between 2.51 and 17.86-fold higher transcript levels during growth in SCFM2 compared 

to GW273 and GW275 under these conditions (flgABCDEFGHIJK, fliEFGHIJKLMN, 

flhFAB, fliA, fleQ, and Smlt2258). Similarly, the abundance of four transcripts related to 

type IV pili assembly (pilV, pilW, pilY1, pilH) were between 2.71 and 2.90-fold higher in 

K279A relative to both CF isolates. In contrast, the CF isolates expressed 3.84-fold more 

transcripts of a predicted oar-family adhesin, Smlt1619, compared to K279A. 

Collectively, these differences in flagellar and type IV pili expression indicate that S. 

maltophilia CF isolates are less motile relative to K279A. Furthermore, flagella and type 

IV twitching pili have previously been shown to be critical for S. maltophilia biofilm 

development on cultured airway cells, mouse tracheal mucus, and abiotic surfaces (14, 

57, 58).  

 

4.4.2.3 S. maltophilia CF isolates express higher levels of alternative cytochromes  

 Other SCFM2-induced transcriptional changes specific to the S. maltophilia CF 

isolates reflect adaptation to growth in microaerophilic environments. Transcript levels of 

the cytochrome bd-II oxidase genes, (cydA cydB, and Smlt3284) whose products facilitate 

oxidative phosphorylation in low oxygen environments (49), were induced between 9.11 
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and 11.79-fold higher in the CF isolates compared to K279A. Similarly, the CF isolates 

also expressed significantly higher levels of the Smlt1756-8 operon that encodes a 

predicted alternative cytochrome C of unknown function [5.04 to 9.7-fold increase in 

transcript abundance relative to K279A]. 

 

4.4.2.4 S. maltophilia CF isolates express more transcripts related to heat shock and 

oxidative stress resistance 

 Interestingly, both S. maltophilia CF isolates expressed more transcripts related to 

heat shock and oxidative stress than K279A during growth in SCFM2. Transcripts for the 

universal stress protein, usp, and heat shock chaperone, clpB, were 3.60 and 4.02-fold 

higher in abundance in the CF isolates relative to K279A during growth in SCFM2. 

Similarly, transcript levels of the hydrogen peroxide neutralizing, alkyl hydroperoxide 

reductase, ahpC, were 2.48-fold higher in the CF isolates than in K279A under these 

conditions.  

 

4.4.3 S. maltophilia CF isolates generate less surface -attached biofilm mass during 

growth in SCFM2 

Comparison of the three S. maltophilia strains transcriptional responses to 

SCFM2 revealed that the CF isolates expressed significantly less flagellar synthesis 

transcripts relative to the bacteremia isolate, S. maltophilia K279A. Since flagella have 

previously been implicated in S. maltophilia biofilm formation on abiotic surfaces and 

human CF-derived bronchial epithelial cells (14, 57), we were curious to determine if 
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their expressed influenced biofilm formation during growth in SCFM2. To test this, we 

cultured S. maltophilia K279A, GW273, and GW275 in SCFM2 and MOPS minimal 

media, and then used crystal violet staining to compare the resultant biofilm material 

adhered to the culture dish the following day. As shown in Figure 4.3, S. maltophilia 

K279A generated a robust biofilm at the air liquid interface during growth in SCFM2, 

while the CF isolates failed to generate substantial biofilm under these conditions.  

 

4.4.4 S. maltophilia CF isolates are more resistant to oxidative stress  

 Our expression data suggested that the S. maltophilia CF isolates expressed 

significantly higher levels of two cytochromes and an alkyl-hydroperoxide reductase 

during growth in SCFM2 compared to the acute bacteremia isolate, K279A. Moreover, 

the CF isolates expressed higher levels of the mntH manganese uptake protein and 

repressed the yebN manganese efflux pump, indicating that these strains likely hold larger 

manganese pools in their cytosol than K279A. These observations suggested that GW273 

and GW275 could be more resistant to oxidative stress than S. maltophilia K279A. To 

test this hypothesis, we examined the ability of each strain to survive treatment with 

various concentrations of hydrogen peroxide during logarithmic growth in LB. As shown 

in Figure 4.4, both CF isolates exhibited increased resistance to hydrogen peroxide 

relative to K279A. 
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4.5 Discussion 

The occurrence of Stenotrophomonas maltophilia within the CF community has 

more than tripled over the last decade, with recent estimates indicating that nearly 15 % 

of the world CF population is currently infected with this bacterium. Despite this growing 

prevalence, our understanding of S. maltophilia virulence and the genes required for 

survival in the CF lung lags far behind other CF pathogens. The viscous mucus found 

within the CF lung consists of heavily glycosylated mucin, high molecular weight DNA, 

serum components, and cell debris resulting from chronic infection. This substance, 

which is expectorated as sputum, serves as the primary nutrient source for pathogens 

growing in the CF respiratory tract and is known to influence the virulence of P. 

aeruginosa and B. cenocepacia (26, 30).  

Here, we characterized the transcriptional responses of three S. maltophilia strains 

during growth in synthetic cystic fibrosis sputum media (SCFM2), with the goal of 

identifying conserved genes and metabolic pathways contributing to S. maltophilia 

fitness in the CF lung (31). Our efforts revealed 238 shared transcripts that were 

expressed by two S. maltophilia CF isolates (GW273 and GW275) and the acute 

infection model strain K279A, which we included to represent a recent, non-adapted 

colonizer of the CF lung (Figure 4.1 & Table 4.1). Our second goal was to identify S. 

maltophilia CF isolate-specific transcripts expressed during growth in SCFM2 that could 

reflect adaptation to the CF lung environment. To address this question, we compared the 

SCFM2 transcriptional responses of the CF isolates with K279A. These efforts led to the 

identification of 85 transcripts that exhibited similar expression patterns in the CF isolates 
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that were not shared with K279A (Figure 4.2, Tables 4.2 & 4.3). The major findings of 

this work are discussed below.  

 

4.5.1 Characterization of the conserved S. maltophilia response to SCFM2 

CF sputum is a nutrient rich milieu that can facilitate exponential bacterial growth 

in vitro and support bacterial cell densities as high as 109 CFU/ml in vivo (59, 60). 

Surprisingly, elements of the conserved S. maltophilia transcriptional response to SCFM2 

suggest that growth in this media invokes a significant degree of stress in S. maltophilia, 

as evidenced by the numerous heat shock proteins, drug efflux pumps, and oxidative 

stress resistance genes expressed under these conditions (Figure 4.1). Furthermore, the 

expression of numerous amino acid and polyamine efflux pumps was shared between all 

three S. maltophilia strains, suggesting that growth in SCFM2 results in metabolic stress 

that leads to the accumulation of excess nitrogen (Figure 4.1).   

 Nearly twenty transcripts related to the catabolism of amino acids were expressed 

by all three S. maltophilia strains during growth in SCFM2 (Figure 4.1 & Table 4.1). 

These findings reflect similar observations in P. aeruginosa and suggest that amino acids 

also serve as preferred carbon and nitrogen sources for S. maltophilia during growth in 

the CF lung (30). Moreover, many of the amino acid catabolism-related transcripts 

expressed by S. maltophilia under these conditions are orthologues of genes expressed by 

P. aeruginosa during growth in SCFM2 (putA, dadAX, hmgA, hppD, Smlt4339-41, f ahA, 

and maiA), indicating that these organisms likely have similar nutritional preferences 

within the CF lung (30).  
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All three S. maltophilia strains expressed genes that indicated they metabolized 

N-acetylglucosamine (GlcNAC) (51) and phosphatidylcholine under these conditions 

(Figure 4.1). Included within the conserved SCFM2 response was a two-gene operon, 

encoding a BpoA-like peroxidase and a FadE-like acyl-CoA dehydrogenase that we have 

previously determined to be expressed by S. maltophilia K279A upon exposure to the 

phosphatidylcholine-rich, pulmonary surfactant (Willsey & Wargo, unpublished data). 

These data suggest that the ability to metabolize the fatty acid tails of 

phosphatidylcholine could be important for S. maltophilia fitness within two very 

different respiratory tract infection niches. 

Nearly thirty genes within the S. maltophilia SCFM2 transcriptome reflect 

alterations in electron transport to support growth in low oxygen environments, such as 

those found in the CF lung (Figure 4.1 & Table 4.1). Many of the transcriptional 

changes we observed suggest that S. maltophilia utilizes nitrate and sulfite as alternative 

electron acceptors during growth in SCFM2 (Table 4.1). It was previously suggested that 

S. maltophilia is inactive within CF sputum due to this organism’s inability to utilize 

nitrate for respiration under anaerobic conditions (61). These findings are not unexpected, 

as S. maltophilia is an obligate aerobe and lacks the machinery required to undergo 

assimilatory denitrification (7, 47). Instead, S. maltophilia likely utilizes nitrate and 

sulfite as electron sinks to facilitate the regeneration of NAD+ and NADP+ under 

conditions of low oxygen availability (47). The significance of these findings is unclear; 

although we suspect that the use of nitrate and sulfite as alternative electron acceptors 

likely contribute to S. maltophilia growth and survival in the microaerophilic regions of 

the CF lung. 



189 
 

 Several aspects of the conserved S. maltophilia response to SCFM2 could 

contribute to virulence within the CF lung (Figure 4.1). Three uncharacterized T5SS 

autotransporters with predicted protease effector domains (Smlt1001, Smlt1350, 

Smlt4145), and a predicted M14-family carboxypeptidase (Smlt0603) were expressed 

during growth in SCFM2. While the function of these proteases is unknown, we suspect 

that they could be involved in the metabolism of mucin, which is the only protein present 

within SCFM2 (31). Future research efforts will focus on characterizing these enzymes 

and examining their potential roles in the degradation of this glycoprotein. Furthermore, 

transcription of the polyamine efflux pump, mdtJI, increased nearly three hundred-fold 

under these conditions (Figure 4.1 & Table 4.1). The expression of mdtJI was recently 

shown to be necessary for Klebsiella pneumoniae fitness in a mouse model of acute 

pneumonia (32). It is therefore plausible that the expression of pump could similarly 

influence S. maltophilia fitness in the context of the CF lung. 

 

4.5.2 S. maltophilia CF isolates response to SCFM2 reflect adaptation to the host 

lung 

 Previous studies in S. maltophilia demonstrated the importance of flagella and 

type IV pili in biofilm development on cultured airway epithelial cells and abiotic 

surfaces (14, 57). Interestingly, the most striking differences between the SCFM2 

transcriptomes of the S. maltophilia CF isolates and S. maltophilia K279A centered on 

the expression of these structures, as the CF isolates expressed significantly lower levels 

of nearly thirty transcripts related to flagella and type IV pili synthesis (Figure 4.2 & 
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Table 4.3). Using a crystal violet biofilm staining assay, we were further able to show 

that the S. maltophilia CF isolates failed to generate surface attached biofilms in SCFM2, 

while the acute infection strain, K279A, developed robust biofilms in this media (Figure 

4.3). These data correlate with similar observations in P. aeruginosa and S. maltophilia 

clinical CF isolates, where the expression of flagella and the ability to generate biofilm 

diminishes over the course of chronic infection (14, 62, 63). In line with these 

observations, the S maltophilia CF isolates also expressed nearly twenty-fold lower levels 

of the PstSACB phosphate importer relative to K279A (Table 4.3), as disruption of these 

genes has been shown to inhibit biofilm formation in Pseudomonas species (64). To our 

knowledge, this study provides the first insight into the biofilm forming capacity of S. 

maltophilia under conditions reflective of the CF lung environment. 

 The S. maltophilia CF isolates also exhibited distinct expression profiles for genes 

relating to nutrient transport (Figure 4.2, Tables 4.2 & 4.3). Most notably, the CF 

isolates expressed three uncharacterized outer membrane porins (OMPs) that exhibited 

between 4 and 22-fold higher transcript levels relative to K279A (Smlt2944, Smlt3805, 

and Smlt4119). SCFM2 also repressed the transcription of numerous uncharacterized 

TonB-dependent receptor and ABC transporter transcripts in the CF isolates. In 

particular, the TonB-dependent receptor encoded by Smlt4387 exhibited nearly a 200-

fold decrease in transcript abundance relative to K279A (Table 4.3). These data suggest 

that CF lung-adapted S. maltophilia strains could have unique metabolic requirements. 

Alternatively, the different porin and TonB-dependent receptor expression patterns could 

reflect selection pressures resulting from previous antibiotic stress or detection by the 

host immune system.  
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 S. maltophilia was recently shown to be capable of metabolizing mucin in vitro 

(50). While the genes involved in this process have not been identified, our transcriptome 

analysis revealed that the S. maltophilia CF strains expressed nearly ten-fold more 

transcripts of the 2-methylisocitrate lyase, prpB during growth in SCFM2 relative to S. 

maltophilia K279A (Figure 4.2 & Table 4.3). This enzyme functions in the breakdown 

of the short chain fatty acid, propanoic acid that is generated during the catabolism of 

mucin by several CF pathogens and oral microbes (50, 65). Flynn et. al demonstrated that 

propanoic acid is relatively abundant in CF sputum (~15 mM), and can serve as nutrient 

source for P. aeruginosa, which lacks the ability to degrade mucin (50). These 

observations lead us to believe that the increased expression of prpB by S. maltophilia CF 

isolates could contribute to fitness during infection. 

Our data also revealed the clinical CF isolates expressed more than ten-fold 

higher levels of cytochrome bd-II that is involved in growth under microaerophilic 

conditions (49). Similarly, the CF isolates also expressed an operon encoding a diheme 

cytochrome c-553 of unknown function (Smlt1756-8) (Table 4.3). We suspect that the 

increased expression of these cytochromes could support accelerated growth of S. 

maltophilia in low oxygen environments, such as those found in the mucus filled terminal 

bronchioles within the CF lung.  

S. maltophilia CF isolates also expressed higher levels of the manganese importer 

mntH and nearly 50-fold lower levels of the manganese efflux pump yebN compared to 

K279A (Tables 4.2 & 4.3). The accumulation of manganese is known to protect against 

oxidative stress in several pathogenic bacteria, and deletion of yebN was shown to 

increase resistance against superoxide and hydrogen peroxide-mediated killing in the 
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Stenotrophomonas-related plant pathogen, Xanthomonas oryzae pv. Oryzae (53, 54, 66-

68). The S. maltophilia CF isolates also expressed more transcripts associated with 

resistance against environmental stressors, and our hydrogen peroxide challenge 

experiments revealed that these strains were inherently more resistant to oxidative stress 

than K279A (Figure 4.4). These data strongly suggest that the S. maltophilia CF strains 

have undergone selection pressure for increased resistance against reactive oxygen 

species. Interestingly, our data contrast with observations made by Pompilio et. al, who 

demonstrated that S. maltophilia CF isolates were often more susceptible to oxidative 

stress than isolates of environmental origin (14). However, the discrepancies in our 

observations could result from differing culture conditions, or our small sample size, 

which is an inherent limitation of this study. 

 

4.5.3 Conclusions 

 In summary, we characterized the transcriptional responses of three S. 

maltophilia strains during growth in synthetic CF sputum media (SCFM2) to gain insight 

into how this organism interreacts with the host at the site of infection. Using this 

approach, we identified numerous conserved transcripts expressed by all three strains that 

likely reflect nutrient utilization by S. maltophilia during CF lung infection. This work 

identified nitrate and sulfite as potentially important alternative electron acceptors under 

these growth conditions and also provides evidence suggesting that S. maltophilia 

preferentially utilizes amino acids for carbon and nitrogen sources within the CF lung.  

We also compared the SCFM2 transcriptional responses of two S. maltophilia CF isolates 
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with the S. maltophilia model strain, K279A, to identify CF isolate-specific signatures in 

gene expression associated with adaptation to the host lung environment. This work 

revealed that CF isolates express different genes related to nutrient acquisition, fewer 

transcripts related to biofilm formation, and increased levels of transcripts associated with 

respiration in low oxygen environments. Many of these transcriptional changes correlated 

with phenotypes observed in vitro, as the CF isolates failed to generate surface-adhered 

biofilms in SCFM2 and exhibited increased resistance to oxidative stress. Collectively, 

this work provides novel insight into the interactions occurring between S. maltophilia 

and the CF lung environment and identified potential virulence and metabolism-related 

genes that will be the subject of future research efforts. 
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4.6 Chapter 4 figures 

Figure 4.1 Conserved S. maltophilia transcriptome changes in response to synthetic 

cystic fibrosis sputum media (SCFM2).  (A) Volcano plot of transcripts detected through 

RNA-seq as exhibiting at least a 2.5-fold change in expression (P < 0.05) in all three S. 

maltophilia strains following exposure to SCFM2 (B) Conserved SCFM2-induced 

transcripts were categorized into groups reflecting their known, or bioinformatically-

predicted functions. 

 

Figure 4.2 S. maltophilia CF-isolate specific transcriptome changes induced by synthetic 

cystic fibrosis sputum media (SCFM2).  (A) Volcano plot of transcripts detected through 

RNA-seq as exhibiting at least a 2.5-fold change in expression (P < 0.05) in GW273 and 

GW275 following exposure to SCFM2 (B) SCFM2-altered transcripts  were categorized 

into groups reflecting their known, or bioinformatically-predicted functions 

 

Figure 4.3 S. maltophilia CF isolates fail to generate surface-attached biofilms during 

growth in synthetic cystic fibrosis sputum. S. maltophilia K279A, GW273, and GW275 

were cultured in SCFM2. After 18 h, the liquid cultures were removed and the 

extracellular material remaining adhered to the culture dish were stained with 0.1 % 

crystal violet. 

 

Figure 4.4 S. maltophilia CF isolates are more resistant to oxidative stress than S. 

maltophilia K279A. S. maltophilia K279A, GW273, and GW275 were cultured in LB 

until mid-log phase of growth, at which point each strain was challenged with 0, 2, 4, and 
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8 mM of hydrogen peroxide. After 2 h, the remaining cells surviving was determined 

through serial dilution and CFU counting. The percent survival was then determined for 

each strain through comparison against the untreated cultures. The data shown 

summarizes three independent experiments that were performed in biological duplicate. 

Statistical significance was determined using 2-way ANOVA with Tukey’s post-test for 

multiple comparisons. 

 

Figure 4.S1 Volcano plots depicting SCFM2-induced transcripts in individual S. 

maltophilia strains. (A-C) Volcano plots of transcripts detected through RNA-Seq as 

exhibiting at least a 2.5-fold change in expression (P < 0.05) in each S. maltophilia strain 

following exposure to SCFM2. The 25 most highly induced transcripts are labeled for 

each strain.  
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4.7 Chapter 4 tables 

Table 4.1 

Table 4.2 

Table 4.3 

Table 4.S1 

Table 4.S2 
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A. 

B. 

 

Figure 4.1 Conserved S. maltophilia transcriptome changes in response to synthetic 

cystic fibrosis sputum media (SCFM2).   



198 
 

A. 

-5 0 5

1

1 0

1 0 0

C F  is o la te  re s p o n s e  to  S C F M 2  re la t iv e  to  K 2 7 9 A

lo g 2  fo ld  c h a n g e

(C F  is o la te s  o v e r  K 2 7 9 A )

-L
o

g
1

0
 p

-v
a

lu
e

m o tility /b io film

c a t io n  tra n s p o rt

c y to c h ro m e  re la te d

s tre ss

o th e r

n u tr ie n t tra n s p o rt

v ita m in  s y n th e s is

p ro p io n a te  m e ta b o lis m

 

 

B. 

 

Figure 4.2 S. maltophilia CF-isolate specific transcriptome changes induced by synthetic 

cystic fibrosis sputum media (SCFM2). 
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Figure 4.3 S. maltophilia CF isolates fail to generate surface-attached biofilms during 

growth in synthetic cystic fibrosis sputum. 
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Figure 4.4 S. maltophilia CF isolates are more resistant to oxidative stress than S. 

maltophilia K279A. 
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C. 

 

 

Figure 4.S1 Volcano plots depicting SCFM2-induced transcripts in individual S. 

maltophilia strains. 
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Table 4.1 Summary of the 50 most highly induced transcripts expressed by all thre e  

S. maltophilia strains in response to synthetic cystic fibrosis sputum media 

(SCFM2). 
 

Gene ID Name 

Fold 

Change Product Description P-Value 

Smlt2762 - 1064.48 methyl-accepting chemotaxis protein 8.08E-48 

Smlt2763 cysJ 777.72 sulfite reductase flavodoxin containing subunit  1.76E-48 

Smlt2852 mdtI 329.00 polyamine efflux protein 8.11E-38 

Smlt2851 mdtJ 269.03 polyamine efflux protein 1.10E-29 

Smlt1238 - 99.98 lysE-family amino acid efflux protein 1.97E-22 

Smlt2774 narG 21.64 respiratory nitrate reductase subunit alpha 5.75E-21 

Smlt2769 narK2 21.61 MFS transmembrane nitrite extrusion transporter 2.72E-20 

Smlt2773 narH 20.36 respiratory nitrate reductase subunit 1.10E-19 

Smlt0239 ivD 19.85 acyl CoA dehydrogenase 7.98E-19 

Smlt2772 narJ 17.09 respiratory nitrate reductase subunit delta 5.47E-19 

Smlt2770 ppiD 16.96 rotamase/peptidyl-prolyl cis-trans isomerase 1.34E-17 

Smlt2775 narK 16.33 MFS transmembrane nitrite extrusion transporter 3.90E-13 

Smlt2771 narI 16.21 respiratory nitrate reductase subunit gamma 2.44E-18 

Smlt0568 alr 13.73 alanine racemase 5.34E-16 

Smlt4330 hppD 13.53 4-hydroxyphenylpyruvate dioxygenase 8.07E-16 

Smlt4215 groES 13.46 co-chaperonin GroES 3.36E-18 

Smlt0567 dadA 13.20 D-amino acid dehydrogenase small subunit 6.47E-16 

Smlt2768   12.98 
oxygen-independent coproporphyrinogen III 
oxidase 5.73E-13 

Smlt0339 - 12.08 hypothetical protein 7.47E-10 

Smlt0238 - 11.41 acyl CoA carboxyltransferase 6.17E-15 

Smlt4214 groEL 11.16 chaperonin GroEL 2.38E-17 

Smlt0426 putA 9.56 proline dehydrogenase 9.53E-15 

Smlt2781 moaC 9.14  molybdenum cofactor biosynthesis  3.66E-12 

Smlt1001 - 9.09 autotransporter, crotonase clP domain 1.73E-07 

Smlt3647 bpoA 9.04 peroxidase BpoA 9.26E-09 

Smlt2940 - 8.95 translational inhibitor protein 1.3073E-05 

Smlt2941 - 8.83 cation efflux transmembrane protein 6.1914E-07 

Smlt2942 adiA 8.75 orn/arg/lys decarboxylase 1.1392E-06 

Smlt2780 moeA 8.69 molybdopterin biosynthesis protein 7.15E-13 

Smlt0237 - 8.01 biotin carboxylase 7.9225E-12 

Smlt2777 mobA 7.68 molybdopterin-guanine dinucleotide biosynthesis 2.9042E-10 

Smlt1350 - 7.66 outer membrane autotransporter 2.1619E-05 

Smlt3649 - 7.63 hypothetical protein 7.1065E-06 

Smlt2779 moaD 7.59 molybdopterin converting factor subunit 1 2.6479E-09 



204 
 

Smlt2767 fnr2 7.38 
fumarate and nitrate reduction transcriptional 
regulator 3.8355E-11 

Smlt2051 fadA 7.22 acetyl-CoA acetyltransferase 8.5939E-08 

Smlt4368 - 7.10 hypothetical protein 1.8384E-06 

Smlt0359 - 7.02 TonB dependent receptor protein 1.9373E-09 

Smlt2418 - 6.93 monooxygenase 0.03672886 

Smlt2778 moaE 6.90 molydopterin converting factor subunit 2 protein 7.1775E-10 

Smlt0408 kdpA 6.89 potassium-transporting ATPase subunit A 9.0027E-06 

Smlt0407 kdpB 6.81 potassium-transporting ATPase subunit B 2.0564E-05 

Smlt3122 - 6.67 hypothetical protein 1.2031E-06 

Smlt2782 moaA 6.64 molybdenum cofactor biosynthesis protein A 3.6016E-10 

Smlt2706 proP 6.64 proline/betaine transporter 2.7114E-07 

Smlt2052 fadB 6.54 3-hydroxyacyl-CoA dehydrogenase oxidoreductase 5.7945E-07 

Smlt1569 - 6.22 hypothetical protein 3.1279E-09 

Smlt4341 - 6.22 
branched-chain alpha-keto acid dehydrogenase 
subunit 6.7076E-11 

Smlt2243 - 5.96 SpoVT/AbrB domain transcriptional regulator 5.4353E-05 

Smlt1809 htpG 5.94 heat shock protein 90 3.2153E-09 
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Table 4.2 Summary of the 25 most highly induced transcripts expressed by S. 

maltophilia CF isolates during growth in synthetic cystic fibrosis sputum media 

(SCFM2). 
 

Gene ID Name 

Fold 

Change Product Description P-Value 

Smlt2944 - 21.22 OMP-family porin 1.13E-77 

Smlt3283 cydB 11.79 transmembrane cytochrome bd-II oxidase subunit II 1.40E-50 

Smlt3610 prpB 9.75 2-methylisocitrate lyase 1.01E-49 

Smlt1757 - 9.70 cytochrome c family protein 7.98E-50 

Smlt3284 - 9.59 transmembrane cyd operon protein 3.02E-35 

Smlt3282 cydA 9.11 cytochrome D ubiquinol oxidase subunit I 2.46E-48 

Smlt1756 - 7.35 TonB dependent receptor protein 1.91E-36 

Smlt0727 ribE 6.49 riboflavin synthase subunit alpha 3.69E-31 

Smlt3805 - 6.02 OMP-family protein 9.67E-36 

Smlt0728 ribB 5.92 3,4-dehydroxy-2-butanone 4-phosphate synthetase 2.07E-33 

Smlt1758 adhB 5.04 alcohol dehydrogenase cytochrome c subunit 9.79E-25 

Smlt1691 - 4.90 

FAD sensors of blue light domain-containing 

protein 9.49E-26 

Smlt1459 - 4.53 hypothetical protein 3.02E-26 

Smlt0232 aceA 4.23 isocitrate lyase 3.66E-24 

Smlt4119 - 4.07 OMP-like channel protein 2.37E-18 

Smlt3732 clpB 4.02 heat shock chaperone ClpB 1.18E-20 

Smlt1598 - 3.87 ABC transporter ATP-binding protein 2.09E-16 

Smlt1619 - 3.84 predicted oar family adhesin 4.24E-22 

Smlt4591 usP 3.59 universal stress protein 6.88E-20 

Smlt0773 - 3.41 hypothetical protein 5.55E-11 

Smlt2112 - 3.26 TetR family transcriptional regulator 8.32E-14 

Smlt1597 - 3.24 HlyD family secretion protein 3.10E-18 

Smlt4069 - 3.20 iron-permease family protein 1.74E-12 

Smlt1737 hflX 2.86 GTP-binding phage-like protein 6.30E-13 

Smlt2838 mntH 2.62 manganese ion transporter protein 5.48E-07 
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Table 4.3 Summary of the 25 most repressed transcripts in S. maltophilia CF isolates 

during growth in synthetic cystic fibrosis sputum media (SCFM2). 
 

Gene ID Name 
Fold 

Change Product Description P-Value 

Smlt4387 - -190.82 TonB dependent receptor protein 5.12E-09 

Smlt4626 mntP -47.45 transmembrane protein 5.86E-83 

Smlt4386 - -42.07 hypothetical protein 1.60E-13 

Smlt2315 flgD -17.86 flagellar basal body rod modification protein 1.97E-24 

Smlt1551 pstC -17.84 phosphate transport system permease 1.60E-05 

Smlt2314 flgE -16.81 flagellar hook protein FlgE 5.91E-22 

Smlt2316 flgC -16.21 flagellar basal body rod protein FlgC 4.46E-37 

Smlt2273 flhA -15.45 flagellar biosynthesis protein FlhA 1.37E-39 

Smlt2313 flgF -15.30 flagellar basal body rod protein FlgF 1.14E-19 

Smlt2272 flhF -14.94 flagellar biosynthesis regulator FlhF 6.87E-24 

Smlt2317 flgB -13.99 flagellar basal body rod protein FlgB 2.20E-30 

Smlt2311 flgH -13.95 flagellar basal body L-ring protein 3.12E-20 

Smlt2312 flgG -12.85 flagellar basal body rod protein FlgG 1.95E-28 

Smlt1552 pstS -12.80 phosphate transport system substrate-binding  3.19E-05 

Smlt2274 flhB -12.63 flagellar biosynthesis protein FlhB 8.87E-32 

Smlt2309 flgJ -12.59 flagellar rod assembly protein/muramidase 3.14E-20 

Smlt2308 flgK -12.42 flagellar hook-associated protein FlgK 1.57E-16 

Smlt2310 flgI -12.27 flagellar basal body P-ring protein 8.86E-22 

Smlt2286 fliI -11.77 flagellum-specific ATP synthase 4.93E-35 

Smlt2282 fliM -11.56 flagellar motor switch protein FliM 9.12E-40 

Smlt2289 fliF -11.43 flagellar MS-ring protein 1.12E-30 

Smlt2288 fliG -11.39 flagellar motor switch protein 3.69E-21 

Smlt2290 fliE -11.27 flagellar hook-basal body complex protein 1.39E-29 

Smlt2281 fliN -10.57 flagellar motor switch protein 2.13E-37 

Smlt2287 fliH -10.08 flagellar assembly protein, FliH 2.39E-26 

 

 

 

 

 

 

 

 



207 
 

Table 4.S1 List of transcripts expressed by all three S. maltophilia strains in 

response to synthetic cystic fibrosis sputum media (SCFM2) 

Gene ID Name 
Fold 

Change Product Description P-Value 

Smlt2762 - 1064.48 methyl-accepting chemotaxis protein 8.08E-48 

Smlt2763 cysJ 777.72 sulfite reductase flavodoxin containing subunit alpha 1.76E-48 

Smlt2852 mdtI 329.00 transmembrane efflux protein 8.11E-38 

Smlt2851 mdtJ 269.03 transmembrane efflux protein 1.10E-29 

Smlt1238 argO 99.98 arginine efflux 1.97E-22 

Smlt2774 narG 21.64 respiratory nitrate reductase subunit alpha 5.75E-21 

Smlt2769 narK2 21.61 
MFS transmembrane nitrite extrusion transporter 
protein 2.72E-20 

Smlt2773 narH 20.36 respiratory nitrate reductase subunit 1.10E-19 

Smlt0239 ivD 19.85 acyl CoA dehydrogenase 7.98E-19 

Smlt2772 narJ 17.09 respiratory nitrate reductase subunit delta 5.47E-19 

Smlt2770 - 16.96 

rotamase/peptidyl-prolyl cis-trans isomerase family 

protein 1.34E-17 

Smlt2775 narK 16.33 
major facilitator superfamily transmembrane nitrite 
extrusion protein 3.90E-13 

Smlt2771 narI 16.21 respiratory nitrate reductase subunit gamma 2.44E-18 

Smlt0568 alr 13.73 alanine racemase 5.34E-16 

Smlt4330 - 13.53 4-hydroxyphenylpyruvate dioxygenase 8.07E-16 

Smlt4215 groES 13.46 co-chaperonin GroES 3.36E-18 

Smlt0567 dadA 13.20 D-amino acid dehydrogenase small subunit 6.47E-16 

Smlt2768 - 12.98 oxygen-independent coproporphyrinogen III oxidase 5.73E-13 

Smlt0339 - 12.08 hypothetical protein 7.47E-10 

Smlt0238 - 11.41 acyl CoA carboxyltransferase 6.17E-15 

Smlt4214 groEL 11.16 chaperonin GroEL 2.38E-17 

Smlt0426 putA 9.56 
bifunctional proline dehydrogenase/pyrroline-5-
carboxylate dehydrogenase 9.53E-15 

Smlt2781 moaC 9.14 
bifunctional molybdenum cofactor biosynthesis 
protein MoaC/MogA 3.66E-12 

Smlt1001 - 9.09 autotransporter 1.73E-07 

Smlt3647 bpoA 9.04 peroxidase BpoA 9.26E-09 

Smlt2940 - 8.95 translational inhibitor protein 1.31E-05 

Smlt2941 - 8.83 cation efflux transmembrane protein 6.19E-07 

Smlt2942 adiA 8.75 orn/arg/lys decarboxylase 1.14E-06 

Smlt2780 moeA 8.69 molybdopterin biosynthesis protein 7.15E-13 

Smlt0237 - 8.01 biotin carboxylase 7.92E-12 

Smlt2777 mobA 7.68 
molybdopterin-guanine dinucleotide biosynthesis 
protein A 2.90E-10 

Smlt1350 - 7.66 outer membrane autotransporter 2.16E-05 

Smlt3649 - 7.63 hypothetical protein 7.11E-06 
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Smlt2779 moaD 7.59 molybdopterin converting factor subunit 1 2.65E-09 

Smlt2767 fnr2 7.38 fumarate and nitrate reduction transcriptional regulator 3.84E-11 

Smlt2051 fadA 7.22 acetyl-CoA acetyltransferase 8.59E-08 

Smlt4368 - 7.10 hypothetical protein 1.84E-06 

Smlt0359 - 7.02 TonB dependent receptor protein 1.94E-09 

Smlt2418 - 6.93 monooxygenase 3.67E-02 

Smlt2778 moaE 6.90 molydopterin converting factor subunit 2 protein 7.18E-10 

Smlt0408 kdpA 6.89 potassium-transporting ATPase subunit A 9.00E-06 

Smlt0407 kdpB 6.81 potassium-transporting ATPase subunit B 2.06E-05 

Smlt3122 - 6.67 hypothetical protein 1.20E-06 

Smlt2782 moaA 6.64 molybdenum cofactor biosynthesis protein A 3.60E-10 

Smlt2706 proP 6.64 proline/betaine transporter 2.71E-07 

Smlt2052 fadB 6.54 3-hydroxyacyl-CoA dehydrogenase oxidoreductase 5.79E-07 

Smlt1569 - 6.22 hypothetical protein 3.13E-09 

Smlt4341 - 6.22 

branched-chain alpha-keto acid dehydrogenase E2 

subunit 6.71E-11 

Smlt2243 - 5.96 SpoVT/AbrB domain transcriptional regulator 5.44E-05 

Smlt1809 htpG 5.94 heat shock protein 90 3.22E-09 

Smlt4340 - 5.79 hypothetical protein 1.86E-09 

Smlt3789 - 5.68 TonB dependent receptor protein 5.77E-04 

Smlt1095 - 5.67 transmembrane YitT family protein (ABC transporter) 4.93E-06 

Smlt2765 - 5.56 ABC molybdenum transport-related membrane protein 1.94E-07 

Smlt4329 hmgA 5.46 homogentisate 1,2-dioxygenase 1.08E-08 

Smlt2943 adiC 5.37 arginine:agmatin antiporter 6.50E-05 

Smlt0406 kdpC 5.28 potassium-transporting ATPase subunit C 3.29E-03 

Smlt4145 - 5.27 extracellular serine protease 1.14E-05 

Smlt2841 nrdF 5.26 ribonucleotide-diphosphate reductase subunit beta 1.49E-07 

Smlt4338 pdhA 5.25 pyruvate dehydrogenase E1 component subunit alpha 8.07E-09 

Smlt4023 nagP 5.25 
major facilitator superfamily transmembrane sugar 
transporter 8.45E-06 

Smlt2053 psrA 5.25 TetR family regulatory protein 4.69E-06 

Smlt3579 gcvP 5.17 glycine dehydrogenase 1.53E-07 

Smlt2245 acnB 5.07 

bifunctional aconitate hydratase 2/2-methylisocitrate 

dehydratase 4.71E-09 

Smlt2839 trxA 5.01 thioredoxin 9.08E-06 

Smlt3740 - 4.98 TonB dependent receptor protein 5.84E-05 

Smlt2244 - 4.97 hypothetical protein 4.22E-06 

Smlt3846 fdnI 4.94 
formate dehydrogenase, cytochrome b556 (FDN) 
subunit 1.65E-06 

Smlt2840 - 4.85 flavodoxin 7.97E-06 

Smlt0960 - 4.79 hypothetical protein 1.57E-06 

Smlt2766 - 4.78 molybdenum transport-related, substrate-binding 5.57E-08 
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protein 

Smlt3444 - 4.74 TonB dependent receptor protein 3.50E-06 

Smlt2764 - 4.68 molybdenum transport-related, ATP-binding protein 2.50E-06 

Smlt3648 fadE 4.68 acyl-CoA dehydrogenase 1.19E-04 

Smlt1993 dnaJ 4.62 chaperone protein DnaJ 5.30E-07 

Smlt1067 btuB 4.61 TonB-dependent receptor 4.31E-03 

Smlt4025 nagk2 4.60 glucokinase 4.37E-05 

Smlt2082 - 4.58 transmembrane anchor protein 4.30E-03 

Smlt3845 fdnH 4.47 formate dehydrogenase, iron-sulfur subunit 4.32E-07 

Smlt0602 - 4.37 TonB dependent receptor protein 3.47E-03 

Smlt4661 - 4.36 transmembrane protein 9.58E-04 

Smlt4339 - 4.30 
branched-chain alpha keto acid dehydrogenase E1 
subunit beta 2.52E-07 

Smlt3222 - 4.26 fumarate hydratase 1.12E-06 

Smlt2944 - 4.21 porin 6.10E-04 

Smlt0538 - 4.19 transmembrane anchor protein 4.57E-03 

Smlt1506 tsf 4.18 elongation factor Ts 3.31E-07 

Smlt2180 mnnA 4.07 Alpha-1,2-mannosidase 1.38E-05 

Smlt3902 ppa 4.05 inorganic pyrophosphatase 4.31E-06 

Smlt2842 nrdE 4.01 ribonucleotide-diphosphate reductase subunit alpha 9.87E-07 

Smlt0608 faa 3.99 fumarylacetoacetate (FAA) hydrolase family protein 6.94E-07 

Smlt3757 ppdD 3.98 prepilin peptidase dependent protein D 1.55E-02 

Smlt3340 - 3.90 TonB dependent receptor protein 4.28E-06 

Smlt0609 maiA 3.89 maleylacetoacetate isomerase 7.43E-06 

Smlt1449 - 3.86 phosphodiesterase-nucleotide pyrophosphatase 1.00E-06 

Smlt4663 - 3.84 outer membrane efflux protein 6.75E-04 

Smlt3279 cydC 3.79 

transmembrane ABC transporter ATP-binding protein, 

cytochrome related 6.72E-05 

Smlt4662 - 3.78 HlyD family secretion protein 5.15E-04 

Smlt2783 - 3.74 hypothetical protein 3.24E-05 

Smlt3905 - 3.72 TonB dependent receptor protein 2.60E-05 

Smlt4539 - 3.70 aldo-keto reductase/oxidase 1.35E-05 

Smlt4453 - 3.66 two-partner secretion system protein 1.58E-04 

Smlt2806 - 3.62 hypothetical protein 4.25E-04 

Smlt0560 - 3.57 hypothetical protein 1.45E-05 

Smlt3021 - 3.54 TetR family transcriptional regulator 8.79E-03 

Smlt2239 betI 3.54 TetR family regulatory protein 2.30E-04 

Smlt3689 recQ 3.53 ATP-dependent DNA helicase 8.00E-06 

Smlt3238 sodA 3.50 superoxide dismutase 1.97E-05 

Smlt3150 rpsF 3.48 30S ribosomal protein S6 6.57E-05 

Smlt2018 - 3.47 hypothetical protein 6.62E-04 
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Smlt0539 - 3.46 hypothetical protein 1.59E-02 

Smlt1053 - 3.45 hypothetical protein 3.82E-02 

Smlt3352 - 3.43 acyl-CoA dehydrogenase oxidoreductase 3.76E-04 

Smlt0876 rplY 3.39 50S ribosomal protein L25/general stress protein Ctc 2.35E-05 

Smlt2017 - 3.35 hypothetical protein 2.75E-04 

Smlt3977 - 3.35 hypothetical protein 1.07E-03 

Smlt1992 dnaK 3.34 molecular chaperone DnaK 6.02E-05 

Smlt1464 - 3.34 pseudouridine synthase 5.78E-05 

Smlt3175 - 3.31 ArsR family transcriptional regulator 4.81E-04 

Smlt4022 nagR 3.31 LacI family transcriptional regulator 1.77E-04 

Smlt2776 - 3.30 hypothetical protein 1.04E-04 

Smlt0982 - 3.29 isocitrate dehydrogenase 1.22E-05 

Smlt4021 nagB2 3.27 phosphosugar-binding protein 6.86E-04 

Smlt3280 cydD 3.26 
ABC transporter ATP-binding protein, cytochrome 
related 2.12E-04 

Smlt4116a atpC 3.26 F0F1 ATP synthase subunit C 9.84E-05 

Smlt3637 prfC 3.24 peptide chain release factor 3 2.60E-05 

Smlt0540 - 3.23 hypothetical protein 1.24E-02 

Smlt0952 fadH 3.20 2,4-dienoyl-CoA reductase [NADPH] 6.43E-04 

Smlt3407 tpiA 3.20 triosephosphate isomerase 3.36E-05 

Smlt3284 - 3.20 transmembrane cyd operon protein 2.12E-03 

Smlt2932 - 3.18 glutamine amidotransferase class-I 8.34E-03 

Smlt3672 pilI 3.18 pilus biogenesis protein 1.80E-03 

Smlt2933 - 3.17 hypothetical protein 1.48E-02 

Smlt1432 - 3.16 HD domain signalling protein 2.53E-03 

Smlt2054 ndk 3.15 nucleoside diphosphate kinase 5.03E-05 

Smlt4687 - 3.15 hypothetical protein 3.82E-05 

Smlt4595 uvrD 3.14 DNA-dependent helicase II 1.87E-05 

Smlt1048 - 3.14 bacteriophage tail protein I 1.43E-02 

Smlt1801 - 3.13 hypothetical protein 6.73E-03 

Smlt2030 uup 3.13 ABC transporter ATP-binding protein 2.00E-05 

Smlt3283 appB 3.10 transmembrane cytochrome bd-II oxidase subunit II 2.78E-03 

Smlt3615 - 3.09 aminoglycoside 6'-N-acetyltransferase 1.50E-03 

Smlt0559 - 3.08 hypothetical protein 1.20E-03 

Smlt2931 - 3.07 racemase 4.24E-03 

Smlt0877 pth 3.07 peptidyl-tRNA hydrolase 6.19E-05 

Smlt1375 rimM 3.06 16S rRNA-processing protein RimM 7.03E-05 

Smlt3594 - 3.05 transmembrane protein 3.14E-02 

Smlt1061 - 3.02 phage integrase 5.29E-03 

Smlt2808 - 3.02 hypothetical protein 9.86E-04 
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Smlt3616 pdxH 3.01 pyridoxamine 5'-phosphate oxidase 3.70E-04 

Smlt3148 rplI 3.00 50S ribosomal protein L9 6.56E-04 

Smlt1706 pitA 2.99 
low-affinity inorganic phosphate transporter integral 
membrane protein PITA 7.25E-04 

Smlt4660 - 2.99 MarR family transcriptional regulator 6.95E-03 

Smlt3825 pilM 2.99 type 4 fimbrial biogenesis protein PilM 2.42E-04 

Smlt0767 metF 2.98 5,10-methylenetetrahydrofolate reductase 6.00E-03 

Smlt3821 pilQ 2.98 type II/III pilus secretin 1.49E-03 

Smlt3490 - 2.98 hypothetical protein 5.76E-03 

Smlt3976 - 2.97 esterase 1.19E-03 

Smlt0878 - 2.97 GTP-dependent nucleic acid-binding protein EngD 5.89E-05 

Smlt0731 - 2.96 thiamine monophosphate kinase 9.46E-04 

Smlt1374 rpsP 2.95 30S ribosomal protein S16 4.47E-04 

Smlt3149 rpsR 2.95 30S ribosomal protein S18 7.22E-04 

Smlt1222 - 2.94 inosine-uridine preferring nucleoside hydrolase 1.08E-04 

Smlt0444 rpsU 2.94 30S ribosomal protein S21 4.04E-04 

Smlt0248 - 2.94 ribonucleotide diphosphate reductase small subunit 2.06E-04 

Smlt1700 - 2.94 monooxygenase family protein 3.83E-03 

Smlt3978 adhC 2.93 alcohol dehydrogenase class-III 6.25E-04 

Smlt3824 pilN 2.93 type 4 fimbrial biogenesis protein PilN 1.01E-03 

Smlt2807 - 2.93 transmembrane protein 6.37E-04 

Smlt0206 dhaA 2.91 haloalkane dehalogenase 9.51E-04 

Smlt1800 - 2.91 TPR repeat-containing protein 3.36E-04 

Smlt3321 suhB 2.91 inositol-1-monophosphatase 1.37E-04 

Smlt0047 - 2.90 fructose-1,6-bisphosphatase 3.80E-04 

Smlt4110 atpC 2.89 F0F1 ATP synthase subunit epsilon 2.06E-04 

Smlt2179 - 2.89 

Mannosides-regulated TonB-dependent outer 

membrane receptor 5.46E-04 

Smlt3822 pilP 2.88 type 4 fimbrial biogenesis protein PilP 1.84E-03 

Smlt0603 - 2.88 peptidase m14, carboxypeptidase A 3.55E-02 

Smlt4137 - 2.87 transmembrane protein 1.93E-03 

Smlt0566 lrp 2.87 leucine-responsive regulatory protein 1.25E-02 

Smlt3673 pilH 2.86 

two-component response regulator transcriptional 

regulator 4.16E-03 

Smlt3588 - 2.85 methyl-accepting chemotaxis protein 2.13E-02 

Smlt3906 - 2.85 hth transcriptional regulator 2.45E-03 

Smlt2853 - 2.85 LysR family transcriptional regulator 8.16E-03 

Smlt4658 - 2.84 hypothetical protein 5.50E-04 

Smlt3823 pilO 2.84 type 4 fimbrial biogenesis protein PilO 2.57E-03 

Smlt3724 - 2.84 ABC transporter ATP-binding protein 1.05E-04 

Smlt3671 pilJ 2.83 
pilus biogenesis protein PilJ/methyl accepting 
chemotaxis protein 4.36E-03 
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Smlt3480 - 2.80 rRNA large subunit methyltransferase 2.54E-03 

Smlt4111 atpD 2.80 F0F1 ATP synthase subunit beta 3.16E-04 

Smlt4117 - 2.78 F0F1 ATP synthase subunit A 3.51E-04 

Smlt0097 - 2.78 hypothetical protein 4.20E-03 

Smlt3886 adk 2.77 adenylate kinase 1.36E-04 

Smlt0944 mdh 2.77 malate dehydrogenase 3.26E-04 

Smlt4304 sugE 2.76 chaperone protein 7.63E-03 

Smlt4020 nagA 2.75 N-acetylglucosamine-6-phosphate deacetylase 2.12E-03 

Smlt1507 rpsB 2.75 30S ribosomal protein S2 3.10E-04 

Smlt0398 argS 2.73 arginyl-tRNA synthetase 1.54E-03 

Smlt0083 - 2.68 TonB dependent receptor protein 5.25E-04 

Smlt1705 - 2.68 pit accessory protein 6.44E-03 

Smlt1280 obgE 2.67 GTPase ObgE 8.20E-04 

Smlt4115 atpF 2.67 F0F1 ATP synthase subunit B 8.80E-04 

Smlt0726 - 2.66 hypothetical protein 1.05E-02 

Smlt3878 - 2.65 lipoprotein 1.59E-02 

Smlt4585 - 2.65 hypothetical protein 1.71E-02 

Smlt3614 - 2.64 hypothetical protein 1.24E-02 

Smlt0104 rdgC 2.63 recombination associated protein 2.82E-04 

Smlt3316 efp 2.63 elongation factor P 5.33E-04 

Smlt4114 atpH 2.62 F0F1 ATP synthase subunit delta 1.20E-03 

Smlt3406 secG 2.62 preprotein translocase subunit SecG 5.57E-04 

Smlt2229 - 2.62 hypothetical protein 2.92E-03 

Smlt3508 phnA 2.62 alkylphosphonate uptake protein 1.03E-03 

Smlt1124 - 2.60 transmembrane protein 4.71E-03 

Smlt4315 - 2.60 acetyltransferase 2.46E-03 

Smlt2805 - 2.60 hypothetical protein 3.02E-03 

Smlt4075 hslU 2.59 ATP-dependent protease ATP-binding subunit HslU 2.06E-03 

Smlt3374 pheS 2.58 phenylalanyl-tRNA synthetase subunit alpha 1.28E-03 

Smlt4019 nagX 2.58 transmembrane protein 1.24E-02 

Smlt3115 - 2.58 TonB-dependent receptor 1.69E-02 

Smlt3365 - 2.57 LysE family amino acid efflux 4.74E-02 

Smlt1459 - 2.56 hypothetical protein 2.91E-03 

Smlt0922 rplR 2.55 50S ribosomal protein L18 1.13E-03 

Smlt2677 - 2.55 TetR family regulatory protein 9.95E-03 

Smlt3213   2.54 ThiF domain-containing protein 1.74E-03 

Smlt4113 atpA 2.54 F0F1 ATP synthase subunit alpha 1.28E-03 

Smlt0920 rpsH 2.53 30S ribosomal protein S8 2.23E-03 

Smlt2759 - 2.53 Maltooligosyltrehalose trehalohydrolase protein 4.35E-02 

Smlt3387 truB 2.53 tRNA pseudouridine synthase B 4.00E-03 
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Smlt3873A - 2.50 azurin 1.33E-02 

Smlt3779 - 2.50 ferredoxin 2.33E-02 

Smlt0945 rluA 2.50 ribosomal large subunit pseudouridine synthase A 3.08E-03 

Smlt0774 - 2.49 hypothetical protein 2.17E-02 

Smlt3176 metH2 2.49 
5-methyltetrahydrofolate--homocysteine 
methyltransferase 6.36E-03 

Smlt0942 typA 2.49 GTP-binding protein 1.10E-03 

Smlt3137 gyrA 2.48 DNA gyrase subunit A 7.39E-04 

Smlt1049 - 2.48 phage baseplate assembly protein 4.31E-02 

Smlt1241 - 2.48 
major facilitator superfamily transmembrane 
transporter 3.08E-03 

Smlt1044 - 2.47 major tail tube protein 9.14E-03 

Smlt4112 atpG 2.47 F0F1 ATP synthase subunit gamma 1.91E-03 

Smlt0645 etfA 2.46 electron transfer flavoprotein subunit alpha 5.88E-03 
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Table 4.S2 S. maltophilia CF isolate-specific transcriptional changes  occurring 

during growth in synthetic cystic fibrosis sputum media (SCFM2). 

Gene ID Name 
Fold 

Change Product Description P-Value 

Smlt4387 - -190.82 TonB dependent receptor protein 5.12E-09 

Smlt4626 mntP -47.45 transmembrane protein 5.86E-83 

Smlt4386 - -42.07 hypothetical protein 1.60E-13 

Smlt2315 flgD -17.86 flagellar basal body rod modification protein 1.97E-24 

Smlt1551 pstC -17.84 phosphate transport system permease 1.60E-05 

Smlt2314 flgE -16.81 flagellar hook protein FlgE 5.91E-22 

Smlt2316 flgC -16.21 flagellar basal body rod protein FlgC 4.46E-37 

Smlt2273 flhA -15.45 flagellar biosynthesis protein FlhA 1.37E-39 

Smlt2313 flgF -15.30 flagellar basal body rod protein FlgF 1.14E-19 

Smlt2272 flhF -14.94 flagellar biosynthesis regulator FlhF 6.87E-24 

Smlt2317 flgB -13.99 flagellar basal body rod protein FlgB 2.20E-30 

Smlt2311 flgH -13.95 flagellar basal body L-ring protein 3.12E-20 

Smlt2312 flgG -12.85 flagellar basal body rod protein FlgG 1.95E-28 

Smlt1552 pstS -12.80 
phosphate transport system substrate-binding 
exported periplasmic protein 3.19E-05 

Smlt2274 flhB -12.63 flagellar biosynthesis protein FlhB 8.87E-32 

Smlt2309 flgJ -12.59 flagellar rod assembly protein/muramidase FlgJ 3.14E-20 

Smlt2308 flgK -12.42 flagellar hook-associated protein FlgK 1.57E-16 

Smlt2310 flgI -12.27 flagellar basal body P-ring protein 8.86E-22 

Smlt2286 fliI -11.77 flagellum-specific ATP synthase 4.93E-35 

Smlt2282 fliM -11.56 flagellar motor switch protein FliM 9.12E-40 

Smlt2289 fliF -11.43 flagellar MS-ring protein 1.12E-30 

Smlt2288 fliG -11.39 flagellar motor switch protein 3.69E-21 

Smlt2290 fliE -11.27 flagellar hook-basal body complex protein 1.39E-29 

Smlt2281 fliN -10.57 flagellar motor switch protein 2.13E-37 

Smlt2287 fliH -10.08 flagellar assembly protein, FliH 2.39E-26 

Smlt2285 fliJ -9.87 flagellar fliJ protein 1.02E-21 

Smlt4272 - -9.21 hypothetical protein 4.99E-29 

Smlt2284 fliK -9.01 flagellar hook-length control protein 2.49E-14 

Smlt2319 flgA -9.00 

flagellar basal body P-ring biosynthesis protein 

FlgA 2.96E-43 

Smlt2283 fliL -8.90 flagellar basal body-associated protein FliL 3.62E-34 

Smlt2888 - -8.21 AraC family transcriptional regulator 1.92E-11 

Smlt2270 fliA -7.28 

RNA polymerase sigma factor for flagellar regulon 

FliA 1.19E-23 

Smlt1555 oprP -6.49 polyphosphate-selective porin O 6.94E-06 

Smlt1549 pstB -5.24 phosphate transporter ATP-binding protein 3.02E-04 

Smlt2258 - -5.19 methyl-accepting chemotaxis receptor 3.33E-26 
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Smlt1548 phoU -4.85 phosphate transport system-like protein 9.00E-05 

Smlt0461 - -4.73 TonB outer membrane protein oar family 4.46E-23 

Smlt4100 - -4.11 HlyD family transporter protein 6.04E-15 

Smlt3478 - -3.85 TonB dependent receptor protein 1.56E-16 

Smlt2874 - -3.59 
type II secretion/pilus assembly transmembrane 
protein 7.09E-13 

Smlt2871 - -3.12 exported fimbriae assembly protein 1.66E-13 

Smlt0526 cycA -2.99 D-alanine/D-serine/glycine permease 9.14E-15 

Smlt4102 - -2.98 ABC transporter permease 5.76E-10 

Smlt2201 smeY -2.91 secretion protein-HlyD family 6.05E-09 

Smlt3598 pilH -2.91 two-component response regulator 1.73E-14 

Smlt4103 - -2.90 transmembrane permease 1.63E-10 

Smlt1622 pilV -2.84 type 4 fimbrial biogenesis protein PilV 1.13E-11 

Smlt1625 pilY1 -2.78 PilY1 protein 6.57E-14 

Smlt4371 - -2.78 hypothetical protein 2.54E-13 

Smlt4641 tatA -2.76 twin arginine translocase A 3.66E-12 

Smlt1623 pilW -2.71 type 4 fimbrial biogenesis protein PilW 6.56E-13 

Smlt0956 - -2.71 hypothetical protein 3.66E-11 

Smlt3293 proA -2.66 gamma-glutamyl phosphate reductase 8.34E-12 

Smlt4084 - -2.57 exported oligopeptidase 4.64E-12 

Smlt2295 - -2.51 nitrogen regulation protein NR(I) 6.19E-11 

Smlt0014 - -2.47 hypothetical protein 1.26E-11 

Smlt0841 ahpC 2.48 alkyl hydroperoxide reductase subunit c 1.48E-10 

Smlt0882 - 2.52 sensor histidine kinase 2.54E-08 

Smlt3005 - 2.55 VirB9 1.05E-11 

Smlt1075 - 2.57 GntR family transcriptional regulator 1.57E-07 

Smlt2838 mntH 2.62 natural resistance associated macrophage protein 5.48E-07 

Smlt1737 hflX 2.86 GTP-binding phage-like protein 6.30E-13 

Smlt4069 
Fet4-
like 3.20 iron-permease family protein 1.74E-12 

Smlt1597 - 3.24 HlyD family secretion protein 3.10E-18 

Smlt2112 - 3.26 TetR family transcriptional regulator 8.32E-14 

Smlt0773 - 3.41 hypothetical protein 5.55E-11 

Smlt4591 usP 3.59 universal stress protein 6.88E-20 

Smlt1619 - 3.84 predicted oar family adhesin 4.24E-22 

Smlt1598 - 3.87 ABC transporter ATP-binding protein 2.09E-16 

Smlt3732 clpB 4.02 heat shock chaperone ClpB 1.18E-20 

Smlt4119   4.07 OMP-like channel protein 2.37E-18 

Smlt0232 aceA 4.23 isocitrate lyase 3.66E-24 

Smlt1459 - 4.53 hypothetical protein 3.02E-26 

Smlt1691 - 4.90 FAD sensors of blue light domain-containing 9.49E-26 
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protein 

Smlt1758 adhB 5.04 alcohol dehydrogenase cytochrome c subunit 9.79E-25 

Smlt0728 ribB 5.92 3,4-dehydroxy-2-butanone 4-phosphate synthetase 2.07E-33 

Smlt3805   6.02 OMP-family protein 9.67E-36 

Smlt0727 ribE 6.49 riboflavin synthase subunit alpha 3.69E-31 

Smlt1756 - 7.35 TonB dependent receptor protein 1.91E-36 

Smlt3282 cydA 9.11 cytochrome D ubiquinol oxidase subunit I 2.46E-48 

Smlt3284 - 9.59 transmembrane cyd operon protein 3.02E-35 

Smlt1757 - 9.70 cytochrome c family protein 7.98E-50 

Smlt3610 prpB 9.75 2-methylisocitrate lyase 1.01E-49 

Smlt3283 cydB 11.79 transmembrane cytochrome bd-II oxidase subunit II 1.40E-50 

Smlt2944 - 21.22 OMP-family porin 1.13E-77 
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CHAPTER 5: 

Conclusions & future directions  

 

5.1 Dissertation summary 

Nosocomial lung infections are a growing concern in the United States, with more 

than 300,000 cases reported annually. More than 30 % of these opportunistic infections 

are caused by the Gram-negative bacteria, Pseudomonas aeruginosa and Klebsiella 

pneumoniae (1, 2). Similarly, Gram-negative bacteria establish chronic infections in 

individuals with cystic fibrosis (CF) that are closely linked with the progressive decline 

in lung function associated with disease advancement and are difficult or impossible to 

eradicate (3, 4). P. aeruginosa has historically established chronic infections in the vast 

majority of CF individuals by their third decade of life (4, 5). Unfortunately, as 

antipseudomonal therapy has improved, more antibiotic resistant species have taken hold, 

including Stenotrophomonas maltophilia, which now colonizes more than 10 % of 

individuals with CF (6, 7). 

Regardless of the source or specifics of the infection, Gram-negative respiratory 

infections are becoming increasingly difficult to treat due to the rising incidence of 

multiple drug resistance among these organisms (8-10). Pan-antibiotic Gram-negative 

species, including P. aeruginosa and K. pneumoniae have recently been isolated in the 

clinical setting, making it clear that new therapeutics will soon be needed to combat these 

infections (11-13). To aide in the development of new therapeutics, a greater 

understanding of how these organisms transition from the environment to the host lung is 
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needed. The goal of the research outlined in this dissertation was to expand our 

knowledge of how opportunistic Gram-negative respiratory pathogens recognize, exploit, 

and adapt to the host lung environment. The major findings of this work are briefly 

summarized below, with remaining questions and future directions discussed in the 

following sections. 

 

5.2 Chapter 2 summary 

Sarcosine is present in many eukaryote-associated environments inhabited by 

Pseudomonas aeruginosa and is most often encountered as an intermediate in the 

metabolism of choline. Phosphatidylcholine constitutes an estimated 70 % of the dry 

weight of human pulmonary surfactant and serves as an important source of choline for 

P. aeruginosa during infection (14, 15). We previously determined that the sarcosine 

catabolic operon (sox operon) of P. aeruginosa is induced by the glutamine 

amidotransferase1-like AraC-family regulator (GATR) GbdR in response to the choline 

catabolites, glycine betaine and dimethylglycine (16). However, transcription of the sox 

operon was still observed in response to sarcosine in a gbdR deletion mutant, indicating 

that an independent sarcosine-responsive transcription factor also acted at this locus (17).  

As described in chapter two, we used a transposon-based genetic screen to 

identify PA4184, or SouR (Sarcosine oxidation & utilization Regulator), as a second 

GATR that controls the expression of the sox operon in response to sarcosine. Through 

growth assays with souR and gdbR single and double deletion strains, we demonstrated 

that SouR is required for growth when sarcosine is utilized as a sole carbon and nitrogen 
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source. We also examined the inducing ligand specificity of SouR through β-

galactosidase assays and determined that the activity of this regulator is specific to 

sarcosine. Additionally, we characterized the transcriptome response to sarcosine 

governed by SouR using microarrays and performed electrophoretic mobility shift assays 

(EMSAs) to identify promoters directly regulated by this transcription factor. Finally, we 

characterized PA3630, or GfnR (Glutathione-dependent formaldehyde neutralization 

Regulator), as the regulator of the glutathione-dependent formaldehyde detoxification 

system in P. aeruginosa that is expressed in response to formaldehyde released during the 

catabolism of sarcosine. This study expands our understanding of sarcosine metabolic 

regulation in bacteria through the identification and characterization of the first known 

sarcosine-responsive transcriptional regulator. The identification of SouR and GfnR also 

further clarified the regulatory mechanisms governing choline catabolism by P. 

aeruginosa within the respiratory tract, leading to the revised regulatory model depicted 

in Figure 5.1. 

 

5.2.1 Remaining questions regarding the transcriptional regulation of sarcosine 

catabolism in P. aeruginosa 

 In Chapter two, we identified and characterized SouR as the first known sarcosine 

responsive transcription regulator.  We determined that this regulator was required for P. 

aeruginosa growth when sarcosine is utilized as a sole carbon and nitrogen source, and 

characterized SouR’s regulon using microarrays and EMSAs. Through this work we 

identified at least two additional promoter regions that are directly controlled by SouR, 
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and characterized a second formaldehyde-responsive regulator controlling the expression 

of the glutathione-dependent formaldehyde detoxification system that is induced during 

growth on sarcosine. Despite these findings, several unanswered questions remain 

regarding the transcriptional regulation of sarcosine catabolism.  

 

5.2.1.1 How do SouR and GbdR contribute to the regulation of the sox operon 

during glycine betaine catabolism? 

Glycine betaine catabolism in P. aeruginosa and many other proteobacteria 

proceeds through a series of oxidative demethylation events that generate sarcosine as an 

intermediate. Catabolism of glycine betaine in P. aeruginosa is regulated by two 

transcription factors, GbdR and SouR (18, 19). GbdR induces genes encoding all steps in 

the pathway in response to GB and dimethylglycine, while SouR only induces the genes 

for sarcosine catabolism in response to sarcosine (18). Our promoter mapping and EMSA 

experiments revealed that SouR and GbdR directly stimulate transcription from the same 

region of the glyA1 promoter. Interestingly, promoter mapping with souR and gbdR 

single & double deletion strains revealed that SouR significantly contributed to PglyA1 

expression during the catabolism of glycine betaine. (Supplementary Figure 2.1). These 

observations suggest that SouR and GbdR either bind this promoter simultaneously 

during the catabolism of glycine betaine, or that SouR could have a higher binding 

affinity for the glyA1 promoter than GbdR.  

The SouR and GbdR regulons overlap at two other promoters (PsdaB & PPA2762), 

making the latter hypothesis more likely. DNAseI footprinting with MBP-tagged GbdR 
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was previously used to identify this regulator’s binding site within the plcH promoter 

(19). A similar approach with MBP-tagged SouR and GbdR could be used to elucidate 

the respective binding sites of each regulator within the glyA1 promoter. Alternatively, 

ChIP-seq could be used to map the half sites of each regulator throughout the genome, 

and would identify similar interactions occurring in the promoter regions of other shared 

regulon members (20).  

 

5.2.1.2 What is the role of SouR within the adhC promoter? 

In Chapter 2 we identified GfnR as the formaldehyde-responsive LysR-family 

transcription regulator that is divergently transcribed from the glutathione-dependent 

formaldehyde detoxification system it regulates (adhC & PA3628) (18, 21, 22). We were 

therefore surprised that our electrophoretic mobility shift assays (EMSAs) revealed MBP-

tagged SouR bound within the adhC promoter with specificity, suggesting that SouR also 

impinges on control of this operon’s expression during growth on sarcosine (Figure 2.6). 

However, we demonstrated through quantitative RT-PCR that GfnR, and not SouR, 

stimulated transcription of the glutathione-dependent formaldehyde detoxification genes 

during growth on sarcosine (Table 2.2). 

Several hypotheses could explain these contradictory findings. First, the binding 

of MBP-SouR to the adhC promoter that we observed through EMSA could be a 

technical artifact. Due to the inherently low solubility of AraC-family regulators (23), we 

were not able to purify GbdR and SouR without the addition of an N-terminal tag. MBP-

GbdR and MBP-SouR are not capable of responding to their respective inducing ligands 
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in vitro, indicating that the addition of these tags might compromise some portion of their 

function. Furthermore, EMSAs are performed under artificial buffering conditions with 

extreme excesses of protein that do not reflect the cytosolic environment in bacteria (24).  

Alternatively, the SouR binding site within PadhC we detected through EMSA 

could belong to GbdR. The serial demethylation of glycine betaine in P. aeruginosa 

generates between two and three moles of formaldehyde per mole of glycine betaine 

consumed, depending on the availability of tetrahydrofolate (25, 26). In contrast, the 

oxidative demethylation of sarcosine only generates formaldehyde in the absence of this 

cofactor (27, 28). Since glycine betaine catabolism generates significantly more 

formaldehyde than sarcosine catabolism, selection pressure would be more likely to lead 

to the acquisition of GbdR as a secondary regulator of these genes. The role of GbdR in 

the regulation of the glutathione-dependent formaldehyde detoxification operon could be 

tested through quantitative RT-PCR using RNA collected from P. aeruginosa WT, 

ΔgbdR, ΔgfnR, and ΔgbdR ΔgfnR strains following exposure to glycine betaine and 

formaldehyde. 

 

5.2.1.3 Does the glutathione -dependent formaldehyde detoxification system 

contribute to P. aeruginosa fitness during growth on glycine betaine?  

 Oxidative demethylation of glycine betaine in P. aeruginosa results in the 

generation of two to three moles of formaldehyde per mole of glycine betaine consumed, 

depending on the availability of tetrahydrofolate (25, 26). In contrast, the N-methyl group 

of sarcosine is only lost as formaldehyde in the absence of this cofactor (27, 28). Since 
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our sarcosine growth assays with gfnR and adhC transposon-disruption mutants revealed 

slight (but significant) defects growth relative to our control strain (Figure 2.6), it is 

likely that more drastic growth defects would be observed in these mutants during growth 

on glycine betaine. Similar experiments should be performed with P. aeruginosa wild 

type and gfnR deletion strains using glycine betaine as the sole carbon and nitrogen 

source to determine the role of this formaldehyde detoxification system in the catabolism 

of glycine betaine. 

 

5.2.2 SouR and GbdR as models for examining GATR function 

GbdR and SouR are members of the glutamine amidotransferase1-like subfamily 

of AraC transcription regulators (GATRs), and their sequence homology and 

phylogenetic distribution suggest common ancestry. Despite nearly 30,000 entries 

cataloged in Genbank’s non-redundant database (29), very little is known about these 

regulators aside from their structural organization. GATRs exhibit the same two domain 

architecture as other AraC’s, with an N terminal ligand/effector binding domain and a C 

terminal DNA-binding domain separated by a flexible linker sequence (30, 31). However, 

their ligand binding domain is distinct from canonical AraC-family regulators in that they 

share close structural homology with type-1 glutamine amidotransferase (GATase1) 

family of enzymes (32). These domains are commonly found in enzymes involved in the 

metabolism of nitrogen, and similarly, all characterized GATase1 containing AraC’s 

respond to amine containing compounds. The widespread distribution of GATRs attests 

to their importance and necessitates a closer examination of their mechanism of action. 
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The close phylogenetic similarities between SouR and GbdR and their partially 

overlapping regulons provide us with a powerful system to understand the molecular 

basis of the ligand selectivity and promoter specifies for the GATR subfamily.  

 

5.2.2.1 Determining the DNA sequence requirements specifying SouR vs GbdR 

recruitment to the glyA1 promoter 

The SouR and GbdR regulons overlap at three promoters. However, GbdR also 

regulates the expression of at least eight other operons that are not recognized by SouR 

(18, 19). The DNA sequences within these shared promoters that dictate SouR and GbdR 

binding specificity are largely unknown, and should be examined in greater detail. We 

have devised a genetic screen to identify the DNA binding requirements within the glyA1 

promoter specifying SouR vs. GbdR-mediated recruitment (Figure 5.2). Although this 

screen is ongoing, preliminary results suggest that C102T eliminates SouR-dependent, 

but not GbdR-dependent expression from PglyA1.  

Future research efforts should confirm this phenotype by engineering this point 

mutation (C102T) into the glyA1 promoter of the sarcosine oxidase transcriptional 

reporter strain (GGW009) via site directed mutagenesis and allelic exchange. A gain-of-

function approach should also be considered, where a GbdR-regulon specific promoter 

such as PgbcA can be randomly mutagenized, inserted into a promoterless lacZYA reporter 

vector, transformed into PA14 ΔgbdR ΔgbcAB and then blue-white screened for 

sarcosine-specific induction (mediated by SouR). 
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5.2.2.2 Uncovering structural determinants of SouR inducing ligand specificity 

Our investigations into the inducing ligand specificity of SouR revealed that 

dimetheylglycine and glycine failed to stimulate SouR-mediated transcriptional activity, 

while the synthetic molecule, ethylglycine, could induce with ten-fold lower activity than 

sarcosine (Figure 2.2). These findings suggest that the secondary amine moiety of 

sarcosine is involved in ligand recognition by SouR. However, it is still not known how 

GATRs sense and bind their inducing ligand. 

A crystal structure has been solved of the GATase1-like domain of the SouR 

orthologue in Pseudomonas putida, 3GRA (33, 34). The GATase1-like domain has been 

proposed to be the inducing ligand-binding region of GATRs, and 3GRA therefore 

represents the only GATR crystal structure with a known inducing ligand. Recrystallizing 

this domain in the presence of sarcosine and ethylglycine should be performed to identify 

the GATR ligand binding pocket, and potentially uncover ligand-induced structural 

changes associated with GATR dimerization and transcriptional activation.  

 

5.2.2.3 Examining the GATR activation mechanism 

The AraC activation mechanism is highly conserved, where monomers undergo 

structural rearrangement within their N-terminal arm upon ligand binding that allow for 

dimerization and an increased affinity for DNA binding. Although several variations 

exist, including the “light switch” mechanism of AraC, the binding of ligand is associated 

with structural rearrangements that facilitate dimerization and DNA binding that 

stimulate transcription through recruiting RNA polymerase (35). 
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We devised a gain-of-function genetic screen to identify residues in SouR that 

confer constitutively active and sarcosine hyper-responsive phenotypes to examine the 

activation mechanism of GATRs (Figure 5.3). Using this approach, we identified five 

mutations within souR that resulted in sarcosine hyper-responsive and constitutively 

active phenotypes (Figure 5.4A). Threading these residue substitutions onto the N-

terminal domain crystal structure of the P. putida SouR ortholog (3GRA) revealed that 

these mutations all mapped within the predicted dimerization interface (Figure 5.4B) (33, 

36, 37). Interestingly, these residue substitutions are believed to disrupt dimerization, 

suggesting that the GATR activation mechanism is distinct from canonical AraC-family 

regulators, as dimerization, at least via this interface, appears to inhibit activation.  

Data from this screen was recently used by our group to generate constitutively 

active GATRs in P. aeruginosa and Burkholderia thailandensis (38), demonstrating that 

dimerization-mediated inhibition is likely conserved among these regulators. Despite this 

progress, the GATR activation mechanism remains poorly understood. This screen should 

be repeated with a new pool of souR mutants to ensure that mutational saturation of souR 

is reached. Further insight into the structural rearrangements associated with GATR 

activation could also be collected through chymotrypsin protection experiments with 

MBP-tagged SouR and GbdR (39). To accomplish this, each regulator would be 

incubated in the presence and absence of their respective inducing ligands and DNA 

fragments spanning the glyA1 promoter. These samples would then be briefly treated with 

chymotrypsin, and then electrophoresed on native and denaturing polyacrylamide gels. 

Evidence for conformational changes associated with ligand and DNA binding could then 
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be identified through comparing the differential migration patterns of protein fragments 

between conditions and peptide fingerprinting. 

 

5.2.3 Methods 

5.2.3.1 Genetic screen to identify bases within the glyA1 promoter conferring 

binding specificity to SouR and GbdR 

The glyA1 promoter region of P. aeruginosa PA14 was mutagenized through 

error-prone PCR using Agilent Technologies GeneMorph II Random Mutagenesis Kit 

and the PglyA1F-500 and P-glyA1-R1-KpnI primer set. Mutated promoter fragments 

were purified via Thermo’s GeneJet kit and ligated into the lacZYA reporter vector, 

pMW5, and transformed into DH5α E. coli. The resulting transformants were scraped, 

pooled, and plasmid DNA was then harvested using Qiagen’s Miniprep kit. The pooled 

mutant plasmids were then transformed into PA14 ΔgbcAB via electroporation and plated 

on Pseudomonas Isolation Agar (PIA) supplemented with 50 µg/ml of gentamicin. 

 The resulting P. aeruginosa colonies that arose were scraped, pooled, and 

dilutions were then plated on MOPS agar supplemented with 25 mM pyruvate, 20 μg/ml 

gentamicin, 140 μg/mL X-gal and either 1mM sarcosine, 1mM glycine betaine, or no 

added inducer as a control. Colonies that appeared as nonresponsive on glycine betaine or 

sarcosine plates were then picked and grown with shaking overnight in MOPS with 20 

mM pyruvate, 5 mM glucose, and 10 μg/mL gentamicin at 37 ºC. These cultures were 

then plated in triplicate on all three of the MOPS condition plates by dipping a pipette tip 

into the overnight growth and then slightly penetrating the surface of the agar with the 
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tip. Plasmid DNA was then harvested from strains that appeared to respond to one 

inducer but not the other, and re-transformed via electroporation into PA14 ΔgbcAB to 

confirm that the observed differences in regulation were plasmid-based. The glyA1 

promoter regions were then sequenced using the PglyA1F-500 and P-glyA1-R1-KpnI 

primer set.  

 

5.2.3.2 Genetic screen to identify constitutive and sarcosine hyper-responsive SouR 

mutants 

 A plasmid carrying souR under the control of the gene’s native promoter 

(pGW006)(18) was mutagenized through passage in XL-1 Red E. coli cells using the 

manufacturer’s recommendations. Mutated plasmid was then harvested using Qiagen’s 

MiniPrep kit, and transformed through electroporation into the GGW038 (PA14 ∆gbdR 

ΔsouR PglyA1::lacZYA) transcriptional reporter strain (18). Transformants were selected for 

on Pseudomonas Isolation Agar (PIA) supplemented with 50 µg/ml of gentamicin and 

140 µg/ml X-gal. P. aeruginosa colonies exhibiting β-galactosidase activity under these 

conditions were then picked and subjected to a secondary screen to characterize their 

gain-of-function phenotype via growth on MOPS agar supplemented with 25 mM 

pyruvate, 20 μg/mL gentamicin, 140 μg/mL X-gal in the presence and absence of 1mM 

sarcosine. 

Plasmid DNA was then harvested from mutants exhibiting constitutive or 

sarcosine hyper-responsive phenotypes, and sequenced with the PA14_9770 Rescue 

Construct F & R primer set. Residue substitutions that were identified were then mapped 
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to a Phyre2-threaded Pseudomonas putida SouR ortholog, 3GRA (57 % identity) (33, 

36). The corresponding mutations were then modeled and visualized using Chimera 

software package (37).  

 

5.3 Chapter 3 Summary 

 The interactions that occur between Klebsiella pneumoniae and the host lung are 

poorly understood. Pulmonary surfactant serves as an initial point of contact for inhaled 

bacteria entering the lung and is thought to contain molecular cues that facilitate 

colonization and pathogenesis. In chapter three we characterized the transcriptional 

response of K. pneumoniae MGH 78578 to purified pulmonary surfactant to examine this 

important ecological transition. These efforts revealed numerous alterations within the K. 

pneumoniae transcriptome that are associated with host colonization, adaptation, and 

virulence in vivo. Notable transcripts expressed under these conditions include genes 

involved in capsule synthesis, LPS modification, antibiotic resistance, biofilm formation, 

and metabolism.  

We also examined the contributions of surfactant-induced transcripts to K. 

pneumoniae survival using engineered isogenic KPPR1 deletion strains in a murine 

model of acute pneumonia. Through these infection studies, we identified the MdtJI 

polyamine efflux pump and ProU glycine betaine ABC transporter as significant 

mediators of K. pneumoniae survival within the lung, and also confirmed the importance 

of endogenous branched chain amino acid biosynthesis to bacterial survival during 

infection. Finally, we determined that pulmonary surfactant promotes type 3 fimbriae-
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mediated biofilm formation in K. pneumoniae and identified two surfactant constituents 

that drive this response (phosphatidylcholine and cholesterol). Collectively, this study 

provides novel insight into the interactions occurring between K. pneumoniae and the 

host at an important infection site and demonstrates the utility of purified lung surfactant 

preparations for dissecting host-lung pathogen interactions in vitro. 

 

5.3.1 Purified pulmonary surfactant as a tool for examining host-lung pathogen 

interactions 

Our work with K. pneumoniae described in chapter 3 together with our previous 

studies in P. aeruginosa provide compelling evidence supporting the efficacy of Survanta 

for examining host-lung pathogen interactions (16, 40). However, since concentrated 

human pulmonary surfactant is not readily obtainable for such studies, it is uncertain how 

closely Survanta represents this critical aspect of the host lung environment. 

Nevertheless, porcine lungs share many important physiological features with human 

lungs including similar respiration rates, which is reflected in the phospholipid 

composition of their pulmonary surfactant. In order to validate the use of purified 

surfactant preparations in future transcriptional profiling studies, the transcriptional 

responses of K. pneumoniae and P. aeruginosa to porcine lung surfactant should be 

measured via microarray and compared against their previously determined responses to 

Survanta.  Several protocols have been devised to purify pulmonary surfactant from 

porcine and other animal sources that would facilitate this process (41-43). 
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Survanta (Beractant) is a bovine pulmonary surfactant preparation that is 

standardized with added triglycerides and other fatty acids (44), which could influence 

bacterial gene expression in ways that are not biologically relevant. Several other 

pulmonary surfactant preparations are commercially available including Curosurf & 

Alveofact that differ from Survanta in their phospholipid composition, protein content, 

animal source, and methods used for purification (44, 45). The transcriptional responses 

of K. pneumoniae to these alternative surfactant preparations should be measured through 

quantitative RT-PCR and then compared with the Survanta and porcine surfactant 

microarray data. These efforts would identify the commercial surfactant preparation best 

fit for future host-lung pathogen interaction studies.  

In chapter 3, we also identified surfactant-induced transcripts in K. pneumoniae 

that influence virulence and bacterial fitness in the mouse lung. Despite these findings, it 

is uncertain if surfactant-induced transcripts of K. pneumoniae are expressed during lung 

infection. To address this, quantitative RT-PCR should be performed on select genes of 

interest using RNA isolated from K. pneumoniae cells collected from the lungs of mice at 

different time points following oropharyngeal aspiration.  

 

5.3.2 Identifying the diguanylate cyclase(s) influencing type 3 fimbriae expression in 

pulmonary surfactant   

Transcription of type 3 fimbriae (Mrk fimbriae) is dependent on the intracellular 

accumulation of the secondary messenger, cyclic-di-GMP that is controlled by multiple 

integrated regulatory networks in K. pneumoniae. (46-52). Research efforts by multiple 
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groups have determined that the cyclic-di-GMP responsive LuxR-family transcription 

regulator, MrkI, directly interacts with the PilZ-domain containing MrkH to stimulate 

type 3 fimbriae expression, and that the MrkJ phosphodiesterase degrades cyclic-di-GMP 

to repress expression from the mrk promoter (46, 49, 51, 52). Surprisingly however, the 

environmental signals and diguanylate cyclases acting upstream of MrkH/I and MrkJ to 

drive type 3 fimbriae expression have remained largely unknown. As described in chapter 

3, we revealed that two components of pulmonary surfactant, phosphatidylcholine and 

cholesterol, stimulate type 3 fimbriae transcription and biofilm formation in vitro 

(Figures 3.7 and 3.8). These findings are a significant contribution towards our 

understanding of the signals within the host environment that influence virulence-

associated phenotypes during infection. Future research efforts should focus on 

identifying the diguanylate cyclases that stimulate type 3 fimbriae transcription in 

response to these newly identified inducing signals. 

 Several experimental approaches could be used to identify the genes encoding 

these diguanylate cyclases. Microarrays could be performed using RNA collected from 

K. pneumoniae cells that were grown in MOPS lactate minimal media as control, or the 

same media independently supplemented with either 1 mM cholesterol or 1 mM 

phosphatidylcholine. Diguanylate cyclases expressed under these conditions could then 

be studied in further detail using engineered gene deletion strains. Alternatively, a high 

throughput genetic screen could be employed, where 96 well plates of K. pneumoniae 

KPPR1 transposon mutants can be examined for their ability to generate biofilm during 

growth in the presence of phosphatidylcholine and cholesterol through crystal violet 

staining. A brute-force approach could also be taken, where the fifteen conserved 
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diguanylate cyclases encoded within the core K. pneumoniae genome (53) could be 

individually deleted from the KPPR1 chromosome through allelic exchange, and then 

screened for their capacity to generate biofilm mass in MOPS lactate media 

supplemented with either phosphatidylcholine or cholesterol.  

 

5.3.3 Determine how mdtJI expression promotes K. pneumoniae fitness during acute  

pneumonia 

 Our mouse infection experiments revealed that deletion of mdtJI, encoding a 

polyamine efflux pump resulted in more than a ten-fold decrease in bacterial lung burden 

relative to the K. pneumoniae KPPR1 WT strain (Figure 3.4). These findings represent 

the first evidence that polyamines contribute to K. pneumoniae virulence. Nevertheless, it 

remains to be determined how secreted polyamines influence K. pneumoniae fitness 

during infection.  

Numerous studies have demonstrated that pathogen-secreted polyamines can 

disrupt the host immune response during infection. Bacterial-derived putrescine and 

spermidine are abundant within the gingival fluid of inflamed periodontal pockets and 

have been shown to disrupt oral crevicular polymorphonuclear leukocyte (PMN) function 

through impairing chemotaxis, stimulating degranulation/respiratory bursts, and 

promoting apoptosis in vitro (54-57). While the impact of bacterial-derived polyamines 

on respiratory tract pathogenesis is less clear, spermidine secretion by the fungal 

pathogen Pneumocystis jiroveci has similarly been demonstrated to promote alveolar 

macrophage apoptosis in mouse and rat models of pneumonia (58). 
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Enumeration of infiltrating leukocytes in the broncho-alveolar lavage fluid 

(BALF) collected from mice infected with the ΔmdtJI strain revealed significantly lower 

PMN and macrophage counts relative to mice infected with the WT strain (Figure 3.4). 

These data suggest that polyamine secretion by K. pneumoniae disrupts the host immune 

response during acute pneumonia. To test this hypothesis, K. pneumoniae WT and the 

ΔmdtJI strain could be cultured in MOPS lactate media in the presence and absence of 

Survanta, and then incubated with cultured macrophages and neutrophils. Flow cytometry 

and cytokine panels could then be used to compare the innate immune responses resulting 

from exposure to each K. pneumoniae strain/culturing condition. In addition, the same 

culturing conditions could also be used for in vitro phagocytosis experiments to 

determine if the expression of mdtJI influences uptake or survival within these 

leukocytes. 

Alternatively, the expression of mdtJI could directly influence K. pneumoniae 

survival against the effects of the innate immune system. Secreted polyamines have been 

shown to alter the charge, shape, and permeability of outer membrane porins of E. coli, 

resulting in increased resistance against cationic antimicrobial peptides and several 

classes of antibiotics (59, 60). Similarly, surface-localized spermidine has been reported 

to promote P. aeruginosa resistance against reactive oxygen species mediated killing 

(61). The ability of MOPS-Survanta treated K. pneumoniae WT and mdtJI deletion 

strains to survive hydrogen peroxide challenge could be measured to test this hypothesis.  
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5.4 Chapter 4 summary 

Stenotrophomonas maltophilia is an MDR respiratory pathogen of environmental 

origin that has more than tripled in prevalence in patients with cystic fibrosis (CF) over 

the last decade (6, 7, 62). Despite its prevalence and correlations with poor clinical 

outcomes (6, 7, 63, 64), our understanding of S. maltophilia virulence and the genes 

required for survival in the lung lags far behind other CF pathogens. The thick, viscous 

mucus that characterizes the CF lung (sputum) serves as the primary nutrient source for 

colonizing microbes and has been shown to contain many of the host-derived signals that 

drive the virulence-associated phenotypes of several CF pathogens (65-68). In chapter 

four, we characterized the transcriptional responses of three S. maltophilia strains during 

growth in synthetic CF sputum media (SCFM2) to examine how this organism interreacts 

with the host at the site of infection (69).  

These efforts led to the identification of 238 transcripts that were expressed by all 

three strains that largely reflect nutrient utilization by S. maltophilia during CF lung 

infection. We also compared the SCFM2 transcriptomes of two S. maltophilia CF isolates 

with the SCFM2 transcriptome of the acute infection model strain, S. maltophilia K279A. 

This allowed us to uncover CF isolate-specific signatures in gene expression that are 

suggestive of adaptation to host lung, including the repression of genes involved in cell 

motility and surface-adhered biofilm formation, increased expression of oxidative stress-

related genes, and the induction of alternative cytochromes associated with growth in low 

oxygen environments. Many of these transcriptional changes correlated with phenotypes 

observed in vitro, as the CF isolates failed to form surface-adhered biofilms in SCFM2 

and were inherently more resistant to oxidative stress than K279A. Collectively, this 
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work provides novel insight into the interactions occurring between S. maltophilia and 

the CF lung environment and identified potential virulence factors and metabolism-

related genes that will be the subject of future research efforts. 

 

5.4.1 Identifying genes required for S. maltophilia fitness during growth in SCFM2 

 By characterizing the transcriptomes of multiple S. maltophilia strains during 

growth in SCFM2, we generated some of the first data illustrating how this organism 

interacts with and utilizes the host lung environment during infection. Nevertheless, it 

remains to be determined which genes in S. maltophilia promote fitness and growth 

within this important infection niche. Turner and colleagues recently utilized a high-

throughput Tn-Seq based growth competition to uncover genes within two model P. 

aeruginosa strains that were essential for growth in SCFM2 (69, 70). This work 

represents an important contribution to the field, and ultimately concluded that genes 

conferring fitness during growth in SCFM2 were largely associated with anabolic 

processes and restricted to the core P. aeruginosa genome. 

Research efforts in our lab are currently focused on adapting this experimental 

approach to S. maltophilia. We have successfully generated pooled transposon mutant 

libraries of S. maltophilia K279A, GW273, and GW275 (Figure 5.5.), and performed 

growth competitions with each in SCFM2 using similar methodology as described by 

Turner et. al (69). However, we selected for S. maltophilia transposon mutants using 

MOPS minimal media rather than Luria Broth (LB) to exclude amino acid and cofactor 

auxotrophs from our pooled transposon mutant libraries that we believe could mask less 
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dramatic, but more pathogenesis-relevant defects in catabolism-related genes in our 

SCFM2 growth competition experiments. Future work will focus on sequencing the input 

and outgrowth populations from these competition experiments to identify genes 

associated with S. maltophilia fitness in acute and CF-adapted strains during growth in 

synthetic CF sputum media. 

 

5.4.2 Examining the role nitrate reduction to S. maltophilia fitness during growth in 

SCFM2 under low oxygen conditions  

Mucus within airways of the CF lung contain hypoxic microenvironments that 

result from continuous reactive oxygen and nitrogen species production by 

polymorphonuclear leukocytes (PMNs) (71, 72). Interestingly, the ability of P. 

aeruginosa and several other CF pathogens to survive within the CF lung has been 

suggested to result from their capacity to grow anaerobically under these conditions (73). 

Chronic respiratory bursts mediated by PMNs in the CF lung generate nitrate as a 

biproduct, which is found in CF sputum at physiologically sufficient levels (~350 µM) to 

support significant anaerobic growth in P. aeruginosa (74, 75). Moreover, the membrane-

bound nitrate reductase has been demonstrated to be required for anaerobic growth by P. 

aeruginosa in synthetic CF sputum (76), and antibodies against this enzyme have been 

detected in sera collected from CF patients, indicating that nitrate is likely utilized for 

respiration during infection (77).  

Interestingly, although S. maltophilia is an obligate aerobe (62), our SCFM2 

transcriptomics data suggest that this organism actively expresses nitrate reductase under 
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these conditions (Table 4.1). Because S. maltophilia is incapable of fully respiring nitrate 

as a terminal electron accepter in the electron transport chain, we suspect that the use of 

nitrate as an electron sink permits S. maltophilia growth and survival within the 

microaerophilic regions of the CF lung by facilitating the regeneration of NAD+ and 

NADP+ (78). These findings could have important clinical implications for treating S. 

maltophilia CF infections, as oxygen levels influence many physiological features in 

pathogenic bacteria, including susceptibility to antibiotics (79-81). 

Ongoing research efforts in the Wargo lab are focused on testing this hypothesis. 

A nitrate reductase gene deletion strain has been engineered into the K279A genetic 

background that will be used to compare growth kinetics relative to the WT strain in 

SCFM2 under atmospheric and oxygen limiting conditions. In addition, the susceptibility 

of these strains to clinically relevant antibiotics will also be investigated during growth 

under these conditions. 

 

5.4.3 Are S. maltophilia CF-isolate specific genes expressed during growth in 

SCFM2 reflective of adaption to the CF lung environment? 

In chapter 4, we compared the gene expression profiles of two S. maltophilia CF 

isolates with S. maltophilia K279A to identify transcripts associated with adaptation to 

the host lung environment. These efforts revealed numerous CF isolate-specific 

signatures in gene expression that are suggestive of adaptation to the CF lung, including 

the expression of oxidative stress resistance genes and cytochromes associated with 

growth in low oxygen environments, as well as the repression of genes involved in cell 
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motility and biofilm formation (Table 4.2). We were further able to demonstrate that 

many of these transcriptional changes correlated with phenotypes observed in vitro, as 

the CF isolates failed to form surface-adhered biofilms in SCFM2 and were inherently 

more resistant to oxidative stress than K279A (Figures 4.3 & 4.4). 

 Although our observations with S. maltophilia CF isolates mirror similar findings 

in CF-adapted P. aeruginosa, our conclusions are drawn from an extremely limited 

sample size. Quantitative RT-PCR should be used to address this concern by examining 

the expression of these genes in additional S. maltophilia CF, acute infection, and 

environmental isolates during growth in SCFM2. Similarly, the capacity of these 

additional strains to survive oxidative stress and generate biofilms during growth in 

SCFM2 could also be investigated using the methodology described in chapter 4.  

 

5.4.4 Identifying genes within S. maltophilia associated with mucin degradation 

The capacity to degrade mucin is not conserved among CF pathogens, as P. 

aeruginosa cannot metabolize this glycoprotein in vitro without the aid of other microbes 

(82). Presumably, the inability of P. aeruginosa to metabolize mucin is due to the lack of 

a sufficient extracellular protease or glycan degrading activity by this organism. S. 

maltophilia has previously been shown to be able to utilize mucin as a nutrient source 

(82), which could contribute to this organism’s ability to colonize the CF lung. Therefore, 

identifying and characterizing the genes involved in mucin metabolism is warranted.  

Three T5SS autotransporters with predicted protease effector domains (Smlt1001, 

Smlt1350, Smlt4145), and an uncharacterized secreted protease (Smlt0603) were 
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expressed by all three S. maltophilia strains during growth in SCFM2. Since mucin is the 

only protein found within this media (69), examining the potential contribution of these 

proteases should be tested first. To accomplish this, gene deletion strains could be 

engineered into S. maltophilia K279A through allelic exchange, and then studied for their 

ability to grow in MOPS minimal media supplemented with mucin as the sole carbon and 

nitrogen source. A similar high-throughput approach could also be taken using the 

ordered S. maltophilia K279A transposon mutant library that we recently created. 

Alternatively, microarrays could be used to identify genes associated with mucin 

degradation.  

 

5.4.5 Examining biofilm formation by S. maltophilia CF and acute infection isolates  

 In chapter 4 we showed that the S. maltophilia acute infection strain, K279A, 

formed a robust, surface-attached biofilm during growth in SCFM2, while neither S. 

maltophilia CF isolate generated robust biofilms under these conditions (Figure 4.2). 

Several previous studies have indicated that flagella and type IV pili influence biofilm 

formation in S. maltophilia through facilitating substrate adhesion and providing stability 

(83-85). Our SCFM2 transcriptomics data support the roles of these structures in sputum-

mediated biofilm production, as S. maltophilia K279A expressed significantly more 

transcripts related to the assembly of these structures compared to the CF isolates (Figure 

4.2). Nevertheless, the core genome of S. maltophilia encodes multiple cellular adhesins, 

including the temperature sensitive Smf-1 fimbriae and various predicted adhesins (62, 

86, 87). Therefore, the contributions of flagella and type IV fimbriae to SCFM2-mediated 
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biofilm formation should be confirmed using crystal violet staining assays with gene 

deletion strains engineered into S. maltophilia K279A background. In addition, GW273 

and GW275 (CF isolates) should be subjected to flagellar staining and tested on 

swimming and twitching SCFM2 agar plates to determine if these strains generate 

functional flagella and type IV pili. Finally, additional S. maltophilia CF and non-CF 

isolates should be examined for their capacity to generate biofilms during growth in 

SCFM2 to examine the conservation of these phenotypes. 

 Although both CF isolates failed to generate robust surface-attached biofilms 

during growth in SCFM2, the ability of these strains to generate suspended cell 

aggregates (type 2 biofilms) was not investigated. A growing body of evidence suggests 

that P. aeruginosa and other CF pathogens do not adhere to alveolar epithelial cells 

during chronic infection, but often grow in visible cell aggregates (macrocolonies) 

adhered to mucus within the intraluminal spaces of the lungs (88-91). In the future, 

SCFM2 cultures of S. maltophilia K279A and each CF isolate should be examined for 

type 2 biofilm production through fluorescence in situ hybridization (FISH) or confocal 

laser scanning microscopy with strains harboring a plasmid constitutively expressing 

mCherry (pGW72).  

 

5.4.6 Methods 

5.4.6.1 Bacterial strains and growth conditions  

Stenotrophomonas maltophilia K279A (ATCC BAA-2423), AU30115 (GW273) 

& (GW275) were maintained in LB (Luria Broth), unless otherwise noted. Escherichia 
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coli SM10 harboring plasmid pBT20 (MJW500) was maintained in LB supplemented 

with 10 µg/mL of gentamicin(18). Synthetic CF sputum media 2 (SCFM2) was freshly 

prepared before each transposon mutant competition assays as previously described(69). 

A control minimal media was formulated to support the growth of all three S. maltophilia 

strains comprising a 3:1 mixture of M63 and MOPS minimal medias supplemented with 

50 mM sodium pyruvate, 10 mM glucose, 10 mM glutamate, and 10 µg/ml of 

gentamicin.   

 

5.4.6.2 Transposon mutant library construction 

S. maltophilia K279A, GW273, and GW275 were transposon mutagenized 

through conjugation-mediated mating with an Escherichia coli SM10 strain carrying a 

mobilizable Mariner-based transposable element on plasmid pBT20 (MJW500) as we 

have done previously (18). Briefly, cultures of S. maltophilia K279A, GW273, and 

GW275 were prepared in LB, and MJW500 was confluently plated on LB agar 

supplemented with 10 µg/mL of gentamicin the night prior. The following day, dilutions 

of the S. maltophilia overnight cultures were inoculated into 50 ml of LB and grown to 

mid-log phase. Cells were then collected through centrifugation and resuspended in 500 

µl of LB at an OD600 of 40 units. MJW500, harboring plasmid pBT20, was scraped from 

the LB gentamicin plates, and gently resuspended in LB to obtain and OD600 of 20 units. 

The OD-adjusted S. maltophilia strains were then gently mixed 1:1 with MJW500, and 

the mating mixtures were spotted on LB agar in 50 µl replicates. After an hour incubation 

at 30 ˚C, ten mating spots from each strain were scraped and resuspended in 10 ml LB, 
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mixed 2:1 with 50% filter sterilized glycerol, and frozen in 1 ml aliquots at 80 ˚C until 

needed. 

To select for S. maltophilia transposon integrants, glycerol stocks from each 

mating were thawed, mixed with 9 ml of MOPS media, and spread on 100 MOPS agar 

plates supplemented with 100 mM sodium pyruvate, 5 mM D-glucose, 1 mM methionine, 

and 100 µg/ml of gentamicin. After 48 h of growth at 37 ˚C, between 100,000 and 

125,000 unique transposon mutants from each S. maltophilia strain were scraped and 

resuspended in 60 ml of MOPS media at an OD600 of 2.0 units. Forty milliliters of filter-

sterilized 50 % glycerol was then added to each OD-adjusted culture, mixed via vortexer, 

aliquoted into 1.5 ml freezer tubes, and then frozen at -80 ˚C.  

Transposon integration into S. maltophilia K279A, GW 273, and GW 275 was confirmed 

through PCR. Briefly, genomic DNA was isolated through CTAB extraction from eight 

randomly selected colonies per strain that arose following gentamicin selection. Genomic 

DNA was also extracted from the parental S. maltophilia strains to serve as controls. PCR 

was then performed on the purified genomic DNA using Q5 2x MM (NEB) and primers 

specific to the gentamicin resistant cassette mobilized from plasmid pBT20.  Transposon 

insertion sites were then identified for each sample using a PCR-based strategy (92, 93) 

to ensure incorporation into the genome occurred randomly.  To accomplish this, gDNA 

was first amplified with a transposon-specific forward primer (Rnd-TnM20) and one of 

two arbitrary primers (Rnd1-PA-Arb-2 or Rnd1-PA-Arb-3) originally designed for P. 

aeruginosa (93). A second round of amplification was then performed using the Rnd2-

TnM20 and Rnd2-Arb-primer primer set, as previously described (92). The amplified 

products were then purified via Thermo-Fisher’s GeneJet kit and sequenced using the 
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transposon specific primer BT20TnMSeq as previously described (93). Sequencing reads 

were then mapped to the genome of S. maltophilia K279A through NCBI BLAST. 

 

5.4.6.3 Construction of an ordered S. maltophilia K279A transposon mutant library 

To generate an ordered S. maltophilia K279A transposon mutant library, two glycerol 

stocks from mating with SM10 were thawed, mixed, diluted 1:10 in MOPS media, and 

then plated on MOPS agar plates supplemented with 100 mM sodium pyruvate, 5 mM D-

glucose, 1 mM L-methionine, and 100 µg/ml of gentamicin to select for transposon 

disruption mutants. After 48 h of growth at 37 ˚C, 15,000 colonies were manually plated 

on LB agar supplemented with 100 µg/ml of gentamicin via toothpick and regrown 

overnight at 37 ˚C. The following day, a 43 pin replicator tool was used to transfer the 

gentamicin-resistant colonies that arose to 96 well plates containing LB supplemented 

with 100 µg/ml of gentamicin. These plates were then grown overnight shaking at 37 ˚C. 

The following day filter sterilized glycerol was added to each well to achieve a 20 % final 

concentration, and the 96 well plates of transposon mutants were then frozen at -80 ˚C. 

 

5.4.6.4 Transposon mutant growth competitions in SCFM2 and M63-MOPS 

minimal media 

Transposon mutant growth competitions were performed as previously described (69). 

Freezer stocks of S. maltophilia K279A, GW273, and GW275 transposon mutants were 

thawed at room temperature and inoculated into 12 ml of freshly prepared SCFM2 and 12 

ml of M63-Mops media at a starting concentration of ~2 E 6 CFU/ml. The cultures were 
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then grown at 37 ˚C and 170 RPM for roughly nine generations to a cell density of ~2 E 9 

CFU/ml, at which point the cells were collected through centrifugation, and frozen at -80 

˚C.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

5.5 Chapter 5 figures 

Figure 5.1 Transcriptional regulation of choline catabolism in P. aeruginosa. 

Transcription regulators influencing the catabolism of choline sources found within 

pulmonary surfactant. Each transcription regulator is color-coordinated to match the 
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choline catabolite(s) that influence their activity. Colored arrows radiating from each 

regulator signify genes under their control.   

 

Figure 5.2 Schematic of genetic screen to identify DNA sequence determinants of 

SouR & GbdR binding within PglyA1. 

 

Figure 5.3 Schematic of genetic screen to identify constitutive and sarcosine  hype r-

responsive SouR mutants.  

 

Figure 5.4 Mutations within the GATase1-like domain of SouR result in constitutive 

and sarcosine hyper-responsive phenotypes. (A) Residue substitutions that resulted in 

constitutive and hyper-responsive phenotypes are shown aligned within the primary 

sequence of SouR. (B) Mutations that resulted in gain of function phenotypes were 

threaded onto 3GRA crystal structure using Phyre2 and then modeled using Chimera. 

Substitutions depicted in part A are color-matched to their corresponding location within 

the model.  

 

Figure 5.5 Construction of S. maltophilia K279A, GW273, and GW275 transposon 

mutant libraries. S. maltophilia K279A, GW273, and GW275 were transposon 

mutagenized through conjugation-mediated mating with an Escherichia coli SM10 strain 

carrying a mobilizable Mariner-based transposable element on plasmid pBT20. To select 

for S. maltophilia transposon integrants, each mating mixture was resuspended in MOPS, 

diluted 1:10, and then plated on 100 MOPS agar plates supplemented with 100 mM 
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sodium pyruvate, 5 mM D-glucose, 1 mM methionine, and 100 µg/ml of gentamicin. 

Between 100,000 and 125,000 unique transposon mutants from each S. maltophilia strain 

were then scraped, pooled and resuspended in LB before being mixed with glycerol and 

frozen at -80 ˚C. In the above panel, (-) depicts the lack of growth of non-mutagenized S. 

maltophilia strains plated on MOPS in the presence of 100 µg/ml of gentamicin, while 

(+) depicts the growth of transposon mutants from each S. maltophilia strain. 
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Figure 5.1 Transcriptional regulation of choline catabolism in P. aeruginosa. 
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Figure 5.2 Schematic of genetic screen to identify DNA sequence determinants of SouR 

& GbdR binding within PglyA1. 

 

 

 

 

 

 



255 
 

 
Figure 5.3 Schematic of genetic screen to identify constitutive and sarcosine hyper-
responsive SouR mutants.  
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A.  

 
 

B.  

 
Figure 5.4 Mutations within the GATase1-like domain of SouR result in constitutive and 
sarcosine hyper-responsive phenotypes. 
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Figure 5.5 Construction of S. maltophilia K279A, GW273, and GW275 transposon 
mutant libraries. 
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