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Abstract

In this work, a computationally efficient solution for constraint management of square
multi-input multi-output (MIMO) systems is presented. The solution, referred to as
the Decoupled Reference Governor (DRG), maintains the highly-attractive compu-
tational features of scalar reference governors (SRG) compared to Vector Reference
Governor (VRG) and Command Governor (CG). This work focuses on square MIMO
systems that already achieve the desired tracking performance. The goal of DRG is to
enforce output constraints and simultaneously ensure that the degradation to track-
ing performance is minimal. DRG is based on decoupling the input-output dynamics
of the system so that every channel of the system can be viewed as an independent
input-output relationship, followed by the deployment of a bank of scalar reference
governors for each decoupled channel. We present a detailed set-theoretic analysis of
DRG, which highlights its main characteristics. A quantitative comparison between
DRG, SRG, and the VRG is also presented in order to illustrate the computational
advantages of DRG. Finally, a distillation process is introduced as an example to
illustrate the applicability of DRG.
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Chapter 1

Introduction

1.1 Motivation

Nowadays, there are two major divisions of control theory, namely classical and mod-

ern control. Classical control theory is based on Laplace transforms method, a block

diagram of which is shown in Figure 1.1. In this figure, P (s) represents the plant

that is mathematically modeled after the physical process, and C(s) is the controller

used to manage the dynamic behavior of the plant.

Modern control theory is based on linear algebra and carried out in state space.

A block diagram of modern control is shown in Figure 1.2, where A, B, C, D are

matrices that represent the behavior of the system, and K is state feedback that

is used to regulate the behavior of the system. Over the past hundred years, many

effective technologies have been explored to design a system with desired performance

in both classical and modern control.

In real systems, there always exist constraints, such as actuator saturation or

bounds imposed on process variables (i.e., states or outputs). Moreover, constraints
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C(s) P (s)
r(t) u(t) y(t)+

−

Figure 1.1: Classical control system

ẋ = Ax+Bu

y = Cx + Du

K

r(t) y(t)+
−

x(t)

Figure 1.2: Modern control system

may be set due to the limitation of the physical properties of the equipment or to

guarantee of a safe system operation. For example, consider a distillation process.

The temperature inside the distillation column must be limited to ensure the safety

of the process, and the impurity of final products should be bounded to have an

efficient system [2]. More details on the distillation process will be presented in

Chapter 5. Another example is the turbocharged gasoline engine, where the inputs

are throttle and wastegate, and the outputs are turbocharger speed and compressor

outlet temperature. The temperature limitation is set to increase the efficiency of the

process [3], and the constraint for speed is for hardware protection [4].

Systems can be classified as Single-Input Single-Output (SISO), where the system

has one input and one output, or Multi-Input Multi-Output (MIMO), where the

number of inputs and the number of outputs are larger than 1. MIMO system are

usually coupled in the sense that each output depends dynamically on several inputs.

Thus, it is more complex to achieve constraint management for MIMO systems than

it is for SISO systems. In this thesis, our focus is on constraint management of square

MIMO systems, namely, the number of inputs and the number of outputs are equal
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and larger than 1. This is to ensure that the input and output behavior of the system

can be effectively decoupled, as shown in Chapter 2. Thus, motivated by the need

for a safe system, the goal of this thesis is to develop a method to achieve constraint

management for square MIMO systems, while maintaining the tracking performance

of the system as much as possible.

1.2 Literature Review

In this section, we first review the current literature on constraint management for

square MIMO systems. Then, we will introduce literature on the main technique we

use in this thesis: the Reference Governor.

1.2.1 Constraint Management for MIMO Sys-

tems

There are many choices for engineers to design a desired behavior MIMO system

with constraint satisfaction. One route is to redesign the controller and include a

Model Predictive Controller (MPC) [5–10] in it. MPC addresses both tracking and

constraint management simultaneously. This approach for constraint management in

MIMO systems is explored in works like [11–13], where decentralized MPC strategies

are proposed. Other MPC solutions are centralized [14], distributed [15], robust [16],

and cascade or hierarchical strategies [17]. To briefly summarize, the idea behind

MPC is that at time t, the current plant state is estimated and a cost minimizing

control strategy is computed for a relatively short time horizon in the future: [t, t+T ],
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where T is the so-called prediction horizon. However, MPC tends to be computa-

tionally demanding, which has limited its applicability, especially for systems with

fast dynamics and/or high order. Theoretical guarantees such as stability are also

difficult to be obtained in practice.

Another route is to augment a well-designed controller, which already achieves

the desired small-signal tracking performance, with constraint handling capability.

The tracking part for MIMO system can be achieved by various methods such as

the Linear Quadratic Regulator (LQR) [18, 19], Linear Quadratic Gaussian (LQG)

[18, 20] sliding mode control [21, 22], SVD control [23, 24], H2 and H∞ control [23,

25], and decentralized control methods [26, 27]. Then, the constraint management

part is handled by nonlinear functions (e.g., saturation functions) that maintain the

constrained signal within the desired bounds. Anti-windup schemes [28,29] and state

feedback-based control methods [30–33] are examples of the second route. However,

these approaches either do not consider the coupling with the tracking problem or

are difficult to use for design. Currently, a relatively new constraint management

technique which alleviates the above technologies’ shortcomings, is the Reference

Governor (RG), reviewed below.

1.2.2 Reference Governor

Before diving into the details of RG, we will introduce its history. RG was first

proposed in the continuous time framework [26]. After that, a natural extension to the

discrete time domain has been widely adopted because of the mathematical simplicity

[34,35]. A simple block diagram of RG is shown in Figure 1.3. Basically, RG is an add-

on scheme for enforcing pointwise-in-time state and control constraints by modifying,

4



Reference
Governor

Closed-Loop
Plant

r(t) u(t) y(t)

x(t)

Figure 1.3: Scalar reference governor block diagram. In this figure, r(t), u(t), y(t), and
x(t) are the reference, input, constrained output, and state, respectively.

whenever required, the reference to a well-designed stable closed-loop system. In the

framework of RG, the static reference governor was first introduced by Gilbert in

1994 [35]. Because the static reference governor has the disadvantage of oscillation

on the command signal u(t) when constraint violations are detected, it was replaced

by dynamic reference governor [35]. The formulation of dynamic reference governor

includes Scalar Reference Governor (SRG) [36,37], Vector Reference Governor (VRG)

[35], and Command Governor (CG) [38]. Later on, CG was extended to Extended

Command Governor (ECG) to accelerate the response of the system [39]. In this

work, we mainly focus on SRG, because of its lower computational requirements.

Recently, RG was extended to systems with disturbance inputs [40, 41], and

stochastic systems with chance constraints. Applications of RG are fuel cells [42,43],

automotive [44,45], robotics [46], and aerospace [47].

Scalar Reference Governor (SRG)

A block diagram of SRG is shown in Figure 1.3, where y(t) is the constrained output,

r(t) is the reference, u(t) is the governed reference, and x(t) is the system state

(measured or estimated). To compute u(t), SRG employs the so-called maximal

admissible set (MAS) [48], which is defined as the set of all inputs and states that

are constraint-admissible and will be explained in detail in Section 2.1. By solving

5



a simple linear program, SRG selects a u(t) that is as close as possible to r(t) such

that the constraints are satisfied for all time. Note that because SRG only provides

one scalar adjustable parameter, it works well on single input systems. However, for

MIMO systems, SRG may lead to overly conservative response.

Vector Reference Governor (VRG)

Similar to SRG, VRG is also an add-on control scheme to a closed-loop system to

achieve constraint management by modifying the reference to the closed-loop system.

However, VRG extends the ability of SRG and offers multiple adjustable parameters

to allow the governing of different channels. A block diagram of VRG is depicted in

Figure 1.4, where y1(t), . . . , ym(t) are the constrained outputs, r1(t), . . . , rm(t) are the

references, and u1(t), . . . , um(t) are the governed references. Similar to SRG, VRG

employs MAS to compute ui(t),∀t,∀i. However, instead of solving a linear program

as is the case for SRG, VRG solves a quadratic program (QP) to find ui(t) that is

as close as possible to ri(t). Even though VRG shares some properties with SRG,

its implementation demands a higher computational load compared to SRG. This is

because of the QP that must be solved at each time step, either by implicit methods

or multi-parametric explicit methods.

Vector
Reference
Governor

...
...

...

r1

rm

u1

um

y1

ym

...

MIMO system

x(t)

Figure 1.4: Vector reference governor block diagram. The possible couplings between the
input-output channels of the plant are shown by dashed lines.
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1.2.3 Maximal Output Admissible Set (MAS)

Above, we introduced MAS as a set of all inputs and states that ensures the outputs

satisfy the constraints. In this section, we provide a literature review of MAS.

MAS relies on the idea of positive invariant sets. A set Z ⊂ Rn is positive

invariant if for every initial state x(0) ∈ Z, the subsequent motion, x(t), t > 0,

belongs to Z. For a complete treatment of invariant sets, see reference [49]. This

idea has been used to produce invariant sets that are also output admissible [50–52].

However, these sets may be too conservative in the sense that there may exist much

larger output admissible sets. The idea of maximal output admissible set was first

proposed in 1991 by Gilbert and Tan [48]. After that, more exploration on MAS

has been proposed, such as MAS with disturbance inputs [53], MAS for nonlinear

systems with constraints [54, 55], MAS with time delay in states and inputs [56, 57],

computation of polytopic MAS [58], and MAS for periodic systems [59]. We will

explain the computation of MAS in detail in Chapter 2.

1.3 Research Objectives and Contribu-

tions

As previous mentioned, SRG is easy to compute, but performs poorly in MIMO

systems. While VRG can be used effectively in MIMO systems, it requires more

computational effort. Thus, in this work, we present an alternative approach to SRG

and VRG for MIMO systems, based on system decoupling, that retains the simplicity

of SRG and the performance benefits of VRG.
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F−1(z)
RG1...
RGm

F (z) G(z)...
...

...
...

...

r1

rm

r′
1

r′
m

v1

vm

u1

um

y1

ym

W (z)

x1

xm

Figure 1.5: Decoupled reference governor block diagram

Consider the discrete-time closed-loop MIMO system G(z) depicted in Figure

1.5, where ui are the inputs to G(z), and yi are the constrained outputs. Over the

latter, the constraints are imposed: yi(t) ∈ Yi,∀t, where Yi are specified sets. Note

that similar to the literature of RG, we consider the system in discrete-time, hence we

use Z-transform instead of Laplace transform. Given desired set-points ri, the goals

are: first to select each ui as close as possible to ri to ensure that the degradation

to tracking performance is minimal. The second goal is to ensure that the output

constraints are satisfied, i.e., yi ∈ Yi. We present two candidate solutions:

First method is as follows: System G(z) is first decoupled by finding a suitable

filter, F (z), that will eliminate the coupling dynamics of G(z). The resulting decou-

pled system is W (z) := G(z)F (z) (as seen in Figure 1.5), which is diagonal; that is,

each output yi depends only on the new input vi. In this method, all the decoupling

operations are performed in the transfer function domain, in order to take an advan-

tage of the simple algebra that transfer functions offer. Next, we introduce a bank

of m decoupled scalar RGs, where the goal of the i-th RG is to select vi as close as

possible to r′i while ensuring yi ∈ Yi. Each scalar RG, RGi, uses only the states of the

i-th decoupled subsystem. Finally, since we would like to ensure that ui = ri when

constraint violation is not detected, we introduce the inverse of the filter, F−1(z), to

8



couple the dynamics back. Note that F−1(z) also ensures that ui and ri are close if ri

is not constraint admissible. The implementation details, such as observer design, can

be found in Chapter 3. Invertibility of F (z) and applicability of DRG are investigated

thoroughly in this thesis.

The second method is as follows: similar to the first method, we decouple G(z).

However, instead of performing the decoupling process in the transfer function do-

main, it is handled in the state-space domain by using state-feedback [60]. Then, we

introduce a number of m decoupled scalar RGs, where the goal of the ith RG is to

select vi as close as possible to r′i while ensuring yi ∈ Yi. Each scalar RG, RGi, uses

only the states of the i-th decoupled subsystem. Finally, we need to solve a quadratic

program to minimize the gap between r(t) and u(t) because an inverse filter like the

one in the first method is not readily available. However, this goes against our goal

of maintaining the computational advantages of SRG. Thus, in this work, we will

study only the first method, which we refer to as the Decoupled Reference Governor

(DRG).

The main contributions of this work are as follows:

• A computationally efficient constraint management technique for square MIMO

systems, i.e., the DRG, which is a novel extension of the SRG.

• Steady-state analysis of admissible inputs for DRG in comparison with VRG.

• Analysis of DRG performance with respect to the system singular values, the

condition number, and the relative gain array. We show that the proposed

approach is appropriate for a specific class of systems and illustrate this by

examples.
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• Analysis of advantages and disadvantages of DRG with respect to two decou-

pling approaches.

• Quantitative comparison of explicit and implicit optimization techniques for

VRG, SRG, and DRG, where we show that DRG can run at a similar speed

compared to SRG, but can be as much as 2500 times faster than VRG.

1.4 Thesis Outline

This thesis is structured as follows: Chapter 2 reviews two decoupling methods, the

maximal admissible set, and the SRG and VRG theory. Chapter 3 introduces DRG

for square MIMO systems and addresses its applicability. Chapter 4 illustrates the

relationship between the MAS of coupled and decoupled systems, and compares DRG,

SRG, and VRG in terms of performance and execution time. Chapter 5 presents the

simulation results of DRG applied to a practical MIMO system. Chapter 6 concludes

this work and discusses topics for future research.

1.5 Notation

The following notations are used. Z+ denotes the set of all non-negative integers.

The identity matrix is denoted by I. Given a vector x, xi denotes the i-th component

of x. If A ∈ Rn×m, x ∈ Rm×1 and B ∈ Rn×1 are matrices, Ax ≤ B means that the

i-th row of the product of A and x is less than or equal to the i-th row of B, for

all i. F (z) denotes the Z-transform of function f(t). F−1(z) denotes the inverse of

F (z). The norm function is denoted by ‖.‖. Given a set M, x ∈ M means x is an

10



element of the set M. GT means the transpose of matrix G. σmax(G) denotes the

largest singular value of G and σmin(G) denotes the smallest singular value of G.

11



Chapter 2

Review of Preliminaries

In this chapter, we will review the theory behind the maximal output admissible set

to have a better understanding of RG. Then, we will explain SRG and VRG. Finally,

two decoupling methods and metrics to quantify the applicability of DRG will be

introduced.

2.1 Maximal Output Admissible Set

(MAS)

In this section, the definition of MAS, denoted by O∞, will be introduced. Consider

a discrete-time system, given in state-space form by:

x(t+ 1) = Ax(t) +Bu(t),

y(t) = Cx(t) +Du(t),
(2.1)

12



where t ∈ Z+ is the discrete time variable, x(t) ∈ Rn is the state vector, u(t) ∈ Rm

is the input, and y(t) ∈ Rm is the constrained output vector. Over the latter, the

following constraints are imposed: y(t) ∈ Y, where Y is a polytopic set defined by

Sy ≤ s, for given S ∈ Rq×m and s ∈ Rq.

MAS is the set of all safe initial conditions and inputs, defined as:

O∞ :=
∞⋂
t=0

Pt (2.2)

where the polytopes Pt are defined by:

Pt := {(x0, u0) ∈ Rm+m : x(0) = x0, u(j) = u0, j = 0, . . . , t, y(t) ∈ Y} (2.3)

Below, we explain how to generate MAS in detail.

Starting from time 0, the constraint for system (2.1) can be expressed as Sy(j) ≤

s for all j ≥ 0. Assuming u(j) is held constant all the time (i.e., u(j) = u(0) = u, j ≥

0), then x(j) and y(j) can be written as:

x(1) = Ax(0) +Bu, y(0) = Cx(0) +Du,

x(2) = A2x(0) + (AB +B)u, y(1) = CAx(0) + (CB +D)u,

x(3) = A3x(0) + (A2B + AB +B)u, y(2) = CA2x(0) + (CAB + CB +D)u,

...
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y(j) is given by:

y(j) = Ajx(0) + (C(Aj−1 + Aj−2 + · · ·+ I)B +D)u,

which is equivalent to:

y(j) = Ajx(0) + (C(I − Aj)(I − A)−1B +D)u. (2.4)

To satisfy Sy(j) ≤ s, we must have:

Sy(j) = SAjx(0) + S(C(I − Aj)(I − A)−1B +D)u ≤ s. (2.5)

Clearly, the challenge of the above process is that we need to check infinite inequalities

to create O∞. To overcome this challenge, a finitely determined inner approximation

of O∞ can be obtained by tightening the steady-state constraint and introducing it

as a new half-space [35,61]:

Pss := {(x, u) : G0u ∈ Yss} (2.6)

where G0 = C(I − A)−1B + D is the DC gain of system (2.1), Yss := (1 − ε)Y and

ε ∈ (0, 1). This can also be written as:

S(C(I − A)−1B +D)u ≤ (1− ε)s (2.7)

With (2.5) and (2.7), there exists a finite time, j∗, such that if (2.5) holds for 0 ≤

j ≤ j∗, then it will hold for j ≥ j∗.
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Based on this result, we define Oε
∞ ⊂ O∞ as the set of all initial-state and control

pairs that ensure (2.5) holds for all time:

Oε
∞ = {(x, u) : Sy(∞) ≤ (1− ε)s, Sy(j) ≤ s,∀j} (2.8)

Substituting (2.5) and (2.7) into (2.8), Oε
∞ can also be written as:

Oε
∞ = {(x, u) : Hxx+Huu ≤ h} (2.9)

where

Hx =



0

SC

SCA

...

SCAj
∗


, Hu =



S(C(I − A)−1B +D)

SD

S(C(I − A)(I − A)−1B +D)
...

S(C(I − Aj∗)(I − A)−1B +D)


, h =



(1− ε)s

s

s

...

s



To summarize, the set Oε
∞ can be viewed as a polytope, which characterizes the

set (x(t), u) so that constraint management is achieved for all future time.

2.2 Reference Governor

In this section, first, we will declare the assumptions that we made to develop DRG,

and then introduce the details of two reference governors, namely Scalar Reference

Governor (SRG) and Vector Reference Governor (VRG). Finally, these two reference

governors will be compared.

15



Consider the discrete-time linear system G(z) in Figure 1.5, given in state-space

form as (2.1). Recall from the Introduction that we require the outputs to satisfy

the constraints yi ∈ Yi, for specified sets Yi. Note that this requirement can also be

expressed as y ∈ Y, where Y = Y1×Y2×· · ·Ym and × denotes the Cartesian product.

The following assumptions are made for the development of the theory presented in

this thesis:

Assumption 1. System (2.1), represented by G(z) in Figure 1.5, reflects the com-

bined closed-loop dynamics of the plant with a stabilizing controller. Consequently, it

is asymptotically stable. Furthermore, we assume all diagonal subsystems of G(z) are

also asymptotically stable.

Assumption 2. System (2.1) is invertible and has a stable inverse, which will be

used later in this thesis.

Note that a necessary condition for Assumption 2 is that system G(z) does not

have any non-minimum phase zeros.

Assumption 3. The constraint sets Yi are closed intervals of the real line containing

the origin in their interiors. This is in agreement with the assumptions commonly

made in the literature of reference governors.

2.2.1 Scalar Reference Governor (SRG)

Since we consider square systems, that is, the number of inputs and the number of

outputs are equal, we have thatm = n. From Section 2.1, it is possible to see that O∞

contains the predictions of the outputs based on the current states and the inputs.
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Based on the predictions, the controller can anticipate if a constraint may be violated

and then take corrective actions over the reference. The SRG computes u(t) as:

u(t) = u(t− 1) + κ(r(t)− u(t− 1)) (2.10)

where κ is a scalar and solved by the following linear program:

maximize
κ∈[0,1]

κ

s.t. u(t) = u(t− 1) + κ(r(t)− u(t− 1))

(x(t), u(t)) ∈ O∞

where O∞ is the MAS discussed before. In the above, x(t), r(t), and u(t−1) are known

parameters. Note that (2.10) implies that u(t) lies on the straight line between u(t−1)

and r(t) as shown in Figure 2.1. Note that κ = 0 means that, in order to keep the

system safe, u(t) = u(t−1), where u(t−1) is already admissible. Furthermore, κ = 1

means that no violation is detected and, therefore, u(t) = r(t). This RG formulation

ensures system stability and recursive feasibility. For more details, see [35].

u(t− 1)

r(t)

u(t)

Figure 2.1: The relationship between u(t), u(t− 1), and r(t)
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2.2.2 Vector Reference Governor (VRG)

VRG extends the capabilities of SRG and uses diagonal matrix K instead of scalar

κ. For our proposes, we will assume a square system with u(t) ∈ Rm and y(t) ∈ Rm.

Equation (2.10) is reformulated as:

u(t) = u(t− 1) + K(r(t)− u(t− 1))

where K = diag(κi). The values of κi, i = 1, ...,m, are chosen by solving the following

Quadratic Program (QP):

minimize
κi∈[0,1]

‖u(t)− r(t)‖Q

s.t. u(t) = u(t− 1) + K(r(t)− u(t− 1))

(x(t), u(t)) ∈ O∞

where Q = Q> > 0. Note that for VRG, O∞ ⊂ Rn+m can be computed in the same

way as explained in Section 2.1. Because of the increased number of optimization vari-

ables and the QP formulation, VRG is more computationally demanding than SRG.

In this work, we compare SRG and VRG with the proposed DRG method in terms

of computational efficiency (i.e., execution time) and performance (i.e., closeness of

u and r, as well as constraint satisfaction).

2.2.3 Comparison between SRG and VRG

In this section, we will illustrate with an example that SRG performs poorly in MIMO

systems because of the use of a single decision variable (i.e., κ).
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Figure 2.2: Comparison between SRG and VRG. The left-hand plots (i.e., (a) and (c))
represent simulation results for VRG. The right-hand plots (i.e., (b) and (d)) represent
simulation results for SRG. In the top two plot (i.e., (a) and (b)), the dashed purple and
yellow lines are the output constraints

Consider a two-input two-output system given by:

G(z) =


0.9

(z−0.5)2
0.05
3z+1

0.06
2z+1

1.2
(z−0.7)2



The constraint for the first output is y1 ≤ 3, and the constraint for the second output

is y2 ≤ 13. The reference signals are unit step inputs.

As shown in Figure 2.2 (a) and (b), the outputs for VRG and SRG all satisfy the
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constraints. However, from Figure 2.2 (c) and (d), it is clear that the gap between u

and r for VRG is smaller than that of SRG, which means the degradation to tracking

performance for VRG is smaller than that of SRG. Note that, for SRG, because r1

and r2 are equal, the single decision variable, κ, leads to u1 equals to u2.

From this example, we can see that for both VRG and SRG, the constraint are

enforced as desired. However, VRG minimizes the gap between v and r, while the

SRG can not because of the single decision variable.

2.3 Review of Decoupling Methods

Decoupling methods can be used to produce partially decoupled or completely decou-

pled systems [62]. In this section, diagonal decoupling method, identity decoupling

method and metrics to quantify the applicability of DRG are reviewed.

2.3.1 Decoupling methods

Consider the square coupled system G(z) shown in Figure 1.5, where


y1

...

ym

 =


G11(z) . . . G1m(z)

... . . . ...

Gm1(z) . . . Gmm(z)


︸ ︷︷ ︸

G(z)


u1

...

um

 (2.11)

The system G(z) consists of diagonal subsystems with dynamics Gii(z) and off-

diagonal (interaction) subsystems with dynamics Gij(z), i 6= j. Clearly, each output

may be influenced by multiple inputs through different channels, which leads to the
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coupled behavior. A decoupled system is perfectly diagonal, which means that each

system output can be independently controlled by a corresponding system input.

As shown in Figure 1.5, we decouple the system by adding a filter, F (z), before

G(z), so that the product G(z) × F (z) yields a diagonal transfer function matrix

W (z) := G(z) × F (z) [62]. By doing so, each output yi depends only on the new

input vi through: yi = Wii(z)vi, whereWii(z) is the ith diagonal element ofW (z). We

make the assumption that Wii(z) are chosen to be stable and invertible with stable

inverses.

We present the following two decoupling methods [62]:

Diagonal method

We find F (z) such that:

W (z) =


G11(z) . . . 0

... . . . ...

0 . . . Gmm(z)



The filter is defined as:

F (z) = G(z)−1 ×W (z) (2.12)

Identity method

We find F (z) such that W (z) equals the identity matrix. The filter is defined as:

F (z) = G(z)−1 (2.13)
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Notice that in both methods, either F (z) or F−1(z) or both of them may be

improper transfer functions because the inversion of G(z) might cause the order of

the denominator be smaller than the order of the numerator. If this is the case, they

cannot be implemented. In order to make them proper, we multiply them by time-

delays of the form 1
zβ
, where β ∈ R refers to how much time delay should be added

to make the transfer functions proper. Note that if delays are added to either F (z)

or F−1(z), the system response will be delayed under the DRG scheme, even if no

constraint violation is detected. This is a caveat of the DRG approach; however, if

the sample time is small, the introduced delay would be negligible. Also note that

G(z)−1 might introduce unstable poles to F (z), which will cause the system to become

unstable. Assumption (2) is introduced in this work to avoid such situations.

2.3.2 Relative Gain Array

In this section, we will introduce Relative Gain Array (RGA) [63] to quantify the level

of interaction of the internal dynamics of a MIMO system. RGA can be defined in two

ways, either as a function of frequency or at steady state. We adopt the latter [1,64]:

RGA(G) = G0 ◦ (G−1
0 )T (2.14)

where ◦ denotes element-by-element multiplication (i.e., Hadamard product), and G0

is the DC gain of system G. In general, large off-diagonal RGA elements (i.e., larger

than 10) indicate that the system is highly coupled. To be more specific, if the ijth

element of the RGA is large, then yj is highly influenced by ui through subsystem

Gij. On the other hand, a system with small off-diagonal RGA elements (i.e., smaller
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than 10) is weakly coupled.

2.3.3 Condition Number

In this section, a measurement called the condition number that is used to quantify

the sensitivity of systems is reviewed [65]. In this work, we use condition number to

quantify the applicability of DRG.

Condition number shows how much the output would change due to small

changes in input. Mathematically, the condition number for a matrix can be de-

fined as the ratio between the maximum and minimum singular values:

γ(G) = σmax(G)
σmin(G)

where σmax refers to the largest singular value and σmin refers to the smallest singular

value.

A matrix with large condition number is said to be ill-conditioned, which means

it is sensitive to small changes in inputs and its inverse "almost" does not exist. On

the other hand, a matrix with small condition number is said to be well-conditioned.

The relationship between RGA and condition number is that large RGA elements

indicate a system with large condition number. However, the inverse may not hold

[66]. The DRG is suitable for systems with small condition numbers, which will be

analyzed in later chapters.

In this chapter, we reviewed the concept of MAS. Then we explained the detail

of SRG and VRG. Later on, we introduced diagonal and identity decoupling methods

to decouple a system. Finally, RGA, as a measure to quantify the interaction of
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subsystems, and condition number, which is used to quantify DRG, were reviewed.
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Chapter 3

Decoupled Reference Governor

As mentioned in the Introduction, the Decoupled Reference Governor (DRG) is based

on decoupling the closed-loop system using the filter F , and then implementing m

independent scalar reference governors for the resulting decoupled subsystems, and

coupling the system back together using the inverse filter, F−1 (see Figure 1.5). Below,

we elaborate on these ideas. We consider the two decoupling methods (diagonal

decoupling method and identity decoupling method) studied in the previous chapter

separately. Without loss of generality, we assume that the initial conditions on G,

F , and F−1 are all zero, i.e., the entire system starts from rest. Note that the

development is presented in the discrete transfer function domain. Once the system

is decoupled, the decoupled system is transformed into state space form for DRG

implementation, as discussed below.

Consider the system G(z) in (2.11). For this system, we apply the decoupling
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F−1(z)
RG1...
RGm

F (z) G(z)...
...

...
...

...

r1

rm

r′
1

r′
m

v1

vm

u1

um

y1

ym

W (z)

x1

xm

Figure 3.1: Decoupled reference governor block diagram. This figure has been explained
in Chapter 2. We reintroduced it again for clarification.

techniques to obtain a completely diagonal system W (z), where W (z) is defined as:

W (z) =


W11(z) . . . 0

... . . . ...

0 . . . Wmm(z)



Next, for each decoupled subsystem, Wii, we compute the maximal admissible set

(MAS) separately, denoted by OW
i,i . To obtain these sets, we convert each subsystem

Wii to state space form and, for each, compute the MAS as:

OW
i,i :={(xi0 , vi0) ∈ Rni+1 : xi(0) = xi0 , vi(t) = vi0 ,

yi(t) ∈ Yi,∀t ∈ Z+}
(3.1)

where xi and ni are the state and the order of the ith subsystem, respectively. In this

work, it is assumed that the states of G are known. If this is not the case, an observer

can be designed if measurements are available. We will introduce how to design the

observer later. The issue of observer error dynamics or plant/model mismatch are

not investigated here and are subject of study in future work.

The DRG formulation is based on OW
i,i . Specifically, the inputs to the diagonal
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decoupled system (see Figure 3.1) are defined by:

vi(t) = vi(t− 1) + κi(r′i(t)− vi(t− 1)) (3.2)

where κi are computed by m independent linear programs:

maximize
κi∈[0,1]

κi

s.t. vi(t) = vi(t− 1) + κi(r′i(t)− vi(t− 1))

(xi(t), vi(t)) ∈ OW
i,i

(3.3)

Note that, since F (z) and F−1(z) are both assumed to be stable, the DRG formulation

above inherits the stability and recursive feasibility properties of scalar RGs.

Below, we specialize the DRG formulation to the two decoupling methods pre-

sented in Chapter 2. We show that DRG is suitable for a system with relatively

small condition number. On the contrary, when G has large condition number, then

plant inputs ui(t) (see Figure 3.1) may be far from the references ri(t), and therefore

tracking performance for the closed-loop system may deteriorate.

3.1 Diagonal Method

For this case, we implement the diagonal method to obtain a completely decoupled

system:

W (z) =


W11(z) . . . 0

... . . . ...

0 . . . Wmm(z)


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One challenge of this method is that if the states of G(z) are not known, then

how can the states of W (z) that feed back to the RGs be found? To answer this, we

can design an observer to estimate the states of G(z). Note that the state-space form

of G(z) in this work is a special one and is not a minimal realization. To elaborate,

assume that the state-space forms of subsystems G11(z), G12(z), · · · , Gmm(z) are

(A11,B11,C11,D11), (A12,B12,C12,D12), . . . , (Amm,Bmm,Cmm,Dmm).

Then, system G(z) can be written as:



x11(t+ 1)

x12(t+ 1)
...

xmm(t+ 1)


=



A11 0 . . . 0

0 A12 . . . 0
... ... . . . ...

0 0 . . . Amm


︸ ︷︷ ︸

A



x11(t)

x12(t)
...

xmm(t)


+



B11 0 . . . 0

0 B12 . . . 0
... ... . . . ...

0 0 . . . Bmm


︸ ︷︷ ︸

B



u1(t)

u2(t)
...

um(t)


(3.4)



y1(t)

y2(t)
...

ym(t)


=


C11 C12 . . . C1m 0 0

0 . . . 0

0 0 Cm1 Cm2 . . . Cmm


︸ ︷︷ ︸

C



x11(t)

x12(t)
...

xmm(t)



+



D11 D12 . . . D1m

D21 D22 . . . D2m

... ... . . . ...

Dm1 Dm2 . . . Dmm


︸ ︷︷ ︸

D



u1(t)

u2(t)
...

um(t)



(3.5)
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Note that the dimension of the state vector is ∑
i

∑
j nij, where nij is the state di-

mension of Gij. The reason we use this realization is that it is easy to find the states

that feed back to RGs after decoupling, which will be clarified after the following

example: suppose G(z) is a two-input two-output system. For G11: x11(t + 1) =

0.6x11(t) + u1(t), y11(t) = 0.4x11(t). For G12: x12(t + 1) = 0.6x12(t) + u2(t), y12(t) =

0.3x12(t). For G21: x21(t + 1) = 0.6x21(t) + u1(t), y21(t) = 0.5x21(t). For G22:

x22(t + 1) = 0.6x22(t) + u2(t), y22(t) = 0.1x22(t). Then, based on (3.4) and (3.5),

the state-space form of G(z) is:

A =



0.6 0 0 0

0 0.6 0 0

0 0 0.6 0

0 0 0 0.6


, B =



1 0

0 1

1 0

0 1


, C =


0.4 0.3 0 0

0 0 0.5 0.1

 , D =


0 0

0 0



After using A,B,C,D to design an observer for system G(z), we can get the

estimated states: [x̂11, x̂12, . . . , x̂mm]T as shown in Figure 3.2. Note that because the

state space realization is detectable (because of Assumption 2), it is always possible

to design an observer for G(z). The state that feeds back to RGi is x̂ii. The caveat

of this approach is if the responses of unobservable (detectable) eigenvalues of G(z)

are slow, the observer might converge slowly. However, if the initial condition of the

observer is close to the initial condition of G(z), then the effect of the slow eigenvalues

can be ignored. In this work, we assume all the states are known, so we do not pursue

observer design further. Note that DRG can be viewed as "semi closed-loop" because

decoupling is done in open loop but RGs need feedback of the states. In the following,
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RG1...
RGm

F (z) G(z)

Obs

...
...
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x̂11

x̂mm

Figure 3.2: Decoupled reference governor with observer (obs)

we will introduce an example to illustrate the results of the diagonal method and show

that DRG works well for systems with small condition number.

Consider system G(z) in (2.11) given by:

G(z) =


0.9

(z−0.2)2
q

3z+1

3
(2z−1)2

0.4
z−0.6



The decoupled system is given by:

W (z) = 1
z


0.9

(z−0.2)2 0

0 0.4
z−0.6



In order to show that this method works well for systems with small condition

number, we select two different q’s: q = 0.5 and q = 0.05. If q = 0.5, the condition

number for the system is 11.54. If q = 0.05, the condition number for the system is

8.6. The second case has smaller condition number than the first.

Next, we use (2.12) to find F (z). Noticing that in this example, we encounter
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Figure 3.3: Comparison of DRG with small and large condition number system (γ). Top
plot is the output (constraints shown by dashed lines) and the bottom plot is the reference
r(t) and the plant input u(t)

the situation that F (z) and F−1(z) are not proper, we multiply them by z−1. Finally,

we obtain the decoupled system.

We proceed to design the DRG based on W (z). In this example, we obtain OW
1,1

and OW
2,2 based on (3.1). The DC-gain of W (z) is:


1.40 0

0 1



So, if there is no RGs, the outputs for unit step inputs are 1.4 and 4.0, respec-
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Figure 3.4: Comparison of r′(t) and v(t) in DRG with large (top plot) and small (bottom
plot) condition number systems (γ).

tively. Thus, we define the constraint set as Y := {(y1, y2) : y1 ≤ 1.2, y2 ≤ 3.9} to

ensure both RGs are active at steady state. We simulate the response of this system

to a step of size 1 in both r1 and r2. The simulation results for both q = 0.5 and

q = 0.05 are depicted in Figure 3.3 and 3.4.

From the results of Figure 3.3, the outputs in both cases satisfy the constraints

(dashed purple line and dashed yellow line), as required. However, the system input

u(t) is much closer to r(t) for the system with smaller condition number (i.e., for

q = 0.05), which is desirable for tracking.

Furthermore, Figure 3.4 shows the comparison between the inputs and the out-

puts of RGs. It can be seen from Figure 3.4 that v(t) is always below r′(t), which is
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Figure 3.5: Comparison of VRG and DRG for the small condition number system. Top
plot is the output. Bottom plot is u compared with r.

a feature of scalar RGs. However, note from Figure 3.3, that u(t) may be above or

below r(t). The reason can be explained by the relation u = F (z)v (see Figure 3.1):

at steady state, u converges to F0v, where F0 is the DC gain of F . Therefore, u may

converge to a larger or smaller value than r depending on F0. This discussion helps

to understand the results that will be presented in the sequel.

Figure 3.5 shows a comparison between VRG and DRG for q = 0.05. There is

a time delay between the responses of VRG and DRG that is caused by the delay
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added to F and F−1 to make them proper. Note that the rise time for DRG is much

faster than that of VRG in this example. This is because the interacting dynamics

are slow and dominant, which causes the VRG to generate slow inputs. The DRG,

on the other hand, operates on the decoupled system where these slow dynamics have

been canceled. This shows that, in addition to computational advantages, the DRG

may also have performance advantages compared to VRG.

3.2 Identity Method

As previously mentioned, for the identity method, W (z) is either the identity matrix

(if G−1(z) is proper) or the identity matrix with time delay (if G−1(z) is not proper).

In other words, the input-output behavior of the ith channel is given by yi(t) =

vi(t − β), where β ∈ Z+ is the delay added to make G−1(z) proper. An interesting

observation can be made: the MAS for a pure delay system is independent of the

state, which means that the m independent RGs do no need feedback of the states:

OW
i,i = {(x0, v0) : v0 ∈ Yi}.

The above follows directly from the definition of O∞ in (2.2), (2.3) and by noting

that the initial states (i.e., outputs) of the time-delay can be chosen as 0, which is

automatically admissible. Note also that, MAS for this case is finitely determined,

without the need to tighten the steady-state constraint.

The DRG formulation for the case of identity method is the same as (3.2), (3.3).

However, the implementation is greatly simplified due to the structure of OW
i,i . To

see this, note that the formulation of (3.2), (3.3) together with the above structure
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Figure 3.6: Decoupled reference governor with identity method block diagram

of OW
i,i imply that κi in (3.3) is chosen so that vi(t) ∈ Yi. Since Yi is an interval (per

Assumption 3), this implies that κi is selected so that vi(t) is simply clipped (i.e.,

saturated) at the constraint. Thus, the overall DRG can be implemented as a bank

of m decoupled saturation functions as shown in Figure 3.6, which greatly simplifies

real-time implementation. In this case, DRG can be viewed as a purely open loop

constraint management strategy.

Similar to the diagonal method, if G(z) has large condition number, the inputs

to G(z) would be far away from the references and, hence, the tracking performance

may suffer. To illustrate, consider the same system G(z) presented in Section 3.1.

We use (2.13) to find F (z). Noticing that in this example, we also encounter the

situation that F (z) and F−1(z) are not proper, we multiply them by z−1. Finally, we

obtain the decoupled system:

W (z) = 1
z


1 0

0 1



Similar to the first case, the constraint set is defined as Y := {(y1, y2) : y1 ≤ 1.2, y2 ≤

3.9}. We simulate the response of this system to a step of size 1 in both r1 and r2.

The simulation results for both q = 0.5 and q = 0.05 are shown in Figure 3.7.

From the results of Figure 3.7, the outputs in both cases satisfy the constraints,
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Figure 3.7: Comparison of DRG with small and large condition number system (γ) for
the identity method. Top plot is the output (constraints shown by dashed lines) and the
bottom plot is reference r(t) and plant input u(t).

as required. However, the system input u(t) is much closer to r(t) for the system with

smaller condition number (i.e., for q = 0.05), which is desirable.

Furthermore, it can be seen from Figure 3.8 that v(t) is always below r′(t), which

is a feature of scalar RGs. However, note from Figure 3.7, that u(t) may be above or

below r(t). The reason is similar to the one presented for the diagonal method.

While the identity method is simpler and computationally superior to the diag-

onal method, it has a drawback. If system G(z) has under-damped dynamics, then

36



Figure 3.8: Comparison of r′(t) and v(t) in DRG with large (top plot) and small (bottom
plot) condition number system (γ).

this method would cause large oscillation in the output.

To illustrate, we select q = 0.05 in the example of Section 3.1 and change G11(z)

in G(z) to:

G11(z) = 0.54z − 0.49
z2 − 1.85z + 0.9
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Figure 3.9: Comparison of outputs between diagonal method and identity method

Then, the closed-loop system G(z) becomes:

G(z) =


0.54z−0.49
z2−1.85z+0.9

0.05
3z+1

3
(2z−1)2

0.4
z−0.6



A comparison between the outputs of this system after applying DRG with the

diagonal and identity methods is shown in Figure 3.9. It can be seen that the con-

straints are satisfied for both outputs. However, unlike the diagonal method, the

output using the identity method has large oscillations. The reason for this behavior

can be explained as follows. Because G(z) has slow under-damped dynamics, and

since F−1(z) = G(z) for the identity method, applying a step to r(t) causes oscilla-

tory response in r′(t). Viewing DRG as saturations in this case, v(t) is computed as

r′(t) clipped at the constraints. Finally, since W (z) is an identity matrix or identity

matrix with some time delay, these oscillations will directly show up at the output

y(t).

In this chapter, we introduced diagonal DRG and identity DRG with two exam-
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ples to show their performance. The results show that they both work well on small

condition number systems. Moreover, through one example, we illustrated that the

identity DRG may cause oscillations for systems that have under-damped behavior.
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Chapter 4

Analysis of Decoupled Reference

Governors

In this section, we analyze the structure of O∞ and the behavior of DRG at steady-

state. This analysis sheds light on some of the important features of the proposed

method. Then, we provide a comparative analysis of the computation time of DRG

compared to SRG and VRG.

4.1 Steady-State Analysis

Recall that DRG requires OW
i,i to be computed separately for each channel. The

steady-state halfspace in OW
i,i can be defined similarly to (2.6). In order to study

the steady-state admissible inputs, we consider the projection of the steady-state

halfspace onto the vi coordinate, which results in:

V W
i,i := {vi ∈ R : Wii0vi ∈ Yi,ss} (4.1)
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where Wii0 ∈ R is the DC gain of subsystem Wii and Yi,ss = (1 − ε)Yi (recall that

Yi is the constraint set for yi). Since W is diagonal, it follows that the steady-state

constraint-admissible input set for W is:

V W
ss := V W

1,1 × V W
2,2 × · · · × V W

m,m

We now compare the above set with the steady-state constraint-admissible input

set of system G, which arises in VRG applications. This set, noted by Uss, is defined

by:

Uss := {u ∈ Rm : G0u ∈ Yss}. (4.2)

where G0 is the DC gain of system G (see Fig. 1.5).

From the above, the following theorem emerges.

Theorem 1. For the system of Figure 1.5, and Uss and V W
ss defined in (4.1) and

(4.2), the following relation holds

V W
ss = F−1

0 × Uss, (4.3)

where F0 is the DC-gain of F (z) and the operation F−1
0 × Uss is the point-by-point

mapping of the set Uss through matrix F−1
0 .

Proof. From (2.12) the following relationship follows W0 = G0×F0. By using defini-

tions (4.2) and (4.1), the proof follows.

An important implication of this theorem is as follows. If r is not steady-state

admissible with respect to system G (i.e., r /∈ Uss), then, after feeding through F−1
0 , r′

must also not be steady-state admissible with respect to the systemW (i.e., r′ /∈ V W
ss ).
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The sets (4.1) and (4.2) describe the steady-state operations of DRG and VRG,

respectively. Note that VRG solves a QP whereas DRG solves an LP. This implies

that, at steady-state, DRG finds a solution on a vertex of V W
ss , or from Theorem 1, a

vertex of Uss. On the other hand, VRG finds a solution that may or may not be at

a vertex of Uss. Therefore, DRG leads to a suboptimal solution with respect to the

objective function of VRG. This will be illustrated in the next section.

As previously mentioned, two requirements for successful implementation of DRG

are that the plant input, ui, and the setpoint, ri, should be equal if no constraint

violation is detected, and that they should be as close as possible if constraint violation

is detected. This is to ensure that the degradation of tracking performance is minimal.

We note that each scalar RG in Figure 1.5 ensures that vi and r′i are equal if no

constraint violation is detected and close if constraint violation is detected; however,

u and r may be far. In the following theorem, we show that, at steady state, the

closeness of u and r and, hence, the performance of DRG, depends on the decoupling

filter, F (z).

Theorem 2. Given the system of Figure 1.5, at steady-state, we have that:

‖F−1
0 ‖−1‖v − r′‖ ≤ ‖u− r‖ ≤ ‖F0‖‖v − r′‖

where ‖ · ‖ refers to the induced matrix norm.

Proof. Since, at steady state, u = F0v and r = F0r
′, we have that: ‖u − r‖ =

‖F0v − F0r
′‖ = ‖F0(v − r′)‖ ≤ ‖F0‖‖v − r′‖. This proves the right hand inequality.

To show the left hand inequality, write ‖v− r′‖ = ‖F−1
0 u−F−1

0 r‖ = ‖F−1
0 (u− r)‖ ≤

‖F−1
0 ‖‖u− r‖. This can be re-written as ‖F−1

0 ‖−1‖v− r′‖ ≤ ‖u− r‖, which concludes
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the proof.

This theorem shows that the difference between r and u is upper bounded by the

difference between v and r′ scaled by the induced norm of F0 and lower bounded by

the difference between v and r′ scaled by the norm of F−1
0 , which are known a-priori.

As previously mentioned, RG would guarantee that the gap between v and r′ is as

small as possible; therefore, if ‖F0‖ is small, then small ‖v−r′‖ implies small ‖u−r‖,

which is desirable. Also, if ‖F−1
0 ‖−1 is large, then small ‖v−r′‖ implies large ‖u−r‖,

which is undesirable. However, in the case of large ‖F0‖ or small ‖F−1
0 ‖−1, no definite

conclusion can be made.

Note that if the 2-norm (i.e., ‖.‖2) is chosen, then ‖F0‖ = σmax, and σmax is the

largest singular value of F0. Similarly, ‖F−1
0 ‖−1 = σmin. Therefore,

σmin‖v − r′‖2 ≤ ‖u− r‖2 ≤ σmax‖v − r′‖2.

Since ‖u− r‖2 is exactly the objective function in VRG optimization, the above

shows that the performance of DRG and VRG will be close if F0 has small singular

values.

Finally, note that if the identity decoupling method is implemented, then F =

G−1. Hence, using Theorem 2, the following relation follows:

‖G0‖−1‖v − r′‖ ≤ ‖u− r‖ ≤ ‖G−1
0 ‖‖v − r′‖.

Similar to the above, if the 2-norm is used, then ‖G0‖ = σmax(G0), and
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‖G−1
0 ‖−1 = σmin(G0). Therefore:

1
σmax(G0)

‖v − r′‖2 ≤ ‖u− r‖2 ≤
1

σmin(G0)
‖v − r′‖2.

This relationship shows that if the largest singular value of G0 is small, then small

‖v− r′‖ would lead to large ‖u− r‖, which is undesirable. Meanwhile, if the smallest

singular value of G0 is large, then small ‖v − r′‖ implies small ‖u − r‖, which is

desirable. In this case, if we want the performance of DRG and VRG to be close,

large singular value of G0 is needed.

4.2 Computation Time of DRG, SRG,

and VRG

In this section, we present the computation of DRG and compare it with SRG and

VRG. All simulations were performed in Matlab. The simulation device is a Macbook

with 1.1 GHz Intel Core m3 processor and 8 GB memory.

The formulation of SRG requires one single solution of one linear program (LP),

which can be solved implicitly via online LP solvers, or explicitly as explained below.

At the same time, DRG formulation requires the solution to m LPs. VRG, on the

other hand, requires the solution to a Quadratic Program (QP), which can be solved

implicitly via online optimization or explicitly via multi-parametric programming.

Explicit QP is an off-line optimization which divides the state space into several

regions and finds the optimal solutions explicitly as a function of the states [67].

Implicit QP or LP is an on-line optimization that solves the problem iteratively at
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each time step. In this work, we employed several toolboxes to implement explicit

QP, implicit QP and implicit LP: MPT toolbox from Matlab [68], Quadprog function

from Matlab, and Gurobi. Finally, we chose MPT because it resulted in the smallest

run time. As for explicit DRG, we implemented Algorithm 1 below.

To introduce this algorithm, let us assume OW
i,i is finitely determined and the tth

row of Hx and Hv is defined as: Hx := CAtx, Hv := (C(I − At)(I − A)−1B + D)v.

Let j∗ be the number of rows of Hx, Hv, h.

Algorithm 1 Custom Explicit DRG Algorithm
1: let a = Hv(r(t)− v(t− 1))
2: let b = h−Hxx(t)−Hvv(t− 1)
3: set κ = 1
4: for i = 1 to j∗ do
5: if a(i) > 0 then
6: κ = min(κ, b(i)/a(i))
7: end if
8: end for
9: κ = max(κ, 0)

Table 4.1: Computation time for SRG in the example of Chapter 5

Implicit LP Algorithm 1

average 0.21× 10−2s 0.16× 10−7s

maximum 0.79× 10−2s 0.11× 10−5s

Table 4.2: Computation time for DRG in the example of Chapter 5

Implicit LP Algorithm 1

average 0.49× 10−2s 5.2× 10−7s

maximum 2.2× 10−2s 1.42× 10−5s
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Table 4.3: Computation time for VRG in the example of Chapter 5

Implicit QP Explicit QP

average 0.45× 10−2s 0.13× 10−2s

maximum 2.30× 10−2s 1.96× 10−2s

The explicit SRG is implemented using an algorithm similar to Algorithm 1.

We simulate the system in the example of Chapter 5 using 6 different governor and

solver combinations: explicit SRG (i.e., Algorithm 1), implicit SRG (i.e., implicit LP),

explicit DRG (i.e., Algorithm 1), implicit DRG (i.e., implicit LP), explicit VRG (i.e.,

mutli-parametric QP), and implicit VRG (i.e., implicit QP). The simulation length is

10000 time steps in all cases with a sample time of 0.01s; for more details, see Chapter

5. Upon simulating the system, we compute the average and maximum computation

times of the solvers. In order to eliminate the effects of background processes running

on the computer, each of the above experiments is run eight times and we compute

the averages value of last five times. The results are shown in Table 4.1, Table 4.2

and Table 4.3. As can be seen, both the average time and maximum time indicate

that the Explicit DRG runs almost 2500 times faster than VRG. Furthermore, SRG

computation terminates faster than DRG, and DRG computation terminates faster

than VRG.

In this chapter, we introduced the algorithm and toolbox we used to run DRG,

SRG, and VRG. Then, we compared the computation time to run SRG, DRG and

VRG. The results show that SRG requires less computational effort than that of

DRG, and DRG requires less computational effort than that of VRG. However, in

general, DRG performs better than SRG and is comparable to VRG.
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Chapter 5

Practical Example

In this chapter, firstly, we will introduce a practical example: distillation process.

Then, we will illustrate the simulation results after applying diagonal DRG and iden-

tity DRG to it. Finally, we will compare the DRG and VRG in steady-state.

5.1 Distillation Process

Distillation is a process of separating components from mixed liquid by selective

boiling point and condensation [1]. The overall control problem for the distillation

process, as shown in Figure 5.1, has five inputs:

u = [L V D B VT ]T

which are the reflux L, boilup V , distillation D, bottom flow B, overall vapor VT .

The five outputs are:

y = [yD xB MD MB p]T

47



which represent top composition, bottom composition, condenser holdup, reboiler

holdup, and pressure, respectively.

The mixed liquid are fed into the distillation column through F . Based on

different boiling point of different components, the "lightest" products (those with

the lowest boiling point) exit from the top of the columns and the "heaviest" products

(those with the highest boiling point) exit from the bottom of the column. The

products that come from the top of the columns will first be condensed and cooled

down. Then part of them will return to the columns again and the rest of them will

be collected as overhead product. Meanwhile, the products that come out from the

bottom of the columns will first be condensed and reboiled, as the same, part of them

would become bottom products and the rest of them will return back to the columns.

These processes are used to increase the efficiency of the distillation columns.

Figure 5.1: distillation process [1]
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In this work, we only focus on partially controlled system:

u1 = [L V ]T

to control top composition yD and bottom composition xB. The following model

presents an ideal model of this subsystem [1]:

P (s) = 1
75s+ 1


87.8 −86.4

108.2 −109.6



To get a high purity for each product, we impose the following constraints: y1(t) ≤ 1.1

and y2(t) ≤ 0.5 ∀t. To implement DRG, we need a controller to close the loop of the

system. In this work, we use a SVD-controller [69]. SVD-controller is a special case of

a pre- and post-compensator design. The block diagram for pre- and post-controller

is as Figure 5.2 shows:

W2 Ks W1 P (s)
r(t) y(t)+
−

pre-compensator post-compensator plant

K(s)

Figure 5.2: Pre- and Post-compensator

The overall controller is:

K = W1KsW2

where W1 = V0 , W2 = UT
0 and V0, U0 are obtained from the singular value decompo-

sition of P0, where P0 is an approximation of P (jw0) at a given frequency w0 (note
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that P (s) is the plant in Figure. 5.2).

After designing a SVD controller for this system, the close-loop system becomes:

G(s) = P (s)K(s)× (I + P (s)K(s))−1

where

K(s) =

0.45 0.89

0.89 −0.45


c1

75s+1
s 0

0 c2
75s+1
s


0.71 −0.71

0.71 0.71


c1 and c2 are adjustable parameters that can be tunned to obtain systems with

different interaction behavior. In this work, we change these parameters to find two

systems with different condition numbers.

5.2 Implementation of DRG on the Dis-

tillation Process

To implement DRG, we first discretize G(s) using sample and hold. Then, we apply

the diagonal and identity decoupling methods, which we know from previous analysis

work well for systems with small condition number. Below, we illustrate that with

small condition number, the gap between r(t) and u(t) would be small, and also

illustrate Theorem 1. To do so, we choose two pairs of c1 and c2. The constraint set

is defined as Y := {(y1, y2) : y1 ≤ 1.1, y2 ≤ 0.5}. We let r1(t) and r2(t) both be unit

step functions.
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Figure 5.3: Simulation results of diagonal method. γ refers to condition number. Top
plot (a) shows the outputs and the bottom plot (b) is r vs. u

Larger condition number case: Choosing c1 = 0.0009 and c2 = 0.05, the condi-

tion number (i.e., γ) is 2.55. The simulation results of applying DRG to this system

after using diagonal and identity decoupling methods are shown in Figure 5.3, 5.4(a)

and 5.5, 5.6(a), respectively.

Smaller condition number case: Choosing c1 = 0.0005 and c2 = 0.05, the con-

dition number is 1.47. The simulation results of applying DRG to this case are shown

in Figure 5.3, 5.4(b) and 5.5 and 5.6(b), respectively.
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Figure 5.4: Comparison of r′ and v in DRG after applying the diagonal method. γ refers
to condition number. Top plot (a) is for large condition number and bottom plot (b) is for
small condition number.

5.2.1 simulation results of diagonal method

From Figure 5.3(a), it can be seen that the outputs satisfy the constraints, which are

shown by yellow and purple dashed lines, for both large and small condition number

cases. The results in Figure 5.3(b) indicate that the difference between r(t) and u(t)

are smaller in the system with smaller condition number. Figure 5.4 confirms that

v(t) is always below r′(t), which is a feature of scalar RGs used in the DRG.
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Figure 5.5: Simulation results of identity method. Top plot (a) shows the outputs and
the bottom plot (b) is r vs u

5.2.2 simulation results of identity method

In Figure 5.5(a), the constraints are presented by yellow and purple dashes lines. It

is clear that the outputs are within the constraints. The results in Figure 5.5(b) show

that the gap between r(t) and u(t) is smaller in the system with smaller condition

number. Note that u(t) is equal to r(t) during the initial time steps for both small

and large condition number cases. The reason is that, during these time steps, no

violation is detected for both scalar RGs inside the DRG, and from Figure 5.6, we

can see that v(t) is equal to r′(t), which leads to u(t) equals to r(t).
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Figure 5.6: Comparison of r′ and v in DRG after applying the identity method. Top plot
(a) is for large condition number and bottom plot (b) is for small condition number.

5.2.3 Comparison Between DRG and VRG

In this section, we will compare DRG with VRG in steady-state, and this comparison

can help us have a better understanding about Theorem 1.

Figure 5.7 compares u computed by DRG and u computed by VRG in steady

state, where the left and right plots are for system with large and small condition

number, respectively. r = (1, 1) is the set-point. In both figures, the contour lines

represent the level sets of the cost functions for VRG (distance from r). From Figure
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Figure 5.7: Comparison between v for DRG and v for VRG in steady state. Left (a)
and right (b) plots corresponds to the system with large and small condition number,
respectively.

5.7(a), it can be seen that for VRG, the optimal solution is the closest point to r that

belongs to the steady-state constraint-admissible set (shaded region). As for DRG,

it finds the solution at a different location, which is a sub-optimal solutions with

respect to the VRG cost function. Figure 5.7(b) shows that DRG finds the solution

at a vertex in the admissible set (as alluded to in Section 4.1), because both r1 and

r2 are inadmissible. In this case, the vertex happens to be the closest point to r, so

VRG and DRG find the same solution. In sum, the solutions may or may not be the

same, depending on the specific situation.

In this chapter, we introduced the distillation process, and compared the simula-

tion results for DRG in both small and large condition number cases. The results show

that diagonal and identity DRG both perform better for the systems with smaller con-

dition number in the sense of tracking performance. Finally, we compared VRG and

DRG in steady-state. The results illustrate that in this specific example, VRG and

DRG find the same optimal solution for smaller condition number system. However,
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for large condition number case, DRG finds the sub-optimal solution compared to

VRG.
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Chapter 6

Conclusion and future research

6.1 Conclusion

Reference governor (RG) is an add-on control strategy for constraint management of

closed-loop systems. There are several types of reference governors, such as scalar RG

(SRG) and vector RG (VRG). SRG has computational benefits but has performance

limitation on MIMO systems. Meanwhile, VRG performs better in MIMO systems

but requires higher computational effort.

In this work, a method for constraint management of coupled square MIMO

systems was studied. The method is referred to as the Decoupled Reference Governor

(DRG), which maintains the computational advantages of SRG and, at the same time,

performs better than SRG (comparable to VRG). DRG is based on decoupling the

input-output dynamics, followed by application of SRGs to each decoupled channel.

In this thesis, we first presented the DRG formulation with two different decou-

pling techniques and demonstrated the applicability of the method as a function of

the singular values and the condition number of the system. Secondly, we presented
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steady state analyses of the DRG and compared the computation time of DRG, SRG,

and VRG. It was shown that DRG can run faster than VRG by a factor of 2500 and

is similar to SRG in terms of execution time. Finally, a distillation process was used

as an illustrative example to compare DRG and VRG with small and large condition

numbers.

6.2 Future Research

Future work will explore modifications to DRG to ensure that the inputs to the closed-

loop system (i.e. u in Figure 1.5) remain below the references (i.e. r). Moreover,

we will explore ways of relaxing the limitations of DRG, specifically, for cases where

G(z) is unstable or have non-minimum phase zeros.

To make DRG be more applicable for practical systems, we will also explore the

inclusion of external disturbances, plant model mismatch, and observers in the DRG

design.
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Appendix A
Matlab Code for Distillation
Process

In the distillation process example, we test two cases, one with large condition number,
another with small condition number. We will only illustrate the code for large
condition number system, the code for small condition number case is similar to that
of large condition number case.

% Assume we know the state-space of F system: A_f, B_f, C_f, D_f,
% State-space of F^(-1): A_finv, B_finv, C_finv, D_finv and
% State-space of two decoupled systems: A1,B1, C1, D1
% and A2, B2, C2, D2
% Sample time is 10ms. Simulation length is 10,000 timesteps.
% We assume all states are known.

time=0.01 * [0:10000]';
r1 = 1*stepfun(time,0.2);
r2 = 1*stepfun(time,0.2);
r = [r1, r2];

% build O_inf for two decoupled system
[Hx1, Hv1, h1, jstar1] = Oinf_builder(A1, B1, C1,

D1 ,S1, s1, e1);
[Hx2, Hv2, h2, jstar2] = Oinf_builder(A2, B2, C2,

D2 ,S2, s2, e2);

% implement SRG to decoupled system
x_finv=zeros(size(A_finv,1),1);
xfinv_later=zeros(size(A_finv,1),1);
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v1 = zeros(10000,1);x1 = zeros(size(Hx1,2),1);
v2 = zeros(10000,1);x2 = zeros(size(Hx2,2),1);

for t=1:10000

% get r1' and r2'
xfinv_later = A_finv*x_finv + B_finv*r(t,:)';
r_new(t+1,:) = C_finv * x_finv + D_finv * r(t,:)';
x_finv=xfinv_later;
r_new(t+1,1) = r1_new(t+1);
r_new(t+1,2) = r2_new(t+1);

% find kapa through Hx, Hv, h, jstar,
%A, B, C, D, r' and x
kapa1 = findkapa(Hx1, Hv1, h1, jstar1,

r_new(t+1), x1, v1(t));
kapa2 = findkapa(Hx2, Hv2, h2, jstar2,

r_new(t+2), x2, v2(t));

% using the equation: v(t+1) = v(t) +
% kapa * (r(t+1)-v(t)) to
% get governed input to closed-loop system
v1(t+1) = v1(t) + kapa1*(r_new(t+1,1)-v1(t));
v2(t+1) = v2(t) + kapa2*(r_new(t+1,2)-v2(t));

% observer code (if needed) goes here

x1_later = A1 * x1 + B1* v1(t+1);
y1(t+1,:) = C1 * x1 + D1 * v1(t+1);
x1=x1_later;

x2_later = A2 * x2 + B2* v2(t+1);
y2(t+1,:) = C2 * x2 + D2* v2(t+1);
x2 = x2_later;

end

% get the inputs to the closed-loop system
x_f=zeros(size(A_f,1),1);xf_later=zeros(size(A_f,1),1);
for t=1:10000

v=[v1(t);v2(t)];
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xf_later = A_f*x_f + B_f*v;
u(t,:) = C_f*x_f + D_f*v;
x_f = xf_later;

end

%-------------- function2: build O_inf ---------------%
function [Hx, Hv, h,jstar] = Oinf_builder(A,B,C,D,S,s,e)

nu = size(A,1)
I=eye(nu);

% first two rows of Hx
Hx=[0*S*C;S*C];

% first two rows of Hv
Hv=[S*(C*(I-A)^(-1)*B+D);S*D];

% first two rows of h
h=[(1-e)*s;s];
a=[Hx,Hv];
b=h;

% we assume upper bound of 400 timesteps
for m=1:400

Hx=[Hx;S*C*A^(m)];
Hv=[Hv;S*(C*(I-A^(m))*(I-A)^(-1)*B+D)];
h=[h;s];

num1_1 = size(a,1);
num2_1 = size(b,1);

fun=[-(Hx(num1_1+1,:)),-(Hv(num1_1+1,:))];
[x,FVAL] = linprog(fun,[a;-fun],[b;h(num2_1+1)+100]);
if ((-FVAL)<=h(num2_1+1))

break;
else

a=[a;Hx(num1_1+1,:),Hv(num1_1+1,:)];
b = [b;h(num2_1+1,:)];

end
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end
jstar = m;
end

%--------------- function3: find kapa ----------------%
function kapa = findkapa(Hx, Hv, h, jstar, r, x, v)

% solve linear program: kapa*Hv*(r(t)-v(t)) <= h-Hx*x-Hv*v(t)
% to find kapa.

a = Hv*(r-v);
b = h-Hx*x-Hv*v;

k=1; % Algorithm 1 to find kapa.
for i=1:jstar +2
if a(i) > 0

k=min(k,b(i)/a(i));
end

end
k=max(k,0);
kapa = k;

end
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