
University of Vermont
ScholarWorks @ UVM

Graduate College Dissertations and Theses Dissertations and Theses

2018

Leveraging Software-Defined Radio for a Scalable
Wide-band Wireless Channel Measurement
System
James Jamison
University of Vermont

Follow this and additional works at: https://scholarworks.uvm.edu/graddis

Part of the Electrical and Electronics Commons

This Thesis is brought to you for free and open access by the Dissertations and Theses at ScholarWorks @ UVM. It has been accepted for inclusion in
Graduate College Dissertations and Theses by an authorized administrator of ScholarWorks @ UVM. For more information, please contact
donna.omalley@uvm.edu.

Recommended Citation
Jamison, James, "Leveraging Software-Defined Radio for a Scalable Wide-band Wireless Channel Measurement System" (2018).
Graduate College Dissertations and Theses. 969.
https://scholarworks.uvm.edu/graddis/969

https://scholarworks.uvm.edu?utm_source=scholarworks.uvm.edu%2Fgraddis%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/etds?utm_source=scholarworks.uvm.edu%2Fgraddis%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis?utm_source=scholarworks.uvm.edu%2Fgraddis%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/270?utm_source=scholarworks.uvm.edu%2Fgraddis%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarworks.uvm.edu/graddis/969?utm_source=scholarworks.uvm.edu%2Fgraddis%2F969&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:donna.omalley@uvm.edu

Leveraging Software-Defined Radio for
a Scalable Wide-band Wireless Channel

Measurement System

A Thesis Presented

by

James A. Jamison III

to

The Faculty of the Graduate College

of

The University of Vermont

In Partial Fulfillment of the Requirements
for the Degree of Master of Science
Specializing in Electrical Engineering

October, 2018

Defense Date: August 24, 2018
Thesis Examination Committee:

Jeff Frolik, Ph.D., Advisor
Safwan Wshah, Ph.D., Chairperson

Tian Xia, Ph.D.
Cynthia J. Forehand, Ph.D., Dean of Graduate College

Abstract

Wireless channel characterization is important for determining both the requirements
for a wireless system and its resulting reliability. Wireless systems are becoming
ever more pervasive and thus are expected to operate in increasingly more cluttered
environments. While these devices may be fixed in location, the channel is still far
from ideal due to multipath. Under such conditions, it is desirable to have a means
of taking wireless channel measurements in a low-cost and distributed manner, which
is not always possible using typical channel measurement equipment.

This thesis leverages a software-defined radio (SDR) platform to perform wide-
band wireless channel measurements. Specifically, the system can characterize the
scalar frequency response of a wireless channel in a distributed manner and provides
measurements with an average mean-squared error of 0.018 % σ and a median error
not exceeding 0.631 dB when compared to measurements taken with a Vector Network
Analyzer. This accuracy holds true in a highly multipath environment, with a mea-
surement range of ∼ 40 dB. The system is also capable of scaling to multiple wireless
links which will be measured simultaneously (up to three links are demonstrated). Af-
ter validating the measurement system, a measurement campaign is undertook using
the system in a highly multipath environment to demonstrate a possible application
of the system.

Citations

Material from this thesis has been published in the following form:

Jamison, J., Frolik, J.. (2018). A Software-Defined Radio Approach to Multi-
Link Channel Characterization. 2018 IEEE 19th Wireless and Microwave Technology
Conference (WAMICON), Sand Key, FL, 2018, pp. 1-4.

ii

Acknowledgements

First I would like to thank my parents for their unconditional support throughout

my life, especially during my college career. Without the opportunities they have

provided me with I would not be in this position writing a graduate thesis. I would

also like to thank my girlfriend Holley for her support over the last year as I struggled

with classes and thesis writing. I would like to thank Dr. Tian Xia and Dr. Safwan

Wshah for taking the time to serve on my thesis committee.

Lastly, I would like to thank my advisor Dr. Jeff Frolik for everything that he has

done to help me prepare for my engineering career during my times as an undergrad-

uate and graduate student; he is a fantastic educator and mentor. Working with him

has shaped my interests and led to the opportunities I have before me today.

The work for this thesis was supported by the Vermont Space Grant Consortium

under NASA Grant and Cooperative Agreement NNX15AP86H and by NSF grant

EECS-1508907.

iii

Table of Contents
Citation . ii
Acknowledgements . iii
List of Figures . viii
List of Tables . ix

1 Introduction 1
1.1 Motivation . 1
1.2 Problem Statement . 2
1.3 Contributions . 4
1.4 Thesis Outline . 6

2 Wireless Propagation 7
2.1 Large-Scale Propagation . 7
2.2 Small-Scale Propagation . 9

2.2.1 Ricean Fading . 11
2.2.2 Rayleigh Fading . 13
2.2.3 Hyper-Rayleigh Fading . 14

2.3 Wireless Channel Measurement Techniques 15
2.3.1 Time Domain Channel Sounding 16
2.3.2 Frequency Domain Channel Measurements 18

2.4 Conclusion . 20

3 Software-Defined Radio 22
3.1 History and Motivation . 22
3.2 Hardware . 24

3.2.1 Digital Processing of Analog Signals 24
3.2.2 Hardware Implementation in SDR 27
3.2.3 SDR Hardware Examples . 29

3.3 GNURadio . 31
3.4 SDR Based Channel Characterization 33
3.5 Conclusion . 35

4 Proposed Measurement System 36
4.1 Measurement Methodology . 36

4.1.1 Measurements Using “Chirped” Signals 37
4.1.2 Establishing Synchronization 40
4.1.3 Frequency Response Calculation 44
4.1.4 System Calibration . 48

iv

4.1.5 N -link Channel Measurements 49
4.2 System Validation . 51

4.2.1 Hardwired . 51
4.2.2 Wireless . 54

4.3 Conclusion . 58

5 Applications 60
5.1 Wireless Network in Cluttered Environment 60

5.1.1 Experiment Set-Up . 62
5.1.2 Test Results . 63

5.2 Conclusion . 67

6 Conclusions and Future Work 68
6.1 Contributions . 68
6.2 Future Work . 70

6.2.1 Phase Measurements . 70
6.2.2 Frequency Doubling Measurements 72

6.3 Final Words . 74

Biblography 76

A Source Code 80
A.1 Transmitter . 80

A.1.1 Shell Script . 80
A.1.2 Python Code . 80

A.2 Receiver . 89
A.2.1 Shell Script . 89
A.2.2 Python Code . 90

A.3 Frequency Response Calculation . 96
A.3.1 Shell Script . 97
A.3.2 Python Code . 97

A.4 Data Analysis Code . 102

v

List of Figures

1.1 Flow graph of a generic wireless channel. 2
1.2 An example S21 plot for a measurement in a highly reflective wireless

channel over the 2.4 GHz ISM Band (2.40 GHz - 2.48 GHz). 3

2.1 A sketch of a Ricean communication channel. The dominant LOS
component is evident as the darker signal component extending directly
from TX to RX. 11

2.2 A sketch of a Rayleigh communication channel. The dominant LOS
component is no longer discernible from the multipath components. . 13

2.3 A sketch of a hyper-Rayleigh communication channel. There is more
than one dominant component present. 14

2.4 An example power delay profile (PDP) for a non-line of sight (NLOS)
multipath channel. The received signal components (labeled as MPC
for multipath components) are labeled. 16

2.5 An example S21 plot for a measurement in a highly multipath wireless
channel over the 2.4 GHz ISM Band (2.40 GHz - 2.48 GHz). Note the
sharp transition in signal strength at around 2.47 GHz labeled on the
figure. 18

2.6 The magnitude of the S21 plot from Fig. 2.5 with the IEEE 802.15.4
channels superimposed for clarification. The channel numbers are the
numbers along the top of the plot. Channel 14 exhibits the most benign
fading and Channel 16 the most severe. 19

3.1 Block diagram of an analog-to-digital converter [25]. 25
3.2 Block diagram of a digital-to-analog converter [25]. 26
3.3 Flow graph of an analog receiver [26]. 28
3.4 Flow graph of a typical SDR receiver [26]. 28
3.5 Flow graph of a typical SDR transmitter [26]. 29
3.6 The many SDR software frameworks and the years they were active [26]. 31
3.7 A basic transmitting program in GNURadio Companion. A signal

source block and osmocom sink block are used in this program. . . . 32

4.1 “Through” measurement testing the repeatability of frequency response
measurements using a chirp signal, and a BladeRF / HackRF combina-
tion. Full 20 MHz possible bandwidth (top), the inner 10 MHz (bottom). 39

vi

4.2 A schematic of the one-link measurement system. On the transmitting
(TX) end two HackRFs are stacked on top of one another, one for the
synchronization link and another for the measurement link. One the
receiving (RX) end, one BladeRF is used for both links. 40

4.3 Flow charts displaying the program flow of the transmitting and re-
ceiving Python programs called by the shell scripts in Fig. 4.4. fs is
the frequency increment between tones in the chirp (78.125 kHz), and
the end of the band is determined when k = 128 (for 128 78.125 kHz
steps over the 10 MHz band). Source code available in Appendix A.1.2
(transmitting) and A.2.2 (receiving). 42

4.4 Flow charts representing the program flow of the shell scripts used
to call the transmitting and receiving Python programs in Fig. 4.3.
Source code available in Appendix A.1.1 (transmitting) and A.2.1 (re-
ceiving). 43

4.5 Flow chart displaying the program flow of the shell script which calcu-
lates the channel frequency response from the saved .bin files. Source
code available in Appendix A.3.1. 44

4.6 Flow charts displaying the program flow of the Python program called
by the shell script in Fig. 4.5. Source code available in Appendix A.3.2. 45

4.7 “Through” measurement taken over 2.4 GHz ISM band using chirp
signal and handshaking protocol. 47

4.8 Comparing a measurement taken using a VNA in the hardwired en-
vironment to a raw SDR measurement (top) and a calibrated SDR
measurement (bottom). The difference in scale between the top and
bottom plots (4 dB vs 0.1 dB and 80 MHz vs 10 MHz) is important to
note. 48

4.9 A schematic of the N -link channel measurement system being proposed. 50
4.10 A hardwired simulation of a wireless channel with one LOS signal com-

ponent, and one multipath component. The multipath component is
delayed and attenuated compared to the LOS component. 52

4.11 Frequency response measurements of the channel displayed in Fig 4.10
along with relevant error statistics. Note: the VNA measurement is
normalized to the median value of thee SDR measurement for compar-
ison between the curves. 53

4.12 The single-link measurement taken within the reverberation chamber. 55
4.13 Frequency response measurements of the channel displayed in Fig 4.12. 55
4.14 Link 1 of the two links measured simultaneously. 56
4.15 Link 2 of the two links measured simultaneously. 56

vii

4.16 The Cumulative Distribution Functions (CDF) of each of the verifica-
tion measurements presented in this section along with the CDF of the
Rayleigh distribution plotted for reference. 58

5.1 Placement of wireless sensor on metallic cross-panel aboard the ISS for
the WISENET experiment. Retreived from [39]. 61

5.2 Three link propagation study within reverberation chamber. 62
5.3 Two S41 (TX− > RX3) measurements taken before and after moving

RX3 5cm. 63
5.4 CDF of all Link 3 (S41) measurements taken at 14 locations along the

linear track. Black line is Rayleigh CDF plotted for reference. 63
5.5 Two S21 (TX− > RX1) measurements taken before and after moving

RX3 5cm. 64
5.6 Two S31 (TX− > RX2) measurements taken before and after moving

RX3 5cm. 64
5.7 CDF of all Link 1 (S21) measurements taken at 14 locations along the

linear track. Black line is Rayleigh CDF plotted for reference. 64
5.8 CDF of all Link 2 (S31) measurements taken at 14 locations along the

linear track. Black line is Rayleigh CDF plotted for reference. 64
5.9 Cumulative distribution functions of all 42 (14 measurements over three

links) measurements taken in this experiment, with the CDF of the
Rayleigh distribution plotted for reference. 65

6.1 Three phase measurements taken in a hardwired environment over 80
MHz bandwidth. 71

6.2 The test set-up used in [45]. 73

viii

List of Tables

3.1 Various software-defined radio hardware packages available for pur-
chase and their respective performance specs. 30

3.2 A summary of the significant prior works listed in chronological order. 35

4.1 A summary of the error statistics from the verification measurements
presented in this chapter. 58

5.1 A summary of the fade-types of all measurements taken in this exper-
iment. 66

ix

Chapter 1

Introduction

1.1 Motivation

In recent years, the Internet of Things (IoT) has become a popular buzzword in the

electronics field, specifically in communications. IoT refers to the wireless connection

of everyday electronic devices to each other and to the Internet [1]. An early example

of an IoT system is the Wireless Sensor Network (WSN). As its name suggests, a

WSN is a network of wirelessly connected sensors deployed to collect data on an

environment in a distributed fashion. WSN have many benefits over their wired

counterparts, but problems arise in trying to operate these networks in some harsh

communications environments.

Such environments are the cluttered and reflective ones present in Machine-to-

Machine (M2M) communication scenarios. The M2M communications market, which

includes applications such as vehicular communications for self driving cars and traf-

fic control, is expected to grow from $47.9B in 2017 to $199.6B by 2022 [2]. The

reflective environments expected for these applications have been shown to exhibit

1

Figure 1.1: Flow graph of a generic wireless channel.

severe frequency selective fading which is difficult to operate a wireless device in.

Other highly reflective cluttered environments will be seen by systems operating on

factory floors and in air-frames (e.g., transport helicopters [3] and commercial air-

planes [4]). Due to the difficulty of operating wireless devices in these environments,

signal propagation measurements to be used to characterize the channels can be very

useful.

1.2 Problem Statement

The motivation of this work stems from a desire to characterize wireless channels,

displayed in Fig. 1.1, for new IoT applications. Wireless channel characterization al-

lows one to gain insight into the types of wireless devices that may operate effectively

in that environment and the resulting reliability of their operations. Measurement

campaigns have been undertook in the past attempting to characterize these environ-

ments [3, 4, 5, 6] and work has also been done on emulating these environments in

a laboratory setting [7, 8] but the methods used to measure these channels is often

pricey and difficult.

One can obtain the characteristics of a wireless channel in either the time or

frequency domain and methods exist for obtaining both the impulse response (time-

domain information) and frequency response of a wireless channel. Typically the im-

pulse response is obtained through direct RF pulse measurements or spread spectrum

sliding correlator systems [9] (these systems will be discussed in Section 2.3.1). These

2

Figure 1.2: An example S21 plot for a measurement in a highly reflective wireless channel
over the 2.4 GHz ISM Band (2.40 GHz - 2.48 GHz).

methods usually employ non-coherent transmitter and receiver systems and transmit

wide-band pulses. These wide-band pulses require a measurement system with a large

bandwidth and can therefore sometimes be very expensive. In order to obtain the

frequency domain information from the impulse response through an inverse Fourier

transform, the system must be coherent (i.e. the transmitter and receiver must have

synchronized clocks) which can be difficult to implement in practice.

In some applications, the frequency response can be more valuable than time

domain information (this argument is made for highly reflective environments in Sec-

tion 2.3.2). This measurement is typically obtained using a Vector Network Analyzer

(VNA) which provides a measurement known as an S21 measurement which gives

the magnitude and phase of the received signal relative to a transmitted signal at

incremental frequencies (an example in Fig. 1.2). VNAs are extremely expensive

and are coherent measurement systems, meaning the transmitter and receiver must

be connected to the main system. This can cause issues when measuring wireless

3

links as cables need to be run across the environment, causing difficulty in set-up and

possible interference with the measurement.

Relatively recently, SDR has been proposed as a way of providing these channel

measurements at a fraction of the cost as traditional means (prior work discussed

in Section 3.4), but even these systems have some shortcomings for this application.

This thesis presents a SDR based channel measurement system developed specifically

for the distributed measurement of the scalar frequency response of wireless links in

highly reflective environments.

1.3 Contributions

The work in this thesis proposes a channel measurement system based entirely in

software-defined radio (SDR). The main contributions of this work are three-fold:

1. Development of a novel distributed channel measurement technique based in

software defined radio.

This measurement system utilizes software defined radios, and a “chirped” tone,

to measure the scalar frequency response of a wireless channel. The system is

detailed in Section 4.1.1.

2. Development of a algorithm capable of synchronizing multiple software-defined

radios over a bandwidth larger than their operational bandwidth for multiple dis-

tributed measurement links.

The system utilizes radios with an operational bandwidth (10 MHz) smaller

than the measurement bandwidth (80 MHz) in order to reduce the cost of

4

the system. Because of this smaller operational bandwidth, the operating fre-

quencies of the SDRs needs to be changed over the course of a measurement.

Furthermore, these operating frequencies must be changed between distributed

“ends” of the system simultaneously. A novel algorithm is developed to achieve

this and presented in Section 4.1.2. In Section 4.1.5, this algorithm is extended

from a single measurement link to N measurement links using Time Division

Multiple Access (TDMA) techniques.

3. Demonstration of channel measurement system to validate system accuracy.

Measurements are taken using the proposed measurement system in a highly

reflective environment and compared to measurements taken using a Vector Net-

work Analyzer (VNA) in Section 4.2. It is found that the system is able to mea-

sure with a mean-squared error of 0.018% σ and a median error which does not

exceed 0.631 dB when compared to VNA measurements. These measurements

are taken over a 80 MHz bandwidth on channels whose signal strength extends

∼40 dB; both single link and multi-link measurements are demonstrated.

There exists limited prior work in SDR based channel measurement systems, a

summary of which is presented in Section 3.4, but the proposed system significantly

extends any existing systems developed for similar uses as per the contributions above.

In addition to the contributions of the system itself, a measurement campaign is

undertook in Chapter 5 which presents a realistic application of the system as well

as adding to the literature on wireless channel measurements in highly cluttered

environments.

5

1.4 Thesis Outline

This thesis is organized as follows. First, models to mathematically describe wireless

channels and existing methods of empirically measuring channels are both discussed

in Chapter 2. Chapter 3 gives an introduction to what software-defined radio is,

how it works, and details the existing work on software-defined radio based channel

measurement devices. Chapter 4 introduces the system being proposed by this thesis

and provides validating measurements comparing the system’s measurements to that

of a Vector Network Analyzer. Lastly, in Chapter 5 a possible application of the

proposed system is discussed and Chapter 6 concludes this thesis with a discussion

of future work and some final words.

6

Chapter 2

Wireless Propagation

As this thesis aims to develop novel approaches for channel characterization, it is

worthwhile to examine the existing mathematical models used to describe wireless

channels. Modeling wireless channels mathematically allows for the easy compar-

ison of one channel to another, and for the computation of signal propagation loss

“severity”. In this chapter, mathematical models of wireless signal propagation will be

examined by first introducing the propagation phenomenon and exploring large-scale

propagation, followed by more closely looking at small-scale fading models. Finally

we will look at existing methods of collecting the data needed to characterize wireless

channels.

2.1 Large-Scale Propagation

Wireless signal propagation is broken into two categories for analysis: large-scale

signal propagation and small-scale signal propagation. As the name implies, large-

scale signal propagation models concern propagation effects due to large changes in

7

position, frequency or time, while small-scale propagation models concern propagation

effects due to small changes. In other words, large-scale models characterize changes

in average signal strength, while small-scale models characterize deviations from this

average [9]. This thesis is concerned more with propagation on a small-scale than

a large-scale, but large-scale propagation models are presented in this section for

completeness.

Large scale propagation in its simplest form occurs in free space (e.g., satellite-to-

satellite communications), and can be modeled by the Friis free space equation:

Pr(d) = PtGtGrλ
2L

(4π)2d2 (2.1)

where Pt is transmitted power, Pr is the received power, Gt and Gr are the gains

on the transmit and receive antenna respectively, d is the distance from transmitter

to receiver, λ is the signal wavelength, and L (0 ≤ L ≤ 1) is the system loss factor

(not related to propagation, a value of L=1 indicates no loss in system hardware). In

practice, path loss (PL) is often expressed in dB, as shown below:

PL(dB) = 10log Pt
Pr

= −10logGtGrλ
2

(4π)2d2 (2.2)

Using Eq. 2.2, average signal power loss can be calculated in free space scenarios.

The Friis equation (2.1) shows us that received power decreases as the square of the

distance from receiver to transmitter. It is worth noting that these equations are only

valid for values of d which are within the far-field of the transmitting antenna, or the

Fraunhofer distance (df), displayed below:

8

df = 2D2

λ
(2.3)

where D is the largest linear dimension of the antenna.

Eq. 2.2 gives insight into path loss relative to transmitter receiver separation in

free space. From [9], the mean path loss is expressed by the following proportion:

PL(d) ∝
(
d

do

)n
(2.4)

where n is the path loss exponent, and do is the “close-in reference distance” (often

set to 1m for convenience). Eq. 2.4 expressed in dB, with the addition of a random

variable is known as the log-normal shadowing model, shown below:

PL(d) = PL(d) +Xσ = PL(do) + 10nlog(d
do

) +Xσ (2.5)

where Xσ ∼ N(0, σ) (note: σ is expressed in dB). The log-normal shadowing model

will accurately measure the average signal strength of a signal transmitted over a

distance. The values of n and σ will vary from one environment to the next, and

must be estimated based on empirical data from similar environments when using

this model.

2.2 Small-Scale Propagation

Of more interest to this thesis is the variations around the average path loss value that

occurs as a result of small changes in either frequency, position or time. Historically,

small-scale propagation pertained to changes in time as these models were originally

9

developed for mobile systems, such as those present in cellular telephone networks

[10]. With the rising interest in the internet of things (IoT) and machine-to-machine

communications (M2M), it is worth considering temporally static environments where

small changes in position and frequency can cause large changes in signal strength.

For example, > 30 dB variations have been demonstrated for positional changes less

than λ/10 in the 5.7 GHz ISM band [5] and similar variations were found for small

changes in frequency in the 2.4 GHz ISM band [3]. Both of the aforementioned

measurement campaigns took place in highly reflective cluttered environments which

exhibited severe multipath, and therefore extreme frequency selective fading.

In this section, the statistical distributions used to model this behavior will be

introduced as they model environments that may be similar to those that Internet-of-

Things (IoT) and machine-to-machine (M2M) systems will be deployed in. Namely

the Ricean, Rayleigh, and hyper-Rayleigh models used to model small-scale fading are

discussed. These models are introduced now as they are referenced heavily throughout

this thesis.

Small-scale fading is a result of multipath components in the communication chan-

nel adding together at the receiver. The multipath components travel along different

paths to the receiver than the line-of-sight (LOS) signal component and as such reach

the receiver at different times (i.e., phases). When these signal components add to-

gether at the receiver out of phase, they will sometimes add constructively and other

times add deconstructively, causing these quick variations in signal strength. In these

cases, it is often more practical to consider statistical models based on empirical data,

as opposed to physical deterministic models, as the environmental reflections can be

quite complex and relatively random.

10

Figure 2.1: A sketch of a Ricean communication channel. The dominant LOS component
is evident as the darker signal component extending directly from TX to RX.

In general, the following derivations are based on the mathematical description

of the summation of constant-amplitude waves with “N” independently identically

distributed (I.I.D.) phases:

Ṽ =
N∑
i=1

Vie
jφi (2.6)

where Ṽ is the complex baseband voltage, the Vi’s are the amplitudes of the multipath

waves and the φ’s are the phases of the multipath phases. It is also worth noting that

Re{Vi} ∼ N(0, σ) and Im{Vi} ∼ N(0, σ) due to the central limit theorem [11]. Unless

otherwise noted this result as well as the following derivations come from [12].

2.2.1 Ricean Fading

The Ricean distribution is used to model communication scenarios with a dominant

line-of-sight (LOS) signal component, interacting with multiple multipath compo-

nents. This model is used in multipath environments where the LOS component is

relatively strong compared to multipath components, as seen in Fig. 2.1. In this case,

the summation from Eq. 2.6 is used to sum the multipath components, and this is

added to the LOS signal component to compute the received signal:

11

ṼRX = V1e
jφ1 +

N∑
i=2

Vie
jφi (2.7)

where ṼRX is the complex valued received signal voltage, V1 is the amplitude of

the complex valued dominant (typically LOS) signal component with phase φ1, and

there are L multipath components with amplitude Vi and phase φi. The multipath

components in this lumped term are commonly referred to as the diffuse components.

The probability density function (PDF) of the Ricean case (derived in [12]) is:

fR(r) = r

σ2 e
(

−r2−V 2
1

2σ2)I0(rV1

σ2) (2.8)

where r is the envelope amplitude, σ is the standard deviation of envelope voltage, and

I0(·) is the zeroth-order modified Bessel function. A common metric for determining

the severity of various Ricean fading channels is through the Ricean K-factor. The

K-factor is the ratio of the power of the dominant component to the power of the

diffuse multipath components:

K = V 2
1

2σ2 (2.9)

It can be seen from Eq. 2.9 that an increase in the K-factor would indicate a

stronger dominant component. In practice the K-factor is often expressed in dB (i.e.

10log10 of Eq. 2.9).

12

Figure 2.2: A sketch of a Rayleigh communication channel. The dominant LOS component
is no longer discernible from the multipath components.

2.2.2 Rayleigh Fading

The Rayleigh distribution is used as a worst-case model in cellular communications

in which there is no single dominant signal component (i.e., the LOS is either missing

or not distinguishable from the multipath). In other words, K = 0 (-∞ dB) in the

Rayleigh distribution (an example Rayleigh channel is provided in Fig. 2.2).

While this type of fading physically exhibits more deep fades than the Ricean, it

is simpler mathematically as the lumped diffuse component can be treated as a single

random variable.

ṼRX =
N∑
i=1

Vie
jφi (2.10)

As in the Ricean case, the lumped component is a sum of I.I.D. complex variables

that are normally distributed. From the central limit theory [11] it is known that

the sum of I.I.D. random variables approach the Gaussian distribution. Furthermore,

the joint probability of two random Gaussian variables (i.e., the real and imaginary

parts of the diffuse component) yields a Rayleigh probability density function of the

signal’s envelope [11], displayed below:

13

Figure 2.3: A sketch of a hyper-Rayleigh communication channel. There is more than one
dominant component present.

fR(r) = r

σ2 e
−r2
2σ2 (2.11)

where r is the envelope amplitude, and σ is the standard deviation of envelope voltage.

This Rayleigh PDF is often used as a benchmark when examining empirical data

because it can be inferred that when data exhibits this distribution, the line-of-sight

component has been lost. This condition was thought to be the worse case scenario

in a typical multipath communication channel.

2.2.3 Hyper-Rayleigh Fading

Up until about a decade ago, fading which was more statistically severe than Rayleigh

had been theorized but not measured empirically. In [6], channels exhibiting fading

more statistically severe than Rayleigh were measured, and hyper-Rayleigh fading

was a term proposed to include any fading more severe than Rayleigh. In this sce-

nario, displayed in Fig. 2.3, multiple signal components of near equal strength are

present at the receiver and they can no longer be lumped together into a single dif-

fuse component. This only happens in extremely reflective environments which are

capable of producing these severe signal reflections (e.g., a metallic air frame).

14

In this case the received signal may look more like:

ṼRX = V1e
jφ1 + V2e

jφ2 +
N∑
i=3

Vie
jφi (2.12)

where there are multiple dominant (called secular) components summed with the

usual lumped diffuse component (in Eq. 2.12 there are two secular components, but

there could in theory be more). There exist rather mathematically involved models,

and accompanying PDFs, such as a the two-wave with diffuse power (TWDP) and

three-wave fading scenarios [12], to model these channels. But for our purposes it

suffices to refer to any channel which exhibits fading more statistically severe than

Rayleigh as “hyper-Rayleigh”.

2.3 Wireless Channel Measurement Tech-

niques

The models presented so far in this chapter give scientists and engineers intuition

into the behavior of wireless signals, but they are especially useful when they can

be used to describe signal propagation in a physical environment. Typically this

is done by empirically measuring a wireless channel, and then using this data to

determine the behavior of the wireless signals in the channel (i.e., if the channel

exhibits Ricean/Rayleigh/hyper-Rayleigh small-scale fading). This is important not

only for determining the requirements of a wireless system operating in such a channel,

but also for determining the resulting reliability of the system. As the aim of this

thesis is to propose a novel method for empirically collecting channel data, this section

15

Figure 2.4: An example power delay profile (PDP) for a non-line of sight (NLOS) multipath
channel. The received signal components (labeled as MPC for multipath components) are
labeled.

presents existing methods of wireless channel measurement. Channel measurement

can be done either in the time domain, or the frequency domain; both of these methods

will be discussed.

2.3.1 Time Domain Channel Sounding

Channel measurement in the time domain is typically called channel sounding. The

goal of channel sounding is to obtain the channel impulse response (CIR) or power de-

lay profile (PDP). As per the basic principles of system theory, obtaining the impulse

response of a channel would allow one to calculate the out response of that channel to

any input signal, which can be very useful. An example PDP for a non-line of sight

measurement in a highly multipath wireless channel is displayed in Fig. 2.4. The

multipath components can be seen as delayed spikes in the PDP. The direct radio-

frequency (RF) pulse system is the simplest form of measuring the channel impulse

16

response.

The direct RF pulse channel sounding method is presented in detail in [9], and

demonstrated in [13] and [14]. It is a relatively simple channel sounding method,

and involves transmitting a narrow pulse, of width τbb s, and filtering the channel

response with a bandpass filter, with bandwidth 2
τbb

Hz. This filtered response is

measured and saved using an oscilloscope, and the saved measurement is known to

be the convolution of the CIR and the transmitted pulse. This measurement is as

close as one can come to directly measuring the impulse response of a channel.

The resolution of the system is equal to the width of the transmitted pulse; in

other words multipath components received within time periods shorter than this

transmitted pulse will not be detected. Due to this constraint, narrow pulses are pre-

ferred for a higher temporal resolution (i.e., a wide bandwidth system is needed). A

major problem with this approach is that the system relies heavily on the oscilloscope

to trigger with the arrival of the first signal (typically the LOS component of most

power). This can cause the system to sometimes not trigger properly when operat-

ing in highly multipath environments, or environments where the LOS component is

blocked (such as the environments relevant to this work [5], [3]). An advantage of

the system is that it can be constructed using off the shelf hardware present in most

wireless communications laboratories, assuming the desired bandwidth requirements

are met. There exist other methods of time domain channel sounding, such as spread

spectrum sliding correlator presented in [15], and orthogonal frequency division mul-

tiplexing (OFDM) based channel estimation methods [16], but the rest of this section

will focus on channel characterization in the frequency domain.

17

Figure 2.5: An example S21 plot for a measurement in a highly multipath wireless channel
over the 2.4 GHz ISM Band (2.40 GHz - 2.48 GHz). Note the sharp transition in signal
strength at around 2.47 GHz labeled on the figure.

2.3.2 Frequency Domain Channel Measurements

Channel measurement in the frequency domain typically involves transmitting tones

at incremental frequencies and measuring the magnitude and phase of these tones at

the receiver. The goal of frequency domain channel characterization is to obtain the

frequency response of the channel, and is typically measured using a Vector Network

Analyzer (VNA). The measurement produced by the VNA is called a S21 measure-

ment, and this measurement gives information on the path loss over the channel over

frequency.

An example S21 plot is displayed in Fig. 2.5, magnitude displayed on top and

phase on the bottom. The data presented in Fig. 2.5 was captured using a VNA

within a test chamber at the University of Vermont, referred to as the Compact

Re-configurable Channel Emulator (CRCE). This chamber is designed to mimic the

channel conditions present in emerging IoT applications (e.g., a metallic air frame, a

18

Figure 2.6: The magnitude of the S21 plot from Fig. 2.5 with the IEEE 802.15.4 channels
superimposed for clarification. The channel numbers are the numbers along the top of the
plot. Channel 14 exhibits the most benign fading and Channel 16 the most severe.

factory floor, machine-to-machine communications, etc.). The chamber was originally

presented in [7] and was recently updated in [8]; it will be used throughout this thesis

as a testing environment for multipath channel conditions.

It can be seen from the magnitude plot in Fig. 2.5 that there is a drop in signal

strength of ∼ 35 dB between ∼ 2.470 GHz and ∼ 2.477 GHz. That is a significant

change in signal strength (≥ three orders of magnitude) over a relatively small change

in frequency (∼ 7 MHz). Changes in signal strength that are frequency dependent

are referred to as frequency selective fading [17], and significant changes such as this

would be considered severe frequency selective fading.

This information would not be evident from the time domain channel impulse

response, and these insights into the performance of individual channels can be very

useful in determining the reliability of a wireless system in an environment. In other

words, while the time domain channel sounding methods give a “tangible” channel

model (i.e., information on the times at which the multipath components reach the

receiver), the frequency domain channel measurements can give intuition into system

performance and constraints.

As an example, the IEEE 802.15.4 wireless standard [18] is a common wireless

19

standard in low data rate, low power wireless sensor networks, and is what ZigBee

[19] and other similar protocols are based on. This standard utilizes the 2.4 GHz

Industrial Scientific and Medical (ISM) band, which is 80 MHz wide and extends

from 2.40 GHz to 2.48 GHz. Inside of this 80 MHz band, 802.15.4 assigns 16 channels

of operation of width 5 MHz. These channels are superimposed onto the magnitude

response from Fig. 2.5 in Fig. 2.6. From this figure it can seen that this frequency

selective fading would cause channel 16 to be virtually inoperable while channel 14,

and possibly even channel 15 would allow for reasonable data transfer. Based on this

measurement, decisions can easily be made about which channels would be better

to operate over in this environment. This is but one example of why the frequency

domain response of a wireless channel can be useful.

A limitation of these measurements are that the costly VNA is typically a coherent

system, meaning that the transmitting and receiving antenna need to be connected

to the same device (the VNA). This means that characterization over large channels

using this method is difficult, and requires the use of very long cables. It would

therefore be desirable to have a distributed, portable, and low cost measurement system

that would provide reliable frequency response measurements, which is what this work

aims to do.

2.4 Conclusion

In this chapter, the basic theory underlying signal propagation was presented. The

differences between large and small scale fading, as well as their respective mathe-

matical models were examined and discussed in detail. Lastly, existing methods of

20

empirically collecting channel data to be used to characterize wireless channels using

the aforementioned mathematical models were explored. Both time and frequency

domain methods for empirical channel data collection were presented, as well as the

potential benefits and drawbacks of each method. As mentioned prior, the work con-

ducted in the Wireless Communications Lab at the University of Vermont is mostly

interested in small-scale propagation effects and typically involves frequency domain

channel measurements (i.e. using a VNA). This thesis work aims to develop a system

which can measure the scalar frequency response of a channel, in a distributed man-

ner. Ideally this system would be low cost and portable. A recent topic of research

and of interest to hobbyist is the software-defined radio (SDR), which this thesis uti-

lizes to perform the frequency domain measurements, and which will be introduced

in the next chapter.

21

Chapter 3

Software-Defined Radio

A software-defined radio (SDR) is a radio which implements all signal processing tasks

involved in wireless communication (e.g., modulation, demodulation, pulse shaping,

filtering, etc.) in digital signal processing (DSP) as opposed to analog circuitry. The

major benefit of implementing a radio in such a way is the ease of reconfigurability of

software versus hardware; this opens the door for radios which can quickly reconfigure

in real-time as well as for rapid prototyping in development. In this thesis, a novel

wireless channel measurement system is developed which uses SDR. This chapter

will first examine the history and motivation of software-defined radios, followed by

discussing the specific hardware and software used in this work. The last section will

introduce prior work done using SDR for wireless channel measurements.

3.1 History and Motivation

The origins of software-defined radio come from the desire for a reconfigurable radio.

Such a radio would in theory be able to perform the tasks of multiple hardware radios

22

in one device, and this was originally desired for military applications. According to

[20], the term "software radio" was first used in a company newsletter issued inter-

nally by Raytheon (then E-Systems) referring to a prototype digital receiver which

implemented adaptive filtering using an array of processors [21]. In the early 1990’s,

the Defense Advanced Research Projects Agency (DARPA) also led a program called

SpeakEASY which aimed to “use programmable processing to emulate more than 15

existing military radios” [22]. While this DARPA project did not explicitly mention

the term software defined radio, it is clear that their vision was of a radio based in

software.

The first time the term is used in academic literature is in Joseph Mitola’s paper

[23] published in IEEE in April 1993. This paper defined the software radio in its

present form as follows:

A software radio is a set of Digital Signal Processing (DSP) primitives, a met-

alevel system for combining the primitives into communications systems functions

(transmitter, channel model, receiver ...) and a set of target processors on which the

software radio is hosted for real-time communications. - J. Mitola [23]

From Mitola’s definition, it can seen that the software radio encompasses both the

software (the DSP primitives) and the hardware (the target processors) needed for a

functional system. Because the E-Systems software radio was really only a receiver

Mitola is credited with defining the software radio in how it is viewed today, as a fully

functional radio defined in software. He is also responsible for bridging the interest

gap into the field of traditional academia (and not solely military applications).

Along the way, the term software radio evolved into software-defined radio (SDR)

23

as it is known today. These early examples of research into software-defined radio

(namely the Speakeasy project) are not always considered successful as the technology

at the time sometimes fell short of the necessary hardware requirements (e.g., most

notably speed and timing limitations of the analog-to-digital and digital-to-analog

converters). But as the hardware technology has improved over the last two decades,

this has caused a resurgence in interest into research related to software-defined radios.

The next section will take a look at this hardware more closely.

3.2 Hardware

The ideal software-defined radio would consist of only a select few hardware compo-

nents. Namely an antenna and analog-to-digital converter (ADC) on the receive side,

and an antenna and digital-to-analog converter (DAC) on the transmit side. The

conversion between the analog and digital signal domains is crucial to the operation

of SDRs and will be examined in the following subsection.

3.2.1 Digital Processing of Analog Signals

Often times, it is desirable to approximate an analog signal by a digital signal so that

one can utilize digital signal processing (DSP) techniques, which can have benefits

over analog processing in some scenarios (e.g., higher order filters can be simpler to

implement, easier to reconfigure filter, device tolerances not as much of an issue, etc.).

The block diagram of a typical analog-to-digital converter is displayed in Fig. 3.1.

The analog signal xa(t) enters the system, is lowpass filtered by an anti-aliasing filter

Fa(Ω), is sampled by an ideal sampler of period Ts, and lastly is amplitude quantized

24

Figure 3.1: Block diagram of an analog-to-digital converter [25].

Q[·] before the new digital signal xd(n) is output from the system. Sampling is the

core process underlying analog-to-digital conversion, and information is inherently

lost in the process. In general to sufficiently sample a signal, the sampling frequency

Ωs must be higher than the Nyquist rate ΩN , as defined below [24]:

ΩN > 2Ωb (3.1)

Where Ωb is the bandwidth of the signal to be sampled. Note, Ωs = 2πfs = Ts

where Ωs is in radians
second

, fs is in Hz, and Ts is in seconds. When the sampling rate is

not high enough (i.e., Ωs ≤ ΩN), the signal will be under sampled and aliasing will

occur. Aliasing (also called spectral folding [24]) will cause higher frequency content

to appear at lower frequencies in the sampled signal, and will severely distort the

signal. The anti-aliasing filter Fa(Ω) aims to prevent this from occurring by filtering

out any unnecessary higher frequency components (f > fs
2) of the signal. After

the signal is sampled, it is quantized to discrete amplitude values so that it can be

represented in binary form.

The dual of analog-to-digital conversion is digital-to-analog conversion, and a

block diagram of this process is displayed in Fig. 3.2. In this process, the digital

signal yd(n) enters the system, goes through a digital compensating filter Γd(ejw), is

25

Figure 3.2: Block diagram of a digital-to-analog converter [25].

reconstructed in ga(t), and lastly goes through an analog compensating filter Γa(Ω)

before the analog signal ya(t) is output from the system. The core process underlying

digital-to-analog conversion is the reconstruction process, which aims to interpolate

the signal between samples. The ideal reconstructor is displayed below [24]:

ga(t) =
sin(πt

Ts
)

πt
Ts

⇐⇒ Ga(Ω) =

Ts |Ω| ≤ π

Ts

0 else
(3.2)

The ideal reconstructor is an ideal low-pass filter, whose pass-band is equal to

the sampling frequency. In the time domain this becomes a series of sinc functions

centered around each sample. Mathematically this reconstruction works in the ideal

case of a perfectly band-limited signal, but in reality no signals are perfectly band-

limited and ideal low-pass filters are not realizable. For this reason, a more common

method of reconstruction is the zero-order hold (ZOH) reconstructor, displayed below

[24]:

ga(t) =

1 0 ≤ t < Ts

0 else
⇐⇒ Ga(Ω) =

sin(ΩTs
2)

Ω
2

∗ e−jΩTs
2 (3.3)

26

The ZOH reconstructor is essentially the opposite of the ideal reconstructor, with

a rect function in the time domain, and sinc function in frequency. In this case,

the reconstructor holds each sampled value until the subsequent sample, keeping

yd(n) at a constant value between samples. These sharp transitions between samples

introduce high frequency content to the signal which must be compensated for. This

compensation can be done in the digital domain (Γd(ejw)), the analog domain (Γa(Ω)),

or some combination of the two.

Unlike the ideal reconstructor, this method works reasonably well in practice.

There exist other interpolation methods (e.g., first-order hold, second-order hold,

etc.) but for the sake of this thesis these are enough to understand the digital-to-

analog conversion theory.

3.2.2 Hardware Implementation in SDR

In order for modern day SDRs to be relatively low-cost, accurate, and still operate

at RF frequencies, an analog intermediate frequency (IF) signal is typically used in

between the digital and RF domains. The method of converting an RF signal to IF

for processing is referred to as a superheterodyne receiver. At the receiver the analog

RF signal is down-converted to an IF before ADC conversion, and likewise at the

transmitter the digital signal is converted to an IF before being up-converted to RF

for transmission.

A flow graph for a typical superheterodyne analog home radio system is displayed

in Fig. 3.3. The wireless RF signal enters the device through the antenna, is amplified

by the RF amplifier and converted to a lower frequency (IF) by the analog mixer.

The local oscillator frequency is typically set by the radio tuner to select which radio

27

Figure 3.3: Flow graph of an analog receiver [26].

Figure 3.4: Flow graph of a typical SDR receiver [26].

station to tune into. After down-conversion, the IF signal is amplified and then

demodulated to recover the baseband signal. In the radio in Fig. 3.3, the baseband

signal is output through a speaker.

The software-defined alternative to the radio in Fig. 3.3 is displayed in Fig. 3.4.

In Fig. 3.4, the analog mixer, RF amplifier, and IF amplifier are contained within

the RF tuner. In the SDR, the signal is converted from analog to digital at this

point using an ADC. This IF digital signal is converted to baseband digitally using a

Digital Down-Converter (DDC). The DSP (digital signal processing) block represents

any processing that is done to the baseband signal (i.e., demodulation, decoding, etc.)

The typical transmitting SDR has a similar structure, which is displayed in Fig.

28

Figure 3.5: Flow graph of a typical SDR transmitter [26].

3.5, also taken from [26]. In this case, the signal is first processed digitally before

being sent to a digital-up-converter (DUC) to convert to IF. An interpolation filter

is needed to increase the sample rate of the signal before the digital mixing. After

the DUC, the digital signal is now at a higher frequency (IF). The digital IF signal

is then converted to analog IF through a DAC, and then up-converted to RF. Due

to high-loss at RF frequencies in wireless environments, the RF signal is amplified

before transmission.

3.2.3 SDR Hardware Examples

There are many commercially available software-defined radios with a wide range of

performance specs and price points, and a few examples are displayed below in Table

3.1. While a hobbyist may wish to use the RTL2832 USB Dongle to listen to FM

radio stations, a research group may need the performance of the USRP X310 to test

novel communication protocols. When choosing the best SDR to use in this work

there were a few things to consider.

As mentioned in a prior section, this work aims to develop a novel channel mea-

surement system using software-defined radio. The small-scale channel effects men-

tioned in Section II are especially applicable in wireless sensor networks, which tend

29

Radio Price Frequency
Range Bandwidth Transceiver? ADC

Resolution
RTL2832

USB Dongle $22.50 24 MHz -
1766 MHz 3.2 MHz No (only RX) 8-bits

HackRF One $299.95 1 MHz -
6 GHz 20 MHz half-duplex 8-bits

BladeRF x40 $420.00 300 MHz -
3.8 GHz 28 MHz full-duplex 16-bits

USRP X310 $5,290.00 DC (0 Hz) -
6 GHz 160 MHz full-duplex 16-bits

Table 3.1: Various software-defined radio hardware packages available for purchase and their
respective performance specs.

to operate in the 2.4 GHz Industrial, Scientific, and Medical (ISM) band. This band

extends from 2.40 GHz to 2.48 GHz and is the frequency range that this system will

operate over. So, a SDR which can operate at these frequencies is necessary for this

work.

Ideally the system will also be low-cost, but a trade-off among these devices is

that lower-cost devices tend to have smaller operational bandwidths. Most prior

work implementing channel measurement systems using SDR (to be discussed further

Section 3.4) use radios whose operational bandwidth exceeds the bandwidth over

which they would like to measure. One of the contributions this work makes is using

a radio with a smaller operational bandwidth than the band to be measured over,

and subsequent synchronization algorithms. Considering these factors on frequency

range, operational bandwidth, and cost, the HackRF and BladeRF radios were chosen

as the radios to be used in this work. Now that the hardware behind SDRs has been

presented, the accompanying software will be examined next.

30

Figure 3.6: The many SDR software frameworks and the years they were active [26].

3.3 GNURadio

Many software frameworks have been developed for use with software-defined radios

since their inception in the 1980’s, as shown in Fig. 3.6. GNURadio is one of the

most popular frameworks used in present time, as it is an open source software with

an extensive well documented API [31]. GNURadio allows program creation in either

Python or C++, and includes a flow-graph based SDR workbench called GNURadio

Companion (GRC). GNURadio also supports most popular SDRs on the market

today, including the HackRF and BladeRF. GNURadio was the software chosen for

this work due to its high degree of customizability, and its open-source nature.

Fig. 3.7 displays a screen shot of a basic program created in GNURadio Com-

panion which will transmit a tone at 2.401 GHz through the SDR connected to the

computer running the program. The osmocom sink block is the block used to trans-

31

Figure 3.7: A basic transmitting program in GNURadio Companion. A signal source block
and osmocom sink block are used in this program.

mit through the HackRF and BladeRF radios. The signal source block generates a

cosine wave of 10 MHz in its displayed configuration, and the osmocom sink block

transmits the signal through the affiliated radio with a center frequency of 2.4 GHz.

In GNURadio, when a 10 MHz tone is transmitted with a center frequency of 2.4 GHz,

it is up-converted to 2.401 GHz. The RF Gain, IF Gain, and BB Gain parameters

set the various gain settings for the radios.

There are two ways to develop custom functionality in GNURadio. One way

is to create custom blocks in either Python or C++ to be used in GRC. This can

be helpful when writing a custom filter, demodulator, or some other kind of DSP

functionality that will run the same way on incoming data throughout the duration

of the program. A limitation of GRC is that there is no straight forward way to

implement loops, either graphically or in custom blocks. This is due to the nature of

the protocol the GNURadio developers use for streaming data from one block to the

32

next.

The other way to develop custom functionality is to write Python scripts using

the GNURadio functional libraries. In this manner, one can still use the included

function blocks in GNURadio (as programming objects) without the limitations of

the GRC GUI environment (e.g., the lack of loops). Whenever a block diagram is

run in GRC a Python script is automatically generated. Therefore the most straight

forward approach to writing custom scripts using these libraries is to create a basic

block diagram in GRC, run the program to generate the Python script, and then edit

this script to add in whatever custom functionality is needed. This is the method

used in this work.

3.4 SDR Based Channel Characteriza-

tion

Developing systems for wireless channel measurements using software-defined radio is

a topic of recent research, and this section will detail the existing work on this topic.

The advantage of measuring wireless channels with software-defined radios is evident

both in price and portability. For the most part, even the more expensive SDRs

are significantly cheaper than the devices needed for traditional channel sounding

methods. SDR based systems also allow for easy transfer of technology. For example,

the algorithms which enable a pair of SDRs to measure a wireless channel can be saved

and loaded onto two other SDRs which now also become a measurement system.

The majority of prior work on this subject has focused on time domain measure-

ments (i.e., measurements to obtain the channel impulse response (CIR) or power

33

delay profile (PDP)). In [32] a channel sounder was created in which one software

defined radio transmitted a chirp signal, and another put the received signal through

a matched filter. Using the output from the matched filter the algorithm was able to

estimate the CIR. This system focused on time-domain information and had a mea-

surement bandwidth of 25 MHz, not very useful when considering devices operating

in the 2.4 GHz ISM band.

A second time-domain sounding method proposed in the literature is to transmit

orthogonal frequency division multiplexing (OFDM) symbols with periodic pilot sym-

bols and use OFDM channel estimation techniques [33, 34, 35]. Though this technique

works very well for SDRs with large instantaneous bandwidths, these techniques are

harder to apply to lower bandwidth devices. These measurements are also focused on

time domain information, although it is worth noting that if the measurement system

is coherent, as in [35], the frequency response of the channel can be obtained through

a Fourier transform.

For the cases relevant to this work, the frequency response over a bandwidth wider

than the bandwidth of the SDRs being used is desired, and this is not the case in

any of aforementioned systems. The system in [36] comes the closest to achieving

the desired measurement. This system uses two BladeRF SDRs to obtain frequency

response measurements over 43.5 MHz bandwidth by utilizing what the author calls

over-lapping tone and power detection algorithm. Essentially a collection of eight

tones are transmitted over a 2.4 MHz band (yielding 300 kHz resolution). After a

period of time the transmitting radio increments its center frequency by 2.4 MHz Hz,

and when the receiving radio detects that the received power has dropped (because

the tones have moved) it also moves its center frequency. To the author’s knowledge,

34

Time or
Frequency

System
Bandwidth

Measurement
Bandwidth

Center
Frequency Distributed?

J. Li et. al
[35] Both 20 MHz 200 MHz 4.9 GHz -

5.9 GHz No

H. Boeglen
et. al [33] Both 160 MHz 50 MHz 2.3 GHz and

5.8 GHz No

T.
Srisooksai
et. al [36]

Both 2.4 MHz 43.5 MHz 2.45 GHz No

N. Hosseini
et. al [32] Time 100 MHz 25 MHz 2.42 GHz No

This System Frequency 10 MHz 80 MHz 2.44 GHz Yes

Table 3.2: A summary of the significant prior works listed in chronological order.

this is the only instance in the literature of a channel measurement system based in

software-defined radios, that directly measures the frequency response. This thesis

uses the work presented in [36] as inspiration and significantly extends it. Table

3.2 provides a chronological summary of the prior works discussed along with the

specifications of the system proposed by this thesis.

3.5 Conclusion

In this chapter, software-defined radio was introduced. First the history and motiva-

tion behind radios based in software was discussed, before getting into the hardware

and software behind their operation. Lastly, existing channel measurement systems

based in SDR were examined. The next chapter will detail the operation of the system

being proposed by this thesis, and its improvements from the previously mentioned

systems for measurements in static highly multipath environments.

35

Chapter 4

Proposed Measurement System

As stated in prior chapters, this thesis aims to develop a system which can measure the

frequency response of a wireless channel using software-defined radio. The developed

system is able to measure the scalar frequency response of a 80 MHz channel to within

0.018 % σ of measurements taken with a VNA in highly multipath environments were

the signal strength can vary ∼ 40 dB over the 80 MHz bandwidth of interest and it

does this all in a distributed manner (i.e., the transmitting and receiving “ends” of

the system are not physically connected in any way). Furthermore, the system is

capable of scaling to measuring multiple links simultaneously. The operation of the

system as well as some verifying proof-of-concept measurements are presented in this

chapter.

4.1 Measurement Methodology

For purposes relevant to this work, the scalar frequency response is the information

desired about the channel, and as discussed in Section 2.3.2, frequency response mea-

36

surements are typically obtained using a Vector Network Analyzer (VNA). To make

a measurement, the VNA transmits tones at incremental frequencies and records the

magnitude and phase of the received tones, before interpolating the areas between

the measurements to obtain the frequency response of the channel. In other words,

a VNA samples the frequency response at various frequencies throughout a band.

This method of sampling the frequency response of the channel is uses in the pro-

posed system as well. Since a VNA is a coherent measurement system, the system

is capable of measuring both the magnitude and phase of the signal (i.e. it takes a

vector measurement). As mentioned in Section 2.3.2, oftentimes in highly multipath

environments the magnitude of the frequency response is more useful than the phase.

Thus for our purposes we will focus on a scalar measurement system which measures

the magnitude of the frequency response.

4.1.1 Measurements Using “Chirped” Signals

In order to transmit tones at incremental frequencies, a Linearly Frequency Modulated

(LFM) signal is used. The LFM signal, also called a “chirp” signal, is a sinusoidal

tone whose instantaneous frequency (f(t)) varies linearly with time.

x(t) = Acos(2πf(t)t+ φ)

f(t) = k

2 t+ f0

(4.1)

The equation of a LFM signal, whose frequency sweeps from f0 to f1 at a rate

of k = f1−f0
T

is displayed above in Eq. 4.1. Similar signals are commonly used in

radar and sonar applications were information is needed at incremental frequencies in

37

order to identify target distances. By using this type of signal, the frequency response

can be sampled at incremental frequencies. Since the operational bandwidth of the

radios being used is 20 MHz (28 MHz for BladeRF), it is evident that the center

frequency of the SDR will need to be stepped intermittently throughout an 80 MHz

wide measurement. In theory if repeatable measurements can be taken over the entire

20 MHz, the center frequency would need to be stepped four times.

To test if measurements taken over 20 MHz of bandwidth were repeatable, an

experiment was run where a chirp signal was transmitted from a HackRF, through a

20 dB attenuator, and fed directly (via cabling) to the receiving port of a BladeRF.

In this way, the “channel” under test was completely hardwired and constant. The

chirp signal varied from 2.4 GHz, to 2.42 GHz and stepped in 78.125 kHz increments.

The increment size was chosen such that there were 256 steps over the 20 MHz band,

so that at the receiver a 256 point FFT could be used to measure the magnitude of

each “step” of the chirp, with each FFT bin corresponding to a unique frequency of

the chirp. Technically this is not a true LFM signal, since the frequency is not swept

from one point to another continuously, but is rather stepped from one increment to

the next discretely.

The transmitting and receiving programs were run on separate computers. One

computer ran a script which generated the tones and transmitted these tones from

the HackRF, and a second computer ran a script which would sample the received

signal at the BladeRF and save the raw samples to a file. The center frequency of

both the transmitting and receiving SDRs was kept constant at 2.41 GHz. A third

script was written to compute the frequency response from this sampled data, using a

256-point FFT in post processing (it was found that computing the FFT in real-time

38

Figure 4.1: “Through” measurement testing the repeatability of frequency response measure-
ments using a chirp signal, and a BladeRF / HackRF combination. Full 20 MHz possible
bandwidth (top), the inner 10 MHz (bottom).

led to CPU overflow, resulting in dropped samples).

This measurement was conducted four consecutive times and the results of each

sweep are provided in Fig. 4.1. The top plot displays the measured frequency response

over the full measurement (20 MHz) and it can be seen that as the measurements

extend further from the center frequency, they become much less repeatable. The

bottom plot shows the inner 10 MHz (from 2.405 GHz - 2.415 GHz) of the measure-

ment, and it can be seen that this inner range is much more repeatable. Between

the four sweeps, the maximum deviation between sweeps over this 10 MHz is 0.26

dB, and the average deviation is a mere 0.06 dB. Since these measurements are re-

peatable over this bandwidth, it would be possible to calibrate out the slope of this

“through” measurement over the inner 10 MHz of the measurement. In short, while

the hardware is capable of 20 MHz of measurable bandwidth we find using only 10

MHz of bandwidth is significantly more repeatable thus will be used as the limit for

39

Figure 4.2: A schematic of the one-link measurement system. On the transmitting (TX)
end two HackRFs are stacked on top of one another, one for the synchronization link and
another for the measurement link. One the receiving (RX) end, one BladeRF is used for
both links.

any single measurement in our system.

4.1.2 Establishing Synchronization

With 10 MHz of repeatable measurement bandwidth, the system will need to switch

its center frequency eight times in order to measure over the desired 80 MHz. Due

to the distributed nature of the system, some sort of communication link needs to

exist between the two measurement ends so that messages can be sent to synchronize

these center frequency steps. Since the BladeRF is a full-duplex transceiver with

separate transmit and receive ports, the radio is capable of sending messages while

simultaneously taking measurements. As for the HackRF, only one port exists for

both transmitting and receiving, therefore two HackRF need to be used to achieve

full duplex communications. For these reasons one BladeRF is used at the receiving

end of the measurement system, and two HackRF are used at the transmitting end

of the measurement system, this is displayed in Fig. 4.2. The synchronization link is

established using an antenna directly connected to the devices, while the measurement

link is established through external antenna connected through the SMA ports at each

measurement end.

40

For the synchronization link, Gaussian frequency shift keying (GFSK) was used

as the data modulation scheme. Traditional frequency shift keying (FSK) modula-

tion involves transmitting a signal which changes frequency based on the data to be

transmitted [17]. These quick changes in frequency can cause spectral content to ap-

pear outside of the intended transmission frequencies, which could cause issues when

this is occurring in a measurement system. GFSK modulation involves passing the

digital data through a Gaussian filter before being FSK modulated [37] to reduce the

magnitude of this extraneous spectral content. GNURadio has built-in functions for

GFSK modulation and demodulation which were used to accomplish this.

This data link was established at 300 MHz so as not to interfere with the measure-

ments taking place at higher frequencies and because lower frequencies tend to be less

affected by the multipath environments this system aims to characterize. As longer

wavelengths are less susceptible to scattering effects [9], lower frequencies should be

effected less by the multipath allowing the system to have a reliable synchronization

link. The packet structure used for this data link is displayed below:

Preamble:

0xAA

Payload Length

8 - bits

Payload

16 - bits

XOR Checksum

key: 0xFAFA

For this work, the payload is always 16-bits long (thus payload length bits are

always 0x10) and contains the serial address of the radio transmitting the message.

This is especially important when characterizing over multiple links, so the transmit-

ter can differentiate between messages received from different radios. The preamble

and XOR checksum key are also always the values displayed above. Python programs

were written to control the radios while taking measurements over 10 MHz of band-

41

Figure 4.3: Flow charts displaying the program flow of the transmitting and receiving Python
programs called by the shell scripts in Fig. 4.4. fs is the frequency increment between
tones in the chirp (78.125 kHz), and the end of the band is determined when k = 128 (for
128 78.125 kHz steps over the 10 MHz band). Source code available in Appendix A.1.2
(transmitting) and A.2.2 (receiving).

42

Figure 4.4: Flow charts representing the program flow of the shell scripts used to call the
transmitting and receiving Python programs in Fig. 4.3. Source code available in Appendix
A.1.1 (transmitting) and A.2.1 (receiving).

width, while shell scripts were written to call these programs with intermittent center

frequencies. This approach allowed for the entire 80 MHz to be swept over.

The program flow of these shell scripts are displayed in Fig. 4.4, while the program

flow of the Python programs are displayed in Fig. 4.3. The transmitting and receiv-

ing programs correspond to completely separate ends of the measurement system (i.e.

control different radios and are run from different computers in a distributed fash-

ion). From Fig. 4.4 it is seen that the shell script calls the Python program at eight

incremental center frequencies (2.405 GHz, 2.415 GHz, 2.425 GHz, ... , 2.475 GHz).

At each step, the transmitting Python program transmits a chirp, and the receiving

Python program saves the sampled versions of the signals it receives to a file, until

it determines that the chirp has ended. This point is determined by detecting the

first point that a signal is present, and then waiting the approximate time it takes for

the chirp to run (15 seconds). After this 15 seconds, the program begins sending ac-

43

Figure 4.5: Flow chart displaying the program flow of the shell script which calculates the
channel frequency response from the saved .bin files. Source code available in Appendix
A.3.1.

knowledgement messages to the transmitter indicating the measurement is complete.

Once the transmitter receives one of these messages, it sets the signal amplitude to

zero and exits to the shell script (where the center frequency will be incremented).

Once the receiving program detects that the signal amplitude has been set to zero, it

also returns to the shell script, for its center frequency to be incremented as well.

4.1.3 Frequency Response Calculation

When the full shell script has completed running, there will be eight .bin files saved

to the PC of raw IQ sampled data, one corresponding to each frequency step. The

frequency response needs to be calculated from this data in post-processing and a

Python script was written for this purpose. In a similar manner to the programs

presented in Fig. 4.4 and Fig. 4.3, a Python script is written which computes the

frequency response over 10 MHz from a single .bin file, and a shell script is written

44

Figure 4.6: Flow charts displaying the program flow of the Python program called by the
shell script in Fig. 4.5. Source code available in Appendix A.3.2.

45

to call this Python script eight times for each .bin file and successfully computing the

scalar frequency response over the entire 80 MHz bandwidth.

The program flow of the shell script used to calculate the frequency response is

displayed in Fig. 4.5. This script successively calls the Python program displayed

in Fig. 4.6 eight times, specifying which file to operate on each call. Each run the

Python program opens a file and attempts to track the chirp signal as it moves across

the band using an FFT. The FFT used is a 256-point FFT and is calculated every 256

data points. Since the wireless signal is sampled every 50 ns (fs = 20 MHz) a 256-

point FFT run in real-time is calculated every 12.8 µs. Trying to do this calculation

in real-time leads to CPU overflows, so all calculations are done in post-processing. A

256-point FFT is used so that each step of the chirped signal corresponds to a bin in

the FFT, and so that the temporal resolution is sufficiently small enough that there

will be few cases were an FFT is calculated when the chirped signal is in the process

of stepping between frequencies (i.e., less of a chance of computing the FFT at times

when two signal steps are present).

Every time the Python program in Fig. 4.6 is called, it reads the binary file

step_i.bin (where i corresponds to the step number), and saves the frequency response

over this 10 MHz increment to a text file step_i.txt. The text file is significantly

smaller than the raw sampled data, as the text file will contain 128 data points for

the 10 MHz band, while the raw data file contains many more data points (e.g.

sampling at 20 MHz for 20 seconds, yields 400,000,000 data points). After the full

shell script (Fig. 4.5) has executed, the frequency response of the 80 MHz channel

will be saved in eight .txt files as step_1.txt, step_2.txt, ... , step_8.txt.

Using the chirp signal transmission, handshaking synchronization protocol, and

46

Figure 4.7: “Through” measurement taken over 2.4 GHz ISM band using chirp signal and
handshaking protocol.

FFT frequency response calculation, the frequency response of a single wireless link

can be measured in a distributed manner. The shell scripts presented in Fig. 4.4

and Fig. 4.5 are run on the same hardwired channel as the 10 MHz measurements

used in Fig. 4.1. This 80 MHz wide measurement is made twice back-to-back to test

repeatability, and displayed in Fig. 4.7 (raw data displayed in top plot). From the

top plot it can be seen that there is an impulse at the center frequency of each 10

MHz measurement increment. This impulse is present but not nearly as severe in

the 10 MHz measurements in Fig. 4.1, and is believed to be a product of switching

the center frequency during the 80 MHz measurements. A common method in image

processing used to filter impulsive noise is the median filter, which is popular due to

its ability to filter impulsive noise while preserving edges [38]. The bottom plot in

Fig. 4.7 shows the data filtered using a 5-point median filter, and it can be seen that

the impulses at the center frequencies have been removed, while the over-all shape of

the response is preserved. It will be shown later (Section 4.2) that even deep fades

are accurately preserved by the median filter.

47

Figure 4.8: Comparing a measurement taken using a VNA in the hardwired environment to
a raw SDR measurement (top) and a calibrated SDR measurement (bottom). The difference
in scale between the top and bottom plots (4 dB vs 0.1 dB and 80 MHz vs 10 MHz) is
important to note.

4.1.4 System Calibration

Fig. 4.7 shows that the system is repeatable to within ≤ 0.09 dB over 80 MHz of

bandwidth. While it is unlikely that the true frequency response of the hardwired

channel resembles the plot in Fig. 4.7, since the system is repeatable it should be

possible to calibrate out the frequency response of the measurement system itself. The

frequency response of the measurement system is found by measuring the frequency

response of the hardwired “through” cable set-up using a VNA and comparing the

VNA measurement to the measurement taken using the SDR system. This process is

displayed in Fig. 4.8. The top plot displays a raw SDR measurement, and it can be

seen that there seem to be peaks around the center frequencies and troughs around

the edges of the measurement increments. Also displayed in the top plot is a VNA

48

measurement taken over this band.

The frequency response of the measurement system is the difference between the

SDR measurement and this VNA measurement, and once the frequency response of

the system is subtracted from the SDR measurement, it matches the VNA measure-

ment closely, evident in the bottom plot of Fig. 4.8. One thing to note is that the

SDR measurement has 1025 measurement points and the VNA measurement has 551.

So to find the response of the measurement system, each point of the SDR measure-

ment is incremented over, and the closest point of the VNA measurement is used to

compute the difference. This is evident in the bottom plot of Fig. 4.8, where it can

be seen there are more points of measurement in the SDR measurement (solid line)

than the VNA measurement (dotted line). Even so, the variations between the VNA

measurement and calibrated SDR measurement are ≤ .005 dB.

4.1.5 N-link Channel Measurements

A notable feature of the proposed measurement system is its ability to scale to mea-

sure multiple links simultaneously. This could be useful in wireless measurement

campaigns, as the same system could be used to measure a single link, or N links

depending on how many radios are being used. This feature could also be useful in

wireless networks where this algorithm could be run on the devices in the network

as a subroutine to characterize multiple links in the network simultaneously. In the

proposed system, a single transmitter is used with N receiving radios, allowing for

N links to be characterized. In a mesh network of nodes if the “roles” of each node

alternated (i.e., which nodes were transmitting and receiving in the measurement

system) this would allow for all links in the mesh network to be characterized.

49

Figure 4.9: A schematic of the N -link channel measurement system being proposed.

With multiple distributed measurement links, synchronization of the system is vi-

tally important. It is imperative that each of the radios switch their center frequencies

simultaneously so that the entire transmitted chirp is captured at each receiving end

of the system. In order to achieve this, the transmitter waits to receive an acknowl-

edgement message from every receiver before incrementing its center frequency. To

prevent collisions between packets being transmitted from the various receiving ends

of the system, each measurement link is assigned a time slot over which to transmit

the acknowledgement packets. This is a multiple access scheme called Time Divi-

sion Multiple Access (TDMA) which allows for multiple communication links to be

established on a single frequency channel. By utilizing TDMA communications, the

transmitter can successfully wait to receive an acknowledgement packet from all of

the receivers before moving to the next frequency.

50

4.2 System Validation

In Section 4.1 the measurement methodology of the system presented in this work

was detailed, including the handshaking synchronization methods used in order to

measure over distributed links. In this section, hardwired and wireless validating

measurements will be presented. To validate measurements, both a VNA and the

proposed SDR system will be used to measure the same links and their results will

be compared.

When comparing the measurements of the SDR system to measurements from

a VNA, it is important to remember what exactly each system is measuring. The

S21 measurement of a VNA measures path-loss from one port of the system to the

next. In other words, the frequency response it measures is in dB, and represents the

ratio of received power to transmitted power. Since the SDR system being developed

here is a distributed system, the exact transmit power is not assumed to be known

by the receiver, and therefore it would not be possible to calculate this ratio. In-

stead the frequency response from the SDR measures the magnitude of the received

power in dBm. In order to accurately compare these frequency responses, the VNA

measurements will be normalized by the median value of the SDR measurement.

4.2.1 Hardwired

The simplest case of a hardwired link was already presented in Fig. 4.7 and Fig.

4.8 and is a direct link between transmitting end and receiving end. This hardwired

case is used for system calibration in all measurements, but of more interest are links

with multipath components, such as the Rayleigh channel displayed in Fig. 2.2 and

51

the hyper-Rayleigh channel displayed in Fig. 2.3. In both of these scenarios, the

transmitted signal reaches the receiver from multiple paths, each of which is delayed

by a different amount. This delay is related to the length of the path the signal

component traveled to reach the receiver. A hardwired simulation of a multipath

environment can be accomplished by splitting the transmitted signal and having the

signal components travel through different length cables before recombining at the

receiver.

Fig. 4.10 displays a hardwired simulation of a Ricean communication channel,

with a dominant LOS signal and a attenuated multipath signal (representing the

lumped diffuse component). The hardwired two-signal path simulation displayed in

Fig. 4.10 was measured using both the proposed SDR measurement system, and a

Vector Network Analyzer. Both measurements are displayed in Fig. 4.11. It can

be seen in this figure that this multipath creates some frequency selective fading,

with a signal strength range of 14.6 dB over the 80 MHz band. Though fading is

present in this channel, it is relatively benign compared to some of the more severe

multipath environments that will be presented later in this chapter. Over this 80

MHz of measurement, and 14.6 dB range of signal strength, the mean-squared error

(MSE) of the SDR measurements compared to VNA measurements is only 0.0042% σ

Figure 4.10: A hardwired simulation of a wireless channel with one LOS signal component,
and one multipath component. The multipath component is delayed and attenuated compared
to the LOS component.

52

Figure 4.11: Frequency response measurements of the channel displayed in Fig 4.10 along
with relevant error statistics. Note: the VNA measurement is normalized to the median
value of thee SDR measurement for comparison between the curves.

(σ is the standard deviation of the VNA measurement) and the median error is only

0.342 dB.

To compute the median error, the difference between the SDR measurement and

the nearest VNA measurement is computed at each SDR measurement point in dB,

and the median of these errors is computed. The equation for computing MSE is

displayed in equation 4.2 where n is the number of data points, Yi is the observed data

point (VNA measurement point), and Ŷi is estimated data point (SDR measurement

point).

MSE = 1
n

n∑
i=1

(Yi − Ŷi)2 (4.2)

In this case, the MSE is slightly more complicated to compute since the SDR

system measurement has 1025 measurement points, while the VNA measurement has

551. To compute MSE every SDR measurement point is compared to the nearest

VNA measurement point available. The Python function calc_error (displayed be-

53

low) successfully calculates the raw MSE, the MSE in terms of the standard deviation,

and the median error in dB. This function is used in all of the verification measure-

ments to compare the frequency response measurements calculated using the SDR

measurement system and using a VNA.
1 def calc_error(sdr_dB, vna_dB):
2 sdr_raw = 10**(sdr_dB/20.0)
3 vna_raw = 10**(vna_dB/20.0)
4 sdr_reso = len(sdr_raw)
5 vna_reso = len(vna_raw)
6 mse = 0
7 db_err = np.zeros((sdr_reso))
8 for i in range(0, sdr_reso):
9 mse += abs(sdr_raw[i] - \

10 vna_raw[int((i/float(sdr_reso))*float*vna_reso))])**2
11 db_err[i] = abs(sdr_dB[i] - \
12 vna_dB[int((i/float(sdr_reso))*float*vna_reso))])**2
13 med_dB = np.median(db_err)
14 mse = (mse / sdr_reso)
15 mse_std = mse / np.std(err_raw)
16 return mse, mse_std, med_dB

4.2.2 Wireless

After these hardwired measurements were taken, wireless measurements were taken

with the SDR system and compared to VNA measurements. The reverberation cham-

ber which was used to create the wireless channel in Fig. 2.5 is again utilized for these

measurements to generate a highly multipath environment with severe frequency se-

lective fading. The measurement set-up is displayed in Fig. 4.12 and the corre-

sponding measurements in Fig. 4.13. It can be seen from these figures that this

metallic chamber creates severe frequency selective fading over the channel with a

signal strength range of ∼40 dB. It can also be seen that the SDR system performs

remarkably well over this 80 MHz band with a MSE of only 0.0086% σ and a median

54

Figure 4.12: The single-link measurement taken within the reverberation chamber.

Figure 4.13: Frequency response measurements of the channel displayed in Fig 4.12.

55

Figure 4.14: Link 1 of the two links measured simultaneously.

Figure 4.15: Link 2 of the two links measured simultaneously.

56

error of .256 dB.

The measurement presented in Fig. 4.13 was a single-link measurement, but as

mentioned earlier in this chapter a novel aspect of this measurement system is its

ability to scale to multiple links and measure them simultaneously. To test this,

a simultaenous two-link measurement was set-up in the reverberation chamber and

SDR measurements were again compared to VNA measurements. The results of the

first link are displayed in Fig. 4.14 and the second link in Fig. 4.15 where it can be

seen that the MSE with respect to σ are 0.0389% σ and 0.0218% σ respectively and

the median errors are .631 dB and .356 dB respectively.

Often times, it is useful to view frequency response measurements statistically in

order to get an idea of the severity of the fading present. In Fig. 4.16 the cumulative

distribution functions (CDF) of each of the verification measurements are shown

(the CDF was calculated using the measurements taken using the SDR measurement

system). The CDF of the Rayleigh distribution (discussed in Section 2.2.2) is also

plotted for reference. The hyper-Rayleigh region (from Section 2.2.3) is the region to

the left of the Rayleigh curve and the Ricean region (from section 2.2.1) is the region to

the right. It can be seen from Fig. 4.16 that the single-link measurement (orange line),

and Link 2 of the two-link measurement (red) both exhibit approximately Rayleigh

fading. Link 1 of the two-link measurement (green line) seems to exhibit less severe

(i.e. Ricean) fading likely due to a stronger LOS signal component. The hardwired

measurement (blue line) exhibits the most benign fading, evident both from Fig. 4.16

and its lower measurement range (14.6 dB). The hardwired measurement statistically

exhibits traditional Ricean fading behavior, as expected from the hardwired set-up.

57

Figure 4.16: The Cumulative Distribution Functions (CDF) of each of the verification mea-
surements presented in this section along with the CDF of the Rayleigh distribution plotted
for reference.

Experiment MSE (w/
respect to σ) Median Error (dB) Measurement

Range
Hardwired .0042 % σ .343 dB 14.62 dB

Wireless - Single Link .0086 % σ .256 dB 39.89 dB
Wireless - Dual Link
(Link 1) .0389 % σ .631 dB 32.84 dB

Wireless - Dual Link
(Link 2) .0218 % σ .356 dB 33.45 dB

Table 4.1: A summary of the error statistics from the verification measurements presented
in this chapter.

4.3 Conclusion

In this chapter, the operation of the proposed measurement system was detailed along

with some verifying measurements to prove the systems accuracy. A summary of these

results are displayed in Table 4.1. From Table 4.1 it can be seen that the proposed

SDR measurement system is accurate to within a fraction of a percent of the standard

deviation of the measurements, over four orders of magnitude of measurement range.

58

More specifically the average MSE of the proposed measurement system is 0.018 % σ

operating on channels with measurement ranges reaching ∼ 40 dB, and the median

error never exceeds 0.631 dB over this measurement range. Now that the accuracy

of this measurement system has been demonstrated, the next chapter will focus on a

possible application.

59

Chapter 5

Applications

In the prior section the operation of the proposed measurement system was intro-

duced as well as validating measurements. It was shown that the system is able

to accurately measure the scalar frequency response of a 80 MHz wireless channel

to within an average MSE of 0.018 % σ and a median error within 0.631 dB with

measurement ranges extending to ∼ 40 dB of signal strength variation. The system

was also demonstrated to be able to measure multiple links simultaneously in a fully

distributed manner. In this section a possible application of this measurement system

is demonstrated.

5.1 Wireless Network in Cluttered En-

vironment

As discussed in Chapter 2 the proposed measurement system is designed with small-

scale signal propagation effects in mind. Such propagation effects are common in

60

Figure 5.1: Placement of wireless sensor on metallic cross-panel aboard the ISS for the
WISENET experiment. Retreived from [39].

reflective and cluttered environments which cause significant multipath, leading to

severe frequency selective fading (as evident in Fig. 4.13, Fig. 4.14, and Fig. 4.15).

This work aims to understand the channel conditions for low-power, low-bandwidth

systems operating in such an environment. For example, a wireless sensor network

(WSN) deployed for health monitoring purposes on a factory floor could expect sig-

nificant frequency selective fading as a result of the metallic, reflective surfaces in the

environment.

Highly reflective environments are also expected for emerging industrial machine-

to-machine (M2M) applications. These effects have been shown both within a trans-

port helicopter [3] and a Boeing 737-200 [4]. Such environments would also be ex-

pected for operation within spacecraft. Wireless sensor networks have been proposed

for the International Space Station (ISS) [40] and extensive measurement campaigns

have been undertaken to assess the feasibility of such systems [41]. NASA is in the

process of undergoing more research on the subject of WSN on the ISS, for a project

61

Figure 5.2: Three link propagation study within reverberation chamber.

called WISENET. Specifically in [42] it is said, “When operating, e.g., RF equipment

within such a cage, reflections and interferences have to be taken into account.” In

this statement NASA is referring specifically to the multipath effects of the environ-

ment. Fig. 5.1 displays the placement of one of the wireless sensors aboard the ISS

in the NASA study, it can be seen this this environment is indeed very cluttered and

has numerous metallic components which could cause reflections.

5.1.1 Experiment Set-Up

This experiment is motivated by the scenario in which a WSN is operating in one of

the aforementioned multipath environments and as one node in the network moves it

alters the links between all elements of the network. The reverberation chamber used

in Chapter 4 is again used here, a photo of the test set-up is displayed in Fig. 5.2.

The transmitting antenna (TX) can be seen on the right side of the chamber, receiver

one (RX_1) on the left side of the chamber, receiver two (RX_2) on the floor of the

chamber, and receiver three (RX_3) on a linear track. The linear track is LabVIEW

62

Figure 5.3: Two S41 (TX− > RX3)
measurements taken before and after
moving RX3 5cm.

Figure 5.4: CDF of all Link 3 (S41)
measurements taken at 14 locations
along the linear track. Black line is
Rayleigh CDF plotted for reference.

controlled, and for this test moves to 14 different positions, in 5 cm increments (∼ λ
2).

The antennas are connected to SDRs located outside of the reverberation chamber,

and the system is run in a distributed manner from multiple computers. At each

point on the track, the channel characterization algorithm is run on the three links

simultaneously. The path loss measurements of the three links will be referred to as

S21 (transmitter - link 1), S31 (transmitter - link 2), and S41 (transmitter - link 3).

5.1.2 Test Results

Small-scale fading is by definition fading that results from small changes in frequency

or position. Changes due to small changes in frequency have already been examined

in this thesis, but now small changes in position will be looked at as well. Fig. 5.3

shows how much the frequency response can change after a shift in position of approx-

imately a half wavelength. These significant changes could cause issues for a wireless

63

Figure 5.5: Two S21 (TX− > RX1)
measurements taken before and after
moving RX3 5cm.

Figure 5.6: Two S31 (TX− > RX2)
measurements taken before and after
moving RX3 5cm.

Figure 5.7: CDF of all Link 1 (S21)
measurements taken at 14 locations
along the linear track. Black line is
Rayleigh CDF plotted for reference.

Figure 5.8: CDF of all Link 2 (S31)
measurements taken at 14 locations
along the linear track. Black line is
Rayleigh CDF plotted for reference.

64

Figure 5.9: Cumulative distribution functions of all 42 (14 measurements over three links)
measurements taken in this experiment, with the CDF of the Rayleigh distribution plotted
for reference.

device operating over this bandwidth as frequencies which were usable at the original

position are now not usable, and vice-versa. Looking at all 14 Link 3 measurements

statistically in Fig. 5.4, it can be seen that while most measurements seem to resem-

ble the Rayleigh distribution, there is a wide range of statistical severities of fade. In

other words, some locations on the track may be “better” to communicate at than

others. If sensors in a WSN ran this algorithm, or a similar one, to characterize the

environment around them then real-time decisions could be made about the optimal

frequency and/or position to operate at.

One could likely infer that moving a node in a wireless network would alter the

characteristics of the link between that node and another. But what is more inter-

esting is the fact that in this highly multipath environment, changing the position of

RX3 will not only affect the link between TX and RX3, but will also significantly

alter the link between TX and RX1 or RX2. This is due to severity of the small-

scale effects in this environment. Fig. 5.5 and Fig. 5.7 show significant changes in

65

Ricean Approximately
Rayleigh hyper-Rayleigh

Link 3 6 (42.9 %) 2 (14.3 %) 6 (42.9 %)
Link 1 11 (78.5 %) 1 (7.1 %) 2 (14.3 %)
Link 2 8 (57.2 %) 4 (28.6 %) 2 (14.3 %)

All Links 25 (59.5 %) 7 (16.7 %) 10 (23.8 %)

Table 5.1: A summary of the fade-types of all measurements taken in this experiment.

link 1 due to 5cm changes in the position of RX3, and Fig. 5.6 and Fig. 5.8 show

the same for link 2. From this data it is clear that as one single node in a network

moves throughout a cluttered environment, it becomes important to simultaneously

be characterizing all possible communication links as all of the links will be effects

from these movements.

Fig. 5.9 shows the wide range of channel scenarios that were measured in this ex-

periment and Table 5.1 displays the percentage of various multipath scenarios present

throughout this experiment. It was determined whether a measurement was Ricean,

approximately Rayleigh, or hyper-Rayleigh using the 10 % fade-depth (10%FD) pa-

rameter [43]. The 10%FD is the point at which 10% of the channel data is more

severe, and 90% is less severe. This metric for Rayleigh fading is approximately -8.2

dB, and channels whose 10%FD fell within ±0.5 dB were considered approximately

Rayleigh, while lower values were labeled hyper-Rayleigh and higher values were la-

beled Ricean. It can be seen from Table 5.1 and Fig. 5.9 that there is a wide range of

possible channel scenarios present in this four node, three link, network that results

from moving one node 70 cm. An algorithm which could be run alongside existing

functionality on a wireless node which employs SDR would be extremely useful. It

could potentially allow a network to identify optimal operating points and adjust

accordingly.

66

5.2 Conclusion

This chapter presented a case for a possible application of the proposed SDR based

channel measurement system. These results are reflective of the channels a network

would be expected to operate over within the environments discussed at the beginning

of this chapter. Through a wireless measurement campaign using the proposed SDR

system it was shown that all links in a three link network were significantly altered by

moving a single receiver in 5 cm increments. From these measurements, decisions can

be made about optimal node placements and frequencies of operation. An argument

is made for the usefulness of such a channel measurement algorithm as a means of

characterizing the links in a network of wireless devices alongside other functionality

as a means of making decisions about network operation.

67

Chapter 6

Conclusions and Future Work

6.1 Contributions

This work aimed to develop a novel channel measurement system using a software-

defined radio (SDR) platform. The system’s design and performance has been pre-

sented throughout this thesis. As discussed in Section 3.4 on prior work, SDR-based

channel measurement systems are an emerging area of research and there are a few ex-

amples in the literature of such systems. Most of these systems focus on time-domain

measurements and use SDRs whose operational bandwidth exceed the bandwidth of

the channel they are measuring. In addition to this these systems are not always

distributed. The proposed system measures scalar frequency response over a 80 MHz

bandwidth (utilizing 10 MHz of repeatable operational bandwidth) in a completely

distributed manner. Specifically, the major contributions of the system are as follows:

1. Development of a technique for measuring the scalar frequency response of a

wireless channel using SDR and a “chirped” tone.

68

In Section 4.1.1 the method of measuring scalar frequency response in the pro-

posed system was discussed. The system transmits a tone at incremental fre-

quencies measuring the magnitude of the tone at each point, effectively sampling

the frequency response in the frequency domain.

2. Development of an algorithm for the extension of synchronized measurement be-

yond the SDR operational bandwidth for multiple distributed measurement links.

As mentioned above, the repeatable operational bandwidth of the SDR system

is found to be 10 MHz, so the center frequencies of the SDRs must be changed

eight times throughout a 80 MHz measurement. A frequency stepping and

handshake protocol presented in Section 4.1.2 was developed to synchronize

the changing of center frequencies between measurement ends. This algorithm

was extended in Section 4.1.5 to allow synchronization across multiple simul-

taneous measurement links utilizing Time Division Multiple Access (TDMA)

techniques to transmit handshake messages at different time-slots for various

receiving ends of the system. To the author’s knowledge, these algorithms are

significantly different than anything in the literature being used in SDR based

channel measurement systems.

3. Demonstration of the proposed SDR based system when compared to measure-

ments taken using a Vector Network Analyzer (VNA) to demonstrate the sys-

tems accuracy.

Measurements presented in Section 4.2 demonstrate the system’s ability to mea-

sure channels with a mean-squared error of 0.018% σ and a median error not

exceeding 0.631 dB when compared to VNA measurements. These measure-

ments were taken over a 80 MHz bandwidth with a signal-strength range of

69

∼40 dB.

6.2 Future Work

There are several possible directions this work could be taken in the future. In this

section, possible future work is discussed. Specifically, future work involving extend-

ing the measurement system to a vector measurement system, and a case specific

frequency-doubling measurement system are discussed.

6.2.1 Phase Measurements

As mentioned in Section 2.3.2, in this particular application the scalar frequency

response is arguably the most valuable information about the wireless channel. This

is because signal reliability is heavily dependent on the signal-to-noise ratio (SNR)

and a low magnitude signal is problematic. In some applications phase information

can be important as well. For example, when both the time and frequency domain

information on the channel are desired the phase information is needed to calculate

impulse response from frequency response.

Due to the system being completely distributed, the local oscillators (LOs) used

at the receiving and transmitting ends of the system are inherently asynchronous.

Without these LOs being synchronized, it will not be possible to get accurate phase

measurements. There exist methods of synchronizing the clocks of SDRs wirelessly

(e.g., available as extension to USRP SDRs [44], claims 25 ppb accuracy by “locking

too” GPS antenna) and as such we had hoped to add optional phase measurements to

our system. The clock of the HackRF radio are accurate to within ± 10 ppm and the

70

Figure 6.1: Three phase measurements taken in a hardwired environment over 80 MHz
bandwidth.

BladeRF clock accurate to within ± 1 ppm, so for phase measurements two BladeRF

would be used. The system in [36] presented vector measurements (i.e., magnitude

and phase) over a 43.5 MHz bandwidth using two BladeRF, but their methods of

calibration to achieve repeatable measurements are not clear.

The BladeRF have an option to be configured for MIMO (multiple-input multiple-

output) communications by synchronizing the clocks of multiple radios. This is done

by connecting the clock pins on the board, and configuring one radio to be “master”

and the other to be “slave.” In this way, the LO on the master device drives the

LO on the slave device. Two BladeRF radios were configured in this manner and

the frequency response was calculated using the methods discussed in Section 4.1,

but this time instead of just calculating the FFT magnitude at each frequency bin,

the FFT phase was calculated as well. This test was run three times on a hardwired

set-up both with and without the clock configuration discussed above, and the results

are displayed in Fig. 6.1.

Fig. 6.1 displays an attempt at extending the scalar measurements presented in

this thesis to a vector measurement system which also measures phase. The phase

71

data was “unwrapped” using the Python’s NUMPY library, but as seen are not re-

peatable. A possible cause of this is that even though the clocks are synchronized to

within ± 1ppm, there is still a variable phase offset that changes randomly between

measurements preventing them from being repeatable. Reconciling this phase offset

may lead to repeatable phase measurements.

6.2.2 Frequency Doubling Measurements

A benefit of a channel measurement system based in software is that the system

can be extended and customized to certain measurement scenarios relatively easily.

One such example in a multidisciplinary UVM project is a system which could be

developed for the study in [45]. In this paper, wireless sensor interrogation is studied

using a passive frequency doubling reflectenna which transmits a signal at double

the frequency of the received signal. Specifically, a 1.28 GHz tone is transmitted

towards the reflectenna and a 2.56 GHz tone is received. In this particular study, the

reflectenna is buried at varying depths in soil in order to investigate the effects of soil

characteristics on signal propagation; a schematic of the test set-up is displayed in

Fig. 6.2.

The tasks of the signal generator (SG in Fig. 6.2) and spectrum analyzer (SA in

Fig. 6.2) could be replaced by this SDR system with minimal modifications. It would

in theory be possible to customize this measurement so that it transmits a signal at

frequency f and measures the signal at frequency 2f . This would allow for a more

reconfigurable testing system (i.e. measuring at different frequency pairs than 1.28

GHz / 2.56 GHz) and would also allow for frequency bands to be swept over. For

this specific project it is desired to implement this wireless interrogator on a drone,

72

Figure 6.2: The test set-up used in [45].

and therefore there would be other wireless communication duties of the interrogator

beyond just the frequency doubling measurements. An SDR based interrogator is

a good candidate for this application as SDR is highly configurable, and the same

hardware used for the measurements could be used for other communication needs

with relative ease.

Preliminary testing of the system for this application has shown that the SDR

system can detect 2.56 GHz signals as low as -100 dBm, which will be imperative

to the system working for this application. Testing has also shown that when trans-

mitting a 1.28 GHz signal at -10 dBm using the SDR system, a significant harmonic

occurs at 2.56 GHz which interferes with the measurements. The next step in this

project is to mitigate this harmonic either with modifications to BladeRF firmware

or with an external filter.

73

6.3 Final Words

Measuring wireless propagation in an environment gives insights into what systems

will be able to operate in a particular environment as well as how these systems

will operate. This information is vitally important to wireless applications in highly

reflective environments, such as those which are to be expected in emerging machine-

to-machine applications. Many devices that will operate in these environments will

be low-power, low-bandwidth devices (e.g. wireless sensor networks adhering to IEEE

802.15.4 specifications). Therefore it is especially useful to take propagation measure-

ments in these environments as to determine optimal device locations and optimal

frequency channel selection. An example of such a scenarios is the scenario presented

in Chapter 5 where the wireless links between a network of four nodes (one TX, three

RX) was continuously characterized as one of the nodes in the network moved. In

this chapter it was seen that the information gained from these measurements can be

very useful when operating a network in a highly reflective environment.

This work presents a novel, low-cost, distributed method of taking these wireless

channel measurements. The system has the ability to make channel measurement

campaigns more accessible as it is more portable than typical channel measurement

devices (e.g. vector network analyzers), and also has the ability to be run alongside

existing functionality on wireless devices which already employ SDRs. Using this

algorithm, a node in a wireless network such as the one presented in Chapter 5

could be periodically characterizing the environment around it and making real-time

decisions on node placement, antenna configurations, etc. This work provides the

proof-of-concept of a low-cost wireless channel measurement system based in software-

74

defined radio.

75

Bibliography

[1] A. Meola, “What is the Internet of Things (IoT)? Meaning & Definition,” Busi-
ness Insider [Online] Available: https://www.businessinsider.com/internet-of-
things-definition. [Accessed: July 20, 2018]

[2] K. Gordon, “M2M (machine-to-machine) - Statistics &
Facts,” Statista: The Statistics Portal [Online] Available:
https://www.statista.com/topics/1843/m2m-machine-to-machine. [Accessed:
July 20, 2018]

[3] R. Ketcham, J. Frolik, J. Covell, “Propagation Measurements and Statisti-
cal Modeling for Wireless Sensor Systems Aboard Aircraft,” IEEE Trans. on
Aerospace and Electronic Systems, vol. 44, pp. 1609-1615, October 2008

[4] J. Chuang, N. Xin, H. Huang, S. Chiu, and D. Michelson, “UWB Radiowave
Propagation within the Passenger Cabin of a Boeing 737-200 Aircraft,” In Proc.
IEEE 65th Vehicular Technology Conference, Spring 2007

[5] J. Frolik, “Deciwavelength-Scale Fade Mitigation,” In Proc. IEEE European Con-
ference on Antennas and Propagation, 2014

[6] J. Frolik, “A Case for Considering Hyper-Rayleigh Fading Channels”, IEEE
Trans. on Wireless Communications, vol. 6, pp. 1235-1239, April, 2007

[7] J. Frolik, T. Weller, S. DiStasi, J. Cooper, “A Compact Reverberation Chamber
for Hyper-Rayleigh Channel Emulation,” IEEE Trans. Antennas Propagation,
vol. 57, pp. 3962-3968, December, 2009.

[8] J. Jamison, B. Hewgill, J. Frolik, “A Configurable and Repeatable Multipath
Channel Emulator,” In Proc. IEEE Antennas and Propagation Society Meeting,
July 2017

[9] T. Rappaport, Wireless Communications: Principle and Practice 2nd Ed Upper
Saddle River NJ, Prentice Hall PTR 2001

76

[10] Bernard Skyler, “Rayleigh Fading Channels in Mobile Digital Communication
Systems Part I: Characterization,” IEEE Communications Magazine vol. 35,
Issue 9, September 1997

[11] S. Kay, Intuitive Probability and Random Processes Using MATLAB 4 ed.,
Springer Science+Business Media LLC 2006

[12] G. Durgin, T. Rappaport, D. de Wolf, “New Analytical Models and Probability
Density Functions for Fading in Wireless Communications,” IEEE Trans. on
Communications, vol. 50, pp. 1005-1015, Aug. 2002

[13] T. Rappaport, “Characterization of UHF Multipath Radio Channels in Factor
Buildings”, IEEE Trans. on Antennas and Propagation, vol. 37, pp 1058-1069,
August 1989

[14] T. Rappaport, S. Seidel, R. Singh, “900-MHz Multipath Propagation Measure-
ments for U.S. Digital Cellular Radiotelephone,” IEEE Trans. on Vehicular Tech-
nologies, vol. 39, pp 132-139, May 1990

[15] Cox D. C., “Delay Doppler Characteristics of Multipath Delay Spread and Av-
erage Excess Delay for 910 MHz Urban Mobile Radio Paths,” IEEE Trans. on
Antennas and Propagation, vol. 20, pp 625-635, September 1972

[16] J.-J. van de Beek, O Edfors, M. Sandell, S.K. Wilson, P.O. Borjesson, “On
channel estimation in OFDM systems,” In Proc. IEEE Vehicular Technology
Conference, July 1995

[17] B.P. Lathi, Z. Ding, Modern Digital and Analog Communication Systems, 4 ed.,
Oxford University Press 2010

[18] 802.15.4-2015 - IEEE Standard for Low-Rate Wireless Networks, ICS: 35.110 -
Networking

[19] “ZigBee Specification FAQ,” ZigBee Alliance [Online], Available:
https://web.archive.org/web/20130627172453/http://www.zigbee.org/Specifications
/ZigBee/FAQ.aspx

[20] “A short history of software-defined radio (SDR) technology”, nutaq.com [On-
line], Available: https://www.nutaq.com/blog/short-history-software-defined-
radio-sdr-technology

[21] G.D. Space Systems Technology Group, “New Research Lab Leads to Unique
Radio Receiver,” E-Systems Team Magazine, vol. 5, pp. 6-7, 1985

77

[22] R.J. Lackey and D.W. Upmal, “Speakeasy: The Military Software Radio,” IEEE
Communications Magazine, vol. 33, pp. 56-61, May 1995

[23] J. Mitola, “Software Radios: Survey, Critical Evaluation and Future Directions,”
IEEE Aerospace and Electronic Systems Magazine, vol. 8, pp. 25-36, April 1993

[24] Oppenheim, Schafer, Discrete-time Signal Processing 3rd Ed Prentice Hall 2009

[25] A. Vaccari, EE 275. Class Lecture, Topic: “Digital Processing of Analog Sig-
nals,” Department of Electrical and Biomedical Engineering, The University of
Vermont, Burlington Vermont, Spring 2018

[26] Machado-Fernández, José Raúl. (2015). “Software Defined Radio: Basic
Principles and Applications”. Facultad de Ingeniería, 24(38), 79-96. [Online]
Available: http://www.scielo.org.co/scielo.php?script=sci_arttext&pid=S0121-
11292015000100007&lng=en&tlng=en. [Accessed: June 18, 2018]

[27] “Software Defined Radio Receiver USB Stick - RTL2832 w/R820T,”
adafruit.com, [Online] Available: https://www.adafruit.com/product/1497

[28] “Great Scott Gadgets HackRF One - Software Defined Radio,” adafruit.com,
[Online] Available: https://www.adafruit.com/product/3583

[29] “bladeRF x40,” sparkfun.com [Online] Available:
https://www.sparkfun.com/products/14041

[30] “USRP X310,” ettus.com [Online] Available:
https://www.ettus.com/product/details/X310-KIT

[31] “About GNU Radio,” gnuradio.org [Online] Available:
https://www.gnuradio.org/about/

[32] N. Hosseini, D. Matolak, “Wide Band Channel Characterization for Low Altitude
Unmanned Aerial System Communication Using Software Defined Radio,” In
Proc. Integrated Communications, Navigation, Surveillance Conference (ICNS),
2018

[33] H. Boeglen, A. Traore, M. Peinado, R. Lefort, and R. Vauzelle, “An SDR Based
Channel Sounding Technique for Embedded Systems,” In Proc. IEEE 11th Eu-
ropean Conference on Antennas and Propagation (EUCAP) 2017

[34] H. Mukhtar, A. Al-Dweik, M. Masouridis, and T. Stouraitis, “Performance Eval-
uation of Time-Domain Interleaved OFDM Systems using Software Defined Ra-
dio Platforms,” In Proc. IEEE International Conference on Electrical and Com-
puting Technologies and Applications (ICECTA) 2017

78

[35] J. Li, Y. Zhao, C. Tao, and B. Ai, “System Design and Calibration for Wideband
Channel Sounding With Multiple Frequency Bands,” IEEE Access (vol 5) 2017

[36] T. Srisooksai, J. Takada, and K. Saito, “Portable Wide-band Channel Sounder
Based Software Defined Radio for Studying The Radio Propagation in An Out-
door Environment,” In Proc. IEEE International Symposium on Antennas and
Propagation (ISAP) 2017

[37] S. K. Rakesh, “Gaussian Frequency-shift Keying With GNU Radio,” scribd.com
[Online] Available: https://www.scribd.com/doc/254559988/Gaussian-
Frequency-shift-Keying-With-GNU-Radio [Accessed: June 29, 2018]

[38] A. Vaccari, EE 275. Class Lecture, Topic: “Nonlinear Digital Filters,” Depart-
ment of Electrical and Biomedical Engineering, The University of Vermont,
Burlington Vermont, Spring 2018

[39] “WiSe-Net - WIrelessSEnsor-NETwork (DLR)” eea.spaceflight.esa.int/portal/
[Online] Available: http://eea.spaceflight.esa.int/portal/exp/?id=9448 [Ac-
cessed: July 5, 2018]

[40] H.J. Beestermöller, H.-J. Borchers, H. Luttmann, J. Sebald, M.-C. Sinnreich,
M. Schneider and V. Schmid, “Wireless-Sensor Networks in Space Technology
Demonstration on ISS”, in Proc. Dresdner Sensor-Symposium 2015, Dresden,
Germany, Dec 7-9 2015

[41] M. Drobczyk, C. Strowik. C. Philpot, “A Wireless Communication and Position-
ing Experiment for the ISS Based on IR-UWB”, in Proc. IEEE 2017 Wireless
Communications and Networking Conference (WCNC) 2017

[42] “WISENET (WISENET) - 03.21.18,” nasa.gov [Online] Available:
https://www.nasa.gov/mission_pages/station/research/experiments/1775.html
[Accessed: July 5, 2018]

[43] J. Frolik, “A Practical Metric for Fading Environments”, IEEE Wireless Com-
munications Letters, Vol. 2, No. 2, April 2013.

[44] “Board Mounted GPSDO (OCXO) Recommended for USRP X300/X310” et-
tus.com [Online] Available: https://www.ettus.com/product/details/GPSDO-
MINI [Accessed: August 6, 2018]

[45] J. Frolik, J. Lens, M. Dewoolkar, and T. Weller, “Effects of Soil Characteristics
on Passive Wireless Sensor Interrogation,” IEEE Sensors Journal, Vol. 18, No.
8, April 2018

79

Appendix A
Source Code

This appendix includes the source code for the operation of the measurement system
discussed throughout this thesis.

A.1 Transmitter
This section includes the code written for the transmitting end of the measurement
system. Code is included that is used for the transmitter, in a multi-link measurement
system.

A.1.1 Shell Script
1 #!/bin/bash
2

3 echo "2.4 GHz ISM Frequency Sweep - Transmitter"
4

5 for ((i = 0; i < 8; i = i+1))
6 do
7 python TX_threelink.py -c 2.4${i}5e9 -a 10
8 echo "wait..."
9 done

10

11 echo "Done"

A.1.2 Python Code
1 #!/usr/bin/env python2
2 # -*- coding: utf-8 -*-

80

3 ##
4 # GNU Radio Python Flow Graph
5 # Title: Chirp Tx
6 # Generated: Mon Apr 23 11:07:02 2018
7 ##
8

9 from gnuradio import analog
10 from gnuradio import blocks
11 from gnuradio import digital
12 from gnuradio import eng_notation
13 from gnuradio import filter
14 from gnuradio import gr
15 from gnuradio.eng_option import eng_option
16 from gnuradio.filter import firdes
17 from optparse import OptionParser
18 import osmosdr
19 import threading
20 import time
21 import numpy as np
22 import os
23

24

25 class chirp_tx(gr.top_block):
26

27 def __init__(self):
28

29 # Command line parsing
30 parser = OptionParser()
31 parser.add_option("-c", "--center", dest="center_freq",
32 help="Desired Center Frequency", default=2.405e9)
33 parser.add_option("-a", "--amplitude", dest="amplitude",
34 help="Signal Amplitude (of Sine Source)", default=1)
35 parser.add_option("-e", "--end", dest="end",
36 help="End program when sweep finishes (instead of waiting for ack)",
37 default=False, action="store_true")
38 (options, args) = parser.parse_args()
39

40

41 gr.top_block.__init__(self, "Chirp Tx")
42

43 ##
44 # Variables
45 ##
46 self.variable_function_probe_0 = variable_function_probe_0 = 0
47 self.start_freq = start_freq = float(options.center_freq)
48 self.samp_rate = samp_rate = 20e6
49 self.freq = freq = 0
50 self.ampl = ampl = float(options.amplitude)

81

51 self.req_ampl = float(options.amplitude)
52 self.end = options.end
53

54 ##
55 # Blocks
56 ##
57 self.square = blocks.probe_signal_f()
58 def _variable_function_probe_0_probe():
59 while True:
60 val = self.square.level()
61 try:
62 self.set_variable_function_probe_0(val)
63 except AttributeError:
64 pass
65 time.sleep(1.0 / (10))
66 _variable_function_probe_0_thread = threading.Thread(target =
67 _variable_function_probe_0_probe)
68 _variable_function_probe_0_thread.daemon = True
69 _variable_function_probe_0_thread.start()
70 self.osmosdr_sink_0 = osmosdr.sink(args="numchan=" + str(1) + " "
71 + "hackrf=391890cf")
72 self.osmosdr_sink_0.set_time_now(osmosdr.time_spec_t(time.time()),
73 osmosdr.ALL_MBOARDS)
74 self.osmosdr_sink_0.set_sample_rate(samp_rate)
75 self.osmosdr_sink_0.set_center_freq(start_freq, 0)
76 self.osmosdr_sink_0.set_freq_corr(0, 0)
77 self.osmosdr_sink_0.set_gain(6, 0)
78 self.osmosdr_sink_0.set_if_gain(0, 0)
79 self.osmosdr_sink_0.set_bb_gain(0, 0)
80 self.osmosdr_sink_0.set_antenna("", 0)
81 self.osmosdr_sink_0.set_bandwidth(0, 0)
82

83 self.blocks_throttle_0 = blocks.throttle(gr.sizeof_float*1,
84 samp_rate,True)
85 self.analog_sig_source_x_1 = analog.sig_source_f(samp_rate,
86 analog.GR_SQR_WAVE, 5, 1, 0)
87 self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate,
88 analog.GR_SIN_WAVE, freq, self.ampl, 0)
89

90 ##
91 # Connections
92 ##
93 self.connect((self.analog_sig_source_x_0, 0), (self.osmosdr_sink_0, 0))
94 self.connect((self.analog_sig_source_x_1, 0),
95 (self.blocks_throttle_0, 0))
96 self.connect((self.blocks_throttle_0, 0), (self.square, 0))
97

98 def get_variable_function_probe_0(self):

82

99 return self.variable_function_probe_0
100

101 def set_variable_function_probe_0(self, variable_function_probe_0):
102 self.variable_function_probe_0 = variable_function_probe_0
103

104 def get_start_freq(self):
105 return self.start_freq
106

107 def set_start_freq(self, start_freq):
108 self.start_freq = start_freq
109 self.osmosdr_sink_0.set_center_freq(self.start_freq, 0)
110

111 def get_samp_rate(self):
112 return self.samp_rate
113

114 def set_samp_rate(self, samp_rate):
115 self.samp_rate = samp_rate
116 self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate)
117 self.analog_sig_source_x_1.set_sampling_freq(self.samp_rate)
118 self.blocks_throttle_0.set_sample_rate(self.samp_rate)
119 self.osmosdr_sink_0.set_sample_rate(self.samp_rate)
120

121 def get_freq(self):
122 return self.freq
123

124 def set_freq(self, freq):
125 self.freq = freq
126 self.analog_sig_source_x_0.set_frequency(self.freq)
127

128 def get_ampl(self):
129 return self.ampl
130

131 def set_ampl(self, ampl):
132 #self.ampl = ampl
133 self.analog_sig_source_x_0.set_amplitude(ampl)
134

135 class handshake_RX(gr.top_block):
136

137 def __init__(self):
138 gr.top_block.__init__(self, "Handshake Rx")
139

140 ##
141 # Variables
142 ##
143 self.variable_function_probe_1 = variable_function_probe_1 = 0
144 self.samp_rate = samp_rate = 10e6
145

146 ##

83

147 # Blocks
148 ##
149 self.data_probe = blocks.probe_signal_vf(1024)
150 def _variable_function_probe_1_probe():
151 while True:
152 val = self.data_probe.level()
153 try:
154 self.set_variable_function_probe_1(val)
155 except AttributeError:
156 pass
157 time.sleep(1.0 / (1e6))
158 _variable_function_probe_1_thread = threading.Thread(target =
159 _variable_function_probe_1_probe)
160 _variable_function_probe_1_thread.daemon = True
161 _variable_function_probe_1_thread.start()
162 self.osmosdr_source_0 = osmosdr.source(args="numchan=" + str(1) + " "
163 + "hackrf=383f27cf")
164 self.osmosdr_source_0.set_time_now(osmosdr.time_spec_t(time.time()),
165 osmosdr.ALL_MBOARDS)
166 self.osmosdr_source_0.set_sample_rate(samp_rate)
167 self.osmosdr_source_0.set_center_freq(302e6, 0)
168 self.osmosdr_source_0.set_freq_corr(0, 0)
169 self.osmosdr_source_0.set_dc_offset_mode(0, 0)
170 self.osmosdr_source_0.set_iq_balance_mode(0, 0)
171 self.osmosdr_source_0.set_gain_mode(True, 0)
172 self.osmosdr_source_0.set_gain(14, 0)
173 self.osmosdr_source_0.set_if_gain(25, 0)
174 self.osmosdr_source_0.set_bb_gain(30, 0)
175 self.osmosdr_source_0.set_antenna("", 0)
176 self.osmosdr_source_0.set_bandwidth(0, 0)
177

178 self.low_pass_filter_0 = filter.fir_filter_ccf(1, firdes.low_pass(
179 10, samp_rate, 1e6, 100e3, firdes.WIN_HAMMING, 6.76))
180 self.fir_filter_xxx_0 = filter.fir_filter_fff(8, ((0, 1, 0)))
181 self.fir_filter_xxx_0.declare_sample_delay(0)
182 self.digital_gfsk_demod_0 = digital.gfsk_demod(
183 samples_per_symbol=125,
184 sensitivity=500e-3,
185 gain_mu=0.175,
186 mu=0.5,
187 omega_relative_limit=0.005,
188 freq_error=0.0,
189 verbose=False,
190 log=False,
191)
192 self.blocks_stream_to_vector_1 = blocks.stream_to_vector(
193 gr.sizeof_float*1, 1024)
194 self.blocks_multiply_xx_0 = blocks.multiply_vcc(1)

84

195 self.blocks_char_to_float_0 = blocks.char_to_float(1, 1)
196 self.analog_simple_squelch_cc_0 = analog.simple_squelch_cc(-50, 500e-3)
197 self.analog_sig_source_x_0 = analog.sig_source_c(samp_rate,
198 analog.GR_COS_WAVE, -3e6, 1, 0)
199

200 ##
201 # Connections
202 ##(-
203 self.connect((self.analog_sig_source_x_0, 0),
204 (self.blocks_multiply_xx_0, 1))
205 self.connect((self.analog_simple_squelch_cc_0, 0),
206 (self.digital_gfsk_demod_0, 0))
207 self.connect((self.blocks_char_to_float_0, 0), (self.fir_filter_xxx_0, 0))
208 self.connect((self.blocks_multiply_xx_0, 0), (self.low_pass_filter_0, 0))
209 self.connect((self.blocks_stream_to_vector_1, 0), (self.data_probe, 0))
210 self.connect((self.digital_gfsk_demod_0, 0),
211 (self.blocks_char_to_float_0, 0))
212 self.connect((self.fir_filter_xxx_0, 0),
213 (self.blocks_stream_to_vector_1, 0))
214 self.connect((self.low_pass_filter_0, 0),
215 (self.analog_simple_squelch_cc_0, 0))
216 self.connect((self.osmosdr_source_0, 0), (self.blocks_multiply_xx_0, 0))
217

218 def get_variable_function_probe_1(self):
219 return self.variable_function_probe_1
220

221 def set_variable_function_probe_1(self, variable_function_probe_1):
222 self.variable_function_probe_1 = variable_function_probe_1
223

224 def get_samp_rate(self):
225 return self.samp_rate
226

227 def set_samp_rate(self, samp_rate):
228 self.samp_rate = samp_rate
229 self.analog_sig_source_x_0.set_sampling_freq(self.samp_rate)
230 self.low_pass_filter_0.set_taps(firdes.low_pass(10, self.samp_rate, 1e6,
231 100e3, firdes.WIN_HAMMING, 6.76))
232 self.osmosdr_source_0.set_sample_rate(self.samp_rate)
233

234 def get_data(self):
235 vals = self.data_probe.level()
236 return vals
237

238 #Converts list of integers representing binary number (ex: [1,0,1,0]) to
239 #integer (ex: 10)
240 def frombit_toint(self, ls):
241 length = len(ls)
242 num = 0

85

243 for i in range(length, 0, -1):
244 num += ls[i-1] * 2 ** (length - i)
245 return num
246

247 #Convert list of integers representing binary number (ex: [1,0,1,0]) to
248 #bit string
249 def frombit_tobyte(self, ls):
250 return bin(self.frombit_toint(ls))
251

252 #Calculate checksum (XOR)
253 def checkcalc(self, key, payload):
254 return key ^ self.frombit_toint(payload)
255

256

257 def main():
258

259 def fromint_tobit(num):
260 bit = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
261 for i in range(15, -1,-1):
262 bit[i] = (num - (num % (2**i))) / (2**i)
263 num = num % (2**i)
264 bit.reverse()
265 return bit
266

267 chrp_tx = chirp_tx()
268 chrp_tx.start()
269

270 s_time = time.time()
271

272 FIFO = '/tmp/sddvna.fifo'
273

274 fft_bins = 128*2
275 fft_reso = (chrp_tx.samp_rate / fft_bins)
276

277

278 last_probe = 0
279 l_time = time.time()
280 tot = 0
281 cnt = 0
282 chrp_tx.set_ampl(0)
283 time.sleep(5)
284 first = True
285 if chrp_tx.start_freq != 2.475e9:
286 for i in range((fft_bins/4),((3*fft_bins/4))):
287 chrp_tx.set_freq(i*fft_reso - chrp_tx.samp_rate/2)
288 if first:
289 chrp_tx.set_ampl(chrp_tx.req_ampl)
290 time.sleep(.1)

86

291 first = False
292

293 print("i: %d" % (i))
294 print("TX Freq: %.3f" % (chrp_tx.get_freq() + chrp_tx.start_freq))
295

296 waiting = True
297 start = time.time()
298 while waiting:
299 if time.time() - start > .1:
300 waiting = False
301 cnt += 1
302 else:
303 for i in range((fft_bins/4),((3*fft_bins/4)+1)):
304 chrp_tx.set_freq(i*fft_reso - chrp_tx.samp_rate/2)
305 if first:
306 chrp_tx.set_ampl(chrp_tx.req_ampl)
307 time.sleep(.1)
308 first = False
309

310 print("i: %d" % (i))
311 print("TX Freq: %.3f" % (chrp_tx.get_freq() + chrp_tx.start_freq))
312

313 waiting = True
314 start = time.time()
315 while waiting:
316 if time.time() - start > .1:
317 waiting = False
318 cnt += 1
319

320

321 print('tones transmitted: %d' % cnt)
322 time.sleep(1)
323

324

325

326 ''' FIFO Stuff
327 waiting = True
328 if chrp_tx.end == False:
329 print('waiting for ack')
330 while waiting:
331 try:
332 os.mkfifo(FIFO)
333 except OSError:
334 pass
335 try:
336 fd = os.open(FIFO, os.O_RDONLY|os.O_NONBLOCK)
337 fifo_reader = os.fdopen(fd, 'r')
338 pipe = fifo_reader.read()

87

339 if pipe == 'Done':
340 waiting = False
341 print('Pipe says done')
342 os.unlink(FIFO)
343 except IOError:
344 waiting = True
345

346 '''
347 hand_rx = handshake_RX()
348 hand_rx.start()
349

350 preamble = [1,0,1,0,1,0,1,0]
351 checksum_key = 0xFAFA
352

353 #Wait to receive ack
354 ack = False
355 ack1 = False
356 ack2 = False
357 ack3 = False
358 while ack == False:
359 #Get captured data
360 data = map(int, list(hand_rx.get_data()))
361 #Look for preamble in captured data (0xAA)
362 for i in range(0, len(data)):
363 if data[i: i+8] == preamble:
364 #Get length of payload
365 length = hand_rx.frombit_toint(data[i+8: i+16])
366 #Get payload
367 payload = data[i+16: i+16+length]
368 #Compare transmitted and calculated checksums
369 check_TX = hand_rx.frombit_toint(data[i+16+length: i+32+length])
370 check_calc = hand_rx.checkcalc(checksum_key, payload)
371 #If checksums match, then packet received
372 if check_TX == check_calc:
373 #Wait for ACK from every radio in network
374 if payload == fromint_tobit(int("0x2045", 16)):
375 print('Ack from RX1 received')
376 ack1 = True
377 elif payload == fromint_tobit(int("0x0EFC", 16)):
378 print('Ack from RX2 Recevied')
379 ack2 = True
380 elif payload == fromint_tobit(int("0x1AB4", 16)):
381 print('Ack from RX3 Received')
382 ack3 = True
383 if ack1 == True and ack2 == True and ack3 == True:
384 ack = True
385

386 #time.sleep(0.0001)

88

387 #print('Ack Received!')
388

389 print('Elapsed Time: %.6f' % (time.time() - s_time))
390

391 chrp_tx.set_ampl(0)
392 time.sleep(0.1)
393 print('Setting signal amplitude to zero')
394

395 hand_rx.stop()
396 hand_rx.wait()
397

398 chrp_tx.stop()
399 chrp_tx.wait()
400

401 print('Done')
402 time.sleep(5)
403

404

405

406

407 if __name__ == '__main__':
408 main()

A.2 Receiver
This section includes the code written for the receiving end of the measurement
system. Code is included that is used for a single receiver, in a multi-link measurement
system.

A.2.1 Shell Script
1 #!/bin/bash
2

3 echo "2.4 GHz ISM Frequency Sweep - Receiver"
4

5 for ((i = 0; i < 8; i = i+1))
6 do
7 python RX_1.py -c 2.4${i}5e9 -n ${i}
8 wait
9 done

10

11 echo "Done"

89

A.2.2 Python Code
1 #!/usr/bin/env python2
2 # -*- coding: utf-8 -*-
3 ##
4 # GNU Radio Python Flow Graph
5 # Title: Chirp Rx
6 # Generated: Mon May 21 11:19:28 2018
7 ##
8

9 from gnuradio import blocks
10 from gnuradio import digital
11 from gnuradio import eng_notation
12 from gnuradio import gr
13 from gnuradio.eng_option import eng_option
14 from gnuradio.fft import window
15 from gnuradio.filter import firdes
16 from gnuradio import filter
17 from optparse import OptionParser
18 import osmosdr
19 import time, os
20 import threading
21 import numpy as np
22 import datetime
23

24 class chirp_rx(gr.top_block):
25

26 def __init__(self):
27

28 # Command line parsing
29 parser = OptionParser()
30 parser.add_option("-c", "--center", dest="center_freq",
31 help="Desired Center Frequency", default=2.405e9)
32 parser.add_option("-n", "--number", dest="sweep_number",
33 help="The number of the current sweep (1-8)", default=1)
34 (options, args) = parser.parse_args()
35

36 gr.top_block.__init__(self, "Chirp Rx")
37

38 ##
39 # Variables
40 ##
41 self.samp_rate = samp_rate = 20e6
42 self.center_freq = center_freq = float(options.center_freq)
43 self.sweep_num = int(options.sweep_number)
44

45 ##
46 # Blocks

90

47 ##
48 self.val = blocks.probe_signal_c() #***
49 def _variable_function_probe_0_probe():
50 while True:
51 val = self.val.level()
52 try:
53 self.set_variable_function_probe_0(val)
54 except AttributeError:
55 pass
56 time.sleep(1.0 / (10))
57 _variable_function_probe_0_thread = threading.Thread(target =
58 _variable_function_probe_0_probe)
59 _variable_function_probe_0_thread.daemon = True
60 _variable_function_probe_0_thread.start()
61

62 self.osmosdr_source_0 = osmosdr.source(args="numchan=" + str(1) + " " +
63 "bladerf=2045f55f182fbb2316da78d626ef7b31")
64 self.osmosdr_source_0.set_time_now(osmosdr.time_spec_t(time.time()),
65 osmosdr.ALL_MBOARDS)
66 self.osmosdr_source_0.set_sample_rate(samp_rate)
67 self.osmosdr_source_0.set_center_freq(center_freq, 0)
68 self.osmosdr_source_0.set_freq_corr(0, 0)
69 self.osmosdr_source_0.set_dc_offset_mode(0, 0)
70 self.osmosdr_source_0.set_iq_balance_mode(0, 0)
71 self.osmosdr_source_0.set_gain_mode(False, 0)
72 self.osmosdr_source_0.set_gain(0, 0)
73 self.osmosdr_source_0.set_if_gain(0, 0)
74 self.osmosdr_source_0.set_bb_gain(0, 0)
75 self.osmosdr_source_0.set_antenna("", 0)
76 self.osmosdr_source_0.set_bandwidth(0, 0)
77

78 file_loc = "/media/jjamison/LaCie/Lab/sweep_data/link1_data/test_%s.bin" \
79 % self.sweep_num
80 self.blocks_file_sink_0 = blocks.file_sink(gr.sizeof_gr_complex*1,
81 file_loc, False)
82 self.blocks_file_sink_0.set_unbuffered(False)
83

84 ##
85 self.dc_blocker_xx_0 = filter.dc_blocker_cc(10, True)
86

87 ##
88 # Connections
89 ##
90 self.connect((self.osmosdr_source_0, 0), (self.dc_blocker_xx_0, 0))
91 self.connect((self.osmosdr_source_0, 0), (self.blocks_file_sink_0, 0))
92 self.connect((self.dc_blocker_xx_0, 0), (self.val, 0)) #***
93

94 def get_pow(self): #***

91

95 mag = np.absolute(self.variable_function_probe_0)
96 if mag != 0:
97 return 20*np.log10(mag)
98 else:
99 return 0

100

101 def set_variable_function_probe_0(self, variable_function_probe_0): #***
102 self.variable_function_probe_0 = variable_function_probe_0
103

104 def get_samp_rate(self):
105 return self.samp_rate
106

107 def set_samp_rate(self, samp_rate):
108 self.samp_rate = samp_rate
109 self.osmosdr_source_0.set_sample_rate(self.samp_rate)
110

111 def get_center_freq(self):
112 return self.center_freq
113

114 def set_center_freq(self, center_freq):
115 self.center_freq = center_freq
116 self.osmosdr_source_0.set_center_freq(self.center_freq, 0)
117

118

119 class handshake_TX(gr.top_block):
120

121 def __init__(self):
122

123 #Converts list of integers representing binary number (ex: [1,0,1,0])
124 # to integer (ex: 10)
125 def frombit_toint(ls):
126 length = len(ls)
127 num = 0
128 for i in range(length, 0, -1):
129 num += ls[i-1] * 2 ** (length - i)
130 return num
131 #Calculate checksum (XOR)
132 def checkcalc(key, payload):
133 return key ^ frombit_toint(payload)
134

135 #Convert number to list of integers representing binary number
136 def fromint_tobit(num):
137 bit = [0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0]
138 for i in range(15, -1,-1):
139 bit[i] = (num - (num % (2**i))) / (2**i)
140 num = num % (2**i)
141 bit.reverse()
142 return bit

92

143

144 gr.top_block.__init__(self, "Handshake Tx")
145

146 ##
147 # Variables
148 ##
149 self.samp_rate = samp_rate = 10e6
150 self.samp_per_sym = samp_per_sym = 125
151 self.fsk_deviation_hz = fsk_deviation_hz = 500e-3
152

153 ##
154 # Blocks
155 ##
156 self.osmosdr_sink_0 = osmosdr.sink(args="numchan=" + str(1) + " " +
157 "bladerf=2045f55f182fbb2316da78d626ef7b31")
158 self.osmosdr_sink_0.set_time_now(osmosdr.time_spec_t(time.time()),
159 osmosdr.ALL_MBOARDS)
160 self.osmosdr_sink_0.set_sample_rate(samp_rate)
161 self.osmosdr_sink_0.set_center_freq(305e6, 0)
162 self.osmosdr_sink_0.set_freq_corr(0, 0)
163 self.osmosdr_sink_0.set_gain(20, 0)
164 self.osmosdr_sink_0.set_if_gain(0, 0)
165 self.osmosdr_sink_0.set_bb_gain(0, 0)
166 self.osmosdr_sink_0.set_antenna("", 0)
167 self.osmosdr_sink_0.set_bandwidth(0, 0)
168

169 self.digital_gfsk_mod_0 = digital.gfsk_mod(
170 samples_per_symbol=samp_per_sym,
171 sensitivity=fsk_deviation_hz,
172 bt=0.35,
173 verbose=True,
174 log=False,
175)
176

177 preamble = (1,0,1,0,1,0,1,0)
178 length = (0,0,0,1,0,0,0,0)
179 payload = tuple(fromint_tobit(int("0x2045", 16)))
180 #checksum = (0,0,0,0,1,0,0,1,1,1,1,1,0,1,1,0)
181 key = 0xFAFA
182 checksum = tuple(fromint_tobit(checkcalc(key, payload)))
183 self.blocks_vector_source_x_0 = blocks.vector_source_b(
184 tuple(preamble+length+payload+checksum), True, 1, [])
185

186 ##
187 # Connections
188 ##
189 self.connect((self.blocks_vector_source_x_0, 0),
190 (self.digital_gfsk_mod_0, 0))

93

191 self.connect((self.digital_gfsk_mod_0, 0),
192 (self.osmosdr_sink_0, 0))
193

194 def get_samp_rate(self):
195 return self.samp_rate
196

197 def set_samp_rate(self, samp_rate):
198 self.samp_rate = samp_rate
199 self.osmosdr_sink_0.set_sample_rate(self.samp_rate)
200

201 def get_samp_per_sym(self):
202 return self.samp_per_sym
203

204 def set_samp_per_sym(self, samp_per_sym):
205 self.samp_per_sym = samp_per_sym
206

207 def get_fsk_deviation_hz(self):
208 return self.fsk_deviation_hz
209

210 def set_fsk_deviation_hz(self, fsk_deviation_hz):
211 self.fsk_deviation_hz = fsk_deviation_hz
212

213 def set_transmit_freq(self, transmit_freq):
214 self.transmist_freq = transmit_freq
215 self.osmosdr_sink_0.set_center_freq(transmit_freq, 0)
216

217

218 def main():
219

220 chrp_rx = chirp_rx()
221 chrp_rx.start()
222

223 print('Connected to radio')
224

225 print('Center Frequency: %.2f' % chrp_rx.get_center_freq())
226 #FIFO = '/tmp/sddvna.fifo'
227

228 meas = True
229 powers = []
230

231 noise_floor = None
232

233 sweeping = []
234

235 i = 0
236

237 sweep_start = False
238

94

239 start_time = None
240 print('Saving IQ data...')
241 while meas:
242 if start_time == None:
243 #print('here')
244 cur_pow = chrp_rx.get_pow()
245 if cur_pow != 0:
246 powers.append(cur_pow)
247 if noise_floor != None:
248 i += 1
249 if cur_pow - noise_floor > 15:
250 if i > 3000:
251 sweeping.append(True)
252 sweeping.pop(0)
253 else:
254 sweeping.append(True)
255 else:
256 if i > 3000:
257 sweeping.append(False)
258 sweeping.pop(0)
259 else:
260 sweeping.append(False)
261

262 if len(powers) > 500:
263 noise_floor = np.amax(powers[0:500])
264 #print(sum(sweeping))
265 if sum(sweeping) > 1500:
266 #print('sweeping')
267 if sweep_start == False:
268 print('Begining of Sweep Detected')
269 start_time = time.time()
270 sweep_start = True
271

272 else:
273 if time.time() - start_time >= 16:
274 meas = False
275 print('Elapsed time since begining of sweep: %.3f\n +
276 Ending measurement' % (time.time() - start_time))
277

278

279

280 hand_tx = handshake_TX()
281 hand_tx.start()
282 print('Transmitting ACK')
283 waiting = True
284 powers = []
285 i = 0
286 under = 0

95

287 while waiting:
288 sec = datetime.datetime.now().second
289 if (sec % 3 == 1):
290 hand_tx.set_transmit_freq(305e6)
291 else:
292 hand_tx.set_transmit_freq(355e6)
293 cur_pow = chrp_rx.get_pow()
294 if i < 10:
295 powers.append(cur_pow)
296 elif i == 10:
297 ref = np.amax(powers)
298 print("REF: %.5f" % ref)
299 else:
300 if ref - cur_pow >= 10:
301 under += 1
302 print("RX power less than reference")
303 if under > 10:
304 print("Chirp gone, switching center frequency")
305 waiting = False
306 else:
307 if under > 0:
308 print("Underflow detected, reset count")
309 under = 0
310 i += 1
311 print("Received Power: %.3f" % (cur_pow))
312 time.sleep(0.05)
313

314 hand_tx.stop()
315 hand_tx.wait()
316

317 chrp_rx.stop()
318 chrp_rx.wait()
319

320

321

322

323

324 if __name__ == '__main__':
325 main()

A.3 Frequency Response Calculation
This section includes the code written for purposes of calculating the frequency re-
sponse from the raw sampled data.

96

A.3.1 Shell Script
1 #!/bin/bash
2

3 echo "2.4 GHz ISM Frequency Sweep - Frequency Response Calculator"
4

5 for ((i = 0; i < 8; i = i+1))
6 do
7 echo "Step ${i}"
8 python mag_calc_1.py -n ${i}
9 wait

10 done
11

12 echo "Plotting..."
13

14 #python plotter.py
15

16 echo "Done"

A.3.2 Python Code
1 #!/usr/bin/env python2
2 # -*- coding: utf-8 -*-
3 ##
4 # GNU Radio Python Flow Graph
5 # Title: Chirp Phase Calc Fft
6 # Generated: Tue Apr 24 12:28:14 2018
7 ##
8

9 from gnuradio import blocks
10 from gnuradio import eng_notation
11 from gnuradio import fft
12 from gnuradio import gr
13 from gnuradio.eng_option import eng_option
14 from gnuradio.fft import window
15 from gnuradio.filter import firdes
16 from gnuradio import filter
17 from optparse import OptionParser
18 import threading
19 import time
20

21

22 ## Added imports ##
23 import numpy as np
24 import matplotlib.pyplot as plt
25 import scipy.signal as sci

97

26

27

28 class chirp_phase_calc_fft(gr.top_block):
29

30 def __init__(self):
31

32 # Command line parsing
33 parser = OptionParser()
34 parser.add_option("-n", "--number", dest="sweep_number",
35 help="The number of the current sweep (1-8)", default=1)
36 (options, args) = parser.parse_args()
37 self.sweep_number = options.sweep_number
38

39 gr.top_block.__init__(self, "Chirp Phase Calc Fft")
40

41 ##
42 # Variables
43 ##
44 self.variable_function_probe_0 = variable_function_probe_0 = 0
45 self.samp_rate = samp_rate = 20e6
46 self.reso = 128*2
47

48 ##
49 # Blocks
50 ##
51 self.fft = blocks.probe_signal_vc(self.reso)
52 def _variable_function_probe_0_probe():
53 while True:
54 val = self.fft.level()
55 try:
56 self.set_variable_function_probe_0(val)
57 except AttributeError:
58 pass
59 time.sleep(1.0 / (10))
60 _variable_function_probe_0_thread = threading.Thread(target=
61 _variable_function_probe_0_probe)
62 _variable_function_probe_0_thread.daemon = True
63 _variable_function_probe_0_thread.start()
64 self.fft_vxx_0 = fft.fft_vcc(self.reso, True,
65 (window.blackmanharris(self.reso)), False, 1)
66 self.blocks_throttle_0 = blocks.throttle(gr.sizeof_gr_complex*1,
67 samp_rate,True)
68 self.blocks_stream_to_vector_0 = blocks.stream_to_vector(
69 gr.sizeof_gr_complex*1, self.reso)
70

71 file_loc = "/media/jjamison/LaCie/Lab/sweep_data/link1_data/test_%s.bin" \
72 % options.sweep_number
73 self.blocks_file_source_0 = blocks.file_source(gr.sizeof_gr_complex*1,

98

74 file_loc, False)
75

76 ##
77 self.dc_blocker_xx_0 = filter.dc_blocker_cc(5000, True)
78

79 ##
80 # Connections
81 ##
82 self.connect((self.blocks_file_source_0, 0),
83 (self.blocks_throttle_0, 0))
84 self.connect((self.blocks_stream_to_vector_0, 0),
85 (self.fft_vxx_0, 0))
86 self.connect((self.fft_vxx_0, 0), (self.fft, 0))
87

88 ##
89 self.connect((self.blocks_throttle_0, 0), (self.dc_blocker_xx_0, 0))
90 self.connect((self.dc_blocker_xx_0, 0), (self.blocks_stream_to_vector_0, 0))
91

92 def get_variable_function_probe_0(self):
93 return self.variable_function_probe_0
94

95 def set_variable_function_probe_0(self, variable_function_probe_0):
96 self.variable_function_probe_0 = variable_function_probe_0
97

98 def get_samp_rate(self):
99 return self.samp_rate

100

101 def set_samp_rate(self, samp_rate):
102 self.samp_rate = samp_rate
103 self.blocks_throttle_0.set_sample_rate(self.samp_rate)
104

105

106 def main(top_block_cls=chirp_phase_calc_fft, options=None):
107

108

109 tb = top_block_cls()
110 tb.start()
111 meas = True
112 mags = []
113 mag_measurements = np.zeros((tb.reso))
114 last_index = 0
115 start = False
116 sweep_num = int(tb.sweep_number)
117 while meas:
118 fft = tb.fft.level()
119 max_index = np.argmax(np.absolute(fft))
120 if (np.absolute(fft[max_index]) > 0.1 and max_index != 192) or \
121 (np.absolute(fft[max_index]) > 1 and max_index == 192):

99

122 if last_index == max_index:
123 mag = np.absolute(fft[max_index])
124 mags.append(mag)
125 if sweep_num != 7:
126 if max_index == ((tb.reso/4)-1) and start:
127 #print(len(phases))
128 if len(mags) >= 50:
129 meas_mag = np.median(mags)
130 mag_measurements[3*(tb.reso/4)-2] = meas_mag
131 print('Freq Index: %d, Bin: %d' % \
132 ((3*(tb.reso/4)-2), last_index))
133 print("Bin #: %d, Median Magnitude: %.3f" \
134 % (max_index, meas_mag))
135 meas == False
136 break
137 else:
138 if max_index == ((tb.reso/4)) and start:
139 #print(len(phases))
140 if len(mags) >= 50:
141 meas_mag = np.median(mags)
142 mag_measurements[3*(tb.reso/4)-1] = meas_mag
143 print('Freq Index: %d, Bin: %d' % (3*(tb.reso/4)-1,
144 last_index))
145 print("Bin #: %d, Median Magnitude: %.3f" % \
146 (max_index, meas_mag))
147 meas == False
148 break
149 elif last_index != max_index:
150 if last_index == (3*(tb.reso/4)) or start:
151 start = True
152 if np.array(mags).size >= 50:
153 meas_mag = np.median(mags)
154 val = tb.reso/2 + 1
155 if last_index >= val:
156 freq_step = last_index - val
157 else:
158 freq_step = last_index + tb.reso/2 - 1
159 print('Freq Index: %d, Bin: %d' % (freq_step, last_index))
160 if mag_measurements[freq_step + 1] == 0:
161 print("Bin #: %d, Median Magnitude: %.3f, "+
162 "Length: %d" % (last_index, meas_mag, len(mags)))
163 mags = []
164 if mag_measurements[freq_step] == 0:
165 mag_measurements[freq_step] = meas_mag
166 else:
167 old_mag_meas = mag_measurements[freq_step]
168 if old_mag_meas - meas_mag > .5:
169 print("***Previous measurement not used***")

100

170 elif old_mag_meas - meas_mag < -.5:
171 print("***Previous measurement replacing \
172 existing measurements***")
173 mag_measurements[freq_step] = meas_mag
174 else:
175 mag_measurements[freq_step] = .5 * \
176 (meas_mag + old_mag_meas)
177

178 last_index = max_index
179

180 #only using inner 10 MHz
181 if sweep_num != 7:
182 mag_measurements = mag_measurements[(tb.reso/4)-1:3*(tb.reso/4)-1]
183 else:
184 mag_measurements = mag_measurements[(tb.reso/4)-1:3*(tb.reso/4)]
185

186 #interpolate any missed measurement points
187 miss_ind = []
188 for j in range(0, len(mag_measurements)):
189 if mag_measurements[j] == 0:
190 if j == 126:
191 mag_measurements[j] = mag_measurements[j-1]
192 print("Index %d was missed. Using neighboring indice:" +
193 "\nmeas[%d] = meas[%d]" +
194 "= %.3f" % (j,j,j-1,mag_measurements[j]))
195 elif j == 0:
196 mag_measurements[j] = mag_measurements[j+1]
197 print("Index %d was missed. Using neighboring indice:" +
198 "\nmeas[%d] = meas[%d]" +
199 "= %.3f" % (j,j,j+1,mag_measurements[j]))
200 elif mag_measurements[j+1] == 0:
201 mag_measurements[j] = mag_measurements[j-1]
202 print("Index %d and %d were missed. Using %d indice" +
203 " for %d:\nmeas[%d] = %.3f" \
204 % (j,j+1,j-1,j,j,j-1,mag_measurements[j]))
205 else:
206 mag_measurements[j] = .5 * (mag_measurements[j-1] +
207 mag_measurements[j+1])
208 print("Index %d was missed. Averaged neigboring indices:" +
209 "\nmeas[%d] = .5 * (meas[%d] + meas[%d]) = .5 * " +
210 "(%.3f + %.3f) = %.3f" % (j,j,j-1,j+1, \
211 mag_measurements[j-1], mag_measurements[j+1],
212 mag_measurements[j]))
213

214

215 print(len(mag_measurements.tolist()))
216 #db = 20*np.log10((1.0/128.0)*np.array(mag_measurements))
217 #plt.subplot(2,1,1)

101

218 #plt.plot(db)
219 #plt.subplot(2,1,2)
220 #plt.plot(sci.medfilt(db,5))
221 #plt.show()
222 tb.stop()
223 tb.wait()
224

225 test_num = int(tb.sweep_number)
226 file_name = '/media/jjamison/LaCie/Lab/sweep_data/link1_data/' +
227 'step_%d.txt' % test_num
228 f = open(file_name, 'w')
229 f.write(str(mag_measurements.tolist()))
230

231

232 if __name__ == '__main__':
233 main()

A.4 Data Analysis Code
This section contains the Python code used to analyze and graph the data captured
during the measurement campaign in Chapter 5.

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from matplotlib.patches import Circle
4 import scipy.signal as sci
5 from optparse import OptionParser
6 import csv
7 from scipy.integrate import quad
8

9 def file_parser(file_name):
10 file_object = open(file_name, "r")
11 string = file_object.read()
12 data = []
13 str_num = ''
14 for i in range(0, len(string)):
15 if string[i] != '[' and string[i] != ',':
16 if not string[i].isspace() and string[i] != ']':
17 str_num += string[i]
18 else:
19 number = float(str_num)
20 data.append(number)
21 str_num = ''
22 data = 20*np.log10((1.0/256.0)*np.array(data))
23 return data
24

102

25 def cal_parser(cal_file):
26 file_object = open(cal_file, "r")
27 string = file_object.read()
28 data = []
29 str_num = ''
30 for i in range(0, len(string)):
31 if string[i] != '[' and string[i] != ',':
32 if not string[i].isspace() and string[i] != ']':
33 str_num += string[i]
34 else:
35 number = float(str_num)
36 data.append(number)
37 str_num = ''
38

39 return data
40

41 def calc_error(sdr, vna):
42 sdr_raw = 10**(sdr/20.0)
43 vna_raw = 10**(vna/20.0)
44 sdr_reso = len(sdr)
45 vna_reso = len(vna)
46 err = np.zeros(sdr_reso)
47 err_raw = np.zeros(sdr_reso)
48 mse = 0
49 for i in range(0, sdr_reso):
50 err[i] = abs(sdr[i] - vna[int((i/float(sdr_reso))*float(vna_reso))])
51 err_raw[i] = abs(sdr_raw[i] - vna_raw[int((i/float(sdr_reso))
52 *float(vna_reso))])
53 mse += abs(sdr_raw[i] - vna_raw[int((i/float(sdr_reso))
54 *float(vna_reso))])**2
55

56

57 med_err = np.median(err)
58 old_avg_err = np.mean(err)
59

60 std = np.std(err_raw)
61 avg_err_raw = np.mean(err_raw) / std
62

63 mse_std = (mse / sdr_reso) / std
64

65 return med_err, old_avg_err, avg_err_raw, mse_std, mse
66

67 def empirical_cdf(data):
68 sorted_data = np.sort(data)
69 f = np.array(range(len(data)))/float(len(data))
70 return sorted_data, f
71

72 def raylcdf(xr):

103

73 raypdf = lambda t: t*np.exp((-t**2)/2)
74 r_cdf = np.zeros(len(xr))
75 for i in range(0, len(xr)):
76 ans, err = quad(raypdf, 0, xr[i])
77 r_cdf[i] = ans
78

79 k = np.where((r_cdf >= 0.499) & (r_cdf <= 0.501))
80 xr_log = 20*np.log10(xr) - 20*np.log10(xr[k])
81

82 return xr_log, r_cdf
83

84

85 def main():
86

87

88 cal = cal_parser("../7.9/cal/calibration.txt")
89

90 #Caculate Rayleigh CDF
91 xr = np.linspace(0.04, 4, 1000)
92 x_cdf, r_cdf = raylcdf(xr)
93 #print(x_cdf)
94 #print(r_cdf)
95 index = np.argmin(abs(r_cdf - .1))
96 ray_FD = x_cdf[index]
97 boundary = 0.5
98 print('Rayleigh 10 perc FD: %.5f' % ray_FD)
99

100

101 #Get SDR data
102 sdr_reso = 128*7 + 129
103 link1_data = np.zeros((14, sdr_reso))
104 link2_data = np.zeros((14, sdr_reso))
105 link3_data = np.zeros((14, sdr_reso))
106 sdr_freq = np.linspace(2.4, 2.48, sdr_reso)
107

108 cnt = 0
109

110 '''
111 ricean rayleigh hyp-ray
112 Link 1: | - | - | - |
113 Link 2: | - | - | - |
114 Link 3: | - | - | - |
115 '''
116 stats = np.zeros((3,3))
117

118 for k in range(0,3):
119 plt.figure(k)
120 for j in range(0,14):

104

121 data = np.zeros((7, 128))
122 for i in range(0,7):
123 data[i] = file_parser("chamber/link_%d/pos_%d/step_%d.txt"
124 % (k+1,j+1,i))
125 data8 = np.zeros(129)
126 data8 = file_parser("chamber/link_%d/pos_%d/step_7.txt"
127 % (k+1,j+1))
128 data = sci.medfilt(np.append(data.flatten(), data8),13) - cal
129 cdf, f = empirical_cdf(data)
130 cdf = cdf - np.median(cdf)
131 FD = cdf[int(len(cdf)*.1)]
132 fadetype = None
133 if FD > (ray_FD + boundary):
134 fadetype = 'Ricean'
135 stats[k,0] += 1
136 elif FD < (ray_FD - boundary):
137 fadetype = 'hyper-Rayleigh'
138 stats[k,2] += 1
139 else:
140 fadetype = 'approximately Rayleigh'
141 stats[k,1] += 1
142 print('Link: %d, \tPosition: %d, \t10 percent FD: %.5f dBm' +
143 ', \tFading Type: %s' % (k+1,j+1,FD, fadetype))
144 plt.semilogy(cdf, f)
145 plt.semilogy(x_cdf, r_cdf, 'k')
146 plt.title('CDF of $S_{%d1}$ Measurements' % (k+2))
147 plt.ylim(.002, 1)
148 plt.xlim(-35, 10)
149 plt.grid()
150 plt.xlabel('Received Signal Strength (dBm)')
151 plt.ylabel(r'P[S_{21} < abscissa]')
152

153 for k in range(0,3):
154 plt.figure(3)
155 for j in range(0,14):
156 data = np.zeros((7, 128))
157 for i in range(0,7):
158 data[i] = file_parser("chamber/link_%d/pos_%d/step_%d.txt"
159 % (k+1,j+1,i))
160 data8 = np.zeros(129)
161 data8 = file_parser("chamber/link_%d/pos_%d/step_7.txt" % (k+1,j+1))
162 data = sci.medfilt(np.append(data.flatten(), data8),13) - cal
163 cdf, f = empirical_cdf(data)
164 cdf = cdf - np.median(cdf)
165 FD = cdf[int(len(cdf)*.1)]
166 fadetype = None
167 if FD > (ray_FD + boundary):
168 fadetype = 'Ricean'

105

169 #stats[k,0] += 1
170 elif FD < (ray_FD - boundary):
171 fadetype = 'hyper-Rayleigh'
172 #stats[k,2] += 1
173 else:
174 fadetype = 'approximately Rayleigh'
175 #stats[k,1] += 1
176 print('Link: %d, \tPosition: %d, \t10 percent FD: %.5f dBm' +
177 ', \tFading Type: %s' % (k+1,j+1,FD, fadetype))
178 plt.semilogy(cdf, f)
179 plt.semilogy(x_cdf, r_cdf, 'k')
180 plt.title('CDF of All Measurements')
181 plt.ylim(.002, 1)
182 plt.xlim(-35, 10)
183 plt.grid()
184 plt.xlabel('Received Signal Strength (dBm)')
185 plt.ylabel(r'P[S_{21} < abscissa]')
186

187 #Plot two link3 plots next to each other
188 sdr_reso = 128*7 + 129
189 sdr_freq = np.linspace(2.4, 2.48, sdr_reso)
190 link3_data = np.zeros((2, sdr_reso))
191 plt.figure(4)
192 for j in range(0,2):
193 data = np.zeros((7, 128))
194 for i in range(0,7):
195 data[i] = file_parser("chamber/link_3/pos_%d/step_%d.txt" % (j+1,i))
196 data8 = np.zeros(129)
197 data8 = file_parser("chamber/link_3/pos_%d/step_7.txt" % (j+1))
198 link3_data[j] = sci.medfilt(np.append(data.flatten(), data8),3) - cal
199

200 #plt.subplot(2,1,1)
201 #cdf1, f1 = empirical_cdf(link3_data[0])
202 #cdf1 = cdf1 - np.median(cdf1)
203 #plt.semilogy(cdf1, f1, 'k')
204

205

206 #cdf2, f2 = empirical_cdf(link3_data[1])
207 #cdf2 = cdf2 - np.median(cdf2)
208 #plt.semilogy(cdf2, f2, 'k--')
209

210 #plt.subplot(2,1,2)
211 plt.plot(sdr_freq, link3_data[0],'k')
212 plt.plot(sdr_freq, link3_data[1],'k--')
213 plt.grid(True)
214 plt.xlim(2.4, 2.48)
215 plt.xlabel('Frequency (GHz)')
216 plt.ylabel('Magnitude (dBm)')

106

217 plt.title(r'Effects of Moving RX_3 on S_{41}')
218 plt.legend(('Measurement Taken at x=0cm', 'Measurements Taken at x=5cm'))
219

220 plt.figure(5)
221 for j in range(0,2):
222 data = np.zeros((7, 128))
223 for i in range(0,7):
224 data[i] = file_parser("chamber/link_1/pos_%d/step_%d.txt" % (j+1,i))
225 data8 = np.zeros(129)
226 data8 = file_parser("chamber/link_1/pos_%d/step_7.txt" % (j+1))
227 link3_data[j] = sci.medfilt(np.append(data.flatten(), data8),5) - cal
228

229 #plt.subplot(2,1,1)
230 #cdf1, f1 = empirical_cdf(link3_data[0])
231 #cdf1 = cdf1 - np.median(cdf1)
232 #plt.semilogy(cdf1, f1, 'k')
233

234

235 #cdf2, f2 = empirical_cdf(link3_data[1])
236 #cdf2 = cdf2 - np.median(cdf2)
237 #plt.semilogy(cdf2, f2, 'k--')
238

239 #plt.subplot(2,1,2)
240 plt.plot(sdr_freq, link3_data[0],'k')
241 plt.plot(sdr_freq, link3_data[1],'k--')
242 plt.grid(True)
243 plt.xlim(2.4, 2.48)
244 plt.xlabel('Frequency (GHz)')
245 plt.ylabel('Magnitude (dBm)')
246 plt.title(r'Effects of Moving RX_3 on S_{21}')
247 plt.legend(('Measurement Taken at x=0cm', 'Measurements Taken at x=5cm'))
248

249 plt.figure(6)
250 for j in range(0,2):
251 data = np.zeros((7, 128))
252 for i in range(0,7):
253 data[i] = file_parser("chamber/link_2/pos_%d/step_%d.txt" % (j+1,i))
254 data8 = np.zeros(129)
255 data8 = file_parser("chamber/link_2/pos_%d/step_7.txt" % (j+1))
256 link3_data[j] = sci.medfilt(np.append(data.flatten(), data8),5) - cal
257

258 #plt.subplot(2,1,1)
259 #cdf1, f1 = empirical_cdf(link3_data[0])
260 #cdf1 = cdf1 - np.median(cdf1)
261 #plt.semilogy(cdf1, f1, 'k')
262

263

264 #cdf2, f2 = empirical_cdf(link3_data[1])

107

265 #cdf2 = cdf2 - np.median(cdf2)
266 #plt.semilogy(cdf2, f2, 'k--')
267

268 #plt.subplot(2,1,2)
269 plt.plot(sdr_freq, link3_data[0],'k')
270 plt.plot(sdr_freq, link3_data[1],'k--')
271 plt.grid(True)
272 plt.xlim(2.4, 2.48)
273 plt.xlabel('Frequency (GHz)')
274 plt.ylabel('Magnitude (dBm)')
275 plt.title(r'Effects of Moving RX_3 on S_{31}')
276 plt.legend(('Measurement Taken at x=0cm', 'Measurements Taken at x=5cm'))
277

278

279

280

281 #Summary statistics
282 print('\n\t *** Summary of Data *** \n')
283 for i in range(0,3):
284 print('Link %d --> Ricean: %d\tapproximately Rayleigh: %d\t' +
285 'hyper-Rayleigh: %d' % (i, stats[i,0], stats[i,1], stats[i,2]))
286

287

288

289 plt.show()
290

291

292

293

294 if __name__ == '__main__':
295

296 main()

108

	University of Vermont
	ScholarWorks @ UVM
	2018

	Leveraging Software-Defined Radio for a Scalable Wide-band Wireless Channel Measurement System
	James Jamison
	Recommended Citation

	Citation
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Motivation
	Problem Statement
	Contributions
	Thesis Outline

	Wireless Propagation
	Large-Scale Propagation
	Small-Scale Propagation
	Ricean Fading
	Rayleigh Fading
	Hyper-Rayleigh Fading

	Wireless Channel Measurement Techniques
	Time Domain Channel Sounding
	Frequency Domain Channel Measurements

	Conclusion

	Software-Defined Radio
	History and Motivation
	Hardware
	Digital Processing of Analog Signals
	Hardware Implementation in SDR
	SDR Hardware Examples

	GNURadio
	SDR Based Channel Characterization
	Conclusion

	Proposed Measurement System
	Measurement Methodology
	Measurements Using ``Chirped'' Signals
	Establishing Synchronization
	Frequency Response Calculation
	System Calibration
	N-link Channel Measurements

	System Validation
	Hardwired
	Wireless

	Conclusion

	Applications
	Wireless Network in Cluttered Environment
	Experiment Set-Up
	Test Results

	Conclusion

	Conclusions and Future Work
	Contributions
	Future Work
	Phase Measurements
	Frequency Doubling Measurements

	Final Words

	Biblography
	Source Code
	Transmitter
	Shell Script
	Python Code

	Receiver
	Shell Script
	Python Code

	Frequency Response Calculation
	Shell Script
	Python Code

	Data Analysis Code

