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Abstract

This thesis investigates Quasilinear Control (QLC) of time-delay systems with non-
linear actuators and sensors and analyzes the accuracy of stochastic linearization for
these systems. QLC leverages the method of stochastic linearization to replace each
nonlinearity with an equivalent gain, which is obtained by solving a transcendental
equation. The idea of QLC is to stochastically linearize the system in order to an-
alyze and design controllers using classical linear control theory. In this thesis, the
existence of the equivalent gain for a closed-loop time-delay system is discussed. To
compute the equivalent gain, two methods are explored. The first method uses an
explicit but complex algorithm based on delay Lyapunov equation to study the time-
delay, while the second method uses Padé approximant. It is shown that, under a
suitable criterion, Padé approximant can be effectively applied for QLC of time-delay
systems. Furthermore, the method of Saturated-Root Locus (S-RL) is extended to
nonlinear time-delay systems. It turns out that, in a time-delay system, S-RL al-
ways terminates prematurely as opposed to a delay-free system, which may or may
not terminate prematurely. Statistical experiments are performed to investigate the
accuracy of stochastic linearization compared to a system without time-delay. The
impact of increasing the time-delay in the approach of stochastic linearization is also
investigated. Results show that stochastic linearization effectively linearizes a nonlin-
ear time-delay system, even though delays generally degrade accuracy. Overall, the
accuracy remains relatively high over the selected parameters. Finally, this approach
is applied to pitch control in a wind turbine system as a practical example of a non-
linear time-delay system, and its performance is analyzed to demonstrate the efficacy
of the approach.
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Chapter 1

Introduction

1.1 Motivation

For the past century, classical control theory and methods have focused on the closed-

loop control system described by a linear controller and a linear plant shown in Figure

1.1a. However, every control system contains nonlinear instrumentation, e.g., actua-

tor saturation due to physical limitation and sensor quantization, which usually are

ignored in the linear controller design. In Figure 1.1b, the blocks f(·) and g(·) are non-

linear mathematical functions, which represent the actuator and sensor, respectively.

The signals r, d, e, u, v, y, and ym are the reference, disturbance, error, controller

output, actuator output, plant output, and measured output, respectively. Unlike

nonlinear plants, which can often be linearized to operate at a desired operating

point in a well-designed control system, the actuators and sensors cannot, especially

when required to operate far from their initial conditions due to large inputs to the

system. We refer to this class of systems as Linear Plant/Nonlinear Instrumentation

(LPNI) systems.
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r
−

C(s) P (s)

d

e v y

(a) Linear control system

r
−

C(s) f(·) P (s)

g(·)

d

e u v y

ym

(b) LPNI control system

Figure 1.1: Linear system and LPNI system

Recently, [3] developed the Quasilinear Control theory (QLC), which extended the

classical linear control theory to LPNI systems. The analysis and synthesis equations

in QLC remain essentially the same as in the linear control except for additional

transcendental equations, which are used for computing an equivalent gain in place

of the nonlinear instrumentation. This approach for computing the equivalent gain

is based on "stochastic linearization". The stochastically linearized system is shown

in Figure 1.2, where all signals are denoted by the same symbols as in Figure 1.1 but

with a " ^ ". Note that these notations are used throughout this thesis.

In Figure 1.2, compared to the standard LPNI system shown in Figure 1.1b, each

static nonlinearity is replaced with an equivalent gain, i.e., Na and Ns, where the

constant gains are obtained from approximating f(u(t)) by Naû(t) and g(y(t)) by

Nsŷ(t), so that the linearized system is "close" to the nonlinear system in a stochastic

sense (more details are presented in chapter 2). These equivalent gains are referred

2



r
−

C(s) Na = E
[
d
dû
f (û)

]
P (s)

Ns = E
[
d
dŷ
g (ŷ)

]

d

ê û v̂ ŷ

ŷm

Figure 1.2: Stochastically linearized system. Note that the reference and disturbance are
Gaussian random processes.

to as the quasilinear gains of f(u) and g(y). The essential concept of QLC is to use

stochastic linearization as opposed to the traditional Jacobian linearization to design

the controller using linear control theory for the LPNI system.

Stochastic linearization was developed over 50 years ago and since then applied

in numerous engineering fields, including feedback control. This method requires

external signals, such as reference and disturbance shown in Figure 1.2, to be random.

We can easily find a random disturbance signal, but there are also many reference

signals that are random in different applications, for instance, aircraft landing gear

control [4], pitch control in a wind turbine [5], and wind farm power systems [6].

In addition to instrumentation nonlinearity, there is another important effect that

is often neglected: Time-delay. Figure 1.3 represents a closed-loop nonlinear system

with a time-delay. In various situations, such as electronics [7], pneumatic and hy-

draulic networks [8], chemical processes [9], long transmission lines [10], robotics [11],

etc., time-delays usually exist due to transmission delay, material transport, propa-

gation delay, or computation delay. The time-delay may cause unexpected system

response or even instability [12]. In less severe cases, time-delays tend to degrade

system performance, e.g., reference tracking and disturbance rejection. Therefore, it

3
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d
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e u v y
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(a) Nonlinear system
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−

C(s) Na
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Ns

ê û v̂ ŷ

ŷm

(b) Stochastic linearization

Figure 1.3: LPNI time-delay system and its stochastic linearization, where e−sT is a time-
delay of length T seconds.

is important that the control system engineer is equipped with the necessary tools to

analyze and design nonlinear control systems with time-delays. Standard QLC theory

does not take into account that most practical systems have time-delays, which can

affect performance in terms of reference tracking and disturbance rejection. Thus, in

this thesis, we extend the standard QLC theory to LPNI systems with time-delays.

We develop a stochastic linearization theory for systems with time-delays, analyze the

accuracy of their stochastic linearization, and study the root locus-based and optimal

control-based design of time-delay LPNI systems.

4



1.2 Problem Statement

Consider an LPNI system with a time-delay, as shown in Figure 1.3a. The stochastic

linearization of this system is shown in Figure 1.3b. In this thesis, we address the

following four problems:

1. Stochastic linearization requires computing the H2 norm of transfer functions.

The first problem is investigating methods for computing H2 norm of transfer

functions with time-delays.

2. Stochastic linearization provides approximation of the statistical properties (i.e.,

standard deviation) of the signals in the original LPNI system. Thus, the sec-

ond problem addressed in this thesis is to determine the accuracy of stochastic

linearization for systems with time-delays. Since an analytical investigation of

the accuracy of this class of system is impossible to carry out, we numerically

perform this study using Monte Carlo experiments.

3. In the delay-free case, the standard QLC theory extended the root locus tech-

nique to LPNI systems with saturation. The resulting root locus is referred to

as the Saturated-Root Locus (S-RL). The third problem addressed in this thesis

is to determine the effects of time-delays on the S-RL.

4. Finally, in order to show the capacity of the developed QLC theory in practice,

a practical example of a pitch control in a wind turbine is presented in Chapter

5.

5



1.3 Literature review

In this section, first, we present the literature review on QLC and the method of

stochastic linearization. Then, we introduce the literature on time-delay systems

with stochastic inputs.

1.3.1 Literature review of QLC

The stability of control systems with nonlinear actuators and sensors has been studied

in control theory for over 70 years. Although the theory of absolute stability [13–20]

and numerous subsequent developments [21, 22] have given rise to effective methods

to analyze the stability and domains of attraction for such systems, fewer references

have concentrated on performance analysis (i.e., with respect to reference tracking

and disturbance rejection) of these systems. The remaining publications generally

consider specific nonlinearities for instrumentations, i.e., actuators and sensors. A

system with saturating actuator in the framework of absolute stability is considered

in [23]. Semi-global stability of LPNI systems with saturating actuators and linear

feedback had been studied in [24–26]. The papers [27, 28] consider the problems

of stability of systems with sensor nonlinearities. The survey paper [29] presents a

thorough review of LPNI systems with saturating actuators.

Recently, the theory of Quasilinear Control was developed using stochastic lin-

earization [3] to address the issues of performance analysis and design [30–38] of

controllers for systems with static nonlinearities in actuators and sensors driven by

stochastic signals. QLC leverages the method of stochastic linearization [39–42],

which uses statistical measures of the stochastic inputs to linearize the system. This

6



approach considers every component in the system so that it provides a more faithful

picture of the entire system. Moreover, QLC was extended to systems with asym-

metric nonlinearities [30, 31, 36–38] and applied to two applications, i.e., wind farm

power control and semi-active suspension control [32,34,35].

Stochastic linearization, which is the main mathematical tool in this research, was

developed in 1954 [39,42]. Afterward, many researchers inaugurated using stochastic

linearization to study the behavior of nonlinear systems with stochastic inputs. Some

of the earlier applications of stochastic linearization to feedback systems was presented

by [40, 43]. In [41], a complete description and detailed interpretation of stochastic

linearization are presented, where stochastic linearization has been referred to as

statistical linearization.

1.3.2 Literature review of Time-delay systems

Often, time-delays affect practical systems, such as electric power systems, pneumatic

systems, and hydraulic systems [44–46]. The transmission or so-called communication

delay in an electric power grid causes power losses and poor performance in regulating

the power demand and supply [47], especially in a renewable energy system. In

other cases, voluntary introduction of delays can aid the control by damping and

stabilization [48]. In general, delays have complex effects on stability [49,50].

Time-delays introduce new characteristics in the mathematical description of sys-

tems, and have been modeled in various ways in the literature. In general, delays

require functional differential equations (FDEs) and, more specifically, delay differen-

tial equations (DDEs) [51], instead of ordinary differential equations (ODEs). Other

models involve the behavioral equations [52], the Lambert W function [53, 54], or

7



rational approximations like the Padé approximant [55].

Several techniques exist for analysis and control of nonlinear time-delay systems

with deterministic inputs [56]. For example, Smith predictor based-control meth-

ods eliminate time-delay from the characteristic equation of the closed-loop sys-

tem [57]. The problem of local stabilization of nonlinear discrete-time systems with

time-varying delay and saturating actuator is studied in [58]. In [59], the theory

of non-commutative rings is proposed for the analysis of time-delay systems. Fuzzy

control-based approaches are discussed in [60, 61]. However, there is less literature

available on nonlinear time-delay systems with stochastic inputs. In [62], the stability

and robustness of deterministic and stochastic linear time-delay systems have been

discussed. There are few analytical methods based on solving stochastic DDEs [63]

and the Fokker-Planck approach [64], but they are not amenable to control system

design.

1.4 Overview of Research Contribution

This thesis provides QLC as an additional toolbox for analysis and design of nonlinear

time-delay systems with stochastic inputs. Conventional QLC does not take time-

delays into account. In order to consider time-delays, QLC requires computation

of the H2 norm of transfer functions. An explicit approach, based on the delay

Lyapunov equation, is not computationally attractive. Alternatively, the time-delay

can be approximated by a Padé approximant, which is computationally advantageous.

We present a criterion for a selection of the order of the Padé approximant based on

the system bandwidth. We investigate the accuracy of stochastic linearization and the

8



effect of a time-delay through Monte Carlo simulations (there is no analytical method

to quantify the accuracy for this class of systems). Statistical results indicate that

stochastic linearization with Padé approximant leads to an accurate characterization

of the performance of the nonlinear system, even though adding a time-delay generally

degrades accuracy. This thesis also investigates the design of controllers for nonlinear

time-delay systems. The root locus method is extended for time-delay systems with

saturating actuators. It turns out that for such systems the saturated-root locus (or

S-RL) always terminates prematurely. In addition, a QLC-based design of optimal

controllers is presented, and applied to a practical example of pitch control of wind

turbines. The simulation of the pitch control illustrates that stochastic linearization

is capable of handling time-delay system with 30% increase of tracking performance

compared to the literature.

1.5 Thesis Outline

The outline of this thesis is as follows. Chapter 2 presents a review of conventional

QLC of systems without time-delay, and two typical nonlinearities in actuators and

sensors are introduced. In Chapter 3, the QLC theory for time-delay systems is

developed, and an analysis of the Padé approximant given. Chapter 4 presents two

Monte Carlo experiments to examine the accuracy of stochastic linearization. Chapter

5 applies the above ideas to a practical example of pitch control in a wind turbine

system. The conclusions and future work are outlined in Chapter 6.

9



Chapter 2

Review of Conventional QLC

This chapter presents a brief review of QLC for systems with nonlinear actuators and

sensors, without time-delay. The reader is referred to the book [3] for details.

2.1 Open-loop System

u(t)

f(u)

N

v(t)

v̂(t)

Figure 2.1: Stochastic linearization of an isolated nonlinearity

Following the standard stochastic linearization approach [41], consider Figure 2.1,

where u(t) is a zero-mean wide-sense stationary (WSS) Gaussian process, f(u) is an

odd piece-wise differentiable function, and N is a constant such that: v̂(t) = Nu(t).

The problem of stochastic linearization is to approximate f(u) by Nu(t), so that the

functional:

ε(N) = E[(v(t)− v̂(t))2] (2.1)

10



is minimized, where E [·] denotes expectation.

The solution to this problem is given by:

N = E [f ′(u)] = F (σu) (2.2)

where

F (σu) =
∫ ∞
−∞

[
d

dx
f(x)

]
1√

2πσu
exp

(
− x2

2σ2
u

)
dx (2.3)

The gain N is referred to as the quasilinear gain of f(u). Since u(t) is a WSS Gaussian

process, N is only a function of the standard deviation, σu, of u(t). Note that F(σu)

can be evaluated explicitly as a function of σu for a given nonlinearity. Clearly, the

technique of stochastic linearization depends on the statistical properties of the input

u(t), unlike Jacobian linearization, wherein gains are evaluated as derivatives of f(u),

i.e., f ′(u), at the operating point [65].

2.2 Examples of Typical Nonlinear In-

strumentations

While the results in this thesis are applicable to all static nonlinearities, below we

focus on saturating actuators and sensor quantization, which are the typical nonlinear

instrumentations in a control system.

11



u

f (u)

−α

α

Figure 2.2: Saturation nonlinearity

2.2.1 Saturation Nonlinearity

Consider Figure 2.2, which shows the saturation nonlinearity defined by the following

function:

f(u) = satα(u) :=



+α, u > +α

u, −α ≤ u ≤ +α

−α, u < −α

(2.4)

where α > 0 is the saturation boundary level of the actuator. It can be shown [3]

that for this nonlinearity, the quasilinear gain is given by:

N = E

 df(u)
du

∣∣∣∣∣
u=u(t)

 = F (σu) = erf
(

α√
2σu

)
(2.5)

where erf (·) is the error function defined by:

erf(x) = 1√
π

∫ x

−x
e−t

2
dt (2.6)

12



As shown in Figure 2.3, F(σu) is a decreasing function of σu. When σu is small,

N ≈ 1, and when σu is large, N ≈
√

2
π

(
α
σu

)
. When N = 1, the system is almost

linear, which implies that the value of N represents the degree of linearity in the

system.

0 2 4 6 8 10

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 2.3: Quasilinear Gain vs σu

2.2.2 Quantization Nonlinearity

The typical nonlinearity in the sensor is quantization, which is usually used in sam-

pling and mapping a analog signal. Consider Figure 2.4, which shows the quantization

nonlinearity defined as

f(u) = qn∆(u) :=


+∆ b+u/∆c , u ≥ 0

−∆ b−u/∆c , u < 0
(2.7)

13



u

f (u)

∆

Figure 2.4: Saturation nonlinearity

where ∆ is the quantization step size and bu/∆c denotes the floor function, which

is the function that takes as input a real number u and gives as output the greatest

integer less than or equal to u.

The quasilinear gain is given by:

N = F(σu) = 2∆√
2πσ2

u

exp
∞∑
k=1

(
−∆2

2σ2
u

k2
)

(2.8)

For a small σu < ∆, N is similar to dead zone, and N approaches 1 as σu →∞.

2.3 Closed-loop system

Consider the closed-loop system of Figure 2.5a, where P (s) and C(s) are the plant

and the controller respectively, and f(·) and g(·) are odd, piece-wise differentiable

functions representing the actuator and sensor. FΩr(s) and FΩd
(s) are coloring filters

with 3dB bandwidths Ωr and Ωd, with DC gains selected so that σr is as desired. ωr

and ωd are standard Gaussian white noise processes, and the scalars r(t), e(t), u(t),

14
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FΩr(s)ωr C(s) f(·)

FΩd
(s)

ωd

P (s)

g(·)

r e u v d y

ym

(a) Closed-loop system with nonlinear actuator and sensor

−
FΩr(s)ωr C(s) Na

FΩd
(s)

ωd

P (s)

Ns

r ê û v̂ d ŷ

ŷm

(b) Closed-loop stochastically linearized system

Figure 2.5: Closed-loop LPNI system and its stochastic linearization

v(t), and y(t) represent the reference, error signal, control signal, actuator output,

and the plant output respectively. The goal is to obtain the stochastic linearization

approximation by (2.2) and replace the nonlinear actuator and sensor with quasilinear

gains to obtain the system of Figure 2.5b, where

Na = E

 df(û)
dû

∣∣∣∣∣
û=û(t)

 (2.9)

and

Ns = E

 df(ŷ)
dŷ

∣∣∣∣∣
ŷ=ŷ(t)

 . (2.10)

15



Since the control action, u(t), depends on the output of the nonlinearities (be-

cause of feedback), u(t) is not Gaussian, unlike the open-loop case. Furthermore, the

signals u(t) and û(t) are not the same, unlike the open-loop case. Because of these

two obstacles, the quasilinear gain formula in (2.2) is no longer an optimal gain for

replacing the nonlinearity. However, if the plant is low-pass filtering, the signal u(t) is

close to Gaussian, which addresses the first obstacle. Furthermore, quasilinear control

theory assumes that u(t) and û(t) are the same, which addresses the second obstacle.

It has been shown in previous studies and in Chapter 4 that the accuracy of stochastic

linearization in closed-loop systems with or without time-delays is generally less then

10%.

Below, we will introduce the reference tracking problem with nonlinear actuator

and sensor. The development for disturbance rejection is similar and is hence omitted.

2.3.1 Reference tracking with nonlinear actu-

ator

Consider a reference tracking system with an actuator nonlinearity shown in Figure

2.6a. Assuming that the system is operating in the stationary regime and σu = σû

(the validity of this assumption is addressed in Chapter 4), the standard deviation

σû can be computed by using the H2 norm of the transfer function from ω to û:

σû =
∥∥∥∥∥ FΩ(s)C(s)

1 + P (s)NaC(s)

∥∥∥∥∥
2

(2.11)

Note that, for an LTI system driven by Gaussian white noise, theH2 norm function

provides the steady-state variance of the output The H2 norm of a continuous system

16



−
FΩ(s)ω C(s) f(·) P (s)r e u v y

(a) Closed-loop system with nonlinear actuator

−
FΩ(s)ω C(s) Na = E

[
d
dû
f (û)

]
P (s)r ê û v̂ ŷ

(b) Closed-loop stochastically linearized system

Figure 2.6: Illustration of reference tracking in time domain

with transfer function H(s) is defined by:

‖H‖2 =
√

1
2π

∫ ∞
−∞
|H(jω)|2 dω (2.12)

Hence, from (2.2), N is a root of the following transcendental equation:

Na −F
(∥∥∥∥∥ FΩ(s)C(s)

1 + P (s)NaC(s)

∥∥∥∥∥
2

)
= 0, (2.13)

where

F (σû) =
∫ ∞
−∞

[
d

dx
f(x)

]
1√

2πσû
exp

(
− x2

2σ2
û

)
dx. (2.14)
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Numerical Example

Consider the nonlinear system of Figure 2.6a with:

P (s) = 10
s(s+ 10) , C(s) = 5,

FΩ(s) =
√

3
s3 + 2s2 + 2s+ 1 , and f(u) = satα(u)

(2.15)

Note that FΩ is a 3rd order Butterworth filter with bandwidth Ω = 1 and DC gain

selected so that σr = 1. The actuator nonlinearity is selected as standard saturation.

Using (2.5), (2.13) becomes:

Na − erf

 α
√

2
∥∥∥ 5

√
3s(s+10)

(s3+2s2+2s+1)(s2+10s+50Na)

∥∥∥
2

 = 0. (2.16)

We solve (2.16) with the saturation boundary level α ∈ [0, 3]. Figure 2.7a shows

that for α ∈ (0, 0.5), N is nearly linear with slope 0.2 and Figure 2.7b shows that

the standard deviation of tracking error σê decreases with slope −0.7. For α > 2, N

can be considered to be 1, which means that saturation is ignored and the system is

almost linear.

To illustrate the tracking performance of the stochastically linearized system of

Figure 2.6b, traces of r(t), ŷ(t) and y(t), which are the reference, output of stochasti-

cally linearized system, and output of LPNI system, are obtained from the simulation

of both the nonlinear system and the stochastically linearized system. As shown in

Figure 2.8a, for the saturation boundary level α = 1, the tracking behavior of the

stochastically linearized system is good and similar to the nonlinear system. For

α = 0.5, as shown in Figure 2.8b, the system becomes more nonlinear, compared to
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Figure 2.7: Quasilinear gain and tracking performance

α = 1, due to the saturation, so that the tracking performance is poor: the output

of the stochastically linearized system ŷ(t) approximates the output of the nonlinear

system y(t) with a lag.
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ŷ

y

(b) α = 0.5

Figure 2.8: Illustration of reference tracking

2.3.2 Reference tracking with nonlinear sen-

sor

Consider the reference tracking system with a sensor nonlinearity shown in Figure

2.9a. The quasilinear gain, which replaces the nonlinear sensor, is obtained from the

same procedure as the nonlinear actuator defined by (2.10). The standard deviation

20
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(a) Closed-loop system with nonlinear actuator

−
FΩ(s)ω C(s) P (s)r ê û

Ns = E
[
d
dŷ
g (ŷ)

]
ŷ

ŷm

(b) Closed-loop stochastically linearized system

Figure 2.9: Illustration of disturbance rejection in time domain

σŷ can be computed using H2 norm of the transfer function from ω to ŷ:

σŷ =
∥∥∥∥∥ FΩ(s)P (s)C(s)

1 + P (s)NsC(s)

∥∥∥∥∥
2

(2.17)

Similar to (2.13), Ns is the root of the transcendental equation:

Ns − G
(∥∥∥∥∥ FΩ(s)C(s)P (s)

1 + P (s)NsC(s)

∥∥∥∥∥
2

)
= 0, (2.18)

where

G (σŷ) =
∫ ∞
−∞

[
d

dx
g(x)

]
1√

2πσŷ
exp

(
− x2

2σ2
ŷ

)
dx. (2.19)
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Numerical Example

Consider the nonlinear system of Figure 2.9a with the same parameters as in (2.15):

P (s) = 10
s(s+ 10) , C(s) = 5, FΩ(s) =

√
3

s3 + 2s2 + 2s+ 1 (2.20)

with linear actuator f(u) and quantized sensor g(y):

f(u) = u and g(y) = qn∆(y). (2.21)

Thus, for this system, using (2.19) and (2.8), the equation of the quasilinear gain

becomes

Ns −Q

 ∆∥∥∥FΩ(s)C(s)P (s)
1+P (s)NsC(s)

∥∥∥
2

 = 0, (2.22)

where

Q(z) =
√

2z√
π

∞∑
k=1

exp
(
−z

2

2 k
2
)
. (2.23)

2.4 Controller Design for Reference

Tracking

The root locus is a useful tool in control theory for designing controllers. A similar

root locus technique, referred to as the Saturated-Root Locus (S-RL), is developed

in [3] for analyzing systems with saturating actuators. It is shown in [3] that S-RL is

a subset of the standard root locus, but may terminate prior to the open loop zeros.
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Consider the nonlinear system of Figure 2.6a, where the controller is now KC(s)

instead of C(s) and K ∈ (0,∞) is a parameter. The quasilinear gain is now a function

of K, defined by

Na(K) = erf

 α
√

2
∥∥∥ FΩ(s)KC(s)

1+P (s)Na(K)KC(s)

∥∥∥
2

 . (2.24)

In the above equation, the dependence of Na on K is explicitly shown by Na(K).

Note that, since Na(K) appears on both sides of the equation, (2.24) is a transcen-

dental equation that must be solved numerically.

Using (2.13), quasilinear gain Na(K) is a solution of the following equation:

Na(K)−F
(∥∥∥∥∥ KFΩ(s)C(s)

1 +Na(K)KC(s)P (s)

∥∥∥∥∥
2

)
= 0 (2.25)

The effective gain, Ke, of the stochastically linearized system is defined as Ke(K) :=

KNa(K). From (2.5), Ke(K) can be obtained from the equation:

Ke(K) = Kerf

 α
√

2K
∥∥∥ FΩ(s)C(s)

1+Ke(K)C(s)P (s)

∥∥∥
2

 (2.26)

IfKe(∞) =∞, the S-RL behaves the same as an unsaturated system. IfKe(∞) <∞,

the S-RL terminates at points prior to the open loop zeros. Hence, Ke(∞) is the

saturated-termination gain. Methods for computing Ke(∞) are provided in [3]. In

short, the methods start from the following equation

β −

∥∥∥∥∥∥∥∥
FΩ(s)C(s)

1 +
(
α
√

2/π
β

)
P (s)C(s)

∥∥∥∥∥∥∥∥
2

= 0. (2.27)
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If a unique solution β∗ > 0 satisfies the above equation, then the saturated-

termination gain is defined by

lim
K→∞

Ke(K) =
α
√

2/π
β∗

(2.28)

If β∗ = 0 is the only solution, then Ke(∞) is infinite.

Numerical Example

Consider a delay-free closed-loop system as shown in Figure 2.6a with

C(s) = 1, P (s) = s+ 15
s(s+ 2.5) , and FΩ(s) =

√
3

s3 + 2s2 + 2s+ 1 (2.29)

and the actuator saturation defined by

f(u) = satα(u) and α = 0.16. (2.30)
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Figure 2.10: Ke vs K of the system without time-delay
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In this case, (2.27) admits a unique solution β∗ = 2.58 for K > 0 and the equiv-

alent gain Ke(∞) = 0.3389. Figure 2.10 shows Ke as a function of K. When K is

small, we see that Ke(K) is close to K, because the system does not saturate. As K

increases, Ke(K) terminates to 0.3389.
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Figure 2.11: Unsaturated and saturated root locus

Figure 2.11 shows the results of both the unsaturated and saturated root locus.

The blue and green lines are the original root locus. The saturated root locus, shown

by the black line, starts from the open-loop poles, shown by red dots, and ends at

the termination points, which are at s = −1.4150± 1.7169i shown by green dots. For

this example, S-RL may not enter a pre-specified admissible domain and, hence, the

tracking performance may be limited.

In this chapter, we reviewed QLC of systems with nonlinear actuators and sensors

with two numerical examples and the approach of stochastic linearization. In the

review of controller design, S-RL was presented, where it was shown that S-RL may

or may not terminate prematurely.
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Chapter 3

QLC with Time-delays

This chapter, first, introduces QLC with time-delays and stochastic linearization of

time-delay systems. Second, the issue of computing H2 norm is addressed. Finally,

the method of root locus in nonlinear time-delay systems and a QLC-based optimal

controller are investigated.

3.1 Closed-loop system

Consider a time-delay system, shown in Figure 3.1a, and its stochastic linearization,

shown in Figure 3.1b. Because time-delays in LPNI systems have not been addressed

in the literature, the effects of time-delays on stochastic linearization are unknown.

Time-delays may cause instability and significantly degrade performance, and more-

over, the nonlinearity may increase the negative effects of the time-delay. This section

focuses on the analysis of stochastic linearization of an LPNI system with time-delays.

Note that the time-delay does not change the properties of linearity or time-

invariance of the system, so the stochastically linearized system remains LTI . Hence,
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(a) Closed-loop time-delay system with nonlinear actuator and sensor

−
FΩ(s)ω C(s) Na P (s) e−st
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(b) Stochastically linearization of the above system

Figure 3.1: Reference tracking with closed-loop time-delay system having nonlinear actuator
and sensor and its stochastic linearization

the quasilinear gain of the actuator can still be computed using the standard devia-

tion, σû, which can be obtained from the H2 norm of the transfer function from ω to

û (as shown in (2.11)):

σû =
∥∥∥∥∥ FΩ(s)C(s)

1 + P (s)NaC(s)e−sT

∥∥∥∥∥
2

(3.1)

Similar to (2.13), Na is a root of the following equation:

Na −F
(∥∥∥∥∥ FΩ(s)C(s)

1 + P (s)NaC(s)e−sT

∥∥∥∥∥
2

)
= 0 (3.2)

A sufficient condition for the existence ofNa is mentioned in the following theorem:

Theorem 1. Assume that the system of Figure 3.1b is asymptotically stable for Na ∈

N , where N ⊂ R is the range of function F in (2.2), and that N is a closed interval.

Then, equation (3.2) has a solution.
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Figure 3.2: MSE of v and y vs Na

Proof. According to the first assumption, the second term of (3.2) is a continuous

function of Na. Moreover, its range covers the range of Na. Because of this and

the second assumption, the existence of a solution is guaranteed by the Brouwer

fixed-point theorem [66].

As mentioned in Section 2.3, despite the two assumptions made for the closed loop

environment (i.e., the Gaussianity of u and the fact that u = û), Na obtained from

(3.2) still provides a good approximation of the minimization of (2.1). To illustrate

this, we simulate the system of Figure 3.1a and Figure 3.1b with Na ∈ [0, 0.8] and all

other parameters defined as in the numerical example of Section 2.3.2, with α = 1

and a time-delay T = 0.3. We plot the mean squared error (MSE) of v(t) and v̂,
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i.e., Equation (2.1), and MSE of y(t) and ŷ as a function of N , as shown in Figure

3.2. The quasilinear gain N∗a computed from (3.2) is 0.36 and is plotted in the same

figure. As can be seen, N∗a is located very close to the lowest value in both the

MSE plots in Figure 3.2. Hence, the method of stochastic linearization achieves our

objective of minimizing (2.1) successfully and is indeed a good approximation of the

true minimum. Note that, while QLC finds the approximate location for the minimum

of MSEs, the minimum values are rather high in this system (about 0.3), implying

that the accuracy of stochastic linearization in predicting the variance of the signals

in the nonlinear system may be low. The reason for this low accuracy is not due

to the two assumptions mentioned in Section 2.3; rather, it is because there exists

no linear approximation that would yield a high accuracy. Accuracy is thoroughly

investigated in Chapter 4.

3.2 Computation issue - Time-delay

In this thesis, we use H2 norm to evaluate the standard deviation of the actuator

input, σu. A well known method to compute the H2 norm of linear time-invariant

delay-free systems is using the solution of the Lyapunov equation. Let {A,B,C} be

a minimal realization of an asymptotically stable single-input single-output (SISO)

system without time-delays. Consider the Lyapunov equation

UA+ A′U + C ′C = 0 (3.3)
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where ′ denotes the transpose of a matrix. Then, H2 norm can be explicitly computed

by the solution of equation (3.3) as follows:

‖H‖2
2 = Tr (BUB′) (3.4)

However, in time-delay systems, this approach requires delay Lyapunov equa-

tions [67]. Consider an asymptotically stable SISO system with a single time-delay

described by,

ẋ = A0x+ A1x(t− T ) +Bu

y = Cx,

(3.5)

where, A0, A1 ∈ Rn×n, B ∈ R1×n, C ∈ Rn×1, and T is delay time.

The H2 norm of this time-delay system is defined as:

‖H‖2
2 = Tr (BU(0)B′) (3.6)

where U(0) is the unique solution of the delay Lyapunov equations:

U ′(t)B = U(t)A0 + U(t− T )A1

U(−t) = UT (t)

−C ′C = B′U(−T )A0 + A′0U
′(−TB) +B′U(−T )A1 + A′1U

′(−TB).

(3.7)
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A simplified formulation, provided in [67], is as follows:

‖H‖2
2 = − vec(BB′)′ [A′0 ⊗ I + I ⊗ A′0+

(A′1 ⊗ I + (I ⊗ A′1)B12)B−1
22 (I −B21)+

(I ⊗ A′1)B11]−1 vec(C ′C),

(3.8)

where B00 B01

B10 B11

 = exp

T
 A′0 ⊗ I A′1 ⊗ I

−I ⊗ A′1 −I ⊗ A′0


 (3.9)

Note that vec is the vectorization operation that is defined as the stacking of the

columns into a vector and ⊗ is Kronecker product.

However, this explicit approach requires computations that involve large matri-

ces depending on the system dimension n, with a complexity of order O(n6). An

alternative but simple way to compute H2 norm of time-delay systems is using Padé

approximant, which is a rational model of a pure delay e−sT . The accuracy of the

Padé approximant in replacing a time-delay is commonly known in the field of control

theory [55]. As a review, Figure 3.3 shows the Bode plot of different orders of the Padé

approximant of a delay of one second. From the Bode plot, it can be seen that the

Padé approximant has a high accuracy at low frequencies, but at high frequencies, the

phase of the Padé approximant does not roll-off as a real delay. Furthermore, high-

order Padé approximants contains clustered poles in the transfer function. Because

this clustered poles tend to be very sensitive to perturbations, Padé approximants

with order n > 10 should be avoided.

In order to determine a proper order of the Padé approximant for our purposes, we

take into account the differences in system bandwidth and the H2 norm between the
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Figure 3.3: Bode plot of different orders of Padé approximant

approximation and the real time-delay. We consider the nth order Padé approximant

D (s, T, n) to be a good approximation of the real time-delay, e−sT , if the following

criterion holds:

∠e−jωBWT − ∠D(jωBW, T, n) < δ◦, (3.10)

where

∠e−jωBWT = −ωBW · T (3.11)

and the general formula for Padé approximant is

e−sT ≈ D(s, T, n) =
∑n
i=0

(
n
i

)
(2n−1)!

(2n)! (−Ts)i∑n
i=0

(
n
i

)
(2n−1)!

(2n)! (Ts)i
. (3.12)

In Equation (3.10), δ > 0 is a desired accuracy. ωBW is the largest 3dB bandwidth

of the system of Figure 3.1b ∀Na ∈ N , and ∠ denotes the phase. Note that this

condition takes into account the phase lag of the time-delay, as shown in Figure 3.3.

To compare the explicit method based on the delay Lyapunov equations and the
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Figure 3.4: Comparison of the real delay and its Padé approximant

Padé approximant, we consider the example in Section 2.3.1 with a time-delay T ,

which is varied from 0 to 0.12. Figure 3.4 shows the relative difference between σû

and σ̃û in percentage, where σû is computed by the delay Lyapunov method and σ̃û

is computed by the Padé approximant. As can be seen, for this example, if T < 0.01,

even the 1st order Padé approximant is a good approximation for computing H2

norm. For larger delays, the 3rd order Padé approximant generally performs well.

Note that for delays larger than 0.115, the quasilinear system is unstable and, hence,

the difference between σû and σ̃û tends to infinity.

In this work, we choose the order of all Padé approximant n = 6 under the criterion

with δ = 5◦.
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Figure 3.5: Quasilinear gain and tracking performance with different delays

3.3 Numerical Example of Time-Delay

QLC System

Consider the system of Figure 3.1a with all elements defined as in Section 2.3.2 and

the time-delay given by T , which we vary below. The quasilinear gain is the root of

the equation below:

Na − erf

 α
√

2
∥∥∥ FΩ(s)C(s)

1+P (s)NaC(s)e−sT

∥∥∥
2

 = 0. (3.13)
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Figure 3.6: Illustration of reference tracking in time domain

Thus,

Na − erf

 α
√

2
∥∥∥ 5

√
3s(s+10)

(s3+2s2+2s+1)(s2+10s+50Nae−sT )

∥∥∥
2

 = 0. (3.14)

To illustrate, we solve (3.14) with the actuator boundary level α ∈ [0, 3] and a

time-delay T ∈ {0, 0.1, 0.2, 0.3, 0.4, 0.5}. As shown in Figure 3.5, for each α, the value

of Na degrades as a function of delay and σê increases as a function of delay. This

phenomenon is formalized by Theorem 2 below for the general case.

Both the nonlinear and the stochastically linearized systems are simulated with

a time-delay of 0.5 s. The traces of r(t), ŷ(t) and y(t) from the simulation results

are shown in Figure 3.6. From the figure, it can be seen that the output of the
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nonlinear time-delay system, y(t), lags the reference r(t) by the specified time-delay,

as expected. For α = 1, the error between the standard deviation of y(t) and that of

ŷ(t) is 0.0475, and for α = 0.5, the error is 0.1993, which is significantly higher. This

is because of an increase in the nonlinearity of the system due to saturation. The

accuracy of stochastic linearization is studied further in Chapter 4.

Theorem 2. Assume that, for the system shown in Figure 3.1b, the controller is

asymptomatically stable, the limit of Na(T ) as T →∞ in the Equation (3.13) exists,

and the nonlinearity is the saturation with fixed α. Then, the solution of Equation

(3.13) satisfies Na → 0 as T → ∞. Moreover, the stochastically linearized system is

always stable for T ∈ [0,∞).

Proof. The proof is by contradiction. Assume Na(T ) 9 0 as T → ∞. Then H2

norm function in Equation (3.13) tends to infinity because of the instability caused

by the time-delay. Therefore, the second term of (3.13) tends to 0, which contradicts

the assumption that Na(T ) 9 0. This proves that Na(T ) → 0. Next, we prove by

contradiction that the quasilinear system is asymptomatically stable ∀T . Suppose

there exists a T such that the system is unstable. This implies that the H2 norm in

(3.13) is infinite. Thus, Na = 0. However, this leads a contradiction because with

Na = 0, the H2 norm in (3.13) satisfies:

∥∥∥∥∥ FΩ(s)C(s)
1 + P (s)NaC(s)e−sT

∥∥∥∥∥ = ‖FΩ(s)C(s)‖ ,

which is bounded because C(s) is assumed to be stable. This contradicts the fact

that the H2 norm is unbounded.
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3.4 Controller design

3.4.1 Saturated-Root Locus (S-RL)

To find the Saturated-termination points in a time-delay system, (2.26) is modified

to:
Ke(K,T ) = Kerf

 α
√

2K
∥∥∥ FΩ(s)C(s)

1+Ke(K,T )C(s)P (s)e−sT

∥∥∥
2

 (3.15)

where Ke(K,T ) is now a function of the parameter K and time-delay T .

Unlike the S-RL without time-delay, which may or may not terminate prema-

turely as shown in Section 2.4, when we apply the time-delay in (2.26) and evaluate

limK→∞Ke(K,T ) for T > 0, the S-RL always terminates prematurely. This is ex-

plained in the following Theorem.

Theorem 3. In equation (3.15), there exists 0 < K∗e <∞ such that Ke(K,T ) ≤ K∗e

∀T > 0 and, hence, S-RL with time-delay terminates prematurely. Furthermore, the

S-RL with time-delay always belongs to the left half plane, implying that the quasilinear

system of Figure 3.1b is always stable.

Proof. Similar to Theorem 5.2 in [3], an auxiliary transfer function is defined as:

Tγ(s) := F (s)C(s)
1 + γP (s)C(s)e−sT , γ ∈ R+, T > 0

Because of the time-delay, large K destabilizes the system, which implies that Tγ(s)

is asymptotically stable only for γ ∈ [0,Γ), for some Γ < ∞. The following approach

is by contradiction. Assume there exists K∗ > 0 such that Ke(K∗) ≥ Γ. Then, it
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follows from (3.15) that:

Ke(K∗) = Kerf

 α
√

2K∗
∥∥∥ FΩ(s)C(s)

1+Ke(K∗)C(s)P (s)e−sT

∥∥∥
2

 (3.16)

This leads to a contradiction because the LHS of (3.16) is positive, while the RHS is

0. Hence, our assumption is incorrect, and Ke(K,T ) ≤ Γ. The K∗e in the theorem

statement is exactly Γ. Because this auxiliary transfer function is stable ∀T , the

H2 norm in (3.16) is finite, which implies that the closed-loop quasilinear system is

asymptotically stable.

Theorem 3 states that the quasilinear system of Figure 3.1b always remains stable,

even in the presence of time-delays. This is in contrast with linear systems with delays,

which become unstable for large K. This result makes sense, as the original nonlinear

system contains saturation, which ensures bounded-input bounded-output stability

of the closed-loop system.

Note that Theorem 3 holds for both a real delay and its Padé approximant, be-

cause, similar to a real delay, the non-minimum zeros of the Padé approximant dista-

bilize the system for sufficient large K. In this thesis, we apply the Padé approximant

with sufficient orders for solving (3.15).

Numerical Example of S-RL with time-delays

To illustrate the difference with the case without a time-delay discussed in Section

2.4, consider the system:

P (s) = s+15
s(s+2.5) , α = 0.16

C(s) = 1, FΩ(s) =
√

3
s3+2s2+2s2+1
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Figure 3.7: Ke vs K of the time-delay system
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Figure 3.8: Ke vs T

Figure 3.7 shows Ke(K) as a function of K for different T . Overall, regardless

of the time-delay, when K is small, Ke(K) is practically linear, because the actua-

tor is not saturated. As K increases, Ke(K) terminates at the termination points.

Furthermore, as shown in Figure 3.8, as T increases, the termination points decrease

bec ause N decreases according to (3.2). This effect turns out to be a problem for

controller design. To illustrate, suppose we would like to design a controller such

that the closed-loop poles are within an admissible domain denoted by the yellow

region in Figure 3.9. When the time-delay increases, the poles may be out of the

admissible domain due to decreasing Ke, which degrades the tracking performance

and may cause difficulties for controller design.

3.4.2 QLC-Based Design of Optimal Controllers

QLC also can be used to design optimal controllers. Unlike in conventional controller

design, where the performance of, for example, the step response is considered, QLC

takes into account the statistical properties of stochastic inputs.
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Figure 3.9: Saturated-Root Locus with decreasing Ke.

Consider the nonlinear time-delay system of Figure 3.1a. The problem is to design

an optimal controller C(s) to ensure effective reference tracking performance. Since

the analysis of this nonlinear system is difficult, we stochastically linearize it to obtain

the system of Figure 3.1b. To ensure good tracking performance with less control

effort, the combined standard deviation of the error signal, i.e., σê, and a scaled

version of that of the input to the actuator, i.e., σû, is minimized. Clearly, σê and σû

depend on C(s). This is in accordance with standard practice in optimal control, for

example in designing an LQR controller, where the combined state and control costs

are minimized.

The optimization problem may be formulated as:

min ρσ2
û + σ2

ê ,

subject to (3.2)
(3.17)
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where ρ is a control penalty, σû calculated using (3.1), and σê using:

σê =
∥∥∥∥∥ FΩ(s)

1 + P (s)NC(s)e−sT

∥∥∥∥∥
2
. (3.18)

For the sake of numerical optimization, we replace the delay e−sT by an nth order

Padé approximant, based on the criterion in Section 3.2. This optimization problem

is not convex and its solution may not be unique, because σê and σû are coupled with

Na through transcendental equations. Therefore, the optimization algorithm must be

started from multiple initial conditions in order to find the best solution.

Furthermore, a practical application of this method is given in Chapter 5 for the

design of a PID controller for the pitch control of wind turbines.
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Chapter 4

Accuracy of QLC with Time-delay

In this chapter, we introduced two Monte Carlo experiments. The first experiment

is to examine the accuracy of stochastic linearization with time-delays. The second

experiment shows the effect of time-delays in the accuracy of stochastic linearization.

4.1 Overview - Monte Carlo Method

Since it is not possible to analytically determine the statistical measures of a signal in

a general stochastic nonlinear system, there is no analytical technique to characterize

the accuracy of stochastic linearization for such dynamic systems. However, accuracy

can be determined numerically [3,30]. In this section, we introduce two statistical ex-

periments based on the Monte Carlo method. Monte Carlo method, in general, is the

a statistic algorithm that use repeatedly and randomly generated calculation to ob-

tain numerical results. The essential idea is using randomness to solve problems that

might not have other approaches. The first experiment demonstrates the accuracy of

stochastic linearization and second one studies the effect of the time-delay.
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4.2 First experiment - Accuracy of SL

In order to statistically examine the accuracy, the following Monte Carlo experiment

is performed. We simulated 5000 time-delay systems with the block diagram of Figure

3.1. In 2500 of these systems, P (s) is assumed to be a first order system defined by

P (s) = Kp

Ts+1 , and in the remaining 2500, P (s) is assumed to be a second order system

defined by P (s) = Kpω2
n

s2+2ζωns+ω2
n
. The controller and the nonlinear actuator are assumed

to be

C(s) = K, f(·) = satα(·)

where K is the controller gain, and f(·) is a symmetric saturation with actuator

authority α. The parameters Td, ζ, α, K, andKp are randomly and uniformly selected

from the following intervals: ζ ∈ [0, 2], Td ∈ [0, 1], α ∈ [0.01, 5], Kp ∈ [0.01, 10], K ∈

[0.01, 50]. The parameters T and ωn are selected randomly and logarithmically from

T, ωn ∈ [0.01, 10]. Also, we assume that F (s) is the third-order Butterworth filter:

F (s) =
√

3
( 1
s3 + 2s2 + 2s+ 1

)

From the resulting simulations, all unstable systems and systems in which the

phase margin for the stochastically linearized systems is lower than 10 degrees are

discarded, because they are not practical. For each of the rest of the systems, σy and

σŷ and RMSE of y and ŷ are evaluated by simulations.

Accuracy is defined by the RMS error and the error in σy as follows:

RMSE =
√

Σn
t=t0(ŷt − yt)2

n
, ey = |σy − σŷ|

σy
(4.1)

43



Figure 4.1: Convergence of the RMS error and the error in σy

where yt and ŷt refer to the plant output at time t for the nonlinear system and

the corresponding stochastically linearized system, respectively, and t0 is a time after

which the system is in the stationary regime.

To show that 2500 systems are indeed sufficient for this experiment, we compute

RMSE and ey in (4.1) for every randomly generated 1st and 2nd order systems. Then,

we find the running average of the computed RMSE and ey values as a function of

the number of systems simulated. The results are shown in Figure 4.1. From these

figures, we determine that after 1000 simulations, the error metrics have sufficiently

converged. For this reason, we choose 1000 systems for the second Monte Carlo

experiment.

Results

The results are shown in Figure 4.2. Figure 4.2a shows that the quasilinear gain,

which represents the degree of linearity in the systems, is mostly close to 0 and 1.

Since nearly half of the systems are highly nonlinear and the rest linear, this is a valid

experiment for analyzing the relevance of the nonlinearity from low to high.
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In Figure 4.2b, it can be seen that in all cases the RMS error is lower than 0.6,

with mean 0.0901. Hence, we can conclude that RMS error remains low in all cases.

In Figure 4.2c, the error in σy, i.e., ey, has mean 0.0501, i.e., 5.01% average error.

Overall, the data clearly show that accuracy in all cases remains relatively high, even

in the presence of time-delays.

4.3 Second experiment - Effect of the

time-delay

Another Monte Carlo experiment is conducted to find out the effect of the time-delay

on the accuracy of stochastic linearization. A total of 1000 first order systems and

1000 second order systems are randomly generated with parameters selected as in

Section 4.2. For each random system, the time-delay parameter Td is varied from 0

to 0.2 seconds in increments of 0.05 and, for each delay, the response of the system is

simulated.

Results

The results are shown in Figure 4.3a and Figure 4.3b. Here,

∆RMSE(%) = (RMSE− RMSE0)/RMSE0)× 100%,

∆ey(%) = (ey − ey0)/ey0 × 100%,
(4.2)

where RMSE0 and ey0 are the RMS error and the error in σy, ey, respectively, for

the system without time-delay, i.e., Td = 0. In these figures, each line corresponds to
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(a) ∆RMSE(%) vs delay time T (b) ∆ey(%) vs delay time T

Figure 4.3: Simulation result

a fixed system with varying levels of time-delay. The increasing ∆RMSE(%) describes

the RMS error increases as gradually increasing delay time T . Similarly, the increasing

∆ey(%) indicates the decrease of the tracking performance. It can be seen that overall,

accuracy worsens as time-delay increases, although in few situations it can be seen to

improve as well.

In this chapter, two Monte Carlo experiments are introduced. Overall, the accu-

racy of stochastic linearization with time-delays remains relatively high, even though

increasing time-delays degrades the accuracy.
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Chapter 5

Practical Example - Wind turbine

5.1 Overview

Pitch control is a method commonly used in modern wind turbine systems to control

the pitch angle of the turbine blades in order to keep the electrical power output at

the rated power and prevent damage to the turbine due to varying wind speed [68].

Compared to a fixed-pitch system, a pitch control system produces a stable power

output to keep the generator of the wind turbine operating at the rated power.

The power curve of a wind turbine system is shown in Figure 5.1 [1]. It shows the

relationship between electrical power output of a wind turbine and the wind speed. As

wind speed exceeds the cut-in speed, torque control is activated to generate maximum

power. When output power achieves its rated value, pitch control is activated instead

of torque control, until the wind speed is greater than the cut-out speed.
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Figure 5.1: Power Curve of a Wind Turbine System, figure is taken from [1]

5.2 Model construction

Turbine Drive train Generator Power transducer

Pitch actuator

Yawactuator Controller

Wind Electric Power

Figure 5.2: Wind Turbine System Feedback Control System Model, figure is taken from [2]

Figure 5.2 shows the block diagram of typical wind turbine system [2]. Below, the

model of pitch actuator and drive-train model will be introduced.
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Pitch actuator model

The pitch actuator is used to change the blade angle. The actuator model describes

the dynamic between the pitch demand βd and the pitch angle measures from the

blade. The change of pitch angle is as follows:

dβ

dt
= (βd − β) /Tβ, (5.1)

where Tβ = 0.5 is the time constant of pitch actuator, which can be calculated by

Newton’s second law of motion with the parameters of the wind turbine shown in the

table below. Construction detail is provided in [2].

Time constant of pitch actuator, Tβ 0.5
Reference pith angle, βd 0 to 90 deg
Rate of change of pitch angle 3 deg/sec
Damping coefficient, B 2 N.m/rad/sec
Driven-train inertia, JT 0.3 deg

Table 5.1: The parameters of the actuator model in the wind turbine [2]

Thus, the Laplace transform of (5.1) is

β(s)
βd(s)

= 1
sTd + 1 = 1

0.5s+ 1 (5.2)

Drive train model

Similar to the actuator model, the dynamic of drivetrain can be described as the

transfer function from the wind turbine torque Tw to turning speed of the motor WT

WT

Tw
= (1/B)

(JT/B)s+ 1 = 0.5
0.375s+ 1.5 (5.3)

50



In a pitch control system, the turbine blade turning rate is saturated and the

hydraulic system has a propagation delay. Hence, the pitch control system is a non-

linear time-delay system. Specifically, the pitch control system can be modeled as a

time-delay in the electric drive along with a first order inertia. The transfer function

for our example can be expressed as:

β(s)
βr(s)

= 0.5
0.37s+ 1.5 ·

1
5s+ 1e

−2s (5.4)

where β(s) is the pitch angle, and βr(s) is the angle of the pitch demand. In order to

control the input to the saturating actuator, a PID controller is used, as shown in the

overall block diagram of the system along with its stochastically linearized version in

Figure 5.3.

The parameters used for simulation are taken from the literature [68]. The actu-

ator is saturated by the rate of change of pitch angle in the hydraulic system, which

allows a range of −3◦/s ∼ +3◦/s, and the time-delay in the hydraulic system is T = 2

s.

51



5.3 Simulation
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Figure 5.3: Simulation of Pitch Control of Wind Turbine System

The PID controller gains are selected using the QLC-based optimization described

in Section 3.4.2, with ρ = 0.01. The optimization is performed using several random

initial sets of PID parameters. Since the optimization problem is non-convex, different

solutions are obtained for different initial values. The best out of them is selected for

the optimal PID gains, which are listed below:

Kp = 2.4458, Ki = 0.1923, Kd = 1.4559

Note that F (s) is defined by

0.3062
s3 + s2 + 0.5s+ 0.125 (5.5)

so that the input bandwidth is 0.5 rad/s and σr = 1.

Compared to a baseline set of PID parameters from the literature [68]: Kp =

Ki = 0.5 and Kd = 1, which result in σê = 1.0935 and the value of the cost function

equal to 1.0558. The optimized values of Kp, Ki and Kd mentioned above result in

σê = 0.6882 and the value of the cost function equal to 0.5141. With our method,

the standard deviation of tracking error, σê, is decreased by 28.65%.
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Figure 5.4: Output of the pitch control time-delay system with nonlinear actuator and the
corresponding stochastically linearized time-delay system

The quasilinear gain obtained from (3.2) is 0.8792, which shows that the actu-

ator is moderately saturated because of the variation in wind speed. To determine

the accuracy of stochastic linearization for this example, the system is simulated in

Simulink® using these parameters. The result of the simulation is shown in Figure

5.4. The RMS error of the output is found to be 0.1311 and the accuracy ey to be

0.0019.

From Figure 5.4, it can be seen that the tracking performance of the nonlinear

time-delay system and that of the corresponding stochastically linearized system,

represented in the output signals y(t) and ŷ(t) respectively, are similar, implying a

good statistical accuracy. Thus, the method of stochastic linearization provides a

fairly accurate approximation of the nonlinear system.
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Chapter 6

Conclusion

6.1 Contributions

In this research, quasilinear control of time-delay systems has been investigated. A

sufficient condition for the existence of a quasilinear gain has been included, along

with the criterion for a Padé approximant of appropriate order.

In the controller design problem, the method of root locus was extended to the

LPNI time-delay system and the result shows that the root locus terminates pre-

maturely because of the actuator saturation and time-delay. A QLC-based optimal

control design has been also investigated.

Statistical results show that even by taking the time-delay property into account,

stochastic linearization produces a fairly accurate representation of the nonlinear

system.

Finally, QLC was applied to a pitch control system for regulating and maintaining

the electric power output of a wind turbine under varying wind speed.
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6.2 Future Work

Future work includes combining this approach with the disturbance rejection, numeri-

cal stability and robustness of the QLC design, and considering different nonlinearities

in actuators and sensors for more analysis.
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