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ABSTRACT 

Forest ecosystems are being altered by climate change, invasive species, and 

additional stressors. Our ability to detect these changes and quantify their impacts relies on 

detailed data across spatial and temporal scales. This dissertation expands the ecological 

utility of long-term satellite imagery by developing high quality forest mapping products 

and examining spatiotemporal changes in tree species abundance and phenology across the 

northeastern United States (US; the ‘Northeast’).  

 

Species/genus-level forest composition maps were developed by integrating field 

data and Landsat images to model abundance at a sub-pixel scale. These abundance maps 

were then used to 1) produce a more detailed, accurate forest classification compared to 

similar products and 2) construct a 30-year time-series of abundance for eight common 

species/genera. Analyzing the time-series data revealed significant abundance trends in 

notable species, including increases in American beech (Fagus grandifolia) at the expense 

of sugar maple (Acer saccharum). Climate was the dominant predictor of abundance 

trends, indicating climate change may be altering competitive relationships.  

 

Spatiotemporal trends in deciduous forest phenology – start and end of the growing 

season (SOS/EOS) – were examined based on MODIS imagery from 2001-2015. SOS 

exhibited a slight advancing trend across the Northeast, but with a distinct spatial pattern: 

eastern ecoregions showed advance and western ecoregions delay. EOS trended 

substantially later almost everywhere. SOS trends were linked to winter-spring temperature 

and precipitation trends; areas with higher elevation and fall precipitation anomalies had 

negative associations with EOS trends. 

 

Together, this work demonstrates the value of remote sensing in furthering our 

understanding of long-term forest responses to changing environmental conditions. By 

highlighting potential changes in forest composition and function, the research presented 

here can be used to develop forest conservation and management strategies in the 

Northeast.  
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CHAPTER 1: INTRODUCTION 

 

1.1 Overview 

The main goal of this dissertation is to expand the usefulness of satellite remote 

sensing for detecting and analyzing change in forest ecosystems. From a data perspective, 

remote sensing usually offers coarser detail and less accurate products compared to field 

observations. This is especially true for the most popular satellite imagery datasets (e.g., 

Landsat). Yet satellite imagery offers broad spatial and, to a lesser extent, temporal 

coverage, while field data are limited to discrete locations. Additionally, the existence of 

climate and other environmental spatial data products can facilitate examinations of forest 

responses to different environmental drivers of change across time and space.  

The research presented here helps bridge the gap in ecological utility between 

satellite and field data by using satellite imagery to develop more accurate, detailed forest 

mapping products, examine spatiotemporal changes in forest structure (species 

composition) and function (phenology), and relate these changes to environmental drivers 

across forests of the northeastern United States (US; the ‘Northeast’). This work is timely 

as climate change, invasive species, and human land use practices continue to rapidly alter 

these ecosystems. By modeling changes in forest structure and function and their potential 

drivers, the information provided in this dissertation can be used to inform forest research 

and management in the Northeast. Conducting this research in a region with diverse forests 

and topography also enables replication in similarly complex (or less so) regions.  
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1.2 Specific objectives 

The specific research objectives (first number = chapter) of this dissertation are to: 

2.1: Integrate multi-temporal Landsat imagery and field inventory data using spectral 

unmixing to develop pixel-level percent basal area (% BA) coverages for 10 common tree 

species/genera in the Northeast.  

2.2: Incorporate the percent basal area maps and ancillary data into an object-based, 

hierarchical ruleset to generate a forest classification (10 species/genera and 6 common 

species assemblages). 

2.3: Compare the forest classification’s detail and accuracy with existing large-scale forest 

mapping products, including LANDFIRE, the National Land Cover Database (NLCD), and 

the National Forest Type Map.  

3.1: Use the technique and products developed in Chapter 2 to construct a 30-year (1985-

2015) time-series of abundance (% BA) for eight dominant tree species/genera across 

northern New York and Vermont. 

3.2: Examine 30-year changes in mean abundance across the study area and by elevation.  

3.3: Detect and quantify spatiotemporal patterns in pixel-level abundance trends.  

3.4: Identify possible abiotic correlates (i.e., climate indices, topographical factors, acid 

deposition inputs, and soil characteristics) associated with abundance trends. 

4.1: Using MODIS-derived annual phenology metrics from 2001-2015, quantify trends in 

the start and end of the growing season (SOS/EOS) across the Northeast.  

4.2: Examine intraregional variation and spatiotemporal patterns in SOS/EOS trends.  
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4.3: Investigate relationships between SOS/EOS trends and numerous climatic and site 

characteristics. 

 

1.3 Remote sensing of forests: a brief review 

1.3.1 Remote sensing systems and concepts 

From Lillesand et al. (2014), “Remote sensing is the science and art of obtaining 

information about an object, area, or phenomenon through the analysis of data acquired by 

a device that is not in direct contact with the object, area, or phenomenon under 

investigation.” Remote sensing systems consist of three basic components: 1) the platform, 

2) the sensor, and 3) the data. A useful metaphor in remote sensing is human sight – our 

body is the platform, our eyes are the sensors, and what we see is the data (processed and 

analyzed by our brains, a supercomputer equipped with all the necessary software).  

Platforms are simply what the sensor is mounted on and are divided into two 

classes, airborne/aerial (airplanes, drones, and balloons) and spaceborne (satellites and 

spacecraft). The sensor – the crux of a remote sensing system – acquires the data and can 

be either active or passive. Active sensors emit energy and record information on the 

returns while passive sensors record energy (solar radiation) reflected or emitted from the 

earth (Wang and Weng 2013). A well-known example of an active sensor is Light 

Detection and Ranging (LiDAR). LiDAR sensors emit frequent laser pulses and measure 

their return time, thereby recording the height and shape of surface features (e.g., trees) 

(Reutebuch et al. 2005). Passive sensors are largely ‘electro-optical’, meaning they 

measure and record data (numeric ‘reflectance’ values) in portions of the electromagnetic 



 

4 

 

spectrum (Wang and Weng 2013). While the use of LiDAR and other active sensor (e.g., 

radar) data is increasingly common, most applications of remote sensing in forest research 

and management rely on digital imagery captured from passive sensors.  

Choosing an appropriate remote sensing system depends on the objectives at hand, 

though important considerations between (and within) aerial and satellite systems include: 

1) imagery resolution (spatial/spectral/temporal), 2) cost/availability, and 3) data 

processing/analysis/storage requirements (extensions of cost). Imagery resolution is 

arguably the most important factor because it dictates what forest features/phenomena can 

be detected and to what extent (see Sections 1.3.2-1.3.4). Spatial resolution refers to the 

spatial detail of an image and is defined by the smallest object it can detect. This is usually 

expressed as pixel size, though these terms are not directly interchangeable since the 

original resolution of an image can be resampled to different pixel sizes (Fig. 1.1) (Wang 

and Weng 2013).  
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Figure 1.1. Comparison of an image with a 0.5-meter spatial resolution resampled to represent 

different pixel sizes. 

 

Spectral resolution refers to the amount of the electromagnetic spectrum that a sensor can 

detect, expressed as the number and width of ‘spectral bands’. For example, most aerial 

imagery – and pictures we take with everyday cameras – consist of three spectral bands in 

the visible light wavelengths (blue, green, and red). Most satellite imagery, on the other 

hand, contain several to many bands that capture segments of the ultraviolet, visible, 

infrared, and/or thermal wavelengths. Finally, temporal resolution is a measure of the 

frequency with which images are captured, usually called a ‘return interval’, and 

encompasses the time-series of imagery available for analysis (temporal coverage).  
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Generally, the major advantages of aerial imaging systems are: 1) they can be 

rapidly deployed to targeted locations; 2) they capture high spatial resolution imagery; and 

3) they avoid problematic atmospheric effects like clouds (Paine and Kiser 2003). These 

advantages are why aerial imaging is commonly used in forestry to map local forest types, 

assess damages (e.g., from insect outbreaks and fire), and survey timber – a practice that 

dates back to the early 20th century (Duggin et al. 1990). Aerial images are also a good 

alternative to ground data for assessing the accuracy of other remotely-sensed forest data 

products (Paine and Kiser 2003). 

However, these advantages come with substantial trade-offs that make aerial 

systems less appropriate for objectives that require large geographic coverage and high 

spectral/temporal resolution. For example, the combination of low flight paths and high 

spatial resolution sensors produces images that cover relatively small areas (low scene size) 

and capture few spectral bands due to limitations imposed on the sensor’s field of view 

(Lillesand et al. 2014). Aerial imaging also comes with many financial and labor-related 

costs for data acquisition, processing, analysis, and storage, and thus the imagery itself is 

usually expensive (Meneguzzo et al. 2013). For these reasons, the rest of this review (and 

dissertation) largely focuses on satellite remote sensing systems.  

 

1.3.2 Satellite remote sensing  

The rapid advancement of satellite and sensor technology since the Cold War era, 

beginning with the launch of the Landsat-1 satellite in 1972 (Woodcock et al. 2008), has 

led to a host of satellite remote sensing systems orbiting the earth today (see Table 1 in 
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Melesse et al. 2007 and the USGS’s list at eros.usgs.gov/satellite-imagery for example). 

They can be classified into four general categories – coarse (i.e., multispectral but with 

spatial resolution > 30-meters), multispectral, hyperspectral, and hyperspatial (Melesse et 

al. 2007) – and their utility in remotely-sensing forest attributes is again a function of their 

various resolutions, cost/availability, and processing requirements (see Table 1 in Xie et 

al. 2008 for a good summary).  

Hyperspatial imagery like that from QuickBird, Ikonos, and World-View is an 

extremely useful alternative to aerial imaging for localized forest mapping and accuracy 

assessment, having high spatial and temporal resolution (all <4-meter spatial resolution, 

with sub-meter options for QuickBird and World-View, and ~5-day return intervals) 

(Melesse et al. 2007, Xie et al. 2008), yet these datasets have limited spectral resolution (1-

5 bands) and are relatively underutilized due to their prohibitive financial cost (Boyle et al. 

2014).  

Arguably the most powerful applications of satellite remote sensing are those based 

on publicly-available imagery from the coarse (e.g., Moderate Resolution Imaging 

Spectrometer, MODIS), multispectral (e.g., Landsat), and hyperspectral (e.g., Hyperion) 

systems that can not only detect the unique spectral properties of vegetation, but also how 

these properties change over time and space. These systems detect energy in the same 

regions of the electromagnetic spectrum, since energy reflection to space is governed by 

atmospheric transmissivity – some wavelengths are fully absorbed (or nearly so) in the 

atmosphere before they reach the sensor while others pass through atmospheric ‘windows’ 

(Fig. 1.2). Where they differ is in the number of spectral bands measured and their width 
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(i.e., broad-band vs. narrow-band). For example, the Landsat Enhanced Thematic Mapper 

Plus (ETM+) sensor is a broad-band, multispectral sensor that captures 8 bands across the 

visible (3 bands), near-infrared (1 band), shortwave-infrared (2 bands), and thermal (1 

band) regions, as well as a higher spatial resolution (15m vs. 30m) ‘panchromatic’ band 

that spans the visible-near infrared wavelengths and is used to ‘pan-sharpen’ other bands. 

In contrast, Hyperion is a narrow-band, hyperspectral sensor that captures 220 bands 

throughout the visible to shortwave infrared regions (Fig. 1.2). These spectral differences 

are a major factor, though not the only one, in determining the appropriate applications of 

multispectral and hyperspectral systems since their spatial resolutions are largely the same. 

 

 

Figure 1.2. The spectral band characteristics of five different multispectral/hyperspectral satellite 

sensors and the wavelengths they cover, depicted against the atmospheric transmissivity of the 

electromagnetic spectrum (graphic accessed 8/1/2018 from NASA’s Earth Observatory website at 

earthobservatory.nasa.gov, adapted from Casey et al. 2012). 

 

Typically, the most informative electromagnetic region for studying vegetation is 

from the visible to infrared wavelengths, since chlorophyll strongly absorbs visible light 

and reflects infrared (particularly near-infrared) during photosynthesis (Fig. 1.3). This 

demonstrates the power of hyperspectral imaging in vegetation studies (e.g., Treitz and 

Howarth 1999), which contain hundreds of bands in these regions (Fig 1.2). Unfortunately, 
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Hyperion is currently a ‘tasking satellite’ that must be requested for imaging and thus has 

poor spatial/temporal coverage and limited application (He and Weng 2018).  

In addition to providing useful spectral information, the major advantages of 

multispectral systems like Landsat and MODIS over hyperspectral are their spatial 

coverage and temporal resolution. Both have wall-to-wall global coverage; Landsat has a 

16-day return interval and an imagery archive dating back to 1972, while MODIS has a 

daily return interval and dates back to 2000. Between these systems, Landsat has better 

spatial resolution than MODIS (30m vs. 250-1,000m depending on the band), but its longer 

return interval is problematic for cloud cover and especially time-sensitive applications 

(e.g., phenology). A major limitation of both multispectral and hyperspectral systems is the 

‘mixed pixel’ effect – a single pixel can contain multiple surface features or land cover 

types, complicating inferences regarding their true composition – that comes with reduced 

spatial resolution. Several imagery analysis techniques have been developed to address this 

issue, which are discussed in the context of forest mapping (Section 1.3.3) and 

change/trend detection (Section 1.3.4). 
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Figure 1.3. Spectral reflectance curves for different surface features, highlighting their properties 

within Landsat bandwidths (grey bars) (graphic from Science Education through Earth Observation 

for High Schools – SEOS – accessed 8/1/2018 at seos-project.eu/modules/classification/classification-

c01-p05.html).  

 

1.3.3 Mapping considerations, methods, and products 

The three most important factors to consider for forest mapping are: 1) spatial 

extent (i.e., how much forest needs to be mapped), 2) imagery/imagery analysis techniques 

(i.e., how is forest cover going to be mapped), and 3) end users/uses (i.e., how detailed and 

accurate do the mapping products need to be). For example, mapping large spatial extents 

generally calls for matching imagery (coarser spatial resolution), which limits the detail 

and accuracy of the products. Conversely, highly localized mapping efforts can integrate 

multiple data sources (e.g., ground, satellite, and LiDAR) to obtain very accurate, tree 

species-level products (e.g., Ke et al. 2010, Alonzo et al. 2014). However, they require a 

high level of technical expertise and specialized (expensive) imagery analysis software 

packages (though open-source programming languages like ‘R’ are steadily easing this 
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requirement at the cost of requiring even more technical knowledge), in addition to the 

products having very specific end users/uses (e.g., local governments). Thus, there exists a 

need to develop novel methods of large-scale forest mapping that can integrate data sources 

and analysis methods in effective ways to achieve detailed, accurate products.  

Most imagery analysis techniques used for forest mapping are designed to address 

the mixed pixel effect (Table 1 in Lu and Weng 2007 provides a 'taxonomy' of image 

classification techniques). As this effect is greatly reduced in hyperspatial imagery, more 

traditional pixel-based classifiers can often achieve satisfactory results. These include 

supervised and unsupervised classification algorithms based on the spectral properties of 

the image. In supervised classification, the analyst selects pixels that represent a certain 

forest type or species to be used as ‘training data’ for the algorithm, which then classifies 

the image by matching the spectral characteristics of the training set to the remaining 

pixels. Unsupervised classification works in the opposite direction, with the algorithm first 

grouping pixels into discrete ‘clusters’ based on spectral characteristics, then the analyst 

must combine or split the clusters to represent the desired forest classes. However, these 

techniques are prone to error caused by spectral overlap between forest classes and other 

types of vegetation and ignore the distinct shape and textural features contained in a 

hyperspatial image (e.g., tree crowns are often round and have a unique texture compared 

to other vegetation). To address this, a powerful advanced classification technique called 

object-based image analysis (OBIA) was developed that leverages all of the information 

contained in a hyperspatial image during the classification process.  
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OBIA techniques overcome pixel-based constraints by segmenting the image into 

groups of “objects”, whose characteristics are defined by the user based on 

shape/texture/spectral properties. The classification is then carried out on the objects 

(rather than individual pixels) in a hierarchical ‘ruleset’ developed by the analyst using 

threshold values of the same properties (ancillary data can also be incorporated, such as 

digital elevation models) (Chubey et al. 2006). Many studies have successfully employed 

OBIA to produce accurate, relatively detailed forest type-level classifications (see Pu 2013 

for a review) and comparisons with pixel-based classifiers tend to favor OBIA (Dorren et 

al. 2003, Oruc et al. 2004, Agarwal et al. 2013). As these techniques are most useful on 

hyperspatial imagery, their applicability to large-scale forest mapping to date has been 

limited.  

Obviously, the mixed pixel effect is more pronounced in imagery with lower spatial 

resolution, like the multispectral imagery required to map forests across large areas. In 

these cases, imagery analysis techniques rely heavily on the spectral and temporal 

characteristics of the image, as well as ancillary data, to classify forest cover. Hierarchical 

mapping is arguably the most common technique, where the image is sequentially 

classified into distinct landcover types (i.e., non-forest and forest, then deciduous and 

coniferous, etc.) based on threshold values of specific spectral bands or band ratios (e.g. 

the Normalized Difference Vegetation Index, NDVI). The classification is then carried out 

on the remaining, forest-stratified pixels (e.g., Wolter et al. 1995). Other studies have 

shown this process can be substantially improved by more than one image date (multi-
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temporal imagery) to capture phenologically-significant differences driven by leaf-out and 

senescence (e.g., Mickelson et al. 1998, Dymond et al. 2002).  

More advanced methods of mapping forest cover using low spatial-high spectral 

resolution imagery include various spectral mixture analyses (SMA), which decompose 

mixed pixels into linear or nonlinear combinations of ‘endmembers’ (i.e., spectra of a 

known cover type, such as a “pure” pixel of a particular tree species) to quantify the 

proportion of a tree species or forest type within a pixel (sub-pixel level classifiers) 

(Huguenin et al. 1997, Oki et al. 2002), and machine learning techniques (e.g., support 

vector machines and artificial neural networks – see Pu 2013 for a review of these). These 

techniques, and species-level mapping in general, have traditionally been reserved for 

hyperspectral imagery (e.g., Plourde et al. 2007), 

Unfortunately, few large-scale forest cover maps exist due to the amount of data, 

labor, expertise, and money required to accurately characterize broad landscapes. Two 

popular products are the National Land Cover Database (NLCD; mrlc.gov) and 

LANDFIRE (LANDFIRE; landfire.gov). Both are developed using multiple data sources 

and hierarchical (or decision-tree) approaches, integrating field inventory data, multi-

temporal Landsat imagery, and other environmental information (e.g., topography) to map 

broad forest classes at 30m resolution (Vogelmann et al. 2001, Rollins 2009). The main 

difference is NLCD produces a very coarse forest type classification (i.e., deciduous, 

evergreen, and mixed) while LANDFIRE refines an initial coarse classification (e.g., 

hardwood-dominated) into more specific forest types (e.g., oak-hickory) using regional 

expert opinion (Rollins 2009). Even at these broad classification levels, their accuracy in 
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heterogenous forests like those of the Northeast is limited (e.g., Wickham et al. 2013). The 

lack of detailed, accurate forest composition maps is one of the greatest limiting factors to 

the use of remote sensing in forest research and management (Frohn and Lopez 2017).  

 

1.3.4 Change detection and trend analysis 

Detecting spatiotemporal changes in landcover features is one of the most powerful 

environmental applications of remote sensing. In contrast to mapping where the spectral 

and spatial features of an image are most important, change detection and trend analysis 

are largely dictated by temporal resolution/coverage. This makes the long-running satellite 

systems like Landsat, the Advanced Very High Resolution Radiometer (AVHRR) and, to 

a lesser extent, MODIS particularly useful. However, change detection technically requires 

only two different image dates and thus all systems (aerial and satellite) remain relevant; 

meaningful trend detection, on the other hand, is largely limited to the aforementioned 

three satellite systems. Many imagery analysis techniques have been developed to detect 

change in forests using, 1) spectral reflectance values, from strictly visual assessments and 

simple algebra to complex data transformations (e.g., principal components analysis) and 

2) advanced modeling of biophysical parameters derived from reflectance (e.g., biomass) 

(see Lu et al. 2004 for a comprehensive review).  

Two examples of popular algebraic approaches are image differencing and 

regression. Image differencing is accomplished by simple subtraction between two or more 

image dates based on either raw reflectance values or more informative band ratios (e.g., 

NDVI). This technique is most appropriate for detecting abrupt changes in forest canopies, 
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such as those caused by insect defoliation, logging, or development (e.g., Muchoney and 

Haack 1994, Hayes and Sader 2001, Wilson and Sader 2002). Image regression allows for 

the detection of more detailed and subtle changes, with the regression slope calculated from 

multiple image dates representing the magnitude and nature of change at the pixel level. 

Since regression analysis of high temporal resolution satellite data (e.g., daily MODIS 

images) can be quite computationally-intensive, independent software programs have been 

specifically designed for this purpose (e.g., TIMESAT; Jönsson and Eklundh 2004). 

Modeling trends in vegetation indices like NDVI can be used to approximate 

spatiotemporal changes in many important aspects of forests, including phenology (e.g., 

leaf-out/senescence and growing season length; Cleland et al. 2007), biomass (e.g., Powell 

et al. 2010), and growth/productivity (e.g., Keenan et al. 2014). However, direct modeling 

of trends in these and other detailed forest parameters (e.g., tree species abundance) is much 

more challenging, since deriving accurate characterizations of them from satellite imagery 

is a time-consuming and complex process (Lu et al. 2004). Nonetheless, more advanced 

techniques like those discussed in the context of forest mapping – namely SMA and 

machine learning algorithms (e.g., Random Forests) – have shown promise in recent years 

(e.g., Ali et al. 2015, Wang et al. 2016).  

 

1.4 Forests of the northeastern United States  

1.4.1 Historical and current composition patterns 

Pre-European settlement forests of the Northeast (ca. 1600-1700s) were largely 

comprised of temperate forest types split along a tension zone – American beech (Fagus 
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grandifolia), maples (Acer spp.), and eastern hemlock (Tsuga canadensis) to the north and 

oak-hickory (Quercus-Carya spp.) to the south – with boreal spruce-fir confined to higher 

elevations and latitudes (Cogbill et al. 2002, Thompson et al. 2013). Following European 

settlement, this region was almost completely deforested for agriculture. As farms were 

abandoned from the early twentieth century on, forest regrowth led to a preponderance of 

early-mid successional species such as eastern white pine (Pinus strobus), red maple (Acer 

rubrum), and aspen-birch (Populus-Betula spp.) (Foster and Aber 2006).  

Today, northeastern forests are again dominated by late-successional, shade-

tolerant species, but with striking differences in abundance, largely due to the legacy effects 

of different land use histories (e.g., farming, logging, etc.) and altered disturbance regimes 

(Seymour and White 2002, Foster and Aber 2006, Nowacki and Abrams 2015). Notably, 

the once-dominant beech is now less abundant than maples (particularly sugar maple, A. 

saccharum); red spruce (Picea rubra) and hemlock are less abundant; and stands 

dominated by white pine, cherry (Prunus spp.), and aspen-birch remain scattered 

throughout the landscape (Cogbill et al. 2002, Thompson et al. 2013). However, recent 

research has suggested an ongoing shift towards increased beech and spruce abundance 

(e.g., Bose et al. 2017a, b, Wason and Dovciak 2017). Northeastern forests are also less 

diverse in structure and composition (Ducey et al. 2013), with most consisting of even-

aged northern hardwoods versus the intricately-patterned, uneven-aged species mosaics 

that historically existed from low-intensity, localized natural disturbances (e.g., 

windthrows, insect outbreaks, Native American land use) (Abrams, 2005, Lorimer and 

White 2003).   
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1.4.2 Abiotic and biotic drivers of change 

Recent important drivers of forest change across the northeastern US include: 

climate change, rising atmospheric carbon dioxide levels, climate-related disturbance (e.g., 

ice storms), atmospheric deposition of pollutants (e.g., nitrogen and sulfur), human land 

use (see Martinuzzi et al. 2015 for projected impacts) and land use history, exotic 

species/pests/pathogens, and elevated levels of herbivory by wildlife (e.g., deer). 

Disentangling the relative influence of each driver in affecting change across time and 

space is a significant challenge (e.g., Klepeis et al. 2013, Nowacki and Abrams 2015, 

Pederson et al. 2015). For example, while regional climate change has historically driven 

forest composition across long time periods (DeHayes et al. 2000, Shuman et al. 2009), 

some research suggests that species abundance and distribution patterns in the Northeast 

are currently decoupled from their historic climate controls due to land use legacies (e.g., 

Thompson et al. 2013, Nowacki and Abrams 2015; though see Pederson et al. 2015, Fei et 

al. 2017). Further, others have shown abiotic and biotic factors can interact in complex 

ways, often with species-specific responses, to influence landscape-scale forest 

composition and growth dynamics (e.g., Gandhi and Herms 2010, Pontius et al. 2016, 

Wason and Dovciak 2017, Wason et al. 2017b). Nonetheless, there are well-documented 

examples of each driver causing widespread effects on forest composition, structure, and 

function in the Northeast (note land use and anthropogenic climate change are mainly 

discussed in other sections, 1.4.1 and 1.4.3, respectively and thus not elaborated upon in 

detail here). 
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Atmospheric deposition of nitrogen and sulfur (i.e., acid deposition) has affected 

forest health, growth, and competitive dynamics through its effects on soil and tree 

physiology (Schaberg et al. 2001, Driscoll et al. 2003). In soils, acid deposition depletes 

calcium – an essential nutrient – resulting in nutritional deficiencies that predispose trees 

to decline following exposure to other stressors (e.g., extreme weather events) (Schaberg 

et al. 2001, Halman et al. 2011, Halman et al. 2013). These deleterious effects, however, 

are not consistent across species as those most heavily-impacted to date include red spruce 

(decreased cold tolerance and canopy health, mortality), sugar maple (calciphilic species, 

decreased canopy health, reduced competitive status), and birches (decreased canopy 

health, impaired growth) (Driscoll et al. 2001, Halman et al. 2011, Schaberg et al. 2011).  

Exotic pathogens have caused (and continue to cause) significant declines and even 

near-extinction events in many northeastern tree species, with notable examples including 

American chestnut (Castanea dentata) and chestnut blight (Freinkel 2009), butternut 

(Juglans cinerea) and butternut canker (Ostry and Woeste 2004), and elm species (Ulmus) 

and Dutch elm disease (Strobel and Lanier 1981); exotic pests that will likely cause 

widespread future changes in northeastern forests include the recently-arrived emerald ash 

borer and hemlock woolly adelgid. Additionally, exotic earthworms have substantially 

altered soil composition and litterfall decomposition rates in the Northeast, affecting 

understory forest composition by negatively impacting native tree seedlings and favoring 

exotic shrubs (e.g., buckthorn) (Nuzzo et al. 2009); high rates of deer herbivory are 

influencing understory forest composition in similar ways (Horsley and Stout 2003). 
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Increased prevalence of exotic plants and pests/pathogens is also likely as anthropogenic 

climate change progresses (Dukes et al. 2009). 

 

1.4.3 Anthropogenic climate change impacts: observed and projected 

 Over the past century, anthropogenic climate change has increased mean 

temperatures by ~2°F and altered precipitation regimes across the Northeast (Horton et al. 

2014). Trombulak and Wolfson (2004) have shown that temperature change has varied in 

the region, with some areas experiencing more drastic increases (>3°F) and others less. 

While precipitation totals have generally increased, extreme flooding and drought events 

have become more common and winter precipitation is falling as rain rather than snow 

more often (Horton et al. 2014, Guilbert et al. 2015). Recent modeling efforts by Hayhoe 

et al. (2007) and Hayhoe et al. (2008) suggest that these climatic changes have been 

increasing in intensity since the 1970s and will continue to do so at similar or higher rates 

in the future depending on climate mitigation strategies.   

Several recent studies suggest these climatic changes are significantly impacting 

northeastern forest composition via their effects on competition and survival, particularly 

in the understory. For example, Woodall et al. (2009) found the mean latitude of seedling 

abundance was higher than that of mature biomass for several northern hardwood species 

– an indication of poleward (latitudinal) migration (though see Zhu et al. 2012). Whereas 

Fei et al. (2017) found significant poleward and westward (longitudinal) shifts in sapling 

abundance over the past 30 years. In the dominant maple-beech-birch forests of the region, 

there have been documented increases in American beech abundance at the expense of 
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maple and birch (Duchesne and Ouimet 2009, Pontius et al. 2016, Bose et al. 2017a, b, 

Wason and Dovciak 2017). These shifts have been linked to both increased temperature 

and precipitation (Bose et al. 2017a, b). However, other investigations suggest spatially-

complex dynamics involving climate, beech bark disease, deer herbivory, and the legacy 

effects of land use and acid deposition (e.g., Pontius et al. 2016, Wason and Dovciak 2017).  

As climate change progresses, habitat suitability and associated competitive 

dynamics for many northeastern tree species are likely to change (Iverson and Prasad 1998; 

see Rustad et al. 2012 for a review). For example, increased temperatures and prolonged 

droughts will likely favor the northern expansion of warm-adapted oak and hickory species 

from the south, while the current cool-adapted dominants (e.g., maples) retreat to cooler 

climate refugia (Mohan et al. 2009, Tang et al. 2012). Changes in forest phenology 

associated with climatic changes are already occurring, with spring arriving earlier and 

autumn senescence later (lengthening the active growing season) (see Richardson et al. 

2013 for a review). These changes are expected to further alter the important habitat 

components that govern species abundance and distribution patterns, like microclimate, 

nutrient availability, and soil moisture/temperature gradients (Chuine and Beaubien 2001, 

Huntington et al. 2009). Together, it is clear that anthropogenic climate change is having, 

and will continue to have, significant impacts on the northeastern forest dynamics.  

 

1.5 Conclusions 

 Remote sensing is a powerful tool for mapping and detecting change in northeastern 

forest ecosystems. However, the Northeast also poses unique challenges to satellite 
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imagery-based research given its: 1) heterogeneous forest composition, 2) persistent cloud 

cover and diverse topography, and 3) numerous existing drivers of forest change across 

varying spatial scales. Current limitations include a lack of detailed, accurate large-scale 

forest maps and few studies that have comprehensively examined spatiotemporal changes 

in forest composition and function (e.g., tree species abundance and phenology) in response 

to climate change and other environmental drivers across the region. The research 

contained in this dissertation directly addresses these issues.  
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2.1 Abstract 

Spatially-explicit tree species distribution maps are increasingly valuable to forest 

managers and researchers considering the effects of climate change and invasive pests on 

forest resources. Traditional forest classifications are limited to broad classes of forest 

types with variable accuracy. Advanced remote sensing techniques, such as spectral 

unmixing and object-based image analysis, offer novel forest mapping approaches by 

quantifying proportional species composition at the pixel level and utilizing ancillary 

environmental data for forest classifications. This is particularly useful in the northeastern 

region of the United States where species composition is often mixed.  

Here, we employed a hierarchical forest mapping approach using spectral unmixing 

of multi-temporal Landsat imagery to quantify percent basal area for ten common tree 

species/genera across northern New York and Vermont. Basal area maps were then refined 

using an object-based ruleset to produce a thematic forest classification. Validation with 

50 field inventory plots covering a range of species compositions indicated that the quality 

of percent basal area mapping largely reflected the number of “pure” (>80% BA) 

endmember plots available for calibration, with more common species mapped at a higher 

accuracy (i.e., Acer saccharum, adj. r2 = 0.44, compared to Populus spp., adj. r2 = 0.24).  

The resulting thematic forest classification mapped 15 forest classes (nine 

species/genus level and six common species assemblages) with overall accuracy = 42%, 

KHAT = 33%, fuzzy accuracy = 86% at the pixel level, and 38%, KHAT = 29%, fuzzy 

accuracy = 84% at the object level. Using the validation plots to compare existing forest 

classification products, this hierarchical approach provided more class detail (11 

represented classes) and higher accuracy than the National Forest Type Map (six 

represented classes, overall accuracy 18%, fuzzy accuracy 70%), LANDFIRE (five 

represented classes, overall accuracy 28%, fuzzy accuracy 80%) and National Land Cover 

Database (three represented classes, overall accuracy = 56%). These results show that more 

detailed and accurate forest mapping is possible using a combination of multi-temporal 

imagery, spectral unmixing, and rule-based classification techniques. Improved large-scale 

forest mapping has important implications for natural resource management and other 

modeling applications.  

 

Keywords: remote sensing, basal area mapping, biophysical modeling, hierarchical 

classification, object-based image analysis 
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2.2 Introduction 

Developing cost-effective methods to accurately classify forest cover is essential to 

inform sustainable forest management at local, regional, and national levels. These 

products are increasingly valuable considering the anticipated effects of climate change 

and invasive pests on forest resources. Warming temperatures and changing precipitation 

regimes are expected to cause shifts in tree species distributions (Iverson and Prasad 2001, 

Hamann and Wang 2006, Tang et al. 2012) and increases in the duration and severity of 

pest/pathogen outbreaks (Dale et al. 2001, Dukes et al. 2009). Yet our ability to direct 

management actions is limited by the coarse detail and relatively low accuracy of existing 

large-scale forest cover maps.      

Existing forest cover maps include field inventory and remote sensing-based 

products, including those generated through the Forest Inventory and Analysis program 

(FIA; www.fia.fs.fed.us), the National Land Cover Database (NLCD; www.mrlc.gov) and 

LANDFIRE Existing Vegetation Type (LANDFIRE EVT; www.landfire.gov). More 

recently, the US Forest Service (USFS) used FIA data, multi-temporal Moderate 

Resolution Imaging Spectroradiometer (MODIS) data, vegetation indices, and other 

ancillary environmental data to produce the National Forest Type map (NFTM, 

data.fs.usda.gov/geodata/rastergateway/forest_type/index.php). The LANDFIRE and 

NLCD programs provide national forest type maps at a 30m x 30m spatial resolution, but 

in coarser forest type classes than FIA/USFS species-level products (250m x 250m).  

Several remote sensing studies have successfully mapped species-level 

distributions, though largely at highly localized spatial scales (Martin et al. 1998, Carleer 
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and Wolff 2004, Plourde et al. 2007, Ke et al. 2010, Immitzer et al. 2012). These studies 

typically rely on data-intensive hyperspectral and/or hyperspatial resolution imagery (e.g., 

Ikonos, QuickBird, WorldView-2, Airborne Visible/Infrared Imaging Spectrometer – 

AVIRIS, Light Detection and Ranging – LiDAR), limiting their applicability to tree 

species/genus classification across larger regions.  

 Wolter et al. (1995), Mickelson et al. (1998), and Hill et al. (2010) achieved 

relatively accurate species-type classifications by utilizing multi-temporal Landsat 

imagery, demonstrating the usefulness of acquiring multiple image dates that capture 

phenologically-significant differences among species (e.g. green-up, senescence, etc.). 

Dymond et al. (2002) also found improved deciduous forest type discrimination when 

multi-temporal Landsat imagery was supplemented with Normalized Difference 

Vegetation Index (NDVI) and Tasseled Cap Transformation (TC) bands, as well as their 

respective differences among image dates.     

Advanced remote sensing techniques, such as spectral unmixing and object-based 

image analysis (OBIA), utilize a wealth of spectral, spatial, and ancillary environmental 

data to enable more precise forest cover mapping (see Xie et al. 2008, Pu 2013 for reviews). 

Spectral unmixing has been shown to outperform traditional pixel-based classifiers by 

decomposing (“unmixing”) mixed pixels and assigning component proportions at the 

subpixel level (Huguenin et al. 1997, Oki et al. 2002). This is particularly useful in 

northeastern forests where species composition is often mixed at local scales. The resulting 

per-pixel proportions of each species obtained from the spectral unmixing process also 

facilitate the mapping of other forest attributes that are dependent upon the complexity of 
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species composition common in northeastern forests (e.g., carbon storage, basal area, 

productivity) (Hall et al. 1995, Sonnentag et al. 2007, Yan et al. 2015). OBIA techniques 

overcome individual pixel constraints by segmenting imagery into homogenous “objects” 

upon which classification is then carried out. This allows for the additional characterization 

of shape, size, and texture into classifications and minimizes impacts of canopy 

architecture-driven variability in spectral signatures (Chubey et al. 2006).   

While OBIA is often more accurate than pixel-based methods for mapping forest 

cover at high spatial resolutions (Dorren et al. 2003, Oruc et al. 2004, Agarwal et al. 2013), 

comparative studies indicate that coupling pixel-based and OBIA techniques can improve 

the accuracy of forest type classifications (Wang et al. 2004, Aguirre-Gutiérrez et al. 2012). 

Using Ikonos imagery, Wang et al. (2004) achieved the highest mangrove classification 

accuracies when integrating a pixel-level classification to identify spectrally-distinct 

classes, then carrying out an object-based nearest neighbor analysis on spectrally-mixed 

classes. Similarly, Aguirre-Gutiérrez et al. (2012) obtained the highest accuracy in montane 

landscapes when merging the best pixel-based and object-based classes to produce the final 

thematic land cover classification.    

Here, we test a novel approach to tree species mapping that integrates many of the 

successful approaches used in previous studies. This involves pixel-level spectral 

unmixing that integrates multi-temporal Landsat imagery and field inventory data to 

develop percent basal area coverages for 10 common species/genera. These percent basal 

area coverages are then incorporated into an object-based hierarchical ruleset to generate 

16 forest classes (10 species/genera and 6 common assemblages). To evaluate the utility of 
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this integrated multi-temporal, spectral unmixing (MTSU) approach, we compare accuracy 

with existing large-scale forest mapping products, including LANDFIRE EVT, NFTM, 

and NLCD. 

Achieving accurate, species-specific forest classifications is necessary to fill critical 

gaps in our knowledge of current tree species distributions and provide baselines for future 

comparisons. This integrated approach attempts to maximize the accuracy and detail 

possible from widely available Landsat imagery, allowing for improved, widespread 

mapping of important forest resources. Improved forest mapping also enables better 

parameterization of dynamic vegetation and climate models.  

 

2.3 Methods 

2.3.1 Study area and base imagery 

This study was conducted on Landsat Row 29, Path 14, which spans much of 

northern New York and Vermont (Fig. 2.1). Forest composition across the region is highly 

heterogeneous with dominant canopy species including sugar maple (Acer saccharum), red 

maple (Acer rubrum), American beech (Fagus grandifolia), eastern hemlock (Tsuga 

canadensis), eastern white pine (Pinus strobus), and yellow birch (Betula alleghaniensis). 

Upper elevations are dominated by balsam fir (Abies balsamea), red spruce (Picea rubens), 

and birches (Betula spp.) (Widmann 2015, Morin and Widmann 2016).  

Seasonal Landsat Operational Land Imager and Thermal Infrared Sensor (OLI-

TIRS) and Enhanced Thematic Mapper Plus (ETM+) images (USGS level 1T products) 

were acquired for targeted, phenologically-representative dates: full snow cover (winter), 
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green up (spring), mid-growing season (summer), and peak fall color (fall). Because cloud 

cover is a common issue across this mountainous region, we included the lowest cloud 

cover image within a two-year buffer around the representative year (i.e. “2014” candidate 

images were chosen from 2012-2016). Cloud cover was masked, then backfilled via 

seamless mosaicking with another image acquired within two weeks of the base image. 

Even within these parameters, for this study we were unable to compile a spring image 

with sufficiently low cloud cover and hence excluded this season from further processing.  

 

 

 

Figure 2.1. The study area, spanning northern New York and Vermont, and distribution of ground-

reference plots (Landsat Path 14, Row 29). 
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2.3.2 Ground-reference data 

“Pure” endmember spectra (plots with >80% basal area for a given species) for 

spectral unmixing algorithms were obtained from FIA plots distributed throughout the 

region, with an additional 20 variable-radius plots (collected with a 10-factor wedge prism) 

also used to improve representation of species underrepresented in the FIA data (Fig. 2.1). 

Aggregated to the plot level, this resulted in 54 plots containing >80% basal area to 

calibrate the unmixing models for ten common species or genera (Table 2.1).  

For model validation, the FIA endmember plots were supplemented by mixed 

species composition plots from the Vermont Monitoring Cooperative (VMC; 

www.uvm.edu/vmc) for a total of 50 plots covering a range of species compositions (Table 

2.1). Both programs employ the same sampling design, with four 1/24 acre subplots (see 

Bechtold and Patterson 2005) and measurement of all stems greater than five inches 

diameter at breast height. 

Sugar maple, birches, American beech, red spruce, and red maple respectively 

occurred on the most ground-reference plots, while sugar maple, balsam fir, birches, and 

eastern hemlock had the highest percent basal area. It is important to note that percent basal 

area measurements did not differentiate between canopy dominant and understory trees, 

likely contributing to error in the resulting percent basal areas models that are based solely 

on reflectance signatures from the top of the canopy. 
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Table 2.1. The composition of ground-reference plots used for development of percent basal area 

(%BA) models. SD = standard deviation.  

Tree spp./genus 

No. of pure 

endmember plots Mean %BA (±SD) Max %BA 

No. of Plots 

w/Species 

Balsam fir 8 14.3 (27.7) 92.5 14 

Red maple 2 6.7 (14.2) 80.5 18 

Sugar maple 10 27.7 (36.6) 96.0 27 

Birches 6 13.1 (20.4) 80.7 26 

American beech 2 6.3 (13.2) 81.8 22 

Red spruce 1 5.7 (14.6) 92.0 20 

Eastern white pine 11 5.8 (21.4) 100.0 6 

Aspens 1 3.3 (13.8) 86.5 5 

Oaks 2 3.4 (13.1) 65.0 4 

Eastern hemlock 11 9.2 (25.0) 93.1 10 

 

2.3.3 Preprocessing  

Landsat Level 1T products come with basic radiometric calibration and 

topographically corrected georegistration. In-house preprocessing (Fig. 2.2) included 

atmospheric corrections to at-surface reflectance using a dark-object subtraction technique 

(Chavez Jr 1989). We then derived NDVI and TC (Crist and Cicone 1984) bands for each 

season and calculated seasonal TC differences between summer and fall. These indices 

have previously been shown to improve landscape-level forest type discrimination of 

multi-temporal Landsat imagery (Dymond et al. 2002).  

Running a principal component analysis (PCA) on forested pixels only on the 

resulting 33 band imagery stack as a precursor to the Minimum Noise Fraction (MNF) 

transform (see section 2.3.4 below) allowed us to minimize autocorrelation among the full 

component of input bands. This step removed noise inherent in many of these bands due 
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to differences in illumination and atmospheric conditions across different image 

acquisition dates and isolated the spectral signal specific to distinguishing forested pixels.  

The final stacked image for spectral unmixing included the first three PCA bands 

(accounting for >99% of the spectral variability in the full 33-band stack). Because these 

PCA bands were primarily distinguishing among species composition (see section 2.4.1), 

the final stacked image also included summer Landsat reflectance bands, NDVI, Tasseled 

Cap, and Tasseled Cap difference vegetation index products (Fig. 2.2) to capture 

information about canopy density for percent basal area modeling. 
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Figure 2.2. Landsat preprocessing and percent basal area modeling workflow. 
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2.3.4 Spectral unmixing 

The spectral unmixing process outlined here largely follows that developed by 

Nielsen (2001) and Boardman and Kruse (2011), which has previously been used to 

classify tree species with hyperspectral imagery (see Plourde et al. 2007, Hallett et al. 

2010). A MNF transform was first applied to the final imagery stack (17 bands) for data 

decorrelation and spectral noise reduction (Green et al. 1988) (Fig. 2.2). Endmember pixels 

were refined using a Pixel Purity Index to ensure spectral similarity of MNF bands among 

geographically distinct sites, with spectral outliers being excluded from further analysis. 

The resulting MNF image was then “unmixed” using a Mixture-tuned Matched Filtering 

(MTMF) algorithm (Boardman 1998) based on the target endmember spectra (i.e. tree 

species signatures). MTMF is a form of spectral mixture analysis that employs partial linear 

unmixing to map the abundance or fraction of target endmember spectra within each pixel 

(Boardman and Kruse 2011). The MTMF output consists of a matched filter and 

infeasibility score for each pixel, with the former reflecting how well the pixel matches the 

target spectra and the latter representing the likelihood of a false positive.   

We considered several approaches to model percent basal area for input into the 

object-based classification ruleset based on the MTMF products. The traditional approach 

involves identifying thresholds for matched filter and infeasibility scores to maximize the 

binary accuracy of a species’ presence/absence. Because we were mapping heterogeneous 

forest cover dominated by mixed species composition, a binary classification scheme was 

ruled out for our purposes. Regression models have also been used to map species 

fractional basal area using hyperspectral imagery (Pontius et al. 2005). This study differed 
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from these previous single species efforts based on the large number of ground-reference 

plots across a range of forest species composition.  The diverse plot network resulted in a 

variable number of plots where the target species was completely absent, as well as a suite 

of possible matched filter and infeasibility scores derived from the 10 species unmixing 

products.    

Using linear regression models based only on plots that contained the species of 

interest produced more stable regression metrics but resulted in many false positives where 

particular species were absent. We also tested zero-inflated regression to account for the 

propensity of zero basal area plots in the calibration data. Results were generally lower 

model fit than the general linear models, with continued over-prediction of zero basal area 

plots. Further, zero-inflation p-values resulting from regression estimates were not 

significant, indicating that the presence of zero value data was not a significant contributor 

to overall model variability.    

Our most consistently accurate results came from a stepwise linear regression 

model that included all ground-reference plots (including those where the target species 

was absent). Model terms were limited to matched filter and infeasibility variables 

significant at the 0.05 level, with a maximum variance inflation factor of 10 to avoid 

autocorrelation among parameters. We used the minimum Bayesian Information Criterion 

(Bhat and Kumar 2010) to select the best fit model. The resulting regression equation was 

then applied to the MTMF image via band math to create a percent basal area raster for 

each target species/genus.  
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It is important to note that the resulting fractional basal area products were not 

intended to be stand-alone products, but instead to be used as inputs to quantify the relative 

abundance of species within each pixel to inform classification. These relative abundances 

were not aggregated for all species but instead used as independent inputs to the object-

based hierarchical ruleset (see section 2.3.5 below).   

 

2.3.5 Object-based classification 

Percent basal area rasters obtained from the pixel-based spectral unmixing were 

then incorporated into an object-based, hierarchical ruleset classification scheme (Fig. 2.3). 

This allowed us to refine the percent basal area products using ancillary environmental data 

(i.e. digital elevation data from the National Elevation Dataset available through the U.S. 

Geological Survey) and produce classifications on a stand- versus pixel-level.  

Object-based classifications begin with segmentation to aggregate like pixels into 

larger image objects. Segmentation settings and input layer weightings were informed by 

knowledge of the image resolution, spatial characteristics of the landscape, and spectral 

nature of the feature objects. As is common in object-based classifications, iterations of 

various settings were evaluated to confirm selection of final segmentation settings. We 

used a multiresolution segmentation algorithm (see Chubey et al. 2006 for further 

explanation) based on layer inputs that highlighted differences in vegetation characteristics 

across our study area. This included weighting the first three MNF bands most, followed 

by summer and winter NDVI and seasonal TC differences. Given the moderate spatial 

resolution of Landsat imagery and heterogeneous nature of forest composition patterns 

across the landscape, a very low scale parameter (1) with no shape or compactness 
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weighting was used for object segmentation. To compare the pixel-level ruleset results to 

this object-based approach, a chessboard segmentation with a scale parameter of 1 and no 

band weighting was used to create pixel “objects”.   

The ruleset started by differentiating forest from non-forest objects using thresholds 

for winter band 3 leveraging snow cover (non-forest > 0.60), and spring band 4, masking 

water (non-forest < 0.065). Forest classes were then assigned based on percent basal area 

rasters and elevational constraints outlined by Burns and Honkala (1990b) (Fig. 2.3) 

following a rule-based hierarchy. A species/genus class was assigned if the object 

contained greater than 40% basal area of that species or genus and did not exceed the 

specified elevation threshold (if there was one). Since rare species are spottier across the 

landscape and more likely to be smoothed out when averaged within image objects, forest 

type assignment in the hierarchical ruleset progressed from the least to most common 

species to maximize representation of rare species in the final thematic classification. 

To capture regionally-common species assemblages where no species was greater 

than 40% basal area, we also classified six common forest assemblages by summing the 

percent basal area values for their respective component species (Fig. 2.3). The final 

thematic forest classification of 16 possible forest types was then exported as a 30-meter 

by 30-meter raster product. 
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Figure 2.3. Object-based image analysis workflow and hierarchical ruleset used to create a thematic forest cover map. 
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2.3.6 Accuracy assessment  

Inventory data for the FIA and VMC plots described above (see section 2.3.2) were 

used to assign a forest class according to the same rule thresholds applied to the imagery. 

A confusion matrix of actual versus predicted forest classes was created to examine overall, 

kappa, User’s, and Producer’s accuracies. We also determined fuzzy accuracy by allowing 

misclassification between common species/species assemblages. For example, we 

considered sugar maple pixels that were classified as northern hardwoods to be “correct” 

at the fuzzy level.   

We similarly calculated accuracy for three existing forest mapping products: the 

2011 LANDFIRE EVT classification; the National Forest Type Map classification; and the 

2011 NLCD classification. Only the LANDFIRE and National Forest Type Map 

classifications could be compared at the species-type level, with accuracy being determined 

following the same process outlined above with field plots assigned to match their 

respective classes. For the NLCD product, we classified the validation data as deciduous 

(>75% deciduous species), evergreen (>75% evergreen species), or mixed forest (a plot 

was considered mixed when both deciduous and evergreen species were present but neither 

exceeded 75% of the plot basal area).   
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2.4 Results and Discussion 

2.4.1 Spectral decomposition 

Our approach included the aggregation of a variety of image dates and vegetation 

index products in order to maximize the spectral information available to differentiate 

physiologically similar species. Eigenvectors from spectral decomposition were used to 

identify which bands accounted for the most variability among forested pixels. From the 

full 33 band multi-temporal stack, the largest eigenvectors came from the fall image (Table 

2.2). It is important to keep in mind that this PCA was run on forested pixels only to isolate 

the potential spectral signal specific to differentiation among forest types (not forest/non-

forest). The fall image was timed at the peak of physiological differentiation among species 

for our region, providing key spectral information to help separate otherwise spectrally 

similar species. Other studies have also cited the importance of using shoulder seasons with 

unique phenological information to assist in species classification (Dymond et al. 2002, 

Hill et al. 2010). 

 

Table 2.2. Principal components analysis eigenvectors highlight the input bands that account for the 

most spectral variability among forested pixels. 

Input Band PCA Band Eigenvector 

Fall Band 5 (Mid-IR) 1 0.233 

Fall Band 2 (Green) 1 0.207 

Fall Band 4 (NIR) 2 0.295 

Fall NDVI 2 0.271 
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2.4.2 Percent basal area modeling 

MTMF models of percent basal area resulted in significant but relatively weak (adj. 

r2 = 0.24; RMSE = 0.04, Populus sp.) to moderate relationships (adj. r2 = 0,59; RMSE = 

0.06, American beech). These relatively low model fits likely result from several sources 

of known error. The sensor primarily records the spectral reflectance from the canopy 

surface, with a mix of canopy dominant trees that may differ from understory composition 

included in ground-reference inventories.  Further, percent basal area is based on main 

trunk diameter at breast height with no accounting for variability in crown size, health, or 

geometry among species. This is reflected in lower fit statistics for species that are more 

common in the understory of northeastern forests (e.g., eastern hemlock) or with relatively 

small crown geometry relative to common co-occurring species.   

The lack of fit is likely also driven by the preponderance of “pure” species plots 

included in the validation dataset. This resulted in plots with extreme high and extreme low 

(zero occurrence) values of each target species, levels where regression models are 

typically weakest. Species/genera with the lowest percent basal area fit were those with the 

fewest endmember calibration plots and lowest general abundance across the study area 

(per FIA forest demographic reports). For these target species, percent basal area was 

typically under-predicted (Table 2.3). The most accurate percent basal area models were 

associated with the dominant species in the region (e.g., American beech).   
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Table 2.3. Percent basal area model fits derived from spectral unmixing. 

Tree spp./genus r2 Adj. r2 

Mean 

%BA RMSE 

PRESS 

RMSE 

Balsam Fir 0.34 0.32 0.15 0.11 0.12 

Red maple 0.47 0.46 0.08 0.06 0.06 

Sugar maple 0.46 0.44 0.28 0.16 0.17 

Birches (Betula spp.) 0.32 0.30 0.13 0.08 0.09 

American beech 0.60 0.59 0.07 0.06 0.07 

Red spruce 0.52 0.51 0.07 0.06 0.06 

Eastern white pine 0.3 0.29 0.1 0.1 0.1 

Aspens (Populus spp.) 0.25 0.24 0.04 0.04 0.04 

Oaks (Quercus spp.) 0.49 0.48 0.05 0.05 0.05 

Eastern hemlock 0.32 0.30 0.11 0.09 0.1 

 

These results are similar to other species mapping efforts. Savage et al. (2015) used 

a zero-inflated regression model, based on a two-step process, to first predict the presence 

or absence of the target species and then species composition only where the target species 

was present. They modeled five different conifer species in heterogeneous forests of 

northwestern Montana using Landsat TM and OLI imagery, reporting independent 

accuracy assessment RMSE from 0.11 to 0.23 (no r2 values were reported). These errors 

are slightly higher than the range of RMSE values reported for our ten target species (0.04 

to 0.16).  

 Moisen et al. (2006) compared generalized additive regression modeling, 

classification and regression tree (CART) techniques, and stochastic gradient boosting for 

modeling live basal area from multi-temporal Landsat imagery for thirteen tree species in 

Utah. Basal area prediction results for all modeling techniques were poor for most species 

(r2 less than 0.5 and RMS errors greater than 0.8).  While the general approach employed 

by Moisen et al. (2006) is similar to that described here (multi-temporal Landsat imagery), 
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our range of model fit is higher, indicating that the additional image processing techniques 

and spectral unmixing approach employed here may improve abundance mapping using 

Landsat imagery. 

Our percent basal area modeling results also compare favorably to those obtained 

in other studies using MTMF techniques. Hyperspectral imagery, with its wealth of narrow 

reflectance bands, is well suited to spectral unmixing and species abundance mapping. 

Hyperspectral instruments have reported comparable accuracy to that reported here for 

eastern hemlock abundance in the Catskills region (r2 = 0.65; RMSE 0.12, Pontius et al. 

2005). Plourde et al. (2007) used spectral unmixing to model percent sugar maple and 

American beech in New Hampshire using both hyperspectral AVIRIS imagery, as well as 

modifications of the hyperspectral imagery to match broadband sensors. They found weak 

relationships between field-measured and predicted percent basal area based on the 

broadband imagery but results similar to those reported here for spectral unmixing of the 

full hyperspectral data (r2 = 0.49; RMSE = 0.09 for sugar maple and r2 = 0.36; RMSE = 

0.18 for beech).     

These studies collectively underscore that modeling continuous variables, like 

individual tree species basal area, is a difficult task. Clearly the spatial resolution of 

Landsat imagery is limiting for mapping forest cover at the species level in highly mixed 

forests. Difficulties associated with scaling field data to the Landsat pixel level include: 

overlap in canopy dominant species (Plourde et al. 2007, Hallett et al. 2010); incongruities 

between field measurements (which include understory stems) and sensor-derived canopy 

reflectance (particularly for shade-tolerant species such as hemlock); and incorrect 



  

49 

 

registration between calibration field plots and pixel centers. Atmospheric and topographic 

shadow impacts on spectra are also particularly troublesome in mountainous regions. 

Within-species spectral variability due to differences in tree health can also confound 

unmixing algorithms (Carter 1993, Plourde et al. 2007).   

While these errors impact the overall accuracy of the models, it is interesting to 

note that the multi-temporal, broadband, spectral unmixing approach described here reports 

similar accuracy to hyperspectral efforts (Pontius et al. 2005, Plourde et al. 2007) and 

improved accuracy compared to other broadband-based tree species abundance mapping 

(Moisen et al. 2006, Plourde et al. 2007, Savage et al. 2015). We attribute the improved 

performance of our MTSU integrative approach to a combination of factors: 1) the use of 

multi-temporal imagery to capture species-specific spectral characteristics during key 

phenological times; 2) the inclusion of vegetation indices derived from the multi-temporal 

images to isolate species-specific differences in vegetation characteristics across seasons; 

and 3) the use of MTMF products from multiple species components to model abundance 

of the target species. Previous broadband sensor-based studies have shown the utility of 

using multiple phenologically-important image dates and vegetation indices when 

classifying heterogeneous forest cover at the species-type level (e.g. Dymond et al. 2002, 

Hill et al. 2010). Others have highlighted that the use of multiple endmembers in spectral 

mixture analysis can improve assessments of forest structural attributes (Hall et al. 1995, 

Roberts et al. 1998).  

Our resulting maps of species percent basal area match expected patterns across 

northern New York and Vermont (see Burns and Honkala 1990b for species-specific 
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descriptions), particularly for the five most abundant species (Fig. 2.4). Balsam fir (Fig. 

2.4a) was predicted throughout the high elevations of both the Green and Adirondack 

mountains, in addition to the lowland boreal forest areas of northeastern Vermont. Birches 

(Fig. 2.4b) followed a spatial distribution similar to sugar maple but with greater 

occurrence at higher elevations. Since birches were modeled at the genus level, this reflects 

the northern hardwood type-driven distribution of yellow birch (Betula alleghaniensis) and 

that of paper birches (Betula papyrifera/cordifolia), which are common constituents of 

high elevation spruce-fir forests in the northeastern USA (Burns and Honkala 1990b, Leak 

et al. 2014). Sugar maple was predicted as prevalent throughout much of the region (Fig. 

2.4c), which matches recent FIA field inventories in both states (Widmann 2015, Morin 

and Widmann 2016). Its highest estimated percent basal area densities were along the low 

to mid elevation slopes of the Adirondack and Green mountain ranges, where it is an 

integral component of the northern hardwoods forest type (Leak et al. 2014). Eastern white 

pine (Fig. 2.4d) was largely predicted to be found along the Lake Champlain valley 

lowlands of both states, but more prevalent in New York.  
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Figure 2.4. The spatial distribution of percent basal area derived from spectral unmixing for four common species in northern New York and 

Vermont. 
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2.4.3 Comparison of object-based and pixel-level thematic forest classifications 

Rule-based, OBIA classification schemes are commonly used with high spatial 

resolution imagery that exhibits unique shape and texture features. Due to the relatively 

coarse pixels of Landsat, we compared the thematic results of the hierarchical ruleset 

applied to both individual pixels (pixel-level, PL) and image-segmented stand “objects” 

(object-level, OL) to determine if image segmentation was necessary to maximize accuracy 

of forest classifications. The relative abundance of the 16 forest classes was similar for 

both the pixel-level (PL) and object-based (OB) maps. The most striking difference was 

far fewer pixels classified as species-dominant in the OB map. This result is to be expected 

given the averaging of neighboring pixel values to create one common value for each stand-

level object, which effectively washes out single-species dominant pixels. Spatial patterns 

for the PL and OB maps were indiscernible at the regional level. However, a localized, 

side-by-side comparison of both products revealed the PL map’s finer species-level detail 

and grainier appearance against the smoother, species assemblage-dominated OB map 

(Fig. 2.5). In the Stowe region of Vermont, for example, the PL map predicted more single-

species dominant stands of balsam fir, red spruce, and eastern hemlock, largely in areas 

classified as mixed conifers on the OB map. Yet the general spatial distribution patterns of 

the predominant forest classes around Stowe were very similar, with both maps showing 

mixed classes around lowland and developed areas, mountain slopes dominated by 

northern hardwoods and sugar maple, and spruce-fir related classes at high elevations.  
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Figure 2.5. Comparison of the object-based (top) and pixel-level (bottom) classifications in the Stowe region of Vermont. 
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Based on ground-reference plots, overall classification accuracy among forest types 

was slightly higher for the PL (overall accuracy = 42%, KHAT = 33%, fuzzy accuracy = 

86%) versus the OB classification (overall = 38%, KHAT = 29%, fuzzy = 84%). The 

increased detail of the PL classification also better matches the complex spatial 

heterogeneity of forests across the region. Given this, we consider the PL more appropriate 

for mapping forest types using Landsat imagery in the Northeast. For this reason, we 

include only a discussion of the PL results below. 

 

2.4.4 Pixel-level thematic forest classification  

Applying the classification ruleset across the study area shows a spatial distribution 

of forest classes that match expected patterns across northern New York and Vermont (Fig. 

2.6). Mixed hardwoods dominate the lowlands, while sugar maple and northern hardwoods 

occupy the low to mid elevation slopes of the Adirondack and Green mountain ranges. 

Spruce-fir and spruce-fir-birch assemblages were classified throughout the high elevations 

of both the Green and Adirondack mountains. Eastern white pine and hemlock were 

classified primarily along the Lake Champlain valley corridor. Interesting anomalies 

include the near absence of pixels classified as oak- or birch-dominant, and complete 

absence of aspens. While this may simply reflect their relatively low abundance as pure 

stands across the region, it is also likely that the low number of calibration endmembers 

has limited our ability to capture a sufficient range of spectral signatures for these tree 

species. 
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Figure 2.6. Forest cover map of northern New York and Vermont produced by integrating spectral unmixing of multi-temporal Landsat 

imagery (MTSU) and a hierarchical classification scheme. 
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Accuracy assessment for the pixel-level classification resulted in 42% overall 

accuracy (KHAT = 33%) (Table 2.4). When allowing for confusion between pure target 

species and common assemblages that by definition contain a significant portion of the 

target species, overall accuracy doubled (fuzzy accuracy = 86%), indicating that a majority 

of error resulted from incorrectly predicting mixed species classes for plots that were 

dominated by one species (but likely also contained others). Typically, the actual dominant 

species was an important component of the incorrectly predicted mixed species class (e.g. 

sugar maple was often incorrectly classified as northern hardwoods, of which it is a major 

component).     

The highest producer’s accuracies were obtained for the most common forest types 

across the study area (Table 2.4): sugar maple, northern hardwoods, and spruce-fir-birch. 

Lower user’s accuracies for northern hardwoods highlight the tendency of the ruleset to 

categorize single species-dominant validation plots into this species assemblage class. The 

lowest user’s accuracies were obtained for less common species with relatively low 

abundance across the study area. These included birches and the conifer species (balsam 

fir, eastern hemlock, and eastern white pine), all of which were often classified as mixed 

species assemblages. If identification of less abundant species is desired, the percent basal 

area thresholds of the ruleset could be lowered to denote “dominant stands”.  However, we 

suggest that if the goal of using these forest maps is examining the spatial and structural 

distribution of a particular species, using the percent basal area maps themselves would be 

preferential to using the thematic classification.   
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Table 2.4. Error matrix based on 50 ground-reference plots for the MTSU pixel-level forest classification. Bold indicates correct at the species-

type level; italic indicates correct at the fuzzy level. 
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To evaluate how this integrated forest classification compared to other commonly 

used forest cover maps, we consider the specificity of forest classes (number and 

structure of distinct classes), the spatial resolution, and the mapping accuracy of each 

product (Table 2.5).  

 

Table 2.5. Comparison of specificity, spatial resolution, and accuracy of forest mapping products. 

Product 

# Forest 

Classes 

Spatial 

Resolution 

(m) 

Spp-Type 

Accuracy 

Fuzzy 

Accuracy 

NLCD Coarse 

Accuracy 

MTSU 15 30 42% 86% 76% 

LANDFIRE 17 30 28% 80% 66% 

National Forest Type Map 29 250 18% 70% 62% 

NLCD 3 30 -- -- 56% 

 

Our forest classification resulted in 15 forest types (no aspen stands mapped) across 

the study area, based on the 10 most common genera/species in the region and six common 

assemblages of these species. The National Forest Type Map and LANDFIRE EVT forest 

class structures are most comparable to our MTSU integrated classification with 29 and 17 

predicted across the study area. Both include common species assemblages such as spruce-

fir and northern hardwoods. The National Forest Type Map also includes species-specific 

classes (e.g., balsam fir, eastern hemlock, eastern white pine, etc.). Where the LANDFIRE 

EVT classification diverges from ours is in its use of disturbance and geographic modifiers 

to describe certain forest types (e.g., ruderal forest, Atlantic swamp forest). Further, its 

mixed forest classes often cover a broader range of species assemblages, (e.g., pine-

hemlock-hardwood and spruce-fir-hardwood). The NLCD product only classifies three 

broad forest types: deciduous, evergreen, and mixed. 
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Our 50 ground-reference plots represented 11 forest types for our MTSU integrated 

classification, five for the LANDFIRE EVT, and six for the National Forest Type Map 

(Table 2.5). Of the five LANDFIRE EVT classes, nearly all were predicted as belonging 

to one of three mixed forest types (pine-hemlock-hardwood, spruce-fir-hardwood, or 

yellow birch-sugar maple). Of the six National Forest Type Map classes, our ground-

reference plots were predominantly categorized as one mixed forest type (sugar maple-

beech-yellow birch). This simplification of the heterogeneity of species assemblages found 

across the Northern Forest region into broad categories resulted in a gross over-prediction 

of yellow birch-sugar maple (LANDFIRE EVT) and sugar maple-beech-yellow birch 

(National Forest Type Map) across the landscape, while missing other species entirely.   

Focusing on the topographically diverse forests in the Stowe region of Vermont, a 

comparison of these forest classifications highlights the increased spatial detail and 

specificity of our MTSU product (Fig. 2.7). The MTSU predicts balsam fir, red spruce, 

spruce-fir, and spruce-fir-birch stands at high elevations, in addition to scattered balsam fir 

dominated stands in lowland swamp areas near suburban developments. Along mountain 

slopes, northern hardwoods and sugar maple stands are found throughout the low-mid 

elevations, with rare occurrences of birch and American beech dominated pixels. The 

valleys are largely dominated by the MTSU’s broadest species assemblages: mixed, mixed 

conifers, and mixed hardwoods. These results contrast those of the National Forest Type 

Map and LANDFIRE EVT, which both classify much of the region as a mixed northern 

hardwoods-type (maple/beech/birch and yellow birch-sugar maple, respectively).  The 

National Forest Type Map also does poorly distinguishing forest from non-forest and has 
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a more pixelated appearance due to its lower spatial resolution. The spatial distribution of 

NLCD forest cover aligns most closely with that of the MTSU product, but at a much 

coarser forest type specificity.     
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Figure 2.7. Comparison of the MTSU (top left), LANDFIRE EVT (bottom left), NLCD (top right), and National Forest Type Map (bottom 

right) forest cover maps near Stowe, Vermont. 
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To compare accuracy among the mapping products, we used the same 50 ground-

reference plots referenced throughout this study. Since there are inherent differences in 

how each product categorizes forest types, ground-reference plots were assigned to match 

the comparison product categories based on their species composition. Our results indicate 

that our MTSU classification was more accurate than the LANDFIRE EVT product (42% 

compared to 28% overall accuracy respectively) and more than twice as accurate as the 

National Forest Type Map (42% compared to 18% overall accuracy respectively) (Table 

2.5). While fuzzy accuracies are improved for the National Forest Type Map and 

LANDFIRE EVT products, this is likely inflated by their broad class structure and near 

uniform assignment of plots into mixed forest type classes that include most of the common 

species/genera found within our ground-reference dataset. 

When modifying all four classifications to match the coarser NLCD forest types 

(i.e. deciduous, evergreen, and mixed forest) for a more direct comparison of the general 

performance of these models, again the MTSU outperformed the LANDFIRE EVT, 

National Forest Type Map, and NLCD products (76%, 66%, 62% and 56% overall 

accuracy, respectively) (Table 5). Most of the error in the MTSU was due to an over-

prediction of mixed forest in conifer dominated plots. Deciduous forest, by far the most 

common class in the ground-reference data, was also the most accurately predicted in each 

classification. The high deciduous class accuracies of the LANDFIRE EVT and National 

Forest Type Map were again driven by their propensity to predict yellow birch-sugar maple 

and sugar maple-beech-yellow birch across the landscape.   
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2.5 Conclusions 

Our results indicate that the use of multi-temporal Landsat imagery, spectral 

unmixing, and a hierarchical ruleset classification (‘MTSU’ integrated approach) offers 

improved species specificity and accuracy relative to existing forest classification products. 

The key to this approach includes: 1) the use of multi-temporal imagery to capture species-

specific differences during important phenological periods; 2) spectral unmixing to more 

accurately characterize the mixed composition of forests in the study area; and 3) 

integration of resulting percent basal area maps and ancillary environmental variables into 

a hierarchical, rule-based classification scheme.   

Public availability of Landsat and FIA data enable the broad implementation, as 

well as scalable nature, of this approach. However, it is important to note that this approach 

hinges upon the user’s ability to obtain high quality (low cloud cover) multi-temporal 

imagery during key phenological periods, which is often difficult in temperate and 

mountainous regions. It also requires a robust set of “pure” species plots for use as 

endmembers in spectral unmixing and calibration of the percent basal area models. This 

can be difficult for rare and non-dominant species, or those that typically do not form 

homogeneous stands. A final limitation is the significant amount of remote sensing 

expertise required to implement the pixel- and object-based workflows. 

Accurate, species-specific percent basal area and thematic forest maps provide 

forest researchers, managers, and policymakers with powerful demographic tools to inform 

management activities, identify potential ‘hotspots’ for invasive pest/pathogen outbreaks, 

and inform other large-scale modeling applications (e.g. carbon storage dynamics, forest 
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fragmentation/conversion, wildlife habitat/movements, etc.). That we were successful in 

mapping species distributions in the Northeast, given the high spatial heterogeneity of its 

forests, bodes well for applying this approach in other, less diverse regions. Further, the 

extensive Landsat archive lends itself to using this approach to investigate spatiotemporal 

trends in tree species composition, of particular interest given the anticipated effects of 

climate change on forest demographics. 
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3.1 Abstract 

 Climate change is projected to alter tree species abundance and distribution in the 

northeastern United States. To date, studies have focused on climate-sensitive areas (i.e., 

range boundaries and ecotones) or used site-specific data or coarse spatial models to 

characterize changes across broad landscapes. Leveraging a novel remote sensing product 

that estimates species-level abundance (percent basal area), we modeled fine-scale (30m x 

30m) spatiotemporal trends in the abundance of eight northeastern US tree species between 

1985-2015 and assessed associations with site, environmental, and climate factors across 

northern New York and Vermont. We detected significant decreases in sugar maple (Acer 

saccharum, -12%), eastern hemlock (Tsuga canadensis, -11%), balsam fir (Abies balsamea, 

-5%), and birches (Betula spp., -4%), and increases in American beech (Fagus grandifolia, 

+9%) and red maple (Acer rubrum, +3%). These changes varied by elevation and showed 

significant spatial clustering, with associated species often exhibiting opposing trends (e.g., 

increased red spruce and decreased balsam fir at high elevations). Climate-related metrics 

(primarily temperature variability and extremes) were commonly associated with 

abundance changes. The abundance changes we documented largely contradict traditional 

succession pathways, with significant implications for key species in the region. Though 

climate metrics were important predictors of abundance trends, their importance varied by 

species and across space, highlighting the problematic nature of generalizing the impacts 

of climate change across diverse forests and complex topographies. 

 

 

Keywords: remote sensing, forest dynamics, climate change, northern hardwood forest, 

spruce-fir forest, landscape ecology, species distribution 
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3.2 Introduction 

 Changes in climate have well-documented effects on the structure, function, and 

resilience of forest ecosystems. Dendroecological and long-term forest inventory data 

show that warming temperatures, changing precipitation regimes, climate-related 

disturbances, and extreme climate events can affect tree fitness, mortality, and migratory 

pathways (Shuman et al. 2009, Pederson et al. 2015). Over the past century and especially 

since the 1970s, the northeastern region of the United States (US) (‘the Northeast’) has 

experienced significant seasonal temperature increases, increased heavy precipitation 

events/flooding, prolonged growing season dry spells, and less snowfall, outpacing 

predictions from global climate models (Hayhoe et al. 2007). These trends are projected to 

continue or intensify over the next century (Hayhoe et al. 2008).   

 Climatic changes are expected to significantly alter suitable habitat conditions and 

associated competitive dynamics for many northeastern tree species (Iverson and Prasad 

1998). For example, increased temperatures and prolonged droughts will likely favor the 

northern expansion of warm-adapted species (e.g., oaks – Quercus spp.) from the south, 

while others (e.g., maples – Acer spp.) retreat to cooler climate refugia (Tang et al. 2012). 

Already, warmer temperatures have resulted in longer growing seasons and associated 

changes in leaf phenology (Richardson et al. 2013), which in turn, are expected to alter 

important components of habitat suitability, including soil moisture/temperature gradients, 

nutrient cycles, and microclimate (Huntington et al. 2009). Species composition in 

montane areas of the Northeast, where assemblages occur along elevational gradients 

strongly regulated by climate (Cogbill and White 1991), is also projected to shift as higher 
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elevation habitats become more suitable for hardwood species and less favorable for 

spruce-fir forests (Tang et al. 2012, Wason et al. 2017a). The effects of climate change on 

pest/pathogen, wildlife populations, and weather-related disturbances could further impact 

forest composition patterns, with some species more affected than others (Groffman et al. 

2012).  

Recent studies suggest climatic changes are already impacting northeastern forest 

composition, particularly in the understory. Woodall et al. (2009) found the mean latitude 

of seedling abundance was higher than that of mature biomass for several northern 

hardwood species – an indication of poleward (latitudinal) migration (though see Zhu et 

al. 2012). Similarly, Fei et al. (2017) found significant poleward and westward 

(longitudinal) shifts in sapling abundance over the past 30 years, with conifers, birches 

(Betula spp.), and aspens (Populus spp.) tending poleward and most other deciduous 

species westward. These westward shifts were more strongly associated with precipitation 

changes than temperature (Fei et al. 2017).  

In the dominant maple-beech-birch forests of the region, several studies have 

documented recent increases in American beech (Fagus grandifolia) abundance at the 

expense of maple (Acer spp.) and birch (Duchesne and Ouimet 2009, Pontius et al. 2016, 

Bose et al. 2017a,b, Wason and Dovciak 2017). Regional studies linked shifts from maple 

to beech dominance with increased temperature and precipitation (Bose et al. 2017a,b). 

However, other investigations suggest spatially complex dynamics involving climate, 

beech bark disease, deer herbivory, and the legacy effects of logging and acid deposition 

(Pontius et al. 2016, Wason and Dovciak 2017).  
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While site-specific field studies provide invaluable information on forest 

composition and structure, their spatial constraints limit broader examinations of drivers of 

change across complex landscapes. Remote sensing offers a complementary approach that 

provides continuous, landscape coverage over several decades and has been used to 

examine shifts across broad forest types, particularly in montane ecotones (transition 

zones) where high-elevation red spruce (Picea rubens) and balsam fir (Abies balsamea) 

converge with northern hardwood stands dominated by sugar maple (A. saccharum), beech, 

and yellow birch (B. alleghaniensis). Beckage et al. (2008) reported upward shifts in 

northern hardwoods at the expense of spruce-fir on two peaks in Vermont (VT). 

Conversely, Vogelmann et al. (2012) and Foster and D' Amato (2015) found the spruce-fir 

ecotone moved predominantly downslope in VT and NH. Recent field studies by Wason 

and Dovciak (2017) and Wason et al. (2017a) indicated that these downslope shifts were 

due to increases in red spruce at mid-low elevations, likely driven by climate change and 

recovery from logging and acid deposition-induced declines.  

Traditionally, remote sensing analyses of species composition patterns have been 

constrained by the detail and accuracy of forest mapping products (typically limited to 

broad forest type classifications). The recent development of an improved species-level 

abundance mapping technique by Gudex-Cross et al. (2017) allows for a more detailed 

examination of spatiotemporal changes across the landscape. Here, we utilize these 

products to examine 30-year (1985-2015) trends in the abundance of several dominant tree 

species across northern New York (NY) and VT. For each species, our objectives were to: 

1) examine regional trends in mean abundance, 2) detect spatiotemporal patterns in 
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abundance trends, and 3) identify abiotic correlates (i.e., climate, soil, acid deposition, or 

topographic factors) associated with abundance trends. This information is essential to 

understanding if the Northeast is experiencing unexpected changes in species abundance, 

and to what extent climate and other factors are involved. Furthering our understanding of 

northeastern forest dynamics as climate changes is critical to informing adaptive 

management strategies for this ecologically, economically, and culturally valuable natural 

resource.  

 

3.3 Methods 

3.3.1 Study area and focal species 

 This study was conducted across northern NY and VT using Landsat imagery that 

covers the Lake Champlain valley and significant portions of the Adirondack and Green 

mountain ranges (Fig. 3.1). Although the imagery extends into Canada, the study area was 

limited to the US due to the spatial constraints of ancillary data layers. This region features 

a wide range of forest composition, soil types, latitudinal and elevational climate gradients 

where shifts in species composition are expected in response to ongoing climate change 

(Iverson and Prasad 1998).  
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Figure 3.1. The study area across northern New York and Vermont (Landsat Path 14, Row 29). 

 

 We examined eight common species/genera: balsam fir, red spruce, sugar maple, 

red maple (Acer rubrum), American beech, birches, eastern hemlock (Tsuga canadensis), 

and oaks. While additional species were of ecological interest, abundance maps were 

unavailable due to a lack of viable endmember training sites (e.g., ash and hickory species) 

or low overall mapping accuracy (white pine and aspens). Oaks and birches were modeled 

at the genus level because multiple species were combined to obtain adequate training sites.  
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3.3.2 Percent basal area (% BA) mapping 

 Our analysis is based on a remote sensing technique developed by Gudex-Cross et 

al. (2017) that uses forest inventory data and multitemporal (seasonal) Landsat imagery to 

model species-level abundance at four different 10-year timesteps (1985-2015). For each 

species, spectral unmixing techniques with endmembers comprised of pure stands (>80% 

BA) were used to quantify the likelihood of occurrence and infeasibility (likelihood of a 

false positive) for each 30m x 30m pixel. A % BA model based on these values was then 

calibrated using independent field data. Model accuracies rivaled those derived from 

hyperspectral sensors, with r2 values ranging from 0.32 (hemlock) to 0.60 (beech) and root 

mean squared errors from 5 (oaks) to 17% BA (sugar maple).  

Due to the inherent error in remote sensing estimates, several quality control steps 

were employed to minimize error in subsequent abundance change modeling. Pixels 

predicted with less than 5% BA were considered below “detection level” and masked. Any 

pixel with a single-year abundance estimate more than two standard deviations from its 

overall 30-year mean was also removed to minimize errors introduced by cloud effects, 

registration errors, or severe disturbance (e.g., logging, windthrow, etc.). This approach 

allowed us to focus on abundance changes resulting from natural succession. 

 

3.3.3 Spatiotemporal patterns in species abundance trends 

 For each species, mean % BA was quantified across the full region and compared 

over the four timesteps to assess broad-scale changes in abundance. Abundance trends were 

then calculated on a per-pixel basis as the slope of the best fit linear regression line over 
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the 30-year period. One sample t-tests were used to determine if trends were significantly 

different from zero (p ≤ 0.01). Trends were evaluated by elevation class (low = <750 

meters, transition zone = 750-900m, and high = >900m) based on work specific to the 

Adirondack and Green mountain ranges (Cogbill and White 1991). Most of the study area 

fell in the low elevation class (~90%), followed by high (~8%) and transition zone (~2%). 

The Optimized Hot Spot Analysis tool in ArcGIS 10 (ESRI 2016) was used to 

identify spatiotemporal patterns in abundance trends. This tool uses the Getis-Ord statistic 

(Getis and Ord 1992) to identify areas with significant spatial clustering of increasing (hot) 

or decreasing (cold) abundance (evaluated at 95% confidence level), which was assessed 

for pixels with ≥5% BA change over the 30-year period.  

 

3.3.4 Relationships between species abundance trends and abiotic factors 

 To examine potential drivers of abundance while minimizing spatial 

autocorrelation, collinearity, and heteroscedasticity in statistical analyses, we extracted a 

buffered (800m) random sample of pixels stratified by elevation and ecoregion (EPA Level 

IV, www.epa.gov/eco-research/ecoregions), resulting in 4,507 observations distributed 

across the study area. These random observations were used to examine several potential 

abiotic correlates with species abundance trends, including climate and soil metrics, acid 

deposition (assessed as nitrogen/sulfur critical load and exceedance), and topographic 

factors (Table 3.1). Climate data included 30-year monthly temperature and precipitation 

normals (averages from 1981-2010; 800m resolution across the region) obtained from the 

PRISM Climate Group (accessed 20 Jan 2017), from which we derived ecologically-
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relevant indices to reduce collinearity and capture seasonal climate variability (O'Donnel 

and Ignizio 2012). Winter months included December, January, and February; summer 

months included June, July, and August. Factors related to landscape position included 

elevation and heat load index (HLI) (McCune and Keon 2002), which is a measure of 

potential direct incident solar radiation based on latitude, slope, and aspect.  

 

Table 3.1. Abiotic variables examined for potential relationships with species abundance trends. 

Variable Resolution (m) Raw Data Source 

Climate 

800 

 

Annual mean temperature 

PRISM Climate Group: 

prism.oregonstate.edu 

 

  

Annual temperature range 

Diurnal temperature range 

Temperature isothermality 

Temperature seasonality 

Maximum summer temperature 

Minimum winter temperature 

Mean summer temperature 

Mean winter temperature 

Annual total precipitation 

Total precip. of wettest month (July) 

Total precip. of driest month (Feb) 

Precipitation seasonality 

Total summer precipitation 

Total winter precipitation 

 

Landscape Position 
 

Elevation 
30 

USGS National Map Viewer 

Heat Load Index (HLI) McCune and Keon (2002) 

 

Soils 

 
 

Depth to Bedrock 

30 NRCS Web Soil Survey  
Water-holding Capacity 

Porosity 

pH 

 

Acid Deposition 

 
 

Critical Load Threshold 

30 Miller (2011) 
Exceed. of Nitrogen and Sulfur 1984-1988 

Exceed. of Nitrogen and Sulfur 1999-2003 

Exceed. of Nitrogen and Sulfur 1984-2003 
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Spatial modeling efforts included several data reduction steps to minimize 

collinearity among potential input variables using stepwise partial least squares regression 

(PLS), which is more robust to collinearity than ordinary least squares (OLS) (Carrascal et 

al. 2009). We used a high variable importance in projection threshold (≥ 1) and held back 

one-third of the data for independent model validation, providing a conservative 

assessment of significance for input variables used in subsequent spatial regression models.   

We employed a spatial regression with maximum likelihood estimation (MLE) 

workflow from Anselin (2004) to examine relationships between abundance trends and 

significant factors identified in the PLS. An exploratory ordinary least squares (OLS) 

global regression model was constructed to eliminate any variables that still exhibited 

significant collinearity (using a conservative variable inflation factor of > 5). Next, we 

calculated the spatial weights between data points in GeoDa (Anselin et al. 2006) using a 

minimum Euclidean distance threshold. GeoDa leverages these weights to provide useful 

diagnostic tests for spatial dependency and heteroscedasticity, which help determine the 

appropriate spatial regression technique: spatial autoregressive (SAR) or geographically-

weighted regression (GWR) (Brunsdon et al. 1998). SAR models account for spatial 

dependencies by incorporating a spatial lag term (Rho) into the regression equation 

(Anselin et al. 2006). GWR deals with heteroscedastic data by conducting local regressions 

over a moving window and identifying where locally-weighted coefficients move away 

from their global values (Brunsdon et al. 1998).  

Without significant spatial dependence or heteroscedasticity, the global OLS model 

was used. A SAR model was used if spatial dependence was significant, but 
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heteroscedasticity was not. If heteroscedasticity was significant, we ran GWR using GWR4 

software (Nakaya et al. 2014). To better understand the regional variation in GWR model 

explanatory power and abiotic factor significance, we mapped the spatial distribution of 

local r2 values and parameter coefficient t-statistics using two-tailed thresholds (p< 0.05). 

In all cases, the spatial regression model for a given species was compared against the 

global OLS model using the minimum corrected Akaike’s Information Criterion (Hurvich 

and Tsai 1993).  

 

3.4 Results 

3.4.1 Global trends  

Sugar maple was by far the most abundant species across the study area (Table 3.2). 

Overall mean % BA estimates were relatively consistent for all species, with less than 2% 

change on average between each timestep (6% max change) and less than 3.4% change on 

average (6% max change) across the full period. The largest overall 30-year abundance 

increases were observed for beech, up 6% across the study area, and the largest decreases 

were in hemlock and sugar maple (down 5% and 6% respectively). These global changes 

in mean abundance largely matched the mean long-term trends (slope) obtained from the 

pixel-based random sample. Beech exhibited the highest positive 30-year trend (up 0.3% 

yr-1; 9% net 30-yr gain), driven primarily by a large increase between 2005-2015 (Table 

3.2). Red maple abundance also significantly increased (up 0.1% yr-1; 3% net 30-yr gain). 

Negative trends were highest for birches, hemlock, and sugar maple (down 0.13%, 0.35%, 
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and 0.39% yr-1 respectively), resulting in estimated net 30-year losses of 3.9%, 10.5%, and 

11.7% (Table 3.2).  

  

Table 3.2. Mean regional abundance over time. Trend data is reported as the mean of the per-pixel 

regression slopes for a subset of buffered, random pixels. Significant values are in bold (p<0.01). 

  Mean % Basal Area (full raster)  Regression Slope (random pixels) 

Tree Species 1985 1995 2005 2015 

Mean 

SD  

Mean Ann. 

Change (%) 

Mean 30-yr 

Change (%) N 

American beech 7 8 7 13 4  0.30 9.0 349 

Balsam fir 19 19 18 16 10  -0.18 -5.4 590 

Birches 15 17 16 13 7  -0.13 -3.9 1,007 

Eastern hemlock 21 19 16 16 9  -0.35 -10.5 900 

Oaks 12 13 11 11 7  -0.06 -1.8 243 

Red maple 10 14 11 13 5  0.10 3.0 435 

Red spruce 13 12 12 12 7  -0.05 -1.5 549 

Sugar maple 39 36 32 33 13  -0.39 -11.7 1,441 

 

3.4.2 Elevational trends  

Several species exhibited significant elevational abundance trends (p<0.01) that 

differed from their overall regional trend (Table 3.3). For example, red spruce significantly 

increased at upper elevations (0.28% yr-1) with more modest increases in the transition 

zone (0.12% yr-1). These increases were masked in the global trend by significant decreases 

in the more widespread lower elevations (-0.17% yr-1). Similarly, significant decreases in 

birch abundance in transition zones and upper elevations (-0.46% and 0.50% yr-1 

respectively) were tempered by moderate increases at lower elevations (0.09% yr-1). The 

regional decrease in balsam fir abundance was driven primarily by significant losses at 

high elevation (-0.71% yr-1), with insignificant abundance trends in the other two elevation 

classes (Table 3.3). 
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Table 3.3. Abundance trends by elevation zone reported as the mean (% basal area) of the per-pixel regression slopes for a subset of buffered, 

random pixels. Significant values are in bold (p<0.01). 

 Low (<750m)  Transition (750-900m)  High (>900m) 

Tree Species 

Mean Ann. 

Change (%) 

Mean 30-yr 

Change (%) N  

Mean Ann. 

Change (%) 

Mean 30-yr 

Change (%) N  

Mean Ann. 

Change (%) 

Mean 30-yr 

Change (%) N 

American beech 0.29 8.7 293  0.35 10.5 54  * * * 

Balsam fir -0.08 -2.4 320  -0.03 -0.9 166  -0.71 -21.3 104 

Birches 0.09 2.7 625  -0.50 -15.0 297  -0.46 -13.8 85 

Eastern hemlock -0.35 -10.5 898  * * *  -- -- -- 

Oaks 0.01 0.3 180  -0.24 -7.2 63  -- -- -- 

Red maple 0.11 3.3 408  * * *  * * * 

Red spruce -0.17 -5.1 335  0.12 3.6 162  0.28 8.4 52 

Sugar maple -0.41 -12.3 1,130  -0.32 -9.6 311  -- -- -- 

*N<50.            
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3.4.3 Spatiotemporal patterns 

Exploring spatial patterns in the 30-year trends revealed significant clusters of 

increasing and decreasing abundance (Fig. 3.2). For each species, these clusters largely 

complemented patterns identified in the examination of elevation classes. Interestingly, 

compatriot species often exhibited opposing trends in the same areas. The most pronounced 

examples include co-located clusters of decreasing sugar maple (Fig. 3.2a) and increasing 

beech (Fig. 3.2c) and decreasing balsam fir (Fig. 3.2e) with increasing red spruce (Fig. 

3.2g). Clusters for sugar maple-beech changes were concentrated throughout the 

Adirondacks, while virtually all the red spruce-balsam fir clusters occurred in two 

Adirondack ecoregions: Upper Montane/Alpine Zone and High Peaks. In contrast, both red 

spruce and balsam fir exhibited increasing abundance in the Green Mountain ecoregions 

of north-central VT.  

The distribution of abundance clusters for sugar maple, red maple, and beech 

suggests a potential relationship with longitude (Fig. 3.2a, b, c). For maples, decreasing 

clusters were concentrated in the western portion of the region (NY) and increasing clusters 

in the east (VT). The opposite was true for beech. Given the significant decreasing trend 

of sugar maple across the study area, the NY losses clearly outweighed the VT gains. There 

were also stark differences in the distribution of birch abundance clusters throughout 

montane areas, with a clear pattern of decreasing to increasing abundance from south to 

north. Hemlock and balsam fir also showed abundance clustering with latitudinal 

relationships (Fig. 3.2e, f), with hot spots distributed throughout the northern portions of 

the study area and cold spots concentrated in the south.  
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Figure 3.2. Spatial distribution of 30-yr abundance increases (red) and decreases (blue) for eight tree 

species/genera across ecoregions. Confidence levels represent the significance of spatial clustering. 
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3.4.4 Correlates with global species abundance trends 

 Across the entire study area, climate-related indices were important predictors of 

30-year abundance trends for seven of the eight species/genera (Table 3.4). These included 

minimum temperatures and measures of climate variability (e.g., temperature ranges). 

Temperature-related metrics were more common correlates than precipitation. Only the 

oak model excluded climate metrics, likely due to small sample size.  

 Larger temperature ranges were positively associated with beech and birch 

abundance trends and negatively associated with trends in red spruce abundance. Diurnal 

temperature range (an index of daily max-min fluctuations) was negatively associated with 

sugar maple abundance. Lower minimum winter temperatures were negatively associated 

with beech and balsam fir abundance trends but positively associated with red maple 

trends. Higher HLI values were associated with positive abundance trends for beech and 

sugar maple, indicating better growth conditions on warmer slopes, but negatively 

associated with balsam fir and eastern hemlock trends. Precipitation metrics generally 

reported increasing abundance trends with increasing precipitation for red spruce, sugar 

maple, and eastern hemlock. Elevation was positively associated with abundance trends 

for red spruce and negatively associated with those for balsam fir, oaks, and birches (Table 

3.4).    
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Table 3.4. Significant abiotic factors and their effect on 30-year abundance trends. Rho is the spatial 

lag term in spatial autoregressive (SAR) models (OLS = global Ordinary Least Squares model). 

Tree Species Model Terms Effect OLS p-value SAR p-value 

American beech Rho 0.29 -- 0.0007 

  Minimum winter temperature  - <0.0001 0.0002 

  Annual temperature range + <0.0001 0.005 

  Heat load index + 0.005 0.006 

Balsam fir Heat load index - <0.0001 * 

  Elevation - <0.0001 * 

  Minimum winter temperature  - <0.0001 * 

Birches Elevation - <0.0001 * 

  Annual temperature range + <0.0001 * 

Eastern hemlock Rho 0.56 -- <0.0001 

  Heat load index - <0.0001 <0.0001 

  Total winter precipitation  - <0.0001 0.001 

  Total summer precipitation  + <0.0001 0.0002 

Oaks Elevation - <0.0001 -- 

Red maple Rho 0.37 -- <0.0001 

  Minimum winter temperature + <0.0001 <0.0001 

Red spruce Elevation + <0.0001 * 

  Total annual precipitation + 0.003 * 

  Annual temperature range - 0.01 * 

Sugar maple Heat load index + <0.0001 * 

  Diurnal temperature range - <0.0001 * 

  Total summer precipitation + <0.0001 * 

 

3.4.5 Correlates with species abundance trends – spatial regressions 

For seven of the eight species/genera, spatial regression models produced 

substantially better fit than global OLS (Table 3.5), indicating spatially-variable 

relationships between potential abiotic drivers and abundance trends. Due to high 

heteroscedasticity, GWR models were used for sugar maple, birches, red spruce, and 

balsam fir. SAR produced the best fit model for hemlock, beech, and red maple; global 

OLS was only sufficient for oaks (Table 3.5).  

  



  

87 

 

Table 3.5. Final regression model selection and fit statistics. 

Tree Species 

Model 

Type 

OLS* 

Adj. r2 

SAR* 

Pseudo r2 
GWR* 

Adj. r2 

OLS 

AICc 

Spatial 

AICc N 

American beech SAR 0.12 0.17 -- 146.1 136.6 338 

Balsam fir GWR 0.24 -- 0.34 1,036.2 984.9 547 

Birch GWR 0.26 -- 0.48 1,401.9 1,103.0 976 

Eastern hemlock SAR 0.09 0.18 -- 1,468.5 1,401.4 805 

Oaks OLS 0.17 -- -- 190.8 -- 233 

Red maple SAR 0.08 0.13 -- 115.4 100.1 435 

Red spruce GWR 0.28 -- 0.36 374.0 322.3 502 

Sugar maple GWR 0.14 -- 0.25 3,122.8 2,975.1 1,372 

*OLS = Ordinary Least Squares; SAR = Spatial Autoregressive; GWR = Geographically-

weighted Regression 

 

GWR revealed significant spatial variation in model explanatory power (local r2 

values from ~0 to 0.75) and abiotic factor coefficient significance for sugar maple and 

birches (Fig. 3a, b). The sugar maple model performed best predicting positive abundance 

trends in the Green Mountains, but poorly when predicting negative abundance trends in 

the Adirondack Foothills. The birch model followed a similar spatial pattern, but yielded 

higher explanatory power across the landscape, primarily because of close associations 

with elevation. Clustering of significant positive and negative coefficients indicated 

temperature and precipitation have localized effects on sugar maple populations, while the 

influence of landscape position (HLI) was more spatially consistent. Similarly, birch model 

coefficients showed consistent negative relationships between elevation and abundance 

trends across the study area, but more localized negative relationships with annual 

temperature range.
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Figure 3.3. Regional variation in geographically-weighted regression model fit and parameter significance for sugar maple (a) and birch species (b). 
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 Red spruce (Fig. 3.4a) and balsam fir (Fig. 3.4b) GWR models also revealed 

substantial spatial variation in explanatory power and coefficient significance, with local 

r2 values ranging from 0.03 to 0.60. The highest local r2 values for red spruce were 

distributed throughout VT and most of the Adirondack Foothills regions, with the lowest 

in the Adirondack High Peaks/Alpine Zone and St. Lawrence Valley (Fig. 3.4a). Annual 

temperature range had a predominantly negative association with red spruce abundance 

trends in the northern portion of the study area, but a positive association in parts of the 

Adirondack Foothills and areas of the Lake Champlain Basin. Significant coefficients for 

annual precipitation and elevation were consistently positive, with precipitation being an 

important predictor of increased red spruce abundance in the Lake Champlain Basin and 

elevation in the southern and western parts of the study area. The highest local r2 values 

for balsam fir were in the Adirondack High Peaks and Central Green Mountains; the lowest 

were found in the northern part of the Adirondack Foothills (Fig. 3.4b). The areas with the 

best model fit typically contained significant negative relationships between fir abundance, 

elevation, and HLI.  
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Figure 3.4. Regional variation in geographically-weighted regression model fit and abiotic parameter significance for red spruce (a) and balsam fir (b). 
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3.5 Discussion 

3.5.1 Spatiotemporal patterns 

 Some of the species abundance changes we documented are consistent with 

changes expected in the Northeast from natural succession. These include a general 

increase in shade-tolerant species such as beech – historically dominant throughout the 

study area (Thompson et al. 2013) – and, to a lesser extent, red maple. Several recent 

northeastern studies have reported similar beech gains (e.g., Pontius et al. 2016, Bose et al. 

2017a,b, Wason and Dovciak 2017). Our results show increases in beech were more 

pronounced over the last decade, which coincide with findings by Bose et al. (2017a, b) 

and Pontius et al. (2016). Also consistent with Bedison et al. (2007) and Bose et al. (2017b), 

spatial analysis of the beech trend data revealed hot spots of increasing abundance in the 

Adirondacks throughout its elevational range that were often co-located with sugar maple 

decreases, suggesting beech is directly benefiting from sugar maple decline. Red maple 

growth and abundance increases have been reported in VT (Kosiba et al. 2017), NH 

(Pontius et al. 2016), and across the broader eastern region (Fei and Steiner 2007).  

Contrary to traditional patterns towards shade-tolerant, mid-late successional 

species, our results show significant regional decreases in sugar maple and hemlock 

abundance. Given its importance to the region, sugar maple has been intensively studied in 

the Northeast, with reported declines beginning in the mid-20th century (e.g., Bishop et al. 

2015, Horsley et al. 2002). Our spatiotemporal analyses show decreasing sugar maple 

abundance concentrated in low-mid elevation forests of the Adirondacks (Fig. 2a), where 

others have reported unexpected growth declines across age and diameter classes despite 
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favorable growing conditions (warmer temperatures and increased precipitation) and 

reduced acid deposition rates over the recent past (Bedison et al. 2007, Sullivan et al. 2013, 

Bishop et al. 2015). However, these areas experienced significant canopy defoliation 

events from a combination of drought-like conditions and forest tent caterpillar outbreaks 

in the early-mid 2000s (Wood et al. 2009), which were likely reflected in our results (sugar 

maple mean % BA was lowest in 2005; Table 3.2). For hemlock, the decline reported here 

is a novel result for northern NY and VT, where the hemlock woolly adelgid – a widespread 

invasive pest that has recently invaded New England – has not yet been detected. The 

distinct north-south spatial distribution of hemlock trends and correlation with climate 

metrics suggest a relationship mediated by climate (see “Eastern hemlock” section below).   

 Our spatiotemporal analyses showed that shifting compositional patterns in high 

elevation spruce-fir-birch forests were more pronounced in the transition zone and higher 

elevation ecoregions of the Adirondacks (Fig. 2e, g). Birch declines in these locations 

likely reflect losses for two species, yellow birch (transition zone) and montane paper birch 

(transition and high zones). Other studies in the region have recorded similar birch losses 

and attributed them to either natural succession (i.e., age-related mortality) (Van Doorn et 

al. 2011) or a predisposition to freeze/thaw-related injuries caused by acid deposition (e.g., 

Halman et al. 2015). The high elevation balsam fir declines may be due to a combination 

of wind exposure and climate events known to cause mortality (Sprugel and Bormann 

1981), though other nearby studies have documented losses to spruce budworm in previous 

decades (Filion et al. 2006).  
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Transition zone dynamics 

 The spatiotemporal abundance patterns in the transition zone provide additional 

insight into conflicting reports of altitudinal shifts where northern hardwood and spruce-

fir forests converge. Given temperature is one of the main constraints on species 

distributions along elevation gradients, continued warming is expected to promote the 

upslope movement of northern hardwoods at the expense of more cold-adapted conifers 

(Tang et al. 2012). In contrast, our results show significant declines for several northern 

hardwood species and hemlock, with only beech and red spruce increasing in abundance 

in the transition zone. However, it is important to note these abundance shifts varied across 

the study area, particularly in the northern Green Mountains where some northern 

hardwood species exhibited clusters of increasing abundance.  

Many of our findings are corroborated by recent studies of species demography. 

Using remote sensing, both Vogelmann et al. (2012) and Foster and D' Amato (2015) 

observed recent downslope movement in spruce-fir forests, likely driven by red spruce 

expansion. Similar to our results, the latter study also documented areas exhibiting upward 

shifts or no apparent change in northern hardwoods. Across montane northeastern forests, 

Wason and Dovciak (2017) compared the basal area distributions of several species at field 

sites spanning from low elevation northern hardwood to high elevation spruce-fir and 

found: 1) expansion of beech (upslope) and red spruce (downslope); 2) contraction of sugar 

maple (downslope); and 3) no change in balsam fir. Like our study, they found these shifts 

in abundance were predominantly correlated with climatic factors, though historical 

logging practices were also an important factor. Collectively, these studies indicate that 
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while shifts in species abundance have occurred in the transition zone, responses have been 

species-specific and variable across the landscape.   

   

3.5.2 Abiotic factors  

 Though we analyzed many potential site, soil, and deposition factors, climate 

indices were most commonly associated with species abundance trends. Temperature 

variability, minimum winter temperatures, and HLI were consistent correlates across 

almost all species/genera, whereas precipitation metrics were important for known 

drought-sensitive species (e.g., hemlock). Elevation was a significant predictor of 

abundance for many species, perhaps capturing the interacting effects of climate, soil, and 

deposition levels known to vary with elevation. Climate metrics typically accounted for 

~10-25% of the total variability in species abundance trends, supporting other recent 

studies that found climate to be an important driver of northeastern forest composition 

(Bose et al. 2017a,b, Fei et al. 2017, Wason and Dovciak 2017).  

Nonetheless, climatic factors alone largely failed to predict the widespread 

decreases in sugar maple abundance and shifts from balsam fir to red spruce concentrated 

in the Adirondacks. We suspect these localized decreases may be due to a complex set of 

factors that include climatic change, poorer soils, and the legacy effects of higher acid 

deposition. For sugar maple, different land use history (less conversion to agriculture vs. 

sugar maple-dominated stands in VT) and pest/pathogen outbreaks (e.g., Wood et al. 2009) 

have also likely affected competition with beech (see Bishop et al. 2015, Lawrence et al. 

2017 for further discussion). Although deposition and soil pH were not associated with 
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abundance changes, the low range of values in these data layers likely limited the statistical 

power of our analyses. Indeed, considerable research has shown that acid deposition has 

strongly influenced forest composition in our study area (Schaberg et al. 2001, Driscoll et 

al. 2003). Nitrogen and sulfur deposition in forest soils depletes calcium, resulting in 

deficiencies that impair tree stress and carbon regulation pathways, predisposing trees to 

decline following exposure to other stressors (Schaberg et al. 2001). Sugar maple is 

particularly prone to calcium deficiency-related declines in health, growth, and competitive 

status that are often associated with synchronous increases in beech (Bishop et al. 2015, 

Halman et al. 2015). However, like Bishop et al. (2015), our results indicate sugar maple 

declines (and associated beech increases) in the Adirondacks span deposition and 

elevational gradients, indicating additional factors (e.g., climate, pests/pathogens, etc.) may 

be influencing this relationship across broader spatial scales.  

That climate-related factors were predominant predictors of species abundance 

trends is expected in a region where forest productivity is primarily limited by climate. 

However, given the diversity of landscapes, forest types, and land use histories contained 

in our study area, spatial modeling also revealed complex spatial variation in the 

significance of these factors. Next, we examine these relationships on a species-specific 

basis, excluding the potentially unreliable models for red maple (adj. r2 < 0.15) and red oak 

(N < 300).  

 

American beech 

 Constrained carbon relations and extreme cold damage likely explain the negative 

association with minimum winter temperatures (Table 3.4). Both impair physiological 
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function and growth (thereby affecting an individual’s competitive status): low winter 

temperatures induce deep physiological dormancy, leading to a shorter functional growing 

season, and extreme cold can cause significant canopy dieback events (Melancon and 

Lechowicz 1987, Sakai and Weiser 1973). Dendroecological studies have shown minimum 

winter temperature is also the main limitation on beech’s relative abundance and northern 

range extent (e.g., Huntley et al. 1989). This likely explains the positive association 

between beech abundance trends and HLI (Table 3.4), since carbon relations and 

competitive success would benefit in warmer areas. In these areas, favorable growth 

conditions may also counteract the deleterious effects of beech bark disease (BBD), which 

is widespread throughout the study area (e.g., Munck and Manion 2006, Pontius et al. 

2016). The positive association with annual temperature range may be an extension of this 

effect and was corroborated by a recent study of beech sapling abundance relative to other 

hardwoods in the Northeast (Bose et al. 2017b).  

 

Sugar maple 

 Sugar maple is also at the northern extent of its geographic range, which likely 

explains the positive association between HLI and sugar maple abundance (Table 3.4). 

Similarly, positive associations with total summer precipitation are consistent with its 

preference for moist habitats and drought sensitivity (Horsley et al. 2002). Negative 

associations with increased temperature fluctuations (diurnal range) likely reflects 

locations with the highest probability of spring freeze/thaw damage (Halman et al. 2013). 

However, mapping the diurnal temperature coefficients revealed local significance that 

often ran counter to the global coefficient (Fig. 3.3a), suggesting an interaction with other 
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factors. Dendrochronological analyses of the relationship between sugar maple growth and 

climate variability in NY (Bishop et al. 2015) and VT (Gavin et al. 2008) have recorded 

similar non-stationarities, confirming differential climate responses among local 

populations.  

 

Red spruce 

 The positive association between red spruce abundance and elevation (Table 3.4) 

likely reflects a combination of recovery from historic declines from acid deposition and 

logging, in addition to an increasing competitive advantage over balsam fir with warming 

temperatures. The competitive advantage of red spruce is related to its ability to 

photosynthesize throughout the year, including the fall, winter, and spring when cold-hardy 

balsam fir is functionally dormant (DeHayes et al. 2001). Red spruce abundance was also 

positively associated with total annual precipitation, though this trend mainly applied to 

spruce populations at low elevations near Lake Champlain – the warmest part of our study 

area (Fig. 3.4a). We suspect this localized effect may reflect an interaction between warmer 

temperatures and increased precipitation that have been shown to favor spruce growth 

elsewhere (Burns and Honkala 1990a).  

Red spruce’s negative relationship with annual temperature range (Table 3.4) likely 

builds upon its documented sensitivity to freezing injury that is exacerbated by acid 

deposition (DeHayes et al. 2001). Precocious dehardening during winter/spring freeze-

thaw cycles (reflected in annual temperature ranges) increases the risk of freezing injury, 

crown dieback, and mortality (Schaberg and DeHayes 2000). Further supporting this link, 
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the temperature range-spruce abundance relationship we observed was concentrated in the 

north where winter cold extremes are more likely (Fig. 3.4a).   

 

Balsam fir 

 We suspect that the negative associations between abiotic factors and balsam fir 

abundance relate to their effects on spruce-fir competition. Balsam fir is a cold-adapted 

species that occupies the more southerly portions of its geographic range in our study area. 

Thus, it is expected that balsam fir abundance would be negatively associated with greater 

heat stress (i.e., HLI; Table 3.4). For cold-adapted species like balsam fir, net 

photosynthesis goes down above certain threshold temperatures as respiration rates 

increase but photosynthesis plateaus/declines. This puts trees at a competitive disadvantage 

versus more warm-adapted species (e.g., red spruce) (Schaberg et al. 1996). 

 The negative association between balsam fir abundance and minimum winter 

temperatures (Table 3.4) is surprising because of its extreme cold hardiness (Strimbeck and 

Schaberg 2009). However, a consequence of achieving deep cold-hardiness is reduced 

photosynthetic function. Perhaps especially in the high elevations of the Adirondacks 

where balsam fir is pushed to be most cold tolerant, it would have a constrained carbon 

budget relative to its more photosynthetically opportunistic competitor red spruce 

(Schaberg et al. 1996). We suspect the negative association of balsam fir abundance and 

elevation is an extension of this dynamic. 

 

Eastern hemlock 
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 Because hemlock is generally restricted to regions with cool, humid climates 

(Burns and Honkala 1990a), the negative association between hemlock abundance and 

higher HLI (Table 3.4) was expected. The threshold temperatures above which respiration 

exceeds photosynthetic gain is particularly low for this species (Adams and Loucks 1971), 

and substantial temperature increases over the past century across the study area 

(Trombulak and Wolfson 2004) have likely created additional stress for it. Comparisons of 

the spatial distribution of hemlock abundance clusters (Fig. 3.2f) to temperature gradients 

(Trombulak and Wolfson 2004) shows a close association between higher temperature 

increases in the south and decreased hemlock abundance, with an opposite pattern in the 

north.  

That precipitation metrics were significant predictors of hemlock abundance (Table 

3.4) was also expected given its drought sensitivity (Burns and Honkala 1990a) and 

epispodic drought that occurred over the study period (e.g., early 2000s). Along with less 

dramatic shifts in temperature, the positive association between hemlock abundance and 

higher summer precipitation levels likely reflect favorable growing conditions remaining 

constant in the northern part of our study area. In contrast, the physiological connection(s) 

for the negative association with higher winter precipitation is less intuitive but could 

reflect indirect influences of snowpacks that govern soil temperature cues, triggering the 

start of the growing season (Groffman et al. 2012).  

 

Birches 

 Our interpretation of abiotic factor effects on birch abundance is limited by 

assessment at the genus level, particularly since the three primary birch species (paper, 
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yellow, and mountain paper) occupy somewhat overlapping habitats along elevational 

gradients. The only significant correlates included elevation and annual temperature range 

(Table 3.4). Other regional work has documented declines in mountain paper birch at high 

elevations, paper birch at mid elevations in VT (Halman et al. 2011), and yellow birch at 

mid elevations in NH (Halman et al. 2015), which may reflect the legacy effects of acid 

deposition on growth and mortality. Significant negative coefficients for the relationship 

between birch abundance and increases in annual temperature range (Table 3.4) were 

confined to northern VT, which also suggests an interaction with temperature-associated 

injury (e.g., spring freeze/thaw events; Halman et al. 2011).  

 

3.5.3 Links to Climate Change Tree Atlas projections  

 To better understand the potential effects of climate change on northeastern forests, 

the USDA Forest Service developed models of projected changes in suitable habitat for 

134 tree species under several climate scenarios (‘Climate Change Tree Atlas’; Prasad et 

al. 2007, Iverson et al. 2008). These models incorporate abiotic factors related to climate, 

elevation, soil, and land use practices and link them to climate projections to create maps 

of favorable habitat under various climate scenarios. According to these projections, almost 

every species we evaluated is expected to decline in the Northeast except for oaks and red 

maple (under low emissions scenarios only).  

Our data indicate that the abundance declines projected for sugar maple, hemlock, 

balsam fir, and birch species may already be underway. For these species, important abiotic 

predictors consistent between Tree Atlas models and ours include: landscape position and 
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summer precipitation totals for sugar maple; warmer temperatures and precipitation for 

hemlock; warmer temperature and elevation for balsam fir; and elevation for birches. Our 

results also provide some evidence in support of: 1) projected increases in red maple 

abundance; 2) projected poleward shifts in the abundance of hemlock and balsam fir; and 

3) projected westward shifts in beech (see Fei et al. 2017 for further evidence of 2 and 3).  

 

3.5.4 Study limitations  

 As a remote sensing assessment, the results of our study only reflect compositional 

changes in the overstory forest canopy. The inability to characterize understory species 

composition patterns is particularly limiting considering early changes are often first 

evident in juvenile age classes. Remote sensing assessments are also prone to image 

registration errors, cloud edge effects, and confusion among similar species. However, our 

confidence in the abundance trends we report is bolstered by our rigorous QAQC protocols 

and the consistency between our results and those reported by recent field studies.  

Our spatial analyses of abiotic correlates were limited by the coarse resolution of 

some of the input layers. While our species abundance maps were modeled at a 30m 

resolution, inputs such as climate (800m), soils (low value ranges), and pollution critical 

load exceedance (low temporal resolution) were much less detailed, masking the fine-scale 

variability inherent across the study area. Though our results can be used to inform which 

climatic factors may be most closely linked with species demographics, it is important to 

note that we did not test 30-year changes in the climate metrics. Nonetheless, our results 

consistently associated climatic factors with species abundance changes in northeastern 
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forests, and by extension suggest future climatic changes will continue to shift competitive 

dynamics.  

 

3.6 Conclusions 

 This study shows that some changes in northeastern tree species abundance have 

been consistent with expected successional pathways, but for others climate, sometimes 

mediated by other abiotic factors (e.g., landscape position), may have altered competitive 

relationships among dominant species. Overall, four species/genera (sugar maple, birches, 

balsam fir and hemlock) showed significant declines over time, and three (beech, red maple 

and red spruce) experienced general or localized increases in abundance. Local abundance 

patterns among compatriot species often contrasted one another, with notable examples 

including beech increases co-located with sugar maple decreases, and red spruce increases 

co-located with balsam fir decreases.    

Species abundance trends were most closely aligned with temperature and 

precipitation gradients, indicating climate change will likely influence future 

compositional patterns. However, our hot spot analyses and spatial regression models also 

suggest that species responses are typified by localized relationships that vary across the 

landscape. These results demonstrate that generalizing climate impacts across species and 

large regions with complex topographies can be problematic, providing support for fine-

scale niche mapping of species as climate continues to alter regional forest dynamics.  
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4.1 Abstract 

 Climate change has been linked to well-documented shifts in important 

phenological events like the start and end of the growing season (SOS/EOS) in deciduous 

forests across the Northern Hemisphere. Yet regional variability and the role of climate at 

this scale are less understood. We addressed these issues by examining spatiotemporal 

trends in SOS/EOS and their potential drivers across northern hardwood forests in the 

northeastern United States (US). Using MODIS-derived phenology metrics from 2001-

2015 to quantify trends over time at a 250-meter pixel level, we found slight regional 

advances in SOS that were characterized by a clear longitudinal pattern: eastern ecoregions 

experienced earlier SOS and western ecoregions had delayed SOS. Conversely, EOS 

trended significantly later across most of the study area. Modeling the SOS/EOS trends 

using spatial regression, we identified several important climatic drivers of phenological 

change. For SOS, these included significantly warmer mean Dec-May temperatures (linked 

to earlier SOS) and Feb-Mar precipitation totals (variable effect on SOS). Important 

predictors of EOS trends included elevation and Sep-Nov precipitation anomalies, with 

both having a negative association (i.e., areas with higher elevation and precipitation 

exhibited either lower rates of EOS delay or earlier EOS). This research further validates 

climate change-driven changes in phenology across northern hardwood forests and 

elucidates their complex spatial relationships in the northeastern US. Our spatial regression 

models also highlight the importance of considering autocorrelation and heteroscedasticity 

when evaluating important drivers of phenological change across topographically-diverse 

regions.  

 

Keywords: remote sensing, MODIS, climate change, landscape ecology, start of season, 

end of season 
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4.2 Introduction 

 Long-term data from field and remote sensing studies show pronounced trends 

toward earlier spring green-up and later autumn senescence in the northeastern US and 

much of the Northern Hemisphere (Richardson et al. 2013, Gill et al. 2015), resulting in a 

shift toward longer growing seasons and changes in forest productivity (Richardson et al. 

2009b, Richardson et al. 2010, Keenan et al. 2014; but see Wu et al. 2016). These trends 

have largely been linked to warming temperatures, though photoperiod cues and extreme 

precipitation events (e.g., drought) can mediate phenological responses to temperature 

(Polgar and Primack 2011, Melaas et al. 2016a, Wu et al. 2016). However, several recent 

studies have revealed that broad-scale changes in phenology exhibit considerable 

variability at a regional scale, particularly over the past few decades (e.g., Jeong et al. 2011, 

Xie et al. 2015b, Yue et al. 2015). Given the important role of seasonal canopy dynamics 

in regulating biogeochemical processes (carbon, nutrient, and water cycling) and physical 

properties (atmospheric and surface conditions – e.g., albedo) that affect forest structure, 

composition, ecosystem services, and wildlife habitat (see reviews by Peñuelas and Filella 

2009, Polgar and Primack 2011, Richardson et al. 2013), more detailed regional 

examinations of forest phenology are needed to understand spatial patterns of phenological 

change and their potential drivers. 

The northeastern United States (the ‘Northeast’) is an ideal region for examining 

the relationship between climate change and key events like the start and end of the 

growing season (SOS/EOS) because of its relatively dense, largely deciduous forest cover 

and diverse topography. Here, previous studies using remote sensing methods to estimate 
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SOS/EOS trends have found inconsistent results (Dragoni and Rahman 2012, Yang et al. 

2012, Yue et al. 2015, Melaas et al. 2018), likely due to the varying temporal and spatial 

scales evaluated. Recent work by Yue et al. (2015) and Keenan et al. (2014) incorporating 

multiple sources of phenological information, including field data, carbon flux 

measurements, and satellite imagery, have reconciled some of these inconsistencies: both 

show later EOS across most deciduous forests of the Northeast and, to a lesser extent, 

earlier SOS. One major commonality among these and other studies (e.g., Friedl et al. 

2014) is that temperature change is the dominant driver of phenological trends. However, 

the importance of when those temperature changes occur and the influence of other factors 

like photoperiod, precipitation, and topography remain somewhat unresolved. For 

example, while recent modeling efforts found spring warming alone can explain most of 

the variability in SOS trends, others have favored the inclusion of winter temperatures 

(related to chilling requirements for budburst) and photoperiod limitations (Migliavacca et 

al. 2012, Yue et al. 2015, Melaas et al. 2016a). Further, while EOS can be impacted by 

heavy rains and drought (Xie et al. 2015b, Xie et al. 2018), precipitation is generally not 

considered a significant predictor of SOS (Polgar and Primack 2011).  

A persistent challenge in determining significant drivers of phenological change in 

the Northeast is the high spatial heterogeneity in SOS/EOS dates across the region. This 

variability, which can occur even over very short distances, is due to diverse patterns of 

species composition and strong climate gradients governed by latitude, longitude, 

topography, large bodies of water, and urban heat island effects from large cities 

surrounded by sparsely populated areas (Zhang et al. 2004, Fisher et al. 2006, Xie et al. 
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2015a,b). Heterogeneous forests further complicate broad generalizations regarding 

climatic drivers because phenological responses to climate vary 1) among species with 

differing physiologies (i.e., ring- versus diffuse-porous wood), 2) among intraspecific 

populations adapted to local conditions in different parts of a species’ range, and 3) by 

canopy position and age (Polgar and Primack 2011, Migliavacca et al. 2012). Thus, it is 

not surprising that climate-based phenology models developed using site-specific data 

(e.g., at Harvard Forest in Massachusetts and the Hubbard Brook Experimental Forest in 

New Hampshire) to predict interannual variability in SOS/EOS day of year (DOY) often 

do not scale well when applied across the broader region; though Melaas et al. (2016a) 

found stratifying by forest type and incorporating data from other sources (e.g., digital 

cameras) substantially improved model performance.  

An alternative approach to identifying key climate parameters affecting forest 

phenology that has yet to be used in the Northeast is to explicitly model the linear trend in 

SOS/EOS dates over time rather than specific DOY (e.g., Wang et al. 2017). Coupling 

temporal rates of change in phenology with those in climate metrics over the same period 

can elucidate more direct relationships between them. Also, since climate, soil, and other 

site characteristics vary across the region, relationships between phenology trends and 

potential drivers may also vary spatially. Therefore, utilizing spatial statistics can inform 

how the importance of these drivers varies across the landscape. Here, we employ spatial 

modeling of phenological trends using MODIS-derived annual estimates of SOS/EOS from 

2001-2015 across the dominant forest type within the Northeast – northern hardwood forest 
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– and address existing gaps in our understanding of landscape-scale climate-phenology 

relationships with three specific objectives:  

1) To quantify regional trends in SOS/EOS from 2001-2015,  

2) Examine intraregional variation and spatiotemporal patterns in SOS/EOS 

trends, and  

3) Investigate relationships between SOS/EOS trends and numerous climatic and 

topographic variables using spatial regression models to explore the possible 

causes of variations in phenology across the landscape.  

 

4.3 Methods 

4.3.1 Study area  

 This study was conducted across the northern hardwood forests of New York and 

northern New England, spanning four dominant ecoregions (level III; Omernik 1995): the 

Eastern Great Lakes Lowlands and Northern Allegheny Plateau in the west, and the 

Northeastern Highlands and Acadian Plains and Hills in the east (Fig. 4.1). Focusing on 

the northern hardwood forest type allowed us to examine phenological responses in forests 

with mixed species compositions (dominated by maple (Acer spp.), beech (Fagus 

grandifolia), and birches (Betula spp.)) across a diverse range of environmental conditions 

(i.e., differing edaphic, topographic, and climatic gradients). These include a wide 

latitudinal range (~40-47°N), several prominent mountain ranges (the Adirondacks and 

Catskills in New York, Greens in Vermont, and Whites in New Hampshire), and the 

transition zone between temperate and boreal forests.    
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Figure 4.1. Study area and spatial distribution of northern hardwood forests across New York and 

northern New England. 

  

4.3.2 Phenology data  

 To quantify phenology, we acquired annual SOS and EOS DOY estimates from 

2001 (first year available) to 2015 from the “expedited” Moderate Resolution Imaging 

Spectrometer (eMODIS) database provided by the US Geological Survey’s Earth 

Resources Observation and Science Center (phenology.cr.usgs.gov/index.php; Brown et 

al. 2015). eMODIS SOS/EOS estimates are based on weekly composites of maximum 
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Normalized Difference Vegetation Index (NDVI) values and have been processed and 

standardized for time-series analysis (Jenkerson et al. 2010). Temporal smoothing using 

weighted least-squares is applied to the NDVI data to reduce unusual spikes caused by 

cloud contamination, atmospheric effects, and other artifacts; then a delayed moving 

average approach is used to predict NDVI values from other observations in the time-

series. The timing of phenological events is represented by the point when actual NDVI 

values significantly depart from the trend predicted by the moving window (Reed et al. 

1994). The range of possible DOY estimates provided by eMODIS are Julian day 60-183 

(March 1st-July 1st) for SOS and 244-450 (September 1st through March of the following 

year) for EOS. We suspect the wide range of EOS dates is designed to capture evergreen 

forest phenology, which can be especially prolonged compared to deciduous forests. We 

did not constrain the EOS dates, as doing so would have resulted in the loss of most pixels 

across the region (most had at least one year where EOS was estimated as occurring after 

DOY 365). Instead, individual pixels were removed prior to trend analysis if: 1) an 

SOS/EOS DOY estimate for any given year was greater than two standard deviations from 

its overall 15-year mean and 2) both SOS and EOS estimates were not available for every 

year over the 15-year study period. This step was also designed to address potential errors 

from mixed pixel and atmospheric effects as well as disturbance events (e.g., logging, 

insect defoliation, etc.).   

 In the heterogenous forests of the Northeast, a major advantage of the eMODIS 

phenology metrics is their combination of high temporal frequency (weekly) and finer 

spatial resolution (250-meter pixels) compared to those derived from other sensors. For 
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example, Landsat has better spatial resolution (30m) but a longer return interval, and the 

Advanced Very High Resolution Spectroradiometer (AVHRR) has a longer data record but 

coarser spatial resolution (~1 kilometer). MODIS-derived NDVI estimates have also been 

shown to provide accurate predictions of green-up and senescence in northeastern 

deciduous forests based on ground validation and agreement with finer-scale remote 

sensing methods (e.g., LANDSAT and digital cameras) (Fisher and Mustard 2007, Hufkens 

et al. 2012b, Hmimina et al. 2013).  

 

4.3.3 SOS/EOS trends and post-hoc filtering 

 To capture changes in phenology, we calculated pixel-level trends in SOS/EOS 

dates using ordinary least squares (OLS) linear regression, with the slope of the trendline 

representing the annual rate of change (days/year-1). One-sample t-tests were used to assess 

if trends were significantly different from zero (p ≤ 0.05). Intraregional differences in 

phenology trends were tested using analysis of variance (ANOVA) with Tukey’s procedure 

for comparing means between ecoregions.  

Post-hoc examination of the trend data revealed numerous ‘anomalous’ pixels with 

unrealistic trends, almost exclusively for EOS (i.e., delayed by more than a month per 

decade). Examination of these locations indicate that they were likely dominated by oaks 

and conifers, species with phenology typically distinct from northern hardwoods. To ensure 

that pixels included in our modeling represent true changes in phenology across northern 

hardwood forests, we further limited the geographic extent of our analyses to pixels with 

trends between -2 and 2 days/year-1, or a net change of approximately one month over the 
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15-year period, based on the upper limit of rates reported in other regional studies (e.g., 

Dragoni and Rahman 2012).  

 

4.3.4 Forest cover, topography, and climate data 

 Three different LANDFIRE (LF; www.landfire.gov) 30-meter spatial resolution 

forest cover products (percent forest cover datasets for 2001 and 2014, and the existing 

vegetation type (EVT) classification for 2014) were used to constrain eMODIS phenology 

data to northern hardwoods-dominated pixels only. After aggregating the individual LF 

products to match the spatial resolution of our phenology data (250m), we retained only 

those eMODIS pixels classified as northern hardwoods with ≥75% forest cover.  

 A regional digital elevation model (DEM; 250m) was obtained from the Global 

Multi-resolution Terrain Elevation Dataset 2010 (lta.cr.usgs.gov/GMTED2010) and used 

to calculate three indices that describe local site characteristics: site exposure index (SEI; 

Balice et al. 2000), heat load index (HLI; McCune and Keon 2002), and compound 

topographic index (CTI; Gessler et al. 1995). The first two indices transform slope-aspect 

relationships to represent warmer (higher values) and cooler (lower values) sites while 

accounting for slope steepness, with the main difference being HLI also incorporates 

latitude. The CTI is a steady-state wetness index representing soil moisture gradients, with 

wet, depressed areas having the highest values and dry ridges the lowest.   

Monthly total precipitation and maximum, mean, and minimum temperature data 

for each year in the study period (2001-2015), along with 30-year normals (1981-2010), 

were acquired from the PRISM Climate Group (4km resolution; 
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www.prism.oregonstate.edu, accessed 9 Sep 2017). Raw climate averages in the Northeast 

exhibit strong spatial patterns that can complicate inferences regarding important regional 

drivers. For example, lower latitudes, elevations, and the western ecoregions are typically 

warmer on average than higher latitudes and elevation in eastern ecoregions. Therefore, 

our analyses focused on two sets of unique climate metrics: trends and anomalies calculated 

at the pixel level. Temporal trends were calculated using the slope from an ordinary least-

squares (OLS) linear regression (representing the rate of change); anomalies were 

calculated by subtracting the 30-year normal from the 15-year average, representing 

departures from historical norms (1981-2010) over the entire study period. 

Additionally, climate metrics inherently contain a high degree of autocorrelation 

(spatial and temporal) and collinearity. To minimize these associations, we examined the 

correlation structure between climate trends and anomalies within SOS- and EOS-specific 

timeframes (Dec-May and Jun-Nov, respectively) and combined highly-correlated months. 

The grouping of “like-months” was informed by cluster analysis and our understanding of 

important phenological timeframes in the Northeast (e.g., max temperature anomalies 

formed two distinct clusters that retained phenological relevance: Dec-Mar and Apr-May).  

In order to further reduce collinearity and autocorrelation, we used a Pearson’s 

correlation coefficient threshold of < 0.7 (between variables) to identify the final set of 

SOS/EOS-specific climate variables to include in spatial modeling (Dormann et al. 2013; 

see Tables 4.1 and 4.2). 
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4.3.5 Modeling significant predictors of SOS/EOS trends 

 Our approach to identifying significant predictors of phenological trends was 

designed to reduce the effects of spatial autocorrelation and potential multicollinearity on 

statistical inferences. We based our analyses on a random sample of pixels, stratified by 

ecoregion and buffered by at least 4 kilometers (N = 982; see Fig. 4.3). Modeling the 

SOS/EOS trend as the response variable, our predictors included a set of ecologically-

relevant climate and topography variables with reduced correlations (see Tables 4.1 and 

4.2), with latitude added as a proxy for photoperiod. Additionally, the SOS trend was 

included as a predictor variable for the EOS trend, as previous studies have shown SOS 

DOY can influence EOS DOY in the Northeast (Keenan and Richardson 2015, Liu et al. 

2016).   

 Variable reduction prior to spatial modeling was based on Spearman’s rho and 

partial correlations using only significant correlates (p < 0.05) with a SOS/EOS partial 

coefficient > 0.05 or < -0.05. This reduced set of predictor variables were then entered into 

a stepwise multiple linear regression model using the Bayesian Information Criterion (BIC) 

to identify the best predictive model and assess variable significance (p < 0.05 for 

retention), autocorrelation (variance inflation factor < 2 for retention; Graham (2003), and 

relative importance (using scaled and centered parameter estimates).  

 Prior to spatial modeling, significant, independent variables (see Tables 4.1 and 

4.2) were assessed for spatial autocorrelation (Moran’s I test) and heteroscedasticity 

(Breusch-Pagan test), which are rarely evaluated in similar landscape-scale phenology 

studies but can have strong impacts on parameter estimates and hence perceived 
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importance (Anselin et al. 1996). In the presence of significant spatial autocorrelation but 

no heteroscedasticity, we constructed a spatial lag model that accounts for spatial 

dependencies by applying a ‘lag term’ to the dependent variable (DV). The lag term was a 

weighted average of neighboring values that smooths the DV, with the spatial weights 

determined by a minimum Euclidean distance between points (Anselin 2013). If 

heteroscedasticity was significant in the multiple regression model, we used 

geographically-weighted regression (GWR) to examine predictor significance across the 

study area. GWR uses an adaptive moving window based on an optimized number of 

neighbors to fit local regressions and identify areas where parameter estimates significantly 

depart from their global values (Brunsdon et al. 1998). As GWR does not output p-values, 

significance was assessed using t-value thresholds associated with 95% confidence (< -

1.96 and > 1.96). 

 

4.4 Results and Discussion 

4.4.1 Regional trends in SOS/EOS metrics 

 At a regional scale, we detected a slight trend toward earlier SOS (mean = -0.05 ± 

0.006 SE days/year-1) and strong trend toward later EOS (0.86 ± 0.01 days/year-1) (Fig. 

4.2). While these region-wide trends were highly significant, SOS and EOS DOY estimates 

exhibited substantial interannual and within-year variability (Fig. 4.2), resulting in poor 

regression fit (p < 0.0001 and r2 < 0.10). Within-year variability was more pronounced in 

the EOS data, where standard deviations for individual years ranged from ~10-28 days 

(~11 days on average overall), compared to SOS (range of ~7-14 days, ~5 days on average 
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overall). In the heterogenous forests of the Northeast, high within-year variability is not 

surprising given the diverse latitudinal, elevational, and climate conditions, as well as 

differences in senescence timing among common deciduous species (Fisher et al. 2006, 

Richardson et al. 2006, Richardson et al. 2009a). For example, Fisher et al. 2006 found 

cold air drainage patterns in relatively flat uplands strongly influence phenology over 

distances of less than 500 meters in southern New England. In northern New England 

where more dramatic elevational gradients exist, others have shown trees at lower 

elevations leaf out earlier and tend to keep their leaves longer than those at higher 

elevations (e.g., Richardson et al. 2006, Xie et al. 2015b).  
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Figure 4.2. Trends in start and end of season (SOS/EOS) from 2001-2015 across the entire study area (left pane) and each ecoregion (right 

panes). All trends were highly significant (p<0.0001) but with poor model fit (r2 < 0.10). The position of each ecoregion pane generally 

corresponds to its geographic location (e.g., the Eastern Great Lakes Lowlands occupy the northwest portion of the study area). CI = 

confidence interval 
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High between-year variability is also typical considering the large area and 

relatively short timeframe we examined, as well as the strong link between year-to-year 

variability in weather patterns and phenological events. Examination of the temporal 

variability highlighted extreme differences between years that were consistent across the 

region: 1) SOS in 2009 and 2010 was particularly early relative to other years and later in 

2011 and 2012; 2) EOS occurred later in 2001, 2012, and 2015 and earlier in 2011, with 

very high variability in 2011 and 2012; and 3) 2011 was characterized by a late SOS and 

early EOS (shortest growing season length; especially apparent in the Northern Allegheny 

Plateau), while the late SOS in 2012 was followed by a late EOS (Fig. 4.2).  

The 2010 and 2012 SOS phenomena are well-documented in the Northeast (see 

Friedl et al. 2014). While both years had exceptionally warm springs, the early arrival of 

SOS in 2010 was due to high temperatures directly preceding and during budburst (April-

May), whereas those in 2012 peaked earlier (March). Keenan and Richardson (2015) have 

shown that later SOS usually leads to later EOS in the Northeast, which could explain the 

2012 patterns observed here (late SOS/late EOS). The extremely short growing season in 

2011 (late SOS/early EOS) relative to other years coincides with an exceedingly wet late 

summer and early autumn, largely due to Hurricane Irene. Recent studies have shown 

heavy rainfall can lead to earlier senescence in northeastern deciduous forests (Xie et al. 

2015b, Xie et al. 2018). The late EOS dates in 2001 and 2015 were likely temperature-

driven: both years were exceptionally warm (2015 had the highest autumn temperatures on 

record), while 2001 also had low rainfall (yearly climate information obtained from 

NOAA’s State of the Climate reports, accessed at www.ncdc.noaa.gov/sotc/).   
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4.4.2 SOS trends – spatial patterns and significant predictors  

 The relatively low regional trend toward earlier SOS (-0.05 days/year-1) in northern 

hardwood forests was the product of a significant longitudinal pattern: eastern ecoregions 

exhibited earlier SOS while western ecoregions had delayed SOS (Fig. 4.2 and 4.3). In the 

east, the rate of spring advancement was highest in the Northeastern Highlands (-0.12 ± 

0.01 days/year-1), whereas in the west the Northern Allegheny Plateau exhibited the 

strongest delaying trend (0.17 ± 0.01 days/year-1) (Figs. 4.2 and 4.3). These trends 

generally showed good agreement with prior remote sensing and site-based studies in 

northeastern deciduous forests. The earlier SOS rates for the eastern ecoregions (combined 

mean = -0.10 days/year-1), which span most of New England, are slightly lower than that 

found by Yang et al. (2012) (-0.14 days/year-1) based on retrospective analysis of climate 

data over the past 50 years for that region. This rate was also lower than localized estimates 

by Keenan et al. (2014) and Yue et al. (2015) at Harvard Forest (-0.4 – -0.5 days/year-1) 

and the Hubbard Brook Experimental Forest (-0.2 – -0.3 days/year-1). However, the spatial 

distribution of our SOS trend data does show stronger advances in these locations (i.e., the 

south-central Northeastern Highlands; Fig. 4.3). Jeong et al. (2011) and Park et al. (2016) 

noted a slowing of spring advancement in large parts of the Northern Hemisphere since the 

turn of the 21st century, which could help explain the lower magnitude of our trends versus 

those that include data from the 1980s-1990s.  
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Figure 4.3. Spatial distribution of the start of season (SOS) trend (top left) and significant explanatory climate variables. The SOS trend map 

was interpolated using inverse-distance weighting for visualization purposes only due to low sample pixel densities. The interpolation was based 

on the random points shown in the SOS panel (black dots), stratified by ecoregion and buffered by a minimum of 4 kilometers, which were also 

used for identifying the important predictors of SOS trends. 
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Initial correlations (Spearman’s rho) revealed several significant relationships 

between SOS trends in northern hardwood forests and climate, as well as latitude (Table 

4.1). Higher precipitation always exhibited a delaying effect on SOS trends, while warmer 

temperatures were usually associated with earlier SOS (Table 4.1). A counterintuitive 

exception was higher spring-only temperatures (e.g., April-May maximum temperature 

anomaly) showed a delaying effect on SOS trends. Visually inspecting spatial patterns in 

the climate metrics suggests this was because of dissociation with the delayed SOS trends 

in western ecoregions – spring temperatures were warmer than normal across most the 

study area (e.g., Apr-May Tmax anomaly mean = 0.27°C).  

Subsequent partial correlation and regression analyses on significant correlates 

converged on a similar set of climate factors as having the most explanatory power in 

predicting SOS trends (Table 4.1). The final ‘global’ multiple regression model for the full 

region contained four climate variables (ordered by magnitude of importance): Dec-May 

mean temperature trends, Feb-Mar precipitation trends, Dec-Feb minimum temperature 

anomalies, and Dec-May precipitation anomalies (Table 4.1). Because this model’s 

residuals exhibited strong spatial autocorrelation (Moran’s I p-value < 0.0001) but no 

heteroscedasticity, we constructed a spatial lag model. After accounting for spatial 

dependencies, Dec-May precipitation anomalies were no longer significant and Dec-Feb 

min temperature anomalies only marginally so (Table 4.1), indicating these two parameters 

suffered from strong spatial autocorrelation effects (i.e., pseudo-replication) while the Dec-

May mean temperature and Feb-Mar precipitation relationships held true across the study 

area.  
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Table 4.1. Summary of the statistical tests used to identify strong predictors of start of season (SOS) 

trends in northern hardwood forests. Tests are ordered sequentially from left (variable reduction) to 

right (final spatial model). 

 p < 0.001 and p < 0.05 for SPEAR and OLS significance tests 

Precipitation SPEAR  PCOR1 PCOR2 STEP BIC OLS EST SLAG p-v 

Dec-May precipitation anomaly 0.29 0.08 0.09 ✔ 0.19 0.14 

Dec-Jan precipitation trend 0.21 0.01 -- -- -- -- 

Feb-Mar precipitation trend 0.14 0.17 0.16 ✔ 0.30 <0.001 

Apr-May precipitation trend 0.09 0.09 0.07 -- -- -- 

Temperature             

Dec-May mean temperature trend -0.26 -0.12 -0.17 ✔ -0.47 <0.001 

Dec-Mar max temperature anomaly -0.07 -0.04 -- -- -- -- 

Apr-May max temperature anomaly 0.17 0.07 0.07 -- -- -- 

Dec-Feb min temperature anomaly -0.20 -0.07 -0.11 ✔ -0.18 0.05 

Mar-May min temperature anomaly 0.04 -- -- -- -- -- 

Site characteristics             

Latitude -0.19 -0.04 -- -- -- -- 

Elevation 0.04 -- -- -- -- -- 

Site exposure index -0.04 -- -- -- -- -- 

Heat load index -0.02 -- -- -- -- -- 

Compound topographic index 0.05 -- -- -- -- -- 

SPEAR = Spearman’s rho; PCOR = partial correlations; STEP BIC = best stepwise regression model 

validated by lowest Bayesian Information Criterion value; OLS EST = multiple regression parameter 

estimates (scaled and centered for comparison); SLAG p-v = parameter p-value after removing spatial 

autocorrelation using a spatial lag model. The checkmarks for STEP BIC denote the terms in the best-fit 

model.  

 

In the global model, warming throughout the winter-spring months (Dec-May) and 

higher max temperatures in winter (Dec-Feb) were associated with earlier SOS. 

Conversely, increasing precipitation in late winter-early spring, likely representing late 

snowfall, and wetter than normal conditions from Dec-May delayed SOS. Though we 

detected a significant negative association with latitude (coeff. = -0.06° ± 0.01°, p < 

0.0001), further examination of the spatial data (Fig. 4.3) showed this was mainly a product 

of the stark longitudinal pattern: on average, the western ecoregions (delayed SOS) were 
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lower than the eastern (earlier SOS), and similar latitudes in in the east versus west 

exhibited this divergent pattern. Latitude was also dropped in the first iteration of partial 

correlations, highlighting that climate trends had a stronger influence on SOS than 

photoperiod across the study area. Notably, we did not detect a regional relationship 

between SOS and elevation.  

The significant relationships between the important climate metrics and SOS trends 

were spatially-consistent (Fig. 4.3). Both temperature variables captured the longitudinal 

split in the SOS data. Based on the climate data from 2001-2015, Dec-May mean 

temperatures trended higher in the east and lower in the west and Dec-Feb min 

temperatures were hotter/colder than normal in the same pattern. The relationship between 

Feb-Mar precipitation and SOS trends was less clear, though areas trending towards less 

winter precipitation generally exhibited earlier SOS, particularly in the Northeastern 

Highlands and eastern edge of the Northern Allegheny Plateau (Fig. 4.3).  

Precipitation is not commonly believed to play a significant role in SOS in 

deciduous forests of the Northeast (Polgar and Primack 2011, Klosterman et al. 2014). 

However, Fu et al. (2014a) recently found significant positive correlations between winter 

precipitation and the amount of growing-degree days (GDD) required for green-up across 

temperate and boreal forests (mid-high latitudes). They postulated two mechanistic links 

related to soil temperature and solar radiation requirements for vegetative growth: 1) that 

heavier snowpacks and greater snow melt may require more GDD to warm the soil 

sufficiently and 2) higher winter precipitation may simply reflect more cloudy days and 

thus require more GDD to pass a certain absorbed radiation threshold (which had less 
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empirical support). The data of Groffman et al. (2012) supported the first of these proposed 

mechanisms – they noted that leaf expansion was associated with the rapid increase of soil 

temperatures from solar warming immediately following the loss of snowpack. Although 

these are plausible explanations for the precipitation-SOS trend relationship in our study 

area (more winter precipitation/snow. = delayed SOS and vice-versa), more field studies 

and controlled experiments are needed to better define causal relationships between 

precipitation inputs and SOS. 

The role of winter temperatures in mediating SOS responses in northeastern 

deciduous forests is still debated in the literature (see discussions in Migliavacca et al. 

2012, Melaas et al. 2016b). A large source of uncertainty is the physiological 

underpinnings of chilling requirements (i.e., prolonged exposure to cold temperatures that 

prevents premature budburst during abnormally warm winter days) remain poorly 

understood both within and across species. Yet most process-based models of spring 

phenology fall into two categories: spring warming (where budburst is a function of GDD 

accumulation only) and chilling (where chilling requirements must be met before GDD can 

begin to accumulate) (Migliavacca et al. 2012). Both Migliavacca et al. (2012) and Melaas 

et al. (2016a) found strong support for the use of simple spring warming models (where 

SOS is a function of spring temperatures only) across most forest types of the Northeast, 

though with significant differences among species. Our results show winter temperatures 

play a prominent role in explaining regional variations in SOS trends exhibited by northern 

hardwood forests. As the previous studies are based on predicting SOS DOY, it is possible 

that winter temperatures are primarily significant in examining long-term trends rather than 
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annual DOY. Regional climate models suggest winter is warming more rapidly than other 

seasons in the Northeast (Hayhoe et al. 2007, Burakowski et al. 2008), which could explain 

the link we observed here. Nonetheless, these results indicate the need to examine the role 

of both winter and spring temperatures to better understand how climate change may 

impact regional phenology.  

 

4.4.3 EOS trends – spatial patterns and significant predictors  

 In contrast to SOS, the overall trend toward delayed EOS (0.86 days/year-1) was 

nearly universal across the study area. The only statistically significant difference between 

ecoregions was a slightly lower trend in the Northeastern Highlands (0.71 ± 0.01 days/year-

1) compared to the other three ecoregions, had a mean EOS trend of just over 1 day/year-1 

(Fig. 4.2). Spatial patterns showed this was largely due to trends toward earlier EOS in 

parts of the southern Green and eastern Adirondack mountain ranges (Fig. 4.4; see below 

for further discussion). The regional trend of 0.86 days/year-1 is almost identical to that 

estimated by Dragoni and Rahman (2012) across temperate forests of the eastern US and 

Keenan et al. (2014) at Harvard Forest (both ~0.8 days/year-1), with the former based on 

AVHRR data from 1989-2008 and the latter on ground observations from 1991-2013.  
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Figure 4.4. Spatial distribution of the end of season (EOS) trend (top left) and significant explanatory variables. The points on the explanatory 

variable maps represent those identified by geographically-weighted regression as significant (95% confidence level). Note the Jun-Nov mean 

temperature anomaly map is included for comparison to the EOS trend, though it was not statistically significant. The EOS trend map was 

interpolated using inverse-distance weighting for visualization purposes only due to low sample pixel densities. The interpolation was based on 

the random points shown in the EOS panel (black dots), stratified by ecoregion and buffered by a minimum of 4 kilometers, which were also 

used for identifying the important predictors of EOS trends. 
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 Determining significant predictors of EOS trends was substantially more 

straightforward than SOS – only four variables were significant in our initial correlations 

(Table 4.2). Higher elevations, latitudes, and Sep-Nov precipitation anomalies were 

associated with earlier EOS trends (and sometimes earlier EOS in the case of elevation; 

Fig. 4.4), while the correlation with CTI suggested that higher moisture availability delayed 

EOS trends further (Table 4.2). As with SOS, latitude was a significant negative correlate 

with EOS trends, but the first partial correlation test indicated elevation exhibited a stronger 

control on EOS – though both are likely related higher elevations and latitudes in the study 

area having shorter growing seasons than their counterparts elsewhere. The final stepwise 

BIC and multiple regression model contained only elevation (strongest predictor) and Sep-

Nov precipitation anomalies. However, this model exhibited significant heteroscedasticity 

(Breusch-Pagan test p-value < 0.0001), so GWR was used to examine how the significance 

of each parameter varied across the study area.  
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Table 4.2. Summary of the statistical tests used to identify strong predictors of end of season (EOS) 

trends in northern hardwood forests. Tests are ordered sequentially from left (variable reduction) to 

right (final ‘global’ model). Note geographically-weighted regression was used as the final spatial 

model, which does not provide global significance testing of individual predictors. 

 p < 0.001 and p < 0.05 for SPEAR and OLS significance tests 

Precipitation SPEAR  PCOR1 PCOR2 STEP BIC OLS EST 

Jun-Aug precipitation anomaly 0.05 -- -- -- -- 

Sep-Nov precipitation anomaly -0.10 -0.06 -0.08 ✔ -0.21 

Jun-Aug precipitation trend 0.02 -- -- -- -- 

Sep-Nov precipitation trend 0.05 -- -- -- -- 

Temperature           

Jun-Sep mean temperature trend 0.03 -- -- -- -- 

Oct-Nov mean temperature trend 0.04 -- -- -- -- 

Jun-Nov max temperature anomaly 0.05 -- -- -- -- 

Jun-Nov min temperature anomaly 0.04 -- -- -- -- 

Site characteristics           

Latitude -0.07 -0.02 -- -- -- 

Start of season trend 0.01 -- -- -- -- 

Elevation -0.09 -0.10 -0.10 ✔ -0.25 

Site exposure index 0.04 -- -- -- -- 

Heat load index -0.02 -- -- -- -- 

Compound topographic index 0.09 0.09 0.05 -- -- 

SPEAR = Spearman’s rho; PCOR = partial correlations; STEP BIC = best stepwise regression model 

validated by lowest Bayesian Information Criterion value; OLS EST = multiple regression parameter 

estimates (scaled and centered for comparison). The checkmarks for STEP BIC denote the terms in 

the best-fit model.   

 

 The GWR results revealed a complex spatial relationship between EOS trends, 

elevation, and Sep-Nov precipitation. Significant negative coefficients (earlier or less 

delayed EOS) for elevation were found in parts of almost every mountain range in the study 

area, as well as the northernmost corner of the Acadian Plains and Hills and Northeastern 

Highlands; significant negative coefficients for Sep-Nov precipitation anomalies were 

exclusively in the northern Adirondacks and Green Mountains, where they largely 

overlapped with significant elevation points (Fig. 4.4). These relationships are likely a 

reflection of strong elevational climate gradients – particularly differences in the timing of 

low temperatures that generally occur earlier at higher elevations. Although many 
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environmental stresses can initiate leaf senescence, low temperatures that instigate changes 

in leaf pigment concentrations (Schaberg et al. 2017) and leaf abscission (Michaeli et al. 

1999) are the most common triggers of autumnal leaf senescence and loss in northern 

regions (Heide and Prestrud 2005, Schaberg et al. 2017). Other studies (e.g., Xie et al. 

2015b, Xie et al. 2018) found similar relationships between EOS DOY, elevation, and 

heavy autumn precipitation to those documented here. Although the physiological basis for 

an earlier EOS-heavy precipitation relationship remains poorly understood, it could 

involve improved conditions for foliar fungal diseases that shorten leaf lifespans, reduced 

light exposures that constrain photosynthetic gains and speed leaf senescence, or the 

physical damage and loss of leaves from intense precipitation and associated wind events.  

 We suspect that the lack of a significant statistical relationship between EOS trends 

and temperature was due to the limited variation in summer-fall temperatures (Fig. 4.4). 

Coincident with the near-universal regional trend towards later EOS, Jun-Nov mean 

temperatures were warmer than normal in over 99% of the study area. Further, other recent 

studies have related delayed EOS in the Northeast to warmer summer and autumn 

temperatures (e.g., Dragoni and Rahman 2012, Xie et al. 2015b, Xie et al. 2018). 

Additionally, the delaying effect of CTI on EOS suggests that sites with better growing 

conditions (i.e. higher soil moisture availability and warmer temperatures) retain leaves 

longer.  

It is interesting to note that we did not detect a significant relationship between SOS 

and EOS trends, contrary to previous studies based on DOY in the Northeast (Keenan and 

Richardson 2015) and controlled experiments (Fu et al. 2014b). Our results indicate that 
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while EOS may be influenced by SOS within a given year, how these phenological events 

are changing over time may not be as closely linked. While EOS is consistently trending 

later, SOS is more variable across the landscape.   

  

4.4.4 Implications of phenological change in the Northeast 

While interannual variability in SOS/EOS remains high, the trends (earlier/later) 

documented here support previous studies that show growing season length is increasing 

in the Northeast primarily as a result of delayed senescence (Piao et al. 2007, Jeong et al. 

2011, Dragoni and Rahman 2012). The apparent greater sensitivity of EOS to 

environmental stimuli is consistent with later EOS having few physiological risks but real 

potential gains as protracted leaf longevity may lead to greater seasonal carbon capture. In 

contrast, physiological constraints on a very early SOS likely reflect strong selection 

pressures against precocious leaf expansion at a time when frost is likely, and the risks of 

freezing injury and associated carbon loss are high. 

Even the western ecoregions that exhibited delayed SOS had associated delays in 

EOS at rates that were much higher. At the rate estimated in this study (0.86 days/year-1), 

EOS will occur later by ~8-10 days per decade or almost a month over the next 30 years. 

Such strong shifts in the seasonality of northeastern forests will likely have significant 

impacts on their function and structure, as phenology helps to regulate the abiotic 

properties and biogeochemical processes of these ecosystems and, in turn, their biotic 

communities (Polgar and Primack 2011, Richardson et al. 2013). The vast ecological 

implications of phenological change have been the subject of several reviews (e.g., Cleland 
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et al. 2007, Polgar and Primack 2011, Richardson et al. 2013), from which we highlight a 

few major points specific to forest structure and function in the Northeast: 

1) Seasonal canopy dynamics directly influence forest composition by regulating 

the core habitat requirements of tree species for reproductive success and 

survival (e.g., microclimates and light/water/nutrient dynamics) and altering 

competitive interactions. Indeed, phenology has been shown to be a powerful 

predictor of species’ ranges and distributions (Chuine and Beaubien 2001), and 

current predictions suggest the coupled effects of climatic and phenological 

change (e.g., warmer temperatures and longer growing seasons) may favor the 

expansion of hardwood-dominated forest over spruce-fir ecosystems in the 

future (Iverson et al. 2008, Huntington et al. 2009). 

2) Longer growing seasons may result in increased forest ecosystem productivity 

and carbon storage, thereby serving to mitigate global climate change. Results 

from recent studies suggest this is already occurring in the Northeast (e.g., 

Richardson et al. 2010, Keenan et al. 2014), though others have noted high 

variability in the growing season length-productivity relationship (Wu et al. 

2016) and lower net ecosystem productivity gains across the broader Northern 

Hemisphere due to concomitant losses in soil carbon (Piao et al. 2007). 

Furthermore, reductions in wood density may at least partially offset carbon 

accumulations associated with increased growth (Pretzsch et al. 2018). 

3) The potential detrimental effects of phenological change largely relate to 

increased mismatches in phenological timing among species that react 
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differently to changing climate cues. Examples of this include trees responding 

to warmer spring temperatures with earlier budburst that are then more 

susceptible to late spring frost damage (e.g. Gu et al. 2008, Hufkens et al. 

2012a) and pollinators becoming asynchronous with flowering dates (Miller-

Rushing and Primack 2008).  

 

4.5 Conclusions 

 Based on eMODIS data from 2001-2015, these results show that the magnitude and 

direction of phenological trends vary considerably, particularly for SOS, across northern 

hardwood forests of the Northeast. Phenological responses to climate drivers within this 

forest type can also differ depending on geographic location, likely reflecting physiological 

adaptations to specific environmental conditions across a given species’ range (Polgar and 

Primack 2011). As others (e.g., Vitasse et al. 2009, Melaas et al. 2016a) have noted, this 

highlights the importance of considering localized site characteristics, including species 

composition, climate, and soils, when examining the potential long-term impacts of climate 

change on forest phenology. Additional important results documented in this study include: 

1) The modest regional trend towards earlier SOS can be explained by substantial 

intraregional variability, with a distinct opposing pattern between eastern (earlier) 

and western (later) ecoregions. 

2) While warming temperatures are the main driver of delayed SOS trends, our results 

suggest temperature and precipitation changes in winter outweighed influences in 

spring for explaining long-term trends.  
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3) EOS is trending significantly later across nearly the entire region, but higher 

elevations, latitudes, and autumn precipitation totals can mitigate this response.  

4) Explicitly modeling phenological trends (rather than DOY) and relating these to 

climate trends and anomalies for the same time period can identify and validate 

important parameters in phenology models. 

5) Spatial regression techniques provide a powerful tool for addressing 

autocorrelation and heteroscedasticity issues in phenology data, thereby improving 

model parameterization and the understanding of spatiotemporal patterns.  

These results expand our existing knowledge on the current and potential future 

impacts of climate change on deciduous forests. Given the heterogeneity in phenological 

trends and responses to environmental conditions we documented, future remote sensing-

based phenology research would benefit greatly if higher resolution climate and soils data, 

as well as more detailed and accurate forest cover maps, were made available.  
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CONCLUDING REMARKS AND RESEARCH SUMMARY 

 

 This dissertation provides valuable remote sensing-based products and research 

related to changes in forest composition, structure, and function in the Northeast. This 

information can be used by forest researchers, managers, and policymakers to inform 

management and conservation strategies. Additionally, the methods employed here for 

mapping forests and forest responses to potential drivers of change offer a blueprint for 

similar remote sensing studies in other regions of the world. Together, this work is a 

powerful example of the important role satellite remote sensing plays in broadening our 

understanding of forest change and enabling predictions into the future.   

 The more detailed, accurate forest cover maps produced in Chapter 2 have a wide 

range of applications as inputs to improve regional land use/land use change models, 

dynamic vegetation models, and other large-scale modeling efforts (e.g., wildlife 

occupancy). For example, these maps have already been utilized to improve our 

understanding of carbon storage in northeastern forests (Adams et al. 2018). Chapter 3 

demonstrated their usefulness in modeling spatiotemporal changes in tree species 

abundance, providing important insights into ongoing demographic shifts in northeastern 

forests and their potential climate/site-related drivers. Chapter 4 added further evidence 

that climate change is shifting forest phenology across the Northeast, identified significant 

climate parameters, and elucidated their complex spatial relationships with phenological 

responses at the start and end of the growing season. Some important limitations on this 

work include the error inherent in mixed pixels of moderate-coarse resolution (30m and 

250m), general lack of downscaled climate data available at the regional level (800m and 
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4km), and relatively short timeframes examined in the context of forest change (15-30 

years). 

 The outcomes of each specific research objective are summarized below:  

Obj. 2.1: Integrate multi-temporal Landsat imagery and field inventory data using spectral 

unmixing to develop pixel-level percent basal area (% BA) coverages for 10 common tree 

species/genera in the Northeast.  

Outcome: Our spectral unmixing technique showed multi-temporal Landsat imagery can 

be successfully used to derive species/genus-level abundance at a subpixel level, with 

model accuracies typically being higher for more dominant species (directly related to 

canopy composition patterns and the availability of calibration/validation ground data). 

Another informative outcome of this process was that fall imagery is particularly powerful 

for discriminating between species and forest types.  

Obj. 2.2: Incorporate the percent basal area maps and ancillary data into an object-based, 

hierarchical ruleset to generate a forest classification (10 species/genera and 6 common 

species assemblages). 

Outcome: We developed a detailed forest map across the diverse forests and topography 

of northern New York and Vermont using both pixel- and object-based classification 

schemes, with the former being more accurate at a species/genus-level and the latter more 

appropriate for broader forest types.  

Obj. 2.3: Compare the forest classification’s detail and accuracy with existing large-scale 

forest mapping products, including LANDFIRE, the National Land Cover Database 

(NLCD), and the National Forest Type Map.  



  

148 

 

Outcome: Our forest classification was more accurate across all levels (i.e., species, forest 

type, and coarse) compared to existing large-scale mapping products, including NLCD, 

LANDFIRE, and the National Forest Type Map.  

3.1: Using the technique and products developed in Chapter 2, construct a 30-year (1985-

2015) time-series of abundance (% BA) for eight dominant tree species/genera across 

northern New York and Vermont. 

Outcome: Abundance time-series were successfully developed in four timesteps (1985, 

1995, 2005, and 2015) for sugar maple, red maple, American beech, eastern hemlock, 

balsam fir, and red spruce, in addition to oaks and birches at the genus level. Modeling 

accuracies were relatively consistent across years, again varying by species/genus (cf. Obj. 

2.1 outcome). Time-series for eastern white pine and aspens could not be reliably 

constructed due to low modeling accuracies in specific timesteps.  

3.2: Examine 30-year changes in mean abundance across the study area and by elevation.  

Outcome: While overall mean abundance remained relatively constant, abundance trends 

indicated significant regional declines in sugar maple, eastern hemlock, and birches and 

increases in American beech and red maple. Notable elevational abundance trends 

included: sugar maple losses throughout low-mid elevations with increases in American 

beech in these same zones; red spruce increases at mid-high elevations, with balsam fir 

decreases at high elevation; and substantial losses in birch species from mid-high 

elevations. 

3.3: Detect and quantify spatiotemporal patterns in pixel-level abundance trends.  
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Outcome: Compatriot species often exhibited opposing abundance trends in the same 

areas: beech increases-sugar maple losses were found in throughout New York and red 

spruce increases-balsam fir losses were concentrated in mid-high elevation ecoregions of 

the Adirondacks. Across species, most losses were concentrated in New York and gains in 

Vermont; birches and eastern hemlock were exceptions to this.  

3.4: Identify possible abiotic correlates (i.e., climate indices, topographical factors, acid 

deposition inputs, and soil characteristics) associated with abundance trends. 

Outcome: Climate-related indices, particularly those associated with low winter 

temperatures and high heat loading, were the dominant predictors of abundance change. 

However, responses to climate were largely species-specific and exhibited high 

intraspecific variation.  

4.1: Using MODIS-derived annual phenology metrics from 2001-2015, quantify trends in 

the start and end of the growing season (SOS/EOS) across the Northeast.  

Outcome: At the regional scale, SOS trended slightly earlier and EOS significantly later. 

Interannual and within-year variability was high, likely driven by differing responses 

among species and years with unique climate phenomena (e.g., Hurricane Irene). 

4.2: Examine intraregional variation and spatiotemporal patterns in SOS/EOS trends.  

Outcome: The modest regional trend towards earlier SOS was driven by a clear 

longitudinal pattern, with western ecoregions experiencing delayed SOS and eastern 

ecoregions earlier SOS. EOS trended later throughout the majority of the region, though 

slightly less so in the Northeastern Highlands due to some areas of high elevation 

exhibiting weaker delays or even trends toward earlier EOS.  
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4.3: Investigate relationships between SOS/EOS trends and numerous climatic and 

topographic variables. 

Outcome: SOS trends were driven by warmer mean winter-spring temperature trends and 

winter temperature anomalies, as well as trends in Feb-Mar precipitation. Temperature 

changes were associated with earlier SOS while precipitation had a delaying effect. 

Elevation and autumn precipitation anomalies were associated with weaker delays and 

sometimes trends toward earlier EOS. However, these relationships were non-stationary 

across the region, with their effects being most apparent in parts of the eastern Adirondack 

and southern Green mountain ranges.  
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