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ABSTRACT 

 

Acid deposition forms when emission-derived sulfur dioxide and nitrogen oxides interact 

with precipitation and was particularly severe in the northeastern US. Effects of acid 

deposition include declining soil quality due to low pH and base cation leaching, which 

subsequently altered the composition of soil solution, ground water (GW) and eventually 

stream water. Because of the high buffering capacity of carbonates, watersheds underlain 

by carbonate rich rocks have received limited attention in acid deposition studies, however, 

carbonate weathering by strong anthropogenic acids can increase atmospheric CO2 levels.  

Emission reductions due to the Clean Air Act and Amendments has led to a substantial 

reduction of acid deposition and many ecosystems are now recovering and stream water 

contains contain lower concentrations of acid anions and base cations. However, the effects 

of recovery on watershed soil, soil solution, and GW composition, which potentially varies 

with landscape position, are not well constrained. The objective of this study was therefore 

to investigate links between soils and water composition in a watershed with important 

carbonate contents in the underlying rock, the Sleepers River Research Watershed 

(SRRW). Using long-term datasets that span the recovery period, temporal trends (1991-

2015) for acid anions (sulfate and nitrate), pH, base cations (Ca, Na) and Si were 

investigated for stream water. Trends with time, depth, and landscape position (hilltop, 

hillslope, and riparian zone) were assessed for the same solutes in GW and soil solution 

(2004-2013). Furthermore, soil elemental composition and mineralogy in archived (1996) 

and modern (2017) soil samples were analyzed to investigate changes in soil composition 

due to base cation leaching and carbonate weathering with time and landscape position. 

Results indicate that SRRW is indeed recovering from acidification as evidenced by 

declining sulfate content and rising pH in stream water, GW, and soil solution. 

Additionally, Ca typically derived from carbonate weathering decreased progressively with 

time in GW and decreased in soil solution at various landscape positions due to reduced 

leaching. However, Ca in stream water shows slight increases, likely due to Ca released 

from riparian soil stores. Spatial heterogeneity is especially pronounced in headwater 

catchments with steep topography as evidenced by changes in solution and soil 

composition along hillslopes.  

 In addition to the paper submitted for publication (Chapter 2) to Frontiers in Earth 

Science – Biogeochemistry this thesis includes i) a background and literature review to 

inform the reader on pertinent topics, ii) an appendix containing additional soil data with 

figures, iii) and an appendix with additional aqueous phase data with figures.  
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CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW 

1.1 What is Weathering? 

 

Weathering, i.e. the breakdown of bedrock and regolith through physical and chemical 

processes, is a key process shaping the terrestrial critical zone (CZ). This zone spans from 

the top of the tree canopy to the actively cycled groundwater and is often termed the zone 

of life, because life-sustaining ecosystem services are provided. For example, through the 

weathering process lithogenic nutrients are provided, soils developed, and CO2 can be 

sequestered (Brantley et al., 2007; Perdrial et al., 2015; Spence and Telmer, 2002).  

Physical weathering, such as frost wedging, fractures and abrades rocks into smaller 

fragments increasing the surface area to volume ratio. Chemical weathering occurs through 

multiple types of reactions such as oxidation/reduction (typical for sulfides and oxides), 

dissolution (typical for carbonates), and hydrolysis (typical for silicates). Weathering 

reactions can be congruent, such as the complete dissolution of calcite, or incongruent like 

the weathering of a feldspar to a clay and a dissolved component (Strawn et al., 2015). In 

congruent weathering reactions weathering-derived solutes are present in solution with the 

same stoichiometry as the mineral and reactant (e.g. CaCO3 + H2CO3  →  Ca2+  +  2HCO3
- 

;Strawn et al., 2015). However, incongruent weathering changes the stoichiometry of 

reactant vs. dissolved products because a solid phase is formed as well (e.g. 2KAlSi3O8  +  

9H2O  +  2H+  →  Al2Si2O5(OH)4  +  4H4SiO4  +  2K+; White et al., 2001). Chemical 

weathering through proton attack is strongly driven by the presence of organic and 

inorganic acids in aqueous solution (Berner and Berner, 2012). One important inorganic 
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acid supplying protons is carbonic acid, that forms when CO2 dissolves in water according 

to CO2 + H2O → H2CO3 (Strawn et al., 2015). Because most of the CO2 for carbonic acid 

formation ultimately comes from the atmosphere, carbonic acid weathering of silicate 

minerals is a primary mechanism by which global atmospheric CO2 is regulated on 

geologic time scales (Spence and Telmer, 2002). For example, in the weathering of 

orthoclase to kaolinite (i.e. 2KAlSi3O8  +  11H2O  +  2CO2  →  Al2Si2O5(OH)4  +  4H4SiO4  

+  2K+ + 2HCO3), 2 moles of CO2 are transferred into bicarbonate, an aqueous carbon 

species that can be sequestered in marine carbonates and only releases 1 mole of CO2 

during this process (i.e. Ca2+ + 2HCO3
- →  CaCO3 + CO2 + H2O). The net effect is therefore 

a sequestration of CO2 on geologic timescales. However, when carbonates (not silicates) 

are weathered, especially when weathering is not driven by carbonic acid but by 

anthropogenic acids, CO2 is produced and not consumed (e.g. 2CaCO3 + H2SO4 → 2Ca2+ 

+ 2HCO3
- + SO4

2- → CaCO3 + CO2 + SO4
2- + Ca2+; Amiotte-Suchet et al., 1999; Huang et 

al., 2013; Liu et al., 2008).  

1.2 Weathering and Soil Formation 

 

 The soil forming process is dependent on the five soil forming factors: time, climate, 

biology, relief, and parent material (Fanning and Fanning, 1989; Jenny, 1941). The 

weathering of bedrock and other soil parent materials (till, colluvium, alluvium, loess, etc.) 

is therefore an important factor controlling soil development (Fanning and Fanning, 1989). 

Bedrock is broken down into saprolite at the first phase of soil formation and retains much 

of the original rock structure but is mildly depleted of minerals that are unstable at earth’s 

surface and secondary oxides can accumulate in fractures (Pavich et al., 1989). A 
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previously physically weathered medium (i.e. till) deposited over bedrock has different 

grain size and hydraulic conductivity than underlying bedrock and can therefore affect the 

pedogenic process. 

Depending on each of the soil forming factors saprolite or a physically weathered 

media can weather further into a variety of developed soils through the weathering out of 

progressively more stable minerals towards the surface, the formation and translocation of 

pedogenic minerals, and the addition of organics (Pavich et al., 1989). Relief, one of the 

soil forming factors, plays an important role in weathering because dissolved weathering 

products are often transferred to low lying landscape positions, especially in regions with 

steep relief. In locations where weathering-derived solutes accumulate, e.g. in swales, 

secondary minerals can form. In contrast, secondary minerals from incongruent weathering 

can be left behind at hilltops and slopes, increasing the compositional heterogeneity of the 

near surface environment. The long-term effect of this process can be observed in soil 

catenas where landscape position is the primary control on soil composition (Fig. 1-1; 

Bonifacio et al., 1997; Olson et al., 2003; Schimel D. et al., 1985; Wiekenkamp et al., 

2016). For example, work by Bonifacio et al. (1997) exemplifies the effect of landscape 

position and differences in soil drainage on a slope about 100m in length where 4 USDA 

soil orders were represented. 

 Relief also plays a large role in determining hydrologic flowpaths, fluid residence 

time, and soil drainage class which relates landscape position to weathering (Maher, 2011). 

Longer fluid residence times in the substrate allows the solution to approach equilibrium 

with the weathering front leading to higher concentrations of weathering-derived solutes 
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in solutions with longer fluid residence times (Maher, 2011). Solution in well drained 

hilltop soils is usually undersaturated with respect to the mineral assemblage, allowing 

weathering to progress, while soils downslope are closer to equilibrium and show fewer 

signs of weathering (Kim, 1999). For example, Lidman et al. (2017) showed that natural 

waters are progressively enriched in some weathering-derived solutes along flowpaths (Ca, 

K, Mg) but other solutes (Sr, Na, Rb, Cs, Si) have relatively uniform concentrations along 

flowpaths suggesting they are in equilibrium with the weathering front (Fig. 1-2). 

1.2.1 Measuring Weathering 

 

Because weathering leads to i) the breakdown of primary minerals and the formation of 

secondary minerals and ii) liberates dissolved species that can either accumulate in place 

or elsewhere and iii) leads to the transfer of solutes out of the CZ via streams, weathering 

is typically assessed by i) investigating the primary and secondary mineralogy of soils ii) 

comparing soils normalized to the composition of parent material and iii) monitoring the 

solute export of streams (Brantley et al., 2007; Johnson et al., 1981).  

For example, the type of pedogenic (secondary) minerals such as illite vs. the 

primary muscovite content can be used to qualitatively assess the degree to which a soil 

horizon is weathered. (Hawkins and Graham, 2017; Strawn et al., 2015). Mineralogical 

investigations also track mineral transformations by horizon or landscape position, as 

demonstrated by Hawkins and Graham (2017) where kaolin group minerals dominated the 

clay fraction of the well-drained upper slopes soils while smectites dominated the lower 

slope soils and precipitated due to excess weathering-derived solutes sourced from upslope.  
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Comparing soils normalized to the composition of parent material and an immobile 

element with depth allows for the conceptualization of vertical chemical gradients 

(Brantley et al., 2007). The shape of the pattern produced by the values on these normalized 

chemical gradients, termed “tau values” (see eq. 1), can be used to understand the long-

term evolution of a soil profile (Fig. 1-3; Brantley et al., 2007). A negative tau value of a 

given element indicates that it was removed from a soil and a positive tau value indicates 

an accumulation (Fig. 1-3; Brantley et al., 2007). Plotting tau values versus depth allows 

for an assessment of the cycling of an element and a quantification of the degree of 

weathering of that element relative to parent material while accounting for volume changes 

and apparent dilution/enrichment (Brantley et al., 2007; Brimhall and Dietrich, 1987). 

Investigations of many soils led to the definition of 5 end-member types of soil profiles 

including immobile (i.e. no change), depletion (i.e. all horizons depleted), depletion-

enrichment (i.e. upper horizons depleted, lower horizons enriched), addition (i.e. shallow 

horizons enriched), and biogenic (i.e. enriched at the surface, depleted at depth; Brantley 

et al., 2007). However, most soils show some combination of these end-member patterns.  

Monitoring solute export from streams is a classic comprehensive approach to 

quantify weathering while accounting for the interconnectedness of the CZ and has been 

used extensively (Berner and Berner, 2012; Johnson et al., 1981; Taylor and Velbel, 1991; 

Vebel, 1985). This approach requires computing chemical flux out of the watershed, inputs 

from precipitation, as well as estimating biological uptake and release (Berner and Berner, 

2012) and is a common approach to quantify weathering and base cation leaching in acid 

deposition studies (Garmo et al., 2014; Johnson et al., 1981; Newell and Skjelkvåle, 1997; 
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Skjelkvåle et al., 2001; Skjelkvåle, 2003; Skjelkvåle et al., 2005). Once additional factors 

(e.g. biological uptake/release, wet/dry inputs) are accounted for an increase in solute 

export is considered to indicate increased weathering and a decrease in this export indicates 

decreased weathering (Johnson et al., 1981; Peters and Aulenback, 2009; Vebel, 1985).   

1.3 Acid Deposition 

 

Because of the importance of proton proliferation for most chemical weathering processes 

and soil leaching, the deposition of strong anthropogenic acids on many ecosystems in the 

northeastern US, central Europe and more recently China, is relevant (Rice and Herman, 

2012). This acid deposition, or “acid rain”, was first recognized in the United States at the 

Hubbard Brook Experimental Forest by Gene Likens (Likens et al., 1972) and causes as 

well as effects have been studied extensively since (Driscoll et al., 2001).  

Technology invented during the Industrial Revolution caused a rapid increase in 

fossil fuel emissions which generated SO2, NOx, and CO2 in excess of background 

conditions leading to acidic precipitation throughout many industrialized regions (Newell 

& Skjelkvåle, 1997). The interaction between atmospheric N and S oxides with 

precipitation leads to the formation of strong acids such as H2SO4 and HNO3 which are 

subsequently deposited on earth’s surface (Fig. 1-4; Berner and Berner, 2012). Strong acid 

deposition supplies additional protons to the CZ increasing weathering rates, leaching rates, 

and mobilizing Al (Driscoll et al., 2001; Johnson et al., 1981; Matzner and Murach, 1995; 

Raddum et al., 2007). Acid deposition can increase weathering rates and free lithogenic 

nutrients, however, this process also accelerates soil leaching so that soils become depleted 

albeit increased weathering (Peters and Aulenback, 2009). The ensuing ecological effects 
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of acid deposition are systemic and include reduced tree growth, increased tree mortality, 

a reduced species diversity and a reduced abundance of aquatic wildlife (Driscoll et al., 

2001; Matzner and Murach, 1995; Raddum et al., 2007).  

1.3.1 Recovery from Acidification 

 

Acid deposition peaked in the US in 1969 prompting emission abatement strategies, such 

as the Clean Air Act of 1970 and the Clean air amendments of 1990, which have rapidly 

reduced the amount of SO2 released into the atmosphere (Fig. 1-5; Rice and Herman, 2012; 

Smith et al., 2010). In turn, reduced emissions have led to a reversal of many of the changes 

caused by acidification such as an increase in the pH of precipitation and a decrease in the 

quantity of acid anions deposited, i.e. chemical recovery (Fig. 1-6; Driscoll et al., 2001; 

Garmo et al., 2014; Kopáček et al., 2016). 

  Although early work showed only limited signs of recovery due to watershed 

storage of acids (Likens et al., 1996) recent meta-data studies have documented important 

wide-spread decreases in sulfate, aluminum, and base cations concentrations in waters of 

recovering regions (Fig. 1-7; Garmo et al., 2014; Rogora et al., 2013). Despite wide-spread 

signs of chemical recovery, biological recovery is slow and is currently limited to less acid 

sensitive systems (de Wit et al., 2007). Data from the Hubbard Brook Experimental Forest 

suggests that further emissions reductions will be necessary to allow for full recovery of 

sensitive ecosystems (Driscoll et al., 2001).  

1.4 The Sleepers River Research Watershed (SRRW) 
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Sensitivity to acidification is a function of the buffering capacity of bedrock and soils. For 

example, watersheds that are underlain by bedrock containing carbonates can buffer soil 

pH much more effectively, potentially offsetting some of the detrimental effects of acid 

inputs. The SRRW watershed in northeastern Vermont (Fig. 1-8) is one example of a well-

buffered system because it is underlain by the laterally extensive Waits River Formation 

which contains variable amounts of carbonates (Ferry, 1991; Ratcliffe et al., 2011). At 

SRRW bedrock is covered by 1-4 m of dense, silty till from the last glaciation 

(Wisconsinan; Shanley, 2000), which is primarily composed of the Waits River Formation, 

but contains lesser amounts of the Gile Mountain Formation, the Missisquoi Formation, 

and undifferentiable Devonian granites (Hornbeck et al., 1997). Importantly, the till 

contains a mix of silicates and carbonates, which exert and important control on the 

chemistry of the watershed (Hornbeck et al., 1997; Shanley, 2000).  

Elevation and landscape position are the primary controls on soil composition in the 

SRRW watershed: Spodosols are developed primarily in the well-drained upland and are 

the most prevalent soil type above ~ 600m of elevation (Kendall et al., 1999). Below this 

threshold Inceptisols are the dominant soil order (Kendall et al., 1999) while Histosols are 

prevalent only in the riparian zone (Shanley et al., 2004). Typical vegetation at SRRW is 

northern hardwood including sugar maple, yellow birch, white ash, and American beech 

trees with lesser amounts of conifers (balsam fir and red spruce; Shanley, 2000; Shanley et 

al., 2004).  

SRRW is an ideal testbed to investigate how bedrock weathering, topography and 

flowpaths interact to shape the CZ response to acid deposition, because the watershed 
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received acid deposition, presents an undulating topography with landscape position 

controls on soil order, contains important amounts of carbonates that weather readily, and 

has provided records of data on stream water composition and discharge as well as soil 

solution and GW composition data. 
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1.5 Figures 

 

Figure 1-1. The catena in the Wüstebach catchment in Germany exemplifying landscape 

position controls on soil order (Wiekenkamp et al., 2016).  
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Figure 1-2. Chemostatic conditions for Na along a hillslope in the Krycklan catchment in 

northern Sweden. Blue arrows show flow direction and magnitude of hydraulic 

conductivity measurements (mm d-1; Modified from: Lidman et al., 2017).  
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Figure 1-3. Tau plot of a typical depletion profile where negative tau values (blue 

shading) indicate soil copper (Cu) content is relatively depleted with respect to the 

underlying parent materials (Modified from Brantley et al., 2007).  
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Figure 1-4. Generation of strong, anthropogenic acids from emission and subsequent 

deposition downwind leading to soil leaching (Driscoll et al., 2001).  
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Figure 1-5. Total SO2 emissions in the USA have declined significantly since the 

implementation of the Clean Air Act in 1970 (Smith et al., 2010). 
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Figure 1-6. Long-term trends in precipitation chemistry at the recovering Hubbard Brook 

Experimental Forest (Driscoll et al., 2001). Red linear fits indicate statistically significant 

trends.  
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Figure 1-7. Modeled (blue line) and observed (dots) concentrations of dissolved species 

and protons associated with acidification and recovery in Certovo Lake in the Czech 

Republic. Trends in this lake show clear signals of recovery from anthropogenic acid 

deposition (Kopáček et al., 2016). 
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Figure 1-8. location of the forested head watershed of Sleeper River (W-9) in northeastern 

Vermont (Modified from Mayer et al., 2010).  
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Abstract 

Stream water pH and composition are widely used to monitor ongoing recovery from the 

deposition of strong anthropogenic acids in many forested headwater catchments in the 

northeastern US. However, stream water composition is a function of highly complex and 

coupled processes, intersecting flowpaths, and variations in soil and bedrock composition. 

Spatial heterogeneity is especially pronounced in headwater catchments with steep 

topography, potentially limiting stream water composition as indicators for changes in 

critical zone (CZ) dynamics during system recovery. To investigate the link between 

catchment characteristics, landscape position, and stream water composition we used long-

term data (1991-2015) from the Sleepers River Research Watershed (SRRW) in 

northeastern Vermont. We investigated trends with time in stream water and trends with 

time, depth, and landscape position (hilltop, hillslope, and riparian zone) in ground water 

(GW) and soil solution. We further determined soil elemental composition and mineralogy 

on archived (1996) and modern (2017) soil samples to assess changes in composition with 

time. Our results show that SRRW is indeed recovering from acidification and that solutes 

typically derived from carbonate (not silicate) weathering decrease progressively with time 

in GW. A mixture of lateral transfer of weathering-derived materials and upwelling of 

solute rich GW is responsible for enrichments seen in riparian soils, especially in Ca. 

Despite the decrease in the Ca concentration of GW, stream water Ca fluxes showed a 

slight increase over the past two decades, likely from leaching of riparian soil stores. At 
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SRRW the stream integrates signals from weathering and base cation leaching, flowpaths, 

and Ca storage in riparian zones.  

  

2.1 Introduction 

Streams indicate critical zone (CZ) function, because they represent an integrated signal of 

watershed processes (Frisbee et al., 2011) including internal stream processes (Dawson et 

al., 2001; Mulholland and Hill, 1997) and processes occurring at the interfaces (i.e. riparian 

or hyporheic zones) (Bishop et al., 2004; Winterdahl et al., 2011). For example, the effects 

of acid deposition, especially prevalent in the northeastern US (Likens et al., 1972), have 

been monitored using stream water observations (Amiotte-Suchet et al., 1999; Huang et 

al., 2017; Newell and Skjelkvåle, 1997).  

 

Acid deposition forms when emission-derived sulfur dioxide and nitrogen oxides interact 

with precipitation, which impacts the entire CZ through a multitude of complex and 

coupled processes including declining tree and soil quality due to low pH and base cation 

leaching (Driscoll et al., 2001; Matzner and Murach, 1995; Raddum et al., 2007). The 

ensuing stream water signals were typically sensitive to these effects and showed low pH, 

increased concentrations of acid anions (sulfate and nitrate), and increased effluxes of base 

cations (e.g. Ca, Na) from many acid impacted systems (Driscoll et al., 2001; Garmo et al., 

2014; Newell and Skjelkvåle, 1997). In the U.S., legislation passed in 1970 and 1990 led 

to reductions in emissions that caused a slow increase in precipitation pH as well as a 

decrease in the acid anion content across affected regions, and stream water composition 

has since been monitored closely for signs of recovery (Driscoll et al., 2001; Garmo et al., 

2014; Kopáček et al., 2016; Newell and Skjelkvåle, 1997; Rogora et al., 2013; Skjelkvåle, 

2003).  

 

However, because streams merge water and solutes from various sources, the attribution 

of changes in stream water chemistry to specific process locations without detailed 

investigations of the CZ is difficult. For example, one CZ process strongly affected by the 

presence of strong acids (mostly H2SO4 and HNO3) is weathering, i.e. the breakdown of 

bedrock and regolith through physical and chemical processes (Jin et al., 2010). Chemical 

weathering includes simple dissolution reactions (typical for carbonates) and hydrolysis 

(typical for silicates). Both processes are driven by proton availability and in the case of 

most silicate minerals weathering reactions are incongruent i.e. they lead to the production 

of dissolved weathering products as well as the formation of secondary minerals (Strawn 

et al., 2015). As such, weathering and soil development continuously change the 

composition of the solid CZ and the composition of percolating waters (e.g. soil solution 

and ground water (GW)). Another important process is the leaching of base cations from 

acid impacted soils that cause an overall decline in soil health. These changes can be clear 

in headwater catchments with pronounced topography, even within just a few decades of 

changes in precipitation chemistry due to the transfer of soluble materials to deeper soil 

layers, GW (vertical transfer), and/or via lateral transfer to low-lying landscape positions  
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(Bailey et al., 2014; Brantley et al., 2007; Johnson et al., 2000; Lawrence et al., 2015; 

Lybrand and Rasmussen, 2015; Nezat et al., 2004).  

 

Stream water composition is therefore strongly affected by flowpaths. Sampling different 

layers of a heterogeneous CZ and backtracking to specific processes requires information 

on soils as well as subsurface waters. We attempt this backtracking to identify signals of 

recovery in streams and soils using the well-studied Sleepers River Research Watershed 

(SRRW) in northeastern Vermont as a testbed. SRRW received strong acids through wet 

and dry deposition but, unlike many other watersheds in the NE, contains carbonate-

bearing parent material that buffers the pH of percolating water. The impact of acid 

deposition on the CZ is therefore less dramatic but potentially visible due to the sensitivity 

of carbonates to only small changes in acid inputs (Huang et al., 2017).  

 

In order to investigate how the CZ at SRRW responds to changes in precipitation chemistry 

in the stream signal and how compositional differences by landscape position influence 

this signal, we analyzed long-term stream water (1991-present), soil solution (2004-2013), 

and GW composition (2004-2013) at various landscape positions. Data analyzed includes: 

pH, anthropogenic acid anions (nitrate and sulfate), base cations (Na, Ca) and Si. To test 

for changes in soil composition with time we investigated soil elemental composition (Si, 

Al, Na, Ca) and mineralogy data from archived (1996) and modern (2017) soil samples of 

varying landscape position. 

  

Because silicate weathering at the watershed scale is a slow process, we hypothesize that 

changes in acid deposition are not recorded as significant trends of silicate weathering 

products in the stream over our 24-year study period. However, we hypothesize that 

carbonate weathering and base cation leaching slowed, leading to decreases in Ca flux in 

the stream since 1991. We further hypothesize that topographically induced transfer of base 

cations led to depletions in shallow horizons at hilltop and hillslope locations while near 

stream soils accumulate base cations, especially Ca.  

2.2 Materials and Methods 

2.2.1 Field Site 

The SRRW comprises a series of nested catchments with varying land use in northeastern 

VT (Fig. 2-1). The forested headwater watershed, W-9, is the focus of this study and is 

underlain by the Waits River Formation, which includes a quartz-mica phyllite member 

interbedded with calcareous granulite (Ferry, 1991; Ratcliffe et al., 2011). This formation 

is covered by several meters of dense silty basal till from the last glaciation (Shanley, 2000) 

which itself is sourced from the underlying Waits River Formation (53%) and the nearby 

Gile Mountain Formation (25%; Hornbeck et al., 1997). The presence of carbonates in 

bedrock and till contributes to the high buffering capacity and high pH in stream waters, 

despite historic acid deposition (Hornbeck et al., 1997; Shanley, 2000).  
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Landscape position strongly influences soils in W-9: Inceptisols (most prevalent) and 

Spodosols are typical for well-drained upland areas such as hilltop and hillslope areas 

(Shanley et al., 2004). Histosols are mostly found in poorly-drained riparian areas and are 

often located where GW upwelling occurs (Shanley et al., 2004). Vegetation is dominated 

by northern hardwoods species sugar maple, yellow birch, white ash and American beech, 

but softwood species (balsam fir and red spruce) are also present (Shanley et al., 2004). 

Like other catchments in the Northeastern US, SRRW has been impacted by acid 

deposition which caused forest decline (branch dieback, some declining crown vigor) and 

low soil pH (Shanley et al., 2004). However, due to emissions regulations, SRRW is 

experiencing reduced acid inputs (Burns et al., 2005; Stoddard et al., 1999). 

2.2.2 Sampling Methods 

In order to assess trends in soil-, ground- and stream water composition, we used existing 

data on pH, sulfate, nitrate, Si, Ca, and Na that have been collected weekly and during 

events at SRRW over 24 years. For soil solution, we used data from 3 sets of nested zero-

tension lysimeters that occupy three main landscape positions (hilltop, hillslope, and base 

of the hill) and sample at 15cm (shallow), and 50cm (deep). Data from wells, which occupy 

the same landscape positions as lysimeters and are screened at various depths (Table 2-1), 

were used to monitor changes in GW composition. Both soil solution and GW data were 

generated from approximately weekly collection between 2004 and 2013 but due to 

intermittently dry conditions, soil solution samples were obtained less frequently. Data on 

stream water composition for the same solutes were generated from approximately weekly 

grab sample collection between 1991 and 2015 at the stream gauge at the base of the 

watershed (Fig. 2-1). 

 

In addition to existing data, we collected samples from lysimeters, wells and the stream in 

the fall of 2017 for dissolved inorganic carbon (DIC) isotope analysis to test for carbonate 

weathering signals. Lysimeters and wells were pumped and allowed to recharge prior to 

sampling and all samples were capped immediately with no headspace, placed in a cooler, 

and shipped to the UC Davis Stable Isotope Facility within 24 hours of collection.  

 

To investigate landscape position controls on soil composition, we took soil samples every 

1-3 meters in three transects that spanned from hilltop to hillslopes to near-stream areas 

(Fig. 2-1). Two transects cut across the two main tributaries to stream B, and one transect 

cut across a few meters below the confluence of the tributaries (Fig. 2-1). These transect 

samples were taken using a bucket auger in 15-cm depth increments until 90 cm or depth 

of refusal.  

 

To increase the statistical power of results and to allow for an in-depth analysis of 

compositional changes in soil with depth and landscape position, we additionally sampled 

each of the three soil orders from soil pits by taxonomic horizon in various locations 

throughout the W-9 in 2017 (Fig. 2-1). In order to allow for comparison with soils prior to 

recovery, we also analyzed archived samples (stored at room temperature in the dark in 

sealed glass vials) collected as part of a soil survey in 1996 (n=156). We use average values 
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of soil composition in archived (1996) and modern (2017) samples, some of which were 

re-sampled in the same approximate location (Fig. 2-1c).     

2.2.3 Sample Processing and Analyses 

Soil samples prepared for XRF and powder XRD were air dried (4-5 days), sieved (<2mm), 

ground and homogenized in a ball mill, and stored dry prior to analysis. Soil elemental 

composition was determined on both archived samples (n=156) and modern transect 

samples (n=121) as well as samples from representative landscape positions of modern 

(n=43) and archived soils (n=78) using a Thermo Scientific Niton XL3t X-Ray 

Fluorescence Analyzer and a Thermo Scientific ARL QUANT’X X-Ray Fluorescence 

Spectrometer at in the Geology Department at the University of Vermont and Middlebury 

College, respectively. From these data we calculated tau values (eq. 1) to determine the 

pedogenetic behavior of selected elements (Si, Al, Na, Ca; Brantley et al., 2007; Brimhall 

and Dietrich, 1987). As parent material we used the deepest sampled horizon (i.e. partially 

weathered till) because parent material composition in this area varies greatly across the 

watershed and cores were only drilled in a few, potentially not representative, locations. 

Tau values therefore only show depletion vs. enrichment relative to the deepest accessible 

horizon. We used Ti as an immobile element because of its normal distribution in the parent 

material. All data from each soil order of the 1996 survey as well as the representative data 

from 2017 were averaged by horizon to assess the variability of each horizon of each soil 

order.   

 

[eq. 1]: 𝜏𝐼,𝑀 =
𝐶𝑊,𝑀

𝐶𝑃,𝑀
∗

𝐶𝑃,𝐼

𝐶𝑊,𝐼
 

 

Where τ (dimensionless) is the ratio of the concentration (C) of an element of interest 

(subscript M) relative to an immobile element (subscript I) in the weathered soil (subscript 

W) and the parent material (subscript P). Soil mineralogy was identified using X-ray 

diffraction (XRD) on random powder mounts from modern soil samples from each 

resampled pit. In order to identify secondary clay minerals, samples from the lowest 

horizon (till) were also analyzed using oriented texture preparations of the <2µm fraction 

that was separated by decantation (Poppe et al., 2001). Suspensions were pipetted on glass 

slides preparations and allowed to air-dry. This approach allows for an orientation of 

crystallites that restricts diffraction the crystallographic c-direction and hence only the (00l) 

intervals are visible (Lagaly, 1993; Moore and Reynolds, 1997). The clay fraction was 

analysed air-dried (AD), treated with ethylene Glycol (EG, to test for presence of swelling 

clay), and heat-treated (HT, 400˚C, 550˚C) to collapse the chlorite peaks to test for overlap 

with the kaolinite reflections (Moore and Reynolds, 1997). XRD analysis of all samples 

was conducted on a Rigaku MiniflexII Powder Diffractometer with CuK radiation, 

operated at 30kV and 15 mA. Scanning parameters were set at 0.02 step width and a count 

time of 10 seconds per step between 3 and 5-65 °2θ. 
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2.2.4 Statistical Methods 

All statistical analyses were completed in R (R Core Development Team, 2017). Stream 

flux was calculated to evaluate trends in recovery (sulfate, nitrate) and weathering (Si, Na, 

Ca). All stream flux calculations were completed using the USGS LoadEst functions 

(Runkel et al., 2004) implemented within the LoadFlex package and trend analyses were 

conducted using the Kendall and trend packages (Appling et al., 2015; McLeod, 2011; 

Pohlert, 2018; R Core Development Team, 2017). Autocorrelation was reduced by 

averaging the concentration and discharge measurements made during highly sampled 

storm events. The best of the predefined USGS models was then selected based on how 

accurately it predicted measured values and was applied to a more complete discharge 

record for annual flux calculation.  

 

Flow-adjusted residuals of the concentration-discharge relationship were then evaluated 

and, if they were not normally distributed, a Mann-Kendall trend analysis was conducted 

and the sen-slope was calculated. Baseflow composition was determined by calculating the 

mean stream composition during discharge conditions lower than the 20th percentile and 

storm flow composition was determined by calculating the mean stream composition 

during discharge conditions greater than the 80th percentile. Data on baseflow and 

stormflow composition computed at less than the 5th percentile and greater than 95th 

percentile are also provided.   

 

The significance of trends in soil solution and GW composition with time and space were 

evaluated using several methods. For temporal trends in GW, linear regressions on raw 

data were used first as this method is powerful and if significance is established no more 

statistical analyses are needed to draw conclusions. Temporal trends in GW concentration 

were evaluated and exemplified using data from the well with the most complete record 

(i.e. the well at the hilltop). In the case of highly variable seasonal compositions regressions 

on annual averages were implemented. When large parts of the datasets (>1/3 of the record) 

were missing or other tests failed to establish a trend, Welch’s 2 sample t tests were used 

to elucidate any differences in composition. Trends in space were evaluated by calculating 

the average and standard error at each depth and landscape position. If averages were 

within error of one another Welch’s 2 sample t test was used to determine whether the data 

sets were significantly different.   

2.3 Results 

2.3.1 Trends in Stream Water Composition and Flux 

Stream water pH values showed large, mostly seasonal, variations between 1991 and 2004 

with values ranging from 6.7 up to 8.6 with less variability thereafter (Fig. 2-2a). Annual 

stream water sulfate flux decreased by over 30% since 1991 (from 870 to 580 kg yr-1, Fig. 

2-2b) and Mann Kendall trend analysis on flow adjusted model residuals indicated a 

significant negative trend in sulfate concentration ( = -0.442, Sen’s Slope = -0.007, p 

<0.05). The annual nitrate flux showed large interannual variability (between 60 and 105 

kg yr-1) but no significant increase or decrease over time (Fig. 2-2c). 
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Both Si and Na stream water flux showed large interannual variability (ranging from 750 

to 1400 kg yr -1 for Si and from 180 to 330 kg yr-1 for Na, Fig. 2-2d & e). Mann Kendall 

trend analyses revealed a slight decrease in the stream water Si concentration ( = -0.066, 

Sens Slope = -0.0003, p <0.05) while no significant trend in Na concentration was found 

( = -0.0135, Sens Slope = -1.02*10-5, p >0.05). The flux of Ca showed similarly large 

variations (ranging from 3450 and 6450 kg yr-1) and a slight increase in concentration that 

was significant ( = 0.078, Sens Slope = 0.002, p <0.05). 

2.3.2 Temporal and Spatial Tends in Ground and Soil Water Composition 

We also investigated groundwater and soil water composition for trends with time, depth, 

and landscape position (hilltop vs. hillslope vs. base of the hill). Temporal trends are 

represented as annual averages for selected years (2004, 2008, 2012) with typical annual 

precipitation. Significance was established using step trends between sets of annual fluxes 

(see supplementary materials for complete time series of GW composition).  

 

Soil solution pH increased over time especially in deep and some shallow soil solution and 

was generally greater at depth and with proximity to the stream (Fig. 2-3a). GW pH in the 

hilltop well increased from an annual average of 7.9±0.3 in 2004 to an annual average of 

8.1±0.2 in 2012, which is higher than the average stream water pH at base flow (7.8±0.2, 

Table 2-2). 

 

Sulfate concentrations generally decreased with time but were greater at depth and with 

proximity to the stream (Fig. 2-4b). For example, the average sulfate concentration in all 

shallow soil water decreased from 3.2±1.5 mg L-1 in 2004 to 1.6±1.1 mg L-1 in 2008. GW 

sulfate decreased from an average of 5.3±0.7 mg L-1 in 2004 to 4.4±0.3 mg L-1 in 2012. 

The trend of increasing sulfate concentrations with depth was best observed at the hilltop 

position where the sulfate concentration in GW was four times higher than in soil water. 

The average stream water sulfate concentration at baseflow (8.1±2.3 mg L-1) was the 

highest mean sulfate concentration of any water source (Table 2-2).  

 

Nitrate concentrations did not change significantly over time and were lower at depth and 

closer to the stream (Fig. 2-3c). Annual average nitrate concentrations in shallow soil 

solution ranged from 0.02±0.01 to 0.26±0.12 mgL-1 in 2004 and 2008, respectively (Fig. 

2-3c). Compared to hilltop, nitrate concentrations at the base of the hill were slightly lower 

and similar to base flow stream water concentrations (Table 2-2).  

 

Average annual soil and ground water Si concentrations did not show significant changes 

with time but, like pH and sulfate, concentrations were generally greater with depth and 

proximity to the stream (Fig. 2-3d). For example, Si in GW at the hilltop remained 

relatively constant since 2004 at an average value of 12±0.2 mg L-1 (Figure 2-3d). Soil 

water Si concentrations were generally greater (6.7±0.8 mgL-1 at the base of the hill). In 

contrast, near stream GW Si concentrations (8.4±1.2 mg L-1) were almost 30% lower than 
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hilltop GW concentrations (12.0±0.8 mg L-1) which is still almost 3 times higher than 

stream water base flow concentrations (Table 2-2).  

 

Annual average Na concentrations decreased with time in deep soil solution at the hilltop 

and hillslope positions and were generally lowest in hilltop soil waters (as low as 0.6±0.1 

mg L-1) and largest in GW, which was similar to stream water composition at base flow 

(Table 2-2).  

 

Ca concentrations generally decreased through the study period but were greater at depth 

and proximal to the stream (Fig. 2-3f). Hilltop GW Ca concentrations decreased 

significantly from 18.8±1.3 mgL-1 in 2004 to 16.0±0.8 mgL-1 in 2012 (Fig. 2-3f) and were 

generally greater at depth (1.0±0.7 mgL-1 in shallow soil water vs. 16.4±2.4 mgL-1 in GW). 

Stream water Ca concentrations at base flow were similar to GW concentrations (Table 2-

2).  

 

The isotopic composition of DIC was determined for soil solution and GW. The mean δ13C-

DIC of soil solution was significantly lower than that of GW (-20.8±1.2 and -14.5±1.5, 

respectively) indicating a carbonate weathering signal in GW. δ13C-DIC values also 

generally increased with proximity to the stream (Table 2-3). 

2.3.3 Spatial and Temporal Trends of Selected Elements in Soil 

Spatial trends on transect samples generally showed depletions at hilltop and hillslope 

locations and accumulations in riparian areas (Fig. 2-4, supplementary materials Figs. 2-2-

3). The exception was Si that was, relative to the parent material, variably enriched or 

depleted in hilltop and hillslope positions (tau values ranging from -0.51 to 0.64). Al was 

mildly depleted from hilltop soils (-0.10 to -0.39) and accumulated in the top 45cm of the 

profile closest to the stream. The base cations Na and Ca were typically depleted from the 

hilltop soils (e.g. tau values ranging from -0.86 to -0.08 for Ca) and accumulated in near 

stream soils, especially in the top 30cm (up to 31.2 for Ca, Fig. 2-4).  

 

Temporal trends in soil elemental composition were investigated by comparing tau values 

from archived and modern samples (Figs. 2-5-7). The variability in typical hilltop soils 

(mostly Spodosols) was great, as indicated by the broad shaded areas (Fig. 2-5), but 

generally showed a combined accumulation-depletion pattern (Fig. 2-5). For example, tau 

values for Si indicated mild enrichments (e.g. archived mean=0.12±0.36 in the O horizon) 

in the upper horizons (O, A, E) and depletions in lower horizons (e.g. archived mean=-

0.28±0.11 for the BC horizon). Al also showed an addition-depletion profile where tau 

values were negative at the surface and positive in the spodic horizon. Base cations were 

generally enriched and highly variable in the O horizon but depleted in underlying mineral 

soil (e.g. archived mean up to -0.58±0.19 for Na). The differences between archived and 

modern samples were not significant for any of the investigated elements except Ca, which 

was generally more enriched in the top horizons of archived soils.  
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Hillslope Inceptisol composition in the study area was less variable compared to Spodosols 

(shaded areas are less broad, Fig. 2-6). Overall, Si was depleted throughout the profile 

(archived means between -0.04±0.25 and -0.16±0.17, Fig. 2-6), while Al in archived 

samples was somewhat depleted in upper horizons and in modern samples was depleted in 

lower horizons. Tau values for base cations, especially Ca were highly variable in the O 

horizon (e.g. archived mean = 3.65±4.18 for Ca). As for the Spodosol, differences between 

archived and modern samples was only significant for Ca in the top horizons, where Ca tau 

values were significantly higher in archived soils.  

 

The variability of riparian soil composition in the study area was high for most elements, 

especially in archived samples. For example, tau values were generally positive for Si, 

negative for Al (especially in modern samples; Fig. 2-7). Base cation tau values were 

generally positive, especially for Ca, in the two upper-most organic horizons 

(32.06±33.55 and 19.87±29.71). Again, the differences between archived and modern 

samples was significant for Ca in the top horizons, where Ca tau values were 

significantly higher in archived soils. 

2.3.4 Mineralogy of Till and Soils 

The deepest horizons (weathered till) contained primary minerals of the Waits River and 

Gile Mountain Formations including micas (with a prominent peak at 10.0Å), chlorite 

(14.2/7.1/3.5Å), pyroxenes (e.g. at 3.0Å), feldspars (e.g. at 3.1Å), quartz (at 3.3Å), 

amphibole (at 8.5Å), oxides (rutile or spinel at 2.5Å), and apatite (2.8Å, see supplementary 

materials for diffractograms). Representative soils for all landscape positions (Spodosol 

for hilltops, Inceptisols for most hillslopes and Histosols for riparian zones) showed most 

peaks for the primary minerals associated with contributing bedrock formations, but 

several of these peaks changed or disappeared towards upper horizons (supplementary 

materials Fig. 2-4-6). For example, quartz peaks decreased in intensity towards shallower 

horizons, whereas feldspar, muscovite, amphibole and pyroxene peaks varied but became 

difficult to resolve in the organic horizon of all soils. Primary chlorite is present in all soils 

(intense peak at 14.2Å in powder samples). The secondary swelling clay mineral smectite 

(confirmed by EG treatment, supplementary materials Fig. 2-4-6) and illite were found in 

deeper horizons of most soils. Smectite was most prominent in Spodosols and not well 

resolved in the riparian Histosol. Calcite in contrast was only identified in the riparian 

Histosol (in the lowest horizons). 

2.4 Discussion 

2.4.1 Streams as Indicators of Recovery from Acidification? 

Changes in stream water composition can indicate changes in CZ dynamics (Maher, 2011; 

McIntosh et al., 2017; Meybeck, 1993), however, a multitude of complex and coupled 

processes in the watershed and the stream itself can make the identification of specific 

processes or source locations difficult. Using the acid-impacted SRRW as a testbed, we 

investigated the potential and limitations of stream water composition as an indicator of 
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watershed recovery from acidification and explored whether changes in soil composition 

contributed to this signal. 

 

Generally, decreasing stream water nitrate and sulfate fluxes and overall increases in 

stream water pH are typical indicators of chemical recovery at the watershed scale (Driscoll 

et al., 2001; Garmo et al., 2014; Newell and Skjelkvåle, 1997; Rogora et al., 2013; 

Skjelkvåle et al., 2001, 2005). At SRRW, sulfate fluxes in the stream indeed declined 

significantly (Fig. 2-2) despite the fact that GW sulfate concentrations are high due to pyrite 

weathering at greater depth (Mayer et al., 2010) and despite the fact that precipitation 

increased (by about 14 mm/yr, over the past decade; Shanley et al., 2016). If sulfate was 

still sourced from the deposition of sulfuric acid, increases in annual precipitation would 

have led to stream water flux increases, not decreases and overall these results indicate a 

substantial reduction in acid inputs. In contrast, stream water nitrate flux did not change 

significantly despite reductions in NOx emissions and deposition. Stream water pH never 

dropped below 6.7, due to the high buffering capacity of the bicarbonate-rich waters 

(Shanley, 2000; Shanley et al., 2004) but the magnitude of pH fluctuations decreased, 

especially after 2004 (Fig. 2-1a). These early fluctuations were likely the result of episodic 

acidification events (e.g., re-wetting after drought) that temporarily led to low pH values 

in the stream (Mayer et al., 2010).  

 

Because the reduction of acid deposition reduces proton availability for weathering, we 

had hypothesized that stream water fluxes of Ca from carbonate weathering and base cation 

leaching would decrease significantly. Indeed, many recovering watersheds in the region 

also show a substantial reduction in base cation fluxes including Ca and Na (Burns et al., 

2005; Garmo et al., 2014; Newell and Skjelkvåle, 1997; Stoddard et al., 1999). However, 

SRRW Na (and Si) fluxes remained unchanged, whereas Ca fluxes increased (Figure 2-1d-

e).  

 

Because GW can indicate subsurface processes more directly than stream water (Peters and 

Aulenbach, 2009), we investigated temporal trends in GW Ca, Na and Si concentrations 

and found that the concentrations of Si remained stable, Na decreased slightly and that Ca 

decreased by over 30% since 2004 (Fig. 2-3f). The relatively high δ13C-DIC values 

measured in GW are typical for a mixture of pedogenic DIC and carbonate weathering, 

confirming that carbonate is still actively weathering (Amiotte-Suchet et al., 1999; Cerling, 

1984). Coupled with the decreases in GW Ca concentrations on the hilltop and hillslope, 

the isotopic patterns are consistent with either decreased carbonate weathering or increased 

plant Ca uptake during recovery, but they do not explain the increased Ca flux in stream 

water. We will discuss the potential role of Ca accumulation in the riparian zone as a 

mechanism to explain this pattern (section 2.4.3). 

2.4.2 From Subsurface to Stream: Changes in Soil and Water Composition by 

Landscape position 

We had hypothesized that long-term lateral transfer of leached base cations would lead to 

depleted shallow horizons, especially at hilltop or hillslope locations, while the 
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accumulation of base cations, especially Ca, would be largest in near stream locations. 

Indeed, base cation and Si concentrations in soil water generally increased with depth and 

also increased towards low-lying landscape positions, which might reflect a combination 

of vertical and lateral transfer through shallow flowpaths and supply from GW when water 

tables rise (Sommer, 2006). Highly variable Si tau values at all landscape positions and in 

all soil horizons (Fig. 2-4) might reflect a combination of unweathered quartz high in the 

profile as well as transfer of Si from the weathering of less stable aluminosilicates (Fig. 2-

4). Aluminum, at hilltop locations, showed a typical Spodosol depletion-enrichment 

pattern due to pH driven changes in Al solubility (Cronan and Schofield, 1979) but had 

significant enrichments in riparian soil horizons. XRD analyses indicate the weathering of 

aluminosilicate phases (especially amphiboles and pyroxenes) in most horizons and many 

of these minerals were still present in mineral soil horizons (supplementary materials Figs. 

2-4-6). Together with the high soil solution concentrations of Si (and partially for Na as 

well) these results indicate active silicate weathering in these soils.  

 

Solid phase analyses of Na and Ca revealed negative tau values for these elements in hilltop 

and hillslope soils but showed, again, substantial enrichments in riparian soils (Figs. 2-5-

7), a pattern that was also visible in soils taken in transect associated with these landscape 

positions (Fig. 2-4). E.g. Ca and Na were generally depleted in hilltop-Spodosols (except 

for top horizons), relatively stable in the hillslope-Inceptisols and enriched in riparian-

Histosols, especially in top layers (Fig. 2-4). Organic rich horizons tend to have less Ti, 

and hence the normalization to this otherwise immobile element to calculate tau values can 

overestimate enrichments. However, riparian Histosol Ca content reaches up to 72,000 mg 

kg-1, compared to a mean of 26000±13000 for hillslope samples. XRD analyses of these 

soils explain most of these patterns through weathering and disappearance of amphiboles, 

chlorite, apatite, and pyroxenes. The lack of calcite in the till at hilltop and hillslope 

locations indicates that the carbonate weathering front is much lower than the silicate 

weathering front (i.e. in the deep till). The lack of significant amounts of secondary Ca-

bearing minerals in near-stream locations further suggests that the large amounts of Ca are 

not accommodated in crystalline phases. 

2.4.3 The Riparian Zone: Integrator of Flowpaths and Soil Processes 

At SRRW, the riparian zones are areas of confluence where shallow and deep flowpaths 

meet, GW discharges and base cations accumulate, hence the riparian zone has a high 

potential for impacting stream water composition for these solutes.  

 

Si and Na concentrations were similarly high in GW at hilltop and hillslope locations, 

however, concentrations were significantly lower in riparian zone waters and even lower 

in stream water (e.g. base flow stream water Si concentrations were almost 6 mg L-1 lower 

than riparian GW (Fig. 2-3, Table 2-2), an observation consistent with previous research 

(Kendall et al., 1999). The missing Si and Na might be stored in secondary minerals, such 

as smectites that were identified in weathered till (supplementary materials Figs. 2-4-6). 

However, as mentioned above, we cannot explain the high riparian soil Ca content through 

only the accumulation of secondary minerals.  
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Cincotta et al. (2018, this issue) found riparian soils at SRRW were rich in both Ca and 

organic carbon. Ca is common in biofilms and, as a divalent cation, can help bridge charges 

between negative soil particles, effectively stabilizing soil aggregates (Perdrial et al., 

2009). Furthermore, organic matter readily forms complexes with free Ca2+ ions, and Ca is 

the dominant exchangeable cation in organic soils with high pH and cation exchange 

capacity. Therefore, Ca in riparian soils is likely associated with and stabilized by organic 

materials. Cincotta et al. (2018) also showed that recovery from acidification can lead to 

the breakup of soil aggregates and the release of associated organic matter into soil 

solution. Their study did not investigate Ca release, but if Ca is associated with organic 

matter it would be liberated in the same process. Indeed, stream water DOC flux has been 

increasing at SRRW since 1992 (Schuster et al., 2007; Sebestyen et al., 2008; Cincotta et 

al., 2018). Thus, the slight but significant increase in stream water Ca flux and discharge-

adjusted concentration (Fig. 2-2f) could have the same origin as the stream DOC increase, 

i.e. release from soil aggregates. Both indicate riparian processes driven by changes in 

aggregate stability and solubility instead of increased carbonate weathering. 

 

Furthermore, our results on modern vs. archived soil samples are in agreement with a 

gradual, recovery-induced, leaching of Ca from riparian organic matter. The Ca 

concentration of the riparian soils decreased measurably between archived (1996) and 

modern samples (2017) throughout the study area as well (Fig. 2-7). We illustrate the 

strong impact of riparian soils and near stream waters vs. hillslopes on stream water in a 

mixing diagram of Na-normalized mole ratios (Fig. 2-8). Here, composition of hilltop and 

hillslope soils have overall lower Ca/Na ratios than the riparian soils, which again have 

lower ratios than GW or stream water. These results confirm that riparian zones are highly 

reactive parts of the CZ and exert a strong control on stream composition (Lidman et al., 

2017; Peters and Aulenbach, 2009; Vidon et al., 2010). In the case of SRRW, the complex 

interactions among weathering, intersecting flowpaths, GW upwelling (providing changes 

in pH and further accumulation of more reactants), temporal solute storage, and interaction 

with organics, produce a highly reactive zone that responds to the same driver (decrease of 

acid inputs) in fundamentally different ways than the hillslopes.  

2.4.4 Limitations of Streams as Indicators  

Streams are integrators of watershed scale processes and many acid deposition studies have 

interpreted shifts in stream water composition to assess watershed response to changing 

CZ inputs (Garmo et al., 2014; Newell and Skjelkvåle, 1997; Skjelkvåle et al., 2001; 

Skjelkvåle, 2003; Skjelkvåle et al., 2005). Using data on soil composition, GW and soil 

solution we showed that stream water flux was not representative of conditions throughout 

the watershed but was representative of low lying landscape positions. Especially Ca 

decreases in riparian soils are in agreement with the slow leaching of Ca into the stream 

and underlines the impact of riparian zones on stream water composition.   
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2.5 Tables and Figures 
   

Installation Top (cm) Bottom (cm) 

Near Stream GW (NSGW) 170 245 

Near Stream GW (NSGW) 90 170 

Near Stream GW (NSGW) 25 100 

Hilltop GW (HTWG) 160 310 

Hillslope GW (HSGW) 70 220 

Shallow Lysimeters (HT-, HS-, BH-SS) 15 

Deep Lysimeters (HT-, HS-, BH-SS) 50 

 

Table 2-1: sample depth of the wells and lysimeters. Abbreviations: HS – hillslope, BH – 

base of hill, NS – near stream, GW – GW, SS – soil solution 
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Table 2-2: stream water pH and concentration of selected solutes (mg/L) during baseflow 

and stormflow conditions from 1991-2015. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Baseflow 

(<20%) Error 

Baseflow 

(<5%) Error 

Stormflow 

(>80%) Error 

Stormflow 

(>95%) Error 

pH  7.74 0.15 7.77 0.14 7.53 0.22 7.34 0.17 

Sulfate 8.07 2.28 8.73 2.69 4.64 1.3 3.77 1.4 

Nitrate 0.14 0.08 0.11 0.05 0.25 0.16 0.3 0.19 

Silicon 3.21 0.42 3.56 0.28 2 0.29 1.74 0.25 

Calcium 27.83 3.88 31.24 3.19 15.02 2.97 12.32 1.99 

Sodium 0.84 0.14 0.98 0.14 0.46 0.09 0.38 0.07 
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Landscape Position Depth (cm) d13CVPDB mg C/L  

Hilltop 50 -22.07 4.7 

Hilltop 15 -21.06 6.6 

Hilltop 160-310 -14.75 13.4 

Base of Hill 70-220 -17.24 17.9 

Near Stream 40 -19.18 13.7 

Near Stream 25-100 -14.06 19.8 

Near Stream 90-170 -13.33 17.0 

Near Stream 170-245 -13.12 14.3 

 

Table 2-3: δC13 of dissolved organic carbon (DIC) and concentrations in soil solution and GW at 

different landscape positions and depths 
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Figure 2-1. A: location of the Sleeper River watershed and nested sub watersheds in 

Vermont (Modified from Shanley, 2000 with permission). B: the W-9 sub watershed with 

streams A, B and C (Modified from Kendall et al., 1999 with permission). C: location of 

wells, soil samples and soil pits as well as augered transects in proximity to stream B.  
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Figure 2-2. complete time series for pH measurements and modeled annual flux of selected 

solutes. Triangles in the top right corner of each subset indicate the directionality of 

statistically significant trends. Grey lines indicate best fit (linear).  
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Figure 2-3.  pH and concentrations of selected solutes in soil water (shallow= 15cm and 

deep= 50cm) and GW at four landscape positions (hilltop, slope, base and near stream) 

between 2004 and 2012. Base of the hill (soil solution samples) and near stream (GW well) 

are in proximity to each other. Triangles indicate the directionality of statistically 

significant trends on the complete time series of data for each depth and landscape 

position.  
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Figure 2-5. tau values of selected elements for a typical hilltop soil (Spodosol). Light 

grey shaded areas indicate standard deviations of means for each element measured in 

archived samples (1996, 8 pits), dark grey shaded areas indicate standard deviations of 

means for each element of modern samples (2017, 3 pits). 
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Figure 2-6. tau values of selected elements for a typical hillslope soil (Inceptisol). Light 

grey shaded areas indicate standard deviations of means for each element measured in 

archived samples (1996, 18 pits), dark grey shaded areas indicate standard deviations of 

means for each element of modern samples (2017, 4 pits). 
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Figure 2-7. tau values of selected elements for a typical riparian soil (Histosol). Light 

grey shaded areas indicate standard deviations of means for each element measured in 

archived samples (1996, 11 pits), dark grey shaded areas indicate standard deviations of 

means for each element of modern samples (2017, 3 pits). 
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Figure 2-8. mixing diagram of Na-normalized mean molar ratios mean ratios and standard 

error for water composition by source (symbols) and landscape position (gray shades). 

Black dashed lines indicate the range of molar ratios in Spodosols and Inceptisols while 

grey dashed line represents this range in Histosols.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Spodosols & 

Inceptisols 

Histosol

s 



 

48 

 

2.6 Supplementary Materials 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplementary Figure 2-1. complete time series of selected ground water pH and 

selected solutes from 2004 through 2012 at the hilltop well. The presence of a 

triangle in the top right corner of a subset plot indicates the directionality of a 

significant trend.  
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APPENDIX A: ADDITIONAL SOIL DATA 

 
Appendix Figure A-1: relationship between total organic carbon (TOC) content and tau 

values for base cations and iron indicating that base cations accumulate in areas that are 

rich in organic carbon. TOC data was provided by M. Cincotta from the top 15cm of 

soils taken on all 3 transects.  
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Appendix Figure A-2: tau values for K along the transect with the greatest relief 

(compare to Fig. 2-4). As other base cations, K is depleted from all hilltop and some 

hillslope soils while it is enriched in riparian soil.  
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Appendix Figure A-3: tau values for Fe along the transect with the greatest relief (Fig. 

2-4). Fe is mildly depleted from hilltop soils, variable in hillslope soils, and accumulates 

in the upper horizons of riparian soils.  
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Appendix Figure A-4: tau values for Mg along the transect with the greatest relief 

(compare to Fig. 2-4). Mg is strongly depleted from hilltop soils, mildly depleted in 

hillslope soils, and accumulates in riparian soils. Trends in Mg are consistent with trends 

in other base cations along this transect.  
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Appendix Figure A-5: tau values for K along the transect with intermediate relief 

(supplementary materials Fig. 2-3). K tau values indicate a biogenic profile with 

depletions at depth and enrichments at the surface. Unlike the transect with the greatest 

relief, K is not accumulating with riparian soils on this transect. Unlike Ca and Na on 

this transect K is not accumulating with riparian soils but the variability in hilltop and 

hillslope soils is consistent with other base cations on this transect.  
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Appendix Figure A-6: tau values for Fe along the transect with intermediate relief 

(supplementary materials Fig. 2-3). Hilltop soils are enriched in Fe, hillslope soils are 

highly variable, and riparian soils accumulate Fe. Trends in hilltop and hillslope soils 

differ from trends observed on the transect with the greatest relief.  
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Appendix Figure A-7: tau values for Mg along the transect with intermediate relief 

(supplementary materials Fig. 2-3). Mg is highly variable in hilltop and hillslope soils 

and accumulates in riparian soils. The variability in Mg in hilltop and hillslope soils as 

well as the accumulation in riparian soils is consistent with trends in other base cations 

in this transect.  
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Appendix Figure A-8: tau values for K along the transect with the least relief 

(supplementary materials Fig. 2-2). Unlike the transect with the greatest relief, K is not 

accumulating in riparian soils on this transect. Unlike Ca and Na on this transect K is 

not accumulating with riparian soils but the variability in hilltop and hillslope soils is 

consistent with other base cations on this transect.  
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Appendix Figure A-9: tau values for Fe along the transect with the least relief 

(supplementary materials Fig. 2-2). Hilltop tau values are variable, hillslope soils are 

generally mildly enriched close to the surface, and riparian soils accumulate Fe. Trends 

in hilltop and hillslope soils differ from trends observed on the transect with the greatest 

relief but trends in riparian soils agree.  
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Appendix Figure A-10: tau values for Mg along the transect with the least relief 

(supplementary materials Fig. 2-2). Hilltop and hillslope tau values are highly variable 

and depleted in riparian soils. The variability in Mg in hilltop and hillslope soils is 

consistent with trends in other base cations in this transect. Mg shows biogenic profiles 

on the east side of this transect and depleted profiles on the west side. 
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Appendix Figure A-11: tau values for Fe in a typical hilltop soil (Spodosol, Fig. 2-5). 

Fe is depleted from upper soil horizons and enriched in the spodic horizon and in the 

underlying mineral soil. Tau values for Fe did not change significantly between archived 

and modern samples. Error bars in this figure represent the mean and standard error of 

all Spodosol samples taken in each sampling campaign.  
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Appendix Figure A-12: tau values for K in a typical hilltop soil (Spodosol, Fig. 2-5). K 

generally shows a biogenic profile (except in the resampled soil (2017)), which is 

consistent with other base cations in this soil. Mean tau values did not change 

significantly between archived and modern samples but the resampled pit showed 

consistently lower tau values for K than the archived pit. Error bars in this figure 

represent the mean and standard error of all Spodosol samples taken in each sampling 

campaign. 
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Appendix Figure A-13: tau values for Mg in a typical hilltop soil (Spodosol, Fig. 2-5). 

Mg shows a biogenic profile in both the archived and modern soils which is consistent 

with other base cations in this soil. Values and means did not change significantly 

between archived and modern samples. Error bars in this figure represent the mean and 

standard error of all Spodosol samples taken in each sampling campaign. 
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Appendix Figure A-14: tau values for Fe in a typical hillslope soil (Inceptisol, Fig. 2-6). 

Fe shows a nearly immobile profile in this soil but is highly variable. Changes in tau 

values are not significant between archived and modern samples. Error bars in this 

figure represent the mean and standard error of all Spodosol samples taken in each 

sampling campaign. 
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Appendix Figure A-15: tau values for K in a typical hillslope soil (Inceptisol, Fig. 2-6). 

K shows a nearly immobile profile with no significant change between archived and 

modern data but shows some variability in the uppermost horizon. This pattern is 

consistent with other base cations in this soil. Error bars in this figure represent the 

mean and standard error of all Spodosol samples taken in each sampling campaign. 
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Appendix Figure A-16: tau values for Mg in a typical hillslope soil (Inceptisol, Fig. 2-

6). Mg shows a consistently depleted profile in all samples which is inconsistent with the 

nearly immobile profiles for other base cations in this soil. Error bars in this figure 

represent the mean and standard error of all Spodosol samples taken in each sampling 

campaign. 
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Appendix Figure A-17: tau values for Fe in a typical riparian soil (Histosol, Fig. 2-7). 

Fe shows a highly variable profile in all samples and variability increases with depth. 

There are no significant changes between archived and modern samples, but archived 

samples have higher variability. Error bars in this figure represent the mean and 

standard error of all Spodosol samples taken in each sampling campaign. 
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Appendix Figure A-18: tau values for K in a typical riparian soil (Histosol, Fig. 2-7) 

showing a biogenic profile in all samples except the resampled pit in 2017, which is 

consistent with other base cations in this soil. The archived mean of the upper horizon is 

highly variable, but the modern mean shows less variability. Error bars in this figure 

represent the mean and standard error of all Spodosol samples taken in each sampling 

campaign. 
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Appendix Figure A-19: tau values for Mg in a typical riparian soil (Histosol, Fig. 2-7). 

Mg shows an addition profile with the highest enrichments at the surface which is likely 

due to biologic cycling but shows little signs of depletions at depth. This trend is consistent 

with other base cations in this soil. Error bars in this figure represent the mean and 

standard error of all Spodosol samples taken in each sampling campaign. 
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APPENDIX B: ADDITIONAL AQUEOUS PHASE DATA 
 

 
Appendix Figure B-1: colored bars represent the mean Al concentration over the study 

period and error bars represent the range in measurement. Al is primarily released into 

shallow solution and concentrations decrease with depth and with proximity to the stream, 

presumably due to the increased buffering capacity in these locations limiting solubility.  
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Appendix Figure B-2: colored bars represent the mean Fe concentration over the study 

period and error bars represent the range in measurement. Fe is primarily released into 

shallow solution and concentrations decrease with depth and with proximity to the stream, 

presumably due to the increased buffering capacity in these locations limiting solubility 

and association with organic materials.  
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Appendix Figure B-3: colored bars represent the mean Si concentration over the study 

period and error bars represent the range in measurement. Si is released into solution at 

all depths and landscape positions and values are highly variable in shallow soil water. Si 

is likely transferred laterally in soil solution as downslope soil solution has consistently 

higher mean concentrations. This also shows that Si is transferred vertically at each 

landscape position as deeper samples are consistently higher. Higher Si concentrations in 

GW could be due to vertical transfer but are also likely  representative of a solution in 

equilibrium with the weathering front due to a longer fluid residence time. Si lost along the 

GW flowpath is consistent with solid phase results which suggest that clay minerals are 

forming in till. This result is also consistent with solid phase weathering data which 

suggests that the silicate weathering front is in the mineral soil. 
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Appendix Figure B-4: colored bars represent the mean Ca concentration over the study 

period and error bars represent the range in measurement. Ca is released into solution at 

all depths and landscape positions but is primarily released from weathered till. Ca values 

are highly variable in shallow soil water on the hilltop and slope likely due to acid driven 

weathering events and sampling during relatively dry conditions. Results could indicate 

that Ca is transferred laterally as downslope samples have consistently higher Ca 

concentrations. This also indicates that Ca is transferred vertically as deeper samples have 

consistently higher Ca concentrations. Higher Ca concentrations in GW are likely in part 

due to vertical transfer but more likely represent carbonate weathering from deep till.  
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Appendix Figure B-5: colored bars represent the mean Mg concentration over the study 

period and error bars represent the range in measurement. Mg is released into solution at 

all depths and landscape positions. Higher Mg concentrations in GW could be due to 

vertical transfer or could represent a solution in equilibrium with the weathering front due 

to a longer fluid residence time. Lateral transfer is likely responsible for the increased Mg 

concentrations at downslope locations.  
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Appendix Figure B-6: colored bars represent the mean Na concentration over the study 

period and error bars represent the range in measurement. Na is released into solution at 

all depths and landscape positions. Higher Na concentrations in GW could be due to 

vertical transfer or could represent a solution in equilibrium with the weathering front due 

to a longer fluid residence time. Lateral transfer is likely responsible for the increased Na 

concentrations at downslope locations.  
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Appendix Figure B-7: colored bars represent the mean K concentration over the study 

period and error bars represent the range in measurement. K is released into solution at 

all depths and landscape. Decreased K concentrations in shallow soil water with proximity 

to the stream are likely the result of biologic uptake.  
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Appendix Figure B-8: colored bars represent the mean nitrate (NO3

-)concentration over 

the study period and error bars represent the range in measurement. Nitrate is likely 

delivered top down as concentrations in shallow soil water are significantly higher than 

deeper samples. Decreases in nitrate in shallow soil water with proximity to the stream are 

likely the result of biologic processing. Increases in nitrate along the GW flowpath are 

likely due to a substrate that is impenetrable for roots so once nitrate is transferred to GW 

the concentration increases with increasing residence time.  
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Appendix Figure B-9: colored bars represent the mean sulfate (SO4

2-) concentration over 

the study period and error bars represent the range in measurement. Increasing sulfate 

concentrations with depth are likely the result of both vertical transfer, storage in Histosols 

and pyrite oxidation at depth. Increasing sulfate concentrations with proximity to the 

stream are likely a result of lateral transfer in soil solution and pyrite oxidation in GW.  
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Appendix Figure B-10: colored bars represent the mean pH over the study period and 

error bars represent the range in measurement. pH is lowest and highly variable in shallow 

soil solution, but variability decreases, and pH increases with depth and proximity to the 

stream.  
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Appendix Figure B-11: normalized concentrations (observed/max) of Ca and other base 

cations (Ʃ[K], [Mg], [Na]) over time in GW at the hilltop well. Linear fits show that Ca 

concentrations have declined more rapidly than that of other base cations, likely a result 

of decreased carbonate weathering due to decreased acid inputs.  
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Appendix Figure B-12: raw sulfate (SO4
2-) concentrations in shallow soil solution by 

month (1=Jan, 2=Feb. etc.) for each year since 2004 (chosen to eliminate seasonal effects) 

and landscape position. This figure generally shows negative trends in sulfate content with 

time.  
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Appendix Figure B-13: raw sulfate (SO4
2-) concentrations in deep soil solution by month 

(1=Jan, 2=Feb. etc.) for each year since 2004 (chosen to eliminate seasonal effects) and 

landscape position. This figure generally shows negative trends in sulfate content with 

time.  
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Appendix Table B-1: summary statistics for trends in GW presented in Supplementary 

Materials Figure 2-1. Significant trends are indicated by the column with the header: Sig? 

Direction indicates whether trends are positive or negative, Min indicates the minimum 

measured value (mg/L for all but pH), Max indicates the maximum measured value, range 

indicates the range of values measured, Years indicates the range of years included in the 

analysis.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

  R2 P Sig? Direction Min Max Range Years 

pH 0.0532 > 0.05 Yes Positive 6.9 8.1 1.2 2004-2013 

Sulfate 0.9215 < 0.05 Yes Negative 4.4 5.3 0.9 2004-2013 

Nitrate 0.1087 > 0.05 No N/A 0 0.035 0.018 2004-2013 

Silicon 0.015 > 0.05 No N/A 12 12.3 0.6 2004-2012 

Total 

Base 

Cations 0.649 < 0.05 Yes Negative 17 21.4 4.1 2004-2012 

Calcium 0.9597 < 0.05 Yes Negative 15 18.8 4.2 2004-2012 

Sodium 0.2749 > 0.05 No N/A 1.1 1.22 0.09 2004-2012 
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  R2 P Sig? Direction Min Max Range Years 

pH 0.8405 < 0.05 Yes Negative 6.1 6.8 0.7 2004-2008 

Sulfate 0.2569 > 0.05 No N/A 69.9 72.2 2.3 2004-2008 

Nitrate 0.9916 < 0.05 Yes Positive 1.4 4.3 2.9 2004-2008 

Silicon 0.2278 > 0.05 No N/A 6.2 6.7 0.5 2004-2008 

Total 

Base 

Cations 0.2429 > 0.05 No N/A 5.8 6.2 0.4 2004-2008 

Calcium 0.4808 > 0.05 No N/A 4.7 5 0.3 2004-2008 

Appendix Table B-2: summary statistics for trends in deep soil solution independent of 

landscape position. Significant trends are indicated by the column with the header: Sig? 

Direction indicates whether trends are positive or negative, Min indicates the minimum 

measured value (mg/L for all but pH), Max indicates the maximum measured value, range 

indicates the range of values measured, Years indicates the range of years included in the 

analysis.  
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  R2 P Sig? Direction Min Max Range Years 

pH 0.7661 = 0.05 Yes Negative 5.5 6.3 0.8 2004-2008 

Sulfate 0.6966 ~=.05 (.08) Yes Negative 1.55 3.22 1.67 2004-2008 

Nitrate 0.6564 > 0.05 No N/A 0.1 0.2 0.1 2004-2008 

Silicon 0.1825 < 0.05 No N/A 4.6 5.7 1.1 2004-2008 

Total 

Base 

Cations 0.6576 > 0.05 No N/A 3.4 5.8 2.4 2004-2008 

Calcium 0.6739 > 0.05 No N/A 2.4 4.2 1.8 2004-2008 

Appendix Table B-3: summary statistics for trends in shallow soil solution independent 

of landscape position. Significant trends are indicated by the column with the header: Sig? 

Direction indicates whether trends are positive or negative, Min indicates the minimum 

measured value (mg/L for all but pH), Max indicates the maximum measured value, range 

indicates the range of values measured, Years indicates the range of years included in the 

analysis.  
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