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                                                       ABSTRACT 
 
 
 The endosomal trafficking system is a network of highly coordinated cellular 
pathways that control the growth and function of cells. The coordination of secretion and 
endocytosis in cells is one of the primary drivers of polarized growth, where new plasma 
membrane and cell wall components are deposited at the growing apex. In plants, one of 
the cell types exhibiting polarized growth are the root hairs. Root hairs are regulated 
extensions of epidermal cells called trichoblasts and are essential for anchorage, absorption 
of water and nutrients, and plant-microbe interactions. In this thesis, I characterize a 
previously undescribed protein involved in retromer function and endosomal trafficking 
pathways that regulate tip growth in root hairs of Arabidopsis thaliana.  
 The large retromer complex functions in recycling receptors in endosomal 
trafficking pathways essential for diverse developmental programs including cell polarity, 
programmed cell death, and shoot gravitropism in the model plant, Arabidopsis thaliana. I 
have characterized VPS26C, a novel member of the large retromer complex, that is 
essential in maintaining root hair growth in Arabidopsis. We used Bimolecular 
Fluorescence Complementation (BiFC) analysis to demonstrate thatVPS26C interacts with 
previously characterized core retromer subunits VPS35A and VPS29. Genetic analysis also 
indicates that vps26c suppresses the root hair growth and cell wall organization phenotypes 
of a null mutant of the SNARE VTI13 that localizes to early endosomes and the vacuole 
membrane, indicating a crosstalk between the VPS26C-retromer and VTI13-dependent 
vesicular trafficking pathways. Phylogenetic analysis was used to show that VPS26C genes 
are present in most angiosperms but appear to be absent in monocot genomes.  Moreover, 
using a genetic complementation assay, we have demonstrated that VPS26C shares deep 
conservation of biochemical function with its human ortholog (DSCR3/VPS26C).   
 We also used an affinity purification-based proteomic analysis to identify proteins 
associated with VTI13 in young seedlings. Preliminary results suggest that a number of 
proteins linked to cell plate organization in plants are associated with the VTI13 proteome, 
emphasizing the potential role of this pathway in new cell wall biosynthesis/organization. 
Additionally, we have identified endoplasmic reticulum (ER)-body proteins, involved in 
plant defense response pathways, suggesting that either the VTI13 endosomal trafficking 
pathway is functioning in plant defense responses, or the ER-body proteins have additional 
independent function(s) in Arabidopsis roots that depend on VTI13.  
 In summary, I have described a novel retromer complex essential for polarized 
growth in Arabidopsis. VPS26C is an ancient gene and shares sequence and functional 
homology between human and Arabidopsis. vps26c is a genetic suppressor of the vti13- 
dependent root hair growth and cell wall organization pathways. Proteomic analysis of 
VTI13 endosomes in young seedlings suggests that a number of proteins associated with 
cell plate formation are associated with VTI13 compartments, supporting the genetic 
analysis described here and serves as a starting point to further describe the role of this 
pathway in controlling polarized growth in plants.  
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                                        CHAPTER 1: MINI-REVIEW 

                Retromer or Retriever: Role of VPS26C in endosomal trafficking 

Introduction 

The endomembrane system is a highly coordinated network controlling cellular function 

and development in living organisms. This system is responsible for the synthesis, sorting, 

and distribution of proteins within cells in a manner that is often crucial for growth and 

viability.  The endosomal trafficking of cargo to the storage and lytic vacuoles in plants, or 

the lysosome in animal systems, involves the action of Soluble NSF Attachment Receptors 

(SNAREs) that control the fusion of vesicles carrying cargo with the target membrane. The 

VTI (Vacuolar Protein Sorting-ten interacting (Fischer von Mollard, et al., 1997) family of 

SNAREs in Arabidopsis thaliana (Arabidopsis) includes VTI11, VTI12 and VTI13 and 

functions in trafficking cargo between the trans-Golgi network (TGN) or early endosomes 

and the lytic or storage vacuole (Surpin et al., 2003; Niihama et al., 2005; Sanmartin et al., 

2007). Genetic analysis of these proteins has shown that the function of each VTI family 

member is required for distinct aspects of plant growth. VTI11 traffics cargo to the lytic 

vacuole and is essential for shoot gravitropism (Yano et al., 2003) and vascular 

development in leaves (Shirakawa et al., 2009) while VTI12 functions in trafficking 

proteins to the storage vacuole and is critical for autophagy in Arabidopsis (Surpin et al., 

2003; Sanmartin et al, 2007).  VTI13 localizes to membranes of the early endosome and 

lytic vacuole and is important for root hair growth and cell wall organization in Arabidopsis 

(Larson et al., 2014). 
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Coordinated with the process of trafficking cargo to the vacuole is a retrograde pathway 

involving the retromer that is necessary for recycling cargo and endosomal membrane 

proteins to the trans-Golgi network (TGN).  The importance of the retromer complex in 

endosomal trafficking is demonstrated by loss of function mutants that exhibit severe 

developmental disorders in both plant and animal systems (Zelazny et al., 2013; Munch et 

al., 2015; Jha et al., 2018; Williams et al., 2017; Tammineni et al., 2017; Appel et al., 

2018). The coordination of endosomal trafficking pathways between the TGN and the 

vacuole is also underscored by recent studies supporting a genetic interaction between 

specific retromer-dependent endosomal trafficking pathways and a VTI-SNARE 

dependent pathway to the lytic vacuole required for both shoot gravitropism and root hair 

growth in Arabidopsis (Hashiguchi et al., 2010; Jha et al., 2018).  

 

The identity of protein complexes involved in retrograde endosomal trafficking in 

eukaryotes has been recently expanded to include a retromer-like “retriever” complex 

(McNally et al., 2017) that associates with endosomes using a mechanism distinct from the 

retromer complex in human cells, and which functions in the recycling of retriever-specific 

cargo. In this chapter we will summarize our understanding of the retromer complex in 

plants, focusing on a newly described Vacuolar Protein Sorting (VPS) 26 large retromer 

protein (VPS26C) required for root hair growth that appears to have a retriever function, 

in common with the human VPS26C.  In addition, we will discuss genetic studies that 

implicate interactions between trafficking pathways regulated by the retromer in plants and 

the VTI family of SNAREs in controlling plant development.  
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The Classic Retromer Complex 

The retromer complex was initially characterized in yeast and was shown to function in the 

endosome-to-Golgi retrieval of Vps10p, the transmembrane receptor of vacuolar 

carboxypeptidase Y (Seaman et al., 1997). Retromers were subsequently defined to be a 

heteropentameric complex containing large and small subunits. In yeast, the large retromer 

subunit consists of three highly conserved proteins, VPS35, VPS29 and VPS26 (Haft et 

al., 2000; Seaman, 2004) and is responsible for interaction with cargo proteins in a 

retrograde trafficking pathway from endosomes to the TGN (Seaman et al., 1998; Burda et 

al., 2002).  The small subunit of the retromer in yeast consists of a dimer of two nexin 

proteins, VPS5p and VPS17p, that function in membrane binding, curvature and tubulation 

(Horazdovsky et al., 1997; Seaman et al., 1998; Carlton et al., 2004).  

 

In mammalian systems, the large retromer subunit is composed of a single VPS35 and 

VPS29 protein that can complex with one of two VPS26 paralogs, VPS26A and VPS26B 

(Seaman et al., 1998). VPS26A and VPS26B in mice do not appear to be functionally 

redundant (Bugarcic et al., 2011), suggesting that different versions of the large retromer 

complex may function in distinct endosomal trafficking pathways. The small subunit of 

the retromer in mammalian systems is composed of a heterodimer of two sorting nexins 

consisting of either SNX1 or SNX2 and SNX5 or SNX6 and functions in binding 

membranes and recruiting the large retromer subunit to the endosomal membrane 

(Bonifacino et al., 2008; Collins et al., 2008).  While the large and small retromer subunits 

form a stable complex in yeast (Seaman et al., 1998), the interaction between these two 

subunits is much weaker and transient in higher eukaryotes (Harbor and Seaman, 2011; 
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Swarbrick et al., 2011). In addition to the sorting nexins that form the small retromer 

subunit, many animal genomes also encode additional sorting nexins that function in 

retrograde endosomal trafficking pathways involving the retromer complex.  For example, 

SNX3 has been shown to interact with the large retromer subunit and control endosomal 

trafficking pathways involved in sorting Wnt (Harterink et al., 2011), while SNX27 serves 

as a cargo adapter for the large retromer subunit on endosomal membranes (Gallon et al., 

2014). 

 

The retromer in animal systems has been shown to retrieve transmembrane receptors from 

endosomal membranes and recycle them to the TGN. The retromer-mediated retrieval of 

receptors includes Carboxypeptidase Y (Seaman et al., 1997), Bone Morphogenetic Protein 

(BMP) Type I receptor SMA-6 in Caenorhabditis elegans (Gleason et al., 2014), and 

several G-Protein Coupled Receptors (GPCRs) in a range of organisms (Temkin et al., 

2011; Bugarcic et al., 2011), including Drosophila melanogaster (Wang et al., 2014). 

Retromers are also involved in recycling of the phagocytic receptor CED-1 from 

phagosomes to the plasma membrane in C. elegans (Chen et al., 2010), and the 

neurotransmitter receptor, GLR-1, from dendrites to the cell body (Zhang et al., 2012). In 

addition, retromer complexes have been implicated in the retrograde recycling of 

transmembrane proteins from the plasma membrane to the TGN (Bai and Grant, 2015), 

and transport between peroxisomes and mitochondria (Braschi et al., 2010).  

 

A working model that has been used to characterize retromer-dependent trafficking of 

cargo proteins in animal systems involves recognition of cargo by the large retromer 
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subunit bound to the sorting nexin SNX27 on endosomal membranes, recruitment of the 

WASH complex to these membranes to promote interaction of the retromer with the actin 

cytoskeleton, and interaction of the small retromer subunit with the large retromer complex 

to facilitate membrane curvature, tubulation and retrograde transport of cargo.  However, 

two papers (Simonetti et al., 2017; Kvainickas et al., 2017) describing the retrograde 

transport of CI-MPR receptor from late endosomal membranes to the TGN have recently 

brought this model into question.  Both studies showed that the SNX proteins within the 

small subunit of the retromer were required for retrograde trafficking of the CI-MPR 

receptor in humans while down regulation of the VPS35 large retromer subunit had no 

effect on the recycling of this receptor from late endosomal membranes.  These studies 

support a new model for retromer trafficking in which the small subunit of the retromer is 

essential for the retrograde trafficking of receptors from late endosomal membranes to the 

TGN. 

 

Retromer function in plants 

The availability of a number of plant genomes and the strong conservation of retromer   

subunit sequences has been used to identify retromer subunits in a variety of plant species.  

In Arabidopsis, VPS35 and VPS26 are both encoded by three gene family members while 

VPS29 is a single copy gene. In contrast, the small retromer subunit is composed of a 

heterodimer containing SNX1 and either SNX2a or SNX2b, homologs of the yeast VPS5p 

sorting nexin (Niemes et al., 2010).  In plants, genetic studies have shown that the core 

retromer functions independently of its interaction with the sorting nexins (Pourcher et al., 

2010). Analysis of retromer function in Arabidopsis indicates that the large and small 
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subunit of the retromer are required for endosomal trafficking pathways controlling diverse 

aspects of plant development.  Genetic analysis has shown that single vps26a and vps26b 

show no developmental defect in Arabidopsis, but the vps26a vps26b double mutant 

displays severely stunted growth, indicating a redundancy in the function of VPS26 

paralogs (Zelazny et al., 2013).  A similar analysis of VPS35 family members has shown 

that a vps35b vps35c double mutant exhibits a dwarf growth phenotype, early senescence 

and is defective in trafficking proteins to the storage vacuole (Yamazaki et al., 2008).   Loss 

of function mutants for VPS29 exhibit pleotropic growth phenotypes and are defective in 

the auxin homeostasis and endosomal trafficking of PIN1 in conjunction with the small 

retromer subunit protein SNX1 during plant development (Jaillais et al., 2007; Kleine-

Vehn et al., 2008).  Retromer subunit mutants have also been shown to be defective in 

unique aspects of plant development and delineate a role for VPS35A and VPS26A in shoot 

gravitropism (Hashiguchi et al., 2010), VPS35B and VPS26B in maintaining innate 

immunity in plants (Munch et al., 2015), VPS29 in the transport of Sugar- Dependent-1 

(SDP1) from peroxisomes to oil bodies during seedling development (Thazar-Poulot et al., 

2015), and SNX1 in the endosomal trafficking if IRT1 in Arabidopsis roots (Ivanov et al., 

2014).  Together, these results support diverse roles for both the large and small retromer 

subunits in endosomal trafficking pathways that control development in plants. 

 

Evolutionary divergence of VPS26 function in eukaryotes 

Phylogenetic analysis of genes encoding the VPS26 large retromer protein has shown that 

VPS26C/DSCR3 represents a third VPS26 gene family member that is evolutionarily 

conserved and is part of a smaller, monophyletic clade distinct from the VPS26A and 



	

7		

VPS26B homologs across plant and animal species (Koumandou et al., 2011). In 

Arabidopsis, VPS26C forms a retromer-like complex with VPS35A and VPS29 that is 

important in regulation of polarized growth in root hairs (Jha et al., 2018). VPS26C also 

interacts genetically with an endosomal trafficking pathway from early endosomes to lytic 

vacuole involving the SNARE VTI13 (Larson et al., 2014) as a loss-of-function allele of 

vps26c was able to suppress the root hair growth and cell wall organization phenotypes of 

the vti13 mutant. VPS26C orthologs exhibit conservation in biochemical function as the 

human VPS26C/DSCR3 sequence is able to complement the vps26c mutant phenotype in 

Arabidopsis (Jha et al., 2018). Consistent with these results, the human DSCR3/VPS26C 

protein has recently been characterized in human cell culture where it has been shown to 

form a complex with VPS29 and a VPS35-like protein (McNally et al., 2017).  

 

Proteomic and genetic analysis of the VPS26C complex in human cell culture has also 

shown that the VPS26C “retriever” complex participates in endosomal trafficking 

pathways distinct from the retromer complex in humans (McNally et al., 2017). Differences 

in retromer and retriever function are mediated in part by the cargo proteins that they 

recycle to the TGN or plasma membrane, respectively, as well as the cargo adaptor used to 

recruit these two complexes to the endosomal membrane (McNally et al., 2017). The 

functional conservation of VPS26C orthologs raises the interesting possibility that 

VPS26C in Arabidopsis may function in endosomal trafficking pathways that are distinct 

from the retromer complex. Further investigation will be needed to determine the cargo 

and adaptor proteins that associate with the VPS26C complex in plants and whether it 

traffics cargo to the plasma membrane instead of the TGN.   
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Genetic Crosstalk between Retromers and the VTI family of SNAREs 

The VTI family of SNAREs participate in trafficking cargo to the lytic or storage vacuole 

in Arabidopsis (Sanmartin et al., 2007; Larson et al., 2014). Both VTI11 and VTI13 

function in endosomal trafficking pathways to the lytic vacuole while VTI12 traffics cargo 

to the storage vacuole in Arabidopsis. Null mutants for each of these SNAREs exhibit 

unique phenotypes, suggesting that they have distinct functions in plants. vti11 exhibits a 

defect in leaf vasculature (Shirakawa et al., 2009) and aberrant central lytic vacuole 

formation (Sanmartín et al., 2007). These mutants also show a shoot agravitropic 

phenotype establishing the role of VTI11 in endosomal trafficking pathways required to 

maintain shoot gravitropism in plants (Yano et al., 2003). Null mutants of VTI12 display 

no developmental phenotype when grown on a nutrient dense medium, but have 

accelerated senescence when grown on nutrient-deficient media, revealing VTI12’s role in 

plant autophagy (Surpin et al., 2003). vti12 plants also exhibit abnormal accumulation of 

12S globulin precursors in siliques, supporting a role for VTI12 in trafficking of vacuolar 

storage proteins (Sanmartín et al., 2007). vti13 is defective in root hair growth and cell wall 

organization in root epidermal cells and root hairs of Arabidopsis (Larson et al., 2014).  

 

Recent studies have linked the anterograde trafficking pathways to the lytic vacuole 

involving VTI11 and VTI13 with endosomal trafficking pathways mediated by the 

retromer. Hashiguchi et al. (2010) performed a suppressor screen of vti11 and found that 

mutations within genes encoding the core retromer proteins VPS35A and VPS26A were 

sufficient to suppress the vti11 shoot agravitropic ‘zigzag’ phenotype in double mutants. 

Although the mechanism of this genetic interaction has not been defined, Hashiguchi et al. 
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(2010) discuss the possibility that mis-sorting of membranes to vacuoles, due to the loss of 

the retromer function in vti11 vps26a or vti11 vps35a double mutants, may result in a 

recovery of vacuolar dynamics necessary for the movement of amyloplasts in endodermal 

cells resulting in a restoration of shoot gravitropism. A similar interaction between 

mutations in a retromer subunit and a SNARE has been described by Jha et al. (2018), 

where a loss-of-function mutation for VPS26C was shown to restore the root hair growth 

and wall organization phenotype of vti13. While the cellular mechanism responsible for 

this suppression is currently unknown, it is interesting to note that VPS35A physically 

interacts both with VPS26A and VPS26C in Arabidopsis (Zelazny et al., 2013; Jha et al., 

2018) and that VPS35B and VPS35C cannot substitute for VPS35A in endosomal 

trafficking pathways controlling shoot gravitropism (Hashiguchi et al., 2010).  VPS35A 

function has also been shown to be required for trafficking of cargo to the lytic vacuole 

(Nodzyński et al., 2013), indicating that retromer function may be required for both 

multiple trafficking pathways between the lytic vacuole and the TGN.  An understanding 

of the coordination of endosomal trafficking pathways required for trafficking of cargo 

between the TGN and lytic vacuole and the identity of other proteins involved in these 

pathways will be required to determine cellular mechanisms that mediate these diverse 

developmental processes.
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SUMMARY 
 

The large retromer complex participates in diverse endosomal trafficking pathways and is 

essential for plant developmental programs including cell polarity, programmed cell death, 

and shoot gravitropism in Arabidopsis. Here we demonstrate that an evolutionarily 

conserved VPS26 protein (VPS26C; At1G48550) functions in a complex with VPS35A 

and VPS29 necessary for root hair growth in Arabidopsis.  Bimolecular Fluorescence 

Complementation showed that VPS26C forms a complex with VPS35A in the presence of 

VPS29 and this is supported by genetic studies showing that vps29 and vps35a mutants 

exhibit altered root hair growth.  Genetic analysis also demonstrated an interaction between 

a VPS26C trafficking pathway and one involving the SNARE VTI13. Phylogenetic analysis 

indicates that VPS26C, with the notable exception of grasses, has been maintained in the 

genomes of most major plant clades since its evolution at the base of eukaryotes. To test 

the model that VPS26C orthologs in animal and plant species share a conserved function, 

we generated transgenic lines expressing GFP fused with the VPS26C human ortholog 

(HsDSCR3) in a vps26c background.  These studies illustrate that GFP-HsDSCR3 is able 

to complement the vps26c root hair phenotype in Arabidopsis, indicating a deep 

conservation of cellular function for this large retromer subunit across plant and animal 

kingdoms.  

 

SIGNIFICANCE 
 
A large retromer complex protein, representative of an ancient clade of VPS26 sequences, 

is required for root hair growth in Arabidopsis.  VPS26C function is conserved across 

eukaryotes and contributes to polarized growth and cell wall organization in plants. 
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INTRODUCTION  
 

Endosomal trafficking pathways affects many developmental processes in plants through 

the internalization of proteins at the plasma membrane, trafficking of cargo to the lytic and 

storage vacuoles and recycling of plasma membrane components (Geldner et al., 2001; 

Surpin et al., 2003; Sanmartin et al., 2007; Kleine-Vehn et al., 2008a, 2008b).  The 

polarized growth of root hairs has been shown to depend on endosomal trafficking 

pathways (Voigt et al., 2005; Ovecka et al., 2005; Preuss et al., 2006; Larson et al., 2014a) 

and represents a powerful system to characterize cellular components that are essential for 

tip growth and cell wall organization in plants.  The retromer complex functions in 

endosomal trafficking of membrane receptors from endosomes to the Golgi in yeast 

(Seaman et al., 1997) and consists of multi-protein complexes that are broadly conserved 

across eukaryotes (Oliviusson et al., 2006; Koumandou et al., 2011).  Recently, a 

phylogenetic analysis of Vacuolar Protein Sorting 26 (VPS26) genes, encoding a member 

of the large retromer complex, identified a monophyletic clade of sequences including 

Arabidopsis VPS26C (At1g48550), that represent an ancient clade which evolved prior to 

the divergence of animals and plants (Koumandou et al., 2011).  The identification of 

VPS26C orthologs in both animal and plant species within this ancient clade led us to 

investigate two questions:  what is the function of VPS26C in Arabidopsis, and is the 

function of VPS26C orthologs conserved across eukaryotes?   

 

Retromers were first characterized in yeast (Horazdovsky et al., 1997; Seaman et al., 1997; 

Nothwehr and Hindes, 1997; Paravacini et al., 1992) as a complex required for transporting 

membrane proteins from the late endosome to the trans-Golgi network (TGN) and are 
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composed of a large cargo-binding subunit consisting of VPS35, VPS29 and VPS26 

proteins, and a small subunit consisting of sorting nexin dimers (VPS5 in yeast; SNX1/2 

in animals and plants). Yeast and mammalian systems encode a single VPS35 and VPS29 

gene while two VPS26 paralogs have been identified as large retromer subunits in several 

mammalian systems (Edgar & Polak, 2000; Haft et al., 2000; Kerr et al., 2005).  In contrast, 

Arabidopsis encodes three VPS35 proteins, two VPS26 proteins and three sorting nexins 

(Jaillais et al., 2006; Oliviusson et al., 2006; Pourcher et al., 2010). Initial studies in yeast 

and mammalian systems suggested that a pentameric retromer complex composed of both 

the small and large subunits is required for endosomal trafficking of cargo from late 

endosomes to the TGN (Seaman et al., 1997).  However, more recent studies suggest that 

the large and small subunits of the retromer in both mammalian and plant systems may also 

function independently in regulating specific trafficking pathways (Pourcher et al., 2010; 

Gallon and Cullen, 2015). 

 

In Arabidopsis, genetic analysis of the role of the large retromer complex indicates that it 

is essential for multiple processes in plant development, including cell polarity and organ 

initiation (Jaillais et al., 2007), immunity-associated cell death (Munch et al., 2015) and oil 

body biogenesis and breakdown during vegetative growth (Thazar-Poulot et al., 2015). 

Additionally, the large retromer complex, consisting of VPS26A and VPS35A, is critical 

for shoot gravitropism in Arabidopsis and has been shown to share a genetic pathway with 

the SNARE protein VTI11 (Hashiguchi et al., 2010), that functions in anterograde 

membrane trafficking pathways between the TGN and the late endosome/vacuole (Zheng 

et al. 1999).  
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The large retromer complex was initially proposed to traffic vacuolar sorting receptors 

(VSRs) from the pre-vacuolar compartment(s) (PVC) to the TGN (Yamazaki et al., 2008; 

Kang et al., 2012). However, recent studies indicate that VSRs in plants bind their ligands 

in the ER and Golgi and are trafficked to the TGN where the bound ligands dissociate from 

their receptors and the free VSRs are recycled back to the Golgi (Kunzl et al., 2016; Fruholz 

et al., 2017). These data support a model in which sorting nexins, localized to the TGN, 

may be involved in the retrograde sorting of VSRs in plants (Robinson et al., 2016). This 

is consistent with recent studies in animal systems (Kvainickas et al., 2017; Simonetti et 

al., 2017), where sorting nexin (SNX) heterodimers are responsible for the retrograde 

trafficking of the mannose-6-phosphate receptor (CI-MPR) from endosomal membranes to 

the TGN, in a process that is independent of the large retromer subunit. 

 

The subcellular localization of the large retromer complex in plants is still controversial (for 

review, see Robinson and Neuhaus, 2016). VPS35 proteins have been localized to both 

multivesicular bodies (MVBs)/PVCs (Oliviusson et al., 2006; Yamazaki et al., 2008; 

Munch et al., 2015) as well as an endosomal compartment that lacks VSRs (Yamazaki 

et al., 2008). In contrast, VPS29 has been localized to the TGN along with sorting nexins 

(Jallais et al., 2006, 2007; Niemes et al., 2010). These differences in subcellular 

localization may be due to the large retromer complex protein member studied (VPS35 

vs VPS29) or may suggest that different versions of the large retromer complex associate 

with distinct membrane populations in Arabidopsis during growth. 

 

The presence of multiple VPS35 and VPS26 paralogs in Arabidopsis and other eukaryotes 

presents the opportunity for different versions of the large retromer complex to regulate 
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distinct endosomal trafficking pathways. In mouse, VPS26A and VPS26B are non-

redundant in function as deletion of VPS26A results in embryonic lethality while VPS26B 

knockout mice appear normal (Kim et al., 2010). In Arabidopsis by comparison, whereas 

vps26a and vps26b single mutants appear similar to wild type in their growth habit, growth 

of the vps26a vps26b double mutant is severely compromised (Zelazny et al., 2013) 

suggesting that VPS26A and VPS26B may share some redundancy in function.  

Nonetheless, genetic and cell biology approaches have identified several unique functions 

for VPS26 and VPS35 paralogs in Arabidopsis. For example, VPS35A and VPS29 were 

found to be important for trafficking of membrane proteins to the PVC (Nodzynski et al., 

2013) while mutations in VPS35A and VPS26A are capable of suppressing the shoot 

gravitropic phenotype of vti11 mutants (Hashiguchi et al., 2010). In contrast, vps35b and 

vps26b are defective in immunity-associated cell death and autophagy (Munch et al., 2015).   

 

In this paper, we establish that VPS26C (At1G48550) is a component of the large retromer 

complex in Arabidopsis and is required for root hair growth. We provide evidence for a 

genetic interaction between the endosomal pathways defined by the VPS26C-retromer 

complex and the SNARE VTI13 in maintaining root hair growth. We also demonstrate that 

the human VPS26C ortholog, HsDSCR3, is able to complement the vps26c root hair growth 

phenotype. These results define a new member of the VPS26 family of proteins in plants, 

provide evidence that the VPS26C/DSCR3 clade share 

deeply conserved cellular function in eukaryotes and establish a role for the large retromer 

complex in regulating root hair growth in Arabidopsis. 
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RESULTS 
 

A VPS26C-VPS29-VPS35A large retromer complex is required for root hair growth 

The VPS26C gene represents the only Arabidopsis member of an ancient gene family 

shared by animals and plants (Koumandou, 2011). In order to determine its function, we 

examined the phenotype of two T-DNA insertion mutants identified in the ABRC 

collection that were confirmed to be nulls based on qRT/PCR (Figure S1). Analysis of 

vps26c root hair growth indicated that the mutant alleles were indistinguishable from wild 

type seedlings when grown on MS medium alone (Figure 1) but that vps26c-1 and vps26c-

2 exhibit much shorter root hairs when grown on MS medium containing 200 mM mannitol 

(Figures 1A, B). Root hairs of vps26c-1 seedlings, expressing a GFP-VPS26C fusion under 

the transcriptional control of either the 35S promoter (Figure S2) or the VPS26C 

endogenous promoter (Figures 1A, B) were indistinguishable from those of wild type 

seedlings when grown in the presence of mannitol (Figures 1A, B).  Similar results were 

observed when GFP-VPS26C was expressed in the vps26c-2 background (Figure S2).  In 

addition, expression of the GFP-VPS26C fusion under the transcriptional control of the 

35S promoter did not cause any root hair growth aberrations in a wild type background 

(Figure S2) 

 

Due to the sensitivity of vps26c root hair growth to mannitol, we also compared root hair 

growth of vps26c to wild type seedlings grown on MS media supplemented with 30 mM 

NaCl.  Low concentrations of NaCl have been shown to reduce root hair growth in 

Arabidopsis, in part through an impact on the tip-localized Ca+2 gradient (Halperin et al., 

2003; Wang et al., 2008).  Root hairs of both vps26c mutant alleles were shorter than those 
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of wild type seedlings when grown on MS media supplemented with 30 mM NaCl and this 

phenotype was complemented by the expression of GFP-VPS26C in the vps26c mutant 

background (Figures 1A, C). To confirm that this phenotype was due to sodium, we 

compared wild type and vps26c seedlings grown on medium supplemented with  

30 mM potassium chloride (Figure S3) and observed no difference in root hair length, 

suggesting that vps26c root hair growth is sensitive to sodium. These results indicate that 

VPS26C function contributes to root hair growth and that the vps26c root hair phenotype 

is sensitive to osmotic and salt stress.   

 

The observation that vps26c exhibited a root hair phenotype on media supplemented with 

mannitol and NaCl led us to hypothesize that VPS26C function may be critical for polarized 

growth under conditions of abiotic stress. To examine this model, we performed qRT-PCR 

to analyze the expression of VPS26C in wild type seedling roots grown on MS medium 

and MS medium supplemented with mannitol or NaCl (Figure 2).  We found that the 

VPS26C transcript is down-regulated in seedlings grown in the presence of mannitol or 

NaCl (Figure 2A). These data corroborate the difference in wild type root hair length 

observed by Halperin et al. (2003) for seedlings grown on MS media supplemented with 

NaCl (Figure S4).  We also compared this expression with that of VSP26A and VPS26B in 

wild type Arabidopsis roots grown on these three media. In contrast to VPS26C, qRT-PCR 

analysis indicated that VPS26A and VPS26B transcripts were both up-regulated by 200 mM 

mannitol whereas only VPS26A showed an up-regulation in the presence of 30 mM NaCl 

in seedling roots while VPS26B remained unaffected (Figures 2B, C).  These results show 

that mannitol and NaCl selectively down-regulate VPS26C in Arabidopsis seedling roots.  
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Further they show that a reduced level of the VPS26C, either due to the presence of 

mannitol or NaCl in the growth media or loss of VPS26C in the T-DNA insertion null 

mutants, negatively impacts growth of root hairs in Arabidopsis. We also used qRT-PCR 

to investigate whether VPS26A or VPS26B were differentially expressed in roots of vps26c 

seedlings when compared to wild type seedling roots (Figure 2D). We found that VPS26A 

transcripts are up-regulated in vps26c roots relative to wild type while VPS26B transcript 

levels were down-regulated in vps26c (Figure 2D).   

 

To genetically dissect the role of other large retromer complex proteins in root hair growth, 

we analyzed T-DNA insertion mutants for the other genes encoding the large retromer 

complex in Arabidopsis. Mutant alleles for each of the VPS35 and VPS26 family members 

(VPS35A; vps35a-2, VPS35B; vps35b-3, VPS35C; vps35c-2, VPS26A; vps26a-3, and 

VPS26B; vps26b-1) and for VPS29 (vps29-6), a single copy gene in Arabidopsis, were 

obtained from the ABRC.  qRT-PCR was used to show that each of these mutants was a 

null or significantly down-regulated (Figure S1 A, B, D-G). Mutant and wild type seedlings 

were then grown for five days on MS medium and MS medium supplemented with 200 

mM mannitol, and the length of their root hairs was compared (Figure 3). Among these 

mutants only vps35a-2, vps29-6, and vps26c-1 showed a significant decrease in root hair 

length when compared to wild type seedlings.  Interestingly, under normal MS media 

conditions vps35a-2 and vps29-6 root hairs were also shorter than those of wild type 

seedlings (Figure S5).  These data provide genetic evidence indicating that VPS26C, 

VPS35A and VPS29 are part of a large retromer complex that functions in a pathway 

important for root hair growth in Arabidopsis. 
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We observed no other developmental phenotypes in vps26c mutants when compared to 

wild type plants when these two genotypes were grown to seed in growth chambers.  In 

addition, qRT-PCR analysis suggested that the VPS26C is expressed at comparatively 

similar levels in various organs throughout growth (Figure S6), a pattern consistent with 

existing microarray data (bar.utoronto.ca/efp/cgi-bin/efpWeb.cgi). These results suggest 

that while VPS26C may function in many cell types throughout plant growth, the VPS26C-

large retromer complex may have a specialized role in maintaining polarized growth in 

root hairs. 

 

VPS26C is part of the large retromer complex containing VPS35A and VPS29. 

The large retromer complex in eukaryotes is composed of VPS35, VPS29 and VPS26 

where VPS26 and VPS35 physically interact with each other in mammalian systems 

(Collins, 2008).  To examine whether VPS26C associates with VPS35 as part of a large 

retromer complex in planta, we used Bimolecular Fluorescence Complementation (BiFC), 

whereby VPS26C was used to generate a fusion with the N-terminal portion of YFP (N-

YFP-VPS26C) and the three Arabidopsis VPS35 genes were each used to create fusions 

with the C–terminal portion of YFP (C-YFP-VPS35) (Figure 4).  Nicotiana benthamiana 

leaves were then transfected with both an Agrobacterium tumefaciens strain containing a 

N-YFP-VPS26C construct and an A. tumefaciens strain containing a plasmid in which a 

VPS35 gene family member was fused to the C-terminal portion of YFP (C-YFP-VPS35).  

Using this assay, we showed that VPS26C interacted in a BiFC complex exclusively with 

VPS35A (Figure 4B).  No evidence for a large retromer complex was observed between 

VPS26C and either VPS35B or VPS35C (Figures 4C, D).  In addition, as was seen by 
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Zelazny et al. (2013) and Munch et al. (2015), a positive BiFC interaction between VPS26 

and VPS35 required the simultaneous expression of VPS29 in this assay (Figure 4E). We 

also observed a positive BiFC interaction between VPS26A and VPS35A that depended 

on the co-expression of VPS29-mCherry (Figure 4A), as has previously been reported by 

Zelazny et al. (2013).  These results demonstrate that VPS26C colocalizes with VPS35A 

in the presence of VPS29 in planta as a large retromer complex and corroborate our genetic 

studies described above, predicting that VPS26C, VPS29 and VPS35A form a large 

retromer complex required for root hair growth in Arabidopsis. 

 

Confocal analysis of Arabidopsis seedlings expressing VPS26C: GFP-VPS26C in a vps26c 

background indicated that VPS26C localizes, at least in part, to a membrane compartment 

in Arabidopsis roots (Figure 5A, 5B).  We used Brefeldin A sensitivity as an assay to 

investigate whether VPS26C may be localized to the TGN, as Niemes et al. (2010) have 

localized VPS29 to both the TGN and the core of a BFA-sensitive compartment. BFA has 

been shown to inhibit GTP exchange factors (Peyroche et al., 1999; Richter et al., 2007, 

2011) and disrupts trafficking pathways between the ER and Golgi as well as endocytosis 

from the plasma membrane to the TGN.  Five-day-old seedlings expressing GFP-VPS26C 

in a vps26c background were incubated in either vehicle alone or 100 µM BFA diluted in 

1X MS media for 90 minutes (Figure 5A).  As a positive control, transgenic seedlings 

expressing the TGN marker VTI12-YFP were also incubated in vehicle alone or 100 µM 

BFA diluted in MS media for 90 min (Fig. 5A). While VTI12-YFP formed “BFA bodies” 

when incubated in the presence of Brefeldin A, VPS26C exhibited no sensitivity to BFA, 

as its cellular distribution appeared similar in both BFA-treated and control seedlings 
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(Figure 5A). This data indicates that VPS26C is not localized to a BFA-sensitive 

compartment in Arabidopsis roots.   

 

The large retromer subunit VPS35A has been shown to localize to late endosomal 

membranes and physically interact with RABG3f, a Rab7 homolog sensitive to 

wortmannin (Zelazny et al., 2013; Singh et al., 2014). Wortmannin targets both PI3K and 

PI4K at concentrations higher than 1 µM and causes swelling and fusion of late endosomal 

membranes in Arabidopsis roots (Jaillais et al., 2008; Niemes et al., 2010; Takac et al., 

2012).  Therefore, to investigate whether VPS26C is associated with a late endomembrane 

compartment, we examined the sensitivity of GFP-VPS26C localization to wortmannin in 

Arabidopsis roots (Figure 5). Five-day-old seedlings expressing GFP-VPS26C in 

a vps26c background were incubated in either vehicle alone or 40 µM wortmannin, diluted 

in 1X MS media for 90 minutes (Figure 5B).  As a positive control, transgenic seedlings 

expressing RABG3f-mCherry were also incubated in vehicle alone or 40 µM wortmannin 

diluted in MS media for 90 minutes (Figure 5B). While RABG3f exhibited sensitivity to 

wortmannin treatment by swelling of endosomal vesicles, and forming “donut-shaped” 

structures, VPS26C cellular organization was unaffected. This data suggests that the 

membrane compartments associated with VPS26C are distinct from endosomal 

compartments sensitive to wortmannin in Arabidopsis roots. 
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The large retromer complex subunit VPS26C and SNARE VTI13 are part of a shared 

endosomal trafficking pathway important for tip growth in Arabidopsis 

Three members of the VTI family of SNARES in Arabidopsis have been characterized.  

VTI11 and VTI12 function in endosomal pathways important for trafficking cargo towards 

the lytic and storage vacuole, respectively (Sanmartin et al., 2007; Surpin et al., 2003), and 

VTI13 is required for root hair growth and localizes to the early endosome and vacuole 

membrane (Larson et al., 2014a). Previous genetic studies using a suppressor screen of the 

vti11 shoot gravitropic phenotype resulted in the identification of mutations in VPS26A and 

VPS35A (Hashiguchi et al., 2010), indicating a genetic interaction between a 

VPS26A/VPS29/VPS35A retromer-dependent pathway and a VTI11 anterograde pathway 

trafficking cargo to the lytic vacuole.  These studies prompted us to investigate whether 

VTI13 and VPS26C, both required for root hair growth, also function in a shared 

endosomal trafficking pathway. To address this, we generated a vti13 vps26c double 

mutant and compared root hair growth of vti13 vps26c with the single mutants and wild 

type seedlings. We found that both vti13 and vps26c exhibited significantly shorter root 

hairs than wild type seedlings when grown in the presence of 200 mM mannitol, and these 

phenotypes were partially suppressed in the vti13 vps26c double mutant (Figure 6).  These 

results provide genetic evidence for a shared trafficking pathway involving the SNARE 

VTI13 and retromer component VPS26C that contributes to root hair growth in 

Arabidopsis.  In addition, our results suggest that the VTI family of SNAREs may function 

in endosomal trafficking pathways in conjunction with the large retromer complex to 

control various aspects of plant development. 
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The observation that vps26c is defective in root hair growth and shares a genetic interaction 

with VTI13 led us to investigate whether VPS26C function might also be essential for cell 

wall organization in roots of Arabidopsis.  We have previously shown that in contrast to 

wild type seedlings, root epidermal and hair cells of vti13 mutants exhibit no surface 

labeling with LM15, a monoclonal antibody that recognizes a xyloglucan epitope in the 

cell wall (Larson et al., 2014a). To explore this question, we used live tissue labeling 

(Larson et al., 2014b) and confocal microscopy to probe xyloglucan organization on the 

surface of root epidermal cells and root hairs in vps26c mutants and the vti13 vps26c double 

mutant. Interestingly, when the vps26c mutation was introduced into a vti13 background, 

root epidermal cells and root hairs were labeled with LM15, unlike the vti13 mutant alone 

(Figure 7).  The suppression of the vti13 phenotype with respect to root hair growth and 

cell wall organization in the vti13 vps26c double mutant provides additional data to 

reinforce a model in which VPS26C and VTI13 contribute to a shared endosomal pathway 

regulating root hair growth and wall organization. 

 

VPS26C orthologs show deep functional conservation in plants and animals 

In Arabidopsis, VPS26A and VPS26B share 91% identity at the amino acid sequence level 

(Figure S7), function redundantly in many aspects of plant development (Zelazny et al., 

2013), and are part of a large clade of sequences that includes orthologs from plant and 

animal species (Koumandou et al., 2011). Two genomic models are provided for VPS26C 

in Arabidopsis.  To distinguish between these models and determine the predicted amino 

acid sequence of VPS26C, we sequenced VPS26C cDNA generated using RNA isolated 

from the vps26c mutant expressing a GFP-VPS26C fusion as a template.  This allowed us 
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to define the genomic model used for VPS26C expression in Arabidopsis (Figure S7A). 

The cDNA sequence shows an alignment with one of the predicted mRNA sequences in 

NCBI, with accession number NM_103751.3, predicting a protein of 327 amino acids.  

When the predicted VPS26C amino acid sequence is compared with that of ATVPS26A 

and ATVPS26B, it was found that VPS26C shares only 20% and 22% amino acid identity 

with VPS26A and VPS26B, respectively (Figure S7B).  This divergence in amino acid 

sequence between the VPS26 family members in Arabidopsis is also reflected by a recent 

phylogenetic analysis of VPS26 orthologs in eukaryotes (Koumandou et al., 2011) that 

indicates VPS26C is present in a separate clade from VPS26A and VPS26B.  Moreover, the 

phylogenetic analysis of Koumandou et al. (2011) supports an ancient duplication event 

within the VPS26 gene family prior to the diversification of plants and animals, giving rise 

to two eukaryotic lineages, the VPS26A/B clade and the VPS26C/DSCR3 clade. 

 

To examine the diversity of plant orthologs specifically within the VPS26C/DSCR3 clade, 

we queried plant genome and transcriptome databases and generated a phylogenetic tree 

based on predicted amino acid sequences. These analyses identified a single VPS26C 

ortholog in Amborella trichopoda, a species sister to other extant angiosperms, as well as 

in many eudicots (Figure 8). Surprisingly, unlike VPS26A and VPS26B genes (Koumandou 

et al. 2011), VPS26C sequences were not identified from any of the grass genomes 

examined. Based on copy number and the amino acid tree topology, our data support the 

loss of VPS26C specifically in the lineage leading to monocots, or at least within the grass 

clade of monocots. 
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To examine the sequence conservation of VPS26C/DSCR3 orthologs, we compared the 

amino acid sequence of VPS26C from Arabidopsis with that predicted for the DSCR3 

protein from humans (HsDSCR3) (Figure 9).  An alignment of these sequences indicated 

that the proteins are 40% identical at the amino acid sequence level (Figure 9A).  The 

identification of VPS26C orthologs in both animal and plant species led us to examine 

whether the function of these orthologs is conserved across eukaryotes.  To this end, we 

transformed vps26c-1 and vps26c-2 with a 35S-driven GFP fusion to the human ortholog, 

DSCR3, and examined its ability to complement the Arabidopsis vps26c root hair growth 

phenotype.  Comparison of root hair length between wild type, the vps26c mutant, and the 

vps26c mutant expressing HsDSCR3/VPS26C showed that expression of the human 

sequence is sufficient to complement the root hair growth phenotype of vps26c in 

Arabidopsis (Figures 9B and C; Figure S2h). These results support a model in which the 

function of the human DSCR3 ortholog is similar to VPS26C from plants. 
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DISCUSSION 
 

VPS26C encodes a large retromer subunit essential for root hair growth  

In this paper, we have characterized VPS26C as a new member of the VPS26 family in 

Arabidopsis and have shown that loss-of-function alleles of VPS26C have a negative effect 

on root hair elongation in the presence of environmental stresses, such as mannitol or NaCl 

(Figure 1).  BiFC analysis supported the role of VPS26C as part of a large retromer 

complex by showing that VPS35A was the sole member of the VPS35 protein family to 

form a complex with VPS26C and that this interaction required co-expression of AtVPS29 

(Figure 4).  The lack of interaction between VPS26C and VPS35B or VPS35C in the BiFC 

assay, two proteins which are encoded by the same family of genes and those sharing 

significant homology with VPS35A, in addition to the positive control showing a previously 

characterized interaction between VPS35A and VPS26A using this assay (Zelazny et al., 

2013), provides strong evidence for the specificity of these interactions (Kudla and Bock, 

2016). The formation of the VPS35A/VPS29/VPS26C protein complex in planta, 

therefore, demonstrates yet another retromer complex functioning in plant systems.  

 

An examination of T-DNA insertion mutants for the known retromer subunits in 

Arabidopsis showed that only vps26c, vps35a and vps29 exhibited a root hair growth defect 

(Figure 3).  The root hair phenotype of vps26c was the most severe in this assay.  For 

VPS29, the milder root hair growth phenotype is likely due to our use of a vps29 allele that 

is slightly leaky (Figure S1), while the less severe phenotype of vps35a may be due to the 

ability of VPS35B or VPS35C to substitute in part for VPS35A function in vivo.  In 

contrast, the severe phenotype of vps26c in these studies may be due to the inability of 
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VPS26A or VPS26B to compensate for the loss of VPS26C in regulating root hair growth 

(Figure 1).  While VPS26A transcript is upregulated in the vps26c mutant (Figure 2), the 

amino acid sequence similarity between these two proteins is relatively low (Figure S7), 

suggesting that they may not have redundant functions. 

 

While the genetic analysis of vps26c alleles in Arabidopsis initially suggested to us that a 

VPS26C-large retromer complex functions in endosomal trafficking pathways in response 

to abiotic stress, the down-regulation of VPS26C expression in roots of seedlings grown on 

media supplemented with mannitol and NaCl indicates that VPS26C-retromer function 

may be coordinated with other cellular mechanisms required for root hair growth.  Halperin 

et al. (2003) has shown that treatment of root hairs with low concentrations of NaCl also 

reduces root hair growth in Arabidopsis through a disruption of a tip-localized Ca+2 

gradient.  While we confirmed that root hair growth in wild type seedlings was affected by 

low concentrations of NaCl under our growth conditions (Figure S4), vps26c exhibited 

even shorter root hairs and both the mannitol and Na-induced phenotypes were 

complemented by a GFP-VPS26C fusion. The sensitivity of vps26c mutant root hairs to 

osmotic and salt stress suggests that this large retromer complex 

[VPS26C/VPS29/VPS35A] may function in a coupled manner with other cellular 

pathways required for root hair growth in Arabidopsis. 

 

VPS26C functions in a cellular pathway that interacts with SNARE VTI13 

A small gene family in Arabidopsis encoding the VTI-SNARES function in distinct 

processes during plant growth. VTI11 is essential for shoot gravitropism (Yano et al., 2003) 
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and loss-of-function mutations in retromer subunits VPS35A and VPS26A are able to 

suppress the vti11 shoot agravitropic phenotype (Hashiguchi et al., 2010). We have 

previously shown that VTI13 is essential for root hair growth and root epidermal cell wall 

organization in Arabidopsis (Larson et al., 2014a). Here, we show that the vti13 vps26c 

double mutant partially suppresses the root hair growth defect that is exhibited by each of 

the single mutants (Figure 6). This result indicates a genetic interaction between VTI13- 

and VPS26C-dependent pathways. These data also support a model in which trafficking 

pathways to the lytic vacuole that involve the SNARES VTI11 and VTI13 are coordinated 

with the function of distinct VPS26-large retromer complexes. 

While a cellular mechanism to explain these genetic interactions has not yet been 

determined for either VTI11 or VTI13, several possibilities exist.  It is possible that 

mutations in large retromer subunits enhance the ability of other VTI-family members to 

substitute for VTI13 function in root hair growth.  This model has been put forward for the 

genetic interaction between VTI11 and a large retromer complex containing VPS26A and 

VPS35A (Hashiguchi et al., 2010). We have shown that VPS26A transcript is up-regulated 

in roots of vps26c suggesting that VPS26A may function to partially suppress the root hair 

phenotype in the vti13 vps26c double mutant. However, other potential mechanisms need 

to be considered. The large retromer complex protein VPS35A regulates trafficking of 

cargo to the lytic vacuole (Nodzyński et al., 2013) and VPS35B function is required for 

normal function of late endocytic compartments in plants (Munch et al., 2015). Thus large 

retromer complex function may be required for both anterograde and retrograde trafficking 

pathways between the lytic vacuole and the TGN.  
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We had previously shown that epidermal cell wall organization of vti13 root epidermal 

cells and hairs is defective in xyloglucan organization (Larson et al., 2014a).  Interestingly, 

we found that when a vps26c mutation is introduced into the vti13 background, xyloglucan 

staining is indistinguishable from that of wild type (Figure 7).  The observation that 

xyloglucan can be detected in roots of the vti13 vps26c double mutant indicates that the 

defect in vti13 wall organization is not due to defects in xyloglucan synthesis. While future 

experiments will be needed to define a cellular mechanism responsible for the vti13 and 

vps26c root hair phenotypes, this data supports a model in which the vps26c mutant can 

suppress both the vti13 root hair growth phenotype and xyloglucan organization phenotype 

within the vti13 vps26c double mutant.  

 

VPS26C associates with endosomal membranes insensitive to Brefeldin A and 

wortmannin 

VPS35A has been localized to the pre-vacuolar membrane and is required for the 

trafficking of membrane proteins in plants (Nodzynski et al., 2013) while VPS35B has 

been localized to a wortmannin-sensitive, late endosomal compartment in Arabidopsis 

(Munch et al., 2015).  In addition, proteomic studies have localized VPS35A and VPS35B 

to a RABG3f-enriched compartment (Zelazny et al., 2013; Heard et al. 2015), consistent 

with their presence on late endosomal membranes.  In contrast, Niemes et al., 2010, has 

localized VPS29 to the TGN in Arabidopsis while Jaillais et al. (2007) found VPS29 to 

localize to a wortmannin-sensitive compartment together with SNX1 and RABF2b.  To 

investigate the nature of the membrane compartment associated with VPS26C in roots, we 

contrasted the cellular distribution of GFP-VPS26C and VTI12-YFP in control seedlings 
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and seedlings treated with Brefeldin A.  We also compared control seedlings and seedlings 

expressing GFP-VPS26C or RABG3f-mCherry treated with wortmannin (Figure 5A, B).  

These studies showed that while VTI12-YFP, a TGN marker (Sanderfoot et al., 2001), was 

sensitive to BFA and RABG3f-mCherry, a late endosomal marker (Singh et al., 2014), was 

sensitive to wortmannin, the cellular distribution of GFP-VPS26C on cellular membranes 

was unaffected by either of these compounds in root epidermal cells.   

 

Recent analysis of the subcellular localization of VPS26C (DSCR3) in human cell culture 

indicates that a VPS26C/VPS29/VPS35L protein complex resides on endosomal 

membranes, with VPS26C directly interacting with SNX17 while the classical retromer 

complex in humans involves an interaction between VPS35 and the WASH complex in 

association with SNX27 (McNally et al., 2017).  These authors also demonstrated that the 

human complex containing VPS26C, termed the “retriever”, is responsible for recycling a 

distinct subset of proteins to the plasma membrane when compared to the classical retromer 

complex in humans (McNally et al., 2017).  These results open up the possibility that 

VPS26C in Arabidopsis may also be part of a “retriever” complex in plants and may not 

share a similar intracellular localization with previously studied large retromer complexes.  

Future experiments, focused on identifying membrane proteins that associate with the 

VPS26C/VPS29/VPS35A complex in plants, their intracellular location and the cargo that 

may be recycled by this complex will assist in demonstrating the identity of the membranes 

that this complex localizes to, as well as define its role in endosomal trafficking pathways 

required for polarized growth in root hairs.   
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VPS6C shares a conserved cellular function across eukaryotes 

Amino acid sequence comparisons showed that while VPS26C shares low amino acid 

sequence similarity with VPS26A and VPS26B in Arabidopsis (Figure S7), it shares 

significant similarity with DSCR3-like sequences present in both animals and plants 

(Koumandou et al., 2011). We used phylogenetic analysis to show that a single VPS26C 

gene is found in the genomes of most land plants surveyed (Figure 8), although it appears 

to be absent from the genomes of monocots for which genomic data are available.  This 

raises the interesting question of whether VPS26A and/or VPS26B can compensate for the 

loss of VPS26C in retromer-dependent pathways controlling monocot tip growth, or 

whether monocots utilize a different endocytic trafficking pathway to regulate root hair 

growth.  Further experiments will be required to determine if functional orthologs of the 

Arabidopsis VPS26C protein exist in monocot species.   

 

Comparison of ATVPS26C and HSDSCR3 amino acid sequences indicated a conservation 

of protein sequence between these orthologs (Figure 9).  Therefore, we asked whether 

VPS26C/DSCR3 orthologs are conserved in function across animal and plant kingdoms.  

We found that a GFP-HsDSCR3 fusion was able to complement the root hair growth 

phenotype of vps26c-1 and vps26c-2, indicating that the human ortholog can carry out all 

the functions of VPS26C needed for root hair growth (Figure 9).   

 

The ability of HsDSCR3 to complement the vps26c root hair phenotype in Arabidopsis 

suggests that VPS26C/DSCR3 proteins have a conserved function in eukaryotic cells. A 

VPS26C/HsDSCR3 complex, termed the “retriever” has been characterized within human 
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cells and has been shown to function in an endosomal trafficking pathway that involves the 

recycling of a number of membrane proteins (McNally et al., 2017).  A proteomic analysis 

of the VPS26C-retriever complex was shown to include a minimum of 10 proteins involved 

in ARP2/3 activation and membrane binding (McNally et al., 2017).  Interestingly, many 

of these proteins do not have homologs in plants. Thus, future studies will be necessary to 

identify other proteins that interact with the VPS26C/VPS35A/VPS29 complex in a 

cellular pathway regulating polarized growth and cell wall organization in Arabidopsis. 
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EXPERIMENTAL PROCEDURES 

Plant material, T-DNA insertion verification, and growth conditions 

Analysis of wild type and SALK mutant lines was performed using the Columbia-0 ecotype 

of Arabidopsis. The growth medium for Arabidopsis seedlings consisted of 1X Murashige-

Skoog (MS) salts (Murashige and Skoog, 1962), 1% (w/v) sucrose, 5 mM 4-

morpholineethanesulfonic acid sodium salt (MES), pH 6, 1X Gamborg’s vitamin solution, 

and 1.3% (w/v) agarose (Invitrogen). For plants grown to maturity, seeds were sown on 

soil (Transplanting mix, Gardener’s Supply, Intervale Rd, Burlington, VT) and placed in 

Conviron MTR30 growth chambers (Conviron, Winnipeg, CA, USA), using cool-white 

lights (80 µmol/m2/sec; Licor photometer LI-189) under a 16:8 h light: dark cycle at 19° 

C. Two vps26c T-DNA mutant alleles, SALK_100616 (vps26c-1) and SALK_036953 

(vps26c-2), were obtained from the Arabidopsis Biological Research Center (ABRC) and 

PCR was used to confirm the T-DNA insertion in VPS26C (AT1G48550; NCBI Reference 

sequence: NC_003070.9) (Figure S8). To generate the vti13 vps26c double mutant, vps26c-

1 homozygotes were crossed with vti13 homozygotes and F2 plants were genotyped for 

the two mutations using PCR. Seedlings homozygous for both the vps26c and vti13 T-DNA 

insertion alleles were grown to seed and T3 seedlings were analyzed for root hair growth. 

Primer sequences used for genomic PCR are listed in Table S1. 

 

The vps26c-1 and vps26c-2 mutants were transformed separately with 35S:GFP-VPS26C 

and VPS26C:GFP-VPS26C and transgenic lines containing these constructs were selected 

for BASTA resistance. T3 homozygous lines expressing the GFP-VPS26C constructs were 

analyzed for complementation of the vps26c mannitol/NaCl root hair phenotype. In 
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addition, vps26c mutants were transformed with the VPS26C human ortholog (35S:GFP-

HsDSCR3) and seedlings from homozygous lines expressing GFP-HsDSCR3 were 

analyzed for complementation of vps26c root hair phenotypes.  

 

Characterization of root hair phenotypes 

Seeds were sterilized using 20% (v/v) bleach, followed by 5-6 washes in sterile distilled 

water. The sterilized seeds were stored in sterile water overnight in the dark at 4° C before 

plating them on solid media. Seedlings were grown on MS medium using petri plates 

placed vertically under continuous white light at 20°C for five days. Where indicated, 200 

mM mannitol or 30 mM NaCl was included in the growth medium. To characterize root 

hair shape and growth, seedlings were mounted in sterile water on glass slides. Images 

were taken using a Nikon Eclipse TE200 inverted microscope with SPOT imaging software 

(Diagnostic Instruments). The length of 10-15 root hairs/seedling for at least 10 seedlings 

per genotype were measured, using the calibrating tool in the SPOT software, and a 

Student’s t-test was used for statistical analysis.  

 

Construction of GFP-VPS26C fusions 

To generate the 35S: GFP-VPS26C construct, VPS26C was amplified by PCR using 

genomic DNA and primers described in Supplementary Table 1. The VPS26C PCR product 

was cloned into pENTR (Invitrogen) and was subsequently recombined into pB7WGF2 to 

create a 35S: GFP-VPS26C fusion. This construct was transformed into E.coli, DH5α, and 

subsequently into Agrobacterium tumefacians, GV3101, and was used to transform 
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35S:GFP-VPS26C into Arabidopsis using the floral dip method (Clough & Bent, 1998; 

Zhang et al., 2006).  

 

To generate the GFP-HsDSCR3 fusion, cloned HsDSCR3 cDNA was purchased from 

Origene technologies (Cat. No.- RC210755) and used as a template for PCR amplification 

with primers described in Table S1.  The HsDSCR3 PCR product was cloned into pENTR 

(Invitrogen) and transformed into Escherichia coli, strain DH5α. The insert was confirmed 

by PCR, and subsequently recombined into pB7WGF2 using Gateway technology, 

according to manufacturer’s instructions. The GFP-HsDSCR3 construct in pB7WGF2 was 

transformed into A. tumefaciens and then into Arabidopsis as described above. 

 

To generate a VPS26C: GFP-VPS26C construct, 2 kb of genomic sequence upstream of 

the VPS26C translation start codon was amplified using primers containing a SacI and a 

SpeI restriction site at their respective 5’-ends (see Table S1). The VPS26C promoter PCR 

product was cloned into pENTR (Invitrogen), digested with SacI and SpeI, and ligated 

upstream of GFP-VPS26C in the B7WGF2 backbone that had previously been digested 

with SacI and SpeI to remove the 35S promoter.  The VPS26C: GFP-VPS26C construct 

was transformed into E. coli DH5α and subsequently into A. tumefacians, strain GV3101 

for transformation into Arabidopsis.  

 

RNA isolation and transcript analysis using RT-PCR and qRT-PCR 

For transcript expression analysis across the developmental stages of Arabidopsis, 7-day-

old seedling roots, 7-day-old whole seedlings, leaves (45-day-old plant, 10-12 leaved 
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rosette, bolted), stems, open flowers and green siliques were collected for three biological 

replicates.  For null mutant analysis, seven-day-old seedlings were pooled from each 

genotype and three biological replicates were generated for RNA extraction. For all other 

RT-PCR and qRT-PCR assays, five-day-old seedling roots were used for RNA isolation. 

Roots from approximately 200 seedlings were pooled for each genotype and treatment and 

three biological replicates were generated. Root tissue was excised from the seedlings 

leaving only the differentiation, elongation, and meristematic regions of the root. All 

isolated tissues were frozen, ground in liquid nitrogen, and stored at -80°C. Total RNA was 

extracted using a Qiagen RNeasy Plant Mini Kit, quantified using a nanodrop 

(ThermoScientific) followed by generation of first strand cDNA using Superscript II 

Reverse Transcriptase (Invitrogen), according to the manufacturer’s instructions.  For 

semi-quantitative RT-PCR, root cDNA was used as a template, and PCR products were 

amplified using Phusion polymerase (New England Biolabs) according to the 

manufacturer’s instructions. For quantitative RT-PCR, the first-strand cDNA was diluted 

1:10 and then used as a template with iTaq Universal SYBR green Supermix (Bio-Rad). 

An Applied Biosystems Step-one Plus instrument was used to run the qRT-PCR. Three 

technical and three biological replicates were used for each qRT-PCR cycle. The 

differential expression values of transcripts were standardized against the transcript 

expression of EF1α and ACT2 housekeeping genes. The sequence of primers used for RT- 

and qRT-PCR are described in Supplemental Table 1.  
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BiFC analysis  

Full-length genomic clones were amplified for VPS26A, VPS26C, VPS29, VPS35A, 

VPS35B and VPS35C using Arabidopsis seedlings. The primers used for each of the PCR 

reactions are listed in TableS1. VPS26A and VPS26C were each cloned into the destination 

vector pSAT4-DEST-nEYFP-C1 (CD3-1089, ABRC) to create N-terminal YFP fusion 

constructs. VPS35A, VPS35B and VPS35C were each cloned into destination vector 

pSAT5-DEST-cEYFP-C1 (CD3-1097, ABRC) to form C-terminal YFP fusion constructs. 

VPS29 was amplified using primers containing KpnI and BamHI restriction enzyme 

sequences at their 5’-ends and cloned into pENTR (Invitrogen). Both VPS29 in pENTR 

and the destination vector pSAT6-mCherry-C1-B (CD3-1105, ABRC) were digested with 

KpnI and BamHI, gel purified and a mCherry-VPS29 fusion was generated using T4 DNA 

ligase and the pSAT6 backbone. All constructs were transformed into E.coli strain DH5α. 

The presence of VPS sequences was confirmed using PCR, followed by transformation 

into A. tumefaciens, strain GV2260 before transfecting into Nicotiana benthamiana leaves. 

 

N. benthamiana leaves were co-transformed with two A. tumefaciens strains containing a 

N-terminal YFP-VPS26C fusion and a C-terminal YFP fusion to either VPS35A, VPS35B, 

or VPS35C in a manner similar to that described by Munch et al. (2015) with the following 

changes.  N-terminal YFP-VPS26A was co-transformed with a C-terminal YFP fusion to 

VPS35A as a positive control.  All transformations also included an A. tumefaciens strain 

containing VPS29 fused with mCherry.  Overnight cultures of A. tumefaciens containing 

the various YFP fusions were grown with appropriate antibiotic selection at 28°C, pelleted 

and resuspended in 10mM magnesium chloride to reach a final OD600=1.5. Two 
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microliters of 100 mM acetosyringone was added per ml of resuspended bacterial culture.  

Bacterial suspensions were incubated at room temperature in the dark for 4 hours without 

shaking and then infiltrated into the abaxial side of fully expanded 4-week-old N. 

benthamiana leaves (1 ml of culture/leaf). Infected plants were grown under continuous 

light at 20°C for 2-3 days after which leaf tissue was imaged using confocal microscopy.  

 

Confocal microscopy and drug treatment 

Confocal images were obtained using a Zeiss LSM 510 META confocal laser-scanning 

microscope. The LSM META software was used to acquire images, which were then 

processed using ImageJ (https://imageJ.net/Citing). The GFP-VPS26C lines were excited 

with a 488 nm laser and emissions were captured using a 505-530nm band pass filter. The 

YFP protein fusions for BiFC assays were excited with a 514 nm laser and emissions were 

captured using a 530-600 nm band pass filter. The mCherry fusion in the BiFC assays was 

excited with an additional laser of 545 nm and emissions were acquired using a 560-615 

nm band pass filter. All signals were captured sequentially and superimposed in a final 

composite image.   

 

To investigate the sensitivity of VPS26C to BFA or wortmannin, five-day-old seedlings 

were incubated in multi-well plates with either vehicle alone, or with 100 µM BFA or 40 

µM wortmannin diluted in 1X MS medium for 90 minutes before imaging using confocal 

microscopy. Excitation and emission wavelengths for YFP, GFP and mCherry fusions 

were as described above.  VTI12-YFP (WAVE 13Y; CS781654) and RabG3f-mCherry 
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(WAVE 5R; CS781670) were used as positive controls for the BFA and wortmannin 

sensitivity assays, respectively.  

 

Immunohistochemistry of roots and root hairs of Arabidopsis 

For immunofluorescence analysis of roots hairs, the protocol described in Larson et al. 

(2014b) was employed. Briefly, whole roots were washed 3X (5 min each) in fresh MS 

medium and then placed in blocking solution consisting of 1% nonfat Carnation Instant 

Milk in MS for 30 min with gentle agitation. After washing 3X with MS, the roots were 

placed in the primary antibody label consisting of LM15 (Plant Probes; Leeds, UK) diluted 

1/10 in MS for 90 min. After three washes with MS and a 30 min block (see above), the 

roots were then incubated in the secondary antibody label consisting of anti-rat TRITC 

(Sigma Chemical; St. Louis, MO) diluted 1/75 in MS for 90 min. The roots were then 

washed 3X with MS, positioned in the well of immunoslide (EMS; Ft. Washington, PA) 

containing 50 µL MS and then covered with a glass coverslip.  

 

Roots were observed with an Olympus Fluoview 1200 confocal laser scanning microscope 

(CLSM) using a 559 laser and TRITC filter set with an excitation range of 515-550nm and 

an emission range of 600-640nm. Intensity levels of LM15-labeled root hair walls were 

adjusted using the Hi-Lo pseudocolor control of the CLSM.  The captured image was then 

changed to green pseudocolor.  Root hair images were captured at a maximum intensity 

under conditions that did not show any saturation signals. In these experiments, a small 

level of non-specific labeling was observed in root epidermal cells. All labeling was 

repeated 3X and the control included the elimination of the primary antibody step.   
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Phylogenetic Analysis of VPS26C sequences 

For phylogenetic analyses, gene sequences of VPS26C from fifteen angiosperm genomes 

were downloaded from Phytozome (v.12.1) or NCBI. Predicted VPS26C amino acid 

sequences were first aligned with the program Muscle, as implemented in Geneious version 

10.1 (Kearse et al., 2012). The final six positions in the alignment were trimmed from five 

accessions to yield sequences of uniform length. To improve posterior-probability support 

for the phylogeny, the amino-acid alignment was reconstructed with all parameters at 

default values except the gap-open score, which was set to 0 to yield the maximum 

allowable number of gaps. All sites in the alignment with gaps (55 of 336) were removed 

from the dataset, because support values were further improved. The alignment from which 

the gaps were removed is provided in Table S2.   

 

Phylogenetic analysis was performed using the program MrBayes 3.2.6 (Ronquist et al., 

2012) running on EXSEDE via the Cipres Portal (Miller et al., 2010). A Markov Chain Monte 

Carlo analysis was performed for the amino acid sequences with four independent Markov 

chains run for five million generations; trees were sampled every 1000 generations. 

Stationarity was determined using the log-likelihood scores for each run plotted against 

generation in the program Tracer version 1.5 (Rambaut and Drummond, 2007). 25% of the 

trees were discarded as a burn-in phase, and a 50% majority-rule consensus tree was 

calculated for the remaining trees. The species sister to all remaining angiosperms 

(Amborella trichopoda) was used as the outgroup for the phylogenetic analyses (Stevens, 

2012).  
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Statistical Analysis 

Statistical analyses were done using a Student’s t-Test, where pairwise comparison was 

performed between genotypes, or treatments. For example, root hair growth measurements 

were compared in a pair-wise fashion between wild type and each of the mutants 

individually, and significance was accepted at the P<0.05 level. 

 

Accession numbers 

The sequence and T-DNA insertion details mentioned in this publication are available at 

the Arabidopsis Information Resource (TAIR) and are indicated by the following accession 

numbers. The mutant alleles and SALK T-DNA insertion lines used for genetic studies are 

denoted in parentheses, respectiely:  VPS26A, AT5G53530 (vps26a-3, CS831947); 

VPS26B, AT4G27690 (vps26b-1, SALK_142592; Zelazny et al., 2013); VPS26C, 

AT1G48550 (vps26c-1, SALK_100616; vps26c-2, SALK_036953); VPS29, AT3G47810 

(vps29-6, SALK_051994); VPS35A, AT2G17790 (vps35a-2, SALK_079196); VPS35B, 

AT1G75850 (vps35b-3, SALK_052160); VPS35C, AT3G51310 (vps35c-2, 

SALK_099733); VTI13, AT3G29100 (SALK_075261) 
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FIGURE LEGENDS 
 

Figure 1.  
 
vps26c is defective in root hair growth when grown in the presence of mannitol or NaCl. 
 

(A) Wild type, vps26c-1, vps26c-2 and vps26c-1 seedlings expressing VPS26C: GFP-

VPS26C were grown on 1X MS medium, pH 6, 1X MS medium, pH6 supplemented with 

200 mM mannitol, and 1X MS medium, pH 6 supplemented with 30mM NaCl for 5 days 

after which root hairs were imaged using bright field microscopy. Both vps26c mutants 

exhibited root hairs indistinguishable from wild type when seedlings were grown on 

standard MS medium, but showed reduced root hair length when either mannitol or NaCl 

was added to the medium. The vps26c root hair growth phenotypes were complemented in 

vps26c-1 mutant lines expressing VPS26C: GFP-VPS26C for both media conditions. Three 

independent transgenic lines expressing VPS26C: GFP-VPS26C in a vps26c-1 background 

exhibited similar root hair growth phenotypes.  Bars= 100 µm  

 

(B) Average root hair length (µm) of 5-day-old seedlings grown on 1X MS medium, pH 6 

(black bars) and on 1X MS medium, pH6 supplemented with 200 mM mannitol (grey bars). 

Twenty seedlings per genotype per treatment were scored and 10-15 root hairs per seedling 

were measured for each biological replicate.  The graph shows an average of three 

biological replicates.  Asterisks indicate statistical significance according to the Student’s 

t-test, where wild type was compared in a pair-wise manner with each of the genotypes for 

each treatment (P < 0.05). Error bars represent the standard error of the mean of three 

biological replicates. 
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(C) Average root hair length of 5-day-old seedlings grown on 1X MS medium, pH 6 (black) 

and 1X MS medium, pH 6 supplemented with 30 mM NaCl (grey). Twenty seedlings per 

treatment per genotype were scored and 10-15 root hairs per seedling were measured for 

each biological replicate. The graph shows an average of three biological replicates.  

Asterisks indicate statistical significance according to the Student’s t-test, where wild type 

was compared in a pair-wise manner with each of the genotypes individually for each 

treatment (P < 0.05).  Error bars represent the standard error of the mean of three biological 

replicates. 

 

Figure 2.  

Differential expression of VPS26 family members in wild type seedlings grown under 

different media conditions 

 

(A) qRT-PCR was used to quantitate VPS26C transcript levels present in roots of wild type 

seedlings grown on 1X MS medium, pH 6, or 1X MS medium, pH 6 supplemented with 

either 200 mM mannitol or 30 mM NaCl. Seedlings grown in the presence of either 

mannitol or NaCl showed a down-regulation of VPS26C expression when compared to 

wild type seedlings grown on MS alone. Asterisks indicate statistical significance 

according to the Student’s t-test, where a pair-wise comparison was performed between 

VPS26C transcript levels from roots of seedlings grown on MS media and each of the 

treatments (P < 0.05).  Error bars represent the standard error of the mean of three 

biological replicates, run in triplicate. 
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(B and C) qRT-PCR analysis of VPS26A (B) and VPS26B (C) transcript levels in roots of 

wild type seedlings grown on 1X MS medium, pH 6 or seedlings grown on 1X MS medium, 

pH 6 supplemented with either 200 mM mannitol or 30 mM NaCl. In contrast to VPS26C, 

wild type seedlings grown in the presence of either mannitol or NaCl showed an induction 

of VPS26A expression when compared to wild type seedlings grown on MS alone. This 

upregulation is also observed in the expression of VP26B in roots of wild type seedlings 

grown on media containing mannitol. Asterisks indicate statistical significance according 

to the Student’s t-test, where pair-wise comparisons were performed betweenVPS26A or 

VPS26B transcript levels from roots of seedlings grown on MS media and the level of these 

same transcripts in roots of seedlings grown under each treatment condition (P < 0.05). 

Error bars represent the standard error of the mean of three biological replicates, run in 

triplicate. 

 

(D) VPS26B in wild type vs. vps26c seedling roots grown on 1X MS medium, pH 6. 

VPS26A transcript levels were induced in vps26c roots when compared to wild type roots, 

whereas VPS26B transcript levels were down regulated in vps26c roots when compared to 

the wild type roots. Asterisks indicate statistical significance according to the Student’s t-

test, where pair-wise comparisons were performed betweenVPS26A or VPS26B transcript 

levels from roots of wild type seedlings grown on MS media and the level of these same 

transcripts in roots of vps26c seedlings grown on MS media (P < 0.05). Error bars represent 

the standard error of mean of three biological replicates, run in triplicate.  
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Figure 3.  

Large retromer complex mutants vps35a-2, vps29-6 and vps26c-1 share a defect in root 

hair growth. 

 

(A) Average root hair lengths (µm) of T-DNA insertion mutants for the large retromer 

complex were compared to those of wild type seedlings grown on 1X MS medium, pH 6 

supplemented with 200 mM mannitol. Root hairs of 20 seedlings per treatment per 

genotype were scored and 10-15 root hairs per seedling were measured for each biological 

replicate. The data represents the average of three biological replicates. Asterisks denote 

statistical significance (P < 0.05), determined by the Student’s t-test, where wild type root 

hair length was compared in a pair-wise manner with that for each of the retromer mutants 

individually.  Error bars represent the standard error of mean for the three biological 

replicates. 

 

(B) vps26c-1, vps29-6 and vps35a-2 and wild type seedlings were grown on 1X MS 

medium, pH 6 supplemented with 200 mM mannitol for five days and were imaged using 

bright field microscopy to characterize root hair growth. Root hair length of the vps26c-1, 

vps29-6 and vps35a-2 mutant seedlings was significantly reduced when compared to wild 

type seedlings. Bars=100 µm.  Error bars represent the standard error of mean for the three 

biological replicates. 
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Figure 4.   

VPS26C forms a complex with the core retromer component VPS35 in a VPS29 

dependent manner 

 

VPS26C-YN was co-transfected with mCherry-VPS29 and individually with each of the 

VPS35-YC constructs, using Agrobacterium tumefaciens, strain GV2260 into fully 

expanded 3-week-old N. benthamiana leaves. As a positive control, VPS26A-YN was 

shown to interact with VPS35A-YC, demonstrating the effectiveness of this approach (A). 

Bimolecular fluorescent complementation was used to demonstrate the formation of an in 

planta complex between VPS26C-YN and VPS35A-YC, detected by the presence of YFP 

fluorescence (B). This complex also co-localized with mCherry-VPS29 (A and B). No 

fluorescent signal was detected for either VPS35B-YC or VPS35C-YC when co-expressed 

with VPS26C-YN and mCherry-VPS29 in Nicotiana benthamiana leaves (C, and D, 

respectively). In addition, no fluorescent signal was detected when VPS29 was not co-

expressed in the cells containing VPS26C-YN and VPS35A-YC fusions (E).  Lastly, when 

only VPS26C-YN was co-expressed with mCherry-VPS29 (F), no fluorescent signal was 

detected. YN= N-terminal end of YFP, YC= C-terminal end of YFP.  Bars = 10 µm 

 

Figure 5.   

VPS26C localizes to membrane compartments in Arabidopsis roots that are insensitive to 

both Brefeldin A and wortmannin. 

(A) To determine if GFP-VPS26C localized to the TGN, we treated both the transgenic 

seedlings expressing the TGN marker VTI12-YFP and transgenic lines expressing GFP-
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VPS26C with 100 µM Brefeldin A (BFA) for 90 min. VTI12-YFP was sensitive to BFA, 

forming “BFA-bodies” in response to this treatment while GFP-VPS26C showed no 

sensitivity to BFA. Bars =10 µm 

(B) To determine whether GFP-VPS26C localized to late endosomes, we treated transgenic 

seedlings expressing the late endosome marker RABG3f-mCherry and seedlings 

expressing GFP-VPS26C with 40 µM wortmannin for 90 minutes. While RABG3f showed 

sensitivity to wortmannin by forming dilated, donut-shaped structures (highlighted in the 

inset), the localization pattern of GFP-VPS26C was unaffected by wortmannin treatment. 

 Bars = 10 µm 

 
Figure 6.  
 
The vps26c mutant suppresses the polarized root hair growth phenotype of vti13  
 
(A) Wild type, vps26c-1, vti13 and vti13 vps26c double mutant seedlings were grown on 

1X MS media, pH 6 supplemented with 200 mM mannitol for five days and imaged using 

bright field microscopy. Root hairs of the vti13 vps26c double mutant were longer than 

either vti13 or vps26c, indicating a suppression of the polarized growth defect of vti13 in 

the double mutant. Bars = 100 µm 

 

(B) Root hair lengths of wild type, vps26c, vti13 and vti13 vps26c mutants grown for five 

days on 1X MS medium supplemented with 200 mM mannitol. vps26c and vti13 show a 

reduction in root hair length, whereas root hair length of the vti13 vps26c double mutant is 

not significantly different from wild type. Root hairs of 20 seedlings per genotype were 

scored, and 10-15 root hairs per seedling were measured for each biological replicate. An 

average of three biological replicates is displayed above. Asterisks indicate statistical 
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significance (P<0.05), determined by the Student’s t-test, where wild type was compared 

in a pair-wise manner with each of the mutant genotypes individually.  Error bars represent 

the standard error of mean for the three biological replicates. 

 

Figure 7.  

Cell wall organization of xyloglucan in roots of vps26c and the vti13 vps26c double 

mutant is distinct from that of vti13.  

 

Wild type, vps26c-1, vti13, and vti13 vps26c seedlings were grown on 1X MS medium, pH 

6 for 5 days and labeled with LM15, a monoclonal antibody that recognizes a xyloglucan 

epitope in cell walls. Root epidermal cells and root hairs of wild type and vps26c seedlings 

label similarly with LM15 whereas vti13 root epidermal cells and root hairs do not exhibit 

significant LM15 labeling (as previously described in Larson et al., 2014). LM15 labeling 

of xyloglucan in root epidermal cells and root hairs is restored in the vti13 vps26c double 

mutant, indicating that the vps26c mutation can suppress the vti13 cell wall phenotype. 

 

Figure 8.  

VPS26C genes are single copy in most representative angiosperms but have likely been 

lost in monocots. 

 

50% majority rule Bayesian phylogram of angiosperm VPS26C-like genes. Bayesian 

posterior probabilities are given on each interior branch. Branch lengths are in 

substitutions; the scale is provided below the tree.     
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Figure 9.  

AtVPS26C and HsDSCR3 orthologs share 40% amino acid identity and a conserved 

function in Arabidopsis. 

 

(A) Alignment of ATVPS26C and HSDSCR3 illustrates that these orthologs share 40% 

amino acid sequence identity. Legend: (*): fully conserved residues; (:) conserved residues 

with strongly similar properties; (.) conserved residues having less similar properties. 

   

(B, C) Wild type, vps26c-1 and vps26c-1 seedlings expressing 35S:GFP-HsDSCR3 were 

grown on MS media, pH 6 supplemented with 200 mM mannitol for 5 days after which 

root hair growth was imaged using bright field microscopy. Fifteen seedlings per genotype 

were scored and 10-15 root hairs per seedling were measured for each biological replicate. 

The graph represents the average of three biological replicates. Three independent 

transgenic lines expressing GFP-HsDSCR3 in the vps26c mutant background were 

examined. Asterisks denote statistical significance (P<0.05), according to Student’s t-test, 

where wild type root hair length was compared in a pair-wise manner with root hair length 

of vps26c-1 and vps26c-1 seedlings complemented with GFP-HsDSCR3 individually. 

Error bars represent the standard error of mean for the three biological replicates. 
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SHORT LEGENDS FOR SUPPORTING INFORMATION  
 

Table S1: List of Primers 
 

Table S2: Alignment of VPS26C sequences used to generate VPS26C phylogeny 

(consistent with Figure 7)  

Figure S1: T-DNA mutant lines of retromer subunits exhibited strongly reduced gene 

expression. 

Figure S2: Overexpression of VPS26C does not affect root hair growth in wild type 

seedlings and VPS26C/DSCR3 GFP-fusions complement the vps26-2 root hair 

phenotype. 

Figure S3: Root hair length is unaffected when seedlings are grown in MS media 

supplemented with KCl. 

Figure S4: Supplementation of MS media with mannitol and NaCl results in a reduction 

in root hair length in wild type seedlings. 

Figure S5: vps35a and vps29 exhibit shorter root hairs than wild type seedlings 

independent of media conditions. 

Figure S6: qRT/PCR analysis of VPS26C expression in Arabidopsis thaliana. 

Figure S7: Genomic model for VPS26C and alignment of VPS26C with gene family 

members VPS26A and VPS26B.  

Figure S8: Genotyping of WT, vps26c-1, and vps26c-2 expressing the GFP-

VPS26C/DSCR3 fusions using gene-specific primers and genomic PCR. 
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Figure 1.

vps26c is defective in root hair growth when grown in the presence of mannitol or 
NaCl.

(A) Wild type, vps26c-1, vps26c-2 and vps26c-1 seedlings expressing VPS26C: 
GFP-VPS26C were grown on 1X MS medium, pH 6, 1X MS medium, pH 6 
supplemented with 200 mM mannitol, and 1X MS medium, pH 6 supplemented 
with 30mM NaCl for 5 days after which root hairs were imaged using bright field 
microscopy. Both vps26c mutants exhibited root hairs indistinguishable from wild 
type when seedlings were grown on standard MS medium, but showed reduced 
root hair length when either mannitol or NaCl was added to the medium. The 
vps26c root hair growth phenotypes were complemented in vps26c-1 mutant lines 
expressing VPS26C:GFP-VPS26C for both media conditions. Three independent 
transgenic lines expressing VPS26C:GFP-VPS26C in a vps26c-1 background 
exhibited similar root hair growth phenotypes.  Bars= 100 µm

(B) Average root hair length (µm) of 5-day-old seedlings grown on 1X MS 
medium, pH 6 (black bars) and on 1X MS medium, pH 6 supplemented with 200 
mM mannitol (grey bars). Twenty seedlings per genotype per treatment were 
scored and 10-15 root hairs per seedling were measured for each biological 
replicate.  The graph shows an average of three biological replicates. Asterisks 
indicate statistical significance according to the Student’s t-test, where wild type 
was compared in a pair-wise manner with each of the genotypes for each treatment 
(P < 0.05). Error bars represent the standard error of the mean of three biological 
replicates. 

(C) Average root hair length of 5-day-old seedlings grown on 1X MS medium, 
pH 6 (black) and 1X MS medium, pH 6 supplemented with 30 mM NaCl (grey). 
Twenty seedlings per treatment per genotype were scored and 10-15 root hairs per 
seedling were measured for each biological replicate. The graph shows an average 
of three biological replicates. Asterisks indicate statistical significance according 
to the Student’s t-test, where wild type was compared in a pair-wise manner with 
each of the genotypes individually for each treatment (P < 0.05). Error bars 
represent the standard error of the mean of three biological replicates. 
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Figure 2.

Differential expression of VPS26 family members in wild type seedlings grown 
under different media conditions.

(A) qRT-PCR was used to quantitate VPS26C transcript levels present in roots of 
wild type seedlings grown on 1X MS medium, pH 6, or 1X MS medium, pH 6 
supplemented with either 200 mM mannitol or 30 mM NaCl. Seedlings grown in 
the presence of either mannitol or NaCl showed a down-regulation of VPS26C
expression when compared to wild type seedlings grown on MS alone. Asterisks 
indicate statistical significance according to the Student’s t-test, where a pair-
wise comparison was performed between VPS26C transcript levels from roots of 
seedlings grown on MS media and each of the treatments (P < 0.05). Error bars 
represent the standard error of the mean of three biological replicates, run in 
triplicate. 

(B and C) qRT-PCR analysis of VPS26A (B) and VPS26B (C) transcript levels in 
roots of wild type seedlings grown on 1X MS medium, pH 6 or seedlings grown 
on 1X MS medium, pH 6 supplemented with either 200 mM mannitol or 30 mM 
NaCl. In contrast to VPS26C, wild type seedlings grown in the presence of either 
mannitol or NaCl showed an induction of VPS26A expression when compared to 
wild type seedlings grown on MS alone. This upregulation is also observed in the 
expression of VP26B in roots of wild type seedlings grown on media containing 
mannitol. Asterisks indicate statistical significance according to the Student’s t-
test, where pair-wise comparisons were performed betweenVPS26A or VPS26B 
transcript levels from roots of seedlings grown on MS media and the level of 
these same transcripts in roots of seedlings grown under each treatment condition 
(P < 0.05). Error bars represent the standard error of the mean of three biological 
replicates, run in triplicate. 

(D) qRT-PCR analysis demonstrating the differential expression of VPS26A and 
VPS26B in wild type vs. vps26c seedling roots grown on 1X MS medium, pH 6. 
VPS26A transcript levels were induced in vps26c roots when compared to wild 
type roots, whereas VPS26B transcript levels were down regulated in vps26c 
roots when compared to the wild type roots. Asterisks indicate statistical 
significance according to the Student’s t-test, where pair-wise comparisons were 
performed betweenVPS26A or VPS26B transcript levels from roots of wild type 
seedlings grown on MS media and the level of these same transcripts in roots of 
seedlings grown on MS media (P < 0.05). Error bars represent the standard error 
of mean of three biological replicates, run in triplicate. 
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Figure 3. 

Large retromer complex mutants vps35a-2, vps29-6 and vps26c-1 share a defect in 
root hair growth.

(A) Average root hair lengths (µm) of T-DNA insertion mutants for the large 
retromer complex were compared to those of wild type seedlings grown on 1X MS 
medium, pH 6 supplemented with 200 mM mannitol. Root hairs of 20 seedlings per 
treatment per genotype were scored and 10-15 root hairs per seedling were 
measured for each biological replicate. The data represents the average of three 
biological replicates. Asterisks denote statistical significance (P < 0.05), 
determined by the Student’s t-test, where wild type root hair length was compared 
in a pair-wise manner with that for each of the retromer mutants individually. Error 
bars represent the standard error of the mean of three biological replicates. 

(B) vps26c-1, vps29-6 and vps35a-2 and wild type seedlings were grown on 1X MS 
medium, pH 6 supplemented with 200 mM mannitol for five days and were imaged 
using bright field microscopy to characterize root hair growth. Root hair length of 
the vps26c-1, vps29-6 and vps35a-2 mutant seedlings was significantly reduced 
when compared to wild type seedlings. Bars= 100 µm



	

70		

                        

            

mCherry-VPS29

VPS26A-YN
VPS35A-YC

VPS26C-YN
VPS35A-YC

mCherry-VPS29

VPS26C-YN
VPS35B-YC

mCherry-VPS29

VPS26C-YN
VPS35C-YC

mCherry-VPS29

VPS26C-YN
VPS35A-YC

mCherry-Empty

mCherry-VPS29VPS26C-YN

A

B

C

D

E

F

YFP RFP Overlay



	

71		

           

        
             

Figure 4.  

VPS26C forms a complex with the core retromer component VPS35 in a 
VPS29 dependent manner.

VPS26C-YN was co-transfected with mCherry-VPS29 and individually 
with each of the VPS35-YC constructs, using Agrobacterium tumefaciens, 
strain GV2260 into fully expanded 3-week-old N. benthamiana leaves. A 
known interaction, VPS26A-YN was shown to interact with VPS35A-YC, 
as a positive control demonstrating the working of this technique (A). 
Bimolecular fluorescent complementation was used to demonstrate an in 
planta interaction between VPS26C-YN and VPS35A-YC, detected by the 
presence of YFP fluorescence (B). All of these interactions were also 
demonstrated to be co-localizing with mCherry-VPS29 (A and B). No 
fluorescent signal was detected for either VPS35B-YC or VPS35C-YC 
when co-expressed with VPS26C-YN in Nicotiana benthamiana leaves 
(C, and D, respectively). In addition, no fluorescent signal was detected 
when VPS29 was not co-expressed in the cells containing VPS26C-YN 
and VPS35A-YC fusions (E).Lastly, when only VPS26C-YN was co-
expressed with mCherry-VPS29 (F), no fluorescent signal was detected. 
YN= N-terminal end of YFP, YC= C-terminal end of YFP.  Bars = 10 µm
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Figure 5.  

VPS26C localizes to membrane compartments in Arabidopsis roots that 
are insensitive to both Brefeldin A and wortmannin.

(A) To determine if GFP-VPS26C localized to the TGN, we treated both 
the transgenic seedlings expressing the TGN marker VTI12-YFP and 
transgenic lines expressing GFP-VPS26C with 100 µM Brefeldin A (BFA) 
for 90 min. VTI12-YFP was sensitive to BFA, forming “BFA-bodies” in 
response to this treatment while GFP-VPS26C showed no sensitivity to 
BFA. Bars =10 µm

(B) To determine whether GFP-VPS26C localized to late endosomes, we 
treated transgenic seedlings expressing the late endosome marker 
RABG3f-mCherry and seedlings expressing GFP-VPS26C with 40 µM 
wortmannin for 90 minutes. While RABG3f showed sensitivity to 
wortmannin by forming dilated, donut-shaped structures (highlighted in 
the inset) , the localization pattern of GFP-VPS26C was unaffected by 
wortmannin treatment.
Bars = 10 µm
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Figure 6. 

The vps26c mutant suppresses the polarized root hair growth phenotype of vti13.

(A) Wild type, vps26c-1, vti13 and vti13 vps26c double mutant seedlings were grown 
on 1X MS media, pH 6 supplemented with 200 mM mannitol for five days and imaged 
using bright field microscopy. Root hairs of the vti13 vps26c double mutant were 
longer than either vti13 or vps26c, indicating a suppression of the polarized growth 
defect of vti13 in the double mutant. Bars = 100 µm

(B) Root hair lengths of wild type, vps26c, vti13 and vti13 vps26c mutants grown for 
five days on 1X MS medium supplemented with 200 mM mannitol. vps26c 
and vti13 show a reduction in root hair length, whereas root hair length of the vti13 
vps26c double mutant is not significantly different from wild type. Root hairs of 20 
seedlings per genotype were scored, and 10-15 root hairs per seedling were measured 
for each biological replicate. An average of three biological replicates is displayed 
above. Asterisks indicate statistical significance (P<0.05), determined by the Student’s 
t-test, where wild type was compared in a pair-wise manner with each of the mutant 
genotypes individually. Error bars represent the standard error of the mean of three 
biological replicates. 
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Figure 7. 

Cell wall organization of xyloglucan in roots of vps26c and the vti13 vps26c 
double mutant is distinct from that of vti13. 

Wild type, vps26c-1, vti13, and vti13 vps26c seedlings were grown on 1X MS 
medium, pH 6 for 5 days and labeled with LM15, a monoclonal antibody that 
recognizes a xyloglucan epitope in cell walls. Root epidermal cells and root hairs 
of wild type and vps26c seedlings label similarly with LM15 whereas vti13 root 
epidermal cells and root hairs do not exhibit significant LM15 labeling (as 
previously described in Larson et al., 2014). LM15 labeling of xyloglucan in root 
epidermal cells and root hairs is restored in the vti13 vps26c double mutant, 
indicating that the vps26c mutation can suppress the vti13 cell wall phenotype.
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Figure 8. 

VPS26C genes are single copy in most representative angiosperms, but have likely 
been lost in monocots.

50% majority rule Bayesian phylogram of angiosperm VPS26C-like genes. 
Bayesian posterior probabilities are given on each interior branch. Branch lengths 
are in substitutions; the scale is provided below the tree.    
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Figure 9. 

AtVPS26C and HsDSCR3 orthologs share 40% amino acid identity and a 
conserved function in Arabidopsis.

(A) Alignment of ATVPS26C and HSDSCR3 illustrates that these orthologs 
share 40% amino acid sequence identity. Legend: (*): fully conserved 
residues; (:) conserved residues with strongly similar properties; (.) conserved 
residues having less similar properties.

(B, C) Wild type, vps26c-1 and vps26c-1 seedlings expressing 35S:GFP-
HsDSCR3 were grown on MS media, pH 6 supplemented with 200 mM 
mannitol for 5 days after which root hair growth was imaged using bright field 
microscopy. Fifteen seedlings per genotype were scored and 10-15 root hairs 
per seedling were measured for each biological replicate. The graph represents 
the average of three biological replicates. Three independent transgenic lines 
expressing GFP-HsDSCR3 in the vps26c mutant background were examined. 
Asterisks denote statistical significance (P<0.05), according to Student’s t-test, 
where wild type root hair length was compared in a pair-wise manner with root 
hair length of vps26c-1 and vps26c-1 seedlings complemented with GFP-
HsDSCR3 individually. Error bars represent the standard error of the mean of 
three biological replicates. 
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Figure S1. 

T-DNA mutant lines of retromer subunits exhibited strongly reduced gene 
expression.

(A-G) qRT-PCR was used to compare the transcript level for individual
retromer subunit genes in wild type seedlings and their respective T-DNA 
mutant lines.  Seedlings were grown on 1X MS medium, pH 6 for 5 days and total 
RNA was isolated from seedlings for the qRT-PCR analysis. Error bars represent 
the standard error of mean of three biological replicates, run in triplicate. Asterisks 
indicate statistical significance according to the Student’s t-test (P < 0.05), where 
wild type expression for the appropriate retromer transcript was compared in a 
pair-wise manner to the mutant genotypes. Error bars represent the standard error 
of mean of three biological replicates, run in triplicate.

(H) Relative gene expression values for each of the core retromer subunit 
mutants compared to wild type expression.
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Figure S2.  
 
Overexpression of VPS26C does not affect root hair growth in wild type  
seedlings and VPS26C/DSCR3 GFP-fusions complement the vps26c  
root hair phenotype. 
 
Overexpression of GFP-VPS26C in a wild type background does not 
cause any root hair aberrations in the seedlings (a, b). Root hair 
phenotype in vps26c-1 (c) and vps26c-2 (e) is complemented by 
expressing 35S: GFP-VPS26C (d, f). Introduction of GFP-VPS26C and  
GFP-HsDSCR3 fusions driven by the endogenous and the 35S 
promoters, respectively, also complement the phenotype in vps26c-2 (g, 
h). (Bars = 100 µm)  



	

83		

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 

0

50

100

150

200

250

300

WT vps26c-1 vps26c-2 VPS26C: GFP-
VPS26C

(vps26c-1)

A
ve

ra
ge

 r
oo

t h
ai

r 
le

ng
th

 (µ
m

)

Figure S3.  
 
Root hair length is unaffected when seedlings are grown on MS 
medium supplemented with KCl. 
 
WT, vps26c-1, vps26c-2 and VPS26C: GFP-VPS26C (vps26c-1) 
seedlings were grown on 1x MS media supplemented with 30 mM 
KCl for five days after which root hair growth was imaged using 
bright field microscopy. Twenty seedlings per treatment per 
genotype were scored and 10-15 root hairs per seedling were 
measured for each biological replicate. The graph shows an 
average of three biological replicates. Statistical analysis was done 
using the Student’s t-test, where wild type was compared in a pair-
wise manner with each of the genotypes individually for the 
treatment (P < 0.05). Error bars represent the standard error of 
mean of three biological replicates. 
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Figure S4. 
  
Supplementation of MS media with mannitol and NaCl results in a 
reduction in root hair length in wild type seedlings. 
 
Wild type seedlings grown on 1X MS medium, pH6 or 1X MS 
medium, pH6 supplemented with either 200 mM mannitol or 30 mM 
NaCl for 5 days after which root hair growth was imaged using bright 
field microscopy. Wild seedlings show a significant decrease in root 
hair length when mannitol or NaCl is present in the media. Twenty 
seedlings per treatment per genotype were scored and 10-15 root hairs 
per seedling were measured for each biological replicate. The graph 
shows an average of three biological replicates. Asterisks indicate 
statistical significance (P < 0.05) based on the Student’s t-test, where 
root hair length of seedlings grown on MS medium was compared in a 
pair-wise manner with that of each of the treatments. Error bars 
represent the standard error of mean of three biological replicates. 
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(B) Wild type seedlings and T-DNA insertion mutants vps26a, vps26b, 
vps35b and vps35c were grown on 1X MS medium, pH6 (upper panel) and 
1X MS medium, pH6 supplemented with 200 mM mannitol (lower panel) 
for five days after which root hair growth was imaged using bright field 
microscopy.  In all cases, root hair length of each mutant was 
indistinguishable from wild type seedlings, independent of media 
conditions. Bars=100 µm 
 
(C) Comparison of root hair lengths of the retromer complex mutants and 
wild type seedlings grown on 1X MS medium, pH6 for 5 days. Root hairs 
of 15 seedlings per treatment per genotype were scored for length 
measurements, and 10-15 root hairs per seedling were measured for each 
biological replicate. The graph represents the average of three biological 
replicates. Asterisks denote statistical significance (P<0.05) based on the 
Student’s t-test, where wild type was compared in a pair-wise manner with 
each of the genotypes. Error bars represent the standard error of mean of 
three biological replicates. 
. 

Figure S5.  
 
vps35a and vps29 exhibit shorter root hairs than wild type seedlings 
independent of media conditions. 
 
(A) Wild type, vps26c-1, vps29 and vps35a seedlings were grown for five 
days on 1X MS medium, pH6 after which root hair growth was imaged 
using bright field microscopy. In contrast to vps26c alleles, vps35a and 
vps29 seedlings exhibited reduced root hair growth on this media.  
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Figure S6:  
 
Expression pattern of VPS26C in Arabidopsis thaliana. 
 
qRT-PCR analysis of VPS26C transcript levels in different 
organs of Arabidopsis. Seven-day-old seedling roots, 7-day-
old whole seedlings, leaves (45-day-old plant, 10-12 
leaves/rosette), stems, open flowers and green siliques were 
used for this study. The level of VPS26C expression in root 
was compared in a pair-wise manner with VPS26C 
expression in each of the other tissues, using the Student’s 
t-test. No significant differences in gene expression were 
observed among the tissues examined. Error bars represent 
the standard error of mean of three biological replicates. 
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A vps26c-2 vps26c-1

VPS26C      -------MATATTVNVK-----------------LSRSNRIYRSSEPVEGKIVIKSA--T  
VPS26A      MNYLLGAFKPACNISITFTDGKNRKQVPTKKDNGQIVMNPLFQSQETIAGKINIEPYQGK  
VPS26B      MNYLLGAFKPACNISITFSDGKNRKQVPMKKENGQTALVPLFHSQDTISGKVCIEPYQGK 
                   :  * .:.:.                       :::*.: : **: *:    .   
 
VPS26C      SISHQAIRLSVNGSVNLQVRGGSAGVIESFYGVIKPIQIVKKTIEVKSSGKIPPGTTEIP  
VPS26A      KVEHNGVKVELLGQIEMYFDRGN---FYDFTSLVREI---------DVPGEIYE-RKTYP  
VPS26B      KVEHNGVKVELLGQIEMYFDRGN---FYDFTSLVREL---------DVPGEIYE-RKTYP 
            .:.*:.:::.: *.::: .  *.   : .* .::: :         .  *:*    .  *   
 
VPS26C      FSLNLREPGEGIVEKFYETFHGTNINIQYLLTADIPRGYLHKPLSATMEFIIESGRVDLP  
VPS26A      FE-------FSSVEMPYETYNGVNVRLRYVLKVTVTRGYAGSIVEYQ-DFVVR---NYVP  
VPS26B      FE-------FPTVEMPYETYNGVNVRLRYVLKVTVTRGYAGSILEYQ-ELVVR---NYAP 
            *.          **  ***::*.*:.::*:*.. : ***  . :.   ::::.      *   
 
VPS26C      ERPIPPEIVIFYITQDTQRHPLLPDIKTGGFRVTGKLATQCSLQDPLSGELTVEASSVPI  
VPS26A      LPPINNSIKMEVGIEDC---------LHIEFE---YNKSKYHLKDVILGKIYFLLVRIKI  
VPS26B      LPDINNSIKMEVGIEDC---------LHIEFE---YNKSKYHLKDVILGKIYFLLVRIKM 
               *  .* :    :*              *.      ::  *:* : *:: .    : :   
 
VPS26C      TSIDIHLLRVESIIVGERIVTETSLIQSTQIADGDVCRNMTLPIYVLLPRLLMCPSV--F  
VPS26A      KNMDLEIRRRESTGAGANTHVETETLAKFELMDGAPVRGESIPVRVFLTPYDLTPTHKNI  
VPS26B      KNMDLEIRRRESTGAGANTHVETETLAKFELMDGTPVRGESIPVRLFLAPYDLTPTHRNI 
            ..:*:.: * **  .* .  .**. : . :: **   *. ::*: ::*    : *:   :   
 
VPS26C      AGPFSVEFKVCITISFKSKLAKAQPKSDPTAPRLWMALERLPLELVRTKRDQFSC  
VPS26A      NNKFSVKYYLNLVLVDE------------EDRR-YFKQQ--EITLYRLKEETS— 
VPS26B      NNKFSVKYYLNLVLVDE------------EDRR-YFKQQ--EITLYRLKEDASS-                           
             . ***:: : :.:  :               * ::  :   : * * *.:     
	

B

Figure S7.  
 
Arabidopsis VPS26C shares approximately 20% amino acid sequence 
identity with gene family members VPS26A and VPS26B.  
 
(A) The gene model for VPS26C (At1G48550; NCBI accession: 
NM_103751.3), confirmed by comparing the gene’s predicted cDNA 
sequence with the sequence of VPS26C cDNA amplified from a 
vps26c complemented line. The grey boxes denote the 5’ and 3’ 
UTRs, the black boxes indicate exons, and the black lines indicate 
introns. Triangles indicate T-DNA insertion sites corresponding to 
vps26c-1 and vps26c-2. 
 
(B) The predicted amino acid sequences of VPS26A, VPS26B and 
VPS26C were compared, where VPS26A and VPS26B shared 91% 
amino acid identity while VPS26A and VPS26B shared only 20% and 
22% amino acid identity with VPS26C, respectively. Legend: (*) fully 
conserved residues (:) residues with strongly similar properties; (.) 
residues having less similar properties. 
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Figure S8.  
Genotyping of WT, vps26c-1, and vps26c-1 expressing the 
GFP-VPS26C/DSCR3 fusions using gene-specific primers and 
genomic PCR.  
  
Genomic DNA was isolated from seedlings of wild type, 
vps26c-1, and transgenic lines expressing VPS26C: GFP-
VPS26C (vps26c-1 background) and 35S: GFP-HsDSCR3 
(vps26c-1 background). Genomic PCR was used with VPS26C 
F/R primers to confirm the presence of VPS26C gene in wild 
type seedlings and the complemented line expressing GFP-
VPS26C (top panel), T-DNA insertions in all lines containing 
the vps26c-1 allele were confirmed using primers 
LBb1.3_F/VPS26C_R.  The presence of GFP-VPS26C and 
GFP-HSDSCR3 in their respective complemented lines were 
detected using primers GFP_F/ VPS26C_R and GFP_F/ 
HsDSCR3_R, respectively (See Supplemental Table 1 for 
primer sequences used). 
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Supplemental Table 1: List of Primers        
 

 

          Purpose 
 
Genotyping VPS26C 
Genotyping VPS26C 
 
Diagnostic T-DNA insertion: LBb1.3 
 
VPS26C genomic sequence cloning 
VPS26C genomic sequence cloning 
 
VPS26C promoter cloning 
VPS26C promoter cloning 
 
Genotyping VTI13 
Genotyping VTI13 
 
Human ortholog HsDSCR3 cloning 
Human ortholog HsDSCR3 cloning 
 
VPS26A genomic sequence cloning 
VPS26A genomic sequence cloning 
 
VPS26B genomic sequence cloning 
VPS26B genomic sequence cloning 
 
VPS29 genomic sequence cloning 
VPS29 genomic sequence cloning 
 
VPS35A genomic sequence cloning 
VPS35A genomic sequence cloning 
 
VPS35B genomic sequence cloning 
VPS35B genomic sequence cloning 
 
VPS35C genomic sequence cloning 
VPS35C genomic sequence cloning 
 
RT-PCR VPS26C 
RT-PCR VPS26C 
 
QRT-PCR VPS26A 
QRT-PCR VPS26A 
 
QRT-PCR VPS26B 
QRT-PCR VPS26B 
 
QRT-PCR VPS26C 
QRT-PCR VPS26C 
 
QRT-PCR VPS29 
QRT-PCR VPS29 
 
QRT-PCR VPS35A 
QRT-PCR VPS35A 
 
QRT-PCR VPS35B 
QRT-PCR VPS35B 
 
QRT-PCR VPS35C 
QRT-PCR VPS35C 
 
QRT-PCR EF1α 
QRT-PCR EF1α 
 
QRT-PCR ACT2 
QRT-PCR ACT2 

Orientation 
            
           F 
           R 
 
           F 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 
           R 
 
           F 

          R 

      Sequence (Listed 5’ to 3’) 
 
ATGGCGACGGCGACGA 
TTAGCAGCTGAACTGATCTC 
 
ATTTTGCCGATTTCGGAAC 
 
CACCATGGCGACGGCGACGA 
TTAGCAGCTGAACTGATCTC 
 
CACCGAGCTCTGTTGGCCTGCTTTCTTT 
ACTAGTTTTACTCACCGAGCTTAGC 
 
TTGTTCTTTCCAGGTTAAGAAAATGG 
TGAGTTTGAAGTACAAGATAAAGATA 
 
CACCATGGGGACCGCCCTGGACATCAG 
TTAAACCTTATCGTCGTCATCCTTGTAT 
 
CACCATGAATTATCTTCTTGGAGAAGCC 
AGATGTCTCTTCCTTGAGCCTGTACAAG 
 
CACCATGAATTATCTTCTTGGAGCTTT 
TCTTAGCCGGACATTCACAC 
 
CACCGGTACCATGGTGCTGGTATTGGC 
GGATCCCTACGGACCAGAGCTGG 
 
CACCATGATCGCAGACGGATCAGA 
CTATACTTTGATCGCCTGGTATCTC 
 
CACCATGAGAACGCTCGCCG 
TCACAGCTTGATAGGGTCAT 
 
CACCATGATCGCCGACGACG 
TCATTCAAACCATTCCATTT 
 
GCTGTAGCTAAGCTCGGTGAGTAA 
GGATCTTTGGTGCGTCTAGGAACA 
 
TCACTTCCTTGGTGCGTGAGA 
CGCACGTTCACGCCATTGTA 
 
CAGCTTGGAAGGTTCCCATGA 
TGCTCCACCTTTTTCCCTTGAT 
 
TGGCAAAATCCCTCCGGGAA 
CCTCGCGGTATATTACTGACTTGG 
 
CGATCGCTGAGAAGATCCGC 
ATGGAGATCCCCCAATGCCA 
 
ACTCAAAGGCCCAGGTGACT 
AAGTTTCGCTGCATACCCCG 
 
TGGATGAAACCAACGCGGAG 
CGTCGAGGTCCTCCTGTCAT 
 
AGAACCTTGTTGCACGGCTT 
GGCAAACGCTTAGGTCCTCC 
 
TGAGCACGCTCTTCTTGCTTTCA 
GGTGGTGGCATCCATCTTGTTACA 
 
CTTGCACCAAGCAGCATGAA 
CCGATCCAGACACTGTACTTCCTT 
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Proteomic analysis of VTI13-endosomes suggests a possible mechanism for a VTI13-

dependent endosomal pathway in regulating polarized growth and cell wall 

organization in Arabidopsis thaliana 
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ABSTRACT 

Soluble NSF Attachment Receptors (SNAREs) are membrane proteins involved in 

tethering endomembrane vesicles to their target membranes, thus assisting in vesicle 

fusion. The VTI-SNARE family member VTI13 is essential for root hair growth and cell 

wall organization in Arabidopsis and localizes to early endosomes and the vacuole 

membrane.  We have used affinity purification and proteomic analysis to identify proteins 

that are part of the VTI13 early endosome compartment and may share a function with 

VTI13 in polarized growth and cell wall assembly.  Proteins associated with endocytic 

trafficking pathways as well as several ER-body proteins were enriched in the GFP-VTI13 

fraction. qRT-PCR analysis showed that the transcripts for a subset of these proteins are 

differentially regulated in the absence of VTI13. Additionally, several of the proteins 

identified are essential for root hair growth. Together, this study identifies candidates that 

have essential functions in the VTI13 pathway in regulating polarized growth in 

Arabidopsis thaliana.  

  

 

 

 

 

 

 

 

 



	

94		

INTRODUCTION 

Endomembrane trafficking pathways are essential for a variety of developmental processes 

in higher eukaryotes. These include both exocytic and endocytic vesicular trafficking 

pathways, endosomal transport of proteins from the plasma membrane to the lytic vacuole 

or lysosomes for degradation and the recycling of receptors from the late endosomal 

membranes to the Golgi and trans-Golgi network (TGN).  Alterations in endomembrane 

trafficking pathways have been implicated in severe abnormalities in plant and animal 

development (Surpin and Raikhel, 2004; Morita et al., 2014; Zhang, 2008; Burd, 2011; 

Bercusson et al., 2017; Geldner, 2004). In plants, this includes gnom, a loss of function 

mutation in a membrane associated ARF-GEF that leads to inhibition of PIN1 endosomal 

trafficking and defects in auxin transport and homeostasis (Steinmann et al., 1999; Geldner 

et al., 2001), the VTI11 SNARE loss-of-function mutant zig, that is defective in trafficking 

of cargo to the lytic vacuole resulting in agravitropic defects in Arabidopsis thaliana 

(Sanmartin et al., 2007; Hashiguchi et al., 2010), loss of the large retromer subunit VPS35B 

leading to defects in innate immunity in plants and vps26c, a large retromer subunit mutant 

that is defective in root hair growth (Jha et al., 2108).  

 

Soluble NSF Attachment Receptor (SNARE) proteins, initially identified in yeast, are 

involved in the process of membrane fusion during endosomal trafficking and are divided 

into two subgroups based on their structural motifs. Q-SNAREs (Qa, Qb, and Qc) are 

integral components of target membranes while R-SNAREs are primarily associated with 

the vesicle membranes. During the process of membrane fusion, Q- and R- SNAREs form 

a tight coiled-coil helical complex, with three Q-SNAREs and one R-SNARE, facilitating 
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the transfer of cargo between membrane compartments (Fasshauer et al.,1998; Fukuda et 

al., 2000; Niihama et al., 2005). The Arabidopsis genome encodes about 65 SNAREs that 

belong to several subfamilies (Kim and Brandizzi, 2012). SNAREs within each subfamily 

function in distinct endosomal trafficking pathways, although gene family members can 

sometimes exhibit functional redundancies (Sanderfoot, 2007).  

 

A number of SNAREs have been shown to be critical for polarized growth in plants.  For 

example, SYP123 and SYP132 are expressed exclusively in trichoblasts of Arabidopsis 

(Enami et al., 2009; Ichikawa et al., 2014). SYP123 has been shown to localize to an 

endosome compartment in trichoblasts that is Brefeldin A (BFA)-sensitive and to the 

plasma membrane of root hairs, suggesting a role in endosomal trafficking pathways 

important for polarized cell growth. These authors have also demonstrated that SYP123 

and SYP132 form a ternary complex with each of the Vesicle-Associated Membrane 

Proteins VAMP721, VAMP722 and VAMP724 that localizes to the tip of growing root 

hairs (Ichikawa et al., 2014).  SNARES have also been shown to play an important role in 

pathways regulating the assembly or organization of plant cell walls. SYP111 localizes to 

the cell plate and has been shown to participate in membrane fusion events during cell 

division (Lauber et al., 1997; Muller et al., 2004). Also, proteomic analysis of TGN 

containing the SNARE SYP61 has shown that this compartment contains several cellulose 

synthase subunits that are trafficked to the plasma membrane to facilitate cellulose 

synthesis during cell expansion (Drakakaki et al., 2012).  
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The VTI-family of SNARES in Arabidopsis has four gene family members, of which three 

have been characterized for their function during plant growth. VTI11 localizes to the 

TGN, prevacuolar membrane (PVC) and lytic vacuole (Sanderfoot et al., 2001) while 

VTI13 can be detected in the membranes of early endosomes and the lytic vacuole (Larson 

et al., 2014).  In contrast, VTI12 is localized to the TGN and the membrane surrounding 

storage vacuoles (Surpin et al., 2003). T-DNA insertion mutants for each of these SNAREs 

exhibit unique phenotypes, suggesting that they have distinct functions in plants. VTI11 

has been shown to be important for shoot gravitropism (Morita et al., 2002) and for proper 

development of leaf vasculature, which is controlled by auxin distribution in the leaf 

primordium (Shirakawa et al., 2009), while VTI12 plays a role in plant autophagy (Surpin 

et al., 2003). VTI13 is essential for polarized growth and cell wall organization in roots 

(Larson et al., 2014). In addition, the endosomal trafficking pathways involving VTI11 and 

VTI13 have been shown to exhibit a genetic interaction with a retrograde trafficking 

pathway controlled by different large retromer subunit proteins (Hashiguchi et al., 2010; 

Jha et al., 2018).  

 

The primary goal of this study was to initiate a mechanistic dissection of the VTI13-

endosomal trafficking pathway in Arabidopsis thaliana to better understand its role in 

controlling growth and cell wall organization. Proteomic approaches have been 

successfully used to identify proteins associated with distinct endosomal compartments in 

plants.  Drakakaki et al. (2012) identified cellulose synthase (CESA) subunits as cargo 

molecules of the SYP61-TGN proteome and demonstrated the role of this compartment in 

CESA trafficking and cell wall biosynthesis. More recently, Heard et al. (2015) used GFP-
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fusions to tag proteins known to associate with distinct endosomal compartments in vivo, 

and used immunoprecipation and proteomic analysis to identify and characterize the 

subcellular localization of several regulatory and cargo proteins controlling secretory and 

endocytic pathways in Arabidopsis.  In this paper, we describe a proteomics analysis of 

transgenic Arabidopsis seedlings expressing 35S:GFP-VTI13 and identify proteins 

potentially associated with a VTI13 early endosome compartment.  Further analysis of the 

function of these proteins may provide us with testable models regarding the role of the 

VTI13 early endosome in controlling polarized growth and cell wall organization in 

Arabidopsis.   
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RESULTS  
 

Protein extraction and immunoprecipitation of a VTI13 compartment 

VTI13 functions in an endosomal trafficking pathway that is critical for polarized growth 

and cell wall organization in Arabidopsis root epidermal cell walls (Larson et al., 2014). 

VTI13 localizes to the membrane of early endosomes (EE) and the lytic vacuole (Larson 

et al., 2014). To further investigate the function of early endosomes containing VTI13, we 

used immunoprecipitation followed by proteomic analysis to identify proteins associated 

with the VTI13 early endosomal compartment in Arabidopsis seedlings expressing 

35S:GFP-VTI13 in a vti13 genetic background.  Untransformed wild type seedlings and 

seedlings expressing the 35S:GFP-VTI13 construct were grown for seven days under 

continuous light on MS media and harvested for protein extraction (Figure 10).  Seedlings 

were ground in liquid nitrogen followed by homogenization buffer and the resulting extract 

was filtered through Miracloth.  The filtrate was then centrifuged at 6000 x g for 10 min at 

4°C. and proteins in the supernatant were used for affinity purification of GFP-VTI13 and 

associated proteins using Chromotek GFP-Trap Agarose beads (Figure 11). The protein 

extract was incubated with the GFP-trap agarose beads for 1 hour at 4°C on a nutator after 

which the beads were washed three times with the homogenization buffer without inclusion 

of the protease inhibitors and centrifuged to remove the buffer at 2500 x g for 4 minutes at 

4°C.  Proteins were eluted from the anti-GFP resin by incubation in SDS-PAGE buffer at 

95°C for 10 minutes.  The sample was centrifuged at 2500 x g for 5 minutes in a 

microcentrifuge and proteins in the supernatant were collected for further analysis. The 

presence of GFP-VTI13 in the final supernatant fraction was verified by Western blotting 

(Figure 12) prior to proteomic analysis.  
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Identification of proteins associated with VTI13 by liquid chromatography (LC)-

tandem mass spectrometry (MS/MS) 

The affinity purified protein extract isolated from seedlings expressing 35S:GFP-VTI13 

and from wild type seedlings (control) was partially size-separated using SDS-PAGE until 

the sample had entered the first cm of the running gel.  The polyacrylamide gel containing 

the sample was collected and proteins within the gel matrix were treated with trypsin 

followed by LC-MS/MS using Thermo Q-Exactive mass spectrometry at the UVM 

proteomics facility.  The peptide spectra of proteins in the GFP-VTI13 and control samples 

were queried against the Arabidopsis thaliana protein database (uniprot.org) using the 

software Protein Discoverer, version 1.4. These studies identified seven proteins enriched 

in all three GFP-VTI13 biological replicates and 31 proteins enriched in two of the three 

replicates tested when compared to untransformed Col-0 (Table 1).  Proteins identified in 

this study were separated into two major groups based on their predicted function.  The 

first of these included a number of proteins known to function in endocytosis and 

endosomal trafficking in Arabidopsis (Table 1) and included Dynamin-related Proteins 

(DRP)1 (Kang et al., 2003), DRP2A (Jin et al., 2001), DRP2B (Fujimoto et al., 2008), two 

Clathrin heavy chain (CHC) proteins (Kitakura et al., 2011; Wu et al., 2015), a plasma 

membrane ATPases AHA1 and AHA2 (Merlot et al., 2007; Mlodzinska et al., 2015) and 

Patellin 1 (PATL1) (Paterman et al., 2004).  The second group of proteins identified in 

these studies are ER body proteins that are predicted to function in plant defense response 

pathways (Yamada et al., 2011; Nakano et al., 2014). These included GDSL 

Esterase/Lipases (GELPs) (Nagano et al., 2008), beta-Glucosidases (BGLUs) (Hara-
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Nishimura and Matsushima, 2003; Matsushima et al., 2003a; Matsushima et al., 2003b) 

and Jacalin-Related Lectins (JALs) (Nagano et al., 2008) (Table I). 

 

Many genes encoding the proteins associated with the GFP-VTI13 immunocomplex 

are mis-regulated in vti13 

As a first step in characterizing the genes corresponding to proteins identified in this 

proteome analysis, we analyzed their expression by qRT/PCR in 7-day-old wild type and 

vti13 seedlings. The genes that were significantly misexpressed in the vti13 mutant are 

listed in Table 2 (A and B). A subset of genes encoding proteins associated with endosomal 

trafficking, including DRP1A, DRP2A, DRP2B, and CHC1 were found to be significantly 

down-regulated in vti13 mutant seedlings. This suggests that these genes may function in 

endosomal trafficking pathways involving VTI13 in regulating growth. In contrast, 

Patellin 1 (PATL1) transcripts were significantly upregulated in vti13. PATL1 encodes a 

protein involved in endomembrane trafficking and interaction with phosphoinositides 

(Peterman et al., 2014).  

 

We also investigated the expression of genes encoding ER-body proteins associated with 

GFP-VTI13 in our proteomic study. Several of these proteins have been implicated in plant 

defense response pathways (Matsushima et al., 2002). ER-body proteins have been shown 

to be constitutively expressed in roots and seedlings of plants within the Brassicales, but 

their expression in leaves is wound-inducible (Hara-nishimura and Matsushima, 2003). We 

show that several of the genes encoding these proteins are misexpressed in vti13. BGLU21 

and GELP22 are down-regulated in the vti13 background, whereas BGLU25, JAL22 and 
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JAL34 are upregulated in vti13. The role of the ER-body proteins in a VTI13 proteome 

compartment requires further analysis, but these initial data suggest that VTI13 might play 

a role in trafficking of these ER-body proteins in Arabidopsis.  

 

DRP2A and DRP2B are essential for root hair growth 

DRP2A and DRP2B were enriched significantly in all three biological replicates of our 

proteomic data, prompting us to investigate the role of these two genes in root hair growth.  

Dynamin Related Proteins (DRPs) localize to the cell plate (Fujimoto et al., 2008) and to 

the tip of root hairs in Arabidopsis (Taylor, 2011) and are implicated to function in several 

post-Golgi trafficking pathways that regulate cell plate formation and cell growth (Huang 

et al., 2015). DRP2A and DRP2B have been shown to also redundantly play a role in 

gametophyte development (Backeus et al., 2010). The significant reduction in DRP2A and 

DRP2B expression in vti13 led us to ask if these two genes, like VTI13, are important for 

controlling root hair growth. T-DNA insertion mutants of DRP2A (drp2a: 

SALK_018859C) and DRP2B (drp2b: SALK_003049) were used for these studies. 

Seedlings were grown under continuous light for 5 days on 1X MS medium, pH6, and on 

1X MS medium, pH6, supplemented with 200 mM mannitol, after which they were 

analyzed for defects in root hair growth. Both drp2a and drp2b seedlings grown on both 

media exhibited aberrant root hair growth when compared to wild type seedlings (Figure 

13). This result, along with the downregulation of DRP2A and DRP2B transcripts in vti13, 

suggest that DRP2A and DRP2B may function in a VTI13-dependent endosomal trafficking 

pathway essential for polarized growth in Arabidopsis. 
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DISCUSSION 
 

The primary aim of this study was to use a proteomics approach as a starting point for 

developing a better understanding of the role of the VTI13-dependent endosomal 

trafficking pathway in regulating root hair growth in Arabidopsis. The two major groups 

of proteins were identified in this study: proteins implicated in regulating membrane 

trafficking pathways and ER body proteins. The Dynamin-related proteins (DRPs), 

Clathrin Heavy Chain proteins (CHCs), and Patellin (PATL1) have all been shown to 

function in membrane trafficking pathways important for plant development, while the 

Glucosidases (BGLUs), the GDSL Esterase/Lipases (GELPs) and the Jacalin-related 

Lectins (JALs) are associated with ER bodies in Arabidopsis and may function in plant 

defense response pathways.  

 

Proteins involved in endosomal trafficking 

DRP2A and DRP2B are important candidates in our study as these are significantly 

enriched in the VTI13-fraction in all of the three biological replicates tested in the 

proteomic analysis. Dynamins are GTPases that act as ‘molecular scissors’, where they 

break the mesh-like scaffold formed by clathrins at the site of vesicle invagination and 

pinch a vesicle off of the donor membrane. Studies have shown that DRP1A and DRP2B 

function redundantly in regulating cell plate formation and cell morphogenesis (Fujimoto 

et al., 2008), cell polarity (Stanislas et al., 2015) and in clathrin-coated vesicle (CCV) 

formation in plants (Fujimoto et al., 2010). DRP2 function also contributes to cellular 

pathways regulating gametophyte development (Backues et al., 2010) and in maintaining 

innate immune signaling pathways (Smith et al., 2014). DRP2A and DRP2B localize to the 
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endocytic vesicle formation sites in the plasma membrane, clathrin-rich TGN, and the cell 

plate (Taylor, 2011). In addition, treatment of seedlings with wortmannin, an inhibitor of 

phosphatidylinositol kinases, or disruption of the cytoskeleton through latrunculin B or 

oryzalin treatment results in an increased duration of DRP2A and DRP2B at the plasma 

membrane, supporting a role for DRP2A and DRP2B function in several endosomal 

trafficking pathways associated with post-Golgi trafficking in plants (Huang et al., 2015).  

 

DRP2A and DRP2B have been shown to localize at the tip of root hairs by 

immunolabelling, a site where rapid endocytosis takes place (Taylor, 2011). Induced 

expression of a dominant negative form of either protein resulted in reduced endocytosis 

at the tip and a bulging root hair phenotype (Taylor, 2011). In our studies, DRP2A and 

DRP2B were significantly down-regulated in vti13 seedlings when compared with wild 

type seedlings, suggesting that they may function in a common cellular pathway.  In 

addition, both dpr2a and drp2b exhibited shorter root hairs when compared with wild type 

seedlings grown on MS medium.  Based on our initial studies, we hypothesize that DRP2A 

and DRP2B may act in coordination with VTI13 in controlling the endocytic machinery 

important for root hair growth and cell wall organization. Further studies demonstrating 

co-localization of VTI13 with these proteins as well as analysis of cell wall organization 

of the drp2a and drp2b mutants will be important to test this model.  

 

Clathrins are proteins composed of two Clathrin Heavy Chain (CHCs) and two Clathrin 

Light Chain (CLCs) subunits. These proteins form a scaffold at the site of vesicle 

invagination, both at the plasma membrane and endosomal membranes and participate in 
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clathrin-mediated endocytosis (Goud et al., 1991; Blackbourn and Jackson, 1996; 

Puertollano et al., 2001; Holstein, 2002; Baisa et al., 2013). In our study, CHC1 is 

significantly down regulated in the vti13 mutant background. Preliminary studies of a T-

DNA insertion mutant allele, chc1-1, indicate that it also shows aberrant root hair growth 

when compared to wild type seedlings (Supplemental Table 1). These initial studies 

suggest that CHC1 may function in a VTI13-dependent pathway required for root hair 

growth in Arabidopsis. The presence of CHC1, DRP2A and DRPB in the VTI13 

interactome suggest a coordinated role of these proteins in pathways linked to cell plate 

formation and cytokinesis, and/or endosomal trafficking in Arabidopsis. This is consistent 

with the observed role of VTI13 in maintaining proper cell wall organization in root 

epidermal cells (Larson et al., 2014).  

 

Expression of the plasma membrane proton-ATPase AHA2 is also negatively regulated in 

vti13. AHA2 is involved in controlling H+ efflux in root tips (Yuan et al., 2017) as well as 

controlling root architecture in nitrogen deficient conditions (Mlodzinska et al., 2015). 

These studies implicate AHA2 as a potential cargo of VTI13 early endosomes.  Further 

analysis including co-localization studies between AHA2 and VTI13 and genetic analysis 

of aha2 mutant alleles will be required to establish a role of AHA2 in controlling root hair 

growth in a VTI13-dependent manner.  

 

In contrast to the down-regulation of the DRPs and CHC1 in the vti13 mutants, the 

expression of Patellin 1 (PATL1) is upregulated in vti13. PATL1 is a member of the Patellin 

gene family in Arabidopsis, consisting of six members. PATL1 is a peripheral membrane 
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protein, having the SEC14 and the Golgi dynamics (GOLD) domain, similar to membrane 

trafficking proteins in other eukaryotes (Peterman et al., 2004). PATL1 has been shown to 

interact with phosphoinositides and is involved in cell plate maturation. Our preliminary 

analysis of patl1 mutants showing an aberrant root hair growth phenotype (Supplemental 

Table 1) and its mis-regulation in vti13 makes PATL1 an important target in elucidating 

the VTI13-dependent pathway controlling polarized growth.  

 

ER-Body proteins 

The ER body proteins are found broadly within members of the Brassicaceae (Hara-

Nishimura, 2003) and are broadly classified into two groups: proteins constitutively 

expressed in roots and seedlings and wound-induced ER body proteins expressed in leaves 

(reviewed in Yamada et al., 2011). In Arabidopsis, the roots constitutively accumulate ER 

bodies, whereas other plant organs accumulate ER bodies as part of a wound response 

pathway. Under conditions where root tissues are damaged, the activation of ER bodies 

can occur, leading release of beta-glucosidases (BGLUs) from ER bodies and their possible 

interaction with JAL proteins in the cytosol.  This results in the formation of protein 

aggregates that hydrolyze glucosides in the vacuole, leading to the formation of toxic 

products to ward off pathogens and other agents of attack (Nagano et al., 2005; Nagano et 

al., 2008).  In their review of ER bodies, Yamada et al. (2011) argue that when generating 

protein extracts, homogenization of roots or seedlings can induce this same ER body 

activation pathway to form the BGLU-JAL protein aggregates. This concern needs to be 

considered in evaluating the identification of ER body proteins within the VTI13 proteome 
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as the presence of BGLUs and JALs in the VTI13-fraction could reflect an artefact of the 

tissue homogenization technique used.  

 

While further analysis is required to evaluate the biological significance of ER-body 

protein association with the VTI13 early endosomes, we have shown that several of the 

genes that encode ER body proteins identified in this study are mis-regulated in the vti13 

mutant. These genes, BGLU21, BGLU25, GELP22, JAL22 and JAL34, act in coordination 

in forming ER bodies as well as in functioning in plant defense pathways (Yamada et al., 

2011). Moreover, Jacalins (JALs) are involved in regulating the size of the ER bodies 

containing BGLUs (Nagano et al., 2008). The mis-expression of several ER-body protein 

genes identified in our study provides preliminary support for a model in which the VTI13-

early endosome may be involved in trafficking these proteins within Arabidopsis. It has 

also been suggested that the constitutive expression of ER-body proteins in seedlings and 

roots of members of the Brassicaceae may reflect a function unrelated to plant defense 

response pathways (Yamada et al., 2011). The mis-regulation of these specific ER-body 

proteins in vti13 provides an opportunity to further define the function of these proteins in 

Arabidopsis seedlings and the role of their association with the VTI13 proteome.   

 

In conclusion, this analysis has identified a number of proteins that associate with GFP-

VTI13 using immunoaffinity purification that are candidate proteins associated with the 

VTI13 early endosome in Arabidopsis seedlings.  A number of the genes encoding these 

proteins were also mis-regulated in vti13, suggesting that their expression is dependent on 

the VTI13 endosomal trafficking pathway.  Of particular interest are DRP1A, DRP2A, 
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DRP2B and CHC1, proteins known to regulate aspects of membrane fusion in Arabidopsis 

and that may function with VTI13 in regulating root hair growth and cell wall organization 

by controlling endosomal trafficking pathways in seedlings. The preliminary data 

described here will be useful in building models and generating testable hypotheses 

concerning the function of the VTI13 early endosome in plants.  
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METHODS 
 

Plant material and growth conditions  

Analysis of wild type seedlings and SALK mutant lines was performed using the 

Columbia-0 ecotype of Arabidopsis. The growth medium for Arabidopsis seedlings 

consisted of 1X Murashige-Skoog (MS) salts (Murashige and Skoog, 1962), 1% (w/v) 

sucrose, 5 mM 4-morpholineethanesulfonic acid sodium salt (MES), pH 6, 1X Gamborg’s 

vitamin solution, and 1.3% (w/v) agarose (Invitrogen). For plants grown to maturity, seeds 

were sown on soil (Transplanting mix, Gardener’s Supply, Intervale Rd, Burlington, VT) 

and placed in Conviron MTR30 growth chambers (Conviron, Winnipeg, CA, USA), using 

cool-white lights (80 µmol/m2/sec; Licor photometer LI-189) under a 16:8 h light: dark 

cycle at 19° C.  

 

Protein extraction and affinity purification 

Wild type seedlings and transgenic seedlings expressing 35S:GFP-VTI13 in the vti13 

mutant background were grown on 1X MS, pH6 medium containing 1.3% (w/v) agarose, 

1X Gamborg’s vitamins and 1% (w/v) sucrose for 7 days under continuous light at room 

temperature. The seedlings were then harvested by freezing them in liquid nitrogen and 

grinding in a mortar and pestle. The frozen, ground tissue was homogenized using a 1:2 

ratio of fresh weight tissue to protein extraction buffer (150 mM HEPES pH7.5, 10 mM 

EDTA, 10 mM EGTA, 17.5% (w/v) sucrose, 7.5 mM KCl, 0.01% (v/v) Igepal CA-630, 10 

mM dithiothreitol, 1% (v/v) protease inhibitors (E-64, Pepstatin, Aprotinin, Leupeptin, O-

phenanthroline; Sigma-Aldrich). The homogenate was then filtered through two layers of 
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miracloth to remove cell debris. The filtrate was centrifuged at 6000 x g at 4°C for 20 min. 

and the supernatant was collected for affinity purification.  

 

Three µL of Chromotek GFP-Trap agarose beads/per gram of fresh weight tissue were 

added to the supernatant and incubated for one hour at 4°C with gentle shaking using a 

nutator. The sample was then centrifuged at 2500 x g at 4°C to pellet the beads and the 

supernatant was discarded. The agarose beads were washed with 200 µL of the 

homogenization buffer (without the protease inhibitors) three times and after the last wash, 

the beads were resuspended in 25 µL of 2X SDS loading buffer (950 µL of 2X Laemmeli 

buffer (BioRad) and 50 µL of b-mercaptoethanol).   The beads were incubated at 95°C for 

10 min. to elute bound protein and the eluate was separated from the beads by spinning the 

sample at 2500 x g and pipetting the supernatant into a fresh tube. This affinity purified 

fraction was confirmed to contain GFP-VTI13 by Western blotting after which the samples 

were prepared for proteomic analysis. 

 

SDS-PAGE and Western blotting 

GFP-VTI13 was detected in the eluted fraction using SDS-PAGE (12% resolving gel, 5% 

stacking gel). Five µL of the eluate was loaded on the gel and the proteins were size-

separated for 1.5 hours at 120V.  The proteins were then transferred to an Immobilon-FL 

PVDF membrane using a Fisher Biotech semi-dry blotting unit for 1 hour at 65 mA. The 

membrane was washed three times with 1X Phosphate Buffered Saline with Tween-20 

(PBST) (8 mM Na2HPO4, 2 mM KH2PO4, 150 mM NaCl, 3 mM KCl, 0.05% Tween-20) 

and blocked for an hour at 4°C in 1X blocking buffer (5 g non-fat dry milk per 100 mL of 
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1X PBS). The membrane was incubated overnight with shaking in a 1:5,000 dilution of 

anti-GFP primary antibody (polyclonal; rabbit; Molecular Probes – Life technologies) in 

blocking buffer, washed 3 times with 1X Phosphate Buffered Saline (PBS), and incubated 

for 1 hour with shaking in the dark with a 1:20,000 dilution of secondary antibody (Licor, 

IRDye 680RD goat anti-rabbit). The membrane was washed with 1X PBS three times 

before detecting the GFP-VTI13 protein using Licor Odyssey CLx imaging system.  

 

Tryptic digestion of proteins  

Protein samples eluted from the Chromotek-GFP-trap agarose beads were applied to a 12% 

(w/v) SDS-polyacrylamide gel containing a 5% (w/v) SDS-acrylamide stacking gel.   The 

proteins in each sample were separated briefly by running the samples into the resolving 

gel for 15 min. at 120V. The portion of the resolving gel containing the protein samples 

was then cut into three individual pieces (top, middle and bottom) and provided to the 

UVM Proteomics Center for tryptic digestion and LC-MS/MS. Each piece of acrylamide 

was cut into 1 mm3 cubes and washed with 50 mM NH4HCO3 in 50% (v/v) CH3CN. Each 

group of gel cubes was then dehydrated in CH3CN for 10 min. and dried in a Speed Vac. 

Protein samples were reduced by dithiothreitol (DTT) and alkylated by iodoacetamide 

(Spiess et al., 2011). A solution of 10 ng/µL trypsin in 50 mM NH4HCO3 was used to re-

swell the gel pieces completely at 4°C for 30 min., followed by a 37°C digestion overnight. 

The digestion was terminated by adding 10% (v/v) formic acid. The sample was then 

centrifuged at 2800 x g, and the supernatant was collected for LC-MS/MS. 
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Mass Spectrometry 

Protein samples were analyzed by tandem mass spectrometry by the UVM Proteomics 

Center.  Briefly, 2 µL of tryptic-digested protein sample was analyzed on a Thermo Q-

Exactive mass spectrometer coupled to an EASY-nLC system (Thermo Fisher). The 

spectra of peptides identified in this analysis were searched against the Arabidopsis 

thaliana protein database (www.uniprot.org) (protein count: 39369) by Proteome 

Discoverer (PD) 1.4.  

 

Characterization of root hair phenotypes 

Wild type and mutant seeds (see Table below) were sterilized using 20% (v/v) bleach, 

followed by 5-6 washes in sterile distilled water. The sterilized seeds were stored in sterile 

water overnight in the dark at 4°C before plating them on solid media. Seedlings were 

grown on MS medium using petri plates placed vertically under continuous white light at 

20°C for five days. Where indicated, 200 mM mannitol was included in the growth 

medium. To characterize root hair shape and growth, seedlings were mounted in sterile 

water on glass slides. Images were taken using a Nikon Eclipse TE200 inverted microscope 

with SPOT imaging software (Diagnostic Instruments). The length of 10-15 root 

hairs/seedling for at least 10 seedlings per genotype were measured, using Image J and the 

calibrating tool in the SPOT software, and a Student’s t-test was used for statistical 

analysis.  
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RNA isolation and transcript analysis using qRT-PCR 

To measure mRNA transcript abundance for genes in our study, wild type Arabidopsis 

seedlings or mutant seedlings from the Arabidopsis T-DNA insertion collection were 

grown for 7 days and used to generate three biological replicates. Each replicate contained 

roots from approximately 200 seedlings. Seedlings were frozen, ground in liquid nitrogen, 

and stored at -80°C. Total RNA was extracted using a Qiagen RNeasy Plant Mini Kit, 

quantified using a nanodrop (Thermo Scientific) followed by generation of first strand 

cDNA using Superscript II Reverse Transcriptase (Invitrogen), according to the 

manufacturer’s instructions. For quantitative RT-PCR, the first-strand cDNA was diluted 

1:10 and then used as a template with iTaq Universal SYBR green Supermix (Bio-Rad). 

An Applied Biosystems Step-one Plus instrument was used to run the qRT-PCR. Three 

technical and three biological replicates were analyzed by qRT-PCR cycle. The differential 

expression values of transcripts were standardized against the transcript expression of 

EF1α and ACT2 housekeeping genes. The sequence of primers used for qRT-PCR are 

described in Supplemental Table 3 (Table S3).  
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Accession numbers 

 
    Locus       Annotation     Accession No. Allele 
At5G42080 Dynamin related protein 1A (DRP1A) CS835032 drp1a 

At1G14830 Dynamin related protein 1C (DRP1C) SALK_080307 
SALK_088722 

drp1c 

At1G10290 Dynamin related protein 2A (DRP2A) SALK_018859C drp2a 

At1G59610 Dynamin related protein 2B (DRP2B) SALK_003049 drp2b 

At3G11130 Clathrin Heavy Chain 1 (CHC1) SALK_112213 
SALK_103252 

chc1-1 
chc1-2 

At3G08530 Clathrin Heavy Chain 2 (CHC2) SALK_151638 chc2-3 

At2G18960 Plasma membrane ATPase 1 (AHA1) SALK_065288C aha1-7 

At3G14780 GDSL esterase lipase  SALK_039970C  

At4G34450 Coatomer gamma 2 subunit SALK_103820 
SALK_103822 

 

At1G72150 Patellin 1 (PATL1) SALK_080204 patl1 

At2G38000 DNA J Chaperone SALK_038497  

At3G20370 TRAF-like protein SALK_030953  
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FIGURE LEGENDS 

Figure 10. 

Outline of the protein extraction procedure from wild type and 35S:GFP-VTI13 

transgenic seedlings.  

Figure 11. 

Schematic representation of GFP-Trap immunoprecipitation of the protein fraction 

extracted from untransformed Col-0 seedlings (Control) and a transgenic line expressing 

35S:GFP-VTI13 in a vti13 background. 

Figure 12.  

GFP-VTI13 was detected in the fraction used for proteomic analysis by Western Blot. 

 

Five µL of the extracted protein sample was size separated by SDS-PAGE followed by 

Western blot to determine the presence of GFP-VTI13 in the sample. The primary antibody 

against GFP (Invitrogen – Molecular probes) was used at a dilution of 1:5000. The 

secondary antibody (Biorad) was used at a dilution of 1:20000. We detected a band for 

GFP-VTI13 with an expected size of 49 Kda.  

Figure 13. 

DRP2A and DRP2B are essential for root hair growth and are down regulated in the 

absence of VTI13. 

(A) 5-day-old wild type seedlings and T-DNA insertion mutants of drp2a and drp2b, and 

wild type were grown on 1X MS medium, pH6 as well as on 1X MS, pH6 supplemented 

with 200 mM mannitol and were used to investigate root hair growth. drp2a and drp2b 

exhibited reduced root hair growth on both media when compared to wild type seedlings.  
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(B) Average root hair length (µm) of 5-day-old seedlings grown on 1X MS medium, pH 6 

(blue bars) and on 1X MS medium, pH 6 supplemented with 200 mM mannitol (red bars). 

Twenty seedlings per genotype per treatment were scored and 10-15 root hairs per seedling 

were measured for each biological replicate. The graph shows an average of three 

biological replicates. Asterisks indicate statistical significance according to the Student’s 

t-test, where wild type was compared in a pair-wise manner with each of the genotypes for 

each treatment (P < 0.05). Error bars represent the standard error of the mean of three 

biological replicates.  

 

Table 1. 

List of proteins enriched in the GFP-VTI13 fraction compared to the untransformed 

control. 

 
The proteomic analysis resulted in a suite of proteins that are enriched in the GFP-VTI13 

fraction when compared to the untransformed wild type fraction. The protein sequences 

that were enriched at least 1.5-fold in all of the three replicates tested are represented in 

bold, those enriched in only two of the three replicates are italicized. The rest of the 

proteins listed were enriched at least 1.5-fold in only one of the replicates tested.  

 
 Table 2.  

Several genes from the study were differentially expressed in the vti13 mutant when 

compared to wild type. 

 
RNA was isolated from 7-day-old wild type and vti13 seedlings for three independent 

biological replicates. qRT-PCR was used to determine expression of all of the genes 
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encoding the proteins enriched in the GFP-VTI13 fraction. Several of those genes’ 

expression was dependent on the presence of VTI13. (A) List of genes down regulated in 

the vti13, and (B) List of genes up regulated in vti13. 

 

SHORT LEGENDS FOR SUPPORTING INFORMATION  

Table S3: Primer sequences used for qRT-PCR analysis of all the genes enriched in the 

GFP-VTI13 proteomic analysis. 

Table S4: T-DNA insertion mutant lines investigated for root hair phenotype. 

Figure S9: Differential expression of transcripts of proteins enriched in the GFP-VTI13 
proteomic analysis. 
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Seven day old Arabidopsis thaliana seedlings

Harvested and ground in liquid nitrogen

Tissue homogenized in a protein homogenization buffer

The homogenate was filtered to remove cell debris

The sample was centrifuged at 6000xg at 4°C for 20 minutes 

The supernatant was aliquoted in a fresh tube

GFP-Trap A Immunoprecipitation 

Figure 10: Outline of the protein extraction procedure from wild 
type and 35S:GFP-VTI13 transgenic seedlings.  
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The supernatant from the 6000xg spin, S6000, was put in a falcon tube

3 µl of Chromotek GFP-Trap A beads were added per gram of tissue fresh weight

S6000 fraction with the GFP-Trap beads incubated for one hour at 4°C  

The sample was centrifuged at 2500xg for 5min at 4°C  

The beads were washed thrice with the homogenization buffer 

After the last wash, 2X SDS loading buffer was added

The samples were incubated at 95°C for 10 min

Centrifuged, the supernatant was aliquoted out 

SDS-PAGE and Western Blot Proteomic analysis

Figure 11: Schematic representation of GFP-Trap immunoprecipitation of the 
protein fraction extracted from untransformed Col-0 seedlings (Control) and a 
transgenic line expressing 35S:GFP-VTI13 in a vti13 background. 
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Figure 12: GFP-VTI13 was detected in the fraction used for 
proteomic analysis by Western Blot.

Five µL of the extracted protein sample was used to run on SDS-PAGE 
followed by Western blot to determine the presence of GFP-VTI13  in 
the sample. The primary antibody against GFP (Invitrogen – Molecular 
probes) was used at a dilution of 1:5000. The secondary antibody 
(Biorad) was used at a dilution of 1:20000. We detected a band for 
GFP-VTI13 with an expected size of 49 Kda. 
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Locus Annotation Predicted Subcellular Localization References

AT3G29100 VTI13 TGN, Vacuole membrane Larson et al., 2014. 

DYNAMINS
AT5G42080 Dynamin-related protein 1A (DRP1A) Cell plate, CCVs Kang et al., 2003; Konopka et al., 2008 
AT1G14830 Dynamin-related protein 1C (DRP1C) Cell Plate, Plasma membrane Kang et al., 2003; Konopka et al., 2008 
AT1G10290 Dynamin-related protein 2A (DRP2A) Golgi, CCVs, PM Jin et al., 2001; Taylor, 2011
AT1G59610 Dynamin-related protein 2B (DRP2B) Cell plate, CCVs, vacuole, PM Fujimoto et al., 2008; Backeus et al., 2010

CLATHRINs
AT3G11130 Clatherin heavy chain 1 (CHC1) Golgi, PM Kitakura et al., 2011; Larson et al., 2017
AT3G08530 Clatherin heavy chain 2 (CHC2) Golgi, PM Wu et al., 2015; Larson et al., 2017

JACALINs
AT1G52000 Jacalin-related lectin 5 (JAL5) Extracellular region, cytosol Theologis et al., 2010
AT2G36220 Jacalin-related lectin 22 (JAL 22) Extracellular region Lin et al., 1999
AT3G16420 Jacalin-related lectin 30 (JAL30) Extracellular region, cytosol Nagano et al., 2005
AT3G16440 Jacalin-related lectin 32 (JAL32) Extracellular region Salanoubat et al., 2000
AT3G16450 Jacalin-related lectin 33 (JAL33) Extracellular region Takeda et al., 2008
AT3G16460 Jacalin-related lectin 34 (JAL34) Cytosol, Membrane compartments Bae et al., 2003

GDSLs
AT3G14780 GDSL esterase/lipase Plasma membrane Salanoubat et al., 2000
AT3G14210 ESM1; GDSL-like ER Zhang et al., 2006
AT1G54000 GDSL esterase/lipase 22, (GELP22) Extracellular region (secreted); Vacuole Minic et al., 2007
AT1G54030 MVP1; (GELP25) vacuole/ER Agee et al., 2010; Nakano et al., 2012
AT3G14220 GDSL esterase/lipase 64, (GELP64) Extracellular region (secreted); Vacuole Theologis et al., 2010

BGLUs
AT1G52400 Beta-glucosidase 18 (BGLU18) ER bodies Ogasawara et al., 2009; Han et al., 2012
AT1G66270 Beta-glucosidase 21(BGLU21) ER Ahn et al., 2010
AT1G66280 Beta-glucosidase 22 (BGLU22) ER Ahn et al., 2010; Fujiwara et al., 2014
AT3G03640 Beta-glucosidase 25 (BGLU25) ER Salanoubat et al., 2000

PM ATPases
AT2G18960 Plasma membrane ATPase 1 (AHA1) Golgi, PM, Vacuole membrane Merlot et al., 2007; Planes et al., 2015
AT4G30190 Plasma membrane ATPase 2 (AHA2) Golgi, PM, Vacuole membrane Mlodzinska et al., 2015

Others
AT2G33370 Ribosomal L14p/L23e family protein Chloroplast, Ribosome, Cytoplasm Lin et al., 1999
AT2G40840 Disproportinatiing Enzyme 2 (DPE2) Chloroplast, Cytosol Malinova et al., 2014
AT2G43060 IBH1 Nucleus Zhang et al., 2009
AT4G34450 Coatomer gamma-2 subunit Golgi, COP1 vesicles Mayer et al., 2009
AT1G72150 Patellin 1 (PATL1) Cell plate, Golgi Paterman et al., 2004
AT3G18820 Ras-related protein G3f (RABG3f) vacuole, late endosome Zelazny et al., 2013
AT1G52690 Late embryogenesis 7 (LEA7) Cytosol Popova et al., 2015
AT4G20850 Tripeptidyl-peptidase 2 (TPP2) vacuole Book et al., 2005
AT2G38000 DNA J/Chaperone Cytoplasm Lin et al., 1999
AT3G20370 TRAF like Extracellular region; Membranes Fujiwara et al., 2014
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Table 1: List of proteins enriched in the GFP-VTI13 fraction compared to 
the untransformed control. 
 
The proteomic analysis resulted in a suite of proteins that are enriched in the 
GFP-VTI13 fraction when compared to the untransformed wild type fraction. 
The protein sequences that were enriched at least 1.5-fold in all of the three 
replicates tested are represented in bold, those enriched in only two of the three 
replicates are italicized. The rest of the proteins listed were enriched at least 
1.5-fold in only one of the replicates tested.  
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Genes down regulated in vti13

At5G42080 – Dynamin related protein 1A (DRP1A)

At1G10290 – Dynamin related protein 2A (DRP2A)

At1G59610 – Dynamin related protein 2B (DRP2B)

At3G11130 – Clathrin Heavy Chain 1 (CHC1)

At4G30190 – Plasma membrane ATPase 2 (AHA2)

At1G66270 – Beta Glucosidase 21 (BGLU21)

At1G54000 – GDSL Esterase/Lipase protein 22 (GELP22)

Genes up regulated in vti13

At3G03640 – Beta Glucosidase 25 (BGLU25)

At3G14780 – GDSL Esterase/Lipase 

At2G36220 – Jacalin related Lectin 22 (JAL22)

At3G16460 – Jacalin related Lectin (JAL34)

At2G43060 – IBH1

At1G52690 – Late Embryogenesis 7 (LEA7)

At1G72150 – Patellin 1 (PATL1)

At3G20370 – TRAF-like Protein

At2G38000 – DNA-J/Chaperone

A

B

Table 2: Several genes from the study were differentially expressed in the vti13 
mutant when compared to wild type. 
 
RNA was isolated from 7-day-old wild type and vti13 seedlings for three 
independent biological replicates. qRT-PCR was used to determine expression of 
all of the genes encoding the proteins enriched in the GFP-VTI13 fraction. Several 
of those genes’ expression was dependent on the presence of VTI13. (A) List of 
genes down regulated in the vti13, and (B) List of genes up regulated in vti13. 
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Figure 13: DRP2A and DRP2B are essential for root hair growth and are down 
regulated in the absence of VTI13. 
 
(A) 5-day-old wild type seedlings and T-DNA insertion mutants of drp2a and drp2b 
were grown on 1X MS medium, pH6 as well as on 1X MS, pH6 supplemented with 
200 mM mannitol and were used to investigate root hair growth. drp2a and drp2b 
exhibited reduced root hair growth on both media when compared to wild type 
seedlings.  
 
(B) Average root hair length (µm) of 5-day-old seedlings grown on 1X MS medium, 
pH 6 (blue bars) and on 1X MS medium, pH 6 supplemented with 200 mM mannitol 
(red bars). Twenty seedlings per genotype per treatment were scored and 10-15 root 
hairs per seedling were measured for each biological replicate. The graph shows an 
average of three biological replicates. Asterisks indicate statistical significance 
according to the Student’s t-test, where wild type was compared in a pair-wise 
manner with each of the genotypes for each treatment (P < 0.05). Error bars represent 
the standard error of the mean of three biological replicates.  
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Figure S9: Differential expression of transcripts of proteins enriched in the 
GFP-VTI13 proteomic analysis. 
 
qRT-PCR was used to determine the transcript level of proteins that were 
enriched in the GFP-VTI13 fraction. RNA was isolated from wild type and vti13 
seedlings and cDNA synthesized from this RNA was used as a template to 
investigate whether the transcript levels of these proteins were differentially 
regulated in the vti13 mutant. Error bars represent standard error of mean, and 
asterisks represent statistical significance (P<0.05) 
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AT3G14220 GDSL esterase/lipase 64 (GELP64) Forward: AGGTGGAGCGAGGAAGTTTG
Reverse: AAAGAGGCTGTACCGGAAGC

AT1G54000 GDSL esterase/lipase 22 (GELP22) Forward: TGGTGACTCCAACTTCGACG
Reverse: ATCGCGAGCGGAATCTTCAT

AT1G54030 GDSL esterase/lipase-like protein 25 (GELP25) Forward: CGTGAAACAAGCAAGCGGAA
Reverse: CCAGTTCCACAACAAGCAGC

AT3G14210  ESM1; GDSL esterase/lipase Forward: AAGGGAAACGTGCACTCGAA
Reverse: GGGTTCCCAATACTCACGCA

AT1G52400 Beta-glucosidase 18 (BGLU18) Forward: CTCTTGTCGCATGCTTACGC
Reverse: TTGGAGCCAAATGCCATCCT

AT1G66270 Beta-glucosidase 21(BGLU21) Forward: TTCCAAGCTAAGCCGAGCAA
Reverse: GAAATCAACGGCCACATCGG

AT1G66280 Beta-glucosidase 22 (BGLU22) Forward: TCACAACCTCCTCAACGCTC
Reverse: TGGGTCTAGATGCCATCCCA

AT3G03640 Beta-gluosidase 25 (BGLU25) Forward: CAGTCTGCGAGGACAAGGTT
Reverse: CGTGTCCGGGACTTTCTCAA

At2g43060 IBH1 Forward: ACAATGGCCTCTGCAGACAA
Reverse: AACGTACGCAGCCTTCTTGA

AT1G72150 Patellin 1 (PATL1) Forward: AAACAGCTCCGACCAGTCTG
Reverse: CTCTTTCTCTGCCACAGGGG

AT3G18820 Ras-related protein G3f (RABG3f) Forward: GCTTGGTGTGCTTCAAAGGG
Reverse: GCCTCGTTTCCTTCTGGTGA

At1G52690 Late embryogenesis 7 (LEA7) Forward: AGACGTCTCAAGCTGCACAA
Reverse: TTCACCGCATCAGTAGCTCC

At4G20850 Tripeptidyl-peptidase 2 (TPP2) Forward: GCAACAGTGGTCCAGCTTTG
Reverse: CCCGGCTTGACCAAGTGTAT

Table S3: Primer sequences used for qRT-PCR analysis of all the genes 
enriched in the GFP-VTI13 proteomic analysis. 
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    Locus                  Annotation   Accession No. Root hair 
phenotype 

At5G42080 Dynamin related protein 1A (DRP1A) CS835032 Present 

At1G14830 Dynamin related protein 1C (DRP1C) SALK_080307 
SALK_088722 

Present 

At1G10290 Dynamin related protein 2A (DRP2A) SALK_018859C Present 

At1G59610 Dynamin related protein 2B (DRP2B) SALK_003049 Present 

At3G11130 Clathrin Heavy Chain 1 (CHC1) SALK_112213 
SALK_103252 

Present 

At3G08530 Clathrin Heavy Chain 2 (CHC2) SALK_151638 Present 

At2G18960 Plasma membrane ATPase 1 (AHA1) SALK_065288C Present 

At3G14780 GDSL esterase lipase  SALK_039970C Absent 

At4G34450 Coatomer gamma 2 subunit SALK_103820 
SALK_103822 

Present 

At1G72150 Patellin 1 (PATL1) SALK_080204 Present 

At2G38000 DNA J Chaperone SALK_038497 Absent 

At3G20370 TRAF-like protein SALK_030953 Absent 

   

 

 

 

 

 

 

                                                          

 

                                                         

 

Table S4: T-DNA insertion mutant lines investigated for root hair phenotype.                 



	

134		

                                                         CHAPTER 4 

                             Synthesis and Future Directions 

 
Introduction 
 
Polarized growth occurs when cells synthesize and secrete new cell wall and plasma 

membrane components at their tip, resulting in highly elongated cells (Bedinger et al., 

1994; Hepler et al., 2001). This is one of two primary ways in which plant cells expand 

and is important in the development of evolutionarily diverse organisms (Jones and Dolan, 

2012; Rensing et al., 2016). Such growth was first reported in fungal hyphae (Levina et al., 

1994; Robson et al., 1996), and later in algal cells and moss protonema (Braun and 

Limbach, 2006; Vidali et al., 2007; Augustine et al., 2008; Eklund et al., 2010). In 

angiosperms and gymnosperms, polarized growth functions in two cell types: pollen tubes 

and root hairs.  

 

Root hairs in the model angiosperm Arabidopsis thaliana (Arabidopsis) are specialized 

extensions of particular root epidermal cells, known as trichoblasts, and are a great model 

for understanding polarized growth (Dolan, 2001). They function to increase root surface 

area, absorb water and nutrients, anchor plants in their environment, and participate in 

plant-soil microbe interactions, and are thus a highly tractable system for detecting growth 

phenotypes in different genetic and environmental contexts. Tip growth in root hairs is 

brought about by coordinated vesicular trafficking processes (Richter et al., 2011; Yao et 

al., 2011; Ichikawa et al., 2014; Larson et al., 2014; Jha et al., 2018) resulting in the 

secretion of new cell wall polymers at the growing tip (Park et al., 2011; Velasquez et al., 

2011). Polarized growth of root hairs is also controlled by a calcium gradient at the tip, by 
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modulations in extracellular pH (Halperin et al., 2003), adjustment of turgor pressure in 

the interior of the cell to control cell expansion (Mendrina and Persson, 2015; Mangano et 

al., 2016), and the coordinated assembly of cytoskeletal components (Bibikova et al., 1999; 

Ketelaar et al., 2013).  

 

To dissect the mechanism of polarized growth, I am primarily interested in understanding 

the endosomal trafficking pathways which are important for this developmental process in 

Arabidopsis. In this dissertation, I have described a novel protein complex important for 

root hair growth and its interaction with a pathway involving VTI13, a SNARE protein that 

maintains polarized growth and cell wall organization. I also initiated the mechanistic 

dissection of these pathways by investigating other components that are involved in the 

process of tip growth in root hairs.  In this final chapter, I will summarize my findings and 

present current outstanding questions to generate hypotheses that should allow us to build 

upon our knowledge of the cell biology of polarized growth in root hairs.  

 
 
VPS26C is a retromer/retriever complex essential for root hair growth in Arabidopsis 
 
Retromers are multi-protein complexes that were initially described in yeast to function in 

recycling receptors and other cargo from endosomal compartments back to Golgi or TGN, 

but recently have also been shown to function in trafficking receptors between endosomes 

and the plasma membrane (REFS).  Vacuolar Protein Sorting (VPS) 26C is a novel, 

evolutionarily conserved, large retromer complex protein. VPS26C interacts with VPS35A 

and colocalizes with VPS29 in Arabidopsis to form a large retromer/retriever complex that 

is essential for proper root hair growth under specific environmental conditions and 
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localizes to endosomal membranes in root epidermal cells (Jha et al., 2018). Koumandou 

et al. (2010) described the phylogeny of core retromer subunits in eukaryotes and showed 

that the VPS26C/DSCR3 sequences in plant and animal systems, including Arabidopsis 

and human, belong to a monophyletic clade distinct from the VPS26A/B sequences. 

Sequences within this clade may also share a conserved biochemical function as the human 

VPS26C/DSCR3 ortholog can complement the root hair phenotype of the vps26c mutant 

in Arabidopsis (Jha et al., 2018).  A recent study using human cell lines (McNally et al., 

2017) has demonstrated the human VPS26C/DSCR3 ortholog forms of a retromer-like 

‘retriever’ complex with VPS29 and a VPS35-like (C16orf62) protein, similar to the 

VPS26C complex identified in Arabidopsis (Jha et al., 2018). 

 

An investigation into proteins that form a complex with DSCR3 in humans has led to some 

other major conclusions about the retriever complex (McNally et al., 2017). Firstly, this 

complex localizes to endosomal membranes, and the Copper Metabolism MURR1 Domain 

(COMMD)/Coiled-Coil Domain Containing CCDC22/CCDC93 (CCC) complex mediates 

this recruitment.  The CCC complex functions in association with the WASH (Wiscott –

Aldrich syndrome and SCAR Homolog) complex in humans, a group of proteins involved 

in actin nucleation to control endosomal sorting of transmembrane receptors (Bartuzi et al., 

2016). Secondly, the retriever complex in humans interacts with the cargo adaptor Sorting 

Nexin (SNX)17, through a direct interaction with VPS26C/DSCR3. to mediate the 

retrograde trafficking of a subset of proteins from endosomes to the plasma membrane 

(REF). Lastly, suppression of CCDC22 and CCDC93, using siRNA, interrupts the 
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endosomal association of the retriever complex with SNX17, and therefore leads to the 

mis-sorting of the α5β1 integrin, one of the VPS26C/SNX17 cargo proteins.  

 

Based on our identification and functional characterization of the Arabidopsis VPS26C-

complex, as well as our recent knowledge of this complex in humans, several key questions 

arise that need to be addressed:  

 
1) Is the VPS26C-complex in Arabidopsis recruited to endosomes in the same way 

as the human VPS26C-retriever complex? 

The mechanism of retromer recruitment in plants, unlike animals, is largely unknown. We 

have recently found that only two of the human CCC complex members, CCDC22 and 

CCDC93, have homologs in Arabidopsis. Preliminary studies show that the Arabidopsis 

orthologs share about 65% amino acid sequence similarity with their human counterparts, 

and both CCDC22 and CCDC93 are essential in root hair growth (Appendix; Figure 18).  

Moreover, CCDC22 and CCDC93 are expressed in a VPS26C-dependent manner 

(Appendix; Figure 19). To address whether these proteins are responsible for the 

recruitment of the VPS26C-complex to membranes, as they are in humans, it will be 

important to establish that CCDC22 and/or CCDC93 co-localize with VPS26C in the same 

endosomal membrane.  This could be addressed by either transient expression of GFP-

VPS26C and YFP-CCDC22 and YFP-CCDC93 in tobacco leaves or by co-expressing 

GFP-VPS26C and YFP-fusions for CCDC22 or CCDC93 stably in Arabidopsis. 

 

siRNA-mediated down-regulation of CCDCs in human cell lines results in a lack of 

recruitment of the VPS26C-complex to the endosomes. This is very direct evidence of the 
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role that the CCDC proteins play in the localization of the retriever complex to the 

endosomal membranes. In Arabidopsis, we know that VPS26C localizes to endosomal 

membranes in root epidermal cells. Is this localization dependent upon CCDC22/93?  If 

we express 35S:GFP-VPS26C in the loss-of-function mutants, ccdc22 and ccdc93, and 

compare the localization of this retromer protein with that observed in wild type seedlings 

expressing GFP-VPS26C, we will get a clearer picture of whether the CCDC proteins play 

a role in mediating VPS26C localization to the endosomal membranes.  

 

CCDC93 in humans physically interacts with a VPS35-like protein during localization of 

the retriever complex to endosomes. In Arabidopsis, another vital question is then whether 

CCDC93 interacts with VPS35A or any other member of the retromer complex. Jha et al. 

(2018) used bimolecular fluorescence complementation to detect the physical interaction 

of VPS26C with VPS35A. Similar methods can be used to detect a possible interaction 

between any member of the VPS26C-VPS35A-VPS29 complex and CCDC93. Other 

assays include directed yeast two-hybrid interactions or co-immunoprecipitation of a 

member of the VPS26C protein complex with CCDC93.  

 

Retromer complexes, and now the retriever in animal systems, are dependent on the WASH 

complex (Helfer et al., 2013; Reviewed in Seaman et al., 2013; McNally et al., 2017), 

traditionally defined as ARP2/3 activators. In Arabidopsis, the SCAR/WAVE complex has 

been shown to function as an ARP2/3 activator (Frank et al., 2004) involved in actin 

polymerization related to root elongation (Dyachok et al., 2011), root hair growth, and 

tissue morphogenesis (Zhang et al., 2008). The SCAR/WAVE complex in Arabidopsis is 
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a multi-domain, multi-protein subunit that regulates ARP2/3 activation, and hence brings 

about actin polymerization (reviewed in Yanagisawa et al., 2013). Several proteins within 

the SCAR complex in Arabidopsis have been reported to function in coordinating distinct 

processes in plants through ARP2/3 activation and actin polymerization. For example, 

NAP1 regulates the formation of autophagosomes under conditions of nitrogen starvation 

and salt stress, by associating with ER membranes and sequentially colocalizing with the 

autophagy-related protein, ATG8 (Wang et al., 2016). SRA1, another member of the 

SCAR/WAVE complex, mediates stomatal response to darkness by controlling the actin 

reorganization in guard cells (Isner et al., 2017). sra1/pir1 mutants show defective actin 

organization in guard cells and leaf epidermal cells, leading to defects in stomatal closing 

in darkness and trichome morphology, respectively. However, there is currently no 

evidence that the SCAR complex recruits retromers to endosomes.  

 

A valid question is whether a SCAR complex member, similar to the WASH protein 

FAM21 in humans, that is responsible for interacting with either a retromer subunit or a 

CCDC complex member to mediate the recruitment of a VPS26C-containing 

retromer/retriever complex to endosomes in plants. There are a couple of ways to address 

this question. The Arabidopsis SCAR/WAVE complex consists of NAP1, SRA1, BRK1, 

ABIL1/2 and four SCARs (SCAR 1-4). It will be important to determine if the whole 

complex together or individual subunits within the complex function in retromer 

recruitment in Arabidopsis, if at all. nap1 and scar2 (Basu et al., 2005; Zhang et al., 2005; 

Wang et al., 2016), sra1 (Isner et al., 2017), and brk1 (Le et al., 2006) have been implicated 

in autophagy vesicle formation and trichome morphology. BRK1 is important for 
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stabilizing the SCARs in plants (Le et al., 2006), in contrast to non-plant systems where 

stability of each of the proteins in the WASH complex is interdependent (Derivery and 

Gautreau, 2010). Based on this information, we can use brk1 and scar2 mutants to analyze 

if there are defects in VPS26C or CCDC localization to endosomal membranes. Another 

approach would be to affinity purify GFP-VPS26C-endosomes and use proteomics to 

determine if any of the SCAR complex proteins are pulled down.  Overall, these 

approaches would begin to address a cellular mechanism describing how VPS26C localizes 

to the endosomes in plants.  

 

2) Is the VPS26C-complex in Arabidopsis a retromer or a retriever?  

The VPS26C-complex in humans is termed a ‘retriever’ because of several distinctions 

with human VPS35-retromer function: 1) the sorting nexin SNX17 binds to the VPS26C 

complex while SNX27 binds to the VPS35-retromer complex; 2) the mechanism used to 

recruit the retromer and retriever complexes to endosomal membranes; and 3) the 

trafficking pathway that each complex functions in. Whether the VPS26C complex in 

plants also functions as a ‘retriever’ needs further investigation. 

 

First, we need to determine whether VPS26C in Arabidopsis interacts with an integral 

membrane protein on endosomes. VPS26C in humans physically interacts with the 

membrane-associated cargo adapter, SNX17, which is distinct from the sorting nexins that 

make up the small subunit of the retromers. Whether VPS26C in Arabidopsis, similar to 

humans, physically binds with a membrane-associated cargo adaptor remains to be 

addressed. While there are no known orthologs of SNX17 in Arabidopsis, however, in an 
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earlier study the Rab7 homolog, RabG3f, has been shown to physically interact with 

VPS35A to bring about VPS35 association with late endosomal membranes (Zelazny et 

al., 2013). However, in the study of subcellular localization of VPS26C, I observed that 

the membrane compartment that VPS26C associated with is not a late endosome, as the 

localization was insensitive to Wortmannin treatment (Jha et al., 2018). Second, we need 

to identify cargo that binds to the VPS26C-complex in Arabidopsis. To investigate both of 

these aspects of VPS26C function, affinity purification-based proteomic analysis will help 

us identify potential candidates for cargo, as well as potential adaptor proteins that may 

interact with the endosomal membrane and bind to VPS26C.  

 

In Arabidopsis, retromer complexes have been defined to play a role in development. For 

example, VPS35 plays a role in immunity-associated cell death and associates with VPS29 

and VPS35B in a large retromer complex (Munch et al., 2015).  VPS26A and VPS35A are 

important in maintaining shoot gravitropism as part of a VPS35A-VPS29-VPS26A 

complex. To define whether the VPS26C-VPS35A-VPS29 is a classic retromer, or a 

distinct ‘retriever’ complex is an important question. One of the differences between the 

retromer and retriever complexes in human cells is that the latter is involved in recycling 

plasma membrane proteins from endosomal membranes. In Arabidopsis, Oliviusson et al. 

(2006) showed an interaction between core retromer subunits VPS35 and VPS26 with the 

Vacuolar Sorting Receptor, VSR1, by colocalization experiments using antibodies against 

the core retromer subunits and suggested that the retromer complex is involved in recycling 

of the VSRs. There is no other report of retromer cargo in plants.  Investigating the 

VPS26C-endosomes using affinity purification-based MS/MS analysis from the GFP-
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VPS26C expressing line can be useful in identifying cargo for the VPS26C-complex. 

Experiments to detect whether the candidate proteins co-localize with VPS26C, as well as 

to see if some of those would physically interact to function as a complex with VPS26C 

will be subsequently necessary to find out if VPS26C or VPS35A interacts with the cargo, 

and hence to distinguish this complex from a traditional retromer. If several major 

distinctions are found regarding the trafficking pathway markers, cargo or the interacting 

proteins, we can possibly conclude that the VPS26C complex is distinct from other 

retromer complexes characterized in Arabidopsis. All of these results taken together would 

be useful in illuminating the functioning of this complex in controlling polarized growth. 

 

3) How would an understanding of VPS26C biochemical function inform us about 

evolution of the ancient VPS26C progenitor in plant and animal kingdoms?  

VPS26C is an ancient gene having a conserved sequence across not only plants, but also 

animals and other eukaryotes (Koumandou et al., 2010). I have shown that VPS26C in 

Arabidopsis and humans are similar enough that the human VPS26C can substitute for the 

loss of VPS26C in Arabidopsis. This result is exciting, but more importantly, it is also 

thought provoking: does that mean they have the same cellular localization? Do they 

interact with the same set of proteins in both kingdoms? What function does VPS26C play 

in humans? On the other hand, if they are not similar in localization and interaction with 

other proteins, what does that mean for the evolution of VPS26C?  

 

Plants and animals are complex and have evolved to perform specialized functions. 

Although they share certain conserved proteins and pathways, there are many 
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developmental processes that are distinct between the two kingdoms. The difference 

therefore lies in how conserved a particular protein’s role is in cells, where these proteins 

are expressed in the organism, and whether they have evolved to have a specialized 

function in addition to their basic function.  I have built upon the information we obtained 

from the monophyletic VPS26C clade that Koumandou et al. (2011) described by 

identifying additional VPS26C orthologs and, these sequences (Figure 14). This alignment 

is useful for identifying conserved residues within VPS26C and may lead us to a model for 

conserved regions within VPS26C that are necessary for function and would explain the 

complementation of the Arabidopsis vps26c root hair phenotype by the human ortholog. A 

recent study of the structural mechanism of VPS26-VPS35-VPS29 retromer complex has 

used crystal structures of VPS26 and VPS35 to describe the interaction between the 

retromer subunit proteins (Lucas et al., 2016). The authors showed that the C-terminal end 

of the VPS26 interacts with the N-terminal a-helices of VPS35 through a hydrophobic core 

defined by a proline residue at 247 (P247). Mutation studies have also revealed that the 

VPS26 binding site on VPS35 is defined by a conserved 106PRLYL110 sequence (Gokool 

et al., 2007). Similar investigations with VPS26C will to define sequences necessary for 

its binding to VPS35A in the Arabidopsis retromer/retriever complex. This alignment also 

identifies conserved amino acids within VPS26C proteins across organisms.  We can use 

this information to change specific amino acid residues through mutagenesis and then 

investigate the ability of mutant VPS26C orthologs to complement the vps26c root hair 

phenotype is lost. In summary, identification of conserved sequences within VPS26C 

orthologs will be helpful in building models to delineate their functional similarities and 

differences and define how these properties may have evolved.  
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VPS26C function in a shared pathway with the SNARE VTI13 

One of the VTI SNARE family members, VTI11, traffics cargo to the lytic vacuole and is 

required for shoot gravitropism in Arabidopsis (REF).  Genetic suppressor analysis has 

been shown the VTI11 trafficking pathway interacts with a pathway involving the core 

retromer subunits VPS26A and VPS35A (Hashiguchi et al., 2010). In this case, the shoot 

gravitropic phenotype of the VTI11 mutant ‘zig’ is suppressed by the retromer vps26a and 

vps35a mutations. Another family member of the VTI-SNAREs, VTI13, localizes to early 

endosomes and the vacuole membrane and is essential for proper root hair growth and cell 

wall organization (Larson et al., 2014). Similar to the genetic interaction described above, 

we also see a suppression of the vti13 root hair growth and cell wall organization 

phenotypes of vti13 in a vti13 vps26c double mutant. In both instances, the suppression is 

very clear, but the mechanism of this suppression is not known yet.  

 

I have identified a number of proteins in the VTI13-proteome that may help us generate 

hypotheses stating how a VTI13 pathway interacts with those pathways controlled by the 

VPS26C complex control root hair growth. Based on my proteomic data, questions that I 

would like to address are as follows:  

 

1) In what endosomal pathways do both VPS26C and VTI13 function?  

Analysis of the VTI13 proteome identified a number of proteins, including the dynamin-

related proteins (DRPs) and clathrin heavy chain proteins (CHCs), that are involved in 

endocytosis and are localized in the tip of growing root hairs as well as to the site of cell 

plate formation. Of these, DRP2A, DRP2B, and CHC1 are mis-expressed in the vti13 
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mutant. One possible explanation for the vps26c suppression of the vti13 mutant 

phenotypes is that VTI13 is responsible for trafficking of the DRPs once they are 

endocytosed to the vacuole. This would explain the localization of VTI13 between early 

endosomes and vacuole membranes. To test this, co-localization experiments involving 

fluorescent fusion proteins of VTI13 and the DRPs can be performed. The localization 

pattern of the two proteins will confirm whether they are part of the same cellular 

compartment and further experiments can delineate whether they associate with VTI13 as 

part of endocytosis from the cell plate.  

 

Dissection of the pathway that VTI13 functions in, and the cargo associated with the 

VTI13-endosomes, would lead us to understand the phenotypes that vti13 exhibits. DRP2A 

and DRP2B mutants show defective root hair growth. This defect might be the result of 

aberrant endocytosis in the absence of the DRPs at the growing root tip. It will be 

worthwhile to understand whether DRPs also have defective cell wall organization. Surface 

labeling of root hairs with monoclonal antibodies (Larson et al., 2014) can be used to detect 

cell wall components on the cell surface.   

 

Another pertinent question is where does VPS26C fit in to this pathway? We have genetic 

evidence suggesting that VPS26C has a shared pathway with VTI13, but further details 

regarding this pathway remain elusive. One way to approach this question would be to use 

an affinity purification-based proteomic analysis, using the GFP-VPS26C expressing line 

and determine if there are any common proteins between the VTI13- and VPS26C- 

dependent pathways that can be immunoprecipitated with both GFP-VTI13 and GFP-
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VPS2C. So far, in the lab, I have not been able to detect the GFP-VPS26C fusion protein 

by a Western blot. This is surprising as I could detect the GFP-fusion both driven by the 

35S and the VPS26C endogenous promoters in the root epidermal cells and root hairs using 

confocal microscopy. One possible reason for this is that GFP-VPS26C is being degraded 

in the extraction buffers that I use such that I am unable to detect this protein on western 

blots. Further steps towards optimizing the homogenization buffer as well as 

troubleshooting the tissue harvest procedure might be helpful to extract this protein from 

the cells. 

  

2) How is the suppression of phenotypes happening?  

Jha et al. (2018) and Hashiguchi et al. (2010) report a genetic interaction between a VTI 

SNARE member and a retromer subunit. In both cases, this involves suppression of the 

SNARE mutant phenotype by mutations in large retromer subunit genes. The question I 

have been asked several times when I presented my work is how do we explain the 

suppression that we observe? I do not have a clear answer for this yet. One possibility is 

that other family members are having a compensatory effect. For example, VPS26A is 

significantly upregulated in the vps26c mutant compared to wild type. So, in the vti13 

vps26c double mutant, VPS26A, and one of the other VTI SNARE family members, VTI11 

or VTI12 might be able to compensate for the pathways that VPS26C and VTI13 function 

in, to display a more normal root hair growth. This hypothesis is aligned to the multiple 

examples of compensatory roles that gene family members play in regulation of plant 

development. However, the fact that the single mutants still display quite severe 

phenotypes does not support a compensatory mechanism by other gene family members.  



	

147		

The current model describing the functioning of VTI13- and VPS26C- pathways, based on 

my work and what we know so far from the literature is shown in Figure 15. In this model 

we show that VTI13 is involved in trafficking between early endosomes and lytic vacuole, 

and that VPS26C is trafficking from endosomes to either the Golgi/TGN or to the plasma 

membrane. The common component of these two pathways, whether it is an interacting 

protein or a membrane compartment that both are part of, will require further investigation. 

The proteomic analysis described in chapter 3 of this dissertation will be helpful in 

identifying candidates that are functioning in these pathways and will be helpful in 

dissecting this question.  If VTI13 is involved in trafficking of plasma membrane cargo 

between endosomes and the vacuole, the interaction of VTI13 and VPS26C endosomal 

trafficking pathways can possibly occur on the endosomes where the cargo not destined 

for the lytic vacuole but is recycled by the VPS26C-complex to the plasma membrane. This 

will predict a similar function to the VPS26C-retriever complex in humans where the latter 

recycles plasma membrane integrins. Common partners of these two pathways identified 

through proteomics will determine how these proteins are connected to each other.  

 

I hypothesize that in a common endosomal pathway, one half of the pathway has VTI13 

trafficking cargo from the early endosome to the vacuole, and the other half has VPS26C 

trafficking cargo from endosomes to the plasma membrane or Golgi.  Loss of function of 

one of these partners exhibits a more severe phenotype than losing both. Therefore, the 

double mutant shows a more ‘normal’ root hair growth and cell wall organization. One 

question that has not been addressed is the level of similarity of cell wall organization in 

the double mutant when compared to wild type seedlings. An approach that can answer 
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this is a glycome profiling of cell walls (Patthathil et al., 2012) of wild type, single vps26c 

and vti13 mutants, and vti13 vps26c to characterize the contents of the walls, beyond the 

surface organization that has previous been performed. 

 

In summary, this dissertation characterizes a novel retromer complex and its function in 

controlling root hair growth, and also is a second report of a SNARE-retromer interaction 

to maintain a common developmental pathway important for cell wall organization in root 

epidermal cells of Arabidopsis seedlings. This work leads to further hypotheses about how 

these two pathways are delineated and how they the each coordinate the endosomal 

trafficking pathway that regulates polarized growth and cell wall organization in 

Arabidopsis.  
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Figure 14: Alignment of VPS26C amino acid sequences in plant and animal systems 
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Figure 15: Current model representing VTI13 and VPS26C dependent endosomal 
trafficking pathways 
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APPENDIX A: Preliminary characterization of the role of putative VPS26C-

interacting proteins, CCDC22 and CCDC93, in regulating root hair growth in 

Arabidopsis thaliana. 

 

INTRODUCTION 

Vacuolar Protein Sorting (VPS) 26C is a novel, evolutionarily conserved large retromer 

complex protein. VPS26C is essential for proper root hair growth under specific 

environmental conditions and localizes to endosomal membranes in root epidermal cells. 

The human VPS26C/DSCR3 ortholog can complement the root hair phenotype of the 

vps26c mutant in Arabidopsis (Jha et al., 2018).  A recent work in human cell lines 

(McNally et al., 2017) has demonstrated the formation of the retromer-like ‘Retriever’ 

complex, involving the human VPS26C/DSCR3 ortholog. They have additionally shown 

that the WASH complex and CCC complexes interact sequentially to recruit the VPS26C-

complex to the endosomal domain.  

The mechanism of retromer recruitment in plants, unlike animals, is largely unknown as 

yet. We wanted to test whether in Arabidopsis, the VPS26C-retromer complex also follows 

CCC-complex mediated endosomal recruitment. We have data so far on a few of the 

preliminary studies that are done in understanding if CCDCs play a role in VPS26C-

retromer function in Arabidopsis.  
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RESULTS  

Human CCDC22 and CCDC93 have orthologs in Arabidopsis thaliana 

The CCC complex proteins, or CCDCs, are largely uncharacterized in plant systems so far. 

In the BLAST searches we did for the human CCDCs, we found Arabidopsis orthologs of 

only two of the CCDCs, CCDC22 (At1G55830) and CCDC93 (At4G32560) (Figures 1 and 

2). The amino acid sequence comparison between the human and Arabidopsis displays a 

shorter amino acid sequence for Arabidopsis. But the Arabidopsis sequences for both 

CCDC22 and CCDC93 have more than 65% similarity in the sequence that overlapped 

with that of human. 

 

CCDC22 and CCDC93 are essential for root hair growth 

T-DNA insertion mutants of CCDC22 (SALK_047800) and CCDC93 (SALK_039808C) 

were used for these studies. Seedlings were grown under continuous light for 5 days on 1X 

MS medium, pH6, and on 1X MS medium, pH6, supplemented with 200 mM mannitol, 

after which they were analyzed for defects in root hair growth. Both ccdc22 and ccdc93 

seedlings grown on both media exhibited aberrant root hair growth when compared to wild 

type seedlings (Figure 3).  

 

CCDC22 and CCDC93 are down regulated in the vps26c mutant 

To test whether the expression of CCDC22 and CCDC93 is dependent on VPS26C, we 

used qRT-PCR to determine the transcript of the two genes in wild type and vps26c 

seedlings. Both CCDC22 and CCDC93 were found to be significantly down regulated in 

the vps26c mutant (Figure 4).  
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This, along with the CCDC mutants showing a defective root hair growth indicates that 

CCDCs in Arabidopsis thaliana might be functioning in a VPS26C-dependent manner and 

have a role to play in controlling root hair growth.  

 

METHODS 

Plant material and growth conditions 

Analysis of wild type and SALK mutant lines was performed using the Columbia-0 ecotype 

of Arabidopsis. The growth medium for Arabidopsis seedlings consisted of 1X Murashige-

Skoog (MS) salts (Murashige and Skoog, 1962), 1% (w/v) sucrose, 5 mM 4-

morpholineethanesulfonic acid sodium salt (MES), pH 6, 1X Gamborg’s vitamin solution, 

and 1.3% (w/v) agarose (Invitrogen). For plants grown to maturity, seeds were sown on 

soil (Transplanting mix, Gardener’s Supply, Intervale Rd, Burlington, VT) and placed in 

Conviron MTR30 growth chambers (Conviron, Winnipeg, CA, USA), using cool-white 

lights (80 µmol/m2/sec; Licor photometer LI-189) under continuous light at 19° C.  

  

Characterization of root hair phenotypes 

Seeds were sterilized using 20% (v/v) bleach, followed by 5-6 washes in sterile distilled 

water. The sterilized seeds were stored in sterile water overnight in the dark at 4° C before 

plating them on solid media. Seedlings were grown on MS medium using petri plates 

placed vertically under continuous white light at 20°C for five days. Where indicated, 200 

mM mannitol was included in the growth medium. To characterize root hair shape and 

growth, seedlings were mounted in sterile water on glass slides. Images were taken using 

a Nikon Eclipse TE200 inverted microscope with SPOT imaging software (Diagnostic 
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Instruments). The length of 10-15 root hairs/seedling for at least 10 seedlings per genotype 

were measured, using Image J and the calibrating tool in the SPOT software, and a 

Student’s t-test was used for statistical analysis.  

 

RNA isolation and transcript analysis using qRT-PCR 

For transcript expression analysis 7-day-old whole seedlings were collected for three 

biological replicates.  Approximately 200 seedlings were pooled for each genotype and 

treatment and three biological replicates were generated. For null mutant analysis, young 

leaves from each genotype and three biological replicates were generated for RNA 

extraction. All isolated tissues were frozen, ground in liquid nitrogen, and stored at -80°C. 

Total RNA was extracted using a Qiagen RNeasy Plant Mini Kit, quantified using a 

nanodrop (ThermoScientific) followed by generation of first strand cDNA using 

Superscript II Reverse Transcriptase (Invitrogen), according to the manufacturer’s 

instructions. For quantitative RT-PCR, the first-strand cDNA was diluted 1:10 and then 

used as a template with iTaq Universal SYBR green Supermix (Bio-Rad). An Applied 

Biosystems Step-one Plus instrument was used to run the qRT-PCR. Three technical and 

three biological replicates were used for each qRT-PCR cycle. The differential expression 

values of transcripts were standardized against the transcript expression of EF1α and ACT2 

housekeeping genes.  

 

Statistical Analysis 

Statistical analyses were done using a Student’s t-Test, where pairwise comparison was 

performed between genotypes, or treatments. For example, root hair growth measurements 
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were compared in a pair-wise fashion between wild type and each of the mutants 

individually, and significance was accepted at the P<0.05 level. 

 

Accession numbers 

CCDC22: At1G55830 (ccdc22: SALK_047800) and CCDC93: At4G32560 (ccdc93:  

SALK_039808C) 

 

Primers used for qRT-PCR 

CCDC22_qRT-PCR_F: 5’ AGCAATGGGACGATGTAAGG 3’ 

CCDC22_qRT-PCR_R: 5’ TTTTGGCTGCCTCTCAAGTT 3’ 

CCDC93_qRT-PCR_F: 5’ AGATTGACGATGTGCCATGC 3’ 

CCDC93_qRT-PCR_R: 5’ CAATAAGCTTCACACGGCCA 3’ 
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Figure 16: Alignment of the amino acid sequence of CCDC22 between Homo 
sapiens and Arabidopsis thaliana 
 
Alignment of CCDC22 amino acid sequences of Arabidopsis and human illustrates 
that these orthologs share 64% amino acid sequence similarity. Legend: (*): fully 
conserved residues; (:) conserved residues with strongly similar properties; (.) 
conserved residues having less similar properties. 
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Figure 17: Alignment of the amino acid sequence of CCDC93 between Homo 
sapiens and Arabidopsis thaliana 
 
Alignment of CCDC93 amino acid sequences of Arabidopsis and human 
demonstrates that these orthologs share 69% amino acid sequence similarity. 
Legend: (*): fully conserved residues; (:) conserved residues with strongly similar 
properties; (.) conserved residues having less similar properties. 
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Figure 18: ccdc22 and ccdc93 are defective in root hair growth 
 
Wild type seedlings and T-DNA insertion mutants of ccdc22 and ccdc93 were grown on 1X 
MS medium, pH6 (upper panel) and 1X MS medium, pH6 supplemented with 200 mM 
mannitol (lower panel) for five days after which root hair growth was imaged using bright 
field microscopy.  ccdc22 and ccdc93 display shorter root hairs compared to wild type. 
Bars=100 µm 
 
Comparison of root hair lengths. Root hairs of 15 seedlings per treatment per genotype were 
scored for length measurements, and 10-15 root hairs per seedling were measured for each 
biological replicate. The graph represents the average of three biological replicates. 
Asterisks denote statistical significance (P<0.05) based on the Student’s t-test, where wild 
type was compared in a pair-wise manner with each of the genotypes. Error bars represent 
the standard error of mean of three biological replicates. 
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Figure 19: CCDC22 and CCDC93 transcripts are downregulated in vps26c 
 
qRT-PCR analysis of CCDC22 and CCDC93 transcript levels in roots of wild 
type and vps26c seedlings grown on 1X MS medium, pH 6. Transcript levels of 
both CCDC22 and CCDC93 down regulated in vps26c mutant compared to wild 
type. Asterisks indicate statistical significance according to the Student’s t-test 
(P < 0.05). Error bars represent the standard error of the mean of three biological 
replicates, run in triplicate. 
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