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ABSTRACT 
 

 
Signaling and sensing with rotating magnet sources has both Terrestrial and 
Extraterrestrial applications. The dual spinning magnet unit presented in this paper is a 
simple, lightweight solution to help understand soil densities and locate water and ice 
pockets on Mars. Traditional magnetic telemetry systems that use energy-inefficient large 
induction coils and antennas as sources and receivers are not practical for extraterrestrial 
sensing applications. The recent proliferation of strong rare-earth permanent magnets and 
high-sensitivity magnetometers enables alternative magnetic telemetry system concepts 
with significantly more compact formats and lower energy consumption. There are also 
terrestrial applications, for example, subterranean objects such as underground 
infrastructure and unexploded ordnances (UXO) are often unmapped and difficult to find 
on Earth. Current ground penetrating radar units are expensive, large, and heavy. 
Traditional megahertz radio communication systems are often unable to penetrate 
through multiple feet of earthen and manmade materials and have impractically large 
energy requirements. Low-power magnetic signaling systems do not suffer from this 
drawback: low-frequency electromagnetic waves easily penetrate well through several 
feet of earth and water. The research presented and proposed explores the viability and 
possibility to develop a unit that will induce an oscillating magnetic field to reliably 
locate buried pipes, soils, and unexploded ordinances (UXO) while remaining lightweight 
and cost effective. The Dual Rotating Magnet (DRM) design will be tested to assess the 
following hypotheses for both Mars and Earth applications: 1) detect differences in soil 
densities, 2) detect water and ice pockets at shallow depths in the subsurface, and 3) 
reliably detect subterranean objects of interest. 
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 1 

 CHAPTER 1: Introduction 

The main goal of this research is to develop a magnetic sensing device that locates 

both terrestrial and extraterrestrial subsurface anomalies. The design uses an array of 

moving permanent magnets creating a shaped oscillating magnetic field that interacts with 

subsurface features to produce an effect that is measurable with a magnetometer.  By 

spinning a synchronized array of magnets, the induced magnetic field will magnify the 

magnetic signature of subsurface objects of interest.  Even non-magnetic materials can be 

detected by inducing eddy currents when rotating the magnets at higher speeds.  The design 

has the potential to sense through iron-based soils to find underground infrastructure and 

unexploded ordinances on Earth and changes in soil densities and water/ice pockets on 

Mars.  

The objectives of the project are to: (1) develop a low cost, lightweight, subsurface 

sensing unit that utilizes an array of neodymium magnets, and (2) test the sensitivity and 

viability of a dual rotating magnet unit for both terrestrial and extraterrestrial applications.  

The objectives are explored through 6 chapters.  Chapters 2 and 3 use mathematical models 

and finite element analysis to quantify how a given array of magnets and their individual 

fields will interact.  Chapter 4 explains the four different iterations of the design and why 

the components of each design were chosen.  Chapter 5 explains the testing results and 

Chapter 6 looks at conclusions and future work.      

1.1 Literature Review 

The following literature review covers four major topics: (1) the composition of the 

Martian surface and subsurface, (2) geophysical sensing equipment presently on Mars 
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rovers including GPR systems, (3) need for on Earth magnetic sensing devices, and (4) 

present state of the art magnetometer sensing devices.  The motivation resides in the 

importance to understand the soil composition on Mars to prove the possible successful 

uses of the dual rotating magnet sensing device. Additionally, knowledge of the present 

state of the art of magnetic sensing systems is critical to designing and testing an improved 

and useful magnetometer sensing system. Current magnetic sensing devices use 

magnetometers and large coils to identify and/or locate subterranean objects. This review 

of current magnetic devices summarizes the advantages and disadvantages of existing 

systems, including cost and weight. The research goal is to develop a new magnetometer 

sensing system that actively induces magnetic fields to sense what lies beneath the surface. 

1.1.1 Martian Soil 

Space exploration is an ever-growing field.  NASA and other agencies are 

constantly seeking to improve current technologies to further their extraterrestrial 

knowledge.  Mobile wheeled rovers are currently being used to study Mars.  Little is known 

about the Martian soil.  Many areas are of interest such as identifying and characterizing 

soft pockets of sand that cause the rovers to lose traction and pockets of water and ice.  

Finding ice and water pockets can be very helpful in determining the past and future 

possibilities of life on Mars [4].  Current Mars rovers are each outfitted with magnetic 

property tools with the following objectives in mind: “(i) to identify the magnetic minerals 

in the dust, soil and rocks on Mars, (ii) establish if the material is present in the form of 

nanosized (d < 10nm) superpara-magnetic crystallites, and (iii) to establish if the magnets 

are culling a subset of strongly magnetic particles” [4].  The particles collected by the 
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magnets are then studied using different spectrometers located on an instrument 

deployment device(IDD) [4].  From numerous tests it is confirmed that Martian soil is 

composed of iron sulfate, making it a magnetic surface [4]. 

The composition of Martian soil is critical to the viability of magnetic sensing on 

Mars. Martian soil contains 13% by weight the element iron [4].  Little is known about the 

mineralogical composition of the Martian regolith, but by visual spectroscopy the majority 

of iron is in the oxidation state Fe(III) [4]. 

The Opportunity rover was outfitted with a miniaturized Mossbauer spectrometer 

called the MIMOS II that measured the Mossbauer spectra [6]. This provides quantitative 

information about the distribution of iron in its multiple oxidation states. The Mimos II is 

mounted on a robotic arm that can rotate back and forth to position the spectrometer over 

the target [6]. The Mossbauer tests on the Meridian Planum at Eagle crater revealed four 

mineralogical components: jarosite and hematite rich outcrop, hematite rich soil, olivine 

bearing basaltic soil and a pyroxene bearing basaltic rock [6].  Jarosite is a hydrous sulfate 

potassium iron sulfate that is formed by oxidation of iron sulfides, the formation process 

occurs in ore deposits [7].  Hematite is a mineral form of iron oxide (III)[8], while olive 

and pyroxene bearing basaltic soil are created from volcanic lava [6].  Due to the magnetic 

properties of the Martian regolith, finding abnormalities on the Martian surface may be 

possible with an active magnetic sensing system, such as a dual rotating magnet with a 

magnetometer sensor system. 

Iron exhibits a magnetic behavior called ferromagnetism.  Ferromagnetic materials 

contain magnetic dipoles that are orientated parallel to each other, even without an external 
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field.  Unlike other materials, ferromagnetic substances can be magnetized easily up to the 

saturation limit. At saturation the magnetic field can no longer be increased. Iron tends to 

stay magnetized after being subjected to an external magnetic field through a process called 

hysteresis [5].  The theoretical model of magnetization is seen in the Figure 1. The initial 

magnetization curve starts at the origin and moves upward. The upper and lower curves 

model the main loop that occurs after saturation. Where hc and mrs are the coercivity ability 

of material, (to withstand demagnetization when exposed to an external magnetic field) 

and saturation remanence (magnetization remaining in zero field), respectively [2]. 

 
Figure 1: Magnetic Hysteresis Curve Associated with Forced Magnetism [1] 

 
The formation of the iron sulfate rich soil on Mars is largely due to reaction with 

liquid water [4].  Iron sulfate forms by exposing iron to moisture for an extended period of 

time [18].  Figure 2 summarizes the pathways to the formation of ferromagnetic minerals 

on Mars. 
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Figure 2: Pathways for the Formation of Ferromagnetic Materials [4] 

The formation process of iron sulfate makes it likely that the soil surrounding a water 

pocket on Mars will most likely have a higher concentration of iron sulfate due to 

heightened moisture levels.  This phenomenon indicates that a magnetic sensing unit will 

be useful for locating subsurface water pockets. 

1.1.2 Martian Rovers 

There are currently three rovers on Mars: The Spirit, Opportunity and Curiosity. 

The Opportunity and Curiosity are active, and the Spirit is unresponsive [2].  Both active 

rovers are outfitted with state of the art equipment that record Martian information. The 

Opportunity has seven different tools: cameras, rock abrasion tool (RAT), microscopic 

imager, alpha-particle x-ray spectrometer, Mossbauer spectrometer, mini-thermal emission 

spectrometer and magnet arrays [10].  The objective for each rover is similar: to search for 
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and characterize a wide range of rocks and soils that hold clues to past water activity on 

Mars [10]. 

 

Figure 3: Depiction of Martian Rover 

NASA plans to launch a rover in July or August of 2020 that is similar to the 

Opportunity.  NASA has four scientific goals for the 2020 mission: (1) determine whether 

life ever arose on Mars, (2) characterize the climate of Mars, (3) characterize the geology 

of Mars, and (4) prepare for human exploration [9].  Four objectives support these scientific 

goals: (1) identify past environments capable of supporting microbial life, (2) seek signs of 

possible past microbial life in those habitable environments, particularly in special rocks 

known to preserve signs of life over time, (3) collect core rock and “soil” samples and store 

them on the Martian surface, and (4) test oxygen production from the Martian atmosphere 

in preparation for humans [9]. The 2020 rover will have similar equipment as the 

Opportunity, with the addition of a drill for coring rocks and soil. Collected cores will be 
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stored in a tube on the Martian surface in hope for future missions to collect the stored 

samples and return them to Earth for further analysis [9]. 

A radar imager for Mars’ subsurface experiments (RIMFAX) is another 

technology that may get added to the 2020 rover. Developed by Norwegian Svein-Erik 

Hamran, the RIMFAX’s primary purpose is to locate geological features under the surface 

with ground penetrating radar (GPR) [9]. The GPR unit operates at a frequency range of 

150 to 1200 megahertz and depending on the soil material penetration depths greater than 

30 feet can be reached [9]. Due to the iron rich surface on Mars, these depths are ambitious. 

High content iron sulfate soil will change the dielectric properties of the soil and change 

how well the GPR signal can be sent and received [11].  Depending on the amount of iron 

in the soil it will attenuate the electromagnetic signal, clouding and distorting the sensing 

of subsurface structures on Mars [11].  A magnetic sensing unit may be more appropriate 

for Martian applications. 

1.1.3 Magnetometers 

Magnetometers appear in numerous sensing applications, such as locating 

subterranean objects. A magnetometer can measure and record a magnetic field, and 

therefore can be used to conduct geophysical surveys to detect magnetic anomalies [14].  

Vector magnetometers measure the flux density in a specific direction within a three-

dimensional space and scalar magnetometers measure the magnitude of the vector field 
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[12].  Different types of vector magnetometers include Hall effect, flux gate, SQUID, and 

atomic [12].   

Hall effect sensors are the most commonly used.  They work by producing a voltage 

that is proportional to the applied magnetic field.  The sensor consists of a semiconductor 

crystal made of an indium compound that is mounted on an aluminum plate [38]. When 

the sensor is exposed to a magnetic field, a current passes through the crystal and a voltage 

is formed across it.  This phenomenon is known as the Hall effect voltage [38].  Hall sensors 

are also able to sense the polarity of the field and work best in applications with large 

magnetic field strength [38].  Flux gate magnetometers consist of a small core that is 

wrapped in two coils of wire.  The core is composed of magnetically susceptible material 

and as an alternating electrical current is passed through the core it is driven through an 

alternating cycle of magnetic saturation [12].  The changing field induces an electric 

current in the second coil and the output current is measured through the detector.  When 

a background field is present, the core is more easily saturated when the alternating field 

is in alignment with the background field and not as easily saturated when the fields are 

opposite [38].  The strength and phase of the signal depends directly on the external 

magnetic field’s magnitude and polarity.  Superconducting quantum interface devices 

(SQUID) are able to measure very small changes in a magnetic field.  There are either RF 

or DC SQUIDs.   
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Figure 4: DC SQUID Circuit [38] 

DC SQUIDs work by an input current that splits at a junction into two branches 

equally, as seen in Figure 4.  When an external magnetic field is applied, the current begins 

circling in the loop and when the current exceeds the critical current, a voltage is formed 

across the junction [38].   The most common superconducting materials used are niobium, 

lead alloy with 10 percent gold, or indium.  The high sensitivity is due to low noise levels 

[38].  In order to maintain super conductivity, the device needs to be liquid cooled using 

helium or nitrogen which makes their use difficult in most applications.  Due to the cooling 

requirements SQUIDs are used mostly in laboratory and biology applications [12].  The 

last type of vector magnetometer is a spin-exchange relaxation free (SERF) atomic 

magnetometer.   They use lasers to detect the interaction between alkali metals and a 

magnetic field.  SERF magnetometers contain potassium, cesium or rubidium vapor and 

have a sensitivity of *	+,	-./*/1 [38].  A SERF magnetometer is highly sensitive because 

it measures the dense alkali metal vapor that is in a near zero magnetic field [38].  The 
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SERF magnetometer is different from other atomic magnetometers because it eliminates 

the atomic spin decoherence that occurs in spin exchange collisions [12].   Spin exchange 

collisions between atoms do not change the angular momentum of either atom, but the 

hyperfine state of the atoms does change [12].  The sensitivity is determined by the number 

of atoms in the circuit and their spin coherence.  Due to the sensitivity of the unit, these 

magnetometers can only operate in low magnetic fields that are less than 2. 4	5, [38].  The 

technology, when used in large volumes, can achieve greater sensitivity per unit volume 

than the SQUID magnetometers. 

 The performance of any magnetometer is dependent on the bandwidth, resolution, 

thermal stability, noise, and sampling rate [12].  Bandwidth determines if a magnetometer 

can track rapid changes, and the smallest magnetic field change the magnetometer can 

accurately record determines the resolution [38].  Measurements are dependent on the 

temperature due to thermal stability [12].  Noise is a major function of the performance of 

the unit, it is generated by the sensor or electronics [12].  The sensitivity of a magnetometer 

is the larger value of the noise or resolution and the sampling rate corresponds to the 

number of readings per second, which is the inverse of the cycle time [12].  

1.1.4 Electromagnetic Induction 

Lenz’s law states that “induced electric current flows in a direction such that the 

current opposes the change that induced it” [15].  Depending on the sensitivity of the 

magnetometer, a variety of underground objects can be located. In order to increase 

sensitivity, electromagnetic induction units were introduced.  Electromagnetic induction 

(EMI) sensing units, also known as search coil magnetometers, were introduced in the late 
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1970’s to increase subterranean detection abilities [13].  EMI units consist of a large coil 

of tightly wound wire and a magnetometer. Electromagnetic induction is created by an 

induced electromotive force in a circuit by a varying magnetic flux, which is explained by 

Faraday’s law [13].  Faraday’s law of induction states how an electromotive force is 

produced when a magnetic field interacts with an electric current [16].  Faraday used the 

following equation to relate the rate of change of a magnetic field flux to the induced 

voltage [23]. 

	6 = 8 9: 9;<  

Where e=instantaneous voltage, N=number of turns in wire coil, Φ=magnetic flux and 

t=time.  

Initially EMI was used to test soil salinity and now has expanded into soil detection, 

compaction, organic matter content, and pH content [12].  Additionally, EMI is used for 

underground location of UXOs (unexploded ordinance) and other objects of interest. 

Electromagnetic induction sensors transmit a primary electromagnetic field that induces an 

electrical current into the soil.  A secondary field is created by the currents in the soil and 

then recorded by a magnetometer [12].  An area where an object of interest such as an UXO 

is located will transmit a different electrical current than the rest of the surrounding soil. 

These units are effective but have inherent disadvantages.  
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Figure 5: EMI Units [13] 
EMI units are large and bulky as seen in Figure 4, making it difficult to use in tight 

spaces. An average EMI unit weighs 73.9 pounds with an overall length of 49.9 inches [3]. 

For weight and size sensitive applications, such as on a Mars rover, these EMI systems are 

oversized. 

1.1.5 Eddy Currents 

Eddy currents (see Figure 6), are loops of electrical currents that are created by a 

changing magnetic field in the conductor [21].  A magnetometer with suitable sensitivity 

and frequency range can detect eddy currents.  
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Figure 6: Eddy Currents [39] 

A magnetometer with capabilities of sampling at a rate of over 50 Hz will detect 

eddy currents within an object [22].  By spinning two magnets with opposing fields at a 

high rotation rate, detection of nonferrous materials such as aluminum and copper is 

possible.  Spinning the magnets at 6,000 rpm or higher will induce eddy currents in 

materials that are otherwise undetectable by a magnetometer [22].  Being able to induce 

and detect eddy currents is crucial for the viability of a magnetic sensing unit to find and 

map underground infrastructure, as many features of interest often contain ferromagnetic 

and non-ferromagnetic metallic conductors. 
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CHAPTER 2: Quasi-Static Multi-Dipole Model of Rotating Magnet Arrays 

Due to the complexity of the magnetic field for a given array of magnets (i.e. 

Halbach array), a theory was derived to better understand the interaction.   

2.1 Multiple Dipole Local to Global Coordinate Theory  

To understand the magnetic field produced by the dual rotating magnet unit, the 

magnetic field produced by a set of dipole magnets must be calculated in three dimensions.  

Using a mathematical model for a multi-dipole magnetic field, the magnetic field can be 

calculated in any arbitrary position and orientation in 3-D space [37].  It is assumed that 

the magnets act as dipoles and can rotate individually about a fixed axis, but the rotation 

speed is slow enough for static field calculations.  An additional assumption is that the 

magnetic fields form in a non-magnetic medium, such as a vacuum or air, that acts linearly.  

For example, individual magnets each produce a field that superpose and add at points in 

space.   

 

Figure 7: Magnets in Space 
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For a given point in space =>⃗ , the magnetic field @A>>>>⃗  is the sum of the fields from 

each individual magnet. 

BC>>>>>⃗ = B>>⃗ C* + B>>⃗ C* +⋯+B>>⃗ CF (	1	) 

Where @>⃗ AI is the individual magnetic field.  To calculate the individual magnetic 

field of a single magnet the field is first considered in local coordinates.  

 

Figure 8: Angle Depiction 

As seen in Figure 8, assume the magnetic dipole (M) points North in the positive 

Z direction so the magnetic dipole vector has the following characteristics. 

J>>⃗ = 	 KJ>>⃗ KL>⃗ = JL>⃗ (2) 

N⃗ = =OPQ;QOR	S6T;ON	OU	=	QR	VOTWV	TOON9QRW;6P 

X⃗, Z⃗	WR9	L>⃗ = [RQ;	S6T;ONP	UON	TWN;6PQWR	TOON9QRW;6	P\P;6] 

_̂, :̀	WR9	N̂ = [RQ;	S6T;ONP	UON	Pbℎ6NQTWV	TOON9QRW;6	P\P;6] 

Using the equation for a static magnetic field potential in spherical coordinates. 
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@>⃗ (N⃗) = ∇ × f⃗ (3) 

Where f⃗ is the potential field for a magnetic dipole: 

f⃗ =
hi
4k

]>>⃗ × N⃗
Nl

(4) 

Inserting f⃗ into @>⃗ (N⃗): 

@>⃗ (N⃗) = ∇ × m
hi
4k

]>>⃗ × N⃗
Nl n (5) 

For this specific case: 

]>>⃗ × N⃗ =
hi
4k

|]>>⃗ ||N⃗|
Nl sin ^ :̀ =

hi
4k

]
Nl sin ^ :̀

(6)	 

The following steps are taken to solve for the magnetic field of one dipole. 

@>⃗ (N⃗) = ∇ × f⃗ =
1

N sin ^ t
u
u^

(fv sin ^) −
ufv
u: x N̂ +

1
N t

1
sin ^

ufy
u: −

u
uN zNf{|x

_̂ +
1
N t

u
uN
(Nfv) −

ufy
u^ x :̀

(7)
 

 

Where fv = fy = 0.  And therefore, simplifying to: 

@>⃗ (N⃗) = ∇ × f⃗ =
1

N sin ^ t
u
u^ zf{ sin ^|x N̂ +

1
N t−

u
uN zNf{|x

_̂ (8) 

Continuing to solve for @>⃗ . 

f{ =
hi]
4k

sin ^
N}

(9) 

Let � = ÄÅÇ
ÉÑ

, and first solve for Ö
Öv
zf{ sin ^| 

u
u^ zf{ sin ^| =

u
u^ t�

sin ^
N} sin ^x (10) 
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u
u^ zf{ sin ^| =

u
u^ t

�
N} sin

} ^x (11) 

u
u^ zf{ sin ^| =

�
N} 2 sin ^ cos ^

(12) 

Next solving for Nf{. 

u
u^ zNf{| =

u
uN àN�

sin ^
N} â (13) 

u
u^ zNf{| =

u
uN à�

sin ^
N â (14) 

u
u^ zNf{| = −�

sin ^
N}

(15) 

Inserting Ö
Öv
zf{ sin ^|	WR9	

Ö
Öy
(Nf{) into Equation 3. 

@>⃗ (N⃗) = ∇ × f⃗ =
1

N sin ^ t
�
N} 2 sin ^ cos^x N̂ +

1
N t�

sin ^
N} x _̂ (16) 

Simplifying to: 

@>⃗ = ∇ × f⃗ =
�
Nl 2 cos^ N̂ + �

sin ^
Nl

_̂ =
�
Nl ä2 cos^ N̂ + sin ^

_̂ã (17) 

Convert the magnetic field from local spherical to local Cartesian coordinates.  

Knowing N̂ and _̂. 

N̂ = sin ^ cos: X⃗ + sin ^ sin: Z⃗ +	cos ^ L>⃗ (18) 

_̂ = cos^ cos: X⃗ + sin ^ sin: Z⃗ −	sin ^ L>⃗ (19) 

Then @>⃗  becomes: 

@>⃗ =
�
Nl å

2 cos^ äsin ^ cos: X⃗ + sin ^ sin: Z⃗ +	cos ^ L>⃗ ã +
sin ^ äsin ^ cos: X⃗ + sin ^ sin: Z⃗ −	sin ^ L>⃗ ã

ç (20) 
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@>⃗ =
�
Nl m

(2 cos^ sin ^ cos: + sin ^ cos:	TOP^) X⃗ +
2TOP^ sin ^ sin : + sin ^ cosθ	sin :) Z⃗ + (2 cos^ cos^ − sin ^ sin ^)L>⃗

n (21) 

@>⃗ =
�
Nl ä3 cos^ sin ^ cos: X⃗ + 3TOP^ sin ^ sin: Z⃗ + (2 cos

} ^ − PQR} ^)L>⃗ ã (22) 

Now the total local magnetic field is equal to @>⃗ = @èêX⃗ + @ëêZ⃗ + @íêL>⃗ . 

 

Figure 9: Point in Space 

Where =>⃗ =	Position of point P in global coordinates, N⃗ = Position of point P in local 

coordinates, and =>⃗i = Position of origin of local coordinate system relative to origin of 

global coordinates. 

And: 

=>⃗ = =>⃗i + N⃗ (23) 
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Therefore: 

N⃗ = =>⃗ − =>⃗i						ON				N⃗ì = =>⃗ ì − =>⃗i
ì (24) 

Multiplication with a dyadic of direction cosines converts the components of N⃗ì  

into N⃗ê  with: 

{Nê} = [ó]{Nì} (25) 

ô
Nèê
Nëê

Nöê
õ = [ó] ô

Nèì
Nëì

Nöì
õ (26) 

ô
Nèê
Nëê

Nöê
õ = å

óúú óú} óúl
ó}ú ó}} ó}l
ólú ól} óll

ç ô
Nèì
Nëì

Nöì
õ (27) 

To enable calculating the @>⃗  in Cartesian coordinate system the following steps must 

be taken. 

@è =
�
Nl 3 cos^ sin ^ cos:

(28) 

@ë =
�
Nl 3 cos^ sin ^ sin:

(29) 

@ö =
�
Nl
(2 cos} ^ − PQR} ^) (30) 

N} = N⃗ê ∙ N⃗ê = N⃗ì ∙ N⃗ì (31) 

N = ûNèì
} + Nëì

} + Nöì
}ü
ú
} = ûNèê

} + Nëê
} + Nöê

}ü
ú
} (32) 

Where: 

																																																										sin ^ =
1
N (Nè

ê} + Nëê
})
ú
}																																																			(33) 
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cos^ =
1
N Nl

} (34) 

sin : =
Nëê

(Nèê
} + Nëê

})
ú
}

(35) 

cos: =
Nèê

(Nèê
} + Nëê

})
ú
}

(36) 

Knowing Equations 33 through 36 @>⃗ †°†¢£	in local Cartesian coordinates can now be 

calculated. 

@>⃗ ê = @èêX⃗ + @ëêZ⃗ + @öêL>⃗ (37) 

To calculate the total magnetic field for an array of magnets, one first must calculate 

the magnetic field for each dipole in global coordinates, using the inverse (transpose) of 

the orthogonal rotation matrix.  

{@ì} = [ó]§{@ê} (38) 

ô
@èì

@ëì

@öì
õ = [ó]§ ô

@èê

@ëê

@öê
õ (39) 

ô
@èì

@ëì

@öì
õ = å

óúú óú} óúl
ó}ú ó}} ó}l
ólú ól} óll

ç
§

ô
@èê

@ëê

@öê
õ (40) 

Or: 

ô
@èì

@ëì

@öì
õ = å

óúú ó}ú ólú
óú} ó}} ól}
óúl ó}l óll

ç ô
@èê

@ëê

@öê
õ (41) 

@>⃗ ì = @èìX⃗ + @ëìZ⃗ + @öìL>⃗ (42) 
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Once each dipole is solved in global coordinates the total magnetic field for an 

array of magnets can be calculated. 

@>⃗ ì†°†¢£(•, \, ¶) = @úì + @}ì +⋯@Iì (43) 

Where @Iì  is the magnetic field for nth magnet in global coordinates. 

In order to solve for @>⃗ ì†°†¢£ the rotation matrix [ó] must be solved.  By solving for 

the global magnetic field, the magnets can be modeled in rotation, the coordinate system 

must therefore be transformed from local to global coordinates.  By choosing an arbitrary 

global coordinate system, all magnets in an array will have different R vectors to a given 

point in space.  The sequence of rotations is first about the z-axis to get •′, \′, and ¶′.  The 

second rotation is about y’ to get •′′, \′′, and ¶′′ so that •′′ aligns with the spin axis of the 

magnets and then rotates about •′′ to spin the magnets.  The angles ^,:, WR9	® determine 

where in space a R vector is pointing in 3-dimensional space.  By using global coordinates, 

the total magnetic field for a given array in 3-D can be calculated at any point as the 

magnets rotate.   

The rotation in Figure 8 depicts the three angles ^, :, WR9	®.  Each rotation angle 

has its own corresponding rotation matrix. 

Rotation 1 (R1) is the rotation : about the ¶-axis in the • − \	plane. 

óú = å
TOP: PQR: 0
−PQR: TOP: 0
0 0 1

ç (44) 

Rotation 2 (R2) is the rotation ^ about the \′-axis in the \© − ¶′ plane. 

ó} = å
1 0 0
0 TOP^ PQR^
0 −PQR^ TOP^

ç (45) 



 22 

Rotation 3 (R3) is the rotation ® about the •′′- axis in the •© − \′ plane.   

ól = å
TOP® PQR® 0
−PQR® TOP® 0
0 0 1

ç (46) 

The total rotation matrix can be solved using: 

ó†°†¢£ = óú ×	ó} × 	ól (47) 

Where: 

ó†°†¢£ =

å
TOP:TOP^TOP® − PQR:PQR® −TOP:TOP^PQR® − PQR:TOP® TOP™PQR^
PQR:TOP^TOP® + TOP™PQR® −PQR:TOP^PQR® + TOP™TOP® PQR®PQR^

−PQR^TOP® PQR^PQR® TOP^
ç (48) 

Inserting matrix from Equation 48 into Equation 47 the global magnetic field is solved:	

ô
@èì

@ëì

@öì
õ =

å
TOP:TOP^TOP® − PQR:PQR® −TOP:TOP^PQR® − PQR:TOP® TOP™PQR^
PQR:TOP^TOP® + TOP™PQR® −PQR:TOP^PQR® + TOP™TOP® PQR®PQR^

−PQR^TOP® PQR^PQR® TOP^
ç
/ú

ô
@èê

@ëê

@öê
õ (49)

 

Knowing that ó/ú = ó§Equation 49 becomes: 

ô
@èì

@ëì

@öì
õ =

å
TOP:TOP^TOP® − PQR:PQR® PQR:TOP^TOP® + TOP™PQR® −PQR^TOP®
−TOP:TOP^PQR® − PQR:TOP® −PQR:TOP^PQR® + TOP™TOP® PQR^PQR®

TOP™PQR^ PQR®PQR^ TOP^
ç ô
@èê

@ëê

@öê
õ (50)

 

Equation 50 solves for the total magnetic field in global coordinates.  Knowing 

Equations 43 and 50, the total magnetic field can be solved for any array of magnets.   
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CHAPTER 3: Mathematical Analysis 

 First a 2-D analysis was solved in local coordinates to understand the magnetic 

field directly under the magnet array of the dual rotating unit.  A Halbach array was then 

solved to determine the magnetic field to validate the theory outlined in Section 2.1.  

After validating the local to global theory from Section 2.1 the dual rotating unit was 

analyzed in 3-D while in rotation. 

3.1.  Local 2-D Mathematical Analysis 

The two magnets are spaced 3 inches apart on a horizontal plane, reading 

subterranean objects that are at least 6 inches below the unit.  The total magnetic field 

measurement is solved for 6 inches below the middle point between the two magnets, seen 

in Figure 10.  This is the point of interest because 6 inches below the two magnets is the 

sensing region and understanding the field interaction in this region is crucial to the 

viability and sensitivity of the unit. 

The two magnets are spaced 3 inches apart, measured from the center of each 

magnet.  This corresponds to W = 1.5QR	.   First Nú	WR9	N} are solved using the Pythagorean 

theorem. 
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Figure 10: Point of Interest Geometrical Relationship 

Where N = Nú = N} is the distance from the center of the magnet to the point of interest. 

W} + ´} = N} (51) 

Where W = 1.5QR = 0.0381	], ´ = −6.0QR = −0.1524	], solving	we	get	N	 =

6.185QR = 0.157	].    

In order to determine the angle ú̂the geometric relation seen in Figure 11 was 

constructed.  Where ú̂ is the angle from the vector pointing north to Nú≤ .  It was determined 

that ú̂ = 165.96°	ON	284.05°.   

r1 r2 
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Figure 11: Magnet 1 Geometrical Relationship 

 
The same process was used to determine ^} from Figure 12.  Where ^} is the angle 

from vector pointing north to N}≤ .  It was determined that ^} = 324.95°	ON	75.95°. 

 

Figure 12: Magnet 2 Geometrical Relationship 

Since both are the same NdFeB N52 magnet, the properties are nominally identical.  

Let	L = }Ñ
≥
≈ 40.0	]/ú, µi = 8.854 × 10/ú} ∂

Ç
, T = 299,792,458Ç

∑
, hi = 1.32 ×
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10/∏ π
Ç
, 	Nú∫ = ú

i.úªºi
[0.0381		 − 0.1524], WR9	N}≤ =

ú
i.úªºi

[−0.0381		 − 0.1524].  Use the 

following equation to solve for ]i.   

]i =
4kWl

3hi
= 175.51	

		]É

Ω
(52) 

Where W = 4.5QR = 0.1143	], the distance from point A to point C in Figure 12.   

Now taking Equation 17 and inserting the known variables: 

æ ≈ −
(40.02	]/ú)} à175.51 		]

É

Ω â

(6.28)4k ø8.854 × 10/ú} ¿]¡(299,792,458
]
P )

}

¬
1

0.1570cos
(165.95) [0.0381		 − 0.1524] +

1
0.1570cos

(345.95) [−0.0381		 − 0.1524]√ (53)

 

 

The y components of N̂ cancel out, leaving: 

æ ≈ [0.002				0.000]	T (54) 

And the total magnitude of æ: 

|B| ≈ 0.002	T (55) 

 
 

3.2.   Halbach Array Analysis 

3.2.1 Mathematical Confirmation 

The magnetic field of a simple 5 cube Halbach array is solved in the following 

mathematical analysis to confirm the global to local theory described in Section 2.1.  

Unlike the analysis in Section 3.1 the Halbach analysis must be solved in global coordinates 

to account for the distance and magnetic field orientation changes between magnets.  A 
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Halbach array should have a canceled field on one side of the array and augmented field 

on the other, as seen in Figure 13.   

 

Figure 13: Halbach Array 

To calculate the magnetic field at points PA and PB the following steps are taken.  

Let point PA be a point in the augmented field at position (0,0,2) and point PB be a point in 

the canceled field at positon (0, 0, -2).  As described in Section 2.2 the magnetic field must  

first be calculated in global coordinates for each magnet.  Let each magnet have a length 

of 1.  The process for solving the magnetic field for the first magnet is explained below. 
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Magnet 1: 

Magnet 1 is at position (0, -2, 0) .  

=>⃗iú = −2≈⃗ (56) 

N⃗∆ú
ì = =>⃗∆ − =>⃗iú = 2≈⃗ + 2«>>⃗ (57) 

N⃗»ú
ì = =>⃗» − =>⃗iú = 2≈⃗ − 2«>>⃗ (58) 

 

 

Figure 14: Rotation Coordinates 

By inspection of the magnetic field vector in Figure 13 of magnet 1 and the 

coordinate system in Figure 14 the rotation matrix has the form: 

óú = å
1 0 0
0 0 −1
0 1 0

ç (59) 

Using the rotation matrix to solve for 	N⃗∆
ê and N⃗»

ê: 
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N⃗∆
ê = å

0
−2
2
ç = å

1 0 0
0 0 −1
0 1 0

ç å
0
2
2
ç (60) 

N⃗»
ê = å

0
2
2
ç = å

1 0 0
0 0 −1
0 1 0

ç å
0
2
−2

ç (61) 

By inspection the angles ^ and : shown in Figure 8 for both points A and C are: 

∆̂ú = ^»ú =
k
4

(62) 

:∆ú =
3k
2

(63) 

:»ú =
k
2

(64) 

Letting � = Ä
ÉÑ
= 1 and using the angles ^ and : and Equations 62 through 64 the 

X, Y and Z components of the magnetic field are solved in local coordinates at points A 

and C.  

@∆…úê =
√2
32 ∙ 3 ∙

√2
2 ∙

√2
2 ∙ 0 = 0 (65) 

@∆Àúê =
√2
32 ∙ 3 ∙

√2
2 ∙

√2
2 ∙ −1 = −

3√2
64

(66) 

@∆Ãúê =
√2
32 å2 ∙ Õ

√2
2 Œ

}

− Õ
√2
2 Œ

}

ç =
√2
64

(67) 

@»…úê =
√2
32 ∙ 3 ∙

√2
2 ∙

√2
2 ∙ 0 = 0 (68) 

@»Àúê =
√2
32 ∙ 3 ∙

√2
2 ∙

√2
2 ∙ −1 =

3√2
64

(69) 
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@»Ãúê =
√2
32 å2 ∙ Õ

√2
2 Œ

}

− Õ
√2
2 Œ

}

ç =
√2
64

(70) 

Now converting back to global coordinates using Equation 39. 	

ô
@èì

@ëì

@öì
õ = å

1 0 0
0 0 −1
0 1 0

ç
§

ô
@èê

@ëê

@öê
õ (71) 

@>⃗ ∆ú
ì
=

⎣
⎢
⎢
⎢
⎡
0
√2
64
3√2
64 ⎦

⎥
⎥
⎥
⎤

= å
1 0 0
0 0 1
0 −1 0

ç

⎣
⎢
⎢
⎢
⎡

0
−3√2
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√2
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⎥
⎥
⎥
⎤

(72) 
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ì
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⎣
⎢
⎢
⎢
⎡

0
√2
64

−3√2
64 ⎦

⎥
⎥
⎥
⎤

= å
1 0 0
0 0 1
0 −1 0

ç

⎣
⎢
⎢
⎢
⎡
0
3√2
64
√2
64 ⎦

⎥
⎥
⎥
⎤

(73) 

Magnets 2-5: 

Carrying out the same process for magnets 2 through 5 the following magnetic 

fields are found in global coordinates.  Note that the local field of magnet 2 aligns with the 

global coordinate system, so the global and local magnetic fields are identical.  

Additionally, magnet 4 is the same as magnet 2 with inverted symmetry and magnet 5 is 

the same as magnet 1 with reflected symmetry. 

@>⃗ ∆}
ì
=

⎣
⎢
⎢
⎢
⎡
0
6√5
125
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⎥
⎥
⎥
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	 																								@>⃗ »}
ì
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⎣
⎢
⎢
⎢
⎡

0
−6√5
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⎥
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⎥
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	 (74)	 
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@>⃗ ∆l
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= ’

0
1
8
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÷ 																															@>⃗ »l
ì
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0
1
8
0

÷	 (75) 
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(77)                     

Adding all the magnetic fields up for point A (augmented) and Point C (canceled). 

@>⃗ ∆◊ÿ◊Ÿ⁄
ì
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The mathematical analysis confirms the theory in Section 2.2 is correct because it 

shows that for one side of the Halbach array the field is augmented and the other side of 

the field is canceled.  

3.2.2 Analysis of Halbach Array 

 To take the analysis one step further a Matlab code was written (see Appendix A) 

to plot the vector field of a Halbach array.  The vector field was plotted using the multi-

dipole theory explained above and each magnet has the same polar orientation as in Figure 

13.  Each vector is solved in global coordinates by adding all 5 magnetic fields together.  

The results are shown in the following plot. 

 

 

Figure 15: Vector Plot of Halbach Array 
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In Figure 15 on the bottom side of the 5 magnets (black outlined in blue) it is shown 

that the vectors disappear quickly as they move in the negative y direction, reflecting the 

canceled side of the array.  On the top side of the 5 magnets it is shown that the vectors 

appear longer when compared to the bottom side of the array, reflecting the augmented 

side of the array.   

3.3 Rotating Dual Magnet Analysis 

By validating the theory explained in Section 2.1 by solving the Halbach array, a 

spinning analysis was then carried out on two diametrically polarized cylinder magnets 

(see code Appendix A).  The goal is to have a better understanding of what the magnetic 

fields look like during the rotation of the two magnets.  From Section 3.3.4 a polar opposite 

orientation is determined to be effective for detecting subsurface objects, that orientation 

was used for the spinning analysis.  The vector fields were solved at 15-degree increments.  

The 12 different orientations are outlined in the table below. 
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Table 1: 12 Different Orientations  

 

The other half of the rotation from 180° to 360° for magnet 1 and 360° to 180° for 

magnet 2 is the same as the 12 polar orientations above, except that the magnet orientation 

is flipped, resulting in the same field as the first half of the rotation.  Below are vector plots 

of the 12 orientations listed in the above table.  The vectors have been normalized to get a 

better understanding of how the fields interact. 
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Figure 16: Polar Alignment of Magnet 1: 2° and Magnet 2: *€2°  

 

Figure 17: Polar Alignment of Magnet 1: *4° and Magnet 2: *‹4° 

 

Figure 18: Polar Alignment of Magnet 1: ›2° and Magnet 2: 1*2° 
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Figure 19: Polar Alignment of Magnet 1: fi4° and Magnet 2: 114° 

 

Figure 20: Polar Alignment of Magnet 1: fl2° and Magnet 2: 1fi2° 

 

Figure 21: Polar Alignment of Magnet 1:	‡4° and Magnet 2: 144° 
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Figure 22: Polar Alignment of Magnet 1: ‹2° and Magnet 2: 1‡2° 

 

 

Figure 23: Polar Alignment of Magnet 1: *24° and Magnet 2: 1€4° 

 

Figure 24: Polar Alignment of Magnet 1: *12° and Magnet 2: ›22° 
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Figure 25: Polar Alignment of Magnet 1: *›4° and Magnet 2: ›*4° 

 

Figure 26: Polar Alignment of Magnet 1: *42° and Magnet 2: ››2° 

 
Figure 27: Polar Alignment of Magnet 1: *fl4° and Magnet 2: ›fi4° 
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is apparent because the vector fields perfectly align to combine and increase the field above 

and below the magnets.  As the angle changes, the field vectors do not align completely 

and therefore add, but do not combine to the same magnitude and direction as the 90° and  

270° or 270° and 90° orientations. 

3.4.  FEA Comparison 

Finite Element Method Magnets (FEMM) software was used to run a finite element 

analysis (FEA) on both the dual magnet array and Halbach array.  To validate the results 

the magnetic flux density (|B|) values from the FEA were compared to the results from the 

mathematical analyses Sections 3.1 and 3.2.   

3.4.1 Dual Rotating Magnet Comparison 

The setup is the same as in Section 3.1, the magnets are spaced 3 inches apart and 

the point of interest is 6 inches below the magnets.  The following results were recorded 

from the FEA. First the magnitude of the magnetic flux density was plotted.  The flux 

density variations are represented by the color scale seen in Figure 28.    
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Figure 28: Magnetic Flux Density Plot with 9-inch Spacing Between Magnets 

 
In order to solve for the value of the magnetic flux, density at 6 inches below the 

unit the following 2-D plot was graphed.  The values were recorded from Figure 28 and 

then plotted in a magnetic flux density vs. time coordinate system. 

 

Figure 29: Magnetic Flux Density vs. Distance with 3in Magnet Spacing 
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The maximum magnetic flux density value occurs around 1 inch and then quickly 

decreases.  At 6 inches below the magnets the magnetic flux density equals 

~0.002	Tesla	(T).  When comparing the results from Section 3.1 to 3.4.1, the total 

magnitude of magnetic field flux density is equal when measured 6 inches below the 

magnets, validating the 2-D mathematical analysis.   

3.4.2 Halbach Array FEA Analysis 

Section 3.4.1 proves the accuracy of the FEMM software so a Halbach array FEA 

analysis was used to solve for the magnetic field at a point 6 inches below the array.  The 

following results were recorded from the FEA simulation. 

 

Figure 30: FEA of Halbach Array 



 42 

 

Figure 31: Closeup FEA of Halbach Array               

 

Figure 32: Magnetic Flux Density vs. Distance Plot of Halbach Array 

Analyzing Figure 32 the maximum magnetic flux density value occurs at the array, 

and as the distance increases the |B| values drop rapidly to zero.  At the point 6 inches 

below the array |B|~0.0	T.   

 

Distance Bellow Array (in)  

 

 

M
ag

ni
tu

de
 o

f M
ag

ne
tic

 F
ie

ld
(|
@|
) 



 43 

3.5 FEA Perturbation Analysis 

The viability of the magnetic sensing device depends on how well the magnetic 

field created by the spinning magnets can interact with a subsurface object of interest.  

When the magnetometer is reading the induced magnetic field from the magnets and a 

ferrous subsurface object is underneath the sensing unit, the magnetometer reading (|@|) 

varies depending on the subsurface objects level of magnetic saturation.  The maximum 

sensitivity of the sensing unit corresponds to when the ferrous object reaches complete 

saturation.  To achieve this the spinning magnets must create the maximum magnetic field 

below the magnets in order to saturate the object.  A series of FEA simulations will 

determine the best polar orientation for each magnet of the dual magnet unit and the 

viability of the Halbach array.  

3.5.1 Dual Magnet FEA 

For the FEA simulation of the dual magnet array, each magnet is rotated in 

increments of 90 degrees and all 10 possible combinations for the magnets are simulated. 

There is an iron bar inserted 6 inches below the magnets to simulate a subsurface object of 

interest, as seen in Figure 33.  A total field magnitude of magnetic flux density plot and 

magnetic flux vs. distance plot was constructed for each magnet orientation. 
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                                     Table 2: 10 Possible Magnet Orientations 

Orientation 
Number 

Magnet 1 
Orientation 

(Degrees) 

Magnet 2 
Orientation 

(Degrees) 
1 0 0 

2 0 90 

3 0 180 

4 0 270 

5 90 90 

6 90 180 

7 90 270 

8 180 180 

9 180 270 

10 270 270 

 

 

Figure 33: Iron Bar Geometrical Relationship 
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Orientation 1: 

 

Figure 34: Magnet 1: 2° Magnet 2: 2° 

Observing Figure 34 the maximum magnitude of magnetic flux density value (|B|) 

is equal to 0.042 Tesla directly between the two magnets and 0.03 Tesla in the iron bar. 

 

 

Orientation 2: 

 

Figure 35: Magnet 1: 2° Magnet 2: ‹2° 

Observing Figure 35 the maximum value of |B| is equal to 0.03 Tesla in the iron 

bar. 
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Orientation 3: 

 

Figure 36: Magnet 1: 2° Magnet 2: 182° 

 

Observing Figure 36 the maximum |B| value is equal to 0.03 Tesla in the iron bar. 

 

 

Orientation 4: 

 

Figure 37: Magnet 1: 2° Magnet 2: 272° 

Observing Figure 37 the maximum |B| value is equal to 0.105 Tesla in the iron 

bar. 
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Orientation 5: 

 

Figure 38: Magnet 1: ‹2° Magnet 2: ‹2° 

Observing Figure 38 the maximum |B| value is equal to 0.04 Tesla between the 

two magnets and 0.009 Tesla in the iron bar. 

 

 

Orientation 6: 

 

Figure 39: Magnet 1: ‹2° Magnet 2: 182° 

Observing Figure 39 the maximum |B| value is equal to 0.078 Tesla in the iron 

bar. 
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Orientation 7: 

 

Figure 40: Magnet 1: 92° Magnet 2: 272° 

Observing Figure 40 the maximum |B| value is equal to 0.18 Tesla in the iron bar. 

 

 

 

Orientation 8: 

 

Figure 41: Magnet 1: *€2° Magnet 2: 182° 

Observing Figure 41 the maximum |B| value is equal to 0.042 Tesla between the 

two magnets and 0.033 Tesla in the iron bar. 
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Orientation 9: 

 

Figure 42: Magnet 1: *€2° Magnet 2: 272° 

Observing Figure 42 the maximum |B| value is equal to 0.078 Tesla in the iron 

bar. 

 

 

Orientation 10: 

 

Figure 43: Magnet 1: 1‡2° Magnet 2: 1‡2° 

Observing Figure 43 the maximum |B| value is equal to 0.04 Tesla between the 

two magnets and 0.009 Tesla in the iron bar. 
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After analyzing each FEA simulation for the 10 different possible orientations, it is 

apparent that Orientation 7 has the largest change in flux density of approximately 0.18 

Tesla in the iron bar.  The polar orientation (north end of the magnet) of magnet 1 is at 

90°	from 0° and magnet 2 is 270° from 0°.  This orientation will allow for a maximum 

sensing range and accuracy for detecting subsurface ferromagnetic objects. 

3.5.2 Halbach Array FEA 

The Halbach array is orientated such that the strong field side is aligned with the 

added perturbation.  As in Section 3.5.1 the perturbation is a pure iron bar located 6 inches 

below the array.  A total field magnitude of magnetic flux density plot and magnetic flux 

vs. distance plot was constructed. 

  

Figure 44: Halbach Array Flux Density Plots 

Analyzing the plots in Figure 44, the maximum |B| value is approximately equal 

to 0.05 Tesla.  The change in flux density reading is approximately 0.04 T, which is 0.13 

T less than the maximum change seen with the dual magnet array. 
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3.5.3 Discussion 

The mathematical analysis in Sections 3.1 and 3.2 and the FEA comparison 

simulations in Section 3.3 quantify the magnetic field of the dual rotating magnet and 

Halbach array.  The results verify the accuracy of both analyses.  It is proven in Section 

3.5.1 that the polar opposite orientation for the dual magnet unit is the optimal alignment.  

Comparing the FEA results from Sections 3.4.4 and 3.4.5, the dual magnet unit is far more 

effective in locating subterranean ferromagnetic objects. 

The results in Section 3.5 counter initial theories on how the two magnetic fields 

interact.  Originally, using the image in Figure 45, the vector lines appear to add together 

between the two magnets.  With further analysis the lines that splay farther away from the 

dipole are counteracting each other, leaving the magnetic field zero above and below the 

two magnets.   

 

Figure 45: Magnetic Field of Two Adjacent Dipoles with Same Polar Orientation [28]�

After changing the orientation of magnet 2 by 180 degrees, the field is canceled 

between the two magnets and added above and below the two magnets, as seen in Figure 

46. 
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Figure 46: Magnetic Field of Two Adjacent Dipoles with Opposite Polar Orientation [28]  

This analysis confirms that the orientation where magnet 1 is at 90°	from 0° and 

magnet 2 is at 270° from 0° will work best for detecting ferrous objects.  Further testing 

will be required to determine the optimal orientation to induce eddy currents.  In order to 

induce eddy currents the rotation speed of the magnets must be increased to speeds above 

1,000 rpm.  Additionally, initial testing proved that 9-inch spacing was optimal for sensing 

subsurface ferrous objects with an aligned polar orientation.  The FEA simulations 

determined 3-inch spacing is optimal for the polar opposite alignment.  
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Chapter 4: Equipment Design 

 Chapter 4 explains the different proposed and prototyped designs tested for the 

magnetic sensing device.  Numerous designs were taken into consideration, and four 

designs were built and tested.  The final design requirements and the chosen components 

are explained in detail.   

4.1 Proposed Designs 

4.1.1 Dual Rotating Magnet Unit 

The SolidWorks model presented in Figure 47 is the proposed design for rotating 

two diametrically magnetized magnets in synchronization. Each motor labeled in Figure 

47 has a diametrically magnetized 1” by 0.5” diameter rare earth magnet attached to the 

shaft.  A Galil motion controller uses shaft rotation angle information from an encoder with 

multi-axis feedback control to ensure the two magnets rotate in perfect synchronization.  

There are two magnetometers in the design, both labeled in Figure 47.  The lower 

magnetometer reads the magnetic field without an induced field from the two spinning 

magnets. The upper magnetometer reads the magnetic field induced by the spinning 

magnets.  The two magnetic field readings from the magnetometers will allow them to be 

subtracted from one another to possibly enhance the sensitivity of the unit. 
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Figure 47: SolidWorks Model of Dual Rotating Unit 

4.1.2.  Spinning Halbach Array Unit 

The SolidWorks model presented in Figure 48 is the proposed design for rotating a 

complete Halbach array. The magnet holder (labeled) has five 0.5” by 0.5” in rare earth 

cube magnets inside, in a specific polar orientation, to create a Halbach array. 

 
Figure 48: SolidWorks Model of Spinning Halbach Unit 
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There are two magnetometers in the design, which are both labeled in Figure 48.  

The lower magnetometer will read the magnetic field without an induced field from the 

Halbach array. The upper magnetometer will read the magnetic field induced by the 

Halbach array. The two magnetic field readings from the magnetometers will allow them 

to be subtracted from one another to possibly enhance the sensitivity of the unit. 

4.1.3 Spinning Halbach Array with Two Degrees of Freedom 

The SolidWorks model presented in Figure 49 is the proposed design for rotating 

two out of five magnets in a Halbach array. The gears spin magnets 2 and 4 (labeled in 

Figure 49) in opposite directions, creating an oscillating magnetic field.  The augmented 

and canceled side of the Halbach array rotate each time the magnets spin 180 degrees, 

which forms a rotating oscillating magnetic field. 

 

Figure 49: SolidWorks Model of Spinning Halbach Unit with 2 Degrees of Freedom 

There are two magnetometers in the design, which are both labeled in Figure 48.  

The lower magnetometer will read the magnetic field without an induced field from the 
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Halbach array. The upper magnetometer will read the magnetic field induced by the 

Halbach array. The two magnetic field readings from the magnetometers will then be 

subtracted from one another to enhance the sensitivity of the unit. 

4.1.4 Spinning Halbach Array with Five Degrees of Freedom 

The SolidWorks model presented in Figure 50 is the proposed design for rotating 

all five magnets in a Halbach array.  Each magnet in the array is spun by an individual 

motor. By spinning all five magnets in a synchronized manner, an oscillating magnetic 

field will be created. Each time the magnets spin 180 degrees, a Halbach array will create 

opposite polarization forming an oscillating magnetic field. 

There are two magnetometers in the design, the lower magnetometer reads the 

magnetic field without an induced field from the Halbach array. The upper magnetometer 

reads the magnetic field induced by the Halbach array.  

 

Figure 50: SolidWorks Model of Spinning Halbach Unit With 5 Degrees of Freedom 
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4.2 Preliminary Designs 

Multiple iterations of the dual magnet system have been constructed. Iterations 1 

and 2 used gearing to mechanically couple the two magnets.   

 

Figure 51: First Iteration 

 
The first iteration used ¼”D x 1”L diametrically polarized magnets, a Vex servo 

motor and Vex gearing, and motor speed was controlled by an Arduino Uno.  A main 60 

tooth drive gear is attached to the motor shaft which spins two 12 tooth gears.  The smaller 

pinion gears are attached to the shafts that spin the magnets.  The gear ratio is 5:1, meaning 

the small gear turns 5 times per one revolution of the larger gear.  This design, although 

functional, had inherent disadvantages.  The first limitation was the speed of the motor.  

The Vex servo motor can only spin at maximum speed of 1.67 Hz, according to the data 

sheet, but the actual speed was closer to 1 Hz.  With the 5:1 gear ratio the magnets were 
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only spinning at 5 Hz, which is not fast enough to induce eddy currents.  An additional 

limitation was that the magnets did not spin smoothly due to the poor alignment of the 

gears and lack of bearings in the pillow blocks.   

 
Figure 52: Second Iteration 

 
Figure 53: Second Iteration 



 59 

The second iteration was built to solve the alignment issue of the first design.  The 

design used a Vex servo motor and stronger ½”D x 1”L diametrically polarized magnets.  

Pillow blocks were printed using a ANet A8 3D printer and then bearings were pressed 

into the pillow blocks.  Longer shafts extended the magnets in front of the motor and gear 

assembly.  The design change solved the alignment issue, but other issues arose.  The 

stronger magnets only being separated by 2 inches made the field interaction over powering 

and were unable to successfully sense subsurface objects.  Additionally, the motor speed 

was still not adequate for sensing non-ferromagnetic objects. 

Electronic gearing is necessary in order to achieve higher speeds. Spinning two 

electronically coupled motors at the same speed will allow speeds to exceed 10,000 rpm. 

Initial steps were taken to electronically gear two 180 degree Hi-Tec servo motors. The 

design was successful; a photograph is included in Figure 54. 

 

Figure 54: Iteration 3 
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The Hi-Tec servo motors have an incremental encoder built into the motor that 

relays shaft position back to the Arduino.  Accurate updates about shaft position allows the 

Arduino to regulate the voltage, which controls the speed and maintains synchronization 

between the motors.  The mounting of the motor was such that the distance between the 

motors could be adjusted to determine the optimal spacing for maximum sensing 

sensitivity.  A disadvantage of the unit were the motors were limited to spinning at 180 

degrees.  Steps were taken to modify the motors to allow the motor shaft to spin 360 

degrees.  When this happened, they were unable to maintain synchronization, because the 

encoder was not set up for complete rotation.  An additional limitation was the speed of 

the motor, the Hi-Tec motor maximum speed is approximately 1 Hz.   

4.3 Final Design 

Using advantages and disadvantages of the first three designs, the final design had 

to meet the following requirements.   

1) Maintain synchronization of motors through electronic gearing 

2) Motors must be capable of spinning at speeds of 10,000 rpm or 166.67 Hz 

3) Entire unit must be stable at high speeds 

In order to ensure the design would meet requirements before purchasing the parts, 

steps were taken to determine the correct motor size, magnetometer sampling rate, and 

motion controller for electronic gearing.   The next section gives a detailed explanation of 

why each of the components are chosen. 
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4.3.1 Motor Sizing 

The Faulhaber brushless DC servo motors offered a compact affordable solution. 

The following steps were taken to determine the correct Faulhaber motor for the dual 

magnet application.  This is a low torque application.  The motor specifications exceeded 

the necessary torque rating, which the following calculation confirmed. 

According to Micromo, the Faulhaber distributer, the largest torque load occurs 

when the motors initially begin to rotate [17].  At that moment the torque from the magnet 

is equal to: 

„Ç¢‰ÂÊ† =
¿ÁË
2

(79) 

Where ¿Á= Force when the shaft begins to rotate and D = Diameter.   

Solving the torque equation: 

¿Á = 	0.030LÈ ∗ 9.81
]
P} = 0.2943	8						Ë = 	0.0127	] (80) 

„Ç¢‰ÂÊ† =
(0.2943	8)(0.0127])

2 = 	0.0019	8 ∙ ] = 1.9	]8] (90) 

„§Î§ = „Ç¢‰ÂÊ† + „ÏyÌÓ†Ì°Â = 1.9	]8]+ 1.3	]8] = ›.1	ÔFÔ (91) 
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Figure 55: Series 3242 Data Sheet [17] 

Consulting the data sheet for the Faulhaber 3242G BLDC servo motors in Figure 

55: Series 3242 Data Sheet, the torque rating is 41.8 mNm for the 024 BX4.   The maximum 

3.2 mNm torque load in the dual magnet application is well under the torque rating for the 

motor.   

An additional design requirement is the maximum speed requirement.  In order to 

induce eddy currents in non-ferrous subsurface objects, the magnets must spin at speeds 

above 10,000 rpm or 183.3 Hz.  Using Figure 56, Figure 57, and Figure 58 from Micromo, 
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it is determined that the maximum speed is approximately 13,500 rpm for a low torque 

application [17].    

 

Figure 56: Recommended Operation Area [17] 

 

Figure 57: Main Characteristic Curves [17] 
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Figure 58: Speed vs. Torque [17] 

To find the exact voltage requirement for the dual magnet application, the following 

equations outlined by Micromo are used [17].  In order to determine if the 3242G motor 

can spin at required speeds, the first step is to determine the current at the total torque 

calculated above.   

 =
„§Î§
LÇ

= 	
3.2	]8]

41.4 f
]8]

= 2.2‡‡	Ò (92) 

Where LÇ = torque constant. 

Next, to solve for the voltage required to spin the motors at speeds of 10,000 rpm: 

Ú =  ∙ ó + Û ∙ 0.002168	
Ú
Nb]

(93) 

Where  = TÙNN6R;, ó = N6PQP;WRT6,Û = WRÈÙVWN	S6VOTQ;\. 

Ú = 0.077	f ∙ 3.67Ω + 10000	Nb] ∙ 0.0002168	
Ú
Nb] = 1*. ‹fl	ˆ (94) 
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The 21.96 voltage requirement is well within the capabilities of the 3242G024BX4 

motor.  Using the following equation determines the maximum speed at 30V.   

Û =
Ú −  ∙ ó

0.002168	 ÚNb]
=
30Ú − 0.077	f ∙ 3.67Ω

0.002168	 ÚNb]
= 13707	Nb] (95) 

The maximum speed is solved at 13,707 rpm, confirming that the Faulhaber 3242G 

BLDC servo motor to be a good choice for the application. 

4.3.2 Magnetometer  

 PNI Sensor Corporation specializes in geomagnetic sensors.  The PNI RM3100 

sensor meets the sensitivity, sample rate, and size requirements of the magnetic sensing 

device.   

The PNI RM3100 is a highly sensitive, compact, and cost-effective 3 axis 

geomagnetic sensor.  The unit provides high resolution, high sampling rates, low power 

consumption, large signal noise immunity, and a large dynamic range [33].  The PNI test 

board communicates with the RM3100 through either a I2C or SPI bus and then using the 

PNI Communication Board, a USB connection to any PC computer is created.  A 

communication board using open source RealTerm software, provides board control and 

measurement results.   
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Figure 59: Communication Schematic [33] 

The maximum sampling rate is 1,600 Hz with a 50-cycle count setting.  For a 3-

axis measurement reading, the maximum sampling rate is 533.33 Hz at 50 cycle counts.  

According to the Nyquist-Shannon sampling theory, the sampling rate needs to be a 

minimum of twice the signal frequency [31].  This is because a minimum of two samples 

per wave form are needed to capture the signal, one sample for both the positive and 

negative frequencies [31].  For the dual rotating magnet application, the required minimum 

sampling rate is then 333.33 Hz when the motors are spinning at 10,000 rpm.   
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Figure 60: RM3100 Data Sheet [33] 

The RM3100 can be set in either single or continuous measurement mode.  In 

continuous measurement mode the board continuously measures the magnetic field in 3-

dimensions and records the measurement after every reading.   

Each sensor is an inductive element in a LR relaxation oscillation circuit.  The 

magnetic field is proportional to the inductance in the coil that is parallel to the sensor axis 

and is driven by the MagI2C ASIC.  The geomagnetic RM3100 sensor works in the 

frequency domain and the oscillation frequency of the circuit is measured by the MagI2C’s 

internal clock.  Working in the frequency domain allows the resolution and noise to be 

established cleanly by the number of internal clock counts.   
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Figure 61: RM3100 Sensor Schematic [33] 

  

Figure 62: Communication Board Schematic [32] 

Using the communication board simplifies the setup.  The RM3100 testing board 

pins right into the board.  Depending on the communication bus being used (I2C or SPI) 

the polarity and jumper orientation will change on the communication board.  I2C 

communication is used in this project using the board setup seen in Figure 63. 
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Figure 63: Communication and Evaluation Boards [32] 

As seen in Figure 63 the green represents the communication board and the black 

represents the RM3100 sensor.  The polarity of the sensor aligns in the direction of the 8 

(labeled in Figure 63).  There are 14 pins on the sensor.  Pin 1 is labeled in Figure 63.  Each 

pin has the title seen in Table 3. 
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Table 3: Magnetometer Pin Assignments [32] 

 

Using RealTerm software, the commands are sent to the RM3100 sensors.  

RealTerm communicates with the board using ASCII.  A simple one-line command sets 

the sensors in continuous measurement mode.  The code for continuous measurement is 

[46 01 71].  To read the measurement another one-line code is sent {46 24 09}.  There are 

two ways to store a measurement result. 1) Every time a measurement is needed, send the 

{46 24 09} command to the board using the Send ASCII button in Figure 65; and 2) using 

the dump file to port option, create a text file that has the appropriate commands and upload 

it to RealTerm. 
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Figure 64: ASCII Text File 

The repeat option can set the number of times the sensors takes a measurement. 

RealTerm continuously sends the commands in the text file to the board, allocated by the 

number of times specified in the repeat tab.   

 

Figure 65: RealTerm Serial Capture Program 

Data are saved to a text file using the capture tab.  Using the Start Overwrite button, 

seen in Figure 66, a user can create a new file in a specified folder and save the sensor 

readings until a Stop Overwrite is initiated. 
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Figure 66: RealTerm Serial Capture Program 

Each RM3100 sensor reading has 3 bytes of data and stores it in the form of 2’s 

complement, therefore each 3-axis measurement has a total of 9 bytes of data.  The string 

of data is saved to the text file that has a LFCR after each measurement.  LFCR is interpreted 

as a new line command when read by an external source.  In a text file LFCR is not present, 

but when reading the text file with Excel or Matlab.  Figure 67 depicts a typical formatted 

string of data. 

 

Figure 67: Data Format 

Using a Matlab script (see Appendix A) the data are converted from 2’s 

complement to an integer value in a range from -8388608 to 8388607.  The integer value 

is then converted from voltage to micro Tesla’s.  The 2’s complement is a common way to 
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represent signed integers in binary.  The following function coverts from hex representation 

of 2’s complement to a decimal number 

function [x]=nhex2dec(hexstring,n) 
% hexstring : hex representation of two's complement of xmydec= 
hex2dec(hexstring); 
% x : input decimal number 
% n :   number of bits to perform 2's complements 
x = hex2dec(hexstring); 
x = x - (x >= 2.^(n-1)).*2.^n; 
 

The script below takes the data and reformats it into a 3 x 981 array and then calls 

the nhex2dec function to covert the sensor data to decimal values.  To convert from voltage 

to micro Teslas, the decimal number is divided by the range (8388607) and then multiplied 

by 3 volts (average voltage applied).  

A = table2array(TEST1); %Converts from table to array 
X=linspace(0,1141,1141); %Creates x vector 
D= nhex2dec(A,24); %Calls function nhex2dec and converts from hex to 
dec 
F=(D/8388607)*3; %Converts from voltage to micro Tesla's  
plot(X,F(:,1)); %Plots x values  
plot(X,F(:,2)); %Plots y values 
plot(X,F(:,3)); %Plots z values 
 

4.3.3 Motion Control and Electronic Gearing 

A Galil DMC-4123 motion controller was chosen to operate the Faulhaber motors.  

The simplistic design and relatively affordable platform made it the correct choice for the 

spinning magnet application.  The Galil controller can control up to four axes 

independently and can operate in a voltage range from 20-40V [36].  The details on how 

the Galil controller operates are explained below. 
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4.3.2.1 Motion Controller 

The Galil motion controller has three main functional elements: 1) microcomputer, 

2) communication, and 3) motor interface.  The microcomputer is the main processing unit 

of the controller.  The microcomputer contains RAM to store variables, array elements, 

and application programs.  Additionally, it contains Flash EEPROM, which provides non-

volatile storage of variables and arrays, as well as the firmware for the controller.  The 

communication with Galil Suite occurs through a high speed 100bT Ethernet connection.  

Using Galil’s GL-1800 custom sub-micron gate array, decoding of the quadrature signal 

from each encoder is possible at speeds up to 15 MHz.  The controller generates a 10V 

analog signal [36].  

 

Figure 68: Motion Controller Schematic [36]  

The system elements seen in Figure 68 include: 1) motor, 2) amplifier, 3) encoder, 

and 4) power supply.  The motor and encoder were explained above.  The amplifier takes 
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the voltage signal from the controller and converts it into a current to drive the motor.  The 

amplifier size depends on the power requirements of the motor, the DMC 41X3 Galil 

controller in this application has a D3640 internal amplifier.  

 

Figure 69: Simplified Schematic [36] 

Communication between the controller and the encoder is through a female 26-pin 

D-sub connector and a four-circuit dual row power connector.  The motors are wired into 

a male D-sub connector and power connector as follows. 

 

Figure 70: 26 Pin D-Sub Connector Wiring Diagram 
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Figure 71: Motor Power Connector Wiring Diagram 

 

 

Figure 72: Controller Power Wiring Diagram 



 77 

 

Figure 73: Galil DMC-4123 Controller 

An isolated 30V power supply powers the Galil controller.  Using Galil’s own 

graphical user interface called Galil Suite, code can then be sent directly to the controller 

to initiate the motors and commence electronic gearing movement.  First, code is sent to 

the controller to initialize the motors.  The initialization process sets the polarity of the 

encoders and then moves the motors back and forth to understand the current position and 

ensure encoder feedback is present.  For further details about the code, see the line by line 

code explained in Figure 74. 
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Figure 74: Initialization Code 

The second set of code sets the motors in gantry mode(GM), which is a 

preprogrammed application in Galil Suite that electronically gears the two motors.  In 

gantry mode the axis A motor is set as the master and the axis B motor is set as the slave 

motor.  By setting the gear ratio 1:1 the two motors will spin in unison.  Using the jog 

command (JG) the speed of the two motors can be adjusted. A higher number, corresponds 

to faster shaft rotation speed.   For a more detailed code description, read the in-line 

comments of the code in Figure 75. 

 

Figure 75: Gantry Mode Code 

4.3.3.2 Electronic Gearing 

The main objective of the motion controller is to enable electronic gearing between 

the two motors.  In order to spin the two motors at speeds above 10,000 rpm, electronic 

gearing is necessary.  The high precision mechanical gearing needed to spin two magnets 
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at above 10,000 rpm is unattainable for the dual rotating magnet application.  Electronic 

gearing in this application simplifies the design immensely.  Electronic gearing uses a 

motion controller and motor encoder feedback to maintain synchronization between 

electric motors.  This serves applications such as X-Y plotters, gantry systems, and robots 

[30].  In the simplest form, a slave axis is set to follow a master axis.  The slave axis can 

have a programmatically set gear ratio with respect to the master axis.  Each axis can be 

independently controlled using a graphical user interface (GUI) to communicate with each 

motor encoder. 

There are two kinds of encoders on the market, absolute encoders and incremental 

encoders.  An absolute encoder outputs exact position from the time they are switched on.  

The encoder wheel has a unique code that is read to determine the position of the shaft 

[30].  Incremental encoders output a signal each time the shaft rotates a certain amount 

[30].   The number of increments per 360 -degree rotation of the shaft determines the 

accuracy of the encoder.  An incremental encoder outputs a pulse signal which can either 

be a single channel (A) that outputs one line of pulses or two channels (A and B) that 

outputs two lines of pulses.  Channel A and B pulses are offset to determine the rotation, 

the phasing between the two signals is called quadrature.  Oscillations that are 90 degrees 

out of phase of one another are considered in quadrature [30].   



 80 

 

Figure 76: Quadrature Plot [30] 

An additional indexing channel is found on some encoders, it is used for homing 

and pulse count verification on channels A and B, by providing one pulse per revolution.  

This signal is sent from the encoder to the motion controller, which sends voltage pulses 

through Hall sensors to the motor based on the encoder feedback [30].  A typical brushless 

direct current motor (BLDC) is driven by rectangular voltage strokes [30].  There is a rotor 

flux that is generated by the rotor magnet and interacts with the stator flux to define the 

speed and torque of the motor.  In order to maximize torque of the motor, the angle between 

the rotor flux and stator flux must be close to 90° [30].  To maintain the 90° flux angle, the 

voltage strokes have to be accurately applied to two out of three phases of the motor.  By 

energizing two motor phases concurrently there are six possible voltage vectors that are 

applied to the motor using Pulse Width Modulation (PWM) [30].  PWM works by using 

switches that open and close rapidly, controlling the voltage between the controller and the 

motor.   
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Figure 77: Phase Schematic [30] 

Orientation change of the stator flux vector creates rotation.  Hall sensors are 

embedded in the stator to tell the controller the relative position of the stator to the rotor, 

so it knows when to energize the windings in the motor.  Hall sensors sense the rotor 

position, so the stator flux vector knows when to change.  There are three sensors, each 

corresponds with a certain stator flux vector and generate a total of six states.   

 

Figure 78: Representation of 6 Different States [24] 
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In order to continually control the motor speed, the Hall sensors state must change 

its value, as seen in Figure 78.  The motor achieves this by applying a unique voltage 

pattern at different points in the rotation.  This phenomenon allows for continuous high 

torque motion [30].  The speed of the motor depends on the amplitude of the applied 

voltage, which can be adjusted using the PWM technique explained earlier.  The controller 

uses Proportional-Integral (PI) control to maintain the PWM pulses and therefore the 

voltage amplitude is adjusted to maintain the speed of the motor [30].   

 

Figure 79: Pulse Width Modulation [24] 

The controller calculates the PI algorithm explained in Brejl’s paper on BLDC 

motor control using the equations below [30]: 

																																																									Ù(;) = «Ó[6(;) +
1
„˜ 6(¯)9¯

†

i
																																								(96) 

Equation 96 is transformed into discrete time domain through an integral 

approximation.  The following approximate equations were solved using the Backward 

Euler method.  

Ù(L) = ÙA(L) + Ù˘(L) (81) 
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ÙA(L) = «Ó ∙ 6(L) (82) 

Ù˘(L) = Ù˘(L − 1) + «Ó
„
„̆ ∙ 6(L) (83) 

Where 6(L) =input error in step k, ˙(L) =Desired value in step k, 

](L) =Measure value in step k, Ù(L) =Controller output in step k, ÙA(L) =Proportional 

output portion in step k, Ù˘(L) =Integral output portion in step k, and  Ù˘(L − 1) =Integral 

output portion in step k-1,  and „̆ =Integral time constant. 

To apply electronic gearing for the dual rotating magnet unit, the Faulhaber 

3242G024BX4 BLDC servo motors were paired with an IE3-1024 encoder.  The IE3-1024 

is an incremental encoder with 1024 lines per revolution.  It is a 3-channel encoder (A, B 

and I), that uses a 5V supply voltage.  Channels A and B output a continuous 90° phase 

shifted square wave signal with 1024 impulses per revolution and channel I outputs one 

pulse per revolution.  It can operate at a frequency range of up to 240 kHz.  For additional 

encoder information see Figure 80 and Figure 81. 

 

Figure 80: IE3-1024 Output Circuit and Signals [29] 
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Figure 81: IE3 Series Encoder Data Sheet [29] 

4.3.3.3 Electronic Gearing Test 

In order to prove the two motors are truly rotating with the identical rate of 

rotation, an electronic gearing demonstration was conducted.  The following equipment 

was used: 

1) Newport optical bread board 

2) Linear stage 

3) Two Faulhaber 3242G024BX4 BLDC servo motors with IE3-1024 encoders 

4) Two 50 tooth involute spur gears (3-D Printed) 
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Figure 82: Electronic Gearing Test Close Up 

 

Figure 83: Labeled Electronic Gearing Test 

The electronic gearing code was uploaded to the Galil controller and the two motors 

were set in a starting location where the gears lined up.  Both motors were spun at 

approximately 4,000 rpm in the clockwise direction.  Using the linear stage, gear 1 traveled 

in the direction of the red arrow seen in Figure 83 until the gears were meshed and then 

returned to the original position.  This process was repeated, and the gears continued to 

stay aligned proving the electronic gearing was working properly. 
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4.3.4 Final Design 

The final design used the following components: 

1) 2 Faulhaber 3242G024BX4 BLDC Servo Motors 

2) 2 PNI RM3100 Geomagnetic Sensors 

3) 2 PNI Communication Boards 

4) Lexan Shield 

5) Motor Mount 

6) Magnet Holder 

7) Galil DMC-4123 Motion Controller 

8) PC Computer Running Windows 7 

9) 30 Volt Power Supply 

 

 

Figure 84: Close Up of the Designed Unit 

Magnet Holder 
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Figure 85: Unit Attached to Linear Drive in Test Bed 

 
Figure 86: All Components of the Final Design 
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Figure 87: Size Reference of Unit 

The final design pictured in Figure 84 and Figure 85 has a protective case because 

the motors at speeds over 100 Hz could cause serious damage or injury if something were 

to fail.  The protective case is made out of Lexan and was heat formed into shape.  The 

motor mount is fabricated using Dynaform fiberglass angle stock and was machined to 

accommodate the motors.  The bolts connecting the support structure to the protective case 

are made of nylon and the support structure is constructed from wood.  The magnet holder 

labeled in Figure 84 is made using an Anet A8 3-D printer and has a set screw to secure 

the holder to the motor shaft.  Everything except for the motors is constructed from 

materials that will not interfere with the magnetic fields, promoting the strongest signal 

possible.  
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Chapter 5: Testing Results 

Chapter 5 highlights the testing results for the 4 different categories of tests.  These 

tests included motor speed and motor field tests, ferromagnetic tests, non-ferromagnetic 

tests, and Martian simulant tests.   The goal of the testing was to determine the ability of 

the unit to test both ferromagnetic and non-ferromagnetic materials and the viability of 

the unit for extraterrestrial sensing. 

5.1 Motor Testing 

5.1.1 Rotation Rate Test 

Quantifying the exact motor speed is critical for analyzing the sandbox test data.  A 

series of tests were conducted to quantify the speed of the motor.  The Galil Suite platform 

uses a jog command (JG) to tell the motor what speed to spin.  A higher jog number 

corresponds with a faster motor speed.  A number of factors decide how fast the motor 

spins; therefore, the jog number does not have a specified speed with it.  The factors include 

input voltage, motor type, and motor size.  A test was run to determine the correlation of 

the jog number to the motor speed for this application.  In testing, the voltage was set at 24 

V and the 3242G024BX4 motor was used.  To measure the speed of the motor, a Hewlett 

Packard 35655A spectrum analyzer with an Electro-Metrics field probe collected and 

recorded frequency domain data.  The test was run at 4 different speeds to determine if 

there is a linear correlation between the jog number and motor speed.  The peak frequency 

is the speed at which the motors are spinning. 
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Figure 88: Speed Equals 4.8 Hz When Galil Set at JG20000 

 

 

Figure 89: Speed Equals 12 Hz When Galil Set at JG50000 
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Figure 90: Speed Equals 24 Hz When Galil Set at JG100000 

 

Figure 91: Speed Equals 48 Hz When Galil Set at JG200000 

There is a linear correlation between the frequency values and the jog number used 

in Galil Suite.  The correlation is 4166.67 Galil jog numbers per Hertz.  Knowing the 

correlation between the two, the speed of the 3242G024BX4 motor with a 24V input can 

be determined for any Galil jog number. 
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5.1.2 Magnetic Field Motor Test 

 Brushless DC motors have a permanent magnet inside them, so a test was run to 

understand the effects of the spinning motor on the magnetic field.  The results shown in 

Figure 92 quantify the field.   

 

Figure 92: No Magnets Spinning Motor: X-Axis Data 

The motors produce an oscillating field with a maximum amplitude of 

approximately  4.0	 × 10/É	h„.  This size field when compared to the oscillating field from 

the magnets is minimal.  In Figure 140 the oscillating field from the spinning magnets has 

a maximum amplitude of approximately  16	 × 10/l	h„ without an added perturbation.  

Comparing amplitude of the magnetic field for the spinning magnets and just the motors 

the difference between the two amplitudes is 15.7	 × 10/l	h„, confirming the magnetic 

field produced by the motors is negligible. 
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5.2. Laboratory Testing 

The viability of the dual rotating magnet depends on the ability of the unit to detect 

both ferromagnetic and non-ferromagnetic materials through a range of media.  All tests 

were run in the sandbox test bed in Laboratory 103 in Perkins building on the University 

of Vermont campus.  The test bed measures 72”L x 65”W, as seen in Figure 93: Sandbox 

Test Bed, and the unit was suspended 2 inches above the test bed surface.  The sand is 10 

inches deep and has a grain size of .079 inches with a density of 96.76 lb/ft3.  One x 

coordinate plot is included from each test, the y and z coordinate plots are located in 

Appendix C.   

 

Figure 93: Sandbox Test Bed 
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Tests were run to examine if the new unit could match initial testing results 

conducted in November 2017 (see Appendix C for initial test results).  Additional testing 

was conducted to explore the ability of the unit to induce eddy currents in non-

ferromagnetic materials and detect those currents.  The linear drive was set at a constant 

speed of 1.5 inches/second and a magnetometer reading was recorded at approximately 

every 0.08” as the unit moved across the length of the test bed.  The data were plotted using 

Matlab and then a Hilbert transform was performed to plot the signal envelope.  The 

envelope was plotted to better understand the ability of the dual rotating magnet unit to 

detect subsurface objects of interest.  Two vertical red lines mark the start and end point of 

the region where the magnetometer senses the buried object. 

5.2.1 Ferromagnetic Testing 

A series of ferromagnetic tests were conducted at slow motor speeds to prove the 

dual rotating magnet unit can detect ferromagnetic materials.  Initial tests were run to 

determine the viability of the dual rotating magnet system and compare results to the initial 

testing from November 2017, after improving the unit with the components explained in 

Section 4.2.   

5.2.1.1 3 Buried Targets 

The same 3 Buried Object test, as in Appendix C, was performed to prove the new 

unit’s functionality.  The 3 targets were buried in the configuration seen in Figure 94, and 

each target was buried 4 inches below the surface.  The motor speed, controlled through 

the Galil Suite interface was set to 4.8 Hz.   
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Figure 94: 3 Buried Target Configuration 

  

Figure 95:  3 Buried Targets Recorded X-Axis Data 
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The results show that the fourth iteration of the unit is able to detect the 3 buried 

targets.  The increase in amplitude at three locations, shown by the vertical red lines, 

confirms the accuracy of the unit.  This test leaves the following questions unanswered:  1) 

can shape of the envelope determine the size of the object, 2) how does the depth of the 

object affect the amplitude of the signal, and 3) how accurate is the unit at locating 

subterranean objects?  The following isolation tests were conducted to answer these 

questions.  

5.2.2 Depth Isolation Tests 

Isolation depth tests were performed to understand how the magnetometer signal 

changes as the depth of the object increases or decreases.  The tests were performed on 

three different ferromagnetic objects: an iron cylinder, a steel pipe, and an iron weight.  

The tests were conducted at three depths: 2.5, 4, 5.5 and 7 inches, each measured from the 

surface of the sand to top of the object.    

5.2.2.1. Iron Cylinder Depth Test 

The first depth test was conducted with the iron cylinder that measures 3”D x 12”L.  

The object was placed directly in the middle of the sandbox test bed, 36” from the starting 

position, as seen in Figure 96. 
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Figure 96: Iron Cylinder Location 

 

 
Figure 97: 2.5-Inch - Iron Cylinder Recorded X-Axis Data 

When the object is 2.5 inches below the surface the results have an average 

magnitude change of approximately ±	.002 h„ in the X-direction, ± 0.001 h„ in the Y-
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direction and ± 0.003 h„ in the Z-direction (see Appendix C for y and z coordinate results).  

According to the magnetometer data the center of the iron cylinder is located 38.5” into the 

scan.   When compared to the measured location of 36 inches, seen in Figure 97, there is a 

location accuracy discrepancy of 2.5”. 

 

Figure 98: 4-Inch - Iron Cylinder Recorded X-Axis Data 

When the cylinder is buried 4 inches below the surface the results show an average 

magnitude change of approximately ± 0.0013 h„ in the X-direction, ± 0.001 h„ in the Y-

direction and ± 0.002 h„ in the Z-direction.  According to the magnetometer data the center 

of the iron cylinder is located 38.5” into the scan.   When compared to the measured 

location of 36 inches seen in Figure 98, there is a location accuracy discrepancy of 2.5”. 
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Figure 99: 5.5-Inch - Iron Cylinder Recorded X-Axis Data 

 
When the cylinder is 5.5 inches below the surface, the results show an average 

magnitude change of approximately ± 0.0001 h„ in the X-direction, ± 0.0005 h„ in the 

Y-direction and ± 0.0005 h„ in the Z-direction.  According to the magnetometer data the 

center of the iron cylinder is located 37” into the scan.  When compared to the measured 

location of 36” seen in Figure 99, there is a location accuracy discrepancy of 1”.  
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Figure 100: 7-Inch - Iron Cylinder Recorded X-Axis Data 

When the object is 7 inches below the surface, the results show an average 

magnitude change of approximately ± 0.0001 h„ in the X-direction, ± 0.0 h„ in the Y-

direction and ± 0.0 h„ in the Z-direction.  At a depth of 7 inches there is little signal 

variation to indicate the location of the iron cylinder.  

It is apparent after analyzing the depth data that as the depth of the target increases 

the amplitude change of the signal over the target decreases.  Additionally, as the depth 

increases, the location accuracy in the iron cylinder test decreases. 

5.2.1.2 Pipe Depth Test 

Similar to the cylinder test, a steel pipe measuring 1”D x 50.4”L with a wall 

thickness of 0.065” was buried in the center of the sandbox at depths 2.5, 4, 5.5 and 7 

inches measured from the surface of the sand to the top of the pipe.  By analyzing the x, y, 
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and z plots the amplitude change can be measured, which helps determine the sensitivity 

of the unit. 

 

Figure 101: Steel Pipe Location 

 

Figure 102: 2.5-Inch - Steel Pipe Recorded X-Axis Data 
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When the pipe is buried 2.5 inches below the surface, the results show an average 

magnitude change of approximately ± 0.0012 h„ in the X-direction, ± 0.0008 h„ in the 

Y-direction and ± 0.0018 h„ in the Z-direction.  According to the magnetometer data, the 

center of the steel pipe is located 35” into the scan.   When compared to the measured 

location of 36” seen in Figure 103, there is a location accuracy discrepancy of 1”. 

  

Figure 103: 4-Inch - Steel Pipe Recorded X-Axis Data 

When the cylinder is buried 4 inches below the surface the results show an average 

magnitude change of approximately ± 0.0009 h„ in the X-direction, ± 0.0005 h„ in the 

Y-direction and ± 0.001 h„ in the Z- direction.  According to the magnetometer data the 

center of the steel pipe is located 35” into the scan.   When compared to the measured 

location of 36” seen in Figure 103, there is a location accuracy discrepancy of 1”.   
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Figure 104: 5.5-Inch - Steel Pipe Recorded X-Axis Data 

 
When the object is 5.5 inches below the surface, the results show an average 

magnitude change of approximately ± 0.0003 h„ in the X-direction, ± 0.0 h„ in the Y-

direction and ± 0.0005 h„ in the Z-direction.  According to the magnetometer data, the 

center of the steel pipe is located 38” into the scan.   When compared to the measured 

location of 36” seen in Figure 104, there is a location accuracy discrepancy of 2”.   
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Figure 105: 7-Inch - Steel Pipe Recorded X-Axis Data 

When the pipe is 7 inches below the surface, the results show an average magnitude 

change of approximately ± 0.0002 h„ in the X-direction, ± 0.001 h„ in the Y-direction 

and ± 0.0001 h„ in the Z-direction.  At a depth of 7 inches there is little signal variation 

to indicate the exact location of the steel pipe. 

5.2.1.3 Iron Weight Test 

The third depth test was run with a 5 pound iron weight measuring 6.5”D x .625”L 

buried at depths 2.5, 4, 5.5 and 7 inches.  The weight was buried in the center of the sandbox 

as seen in Figure 106: Weight Location 
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Figure 106: Weight Location 

 

Figure 107: 2.5-Inch - Iron Weight Recorded X-Axis Data 

When the weight is buried 2.5 inches below the surface, the results show an average 

magnitude change of approximately ± 0.002 h„ in the X-direction, ± 0.0004 h„ in the Y-
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direction and ± 0.003 h„ in the Z- direction.  According to the magnetometer data the 

center of the iron weight is located 3” into the scan.  When compared to the measured 

location of 37” seen in Figure 108, there is a location accuracy discrepancy of 2”.      

 

Figure 108: 4-Inch - Iron Weight Recorded X-Axis Data 

When the weight is buried 4 inches below the surface, the results show an average 

magnitude change of approximately ± 0.0012 h„ in the X-direction, ± 0.0002 h„ in the 

Y-direction and ± 0.002 h„ in the Z- direction.  According to the magnetometer data the 

center of the iron weight is located 40” into the scan.  When compared to the measured 

location of 37” seen in Figure 108, there is a location accuracy discrepancy of 3”.      
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Figure 109: 5.5-Inch - Iron Weight Recorded Z-Axis Data 

When the weight is buried 5.5 inches below the surface, the results show an average 

magnitude change of approximately ± 0.0005 h„ in the X-direction, ± 0.0001 h„ in the 

Y-direction and ± 0.0005 h„ in the Z-direction.  According to the magnetometer data the 

center of the iron weight is located 43” into the scan.  When compared to the measured 

location of 37” seen in Figure 109, there is a location accuracy discrepancy of 6”.      
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Figure 110: 7-Inch - Iron Weight Recorded Z-Axis Data 

When the weight is buried 7 inches below the surface, the results show an average 

magnitude change of approximately ± 0.0003 h„ in the X-direction, ± 0.0 h„ in the Y-

direction and ± 0.0005 h„ in the Z-direction.  According to the magnetometer data the 

center of the iron weight is located 36” into the scan.   When compared to the measured 

location of 37” seen in Figure 110, there is a location accuracy discrepancy of 1”.   

Similar to the iron cylinder and steel pipe test, there is a significant discrepancy in 

the amplitude of the signal over the target as the depth changes.  As in the other two 

isolation tests as the depth of the target increases the location accuracy decreases.  

5.2.3 Eddy Currents 

Tests were run to determine whether the dual rotating magnet unit can induce eddy 

currents in non-ferromagnetic materials and be detected by the RM3100 magnetometer.  
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5.2.3.1 Extension Cord 

The first test used a 100 ft extension cord coiled up with the male and female ends 

of the cord plugged into each other.  The cord was buried 4 inches below the surface in the 

center of the sand box.  The speed of the motor was set to 24 Hz.  This explored the 

possibility of inducing a current into the copper wire of the extension cord.  By plugging 

the two ends of the extension cord together it gives the current an easy path to travel, in 

theory making the copper wire easier to detect.  The wire was orientated so the unit travels 

over one length of the coil, through the middle where there is no wire, and then over the 

other length of the coil.  

 

 

Figure 111: Extension Cord Location 
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Figure 112: Plugged in Extension Cord X-Axis Data 

The results from the plugged-in extension cord test show an average magnitude 

change of approximately ± 0.0001 h„ in the X-direction, ± 0.0001 h„ in the Y-direction 

and ± 0.0 h„ in the Z-direction.  In the X-direction plot, in Figure 112, the signal amplitude 

change shows the two lengths of the wire, which are marked by the vertical red lines. 

5.2.3.1 Extension Cord Unplugged 

The second test used the same 100ft extension cord coiled up with the male and 

female ends of the cord unplugged.  The cord was buried 4 inches below the surface in the 

center of the sand box.  The speed of the motor was set to 24 Hz.  In theory since the two 

ends are unplugged the wire will be more difficult to detect because the induced current 

will not be able to loop in the coil. 
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Figure 113: Extension Cord Recorded X-Axis Data 

The results from the unplugged extension cord test show an average magnitude 

change of approximately ± .00005 h„ in the X-direction, ± 0.0 h„ in the Y-direction and 

± 0.0 h„ in the Z-direction.  From the magnetometer data it is very difficult to understand 

where the extension cord is located.  The X-direction magnetometer data, Figure 112, has 

a slight amplitude change around the location of the extension cord, but that is the only 

indication of the cord.  

5.2.3.3 Aluminum 

An eddy current test was conducted with an aluminum cylinder measuring 2”D x 

33.5”L that was buried 4” below the surface of the sandbox.  The test was performed at 3 

different motor speeds (24 Hz, 4.8 Hz and 0 Hz) to determine if the unit was capable of 

inducing eddy currents into the aluminum cylinder. 
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For the first part of the test the motor speed was set at 24 Hz.      

 

Figure 114: Aluminum Cylinder Location 

 

Figure 115: Speed 24 Hz: Aluminum Recorded X-Axis Data 
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The results at 24 Hz show an average magnitude change of approximately ± 0.0001 

h„ in the X-direction, ± 0.001 h„ in the Y-direction and ± 0.0 h„ in the Z-direction.  In 

the X direction plot the increase in signal amplitude around the vertical red line proves that 

eddy currents can be induced and detected at speeds as low as 24 Hz.  The location of the 

aluminum cylinder from the magnetometer reading is at 33 inches.  The actual measured 

location is 36 inches. 

The second test the motor speed was reduced to 4.8 Hz to see if it is still possible 

to see the aluminum cylinder. 

 

Figure 116: Speed 4.8 Hz: Aluminum Recorded X-Axis Data 

The results show an average magnitude change of approximately ± 0.0 h„ in the 

X-direction, ± 0.0 h„ in the Y-direction and ± 0.0 h„ in the Z-direction.  The X, Y and Z 
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plots show little information about the location of the aluminum pipe.  There is no signal 

variation that would indicate a buried aluminum pipe.   

The third test was run without the magnets spinning, to see if the magnetometer 

without an induced field can detect the piece of aluminum. 

 

Figure 117: Speed 0 Hz: Aluminum Recorded X-Axis Data 

From the plotted X, Y and Z magnetometer data, there is no signal variation that 

would indicate a buried aluminum pipe.  The variation in the plots are caused by slight 

drifts in the signal, due to external magnetic materials in the lab.  The drift is minimal and 

is the order of 1.0	 × 10/ª	h„. 

The results from Section 5.2.3 indicate that the unit can induce and detect eddy 

currents in non-ferromagnetic magnetic materials.  Shown by the 24 Hz test detecting the 
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location of the aluminum pipe through signal amplitude variation, while the 4.8 Hz test and 

0 Hz test had no amplitude variation near the aluminum pipe.  

5.2.4 Aluminum Depth Test 

The final eddy current test was conducted to understand how the depth of the non-

ferromagnetic object affects the locating accuracy of the dual magnet unit.  This test 

explores the ability of the dual magnet unit to induce eddy currents at different depths.  The 

aluminum cylinder was buried at 2.5”, 4”, 5.5” and 7”. 

 

Figure 118: 2.5-Inch - Aluminum Recorded X-Axis Data 

The 2.5-inch results show an average magnitude change of approximately ± 0.0002 

h„ in the X-direction, ± 0.0 h„ in the Y-direction and ± 0.0005 h„ in the Z direction.  In 

the X direction plot the increase in signal amplitude around the vertical red lines confirms 

that eddy currents can be induced and detected at 2.5 inches below the surface.  The 
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location from the magnetometer reading is at approximately 33.5 inches.  The actual 

measured location is 36 inches and there is a location accuracy discrepancy of 2.5”.      

 

Figure 119: 4-Inch - Aluminum Recorded X-Axis Data 

The 4-inch results show an average magnitude change of approximately ± 0.0002 

h„ in the X-direction, ± 0.0 h„ in the Y-direction and ± 0.0005 h„ in the Z direction.  In 

the X direction plot the increase in signal amplitude around the vertical red lines confirms 

that eddy currents can be induced and detected at 4 inches below the surface.  The location 

from the magnetometer reading is at approximately 33 inches.  The actual measured 

location is 35 inches and there is a location accuracy discrepancy of 3”.      
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Figure 120: 5.5-Inch - Aluminum Recorded X-Axis Data 

The 5.5-inch results show an average magnitude change of approximately ± 0.0 h„ 

in the X-direction, ± 0.0 h„ in the Y-direction and ± 0.0 h„ in the Z-direction.  At a depth 

of 5.5 inches there is a slight signal variation to determine the location of the aluminum 

pipe.  
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Figure 121: 7-Inch - Aluminum Recorded X-Axis Data 

The 7-inch results show an average magnitude change of approximately ± 0.0 h„ 

in the X-direction, ± 0.0 h„ in the Y-direction and ± 0.0 h„ in the Z-direction.  At a depth 

of 7 inches there is a slight signal variation to indicate the location of the aluminum pipe. 

At 4 inches the unit was able to induce eddy currents into the aluminum cylinder 

and detect the location of the object.  As the distance increased to 5.5 inches and then 7 

inches the unit was unable to detect the aluminum.  Possible reasons for this include: 1) the 

motor speed and 2) the strength of the magnets. The motor speed could possibly be to slow 

to induce eddy currents at a farther distance because the magnets are not spinning fast 

enough to induce a large enough current.  The strength of the magnets could also limit the 

ability of the unit to induce currents at larger depths.  
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5.2.5 Martian Soil Simulant Testing 

To test the dual rotating magnet unit in Martian applications a series of tests were 

run to demonstrate its capabilities.  A Martian simulate was made using steel wool that was 

rusted using water and salt.  A steel wool and sand mixture was contained in a plastic bag 

measuring 10”L x 8”W x 0.5”H and was buried in the sandbox test bed to represent Mars’ 

iron-based soil.  The mixture was composed of 13 percent by weight steel wool and the 

remaining 87 percent was sand.  

5.2.5.1 Single Martian Simulant 

The first test used a single simulant sample buried 2 inches below the surface to 

determine if the dual rotating magnet could locate the anomaly.  The same test was 

conducted using a ground penetrating radar unit in order to compare the results. 

 

Figure 122: Single Martian Simulant Test Setup 

32” 
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Figure 123: Martian Simulant GPR Data with Simulant 

 
 
 

 
Figure 124: GPR Data without Simulant 
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Figure 125: Martian Simulant - Magnet X-Axis Data 

 The Martian simulant was unable to be located by GPR.  By comparing Figure 123 

and Figure 124 with and without the simulant, there is little difference between the two 

GPR scans confirming the simulant cannot be detected by the GPR unit.  The results from 

the dual rotating unit in Figure 125 show the simulant is clearly detected; the location is 

represented by the vertical red lines.  The X-axis data has a maximum amplitude change of 

2.5 × 10/Éh„.   

5.2.5.2 Two Martian Simulants 

The second test took the single sample test one step farther and had two buried 

simulant samples 2 inches below the surface.  The samples were spaced 12 inches apart, as 

seen in Figure 126. 
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Figure 126: Two Martian Simulants Test Setup  

 

Figure 127: 2 Buried Martian Simulants X-Axis Data 
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 The rotating magnet unit was able to detect both Martian simulants.  The buried 

simulants are clearly located in Figure 127 by the change in amplitude of 2.0 × 10/Éh„ at 

both locations of the simulant, represented by the vertical red lines.  

5.2.5.3 Martian Simulant – Air, Water, and Ice Tests 

The air, ice and water tests were designed to represent a situation encountered on 

Mars.  The test setup used the same two samples of Martian simulant used in Section 5.2.5.2 

with the addition of an air, water, or ice pocket between the samples.  The air pocket was 

represented by an empty plastic container, the water pocket was represented by a plastic 

container filled with water, and the ice pocket was represented by a plastic container filled 

with ice.  Each sample measured 12”L x 12”W x 4”D and the top of the sample was buried 

2” below the surface of the sand.   This situation could represent Martian soil with a water, 

ice or air pocket just beneath the surface.  NASA is specifically interested in this topic 

because they want the rovers to be able to avoid soft pockets and therefore avoid getting 

stuck.  Additionally, locating water or ice is a high priority for NASA to determine the 

possibilities of past and future life on Mars. 
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Figure 128: Air, Water, and Ice Tests Setup 

 
Figure 129: Martian Simulant with Air Pocket: X-Axis Data 
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Figure 130: Martian Simulant with Water Pocket: X-Axis Data 

 

 
Figure 131: Martian Simulant with Ice Pocket: X-Axis Data 

The rotating magnet unit was able to detect both subsurface anomalies and show 

that there is no magnetic object between them in the air, water and ice tests.  The buried 

simulants are clearly located in Figure 129 by the change in amplitude of 3.0 × 10/Éh„ at 
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both locations of the simulant, represented by the vertical red lines.  In Figures Figure 

130Figure 131 the simulants are located by the 5.0 × 10/Éh„ amplitude change.  The air, 

water and ice pockets are located by the decrease in amplitude between the two simulants. 

 The results confirm that the dual rotating magnet device is capable of sensing soil 

anomalies, specifically with Martian applications.  By demonstrating the ability to sense 

the steel wool simulant, the unit can in theory sense changes in soil densities and pockets 

of air, water, or ice in high content iron-based soils.  

5.3 Additional Post Processing 

 To improve the sensing ability of the dual rotating unit, additional post processing 

steps were taken.  The X-axis data from the three buried objects test in Section 5.2.1.1 were 

used.  The raw three buried objects data easily located the subsurface objects, allowing for 

easy comparison between the results.  Two different post processing tests were run to see 

if the sensitivity of the unit could be improved.   

The first test removes the magnetic field produced by the motors spinning from the 

three buried object results.  The results from Section 5.1.2 (Spinning Motor Test) were 

subtracted from the results in Section 5.2.1.1 (3 Buried Objects Test). 
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Figure 132: Original 3 Buried Objects X-Axis Data 

 

Figure 133: 3 Buried Objects Test X-Axis Data with Motor Field Removed 
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 Comparing Figure 132 and Figure 133 the amplitude of the recorded signal is larger 

in the plot with the spinning motor signal removed.  The amplitude changes in Figure 133 

are 0. 8 × 10/lh„, 0. 7 × 10/lh„, and 1.3 × 10/lh„ for each object respectively.  The 

amplitude changes in Figure 132 are 0. 15 × 10/lh„, 0. 25 × 10/lh„, and 0.3 × 10/lh„.  

This confirms that the sensitivity is increased by removing the magnetic field produced by 

the motor. 

 The second test removes the background magnetic field from the three-buried 

objects test.  The background magnetic field is where the motors and magnets are spinning 

while the unit is moving the length of the sandbox.   

 

Figure 134: 3 Buried Objects Test X-Axis Data with Background Field Removed 
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Figure 132 and Figure 134 it is confirmed that the sensitivity is increased by removing the 

background magnetic field. 

 In both tests the results improve the sensing ability of the dual rotating magnet unit.  

Comparing Figure 133 and Figure 134 the change in amplitude is on average 

0.134 × 10/lh„ larger when the background magnetic field is removed than when the 

motor field is removed.  Further analysis of the two figures shows that the shape of the 

curve in Figure 133 (motor field removed) makes the buried objects more apparent.  

Although the change in amplitude is 0.134 × 10/lh„ smaller, more details about the 

location of the objects can be deduced by the pronounced shape of the curves in Figure 133 

with the motor field removed. 

5.4 Discussion 

The ability of the unit to detect both ferromagnetic and non-ferromagnetic materials 

is confirmed by the testing results.  Both materials can be detected at high speeds and only 

magnetic materials can be detected at slow speeds.  Using the results at both high and low 

speeds and the process of elimination, the magnetic properties of the material can be 

determined.   

The results show that the unit has difficulty sensing at depths larger than 5.5 inches 

for both ferromagnetic and non-ferromagnetic materials.  In Section 5.3 two post 

processing tests were successfully run to improve the locating accuracy of the data.  This 

is an additional step when processing the data, but it could significantly improve the 

sensitivity of the unit without having to make additional changes to the unit.   
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The location accuracy of the raw data could be improved by increasing the magnet 

strength.  The magnets used in the testing have an approximate pull force of 40 lbs.  By 

using a stronger magnet, the magnetic field strength would increase and improve the 

sensitivity of the unit.  Additionally, increasing the sampling rate of the magnetometer to 

allow for higher motor speeds would increase the induced eddy currents allowing detection 

at larger depths of non-ferromagnetic objects.   
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Chapter 6: Conclusions and Future Work 

6.1 Results 

6.1.1 Ferromagnetic Results 

The ferromagnetic testing was successful in locating shallow subsurface objects.  

As the depth increased the sensitivity of the unit decreased.  Comparing the measured 

location versus the detected location of the object, the location determined by the x axis 

data in all cases was the closest to the actual location.  By analyzing the low depth tests, 

quality information about the subsurface objects can be obtained.   

  

Figure 135: 3 Buried Objects Test: Z Axis Data 

In the three-buried object test, the exact location and size of each object is known 

and can be related to the test data to understand how the amplitude change corresponds to 

the size of the buried object.  By analyzing the three peaks in Figure 135 there is a direct 

correlation between the peak and the diameter of the object.  A larger focal width of the 

0 7 14 21 28 35 42 49 56 63
Distance (in)

-0.015

-0.01

-0.005

0

0.005

0.01

M
ag

ni
tu

de
 o

f M
ag

ne
tic

 F
ie

ld

Pipe 
1” D Cylinder 

    2” D 
Weight 
6.5” D 

Measurement Number 



 132 

curve correlates to a larger diameter object.  For example, for the 4-inch depth test, the iron 

pipe has a 1-inch diameter and the focal width in Figure 135 is approximately 100 

measurements corresponding to 8 inches, meaning the magnetometer detected the 1-inch 

pipe for 8 inches during the scan.  The cylinder has a 2-inch diameter and focal width of 

200 measurements or 16 inches.  This proves that for a cylinder-shaped object a focal width 

of 8 inches is equivalent to a 1-inch object.  The weight has a 6.5-inch diameter with a focal 

width of 350 measurements or 28 inches.  For a circular shaped object, the correlation is a 

focal width of 4.3 inches per object inch.     

 There are a number of unanswered questions from testing.  It is still unknown how 

to differentiate object depth versus size of object.  Theoretically only the amplitude of the 

curve will be dependent on depth and the focal width will remain the same.  Therefore, the 

focal width can be measured, and the size of the object can be determined.  The depth of 

the object can then be determined based on the amplitude.  Unfortunately, during testing 

the magnets used were not strong enough to have accurate results below 4 inches, so this 

theory could not be tested. 

6.1.2 Eddy Current Results  

One of the main advantages of the dual rotating magnet unit is its ability to detect 

both ferromagnetic and non-ferromagnetic materials and the unit’s ability to differentiate 

between them.  The eddy current testing confirmed that this is possible by showing, at 

higher speeds, both magnetic and nonmagnetic objects can be detected, but at speeds lower 

than 10 Hz only magnetic objects can be detected.  Similar to the ferromagnetic testing, 

the eddy current results showed difficulty sensing at greater depths.  Results at a depth of 
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4 inches were repeatedly able to locate the object, but as depth increased locating became 

difficult. 

   

Figure 136: Aluminum X Axis Data 

The correlation between the curve and the size of the object discussed in Section 

6.3 holds true for the aluminum cylinder.  The measured focal width in Figure 136 is 

approximately 16 inches corresponding to a 2” diameter cylinder.   

 The next step for eddy current testing is to determine if differentiating between 

different types of non-ferromagnetic objects is possible.  For example, is it possible to tell 

the difference between a copper pipe, aluminum pipe and a lead pipe?  All are non-

ferromagnetic but are used for different applications. 
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6.1.3 Martian Simulant 

 The unit proved the ability to sense a simulant of Martian soil, showing the 

possibilities of extraterrestrial applications.  By analyzing the graphs in Section 5.2.5, the 

difference between the simulant, air, water, ice, and sand can be distinguished.  Further 

testing is required to be able to quantify the amplitude change to the percentage of iron in 

the soil.  As in the other tests, larger magnets would improve the sensitivity of the unit, 

magnifying the soil anomalies and improving the post processing. 

6.1.4 Post Processing 

The post processing tests in Section 5.3 increased the sensitivity of the unit.  The 

test confirmed that by removing the magnetic field produced by the spinning permanent 

magnet in the motors and the magnetic field produced by the spinning magnets, both 

increased the change in amplitude over the subsurface objects.  Initial findings determined 

that removing the motor field was the most effective way to improve the locating accuracy.  

Further testing is required to understand if this is the case for both ferromagnetic and non-

ferromagnetic materials.   

6.2 Unit 

Four different test units were designed, each with the premise of rotating two 

diametrically polarized magnets in a synchronized orientation.  The final iteration seen in 

Figure 85 addressed the problems of the three previous iterations.  Using the Galil motion 

controller, the motors can rotate at speeds up to 13500 rpm while maintaining phase control 

between the two motors.  The unit is designed to work in the sandbox test bed.  An 

improvement to the unit would be to design a magnet holder to accommodate larger 
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cylinder magnets.  Being able to test with larger magnets would explore the theory that 

stronger magnets increase sensitivity, enabling the units to sense objects at larger depths.  

The magnets used for testing were neodymium magnets with a dimension of 1/2”D x 1”L 

and an approximate pull force of 40 pounds.  There are numerous options, but Applied 

Magnets offers a 1”D x 1”L cylinder magnet that has a pull force of approximately 90 lbs.  

This would be a simple upgrade to the unit to see if it would improve functionality at larger 

depths.   

Once the final unit was built and testing began an issue arose with the Faulhaber 

motors and encoders.  The motors suddenly stopped initializing, meaning the controller 

was unable to determine the initial position of the motors and could not initiate motion.  

Using a Goldstar OS-9020A 20 MHz oscilloscope it was determined that the Hall sensors 

were no longer working.  The motors were then sent back to Faulhaber and replaced with 

the same motor, but a slightly longer body.  The reason for the failure of the Hall sensors 

is undetermined.       

6.3 Magnetometer 

The PNI RM3100 paired with the PNI communication board, according to the 

specification and compact size, made it the correct choice for the application.  According 

to the data sheet the magnetometer has a maximum sample rate of 1600 Hz or 533.3 Hz 

per axis without compromising sensitivity.  Numerous issues occurred throughout the 

testing process.  First, upon arrival the unit failed to work, after multiple weeks of 

debugging the board it was determined that the unit had never been programmed and was 

returned to PNI for a programmed unit.  Once testing began the magnetometer worked 
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properly.  The default settings on the magnetometer are set to sample at 37 Hz per axis. In 

an attempt to change the default settings, it was determined that the communication board 

is unable to exceed a sample rate greater than 60 Hz per channel.  By using an Arduino 

Uno instead of the PNI Communication board this problem could be solved.  An Arduino 

Uno can sample at rates as high as 8.9 kHz.   
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Appendix A Steps for Processing Data in Matlab 

A.1 Upload File Function to Matlab 

First using Microsoft Excel to take the .txt file from the magnetometer and organize 

the data by choosing the correct rows and deleting the spaces after each bit of data to make 

3 bit strings for each reading.  After saving the Excel file as a .txt this Matlab function 

uploads the data and converts it from a table to a string array.  

function FILENAMEin1 = importfile(filename, startRow, endRow) 
%IMPORTFILE Import numeric data from a text file as a matrix. 
%   BOT3BURIED4IN1 = IMPORTFILE(FILENAME) Reads data from text file 
%   FILENAME for the default selection. 
% 
%   BOT3BURIED4IN1 = IMPORTFILE(FILENAME, STARTROW, ENDROW) Reads data 
from 
%   rows STARTROW through ENDROW of text file FILENAME. 
% 
% Example: 
%   BOT3BURIED4in1 = importfile('BOT_3BURIED4in.txt', 1, 981); 
% 
%    See also TEXTSCAN. 
  
% Auto-generated by MATLAB on 2018/06/22 16:07:43 
  
%% Initialize variables. 
delimiter = '\t'; 
if nargin<=2 
    startRow = 1; 
    endRow = inf; 
end 
  
%% Read columns of data as text: 
% For more information, see the TEXTSCAN documentation. 
formatSpec = '%s%s%s%[^\n\r]'; 
  
%% Open the text file. 
fileID = fopen(filename,'r'); 
  
%% Read columns of data according to the format. 
% This call is based on the structure of the file used to generate this 
% code. If an error occurs for a different file, try regenerating the 
code 
% from the Import Tool. 
dataArray = textscan(fileID, formatSpec, endRow(1)-startRow(1)+1, 
'Delimiter', delimiter, 'TextType', 'string', 'HeaderLines', 
startRow(1)-1, 'ReturnOnError', false, 'EndOfLine', '\r\n'); 
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for block=2:length(startRow) 
    frewind(fileID); 
    dataArrayBlock = textscan(fileID, formatSpec, endRow(block)-
startRow(block)+1, 'Delimiter', delimiter, 'TextType', 'string', 
'HeaderLines', startRow(block)-1, 'ReturnOnError', false, 'EndOfLine', 
'\r\n'); 
    for col=1:length(dataArray) 
        dataArray{col} = [dataArray{col};dataArrayBlock{col}]; 
    end 
end 
  
%% Close the text file. 
fclose(fileID); 
  
%% Convert the contents of columns containing numeric text to numbers. 
% Replace non-numeric text with NaN. 
raw = repmat({''},length(dataArray{1}),length(dataArray)-1); 
for col=1:length(dataArray)-1 
    raw(1:length(dataArray{col}),col) = mat2cell(dataArray{col}, 
ones(length(dataArray{col}), 1)); 
end 
numericData = NaN(size(dataArray{1},1),size(dataArray,2)); 
  
  
%% Split data into numeric and string columns. 
rawNumericColumns = {}; 
rawStringColumns = string(raw(:, [1,2,3])); 
 
%% Create output variable 
BOT3BURIED4in1 = raw; 
 
 
A.2 Function to Convert from 2’s Complement to Decimal Number 

This function is necessary for converting the data in the .txt file from a hex 

representation of 2’s complement to a decimal number. 

function [x]=nhex2dec(hexstring,n) 
% hexstring : hex representation of two's complement of 
xmydec=hex2dec(hexstring); 
% x : input decimal number 
% n :   number of bits to perform 2's complements 
x = hex2dec(hexstring); 
x = x - (x >= 2.^(n-1)).*2.^n; 
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A.3 Evaluate Function nhex2dec and Plot Envelope 

This script takes the string array generated from A.1 and evaluates each cell at of 

the array into a decimal number and then plots the value.  The envelope of the oscillating 

signal is then solved. 

A = BOT3BURIED6in; %table2array(TEST1); %Converts from table to array 
X=linspace(0,981,981)'; %Creates x vector 
D= nhex2dec(A,24); %Calls function nhex2dec and converts from hex to 
dec 
F=(D/8388607)*3; %Converts from voltage to micro Tesla's  
  
plot(X,F(:,1)); %Plots x values 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('X AXIS'); 
figure 
plot(X,F(:,2)); %Plots y values 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('Y AXIS'); 
figure 
plot(X,F(:,3)); %Plots z values 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('Z AXIS'); 
  
figure 
envelope(F(:,1),45,'peak') 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('X Axis Peak Upper and Lower Envelope'); 
  
figure 
envelope(F(:,2),50,'peak') 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('Y Axis Peak Upper and Lower Envelope'); 
  
figure 
envelope(F(:,3),46,'peak') 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('Z Axis Peak Upper and Lower Envelope'); 
%ylim([-.022, .022]);        
figure 
[up,lo] = envelope(F(:,1),50,'peak'); 
plot(X,up,X,lo,'linewidth',1.5) 
xlabel('Time (s)'); 
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ylabel('Magnitude'); 
title('X Axis Upper and Lower Envelope'); 
  
figure 
[up,lo] = envelope(F(:,2),50,'peak'); 
plot(X,up,X,lo,'linewidth',1.5) 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('Y Axis Upper and Lower Envelope'); 
  
figure 
[up,lo] = envelope(F(:,3),50,'peak'); 
plot(X,up,X,lo,'linewidth',1.5) 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('Z Axis Upper and Lower Envelope'); 
  
         
figure 
[up,lo] = envelope(F(:,1),45,'peak'); 
plot(X,up,'linewidth',1.5) 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('X Axis Upper Envelope'); 
  
figure 
[up,lo] = envelope(F(:,2),50,'peak'); 
plot(X,up,'linewidth',1.5) 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('Y Axis Upper Envelope'); 
  
figure 
[up,lo] = envelope(F(:,3),50,'peak'); 
plot(X,up,'linewidth',1.5) 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('Z Axis Upper Envelope'); 
 
A.4 Plots Location of Objects 

Code takes the plotted curve from A.3 and plots a vertical red line at the location 

of each subsurface object. 

A = BOTDEPTHCYL7; %table2array(TEST1); %Converts from table to array 
X=linspace(0,981,981)'; %Creates x vector 
D= nhex2dec(A,24); %Calls function nhex2dec and converts from hex to 
dec 
F=(D/8388607)*3; %Converts from voltage to micro Tesla's  
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figure 
envelope(F(:,1),45,'peak') 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('X Axis Peak Upper and Lower Envelope'); 
  
hold on 
yL = get(gca,'YLim'); 
line([480 480],yL,'Color','r','LineWidth',2); 
%line([500 500],yL,'Color','r','LineWidth',2); 
%line([900 900],yL,'Color','r','LineWidth',2); 
legend('Magnitude','Location of Buried Object'); 
title('3 Buried Targets X Axis'); 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
  
figure 
envelope(F(:,2),30,'peak') 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('Y Axis Peak Upper and Lower Envelope'); 
  
hold on 
yL = get(gca,'YLim'); 
line([480 480],yL,'Color','r','LineWidth',2); 
%line([500 500],yL,'Color','r','LineWidth',2); 
%line([900 900],yL,'Color','r','LineWidth',2); 
legend('Magnitude','Location of Buried Object'); 
title('3 Buried Targets Y Axis'); 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
  
figure 
envelope(F(:,3),45,'peak') 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
title('Z Axis Peak Upper and Lower Envelope'); 
  
hold on 
yL = get(gca,'YLim'); 
line([480 480],yL,'Color','r','LineWidth',2); 
%line([500 500],yL,'Color','r','LineWidth',2); 
%line([900 900],yL,'Color','r','LineWidth',2); 
legend('Magnitude','Peak Envelope'); 
title('3 Buried Targets Z Axis'); 
xlabel('Time (s)'); 
ylabel('Magnitude'); 
 
 
A.5 Dual Magnet Vector Plot 

mu=1386532.885;%Constant C for B Field 
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theta1=90; 
theta2=270; 
l_x=6;%domain size 
l_y=4; 
Nx=40;%number of domain points 
Ny=40; 
deltax=l_x/Nx;%number of points per unit L 
deltay=l_y/Ny; 
N=(Nx+1)*(Ny+1);%total number of points in domain 
pc=zeros(N,2);%point coords 
c=1; 
for j=0:Nx % creates a domain 
    for i=0:Ny 
       pc(c,1)=j*deltax; 
       pc(c,2)=l_y-i*deltay; 
       c=c+1; 
    end 
end 
  
m=[1 3;2.25 3];%magnet position 
R=zeros(2,2,5);%creates array for rotation matrix 
%Rotation matrices 
R(:,:,1)=[cosd(theta1) sind(theta1);-sind(theta1) cosd(theta1)]; 
R(:,:,2)=[cosd(theta2) sind(theta2);-sind(theta2) cosd(theta2)]; 
  
Dx=zeros(Ny+1,Nx+1);% 
Dy=zeros(Ny+1,Nx+1); 
  
for j=1:2 %solves for each magnet 
    Rj=R(:,:,j);%Works through rotation matrices 
    Rt=Rj';%Transpose of rotation matrices 
    for i=1:N 
        pm=m(j,:); %calls position of magnet 
        pp=pc(i,:);%calls postion of point 
        rv = pp-pm; % R vector global coordinates 
        rvr=Rj*rv';%Rotates R vector to local coordinates 
        r=norm(rv);%takes magnitude of R 
        costheta = rvr(1)/r; %solves for angles 
        sintheta=rvr(2)/r; 
        cosphi=0; 
        sinphi=1; 
        if r > .2 %Filters out large vectors R  
            Bx=mu/r^3*(2*costheta^2-sintheta^2); %solves for B field in 
local 
            By=mu/r^3*(3*costheta*sintheta*sinphi); 
            Bz=mu/r^3*(3*costheta*sintheta*cosphi); 
        else 
            Bx = 0; 
            By = 0; 
            Bz = 0; 
        end 
        B=[Bx By]; %Organizes B field 
        BG=Rt*B'; %solves B field in Global 
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        Dx(i)=Dx(i) + BG(1); %Moves through each point and solves B 
field 
        Dy(i)=Dy(i) + BG(2); 
    end 
end 
  
pcx=pc(:,1);%calls point position 
pcy=pc(:,2); 
  
u = Dx(:);%calls B field values 
v = Dy(:); 
un=u./sqrt(u.^2+v.^2); 
vn=v./sqrt(u.^2+v.^2); 
  
figure(); %plots B field with respect to postion 
%quiver(pcx, pcy, u, v); 
quiver(pcx, pcy, un, vn); 
xlabel('l_x'); 
ylabel('l_y'); 
title('Two Cylinderical Magnets'); 
hold on 
  
 pos = [.75 2.75 .5 .5]; 
   rectangle('Position',pos,'Curvature',[1 
1],'facecolor','k','EdgeColor','b',... 
    'LineWidth',3) 
  axis equal 
  hold on 
   pos = [2 2.75 .5 .5]; 
   rectangle('Position',pos,'Curvature',[1 
1],'facecolor','k','EdgeColor','b',... 
    'LineWidth',3) 
  axis equal 
xlim([.25, 3.1]); 
ylim([1.9, 4.1]); 
 
 
A.5 Halbach Vector Plot 

mu=1386532.885;%Constant C for B Field 
l_x=6;%domain size 
l_y=4; 
Nx=40;%number of domain points 
Ny=40; 
deltax=l_x/Nx;%number of points per unit L 
deltay=l_y/Ny; 
N=(Nx+1)*(Ny+1);%total number of points in domain 
pc=zeros(N,2);%point coords 
c=1; 
for j=0:Nx % creates a domain 
    for i=0:Ny 
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       pc(c,1)=j*deltax; 
       pc(c,2)=l_y-i*deltay; 
       c=c+1; 
    end 
end 
  
m=[1 3;1.5 3;2 3;2.5 3; 3 3];%magnet position 
R=zeros(2,2,5);%creates array for rotation matrix 
R(:,:,1)=[1 0;0 1];%Rotation matrices 
R(:,:,2)=[0 1;-1 0]; 
R(:,:,3)=[-1 0;0 -1]; 
R(:,:,4)=[0 -1;1 0]; 
R(:,:,5)=[1 0;0 1]; 
Dx=zeros(Ny+1,Nx+1);% 
Dy=zeros(Ny+1,Nx+1); 
  
for j=1:5 %solves for each magnet 
    Rj=R(:,:,j);%Works through rotation matrices 
    Rt=Rj';%Transpose of rotation matrices 
    for i=1:N 
        pm=m(j,:); %calls position of magnet 
        pp=pc(i,:);%calls postion of point 
        rv = pp-pm; % R vector global coordinates 
        rvr=Rj*rv';%Rotates R vector to local coordinates 
        r=norm(rv);%takes magnitude of R 
        costheta = rvr(1)/r; %solves for angles 
        sintheta=rvr(2)/r; 
        cosphi=0; 
        sinphi=1; 
        if r > .2 %Filters out large vectors R  
            Bx=mu/r^3*(2*costheta^2-sintheta^2); %solves for B field in 
local 
            By=mu/r^3*(3*costheta*sintheta*sinphi); 
            Bz=mu/r^3*(3*costheta*sintheta*cosphi); 
        else 
            Bx = 0; 
            By = 0; 
            Bz = 0; 
        end 
        B=[Bx By]; %Organizes B field 
        BG=Rt*B'; %solves B field in Global 
         
        Dx(i)=Dx(i) + BG(1); %Moves through each point and solves B 
field 
        Dy(i)=Dy(i) + BG(2); 
    end 
end 
  
pcx=pc(:,1);%calls point position 
pcy=pc(:,2); 
  
u = Dx(:);%calls B field values 
v = Dy(:); 
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%un=u./sqrt(u.^2+v.^2); 
%vn=v./sqrt(u.^2+v.^2); 
  
figure(); %plots B field with respect to postion 
quiver(pcx, pcy, u, v); 
xlabel('l_x'); 
ylabel('l_y'); 
title('Halbach Array Vector Field'); 
hold on 
rectangle('Position',[.75,2.75,.5,.5],'facecolor','k','EdgeColor','b',.
.. 
    'LineWidth',3) 
hold on 
rectangle('Position',[1.25,2.75,.5,.5],'facecolor','k','EdgeColor','b',
... 
    'LineWidth',3) 
hold on 
rectangle('Position',[1.75,2.75,.5,.5],'facecolor','k','EdgeColor','b',
... 
    'LineWidth',3) 
hold on 
rectangle('Position',[2.25,2.75,.5,.5],'facecolor','k','EdgeColor','b',
... 
    'LineWidth',3) 
hold on 
rectangle('Position',[2.75,2.75,.5,.5],'facecolor','k','EdgeColor','b',
... 
    'LineWidth',3) 
     
         
xlim([.25, 3.75]); 
ylim([1.9, 4.1]); 
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Appendix B Initial Testing 

Tests were run to determine the viability of the dual rotating magnet system. Two 

are high-lighted below. 

Three Buried Objects 

Three different objects were buried in the test bed. A 2ft by 1in diameter iron pipe, 

a 1ft by 3in diameter steel cylinder and a 5-pound dumbbell with a 6.25-inch diameter.  

They were orientated as pictured in Figure 94.  The unit was run in the x direction from 

one end of the sand box to the other. The following plotted data is the magnitude of the 

magnetic field recorded by the USB2510A magnetometer. 

 

Figure 137: Initial 3 Buried Object Test 

In Figure 137 the location of the three buried objects are labeled. The location of 

the buried targets is where the magnetometer reading drops of in a parabola shape. The 

center of the parabola or axis of symmetry is where the middle of the object lies. The depth 
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of the parabola determines the size and magnetic strength of the object.  The results show 

the ability of the unit to accurately sense and locate underground infrastructure. 

Martian Soil Test 

In an effort to create a Martian soil simulate, steel wool was mixed in with sand in 

a sealed bag. Two bags with this mixture were placed in the sandbox 2 feet apart with an 

air pocket in between, as pictured in Figure 34. This simulates a water or air pocket beneath 

the Martian surface. The following plots are from the recorded magnetometer data.  

 

Figure 138: Initial Martian Soil Test 

Figure 138 shows the location of the two steel wool mixtures and the air pocket. 

Again, where the magnetometer magnitude drops off is the location of the steel wool 

mixture. The depth of the two upside down parabolas varies because the steel wool mixture 

on the left side of the graph has more steel wool in it, making it more magnetic. This makes 

the magnitude reading drop off more when the dual rotating unit senses the steel wool 

mixture.  The results show the ability of the unit to sense and locate the abnormalities in 

the Martian surface.  
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Appendix C Additional Results 

 

Figure 139: 3 Buried Targets Recorded Y Axis Data 

 

Figure 140: 3 Buried Targets Recorded Z Axis Data 
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Figure 141: Iron Cylinder Recorded X Axis Data 

 

 

Figure 142: Iron Cylinder Recorded Y Axis Data 
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Figure 143: Iron Cylinder Recorded X Axis Data 

 

Figure 144: Iron Cylinder Recorded Y Axis Data 
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Figure 145: Iron Cylinder Recorded X Axis Data 

 

Figure 146: Iron Cylinder Recorded Y Axis Data 
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Figure 147: Steel Pipe Recorded X Axis Data 

 

 

Figure 148: Steel Pipe Recorded Y Axis Data 
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Figure 149: Steel Pipe Recorded X Axis Data 

 

Figure 150: Steel Pipe Recorded Y Axis Data 
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Figure 151: Steel Pipe Recorded X Axis Data 

 

Figure 152: Steel Pipe Recorded Y Axis Data 
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Figure 153: Iron Weight Recorded X Axis Data 

 

Figure 154: Iron Weight Recorded Y Axis Data 
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Figure 155: Iron Weight Recorded X Axis Data 

 

Figure 156: Iron Weight Recorded Y Axis Data 
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Figure 157: Iron Weight Recorded X Axis Data 

 

Figure 158: Iron Weight Recorded Y Axis Data 
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Figure 159: Extension Cord Recorded Y Axis Data 

 

Figure 160: Extension Cord Recorded Z Axis Data 
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Figure 161: Extension Cord Recorded Y Axis Data 

 

Figure 162: Extension Cord Recorded Z Axis Data 
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Figure 163: Aluminum Recorded Y Axis Data 

 

Figure 164: Aluminum Recorded Z Axis Data 
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Figure 165: Aluminum Recorded Y Axis Data 

 

Figure 166: Aluminum Recorded Z Axis Data 
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Figure 167: Aluminum Recorded Y Axis Data 

 

Figure 168: Aluminum Recorded Z Axis Data 
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Figure 169:Aluminum Recorded Y Axis Data 

 

Figure 170: Aluminum Recorded Z Axis Data 
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Figure 171: Aluminum Recorded Y Axis Data 

 

Figure 172: Aluminum Recorded Z Axis Data 
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Figure 173: Aluminum Recorded Y Axis Data 

 

Figure 174: Aluminum Recorded Z Axis Data 
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Figure 175: Martian Simulant Y Axis Test 1 

 
Figure 176: Martian Simulant Z Axis Test 1 
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Figure 177: Martian Simulant Y Axis Test 2 

 

 
Figure 178: Martian Simulant Z Axis Test 2 
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Appendix D Additional SolidWorks Models 
 

 
Figure 179: SolidWorks Model of Magnet Holder 

 

 
Figure 180: SolidWorks Model of Magnet Holder 
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Figure 181: Dimensioned Schematic of Magnet Holder 
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