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ABSTRACT 

 

 This dissertation presents work on three distinct projects that are all related to 

unique pi systems:  

 

Aldol cyclotrimerizations have been used to achieve the rational chemical 

synthesis of fullerenes, fullerene fragments, and carbon nanotubes in the past.  Under 

certain conditions this reaction produces the corresponding cyclotetramer which has 

sometimes been regarded as an undesired byproduct.  This work details efforts to 

synthesize and use these cyclotetramers toward a synthesis of a C240 fullerene fragment.  

One principal focus in this work is tridecacyclene, a cyclic tetramer of acenaphthylene 

given its name by our group for its thirteen rings.  Relatively low yields for the synthesis 

of tridecacyclene and its derivatives drove us to investigate the mechanism of its 

formation and attempt to optimize its production.  During this process, novel dione 

products were isolated from the attempted cyclotetramerization of two dimeric species.  

Characterization of these products by X-ray crystallography gave valuable insight into 

the reaction pathway, leading us to a new proposed mechanism of formation for the 

cyclotetramerization products observed in these aldol reactions. 

 

 β-Hydroxy-α-diazoketones are suitable progenitors to vinyl cation intermediates 

whose use in chemical synthesis is relatively unexplored.  As part of an extensive project 

to develop the chemistry of vinyl cations for use in carbon-carbon bond forming reactions 

to build important molecular scaffolds, a range of β-hydroxy-α-diazoketones containing a 

pendent nucleophilic alkene were synthesized.  Treatment of these compounds with a 

Lewis acid gave either lactone or cyclopentenone products depending on the substrate 

used.  Proposed herein is a mechanism involving a key acylium intermediate which, 

depending on the position of the pendent alkene, results in different product outcomes.   

 

 In a collaborative effort to further investigate the known anti-cancer properties of 

fusarochromanone, a fungal metabolite that is isolated from Fusarium-infected feed from 

cold climates, a large-scale synthesis of this natural product was explored.  An efficient, 

scalable synthesis of the previously prohibitively expensive amidochromanone starting 

material has been achieved and its elaboration to fusarochromanone has been 

demonstrated.   
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CHAPTER 1: SYNTHESIS OF CONTORTED AROMATICS: BACKGROUND 

1.1 Introduction to Contorted Aromatics 

The discovery of benzene by Faraday in 1825 effectively gave birth to an entirely 

new field of organic chemistry research.1  The first simple aromatic compounds such as 

benzene and toluene, so named for their smell2, were more stable than predicted based on 

their given elemental composition and bonds; a theory classifying this stability was 

developed by Erich Hückel in 1931 on the basis of pi-electron delocalization under a set of 

parameters now referred to as Hückel’s rules for aromaticity.3-5  The term aromaticity, 

initially ascribed to these compounds because of their pleasant odors, thus came to refer to 

this special stability imparted by the electron delocalization found in planar, cyclic systems 

containing a continuous set of pi-orbitals having 4n+2 electrons where n is an integer.6  

Corresponding rings containing 4n pi-electrons (referred to as antiaromatic) are predicted 

by this theory to be unstable and have ground states that contain unpaired electrons.   

 

 

Figure 1-1: Cyclobutadiene and cyclooctatetraene [COT]  

 

In reality, such compounds distort to avoid this destabilization.  Two of the most well-

known examples of this phenomenon are cyclobutadiene, which is believed to adopt a 

rectangular shape to isolate its pi bonds and thereby prevent delocalization, and 
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cyclooctatetraene, which, being a larger ring with more flexibility, distorts to a “boat” or 

“tub” shape (Figure 1-1).7-9   

So far, this discussion of aromaticity has focused on monocyclic systems, but the 

fusion of one or more rings onto benzene often has dramatic, intriguing effects on both the 

structure and properties of such molecules.  A molecule containing multiple fused benzene 

rings is classified as a polycyclic aromatic hydrocarbon (PAH).  Naphthalene, the simplest 

PAH, contains two fused benzene rings and maintains a planar structure.  However, 

naphthalene is more reactive than benzene toward electrophilic aromatic substitution.  

These findings highlight not only the complexity of aromaticity but also the inadequacy of 

relying solely on Hückel’s rules to judge stability; naphthalene, having 10 pi-electrons, 

satisfies Hückel’s rules and so one might not predict its greater reactivity compared to 

benzene.10 A prominent theory explaining this disparity was published by Erich Clar in 

1964.  This theory posits that for a PAH, the resonance structure containing the largest 

number of isolated aromatic sextets (or benzene-like rings) will be the most important 

structure for understanding the properties of that PAH.  This is known as Clar’s rule.11-12  

  

 

Figure 1-2: Aromatic sextet view of benzene and naphthalene 

 

Applied to our simple example (Figure 1-2), we can see that when drawing resonance 

structures for naphthalene, we are always left with two alkenes that, while conjugated, are 

not part of an aromatic sextet.  Another intriguing example is a comparison of anthracene 
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to its constitutional isomer phenanthrene, the former being more reactive.  Whereas either 

resonance structure for anthracene only has one aromatic sextet, phenanthrene has a 

resonance form containing two aromatic sextets and an isolated pi bond in the middle 

ring—this resonance form has the strongest contribution to the overall resonance hybrid 

and, not surprisingly, reactions conducted with phenanthrene usually take place at these 

positions.  Additionally, this resonance form helps to explain phenanthrene’s greater 

stability over anthracene because of the extra aromatic sextet (Figure 1-3).   

 

 

Figure 1-3: Resonance forms of phenanthrene and anthracene 

 

This example shows that the power of this theory lies in its ability to not only help us 

compare relative stability between different PAH’s but also to compare relative stability of 

the pi bonds within the same PAH.  A successful application of Clar’s rule by the Whalley 

group will be highlighted later in this chapter.   

All of the compounds discussed above adopt planar conformations, but the fusion 

of multiple benzene rings together can lead to nonplanar species as seen in the helicene 

class of PAH’s.  This distortion from planarity is caused by steric clash between the C-H 

bonds in the cove region (see [4]helicene in Figure 1-4).13-14  
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Figure 1-4: Steric clash leading to twisting in [4]helicene 

 

Another way to impart curvature to a PAH is by the incorporation of other ring sizes into 

the framework.15 The discovery and synthesis of buckminsterfullerene, also referred to as 

C60, by Smalley and coworkers in 1985 demonstrated that this type of curvature in PAH’s 

can be extended to give completely spherical, all-carbon compounds.16    

 

 

Figure 1-5: Buckminsterfullerene 

 

The structure of C60, shown in Figure 1-5, is a truncated icosahedron comprised of 20 

hexagonal rings and 12 pentagonal rings.  The pentagonal rings do not share a single vertex 

(the “Isolated Pentagon Rule” or IPR) and are entirely responsible for the molecule’s 

curvature.17  Additionally, C60 is not the only fullerene; higher-order fullerenes have been 

isolated, most prominently C70.
16, 18  As the fullerene gets larger, the number of possible 

isomers increases exponentially (C60 has only a single isomer) and the molecule can 
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incorporate larger ring sizes than 5- and 6-membered; it has even been shown that a 

fullerene containing 240 carbon atoms can incorporate 8-membered rings within its 

framework.19  Progress in this area of research has been remarkable—a mere 17 years after 

the synthesis of buckminsterfullerene from laser irradiation of graphite the Scott group 

reported a 12-step rational chemical synthesis of C60 using an aldol cyclotrimerization-

flash vacuum pyrolysis sequence as the key steps, demonstrating the fundamental 

importance of organic synthesis to this field (Scheme 1-6).20-21   

 

 

Scheme 1-6: A rational chemical synthesis of C60 

 

This synthesis gave C60 as the exclusive fullerene product—no others were detected despite 

rigorous analysis.  Despite the fact that this rational synthesis of buckminsterfullerene was 

not a high-yielding process, it stands as a landmark of achievement in the field of synthetic 

organic chemistry.    
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As a final introductory aside, since the discovery of this class of compounds 

(sometimes referred to as buckyballs) a plethora of research has been conducted to 

investigate their properties and applications.  The outer convex surface of C60 is electron 

deficient, leading to the investigation into its use as an electron acceptor for donor/acceptor 

based organic photovoltaics (including perovskite solar cells).22 The potential applications 

of fullerenes are not just limited to materials chemistry: C60 is even currently being studied 

for potential use in the treatment of cancer.23 It is easy to understand why such compounds 

have generated intense research interest for the last several decades.  In fact, several other 

classes of compounds within this family have also garnered significant attention—one of 

which being molecules that represent fragments of fullerene structures.  These compounds 

will be the focus of the remainder of this chapter.      

 

1.2 The Chemical Synthesis of Buckybowls 

 One can easily imagine a molecule that represents a portion of a fullerene—these 

are often referred to as fullerene fragments or buckybowls.  If such molecules contained 

ring sizes other than 6 they would be expected to have curvature, the key feature that 

imparts on C60 its interesting properties, but their syntheses might be more readily 

achievable given their smaller size.  In fact, these open-faced geodesic polyarenes have 

attracted significant attention from the synthetic community and an impressive number of 

compounds from this class of molecules have been successfully targeted and synthesized.24 

An assortment (not a comprehensive list) of fragments of C60 whose syntheses have been 

achieved is pictured in Figure 1-7.   
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Figure 1-7: Geodesic polyarenes 

 

The following sections will highlight the chemical syntheses of each of these bowl-shaped 

aromatics pictured above as well as the synthesis of some fragments of higher-order 

fullerenes. 

1.2.1 Corannulene and Introduction to [n]Circulenes 

 Arguably the most famous buckybowl, whose synthesis and isolation predates that 

of buckminsterfullerene by nearly 2 decades, is corannulene, also known as [5]circulene.  

The [n]circulenes are a class of macrocyclic arenes containing a central ring completely 

surrounded by n fused benzene rings.25 Though they are classified together, the different 

[n]circulenes adopt vastly different conformations.   
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Figure 1-8: [n]Circulenes 

 

Corannulene (1.9) is bowl-shaped and represents a fragment of C60, hence its inclusion in 

this section;26 [6]circulene (coronene) is fully planar; and [7]circulene adopts a saddle-

shaped conformation.27   

 The trivial name corannulene also holds a special meaning—referring to the 

“annulene within an annulene” model postulated by Barth and Lawton after their 

remarkable, though low-yielding synthesis in 1966.  Barth and Lawton proposed a 

resonance form of the molecule as a composite of an inner 6-electron aromatic anion and 

an outer 14-electron aromatic cation.28   

 

 

Figure 1-9: "Annulene within an annulene" resonance form 

 

While this theory has not been definitively proven, it explains the nomenclature and is an 

interesting conceptualization of the compound.   
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 While the original synthesis of corannulene stands as a landmark achievement of 

organic synthesis, it was too long and too low yielding to efficiently generate large 

quantities of corannulene for studies of its chemistry.  Many years later, in 1991, Scott’s 

group accomplished the synthesis of corannulene using flash vacuum pyrolysis (FVP) as 

the key step, taking advantage of a report by Brown that terminal acetylenes reversibly 

rearrange to vinylidenes under these conditions (Scheme 1-10).29-30 A one-pot double 

Knoevenagel condensation and Diels-Alder sequence, after loss of carbon monoxide and 

cyclopentadiene, gave the corresponding diester 1.12.  Conversion of the diester to alkyne 

1.13 was accomplished using classic synthetic methods.  This alkyne was then converted 

to corannulene by FVP in low (ca. 10%) yields.     

 

 

Scheme 1-10: Synthesis of corannulene, Scott 1991 

 

This procedure drastically reduced the number of steps required (5 steps compared to the 

16 steps in Barth and Lawton’s synthesis) for the synthesis and allowed for sufficient 

preparation of corannulene to begin the investigation of its properties and applications.  

The following year, the Siegel group published two different routes to corannulene, one 

employing FVP at 1000 °C and the other accomplished by the extrusion of sulfur dioxide 

using static vacuum at 400 °C.31   
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 Several years later in 1996, a new approach to the corannulene nucleus was 

reported, again by the Siegel group, in their synthesis of the first corannulene cyclophane 

(Scheme 1-11).32   

 

Scheme 1-11: Synthesis of first corannulene cyclophane by Siegel 

 

The key step in this approach was a reductive coupling of benzylic bromides using low-

valent titanium or vanadium followed by dehydrogenation with DDQ.  This represented a 

milestone in the synthesis of corannulene derivatives as this method avoided the use of 

FVP which, because of the extreme temperatures employed, results in minimal functional 

group tolerance. 

 The Scott group persisted in efforts to further shorten their FVP-mediated synthesis 

of corannulene, publishing a remarkable high-yielding 3-step procedure the following year 

in 1997.33 Building off of their earlier findings that the incorporation of halogens into the 
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FVP precursors led to higher yields after pyrolysis, their approach hinged on the key vinyl 

chloride intermediate shown in Scheme 1-12.   

 

 

Scheme 1-12: 3-Step synthesis of corannulene 

 

The original FVP route used by Scott employing the terminal acetylenes as precursors to 

vinylidenes was hampered by significant polymerization of the starting material under the 

reaction conditions due to its extremely low volatility.  Employing a vinyl chloride 

precursor (1.14) instead of an ethynyl species drastically increased the yield of 

corannulene; Scott also mentioned that this process likely still proceeds through the alkyne 

as an intermediate after elimination of HCl—the diyne (1.13) was isolated as the only 

product from a pyrolysis run conducted at a lower temperature.  Using this method, the 

Scott lab was able to turn out corannulene in quantities of hundreds of milligrams per FVP 

run—a significant advancement from prior efforts.   

Researchers were unrelenting in their search for an efficient, high-yielding 

solution-phase synthesis of corannulene and in 2000 the Rabideau group reported a 

breakthrough.34 While attempting to convert the readily available octabromide 1.15 shown 

in Scheme 1-13 to the corresponding tetraaldehyde under hydrolysis conditions, the 
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tetrabromocorannulene 1.16 was instead obtained in an optimized 83% yield!  Conversion 

to corannulene could be effected by treatment with n-butyllithium.   

 

 

Scheme 1-13: 2-Step large scale corannulene synthesis 

 

This serendipitous outcome not only resulted in access to corannulene on very large scales 

but also to the facile functionalization of corannulene via metal-catalyzed cross coupling 

reactions via the bromide substituents.  Since then, the Siegel group has developed a route 

to corannulene that can be executed on kilogram scales.35 The progress achieved by the 

synthetic community in pursuit of corannulene is truly remarkable, from the pioneering 

work by Barth and Lawton in 1996 to Siegel’s large-scale preparation in 2012.  

Corannulene is now so widely available that it is commonly used a starting material for 

the synthesis of other carbon-rich molecules including carbon nanotubes.36   

1.2.2 Hemibuckminsterfullerene and Sumanene 

 Hemibuckminsterfullerene (1.19), as the name implies, represents half of C60.  

However, it is not the only fragment that maps to 50% of buckminsterfullerene—this 

specific fragment was targeted because, of the C30Hn hydrocarbons that represent half of 

C60, it was predicted to be the most stable since it contains fewer strain-inducing five-
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membered rings than the rest.  Its synthesis, accomplished by the Rabideau group in 1995, 

is shown in Scheme 1-14.37   

 

 

Scheme 1-14: Hemibuckminsterfullerene synthesis in 1996 

 

The Rabideau group, like the Scott group, accessed this fullerene fragment using a flash 

vacuum pyrolysis approach from a vinyl chloride precursor.  Notably, FVP on the hexa-

chloro precursor 1.17 gave an intractable mixture of chlorinated products.  Desiring to 

reduce the total amount of chlorine in the FVP chamber, half of the halogens were removed 

using n-butyllithium prior to the pyrolysis.  This strategy proved fruitful, leading to the 

isolation of pure hemibuckminsterfullerene after column chromatography, albeit in low 

yield (<10%).  Nevertheless, this report underscores the importance of developing 

alternative methods to FVP for the synthesis of buckybowls.   
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 Another enticing fullerene fragment targeted by chemists in the early 2000’s is 

sumanene, which is notable for its three benzylic positions that would theoretically render 

functionalization of the parent compound more facile than other all-sp2 frameworks such 

as corannulene.  In 2003, Sakurai and coworkers published a concise synthesis of sumanene 

using a key trimerization of an organotin norbornadiene (Scheme 1-15).38   

 

 

Scheme 1-15: Synthesis of sumanene in 2003 

 

This key step gave both syn- and anti-products in 1:3 ratio, but only the syn-product 1.20 

was an effective substrate for the tandem ring-opening metathesis (ROM) / ring-closing 

metathesis (RCM) procedure.  Oxidation with DDQ afforded sumanene (1.23).  Compared 

to the synthesis of other open geodesic polyarenes, this approach employs relatively mild 

conditions with no need for extreme temperatures as in FVP.  Additionally, the design of 

this synthesis resulted from impressive ingenuity by the researchers; after reading reports 
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detailing the failed synthesis of sumanene from planar precursors by FVP (suggesting that 

strain energy is the limiting factor), Sakurai and coworkers devised this synthesis of 

sumanene to start with norbornadiene, a compound whose tetrahedral carbons come with 

strain already built in.   

1.2.3 Circumtrindene 

Another compound that had been envisioned as an enticing substrate for FVP due its large 

commercial availability at the time (it has since been discontinued by the supplier) is 

decacyclene (1.24, named for its 10 rings, Scheme 1-16).39 This pyrolysis would, in theory, 

produce a geodesic dome that corresponds to 60% of C60 (1.25).  Initial FVP trials by the 

Scott lab and others were met with disappointment, as the typical FVP conditions proved 

ineffective, returning decacyclene as the only recoverable product.   

 

 

Scheme 1-16: Flash vacuum pyrolysis of decacyclene 

 

In 1996, Scott’s lab published the successful, albeit inefficient, pyrolysis of decacyclene to 

the corresponding geodesic polyarene in 0.2% yield (10 mg of the buckybowl was isolated 

starting from 5 g of decacyclene).40 Higher temperatures (1200-1300 °C) as well as other 

optimizations to the FVP setup were required to achieve this result.  Though the desired 
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buckybowl could be isolated readily by column chromatography, the products 

corresponding to a singly-closed and doubly-closed decacyclene were also detected (Figure 

1-17).   

 

Figure 1-17: Bond closures of decacyclene induce strain 

 

The original failed standard FVP conditions at 1100 °C were then repeated and the reaction 

was more closely examined—it was found that the crude reaction mixture contained 

decacyclene, singly-closed, and doubly-closed products in a 15:1:6 ratio, respectively.  

From this it was concluded that pyrolysis at 1100 °C simply does not provide the energy 

required to perform the 3 strain-inducing cyclodehydrogenations.  Though decacyclene is 

not planar (it is twisted into a propeller shape), these bond closures impart further, 

remarkable contortion and strain on the molecule that can even be understood by examining 

the crude 2-dimensional representations of the singly- and doubly-closed products pictured 

above.    

 In 2000, Scott’s group suggested the trivial name circumtrindene for this 

buckybowl 1.25 based on the circulene nomenclature discussed previously as it contains a 

trindene core surrounded completely by fused benzene rings.41 While circumtrindene had 

already been synthesized in their group, the FVP yield was abysmal and a rational 

synthesis, rather than a brute force strategy, was devised.  Scott’s strategy was to install 
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functional groups that would be capable of generating radicals at the desired ring-closure 

sites—halogens were the first choice for such a substituent.  However, a new approach to 

decacyclene would be required—at the time it was prepared by oxidative trimerization of 

acenaphthylene,39 a process that would lack regiochemical control if applied to an 

asymmetrically-substituted acenaphthylene.  Instead, Ansems and Scott envisioned 

constructing the requisite C3-symmetric trichloro-decacyclene 1.26 (choosing chlorine 

over bromine to maximize substrate volatility and minimize potentially detrimental steric 

effects) by a head-to-tail aldol trimerization.  Addition of a dilute solution of 8-

chloroacenaphthenone to a boiling solution of TiCl4 (6 equivalents) in 1,2-dichlorobenzene 

gave the desired trimer in a 25% yield that was unable to be further optimized (Scheme 1-

18).  FVP (1100 °C) on this substrate proved challenging due its low volatility, but, of the 

material that entered the pyrolysis tube, 35-40% was converted to circumtrindene.  This 

pyrolysis not only required lower temperatures than the approach from decacyclene, it also 

represented a significant improvement in the yield of circumtrindene.   

 

 

Scheme 1-18: Rational synthesis of circumtrindene 
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As alluded to at the introduction to this section, these geodesic polyarenes that represent 

fragments of fullerenes are expected to have similar curvature and, hence, properties to the 

fullerenes they map to.  Excitingly, Ansems and Scott found that the carbon atoms at the 

top of the dome in circumtrindene experience a similar distortion from planarity as those 

in C60 and the molecule underwent similar cycloaddition reactions to C60 at the bonds 

nearest the top of the dome.42  The successful synthesis and study of circumtrindene stands 

not only as an impressive feat of rational synthesis but also as evidence that fullerene 

fragments hold promising properties (and are therefore worthwhile of synthetic pursuit) 

just like their parent fullerenes.   

1.2.4 Other Buckybowls and Palladium-Catalyzed Arylation 

While the examples discussed previously demonstrate the importance of flash 

vacuum pyrolysis to the field of buckybowl synthesis, this method ultimately limits 

chemists in their synthetic targets.  The extreme conditions of FVP result in minimal 

functional group tolerance, driving a need for milder, solution-based approaches.43 One 

strategy that has emerged as a prominent alternative to FVP is palladium-catalyzed 

arylation—an example in Scheme 1-19 shows the preparation of a dibenzocorannulene by 

Scott’s group using this method in 2000).44   

 

Scheme 1-19: Palladium-catalyzed arylation as a method for PAH synthesis 
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This section will highlight two reports by the Wu group where this transformation was used 

to construct bowl-shaped fullerene fragments.   

 In 2010 Wu’s group reported the synthesis of diindeno[1,2,3,4-defg;1’,2’,3’,4’-

mnop]chrysenes (1.28) in 20% yield using palladium-catalyzed arylation on 9,10-

diarylphenanthrene precursors (readily prepared by palladium-catalyzed cycloaddition 

between 2-iodobiphenyl and 2,2’,6-trichlorodiphenylethyne).  The result shown in Scheme 

1-20 was only achieved after significant optimization efforts.45 

 

 

Scheme 1-20: Wu's strategy for diindenochrysenes 

 

The choice of catalyst was crucial, with Pd(PCy3)2Cl2 being the most effective of those 

tried, though it required high loading.  Increasing the reaction temperature led to full 

consumption of the starting material but with an increased incidence of reductive 

dechlorination.  Reducing the reaction time increased the overall yield by limiting product 

decomposition.  The choice of base as a combination of cesium carbonate and DBU 

ultimately led to the most successful outcome.  While the yield for the palladium-catalyzed 

process was lower than the FVP strategy for this molecule (21% vs 37%), isolation of the 

product from the former set of conditions was more facile.  Importantly, in many of the 

other conditions attempted the product was obtained in trace to no yield!  This underscores 
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the importance of a thorough condition screening if one wishes to use the palladium-

catalyzed arylation strategy. 

 Wu’s group continued to employ palladium-catalyzed arylation to achieve the 

synthesis of bowl-shaped aromatics, reporting one of the first syntheses of a subunit of C70 

(1.29).  The success of the key arylation step, shown in Scheme 1-21, was ultimately 

hindered by product loss during chromatography due to low solubility.46-47   

 

 

Scheme 1-21: Synthesis of a fragment of C70 

 

Attempts to synthesize a more soluble n-butyl-substituted derivative of 1.29 were 

unsuccessful.  The work accomplished by the Wu group and others demonstrates that FVP 

is not the only tool available for the synthesis of geodesic polyarenes and that the 

investigation of other methodologies is certainly worthwhile. 

 

1.3 Tetrabenzo[8]circulene and the Scholl Reaction 

 One of the first synthetic challenges undertaken by the Whalley group was 

[8]circulene.  Prior to this only one report on the preparation of [8]circulenes was present 

in the literature.48  The [8]circulene derivatives reported in this paper, however, were not 
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indefinitely stable.  The instability of [8]circulene (1.30), predicted to have a saddle-

shaped structure with higher overall strain than [7]circulene, can also be understood in 

the context of Clar’s rule, Figure 1-22.   

 

 

Figure 1-22: Clar's rule and [8]circulene 

 

When drawing a resonance form maximizing the number of aromatic sextets for 

[8]circulene, we are left with 4 isolated alkenes that could be rationalized as a source of 

reactivity and, hence, instability for the compound.  However, fusing additional benzene 

rings to these isolated alkenes, giving tetrabenzo[8]circulene (TB[8]C, 1.31), would be 

expected to increase the molecule’s stability.  In 2013 our group became one of the first to 

report this molecule; Dr. Rob Miller’s successful synthesis of tetrabenzo[8]circulene is 

shown in Scheme 1-23.49   
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Scheme 1-23: Synthesis of tetrabenzo[8]circulene using palladium-catalyzed arylation 

 

This strategy hinged on a double Diels-Alder reaction between dibenzocyclooctadiyne 

(1.33) and a 2,5-diarylthiophene oxide diene (1.32) to construct the required framework.  

The product of this Diels-Alder reaction (1.34) was notable for its proton NMR spectrum 

which contained multiple broad peaks—in theory due to the presence of atropisomers 

caused by hindered rotation of the aryl substitutents.  Attempts to sharpen the peaks by 

heating were not successful.  Despite the complex NMR spectrum, this compound was 

successfully converted to tetrabenzo[8]circulene in 24% yield using palladium-catalyzed 

arylation at an elevated temperature (70% yield per coupling reaction).   

Concurrent with publication of these results, Suzuki et al. published a different 

approach to tetrabenzo[8]circulene that utilized an oxidative cyclodehydrogenation 

(Scholl) reaction to construct the COT core, shown in Scheme 1-24.50 
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Scheme 1-24: Synthesis of TB[8]C by Suzuki 

 

This approach, however, only afforded TB[8]C in a 7% yield from the Scholl reaction with 

the yield loss being attributed to intermolecular oxidation resulting in dimerization.  

Installation of methyl groups onto the parent boronic ester compound increased the 

effectiveness of the Scholl reaction, allowing the preparation of octamethyl-TB[8]C in 35% 

yield.  What is remarkable about this method is the use of oxidative cyclodehydrogenation 

to form a contorted COT core.  This type of transformation had historically been used for 

the construction of 6-membered rings to form planar PAH’s and its ability to form other 

ring sizes that impart curvature to a molecule was not fully realized until this time period 

in the early 2010’s.  In fact, in 2013, Scott reported the synthesis of a warped nanographene 

that was prepared using a triflic acid and DDQ Scholl strategy to create five new 7-

membered rings in one reaction!51 

 In 2015, encouraged by others’ success at using the Scholl reaction to form 

contorted aromatics, our group published an improved synthesis of TB[8]C using this 

reaction (Scheme 1-25).52  Of special note is that this strategy both improved the yield of 

the final product (yield ranges for the Scholl reaction were from 47-72% depending on 
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substituents) and it allowed for the synthesis of several different derivatives of TB[8]C 

depending on the functionalization of the aryl rings on thiophene oxide diene 1.35.53  

 

 

Scheme 1-25: Improved TB[8]C synthesis using Scholl reaction 

 

 The strategies for the synthesis of contorted aromatics outlined in the sections so 

far, from FVP to palladium-catalyzed arylation to Scholl oxidative cyclodehydrogenation, 

set the stage for the main body of work in this dissertation.  Before that, however, one facet 

of the synthesis of circumtrindene deserves a second look. 

 

1.4 Cyclotetramers from Aldol Cyclotrimerizations of Aromatic Ketones 

 The key step in the construction of the carbon framework for the synthesis of 

circumtrindene reported in 2000 by Ansems and Scott was a head-to-tail aldol 

cyclotrimerization.  In the footnote section of that paper the authors reported detection of 

the cyclotetramer product by mass spectrometry.  That expected product (1.37) is 

pictured in Scheme 1-26.41   
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Scheme 1-26: Tetrameric byproduct from aldol cyclotrimerization 

 

At the time, this cyclotetramer was considered an undesired byproduct and was not 

investigated further.  Additionally, though never published, Ansems reported several aldol 

cyclization reactions where the cyclotetramer was the only major isolable product.54  The 

nuisance of the cyclotetramer to the Scott group became apparent when they reported a 

comprehensive optimization of the aldol reaction to limit completely the formation of the 

cyclotetramer, enabling the preparation of trimers such as decacyclene in high yields using 

Brønsted acid conditions.55  It was not until 2005 that the Pei group purified and fully 

characterized a cyclotetramer minor product during their synthesis of truxene derivatives 

from the aldol cyclotrimerization of indanones shown in Scheme 1-27.  At the time of its 

isolation this tetramer was the largest fully conjugated COT derivative.56 
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Scheme 1-27: Isolation of a cyclotetramer from aldol cyclization 

 

Relatively recently in 2015 the Amsharov group also isolated a pure cyclotetramer 

product containing a COT core during the synthesis of carbon nanotubes.57 Several 

products could be detected by mass spectrometry in the crude reaction mixture obtained by 

the aldol cyclization of an extended acenaphthenone (1.38, Scheme 1-28)—these include 

not only the major trimer product 1.39 but also the higher homologues: tetramer 1.40, 

pentamer, and hexamer.  It was further found that the yield of the tetramer could be 

maximized by increasing the reaction temperature (up to 18% yield on small scales).  The 

utility of these compounds, including the higher homologues produced in the aldol 

cyclization, became clear as Amsharov demonstrated that they are effective precursors to 

single-walled carbon nanotubes (SWCNT); in fact, pure SWCNTs were successfully 

synthesized and purified using the trimer and tetramer as precursors.  Progress toward 

efficient syntheses of SWCNTs from the pentamer and hexamer were also reported, though 

the extremely low volatility of these precursors presented a formidable challenge.   
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Scheme 1-28: Aldol cyclization products used for SWCNT synthesis 

 

Aiming to expand on the dearth of research concerning these long-ignored cyclic tetramers, 

our group set off on an ambitious project to use them in the synthesis of a fullerene 

fragment containing a COT core.  The difficulties of adding strain or contortion to a PAH 
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through synthetic transformations has already been established; however, these 

cyclotetramers are an attractive starting point for the synthesis of a COT core contorted 

aromatic as they come with the central 8-membered ring built in.  The efforts toward this 

goal and other assorted pursuits of contorted aromatics are detailed in chapter 2.    
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CHAPTER 2: THE CYCLOTETRAMERIZATION OF ACENAPHTHENONES 

AND SYNTHETIC EFFORTS TOWARD CONTORTED AROMATICS 

2.1 Progress toward a C240 Fullerene Fragment 

2.1.1 Synthesis of Tridecacyclene 

One of the continued interests of the Whalley group has been the synthesis of 

contorted polycyclic aromatic hydrocarbons, particularly those containing 

cyclooctatetraene (COT) cores.  My studies in this field began in collaboration with Dr. 

Dan Sumy, working to synthesize a C240 fullerene fragment 2.1.  Figure 2-1 depicts an 

image of the fragment highlighted within the fullerene. 

 

 

Figure 2-1: Overlay of targeted buckybowl onto C240 fullerene  

 

One strategy envisioned to form 2.1 was through oxidative cyclodehydrogenation via a 

Scholl reaction on the cyclic tetramer of acenaphthenone (2.2, Scheme 2-2).   
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Scheme 2-2: Retrosynthetic analysis of buckybowl 2.1 

 

Acenaphthenone (2.3), the required monomeric unit provided by Dr. Sumy by means of 

acenaphthylene oxidation, was subjected to the aldol conditions used by the Scott group to 

form cyclotrimer 1.26 (Scheme 2-3).  Surprisingly, yet fortunately for us, this reaction 

produced the desired cyclotetramer 2.2 as the major product in 21% yield with minimal 

evidence of decacyclene (the cyclotrimer) formation.  This was in accordance with the 

dissertation work of Dr. Ronald Ansems, which suggested this was not such an anomalous 

result—for several substrates he also observed the cyclotetramer as the major or only 

isolable product.54 The reason for such wildly different outcomes in the aldol reaction of 

differing monomeric units is still unclear but will be explored in a later section of this 

chapter.   
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Scheme 2-3: Synthesis of tridecacyclene 

 

This cyclotetramer, in addition to being the desired hopeful precursor to fullerene 

fragment 2.1, was a previously unreported molecule.  It was named tridecacyclene (TDC) 

by our group for its thirteen rings and, because of its interesting shape and ease of synthesis, 

its properties were investigated by Dr. Sumy.58 It showed binding to C60 in the solid-state 

crystal structure and could be reduced to both a monoanionic and dianionic species with 

elemental potassium.  Interestingly, the dianion, despite its cyclooctatetraene core having 

the correct electron count for aromaticity, did not display a planar structure because of 

steric interactions.59 

2.1.2 Attempted Scholl Reactions of Tridecacyclene 

Tridecacyclene was then subjected to a variety of Scholl conditions.  Our major 

efforts focused on a relatively mild room temperature reaction with triflic acid and 2,3-

dichloro-5,6-dicyano-1,4-benzoquinone (DDQ).60 Despite combined efforts with Dr. 

Sumy, no fullerene fragment product was ever observed, nor was there any indication such 

a reaction had taken place.  In most cases the starting material was recovered unreacted.  In 

fact, one of the only transformations found to have taken place under these conditions was 
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the multiple chlorination of tridecacyclene using aluminum chloride in carbon disulfide, as 

determined by LCMS.  Additionally, circumtrindene was even detected as a product from 

these reactions!  The trace amount of decacyclene present in certain samples of 

tridecacyclene underwent oxidative cyclodehydrogenation effectively enough to be 

detected by proton NMR.   

 

 

Scheme 2-4: Attempted Scholl reaction of tridecacyclene 

 

2.1.3 Synthesis of Chlorinated Tridecacyclene and Initial Arylation Attempts 

Thus, an alternative strategy was devised, this time aiming to take advantage of 

palladium-catalyzed arylation chemistry on halogenated aromatics that had already been 

employed by our group in the synthesis of tetrabenzo[8]circulene.49  

As previously mentioned, the tetrachlorinated-TDC derivative 1.37 was already 

reported to be a byproduct observed in the cyclotrimerization reaction of 8-

chloroacenaphthenone (1.27) performed by Ansems and Scott in the rational synthesis of 

circumtrindene.41 Our aim was to prepare, isolate, and characterize this cyclotetramer and 

attempt the key bond forming arylation reaction (Scheme 2-5).   
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Scheme 2-5: Revised retrosynthetic analysis of buckybowl 

 

These efforts first required the preparation of 8-chloroacenaphthenone (1.27) starting from 

2-chloronaphthalene (Scheme 2-6).  Treatment of 2-chloronaphthalene with acetyl chloride 

under Friedel-Crafts acylation conditions gave two products; the major, desired isomer 2.4 

was purified by recrystallization and isolated in 80% yield.41  To circumvent the need to 

use toxic thallium nitrate as in the reported conditions, a silver nitrate/iodine oxidation with 

trimethyl orthoformate was employed with great success, giving the desired acetic ester 

2.5 in quantitative yield with no purification required.61  Saponification of the ester, 

selected over the previously reported acidic hydrolysis, proceeded cleanly to give the free 

acid 2.6 which, if needed, could be purified by simple trituration with dichloromethane.  

The acid was then subjected to a one-pot acid chloride formation/intramolecular Friedel-

Crafts acylation sequence to give the desired chlorinated acenaphthenone 1.27 in good 

yields.  
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Scheme 2-6: Synthesis of 8-chloroacenaphthenone 

 

As previously reported by Scott’s group, cyclotetramer 1.37 was indeed a product 

of the titanium-mediated aldol cyclization reaction.   

 

 

Scheme 2-7: Low-yielding aldol cyclotetramerization 
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1.37 could be isolated chromatographically in a low 10% yield from the reaction mixture 

(Scheme 2-7).  Despite mass spectrometry data indicating the success of this purification, 

the proton NMR spectrum obtained was not interpretable given the expected symmetry of 

the molecule. 

 

 

Figure 2-8: Complex proton NMR spectrum of cyclotetramer 1.37 

 

One possibility is that we had obtained the cyclotetramer as a mixture of regioisomers or 

conformational isomers which could not interconvert.  One piece of evidence supporting 

this, though not definitive, came upon repeated purifications of the sample—after multiple 

successive column chromatography runs, the proton NMR, while still very messy, had 

noticeably simplified (Figure 2-8).  Interestingly, the total hydrogen count in the aromatic 

region of this spectrum is 20, which is the total number of hydrogens in a single molecule 

of 1.37—this could be consistent with a number of possible outcomes: regioisomerically-

pure 1.37 that, for an unknown reason, lacks any symmetry resulting in a unique signal for 

every hydrogen, a mixture of conformational isomers that could have differing symmetries, 

or even a mixture of regioisomers.  Confident that we had isolated a cyclotetramer product 
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but wary due to its spectral data, we felt hamstrung in our investigations of this 

cyclotetramer and its reactivity by a lack of material to work with due to very poor yields 

in the aldol reaction—especially because 8-chloroacenaphthenone is significantly more 

expensive than its unsubstituted parent 2.3.  My attention then turned to expanding our 

understanding of the mechanism of the cyclotetramerization of acenaphthenones with the 

aim of optimizing the production of these cyclotetramers for use in the construction of 

contorted aromatics.   

    

2.2 Exploring the Cyclotetramerization Pathways of Acenaphthenones 

2.2.1 Background and Motivation 

At this point some notable features of the aldol cyclization reaction should be 

examined; Scheme 2-9 shows the trimerization mechanism proposed by Amick and Scott 

using indanone as an example.55 First, the reaction is thought to proceed through a series 

of head-to-tail aldol condensations mediated by the Lewis acid.  Upon successive reaction 

between three or four units, enolization can occur, setting the stage for an electrocyclization 

reaction.  Upon dehydration to reform aromaticity, the cyclotrimers and cyclotetramers are 

formed, depending on the length of the acyclic oligomer.   
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Scheme 2-9: Proposed mechanism for aldol cyclotrimerization 

 

Because the aldol reaction is often conducted at elevated temperatures with no explicit 

control over the outcome, multiple products can result—dimers, trimers, tetramers and 

higher order oligomers can be detected by mass spectrometry.54 However, modest 

selectivity had already been observed in our synthesis of TDC, where only a trace amount 

of cyclotrimer was detected and the cyclotetramer was the only major isolable product.  

Amick and Scott in 2007 published an inspirational attempt to understand, probe, and 

optimize this aldol reaction toward the synthesis of decacyclene.55 Their efforts highlighted 

the complexity of this reaction and its dependence on the conditions selected.  The 

following conclusions from that paper should be restated here for emphasis: the solubility 

of the dimeric species plays a critical role in the success of this reaction; Brønsted acid 

catalysts were found to work better than Lewis acids for the synthesis of decacyclene; and 

both the polarity and polarizability of the solvent have a dramatic effect on the reaction.  
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In fact, it was found that using toluene as the solvent at only mildly elevated temperatures 

produced exclusively the unsaturated dimer (Scheme 2-10).   

 

 

Scheme 2-10: Solvent effect investigation by Amick 

 

Our goal was to investigate whether the cyclotetramer could be formed as the exclusive 

product from Brønsted or Lewis acid-mediated aldol reactions between two of the 

corresponding dimers.  We envisioned the possibility of the dimers, one as the nucleophilic 

enol form, combining to form the tetrameric products (Scheme 2-11).  It had previously 

been thought that, because of weak overlap of the pi ponds in enol 2.7a, it could not 

function as a nucleophile at the required γ-position, making it unlikely that the 

cyclotetramer forms as a result of this pathway.  However, a computational chemistry-

assisted mechanistic study reported in Ansems’ dissertation could not explain the 

predominance of the cyclotetramers as major reaction products.  As such, we deemed the 

question worth investigating.   
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Scheme 2-11: Possible pathways for cyclotetramer formation 

 

2.2.2 Efforts to Selectively Form Cyclotetramers 

At the outset, 8-chloroacenaphthenone was treated with excess boron tribromide in 

toluene for five hours, furnishing a dimeric product as the major product along with trace 

cyclotrimer.  Interestingly, the dimer contained a β,γ-unsaturation rather than the α,β-type 

seen in 2.7b.  A probable explanation for this outcome is the tremendous amount of steric 

strain that would be expected in the α,β-unsaturated dimer 2.7b (both E and Z forms) 

caused by the chlorine atom—it would have a steric clash with the carbonyl oxygen and 

the C-H fjord region bond in the Z and E dimers, respectively.  The failure of certain 

substrates to undergo aldol cyclotrimerizations was attributed by Amick and Scott to their 

propensity to form these β,γ-unsaturated dimers under the reaction conditions.41, 55  Here, 
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the mild temperature and lower polarity solvent were employed to deliberately suppress 

the cyclotrimerization to give the dimer in a workable yield (Scheme 2-12).   

  

 

Scheme 2-12: Selective aldol reaction to unsaturated dimer 

 

Additionally, the dimer of acenaphthenone (2.9, Scheme 2-13) was prepared using the 

effective method reported by Amick—the dimer’s extremely low solubility causes it to 

precipitate from the acetic acid/water mixture and the reaction stops.   

 

Scheme 2-13: Dimerization of acenaphthenone 

 

With dimers 2.7 and 2.9 in hand, we began probing these molecules as precursors 

to the corresponding cyclotetramers (Scheme 2-14).  No appreciable quantity of 

cyclotetramer could be detected from Lewis or Brønsted acid-promoted aldol reactions 

using either acenaphthenone dimer as the starting material.  Treatment of 2.9 with Brønsted 
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acid conditions simply effected the retro-Aldol reaction to monomer 2.3 and subsequent 

cyclotrimerization to decacyclene.  In trials where the dimers were subjected to titanium 

chloride in refluxing 1,2-dichlorobenzene, no appreciable amount of product could be 

isolated and the reaction appeared to simply result in oligomerization.   

 

Scheme 2-14: Screening dimers as tetramer precursors 

 

2.2.3 Isolation and Characterization of Novel Diones 

In one case, however, a most peculiar result was observed: when subjecting 

chlorinated dimer 2.7 to aldol cyclotrimerization conditions similar to those developed by 
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Scott to optimize the synthesis of decacyclene (excess hot Brønsted acid in o-DCB), two 

high polarity products, one red, one purple, were observed by TLC and isolated both by 

preparative TLC and column chromatography in low yields.  The NMR spectra for these 

compounds were unexpectedly clean, showing 10 hydrogen signals and 24 carbon signals, 

indicating the presence of symmetry in the molecule.  Mass spectrometry showed that each 

compound had the expected molecular weight of the cyclotetramer with two oxygen atoms 

added on.  In 2008 the Scott lab reported a similar high polarity product from an aldol 

reaction, postulating the structure as an acyclic dione based on mass spectrometry and 

proton NMR data after isolation by preparative TLC.62 The possible mechanism of 

formation for such a product and its definitive characterization was not discussed at the 

time in that report.  Also of note is that Scott’s proposed dione structure would not be 

expected to have symmetry, yet the reported proton NMR indicated a symmetric product.   

Seeking to elucidate the structures of these intriguing products, crystals of both the 

red and purple compounds were grown by Dr. Sumy.  The correct structures were then 

determined by X-ray crystallography in collaboration with Dr. Aaron Finke and are shown 

in Figure 2-15.  These highly colored products were revealed to in fact be oxidized 

tetrameric species.  The red compound A) was obtained in higher yield and its structure, 

having its terminal acenaphthenone units facing in opposite directions, seems to be less 

strained than its purple counterpart B) whose terminal acenaphthenone subunits are aligned 

in the same direction and thus experience repulsion, causing the compound to distort.  An 

observed experimental consequence of this was that the proton NMR of the purple 

compound contained several broad peaks that required heating to resolve.  
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Figure 2-15: X-ray crystallography showed red [2.10, A)], purple [2.11, B)], crystal packing of red 

[C)], and crystal packing of purple [D)] 

 

2.2.4 Proposed Mechanism of Dione Formation 

The red (2.10) and purple (2.11) colored products are diastereomeric diones notable 

for containing vicinal quaternary carbon centers (Scheme 2-16).   

B)	

C)	

A)	

D)	
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Scheme 2-16: Synthesis of novel, diastereomeric diones 

 

Moreover, the formation of these two compounds cannot be rationalized using a head-to-

tail aldol reaction mechanism—they both contain a tail-to-tail connection between the 

southern acenaphthylene units.  This result both surprised and puzzled us as we struggled 

to understand this tail-to-tail connection.  After an exhaustive search of the literature, we 

propose the mechanism presented in Scheme 2-17. 

.   

 

Scheme 2-17: Proposed mechanism of dione formation 
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We hypothesize that the tail-to-tail connection results after an unexpected aerobic γ-

oxidation of the extended enol 2.7a—this reaction has been reported to occur in the 

presence of peroxides but also simply under an atmosphere of oxygen.63-64 Indeed, when 

this reaction was conducted in the absence of oxygen 2.10 and 2.11 were not detected.  

After this oxidation, enedione 2.12 can undergo aldol condensation at the less hindered 

carbonyl with the enol 2.7a to give a helical intermediate 2.13 which furnishes the observed 

products after 6π electrocyclization.   

The insight gained from this result can potentially be used to explain our previously 

mentioned proton NMR for tetrachlorinated-TDC 1.37 (Scheme 2-18).  If, after the initial 

aldol condensation between two 8-chloroacenaphthenone units, the dimer becomes 

oxidized under these conditions to form 2.12, it could then react with another monomeric 

unit (again at the less hindered carbonyl group) leading to acyclic trimer 2.14.  At this point 

the addition of another monomer would likely be unselective, forming a mixture of 

products 2.15 and 2.16.  Finally, in the presence of titanium chloride, these acyclic 

tetramers could proceed to the corresponding cyclotetramers 2.17 and 2.18 by a titanium-

mediated McMurry coupling reaction.65 These proposed unsymmetrical products, if 

obtained as an inseparable mixture, could potentially be responsible for the intractable 

proton NMR data.   
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Scheme 2-18: Proposed mechanism for cyclotetramer formation 

 

While these investigations were ongoing, Dr. Sumy also observed an unexpectedly 

complex proton NMR for the cyclotetramer 2.20 (Scheme 2-19) obtained from a synthesis 

using titanium chloride from acenaphthenone 2.19, providing further evidence that the 

cyclotetramerization does not result from a head-to-tail aldol process.   

 

Scheme 2-19: Tetramer from bromoacenaphthenone gave complex proton NMR 
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This mechanistic proposal could also explain some of the wildly differing results 

between different aldol cyclotrimerizations across acenaphthenones with different 

substituents.  Similar to Dr. Sumy’s observations, the cyclotrimer (2.22) of acenaphthenone 

2.21 isolated by Dr. Ansems (Scheme 2-20) gave an unexpectedly complex proton NMR 

spectrum—at least ten peaks were observed and, it could be reasonably argued, even more 

were obscured by solvent peaks.   

 

 

Scheme 2-20: Cyclotrimer with complex NMR reported by Ansems 

 

At the time this was attributed to stacking or aggregation.54 Now, it seems entirely possible 

to conclude that the cyclotrimer obtained was in fact a mixture of regioisomers; instead of 

forming through the aldol-electrocyclization mechanism this could result from a pathway 

similar to our proposed cyclotetramerization hypothesis.  Comparing this result to the clean 

proton NMR given by the cyclotrimer 1.26 (Figure 2-21) obtained from acenaphthenone 

1.27 whose chlorine is in the “fjord region,” it may be that these “fjord” halogens hinder 

the McMurry coupling that would be required to obtain the non-symmetric regioisomers 

and instead the head-to-tail aldol process dominates.   
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Figure 2-21: Fjord halogens may impede McMurry coupling 

 

Importantly, to the best of our knowledge no cyclotetramer has been reported as a 

byproduct in aldol cyclization reactions conducted with Brønsted acid, supporting our 

mechanistic proposal that the final step is a McMurry coupling.  As Amick mentioned in 

the published report of Brønsted acid-mediated cyclotrimerizations, one of the major 

advantages of that method is the cyclotrimer is obtained without contamination of 

cyclotetramer—often the complete chromatographic separation of these two compounds is 

nontrivial, at least in our experience.55 

It is important to emphasize that much of this mechanistic discussion is purely 

speculation at this point.  For one, these aldol reactions usually produce a large amount of 

oligomeric, high molecular weight material, sometimes making product isolation difficult.  

Another potential issue is that, since these red and purple compounds were significantly 

more polar than the desired cyclotrimers and tetramers, products of this type might have 

gone unnoticed by us and other researchers in previous trials when TLC analysis is 

primarily used.  All the same, the structures of 2.10 and 2.11 themselves stand as a 

testament to how, despite the significant efforts of ours and other groups, there is much 

more to be discovered and understood about this class of reactions.  



49 

 

2.2.5 Final Attempts at Forming the Buckybowl and Conclusions  

While the investigation of the tetramerization proved highly stimulating, it 

ultimately did not help us procure greater quantities of cyclotetramer nor did it lead to an 

alternative method for its synthesis.  Pushing forward material by brute force, enough TDC-

Cl4 1.37 was accumulated to begin a more thorough screening of the palladium-catalyzed 

arylation reaction.  However, none of the arylation conditions employed led to product 

formation (Scheme 2-22).   

 

 

Scheme 2-22: Unsuccessful arylation strategy 

 

The reaction returned unreacted starting material when conducted at 140 °C.  At an elevated 

temperature of 180 °C conducted in a microwave reactor, the correct molecular ion for the 

product was detected in the crude reaction mixture by LCMS, yet no appreciable amount 

of any organic product could be isolated from this effort.  Dr. Sumy prepared the 

corresponding tridecacyclene derivative substituted with “fjord” bromine atoms rather than 

chlorine to attempt the same reaction.  However, subjecting this compound to arylation 

conditions simply resulted in dehalogenation, producing tridecacyclene.  One issue 
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potentially responsible for the failure of this transformation is the stability of the fullerene 

fragment itself.  The COT core, embedded in such a rigid system, might be forced to have 

a certain degree of planarity, leading to moderate-to-strong antiaromatic character.66  This 

could lead to unforeseen electronic properties, a major concern being that the molecule 

might adopt a diradical or other potentially reactive electronic structure.67-70  Inspired by 

Nobusue and coworkers’ synthesis of a related PAH containing a COT core, we attempted 

to synthesize a tridecacyclene group with mesitylene substituents to help stabilize and 

block any potential reactive radical species formed.  8-chloroacenaphthenone was 

brominated in low yield using N-bromosuccinimide at moderately elevated temperatures 

(Scheme 2-23).  Higher temperatures resulted in bromination of the benzylic site 

concomitant with the desired aromatic bromination.  Running the reaction at room 

temperature for extended times caused bromination to occur exclusively at the benzylic 

site.  Despite this, enough product was isolated to carry forward for test reactions.   

 

 

Scheme 2-23: Further halogenation of 8-chloroacenaphthenone 

 

First, Suzuki coupling to install the mesityl group was attempted directly (Scheme 2-24).  

While the actual coupling reaction appeared successful, it was clear by proton NMR that a 

dimeric product had formed, likely due to the basic conditions of the Suzuki reaction.  We 
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then tested the Stille coupling as a workaround since no base is required.71-72 This reaction 

gave a mixture of dehalogenated products, two of which were identified as acenaphthenone 

and 8-chloroacenaphthenone.   

 

 

Scheme 2-24: Attempted mesitylation 

 

Envisioning instead the installation of the mesityl group after cyclotetramerization, 

dihalogenated acenaphthenone 2.23 was heated with titanium chloride (Scheme 2-25).  A 

single organic product was isolated and characterized, appearing to have an axis of 

symmetry; however, it had a mass of 32 units higher than the expected cyclotetramer.  This 

outcome marked the conclusion of these efforts.  It is possible that the product of this aldol 

reaction was a dione similar to the red and purple compounds discussed earlier or some 

other oxygenated tetrameric species.   
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Scheme 2-25: Further observation of oxidized tetrameric species 

 

Another potential explanation for the high-mass anomalous result of this reaction 

is a rearrangement reaction of the cyclotetramer product mediated by oxygen; recent 

research has demonstrated the propensity of tridecacyclene to undergo such reactions.  In 

an unsuccessful effort to form buckybowl 2.1 using oxidative cyclodehydrogenation the 

researchers instead observed a spirolactone product, the first of its kind reported to date.73 

Strikingly, further oxidation of the spirolactone resulted in ejection of a monomeric unit 

and 40% conversion to decacyclene (Scheme 2-26).  Taken together, ours and other groups’ 

results highlight how, despite significant advancements in the field of PAH synthesis, our 

knowledge concerning their reactivity is far from complete.   
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Scheme 2-26: Conversion of tridecacyclene to decacyclene observed by Hiroko 

    

2.3 Asymmetric Tetrabenzo[8]circulene 

2.3.1 Synthetic Approach 

Previously our group published the synthesis of tetrabenzo[8]circulene using a 

Diels-Alder reaction between dibenzocyclooctadiyne and 2,5-diarylthiophene oxides 

followed by bond closure with a Scholl reaction (Scheme 2-27).52  

  

 

Scheme 2-27: General retrosynthetic strategy for TB[8]C 

 

As part of our investigations into [8]circulene we sought ways to make an asymmetric 

variant, specifically where we might have electron donating groups on one half of the 

molecule and electron withdrawing groups on the other.  This type of push-pull system 
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might impart interesting and potentially useful electronic properties on the molecule.74  

Envisioning a similar strategy to our group’s previous tetrabenzo[8]circulene synthesis 

(Scheme 2-28), we set out to prepare known cyclooctyne 2.29 which contains a 

cyclopropenone group that can be unmasked photochemically to give an alkyne.75  Our 

main goal was to prepare this compound in large quantities, perform a Diels-Alder reaction 

on the first alkyne 2.29, unmask the other alkyne 2.26,76 perform a second Diels-Alder 

reaction, and finally close the final bonds with Scholl conditions to form 2.24.  The 

substituted 2,5-diphenyl thiophene oxides 2.27 and 2.30 were synthesized as part of a 

separate project in the group, which will be discussed in section 2.3.3.   
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Scheme 2-28: Asymmetric tetrabenzo[8]circulene retrosynthetic analysis 

 

2.3.2 Synthesis of “Masked Diyne” Dienophile 

The reported synthesis of “masked diyne” 2.29 required some optimizations in 

order for us to procure sufficient quantities for testing the Diels-Alder reaction (Scheme 2-

29).  Beginning with 3-iodoanisole (2.32), Sonogashira coupling with TMS-acetylene was 

accomplished under significantly more mild conditions than those reported in the literature: 

full conversion was achieved at room temperature in 10 minutes compared to overnight 

heating at reflux in THF.75 Deprotection with potassium carbonate in methanol furnished 

the terminal alkyne 2.31 which was coupled to another equivalent of 3-iodoanisole by 
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Sonogashira coupling.  It was again found with this Sonogashira reaction that simply 

stirring at room temperature was enough to effect the transformation—heating the reaction 

for extended times is both wasteful and unnecessary when using this aryl iodide substrate.  

At this point reduction to the cis-alkene 2.35 was necessary.  However, selective reduction 

with Lindlar catalyst and quinoline gave wildly inconsistent results, sometimes achieving 

full conversion and other times, inexplicably, stubbornly returning unreacted starting 

material regardless of catalyst loading.  After helpful discussions with Dr. Madalengoitia, 

it was suggested that the success of the reaction might be highly sensitive to the purity of 

the starting material and an alternate approach would be desirable.  A simple workaround 

was found in a titanium isopropoxide / n-butyllithium reduction that reproducibly gave the 

cis-alkene in high yields.77-78 The stage was then set for the key Friedel-Crafts reaction 

with tetrachlorocyclopropene.  One important procedural aspect not disclosed in all 

published descriptions of this method is the need for slow addition of the substrate.75 As 

the second step involves an intramolecular cyclization to form an eight-membered ring, the 

reaction is highly sensitive to concentration and adding the starting material all at once 

gave high molecular weight insoluble material as the major product.  Slow addition gave 

the desired product 2.36 in modest yield, though some yield is inevitably lost to the 

undesired regioisomer which can be detected by TLC and NMR.  The conversion of the 

alkene of 2.36 to the desired alkyne 2.29 was achieved following the previously reported 

bromination/elimination sequence, though no column purification was required for either 

step—the products can be collected by filtration in both cases.   
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Scheme 2-29: Synthesis of masked diyne 

 

2.3.3 Synthesis of Thiophene Oxide Dienes 

With the requisite dienophile in hand, focus now shifted toward the synthesis of a 

suitable diene.  Typically, thiophene oxides had been employed by our group for the 

synthesis of tetrabenzo[8]circulene.  These were synthesized by oxidation of the 

corresponding 2,5-diarylthiophenes using hydrogen peroxide.49 This method proved 

problematic however, in that if left running for extended times the thiophene dioxide 

predominated as the major oxidized product.  Additionally, for reasons that are not entirely 

clear, the reaction fails for certain 2,5-diarylthiophenes depending on the substitution on 

the aromatic rings.  One of these cases is the methoxy-substituted 2,5-diphenylthiophene; 
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since we were interested in developing a push-pull tetrabenzo[8]circulene, we envisioned 

installing methoxy groups on one side of the molecule and fluorine substituents on the 

other—hence, access to methoxy-substituted thiophene oxides was required.   

Dr. Rob Miller at the time was spearheading an effort to produce a library of 

thiophene oxides with varying substitution patterns on the phenyl substituents.  As a 

collaborative group effort, we elaborated on a strategy previously developed by Tilley to 

synthesize a variety of thiophene oxides from the corresponding arylacetylenes.53 The 

reaction details are outlined in Scheme 2-30, showing the synthesis of the specific 

methoxy-substituted thiophene oxide 2.30 desired for our push-pull system.  Generation of 

“Cp2Zr” was accomplished using 2 equivalents of n-butyllithium followed by addition of 

the terminal acetylene to give the corresponding diarylzirconacyclopentadiene 

intermediate 2.38.79-82 Conversion to the thiophene oxide was then accomplished using 

thionyl chloride at low temperatures. 

 

 

Scheme 2-30: Strategy for the preparation of 2,5-diarylthiophene-1-oxides from arylacetylenes 

 

Terminal acetylenes had not been thoroughly investigated for use in this reaction because 

they had been reported to result in a mixture of regioisomers.  We did not observe the 
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formation of the undesired 2,4-disubstituted thiophene oxide products, though this does not 

necessarily mean they did not form.  The synthesis of these thiophene oxides required 

careful temperature control at the final step once thionyl chloride had been added.  We 

hypothesized that cyclopentadiene present in the crude mixture from the decomposition of 

the zirconium species might be capable of reacting with our desired thiophene oxide 

products in a Diels-Alder reaction.  To circumvent this, the crude reaction mixture, while 

still cold, was immediately purified by column chromatography.  Allowing the crude 

reaction mixture to warm results in greatly diminished product yields.  It is possible that 

both the 2,4- and 2,5-disubstituted regioisomers are formed in this reaction and, due to 

decreased steric hindrance, the 2,4-disubstituted isomer is reactive enough even at low 

temperatures to combine with cyclopentadiene.  The occurrence of this side reaction, 

however, was never definitively verified.     

 

2.3.4 Key Diels-Alder Reaction and Photochemical Decarbonylation Attempts 

The Diels-Alder reaction between the thiophene oxides (1.35 and 2.30) and the 

masked diyne 2.29 proved successful, with the products 2.39 and 2.28 being obtained in a 

30% and 38% yield, respectively (Scheme 2-31).  These yields were consistent with Dr. 

Miller’s experiments on similar systems.49, 52     
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Scheme 2-31: Diels-Alder reaction success 

 

Interestingly, if the solvent used was not anhydrous, the product was obtained as an 

inseparable mixture of the title compound and its hydrate (detected by mass spectral 

analysis and TLC—heating the crude mixture to 200 °C under a high-vacuum was not 

effective at removing the water).  This problem was circumvented simply by using 

anhydrous solvent.  The products of these Diels-Alder reactions, seemingly pure by TLC 

and mass spectral analysis, gave complex NMR spectra, shown in the Appendix.  This 

result was somewhat anticipated, though, given the previously observed complex spectral 

data from the Diels-Alder products synthesized by Dr. Rob Miller in the synthesis of 

tetrabenzo[8]circulene.  It is likely that the products exhibit hindered rotation about the aryl 

substituents that may result in conformational isomers that cannot interconvert.  
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Several conditions were then investigated to effect the photochemical 

decarbonylation—none were successful.  Irradiation under UV light either returned 

unreacted starting material or resulted in decomposition (Scheme 2-32).76, 83   

 

 

Scheme 2-32: Stubborn decarbonylation 

 

We also explored the possibility of removing the cyclopropenone under thermal conditions 

and performing the second Diels-Alder reaction in a one-pot process.  Even at elevated 

temperatures, however, the cyclopropenone persisted, with all attempts leading to 

recovered starting material.  The decarbonylation product of 2.28 was observed in LCMS 

analysis of the starting materials so it appears that the alkyne is a potentially stable 

compound.  It is likely that achieving transformation required a more extensive screening 

of conditions.  However, at this point the focus in our group had turned toward other 

variants of functionalized [8]circulenes and the project took a backseat to other endeavors.   

 

2.4 Synthetic Effort Toward Extended TB[8]C Derivatives 

My final pursuit of a variant of [8]circulene is showed in Scheme 2-33.  This 

molecule was pursued because of the readily available starting materials and the increased 
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reactivity of cyclopentadienones as dienes.  Starting from dibenzocyclooctadiyne, obtained 

from Dr. Miller, a Diels-Alder reaction between the cyclopentadienone 2.40, obtained from 

the high yielding Knoevenaegel condensation between 1,3-diphenyl acetone and 

acenaphthoquinone,84 gave the corresponding product 2.41.  Chromatographic separation 

of this product from leftover cyclopentadienone 2.40 was not achieved.  Temperature 

played a key role in this transformation—at 110 °C full consumption of 

dibenzocyclooctadiyne was observed by TLC with no indication of product formation.  

Raising the temperature to 150 °C resulted in the desired reaction taking place. 

 

 

Scheme 2-33: Preparation of extended tetrabenzo[8]circulene precursor 

 

Interestingly, the proton NMR spectrum for 2.41 indicates a high degree of symmetry 

similar to tridecacyclene—both contain a COT core and it is likely that the COT core of 

2.41 also adopts a tub shape that results in a simple NMR spectrum.  This compound’s 

crystal-packing structure and properties have yet to be explored but, like tridecacyclene, 

will surely prove a worthwhile study.  We were most interested in trying to form carbon-
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carbon bonds between the substituent phenyl rings and the surrounding core structure—

this would result in a PAH consisting of tetrabenzo[8]circulene with corannulene units 

fused at each pole.  Several preliminary screenings of oxidative cyclodehydrogenation 

reactions on this molecule, primarily focusing on the TfOH/DDQ conditions, only returned 

unreacted pure starting material.  One obstacle thought to be at play here is the phenyl 

substituents.  Due to steric constraints, they are not expected to be able to rotate a full 360° 

(this is corroborated by proton NMR data) and may even be unable to rotate into the 

required reactive conformation necessary to effect the bond closures at ambient 

temperatures.  It is possible that more forcing conditions including elevated temperature 

might be required to form these challenging bonds.  This effort was, admittedly, a side 

project at the time and the screening of Scholl reaction conditions was not exhaustive; it is 

included here in the event that future group members, also intrigued by its structure, wish 

to pursue it further.  Again, as was the case for tridecacyclene, the relatively ease of 

preparation of 2.41 would facilitate the assuredly worthwhile study of its properties, even 

if its conversion to the “fully-closed” 2.42 cannot be achieved.   
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Scheme 2-34: Attempted Scholl reaction toward extended tetrabenzo[8]circulene 

 

2.5 Conclusions and Future Work 

 The work and ideas detailed in this chapter represent significant efforts and 

advancements toward the synthesis of large, contorted polycyclic aromatic hydrocarbons.  

While the synthesis of the desired C240 fullerene fragment 2.1 has not yet been achieved by 

our group (nor others as of this writing),73 the path to that compound led us to the highly 

stimulating and equally perplexing cyclotrimerization and cyclotetramerization of 

acenaphthenones.  The fact that even subtle changes to the starting acenaphthenone result 

in vastly different reaction mixtures is a testament to the complexity of the 

transformations—this work provides some mechanistic insight as to how these processes 

occur.  Of critical importance is our definitive characterization of the novel diones 2.10 

and 2.11 by X-ray crystallography, which proves that reaction pathways leading to 

products containing “tail-to-tail” connections are prevalent and at times competitive with 

the pathways leading to “head-to-tail” products as the reaction was originally designed.41   
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 Additionally, the progress made toward an asymmetric variant of 

tetrabenzo[8]circulene leaves the door open for future investigations.  The original 

synthesis of the key “masked diyne” has been streamlined, optimized, and scaled up from 

the published report, giving access to the starting material in large quantities.  The efforts 

to achieve the photochemical decarbonylation were not exhaustive and it is possible that 

the failure was largely due to our experimental set up or equipment—our group did not 

have access to a “Rayonet” photoreactor at the time; most published reports of this 

photochemical decarbonylation indicate the use of this equipment to accomplish the 

transformation.83  Nevertheless, this work proves that the “masked diyne” is a suitable 

dienophile for the key Diels-Alder reaction and, should there be a pursuit of asymmetrically 

functionalized [8]circulene derivatives in the future, this project would be a fitting place to 

continue that work.  Finally, the synthesis of compound 2.42 is not an abandoned prospect.  

The compound’s highly interesting structure, having two corannulene units—one at each 

end—makes it a worthwhile target and current plans include investigating other oxidative 

cyclodehydrogenation conditions such as iron trichloride in nitromethane.    
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CHAPTER 3: THE REACTION OF VINYL CATIONS WITH PENDENT 

ALKENES 

3.1 Background and Motivation 

One of the major interests in the Brewer group is fundamental research concerning 

vinyl cations—their generation, properties, reactivity and utility.  Pioneering solvolysis 

studies by Grob in 1964 involving substituted α-bromostyrenes helped to establish the 

validity of vinyl cations as reaction intermediates during a period of skepticism (Scheme 

3-1).85   

 

 

Scheme 3-1: Solvolysis of α-bromostyrenes 

 

A vinyl cation is an sp-hybridized trivalent alkene carbon that prefers to adopt a linear 

geometry.86 Vinyl cations have often been observed as intermediates in solvolysis reactions 

of vinyl triflates87 and electrophilic addition to alkynes or allenes.88-90  While the study of 

vinyl cations has been quite rich, their use as practical intermediates in organic synthesis 

is uncommon and our group is interested in harnessing these species for use in carbon-

carbon bond forming reactions to build useful, complex molecular scaffolds.  The work 

presented in this chapter was inspired principally by three previous reports.   
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The first of these reports described a novel and selective way to generate a 

destabilized vinyl cation.  Specifically, in 1996 Pellicciari and Padwa reported that treating 

β-hydroxy-α-diazo esters with boron trifluoride etherate led to the generation and 

rearrangement of a destabilized vinyl cation.91-92  The diazo esters were readily prepared 

by aldol-type addition of lithio-acyldiazomethanes to either aldehydes or ketones to give 

the β-hydroxy-α-diazo compounds.93  It had already been observed that substrates derived 

from aldehydes, which contain a hydrogen beta to the carbonyl group, react with BF3 to 

give alkyne products by the mechanism shown in Scheme 3-2.92   

 

Scheme 3-2: Elimination across vinyl diazonium 

 

Pelliciari and Padwa also investigated substrates that were derived from the aldol addition 

of lithio-diazo esters to ketones (3.1 for example)—these compounds do not have a 

hydrogen β to the carbonyl and it was hypothesized that these compounds may lead to the 

generation of a vinyl cation intermediate.  Indeed, treating β-hydroxy-α-diazo esters such 

as 3.1 (Scheme 3-3) with boron trifluoride etherate gave a variety of interesting products 

that could be derived from a vinyl cation intermediate.   
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Scheme 3-3: Reaction of β-hydroxy-α-diazo esters with boron trifluoride 

 

For example, when pentane was used as the solvent, lactone 3.2 was formed in 75% yield.  

In benzene, solvent participation was evident, and 3.3 was formed in 74% yield along with 

trace amounts of lactone 3.2 and vinyl fluoride 3.4.  Finally, in p-xylene a similar solvent 

trapped product (3.5) was obtained in 47% yield.  After the completion of an impressive 

substrate scope, the authors proposed a unifying mechanism for the transformations 

observed (Scheme 3-4).   
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Scheme 3-4: Vinyl cation intermediate as unifying mechanism 

 

The proposed mechanism began with Lewis acid-mediated loss of the hydroxyl group to 

give vinyl diazonium 3.6.  Loss of nitrogen would give a linear vinyl cation 3.7 that is 

destabilized by the neighboring electron deficient carbonyl group.  Ring expansion would 

result in the more stable cyclic vinyl cation 3.8 that could contract by a 1,2-methylene shift 

to form allylic cation 3.9.  The allylic cation could then be trapped by the solvent or react 

intramolecularly with the adjacent ester group to give lactone 3.2.  For us, the most 

important aspect of this work was the generation of vinyl cations 3.7 and 3.8.   

The second report that was critical to our work came from Schegolev and coworkers 

who reported the reactivity of a vinyl cation intermediate that was generated by the 

acylation of alkynes by acylium ions (Scheme 3-5)94 generated from the parent acid 
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chloride or acid fluoride.  Treating the acyl salt 3.10 with 2-butyne gave cyclopentenone 

3.12 via a C-H insertion of vinyl cation intermediate 3.11.  The authors also reported that 

the acylium ion generated from cyclohexanecarbonyl chloride (3.13) reacted with 1-

propyne to give fluoride 3.16. This product presumably formed from a 1,5-hydride shift of 

vinyl cation 3.14 followed by trapping of the secondary carbocation 3.15 with fluoride to 

give 3.16. 

 

 

Scheme 3-5: 1,5-Hydride shift across vinyl cations 

 

Cleary, Hensinger and Brewer (our group) took advantage of these two reports to 

develop a novel synthesis of cyclopentenones via the C-H insertion of vinyl cation 

intermediates generated from β-hydroxy-α-diazo ketones (see 3.17).  A representative 

reaction and its proposed mechanism is shown in Scheme 3-6.95    
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Scheme 3-6: Remote C-H insertion of vinyl cations 

 

Loss of the hydroxyl group gives a vinyl diazonium species 3.18 as in Padwa’s earlier 

report.  Extrusion of nitrogen results in a destabilized linear vinyl cation that undergoes a 

ring expansion to the more stable bent vinyl cation.  At this point the vinyl cation inserts 

into one of the methyl groups of the tert-butyl ketone.  This insertion gives carbocation 

3.21 which forms fused bicyclic cyclopentenone 3.22 after elimination.  The scope of this 

reaction was investigated by Dr. Sarah Cleary and Magenta Hensinger, who established 

that this transformation allows access to a variety of bicyclic fused cyclopentenones.  This 

type of scaffold is present in many natural products and our group has been looking to 

further develop this insertion methodology and to investigate other potential uses for vinyl 

cation intermediates. 

 The third important literature report directly influenced my project.  In this report 

Karpf showed that addition of an alkyne to an acyl cation that contained a pendent alkene 
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also resulted in cyclopentenone products but through a process that does not involve a C-

H insertion.  A summary of Karpf’s key results are shown in Scheme 3-7.96   

 

 

Scheme 3-7: Reaction of remote alkene with vinyl cation 

 

Addition of the acyl cation to the alkyne gave a vinyl cation intermediate 3.24 that reacts 

with the pendent alkene, forming secondary carbocation 3.25.  Karpf then proposed that a 

ring contraction occurred via an acyl shift, resulting in the more stable tertiary carbocation 

3.26 that gave rise to a set of products either by elimination (3.28, 3.29) or chloride addition 

(3.27).  When the acyl cation is not vicinal to a gem-dimethyl-substituted carbon the 1,2-

acyl shift does not take place.  The reaction instead resulted in phenol products by 

elimination and tautomerization (Scheme 3-8).  The scope and utility of vinyl cation 

intermediates generated by the acylation of alkynes is limited.  Multiple addition reactions 

to the alkyne starting material are possible which would result in potential side products or 

polymerization.  Additionally, the reaction of unsymmetrically-substituted alkynes could 

produce mixtures of regioisomeric products. 
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Scheme 3-8: Phenols from alkyne acylation 

 

 Our aim was to investigate the capture of vinyl cations derived from β-hydroxy-α-

diazoketones by pendent alkenes as shown in Figure 3-9.  We hypothesized that these 

systems would react similarly to the systems tested by Karpf, giving cyclopentenones 3.34 

and 3.38 as products.  In our case, a key question was whether ring expansion of the initially 

formed vinyl cation would be more rapid than capture of the cation by the alkene (path a 

versus path b).   
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Figure 3-9: Hypothesized pathways for vinyl cation reaction with remote alkene 

 

Even if alkene capture outpaced ring expansion, a cyclopentenone product was still 

anticipated following elimination of a β-hydrogen.  The results of our investigations are 

presented in the following sections. 

 

3.2 Initial Investigations 

3.2.1 Preparation of Requisite β-Hydroxy-α-diazoketone 

 The work began with the synthesis of known diazo ketone 3.43 (Scheme 3-10).97 

Treatment of 2-methyl-3-buten-2-ol with hydrochloric acid gave allylic chlorides 3.40 and 

3.41 as an 11:1 mixture on decagram scale.98  The Grignard reagent generated by treating 
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this mixture with magnesium turnings was poured onto freshly crushed dry ice to 

selectively afford carboxylic acid 3.42.  Crushing the dry ice into a fine powder with a 

hammer before use was sufficient to reproduce literature yields.  Initially, thionyl chloride 

was used to generate acid chloride 3.23, but this gave poor yields of the pure compound 

after fractional distillation.  Later, it was found that this particular bottle of thionyl chloride 

had undergone significant decomposition to sulfuryl chloride and sulfur monochloride 

upon prolonged storage.  In any event, oxalyl chloride and a catalytic quantity of DMF 

gave good yields and the comparatively mild conditions made product isolation simpler.  

Treatment of the acid chloride with freshly-generated diazomethane furnished the diazo 

ketone 3.43 in good yield after extraction.   

 

 

Scheme 3-10: Synthesis of β-hydroxy-α-diazo ketone with remote alkene 

 

 The final step in the preparation of the desired test substrate was the aldol-type 

addition of the lithiated diazo ketone to cyclohexanone.  Due to acidity differences between 

the alpha hydrogens of the two starting materials, a solution of lithium diisopropylamide 

can be added dropwise directly to a cooled solution containing both ketones.  The addition 

product is in equilibrium with the starting materials, and the reaction was found to be quite 
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sensitive to temperature.  The desired addition product (3.30) only predominates at low 

temperature and could be isolated after quenching the reaction with ammonium chloride at 

low temperature.  Although the ammonium chloride solution freezes, slow warming of the 

heterogeneous mixture to room temperature with vigorous mixing gave the protonated 

alkoxide product.  Insufficient mixing during this quench led to recovery of the starting 

materials; once the solution temperature warms past a certain point the equilibrium shifts 

from the alkoxide back to the more entropically favored starting materials.  After some 

quenching optimization, the desired β-hydroxy-α-diazo ketone was isolated in 73% yield.95   

3.2.2 Screening and Optimizing Conditions for Vinyl Cation Capture by Alkene 

 Our first goal was to find effective reaction conditions to generate a vinyl cation 

intermediate from β-hydroxy-α-diazo ketone 3.30.  This was accomplished by treating 3.30 

with BCF in dichloromethane, the preferred conditions for the C-H insertion reaction 

developed by Dr. Cleary.  This reaction, shown in Scheme 3-11, produced three products 

by TLC analysis.  Isolation of the 3 compounds by column chromatography was 

accomplished, but most of the expected reaction mass was missing.  The first two products 

isolated from this reaction are suspected of being 3.44, the unexpected C-H insertion 

product, and 3.38, the expected alkene capture product, both obtained in trace amounts 

(<2% yield).  The lowest Rf spot that was collected was more puzzling—by GCMS it was 

found to contain an extra oxygen and through 2D-NMR experiments it was identified as 

the γ,δ-unsaturated carboxylic acid 3.45.   
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Scheme 3-11: Preliminary results with BCF 

 

Because the typical workup for this reaction involved a sodium bicarbonate wash to remove 

leftover Lewis acid, the potential to lose the product in the water layer as the carboxylate 

anion became apparent.  Removing this step of the procedure and performing 

chromatography directly on the crude reaction mixture after solvent removal led to almost 

full mass recovery across the product mixture.  However, under these conditions lactone 

3.46 was isolated in 66% yield in place of the carboxylic acid (Scheme 3-12).   

 

 

Scheme 3-12: Formation of unexpected lactone product and structure confirmation 

 

This compound has not been reported previously, and its structure was assigned based on 

NMR spectroscopy and GCMS analysis of the crude reaction mixture from the subsequent 

ozonolysis of the internal alkene.  It appears that concentrating the mixture under reduced 

pressure in the presence of the Lewis acid results in the cyclization of the unsaturated 
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carboxylic acid to the lactone.  This type of cyclization is precedented, though in a similar 

system the five-membered lactone was formed instead of the six-membered ring.  The 

exocyclic alkene in carboxylic acid 3.45 may be the impetus for the observed result in our 

case due to the strain it imparts on the system.   

Having established the major product of the transformation, a screening of 

conditions was conducted to investigate possible optimizations or alterations to the reaction 

pathway (Table 1).  A variety of Lewis acids and solvents were explored, with 

trispentafluorophenyl borane in dichloromethane overall still producing the cleanest 

product mixtures with the highest yields.  Other conditions gave complex mixtures of 

products from which, even after careful column chromatography, no pure compounds 

could be procured in high enough yields for complete characterization. In hydrocarbon 

solvents like pentane, solubility of the Lewis acid appears to become problematic, though 

starting material cannot be recovered from the reaction.  In coordinating solvents like 

acetonitrile however, the reaction slows considerably and did not go to completion—

instead the unreacted starting material simply decomposed during workup.  Other Lewis 

acids were not successful either—using chloride- or triflate-based Lewis acids afforded 

complex mixtures that contained an appreciable degree of different counterion-trapped 

products as determined by GCMS analysis.  Interestingly, attempts to prevent the formation 

of lactone 3.46 by the addition of magnesium sulfate (to prevent delivery of a hydroxyl 

group from the borate formed in the generation of vinyl diazonium 3.31) resulted in 

decomposition. 
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Table 1: Remote Alkene Capture of Vinyl Cation: Reaction Screening 

Lewis acid Temperature Solvent Additive Outcome 

SnCl4 -20 °C DCM N/A Mixture: chloro-trapped 

and C-H insertion 

products 

Sc(OTf)3 rt DCM N/A Decomposition 

BF3·Et2O -20 °C - 0 °C DCM N/A Decomposition 

In(OTf)3 -20 °C DCM N/A Mixture: triflate trapped 

and C-H insertion 

products 

BCF -20 °C pentane N/A Complex mixture 

BCF -20 °C - rt MeCN N/A N.R. 

BCF -20 °C DCM MgSO4 (1 

equiv.) 

Decomposition 

BCF -20 °C DCM N/A 3.46, 66% yield 

 

After conclusion of this screening, BCF was identified as the best Lewis acid for this 

reaction due to its non-nucleophilic pentafluorophenyl groups, which minimizes the 

occurrence of such trapping products which complicate purification.  Additionally, the 

reaction with BCF does not require low temperatures and can be run at room temperature 

with no change in yield. 

 

3.3 Reaction Scope 

 After having identified working reaction conditions, we then set out to test the 

scope and generalizability of this reaction.  It quickly became apparent that the reaction 

may not be very general.  The β-hydroxy compound 3.47 derived from cyclopentanone 

gave a complex mixture of products (more than 6 spots by TLC) when added to a solution 

of BCF in dichloromethane (Scheme 3-13).  The expected product 3.48 was isolated from 

this mixture albeit in low (<30%) yield and low purity.   
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Scheme 3-13: Unsuccessful cyclopentanone-based substrate 

 

A more thorough look at the reaction mechanism and potential explanation for this result 

will be discussed in the following section. 

Next, the tether length to the pendent alkene was investigated because variations 

along this tether could result in the formation of different ring sizes.  α-Diazoketone 3.50 

was prepared using a known diazo-transfer reaction, but instead of using the reported 

conditions employing shock-sensitive tosyl azide, 4-acetamidobenzenesulfonyl azide (p-

ABSA), which is shelf stable and not shock-sensitive, was successfully used as a substitute 

(Scheme 3-14).99   

 

 

Scheme 3-14: Shortening tether to remote alkene 

 

The addition of diazo ketone 3.50 to cyclohexanone proved to be quite challenging, 

because the unsaturated diazo ketone appears to be unstable to basic conditions.  

Nevertheless, 3.51 was obtained in a 24% yield.  Treating substrate 3.51 with BCF resulted 
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in a mixture of products that could not be purified and characterized.  Investigation of 

compound 3.54 which contains a longer tether to the pendent alkene compared to the 

original substrate 3.30 also did not yield promising results (Scheme 3-15).100   

 

 

Scheme 3-15: Increasing tether to remote alkene 

 

Substrates derived from 4-heptanone were successfully employed by Cleary et al. in 2017 

to prepare monocyclic cyclopentenones that could serve as prostaglandin analogues.  For 

this reason, β-hydroxy compound 3.55, derived from aldol addition to 4-heptanone, was 

prepared.  When 3.55 was subjected to treatment with a Lewis acid, the crude NMR 

indicated the formation of the expected lactone product 3.56 as the only major product—

however, after workup and chromatography minimal product was obtained (Scheme 3-16).   

 

 

Scheme 3-16: Investigating an acyclic system 
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Finally, to investigate whether styrene-based lactones (3.73, Scheme 3-17) could be 

prepared using this method, β-hydroxy compound 3.57, derived from the addition of diazo 

ketone 3.43 to benzaldehyde, was synthesized.  Importantly, compound 3.57 does contain 

a hydrogen beta to the diazo group that could potentially lead to an alkyne product (3.67) 

by elimination after formation of a vinyl diazonium.  However, treatment of 3.57 with BCF 

afforded an entirely unexpected product, giving cyclopentenone 3.58 rather than the 

expected lactone or elimination products (Scheme 3-17).  Increasing the tether length to 

the pendent alkene in this system also completely shut down this reactivity akin to the 

aliphatic example shown in Scheme 3-15.   

 

 

Scheme 3-17: Cyclopentenone product from aldehyde-derived substrate 

 

This marked the end of our substrate scope of this reaction.  Each of the results presented 

in this section will be discussed in the next section (3.4).   
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3.4 Proposed Mechanisms and Explanations for Vinyl Cation Capture Outcomes 

  Our investigation of the reaction scope for the capture of vinyl cations by remote 

alkenes demonstrated that the reaction pathway is very sensitive to changes in the substrate.  

Each of the substrates will be discussed in detail in this section, beginning with our initial 

test compound 3.30, which resulted in lactone 3.46.  A proposed mechanism of formation 

for product 3.46 along with an illustration of alternate reaction pathways is shown in Figure 

79.  The formation of lactone 3.46 likely begins by Lewis acid-mediated hydroxyl 

abstraction to give the vinyl diazonium intermediate 3.31 (Scheme 3-18).  Loss of nitrogen 

gas would result in the formation of the linear vinyl cation 3.32.  This cation is thought to 

be destabilized by the adjacent electron-deficient carbonyl carbon and is prone to 

rearrangements to the cyclic vinyl cation 3.35 similar to the example previously discussed 

in section 3.1, Scheme 3-6.91    
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Scheme 3-18: Proposed mechanism for lactone formation 
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If rearrangement is slower than alkene capture, then the pendent alkene could attack the 

vinyl cation to give intermediate 3.33 (path a), which contains a secondary cation. A 1,2-

acyl shift is not expected in this case as it would result in a strained 4-membered ring.  

Importantly, we have never isolated the alkene product that would result from loss of a β-

hydrogen from this cation.  However, the observed product could be rationalized as 

forming by fragmentation of the 5-membered ring facilitated by the carbonyl oxygen lone 

pair to give an acylium ion 3.60.  However, the orbitals involved in this fragmentation are 

misaligned in 3.33.  Therefore, it seems more likely that the linear vinyl cation 3.32 

fragments directly to acylium 3.60 as the new C-C bond develops (transition state 3.32a, 

path c).  At this point, the borate formed from the first step of the reaction could deliver the 

hydroxyl group to the acylium to form carboxylic acid 3.45.  It is possible that electrostatic 

interactions between the negatively charged borate and positively charged acylium enable 

this process.  Finally, as stated previously and with literature precedent, the γ,δ-unsaturated 

carboxylic acid could close to give lactone 3.46 during removal of the solvent from the 

crude mixture.101   

Alternatively, if ring expansion is fast (path b), then the more stable cyclic vinyl 

cation 3.35 could form.  Capture of this cation by the pendent alkene would give a 6,7-

fused bicyclic structure (3.36).  If this structure undergoes fragmentation to the acylium 

ion followed by hydroxyl delivery, the carboxylic acid 3.62 and subsequent lactone 3.63 

could result.  To determine which path the reaction had taken and which product had 

formed we used a combination of 2D NMR spectroscopy and a subsequent ozonolysis 

reaction.  The HMBC spectrum led us to the conclusion that 3.63 is not the product, with 
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the data being consistent with the proposed structure of 3.46.  Further evidence for this 

structure was obtained by GCMS analysis of the product mixture from the ozonolysis of 

3.46, which contained peaks for both cyclohexanone and the corresponding 1,2-dicarbonyl 

fragment (Scheme 3-12).   

Further explanation for why lactone 3.63 may not be a plausible product comes from 

a careful comparison of the acylium ions 3.60 and 3.61 (Scheme 3-19).  In ion 3.60, 

nucleophilic attack by the alkene of the prenyl group would lead to a highly strained 4-

membered ring.  In ion 3.61, a similar nucleophilic attack would lead to a five-membered 

cyclopentanone intermediate that, upon elimination, would give either products 3.38 or 

3.64.   

 

 

Scheme 3-19: Mechanistic rationale for acylium ion pathways 
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This latter type of reactivity is akin to what Karpf observed (and what we expected to 

see)—the difference is that he explained the mechanism as a 1,2-acyl shift rather than 

fragmentation to an acylium ion followed by nucleophilic attack by the alkene; indeed, he 

had no reason to suspect an acylium intermediate at the time.96  Our isolation of the lactone 

product led us to conclude that the fragmentation to the acylium ion is the more likely 

pathway for this type of cyclization.  In summary, if ring expansion of the vinyl cation 

intermediate was faster than alkene capture, the cyclopentenone products 3.38 or 3.64 

would be expected.  Based on the experimental outcome, however, it appears that 

nucleophilic capture of the vinyl cation by the pendent alkene is faster than rearrangement 

of the vinyl cation species.  Because the reaction hits a dead end after formation of acylium 

3.60 in terms of intramolecular reactivity, intermolecular delivery of a hydroxyl group to 

the acylium then results, ultimately leading to the observed lactone product 3.46.  As 

mentioned previously, attempting to disrupt the hydroxyl delivery process by adding 

magnesium sulfate to the reaction resulted in decomposition (see Table 1). 

A mechanism to explain the outcome of the vinyl cation capture experiment starting 

from benzaldehyde-derived precursor 3.57 is shown in Scheme 3-20.  In this case, a 

cyclopentenone product (3.58) was isolated in high yield as the only major product.  Initial 

hydroxyl abstraction is expected to give vinyl diazonium 3.66.  Based on Pelliciari’s earlier 

report, we expected this species or vinyl cation 3.68, formed after loss of nitrogen, to be 

prone to elimination, resulting in alkyne 3.67.  This, however, was not observed.  Instead, 

it appears that a hydride shift occurred, forming the more stable linear vinyl cation 3.69.  

Nucleophilic attack by the pendent alkene and fragmentation of the newly formed six-
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membered ring to an acylium species as described above would give structure 3.71.  At 

this point, the prenyl group alkene could cyclize onto the acylium to form a cyclopentenone 

intermediate which, upon elimination of a β-hydrogen, would give the fully conjugated 

product 3.58.    

 

Scheme 3-20: Proposed mechanism for cyclopentenone formation 

 

The structure of this product was determined by HMBC and DEPT 135 experiments—it 

has previously been reported in the literature but with no spectroscopic data given.102 Also 

of note in this experiment: no trace of lactone products were isolated or detected, which 

can be rationalized on the basis of this proposed mechanism.  The prenyl group alkene 

should readily cyclize onto the acylium ion in this example, precluding delivery of the 

hydroxyl group by the borate to form the carboxylic acid and eventual lactone.  
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 For the substrate derived from cyclopentanone (3.47), the observed complex 

mixture of products may result from a slower rate of attack by the pendent alkene on the 

linear vinyl cation 3.76 (Scheme 3-21) due to the angle strain of the two alkene-fused 

cyclopentane rings that would be present in the resulting intermediate (3.74).  Again, it is 

likely that secondary cation 3.74 does not represent a valid intermediate and that the 

fragmentation of linear vinyl cation 3.76 proceeds in a concerted manner.  However, the 

problem of double methylene cyclopentane strain would still apply to the transition state 

for this concerted process.  This would prevent the efficient formation of the observed 

lactone product 3.48.   

 

Scheme 3-21: Rationale for failed cyclopentanone-based substrate 
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Additionally, ring expansion to cyclic vinyl cation 3.75 is expected to be disfavored due to 

significant ring strain.  This may leave vinyl cation 3.76 without any productive pathway, 

resulting in predominantly decomposition and side products.  In the case of the 4-heptanone 

derivative 3.55, the NMR of the crude reaction mixture suggested relatively clean 

formation of the expected lactone product 3.56, yet this product was only isolated in low 

yield.  Based on Dr. Cleary’s successful use of a similar substrate in a C-H insertion 

reaction, it appears that this result is not due to competing reaction pathways but to 

challenges in product isolation and purification.  Further examination of this particular 

substrate is warranted.   

 The effect of the tether length to the pendent alkene was explored in the study of 

substrates 3.51 and 3.54.  First, the linear vinyl cation 3.77 (Scheme 3-22) generated from 

precursor 3.51 contains a shortened tether to the remote alkene and would be expected to 

undergo ring expansion to the cyclic vinyl cation 3.79 since nucleophilic attack of the 

alkene would result in a strained four-membered ring (3.78).   
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Scheme 3-22: Possible pathways for shortened tether system 

 

However, it is then possible that conjugation of the pendent alkene with the carbonyl group 

lessens the nucleophilicity of the alkene, slowing its attack in vinyl cation intermediate 

3.79, leading to other, unidentified side products.  It also may be that even if the vinyl 

cation is captured by the alkene at this stage, the resulting secondary cation 3.80 may lead 

to side products; removal of a beta hydrogen would give cyclopentadienone 3.81 which 

could react in [4+2] cycloaddition reactions with other compounds including the starting 

material 3.51, as its conjugated alkene could serve as a suitable dienophile for such a 

process.  Unfortunately, no definitive evidence of these hypothesized side reactions was 

obtained from the complex mixture. 

 Finally, the vinyl cation derived from precursor 3.54 contains a remote alkene that 

is tethered further away from the reactive center (Scheme 3-23).  In this case nucleophilic 

attack of the remote alkene could result in a six-membered ring, forming secondary cation 

3.83.  This does not seem to be a major reaction pathway, however, as this substrate also 

gave a complex mixture of products.   
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Scheme 3-23: Possible pathways for extended tether system 

 

Perhaps the gem-dimethyl substituents present in our original test substrate 3.30 are 

responsible for the efficient alkene cyclization due to the Thorpe-Ingold effect.  The lack 

of such a gem-dimethyl functionality in this case may allow ring expansion to the seven-

membered cyclic vinyl cation 3.85 to become a competitive process.  The remote alkene 

could cyclize onto this vinyl cation, forming a bicyclic 7,7-fused skeleton (3.86).  A more 

likely pathway for vinyl cation 3.85 would be a C-H insertion to give cyclopentenone 3.88.  

This type of C-H insertion at a methylene position is precedented in work reported by 

Cleary et al., though the yield for this transformation was modest.  Yet another possibility 
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is that instead of a complete C-H insertion reaction, vinyl cation 3.85 could undergo a 1,5-

hydride shift to give allylic cation 3.89.  Elimination of a beta hydrogen from this 

intermediate would give a diene compound (3.90) that could participate in side reactions 

such as cycloadditions.          

 

3.5 Conclusions and Future Work 

 This chapter has showcased some of the reactive pathways of vinyl cation 

intermediates that contain pendent alkenes.  These high-energy intermediates led to both 

lactone and cyclopentenone products depending on the structure of the precursor 

compound.  In particular, the formation of lactone product 3.46 in good yield gave us a 

great deal of mechanistic insight into the reaction between remote alkenes and vinyl 

cations, leading us to propose a fragmentation which results in an acylium ion as the 

reactive pathway.  Also of note is that this type of reactivity is consistent with earlier results 

observed by Karpf that were attributed to a 1,2-acyl shift in the original report.  

Additionally, the reaction is very sensitive to the tether length of the pendent alkene, the 

cyclization pathways available to that alkene, and even the structure of the vinyl cation 

intermediate.  Additionally, the high-yielding formation of a cyclopentenone product from 

vinyl cation precursors derived from aldehydes holds much promise for future work.  These 

plans include a full substrate scope to investigate different vinyl cation precursors derived 

from other commercially available aldehydes.  The preparation of these precursors should 

prove more facile than many presented here because they involve aldol addition to 

aldehydes rather than ketones.    
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CHAPTER 4: SYNTHESIS OF FUSAROCHROMANONE 

4.1 Background and Motivation 

4.1.1 History of Fusarochromanone and Biological Activity 

Fusarochromanone (often abbreviated FC101) is a metabolite produced by the 

Fusarium equiseti fungus which often infects agricultural plants including feedstocks.  It 

was discovered and identified as a mycotoxin after the observation that chickens placed on 

diets containing Fusarium-infected feed led to an increased incidence of bone 

malformation (specifically, tibial dyschondroplasia or TDP) and a low hatchability of 

fertile eggs.103-106 Lee and coworkers screened several isolates of Fusarium roseum 

(collected from overwintered oats from Fairbanks, Alaska) by growing them on rice and 

identifying which of these cultures reproduced the toxic effects.  FC101 was isolated from 

the rice culture that resulted in TDP and reduced egg hatchability when used as chicken 

feed.  The purified toxin also reproduced these effects.  The structure of FC101 was then 

determined by NMR spectroscopy, mass spectroscopy and X-ray crystallography and is 

shown in Figure 4-1.105, 107   

 

 

Figure 4-1: Structure of fusarochromanone 
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Some unique features of this natural product that distinguish it from other chromanones 

include the geminal methyl groups at C2, the placement of its side chain and its β-keto-

amine functionality.   

 It was found that in addition to FC101 having anti-angiogenic properties in 

chickens, it also exhibited such activity in human cell lines.  The bulk of the investigation 

into its biological activity has been focused on FC101’s promise as an anticancer agent.108-

112 In vitro experiments revealed FC101’s potent anticancer activity, due to its suppression 

of both angiogenesis and tumorigenesis.  Additionally, these studies demonstrated that the 

compound has a strong selectivity for cancer cells over normal cells—cancer cell growth 

was inhibited without concurrent negative impacts on normal tissues.  FC101 was also 

found to be a candidate for use in the treatment of MDR (multi-drug resistant) cancers.  It 

demonstrated a potent effect against the MCF-7/Dox cell line (MDR cells).  These cells 

overexpress the enzyme glucosylceramide synthase (GCS), which deactivates ceramide by 

converting it to glucosylceramide.  Ceramide-induced apoptosis plays a key role in the 

effectiveness of traditional chemotherapies; this pathway is shutdown when GCS is 

overexpressed—higher GCS levels are indeed observed in MDR breast, ovarian, cervical, 

and colorectal cell lines.  The search for an effective, in vivo inhibitor of GCS is a 

fundamental challenge to the medical field and the treatment of cancer; fusarochromanone 

represents a possible lead for the design of a therapeutic compound for this purpose.   

 While the in vitro studies are impressive, the compound’s in vivo effects were found 

to be less promising—treating skin cancer in mice with FC101 resulted in a 30% reduction 

in tumor size relative to controls, but this required a relatively high dosage (8 mg/kg/day).  
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However, the treatment was tolerated well and no toxic effects were observed on the 

animal.  The study authors attribute these suboptimal in vivo effects to the fact that 

fusarochromanone likely strongly binds to serum albumin (the most abundant protein in 

human blood), inhibiting its action on the desired biological targets—it had already been 

demonstrated that FC101 binds bovine serum albumin by the Wuthier lab.108  A potential 

workaround for this problem would be either the encapsulation of FC101 in a nanoparticle 

designed for drug delivery or the synthesis of a fusarochromanone derivative or analogue 

with more in vivo promise.  Nevertheless, fusarochromanone represents a worthwhile target 

for chemical synthesis and, being a relatively small and molecule could ideally be prepared 

on a large scale for further biological evaluation. 

4.1.2 Previous Syntheses  

 Despite the promising biological activity of fusarochromanone (and its inefficient 

isolation from natural sources), only two synthetic studies have been reported.113-114 The 

first reported synthesis came in a patent from 2004 and the route is shown in Scheme 4-2.  

This synthesis involved preparation of an amino-iodo-chromanone (4.3) by a low-yielding 

non-regioselective iodination (the undesired regioisomer was formed in a 33% yield).  This 

compound was then coupled to a suitable sidechain precursor (4.4) using an organozinc 

cross coupling reaction that proceeded in very low yields (11% isolated, 21% based on 

recovered starting material).  Removal of the protecting groups was only ever 

accomplished on an analytical scale and fusarochromanone was detected in the crude 

mixture by high resolution mass spectrometry. 
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Scheme 4-2: Patented synthesis of FC101 

 

An alternative to the low-yielding organozinc coupling (a Mizoroki-Heck reaction that 

proceeded in 30% yield) was presented in the patent but this route was never fully 

elaborated to the natural product.  This patent highlights that, despite its seemingly simple 

structure, the substitution pattern on the aromatic ring of fusarochromanone presents a 

formidable challenge to synthetic chemists as significant effort was required to construct 

this tetrasubstituted aromatic scaffold.   

 More than a decade later, Tanaka et al. reported a concise new approach to 

fusarochromanone where the troublesome regioselective pre-functionalization of the 

aminochromanone was circumvented by installing the side chain directly using an 

oxidative olefination.113 The overall scheme is presented below in Scheme 4-3.  Coupling 

a vinyloxazolidinone (4.8) to the N-acetylaminochromanone (4.6) using a cationic 

rhodium(III) catalyst under mild conditions proceeded in 78% yield without formation of 
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any undesired regioisomers.  A subsequent Wacker oxidation was achieved in modest yield 

followed by protecting group removal to give the natural product.   

 

Scheme 4-3: Tanaka's 2017 synthesis 

 

Using this route, fusarochromanone was synthesized on milligram scales from, as asserted 

by the authors, commercially available starting materials 4.2 and 4.7.  However, we were 

unable to find a practical commercial source for either starting material—all potential 

vendors listed prices in excess of $300 per gram.   

4.1.3 Initial Plan and Strategy 

 As part of a collaboration seeking to explore fusarochromanone as a potential 

anticancer agent or as a promising lead for the development of other such medicines, we 
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set out to synthesize this natural product.  One of our primary goals for this project was to 

be able to access the compound in large quantities to facilitate both further testing of its 

biological activities and its derivatization.  In terms of the synthesis, two potential strategies 

emerged:  first, to find ways to access the starting materials used for the known route 

published by Tanaka in a cheap, scalable fashion since they are both prohibitively 

expensive; second, to develop a new synthetic route to fusarochromanone by exploring 

other ways to form the key carbon-carbon bond between the aromatic group and the 

sidechain.  Desiring to procure a sizable sample of fusarochromanone in a timely manner, 

we first focused on the former strategy, seeking ways to access both of the required starting 

materials using scalable procedures.   

 

4.2 Synthesis of Starting Materials 

4.2.1 Synthesis of Chiral Oxazolidinone 

 Despite the lack of commercial availability of the vinyloxazolidinone 4.8, its 

synthesis is known and reported in the literature as effective at large scales (Scheme 4-4).  

This preparation involves a palladium-catalyzed dynamic kinetic asymmetric 

transformation (DYKAT) using a chiral Trost ligand for the ring opening of butadiene 

monoxide by phthalimide.115-116 From there, removal of the phthalimide gives the 

aminoalcohol which can then be protected with triphosgene to give oxazolidinone 4.8.  

Despite the apparent ease of this route, significant struggle was met with the DYKAT 

reaction.  Working with Dr. Ramya Srinivasan, many attempts to repeat the published 

results failed.  The complete failure of a reaction that had been reported in the literature at 
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near quantitative yields suggested there was a major problem with one of our reagents and 

that our catalyst system was being shut down entirely—being more careful with the 

reaction set up had little to no effect on the reaction success.  Recrystallization of 

phthalimide before use, using newer palladium catalysts and new bottles of ligand, or using 

anhydrous dichloromethane from other research groups did not fix the problem.   

 

 

Scheme 4-4: Synthesis of chiral oxazolidinone 

 

Upon consulting with Dr. Barry Trost, whose group was responsible for 

developing this reaction, it was quickly identified that commercial samples of butadiene 

monoxide from TCI Chemicals and Alfa Aesar were contaminated with significant 

amounts of peroxide, likely leftover from the synthesis of butadiene monoxide from 1,3-

butadiene.  A bottle of the epoxide purchased from Sigma Aldrich was free of peroxide 

contaminants and, not surprisingly, the reaction began working as published in the 

literature.  Many thanks are due to Dr. Trost for his swift and extremely helpful aid in 

troubleshooting this matter.   
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Cleavage of the phthalimide group was accomplished by heating 4.11 in an 

ethanolic solution with ethylene diamine to reflux.  Purification of this compound at the 

smaller scales we were working with proved problematic—it was difficult to separate the 

product from leftover ethylene diamine.  However, simply taking the crude material after 

filtration on to the next step worked effectively to give oxazolidinone 4.8 after column 

chromatography.   

4.2.2 Development of Route to N-Pivaloylaminochromanone 

 The synthesis design of the other required starting material, aminochromanone 4.2, 

began with the challenge of achieving the desired substitution on the aromatic ring.  When 

considering the amination of the chromanone scaffold by a two-step sequence of nitration-

reduction the problem of regioselectivity becomes clear.   

 

 

Figure 4-5: Regioselectivity barrier to chromanone scaffold 

 

Electrophilic substitution on the aromatic ring in Figure 4-5 would be expected to occur at 

either the ortho or para positions relative to the ether group, with the para position being 

the more likely site for substitution due to steric effects.  The desired amination could in 

theory be achieved by using a blocking group, but this would add two extra steps for the 

installation and removal of such a group.   
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The patent from 2004 did report a detailed synthesis of the desired 

aminochromanone starting from 2,5-dihydroxyacetophenone (Scheme 4-6).  This involved 

first formation of the chromanone ring followed by regioselective nitration, conversion of 

the alcohol to the corresponding triflate, and catalytic hydrogenation.   

 

 

Scheme 4-6: Patented method for aminochromanone synthesis 

 

Despite this route seeming plausible, we sought an alternative strategy for two reasons: 

first, 2,5-dihydroxyacetophenone costs 5$ per gram from Sigma Aldrich at the time of this 

writing and we were confident that we could find a more cost-effective starting point; 

second, the sequence above requires two chromatographic purifications which would be a 

hindrance in large scale preparations; After considering several options we devised the 

retrosynthesis shown in Figure 4-7, which circumvents the amination challenge by 

beginning with the nitrogen atom preinstalled. 
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Figure 4-7: Retrosynthetic analysis of amidochromanone 

 

The chromanone would be formed by intramolecular conjugate addition of a phenol 

oxygen onto the β-carbon of the enone skeleton.  We envisioned forming the carbon 

skeleton using directed ortho metalation (DoM)117 on bis-protected 3-aminophenol that is 

readily available from 3-aminophenol, which is commercially available and very 

inexpensive ($0.20/gram).     

 Installation of the protecting groups proceeded cleanly in high yields without 

incident or need for purification on decagram scales (Scheme 4-8).118 The pivaloyl and 

tetrahydropyranyl protecting groups were chosen because of their established efficacy in 

DoM reactions.  The directed ortho metalation was accomplished using n-butyllithium at 

0 °C—at lower temperatures no reaction took place.  Treating the lithiated species with 3-

methyl-2-butenal gave the desired alcohol (4.15) as an inseparable mixture of 

diastereomers that was carried on to the next reaction as is.  

 

 

Scheme 4-8: Directed ortho metalation strategy 
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Oxidation of the alcohol was achieved with manganese dioxide that had been oven dried 

overnight (Scheme 4-9).  This reaction required a large excess of the oxidizing agent, which 

is consistent with literature reports for this transformation.  Attempts to install the desired 

acyl group directly by quenching the lithiated species derived from 4.14 with either an acid 

chloride or ester were not successful and generally returned unreacted starting material 

with additional unidentified products.  Removal of the tetrahydropyranyl group was 

complete within one hour after stirring at room temperature with catalytic pyridinium p-

toluenesulfonate in methanol.  We discovered that removing the methanol by rotary 

evaporation and then adding of a sodium hydroxide solution gave the desired N-

pivaloylamidochromanone 4.17 in one pot, in pure form after a simple filtration.  This one-

pot sequence proceeded in greater yields than when performed as a two-step sequence.  If 

desired, the pivaloyl group can be removed at this stage by heating in hydrochloric acid to 

give the corresponding aminochromanone.119   

 

 

Scheme 4-9: Completion of chromanone ring 

 

This overall reaction sequence represented a significant advancement in the scalability of 

the synthesis of fusarochromanone—pivaloyl-protected aminochromanone 4.17 can be 

accessed in multi-gram quantities through simple transformations from readily available 3-

aminophenol, with the only chromatographic purification being after the directed ortho-
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metalation step—though we have found that simply passing the crude reaction mixture 

through silica suffices without the need for a full scale purification. 

 

4.3 Completion of Fusarochromanone Synthesis 

 For the completion of our synthesis we based our strategy on Tanaka’s work, 

constructing the key carbon-carbon bond using a rhodium catalyst, kindly prepared by Dr. 

Cleary.120 We imagined the oxidative coupling reaction used by Tanaka on the N-acetyl 

version of 4.17 could be generalized to our pivaloyl-protected variant.  Indeed, after stirring 

with the catalyst system in acetone under an open atmosphere for 16 hours, the desired 

product 4.18 was isolated in 70% yield after column chromatography (Scheme 4-10).   

 

Scheme 4-10: Rhodium(III) oxidative coupling 

 

The next step of Tanaka’s synthetic route involved a Wacker oxidation that used perchloric 

acid.  This presented a problem because working with this compound requires specially-

equipped fume hoods.  Desiring to circumvent the use of perchloric acid, a brief screening 

of alternate protocols was performed.  Literature precedent shows that oxidation of internal 
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alkenes can be challenging and often requires a mineral acid additive to work effectively.  

Gratifyingly, replacing the perchloric acid with fluoroboric acid gave the ketone 4.19 with 

no loss in yield (64%, Scheme 4-11).121   

 

Scheme 4-11: Wacker oxidation 

 

 The final step of the synthesis is to remove the pivaloyl and the oxazolidinone 

carbonyl protecting groups.  Repeating the protocol published by Tanaka (heating the 

substrate at 50 °C for 3 days) gave promising results.  The desired product was detected by 

LCMS and several key peaks were identified by proton NMR.  Not surprisingly, the 

majority of the fusarochromanone from this reaction was obtained as the hydrochloride salt 

which, being insoluble in common organic solvents, was not present in the proton NMR of 

the crude reaction mixture.  However, it was isolated from the crude material after 

trituration with dioxane and column chromatography.  Additionally, it was found by LCMS 

that the reaction mixture contained a significant amount of both unreacted starting material 

and material where the pivaloyl group remained intact.  Pivaloyl amides are known to be 

resistant to hydrolysis, with reported conditions for this transformation usually involving 

heating the substrate in concentrated hydrochloric acid.119 Unfortunately, heating our 

starting material at reflux in concentrated HCl resulted in decomposition.  Eventually, we 

discovered that heating 4.19 at 60 °C in 6 N HCl/dioxane overnight gave 
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fusarochromanone in 30% yield (Scheme 4-12).  Efforts to optimize this hydrolysis step 

are underway—there appears to be a tenuous balance between effective protecting group 

removal and product decomposition.  The spectroscopic data obtained from the synthetic 

sample of fusarochromanone matched the reported data from the literature.     

 

 

Scheme 4-12: Completion of fusarochromanone 

 

4.4 Alternative Strategies and Methodology Pursued 

 Concurrent with our efforts to obtain samples of fusarochromanone for collaborator 

use, we attempted to develop a new synthetic approach to the natural product.  Our first 

thought was to exploit directed ortho metalation for a second time in the synthesis (Figure 

4-13) 

.  

 

Figure 4-13: Double-DoM strategy to construct FC101 skeleton 
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Because we anticipated problems with the metalation of ketone 4.16 due to possible alpha 

carbon reactions, we instead went to our supply of alcohol 4.15, again used as a mixture of 

diastereomers, and carried out the facile TBS protection (Scheme 4-14).  The product of 

this reaction was also obtained as an inseparable mixture of diastereomers and was used as 

such.  Directed ortho metalation was attempted under a variety of conditions, mostly using 

freshly filtered sec-butyllithium in diethyl ether122 (significant solvent polymerization was 

observed using the standard THF conditions) followed by quenching with deuterated 

methanol.  Deuterium was chosen as the electrophile in order to judge the success of the 

lithiation step.  Additionally, the use of deuterated methanol simplified the interpretation 

of the reaction success, which was judged by the disappearance of the proton NMR signal 

at 7.8 ppm, corresponding to the lithiated site.   

 

 

Scheme 4-14: Ortho metalation trial reaction 

 

NMR of the crude reaction mixture seemed promising—the aforementioned peak was 

almost completely absent by proton NMR after treating 4.20 with sec-

butyllithium/TMEDA in diethyl ether at -78 °C followed by addition of deuterated 

methanol.  However, after column chromatography, the desired deuterated product was 

only recovered in 10% yield, with a significant portion of the yield being lost to an aniline 
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product, indicating that under the ortho metalation conditions the pivaloyl group proved 

labile.  

 

4.5 Conclusions and Future Work 

The work presented here demonstrates a new, scalable approach to the uniquely 

substituted aromatic ring of fusarochromanone that was successfully elaborated to the 

natural product.  Directed ortho metalation emerged as a powerful tool for the construction 

of the chromanone carbon skeleton, and it allowed us to begin the synthesis with the 

challenging nitrogen atom preinstalled.  This synthetic sequence requires no 

chromatographic purification and all steps can be carried out on multigram scales.  

Importantly, the N-pivaloylaminochromanone is obtained in high purity from the final 2-

step, one-pot procedure after simple filtration.  This compound can be effectively used, 

analogous to the N-acetyl derivative employed by Tanaka, in the key oxidative olefination 

reaction.  The Wacker oxidation has also been optimized to not require special working 

conditions.   

Despite this progress, our laboratory’s efforts toward the large-scale synthesis of 

fusarochromanone are far from complete.  First, the final deprotection step should be 

optimized—removing the pivaloyl group is feasible, but the conditions must be finely 

tuned so as not to cause the thermal decomposition of the natural product.  We are also 

pursuing an N-Boc-protected aminochromanone as an alternative to the N-pivaloyl variant 

as this should simplify protecting group removal.  Additionally, other routes to 

fusarochromanone are currently being pursued—of particular interest to us is a report that 
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directed ortho metalation of compound 4.22 proceeds to give substitution at a site 

analogous to the position of the side chain of fusarochromanone (Figure 4-15). 

 

 

Figure 4-15: Promising alternate method for key C-C bond formation 

 

This chapter has highlighted the promise of fusarochromanone and made the case 

that it is worthy of synthetic study.  Its seemingly simple structure presents an intriguing 

challenge to synthetic chemists while also holding great promise for large-scale synthesis.  

Work in our laboratory will continue toward this goal so that fusarochromanone’s 

anticancer potential can be realized at the clinical level.   
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CONCLUDING REMARKS 

 The fundamental importance of aromatic compounds cannot be overstated—they 

are of near universal utility in human society, from materials science and device fabrication 

to pharmaceutical and medicinal applications.  The work presented here highlights some 

of the synthetic strategies used by chemists to construct uniquely substituted aromatic 

compounds, specifically buckybowls and chromanone natural products.  The discovery and 

study of tridecacyclene, a novel polycyclic aromatic hydrocarbon which contains a 

cyclooctatetraene core has been reported and it is currently being studied for use in 

materials chemistry applications.  The study of the mechanism of formation of 

tridecacyclene was both challenging and enlightening, revealing unique reactivity of 

acenaphthenone dimers that has not previously been reported.   

A separate yet equally interesting aromatic compound, the natural product 

fusarochromanone, was synthesized by means of a novel route to the aminochromanone 

scaffold.  Fusarochromanone represents a promising synthetic target due to its established 

anticancer activity, though its in vivo effects are less potent.  Continued efforts by chemists 

toward the synthesis of this fungal metabolite, such as those presented here, will aid the 

biomedical community in designing and evaluating new fusarochromanone analogues for 

the potential treatment of various cancers.   

Finally, in addition to these synthetic pursuits of aromatic compounds, the 

reaction of other interesting pi-based systems was explored—namely, the reaction of vinyl 

cations with alkenes.  The work presented in this chapter showcases the variable reactivity 

of vinyl cations and that small changes in the substrate precursor used to generate the vinyl 
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cation can have large implications for the reaction pathways.  The development of this type 

of reactivity into useful methodology in the future will require careful substrate design.  

Additionally, these findings add to the existing knowledge of the reactivity of vinyl cation 

intermediates, an area of chemistry that is still underdeveloped.   

Overall, this work has focused on the synthesis and reactivity of unique pi 

systems: contorted polycyclic aromatic hydrocarbons, an aromatic fungal metabolite with 

promising biological uses, and the reaction of vinyl cations with remote alkenes.  The 

findings that have been described in this dissertation, as in most scientific pursuits, raise 

just as many questions as they provide answers.  As such, these results can provide a worthy 

starting point for future endeavors.   
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EXPERIMENTAL 

 

All reactions were performed under an atmosphere of nitrogen in flame-dried  

glassware. Solvents were removed in vacuo using a rotary evaporator attached to a dry  

vacuum pump, and further dried under reduced pressure on a high vacuum line.  

Tetrahydrofuran (THF) and dichloromethane (CH2Cl2) were dried via a solvent-dispensing 

system.  Diisopropylamine was freshly distilled from CaH2 prior to use.  All other 

commercially available reagents were used without further purification.  Flash column 

chromatography was performed on silica gel (230-400 mesh) as well as on a CombiFlash® 

Rf 150 system using RediSep® Rf Gold silica columns. TLC analysis was carried out using 

silica on glass plates. Visualization of TLC plates was achieved using ultraviolet light, ceric 

ammonium molybdate, or potassium permanganate.  1H and 13C NMR data were collected 

at room temperature on a 500 MHz spectrometer (Bruker or Varian) and a 125 MHz 

spectrometer (Bruker) respectively in CDCl3. 
1H NMR chemical shifts are reported in ppm 

(δ units) downfield from tetramethylsilane, and 13C NMR spectra are referenced to the 

CDCl3 signal at 77.0 ppm. IR data were collected on a Shimadzu IR Affinity-1 FTIR and 

the values are reported in wavenumbers. Exact mass analysis was performed on a Waters 

Xevo G2-XS LCMS-QTOF operated in positive ESI mode.  Acknowledgement: the 

experimental work presented here was supported in part by NIH grants S10-OD018126 

and P30-GM118228 and NSF Grant # CHE-1665113. 
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Chapter 2 Experimental 

 

 

Tridecacyclene (2.2): TiCl4 (0.82 mL, 7.5 mmol) was added to o-dichlorobenzene (10 

mL) in a flame-dried, 100 mL 3-neck flask under a nitrogen atmosphere.  The solution was 

heated to reflux followed by addition of a solution of 1-acenaphthenone (0.210 g, 1.25 

mmol) in o-dichlorobenzene (10 mL).  After stirring at reflux for 15 minutes, the reaction 

was poured into an Erlenmeyer flask containing 10 mL of concentrated HCl in ice.  The 

mixture was extracted with dichloromethane and the organic layer was dried over 

magnesium sulfate.  Removal of the solvent under reduced pressure followed by column 

chromatography (25% dichloromethane in cyclohexane) gave 40 mg (21% yield) of 

tridecacyclene (2.2) as a brown solid.  1H NMR (500 MHz, CDCl3) δ 7.87 (d, 1H, J = 8.0 

Hz), 7.67 (d, 1H, J = 6.9 Hz), 7.56 (t, 1H, J = 7.5 Hz) 13C NMR (125 MHz, CDCl3) δ 140.6, 

137.7, 129.9, 128.2, 127.7, 127.4, 125.0 HRMS ESI [M+1] Calcd for C48H25 601.1956 m/z; 

Found 601.1951.  Full spectroscopic and X-ray crystallography data can be found in Dr. 

Sumy’s dissertation.123 
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1-(7-chloronaphthalen-1-yl)ethanone (2.4): In a flame-dried 250 mL round-bottom flask, 

10.0 g (61.5 mmol) of 2-chloronaphthalene was dissolved in 100 mL of anhydrous 

dichloromethane under a nitrogen atmosphere.  The solution was cooled to 0 °C and 25 g 

(190 mmol) of aluminum chloride was added.  When the mixture became dark green, it 

was cooled to -78 °C followed by addition of 9.1 mL (127 mmol) of acetyl chloride via 

syringe.  The reaction was kept at -78 °C for 5 h before being allowed to warm up to room 

temperature overnight.  The reaction was quenched slowly with a 10% HCl solution on ice 

before being transferred to a separatory funnel.  The products were extracted with 

dichloromethane and the organic layer was dried over magnesium sulfate.  Removal of the 

solvent under reduced pressure gave a crude tan solid that was purified either by 

recrystallization with methanol or column chromatography (30% dichloromethane in 

hexanes) to give 10.0 g (80% yield) of the desired isomer 2.4 as a white solid.  Spectral 

data for this compound matched the reported values from the literature.41 

 

 

Methyl 2-(7-chloronaphthalen-1-yl)acetate (2.5): In a flame-dried 3-neck 500 mL 

round-bottom flask fitted with a reflux condenser, 6.6 g (32.35 mmol) of 1-(7-chloro-1-

naphthalenyl)ethanone and 11.0 g (169.87 mmol) of silver nitrate were dissolved in a 
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mixture of methanol (145 mL) and trimethylorthoformate (49 mL) under a nitrogen 

atmosphere.  Iodine (8.2 g, 32.35 mmol) was then added and the reaction was heated to 

reflux for 5 h until full conversion of the starting material was observed by TLC.  The silver 

salts were removed by filtration and the filtrate was washed with 250 mL of water.  After 

extraction with dichloromethane and drying over magnesium sulfate, the solvent was 

removed under reduced pressure to give 7.4 g (97.4% yield) of ester 2.5 as a yellow oil that 

slowly crystallized.  Spectral data for this compound matched the reported values from the 

literature.41 

 

 

2-(7-chloronaphthalen-1-yl)acetic acid (2.6): In a 250 mL round-bottom flask fitted with 

a condenser, 7.4 g (31.5 mmol) of methyl 2-(7-chloronaphthalen-1-yl)acetate was 

dissolved in 95 mL of tetrahydrofuran and 95 mL of a 1 M sodium hydroxide solution was 

added.  The reaction was heated to 50 °C for 16 h.  The reaction was then poured into 

concentrated HCl and extracted with dichloromethane.  The organic layer was washed with 

brine and dried over magnesium sulfate.  Removal of the solvent under reduced pressure 

gave 6.95 g (quantitative yield) of carboxylic acid 2.6 as an off-white solid.  Spectral data 

for this compound matched the reported values from the literature.41 
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8-Chloroacenaphthylen-1(2H)-one (1.27): In a flame-dried 3-neck 1000 mL round-

bottom flask fitted with a reflux condenser, 3.0 g (13.6 mmol) of 2-(7-chloronaphthalen-1-

yl)acetic acid was dissolved in 50 mL of thionyl chloride.  The brown solution was heated 

to reflux under nitrogen for 1 h.  The reflux condenser was then exchanged for a distillation 

apparatus and the thionyl chloride was removed by distillation under a nitrogen 

atmosphere.  Dichloromethane (750 mL) was then added and the reaction was cooled to 0 

°C.  Aluminum chloride (3.7 g, 28 mmol) was added and the green solution was kept at 0 

°C for 1 h.  The mixture was then heated to reflux for 30 minutes before being cooled to 

room temperature followed by addition of a solution of KF (2.5 g, 43 mmol) in 10% HCl 

(110 mL).  This mixture was transferred to a separatory funnel and extracted with 

dichloromethane and the red-brown organic layer was dried over magnesium sulfate.  

Removal of the solvent under reduced pressure and purification of the residue by column 

chromatography (50% dichloromethane in hexanes) gave 2.4 g (85% yield) of the title 

compound 1.27 as a white solid.  Spectral data for this compound matched the reported 

values from the literature.41 
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3,9,15,21-Tetrachlorocycloocta[1,2-a:3,4-a’:5,6-a’’:7,8-a’’’]tetraacenaphthylene 

(1.37): TiCl4 (0.66 mL, 6 mmol) was added to 8 mL of o-dichlorobenzene in a flame-dried 

3-neck round-bottom flask fitted with a condenser under an atmosphere of nitrogen.  The 

yellow solution was heated to 180 °C and a solution of 8-chloroacenaphthylen-1(2H)-one 

(200 mg, 0.98 mmol) in o-dichlorobenzene (8 mL) was added all at once.  The reaction 

was stirred at 180 °C for another 30 minutes before being cooled to room temperature and 

poured onto a mixture of concentrated HCl and ice (20 mL).  The mixture was transferred 

to a separatory funnel and extracted with dichloromethane and the organic layer was dried 

over magnesium sulfate.  The solvent was removed under reduced pressure to give a black 

residue that was purified by column chromatography (25% dichloromethane in hexanes) 

to give the cyclotetramer product 1.37 (19.8 mg, 11% yield) as a red solid.  Interpretable 

NMR data for 1.37 was unable to be obtained due to the presence of other regioisomers or 

potential atropisomers.  HRMS ESI [M+1] Calcd for C48H20Cl4 737.0397 m/z; Found 

737.0400 m/z. 
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3,8’-Dichloro-[1,1’-biacenaphthylen]-2(1H)-one (2.7): 8-chloroacenaphthylen-1(2H)-

one (150 mg, 0.74 mmol) was dissolved in anhydrous toluene (6 mL) in a flame-dried 2-

neck 50 mL round-bottom flask under an atmosphere of nitrogen.  The mixture was heated 

to 55 °C and BBr3 (0.75 mL, 8.14 mmol) was added via syringe all at once.  The reaction 

was stirred at 55 °C for 16 h and then cooled to room temperature.  The reaction was 

quenched with 10% HCl and after allowing the red reaction to stir in acid at room 

temperature for several hours, a yellow solution was obtained.  The product was extracted 

with dichloromethane and the organic layer was dried over magnesium sulfate.  Removal 

of the solvent under reduced pressure followed by column chromatography (50% 

dichloromethane in hexanes) gave 100 mg (70% yield) of the dimeric product 2.7 as a 

yellow wax.  1H NMR (500 MHz, CDCl3) δ 8.05 (d, J = 8.5 Hz, 1H), 7.85 (m, 1H), 7.74 

(d, J = 8.1 Hz, 1H), 7.78 (d, J = 8.3 Hz, 1H), 7.64 (d, J = 8.5 Hz, 3H), 7.54 (d, J = 8.7 Hz, 

1H), 7.46 (m, 2H), 6.52 (s, 1H), 5.97 (s, 1H) 13C NMR (125 MHz, CDCl3) δ 198.8, 142.8, 

139.1, 137.7, 137.6, 135.1, 132.7, 131.6, 130.4, 130.2, 130.0, 129.9, 129.5, 129.3, 128.8, 

128.7, 127.8, 127.4, 127.0, 126.7, 124.8, 124.4, 122.6, 52.0 HRMS ESI [M+1] Calcd for 

C24H12Cl2O 387.0343 m/z; Found 387.0338 m/z. 
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(Z)-2H,2’H-[1,1’-biacenaphthylenylidene]-2-one (2.9): 1-acenaphthenone (1.7 g, 10.11 

mmol) was dissolved in acetic acid (7.5 mL) and hydrochloric acid (3.75 mL) and heated 

at reflux for 16 hours.  The product was collected as a yellow solid (2.9) after filtration (1.2 

g, 75% yield) and washing with water.  Spectral data for this compound matched the 

reported values from the literature.55 

 

 

Colored Compounds Red 2.10 (left) and Purple 2.11 (right): A mixture of p-

toluenesulfonic acid monohydrate (0.22 g, 1.16 mmol) and propionic acid (0.09 mL, 1.16 

mmol) in 1 mL of o-dichlorobenzene was heated to 140 °C in a 2-neck 50 mL round-

bottom flask equipped with a reflux condenser under nitrogen.  Dimer 2.7 (90 mg, 0.23 

mmol) dissolved in 3 mL of o-dichlorobenzene was added to the hot reaction mixture by 

syringe.  The black solution was heated for 12 hours and was then quenched with 5 M 

NaOH.   The reaction was extracted with dichloromethane and the organic fractions were 

dried over magnesium sulfate and the solvent was removed.  The crude material was 
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purified by column chromatography (3:2 dichloromethane:hexanes) to give 2.10 as a red 

solid (38 mg, 42% yield) and 2.11 as a purple solid (5.3 mg, 5.9% yield).   

2.10: Red solid, 1H NMR (CDCl3, 500 MHz) δ 8.46 (d, J = 7 Hz, 1H), 7.90 (d, J = 8.05 

Hz, 1H), 7.83 (d, J = 8.6 Hz, 1H), 7.76 (dd, J = 8.15, 7.1 Hz, 1H), 7.64 (dd, J = 8.5, 2.6 

Hz, 2H), 7.46 (d, J = 6.95 Hz, 1H), 7.42 (d, J = 8.6 Hz, 1H), 7.33 (dd, J = 8.3, 7.1 Hz, 1H), 

7.12 (d, J = 8.5 Hz, 1H) 13C NMR (CDCl3, 125 MHz) δ 197.1, 142.9, 137.4, 136.1, 134.9, 

134.4, 134.1, 132.3, 131.1, 131.0, 130.6, 130.5, 129.6, 129.2, 129.1, 128.8, 128.3, 128.2, 

127.3, 127.0, 126.1, 125.1, 123.9, 64.8 HRMS ESI [M+1] Calcd for C48H20Cl4O2 769.0296 

m/z; Found 769.0305 m/z. 

2.11: Purple solid, 1H NMR (d6-DMSO, 500 MHz, 65 °C) δ 8.57 (d, J = 7.05 Hz, 1H), 8.12 

(d, J = 8.2 Hz, 1H), 8.09 (d, J = 8.65 Hz, 1H), 7.93 (m, 2H), 7.82 (d, J = 8.25 Hz, 1H), 7.54 

(d, J = 8.6 Hz, 1H), 7.25 (d, J = 8.5 Hz, 1H), 7.13 (t, J = 15.45, 7.25 Hz, 1H), 6.57 (d, J = 

6.95 Hz, 1H) 13C NMR (d6-DMSO, 125 MHz, 65 °C) δ 197.0, 142.4, 137.5, 135.6, 133.6, 

133.3, 133.2, 132.5, 130.3, 130.0, 129.7, 129.4, 129.2, 128.9, 128.5, 128.4, 127.9, 127.8, 

127.4, 126.7, 126.6, 125.5, 122.4, 63.9 HRMS ESI [M+1] Calcd for C48H20Cl4O2 769.0296 

m/z; Found 769.0308 m/z.  Full spectroscopic and X-ray crystallography data can be found 

in Dr. Sumy’s dissertation.123 

 

5-Bromo-8-chloroacenaphthylen-1(2H)-one (2.23): 8-chloroacenaphthylen-1(2H)-one 

(100 mg, 0.49 mmol) and N-bromosuccinimide (89.5 mg, 0.50 mmol) were dissolved in 
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0.7 mL of anhydrous DMF in a 10 mL round-bottom flask under nitrogen.  The reaction 

was heated to 50 °C overnight.  The mixture was then poured into water and extracted with 

dichloromethane.  Removal of the solvent under reduced pressure and column 

chromatography (1:1 dichloromethane:hexanes) gave the title compound 2.23 as a pink 

solid (13.8 mg, 10% yield).  1H NMR (CDCl3, 500 MHz) δ 8.20 (d, J = 8.5 Hz, 1H), 7.83 

(d, J = 7.5 Hz, 1H), 7.68 (d, J = 9 Hz, 1H), 7.36 (d, J = 7.5 Hz, 1H), 3.81 (s, 2H) 13C NMR 

(CDCl3, 125 MHz) δ 198.9, 144.3, 133.5, 132.2, 131.6, 131.4, 130.5, 130.1, 129.1, 122.9, 

118.8, 42.0 HRMS ESI [M+1] Calcd for C12H6BrClO 280.9369 m/z; Found 280.9367 m/z. 

 

 

((3-methoxyphenyl)ethynyl)Trimethylsilane (2.33): In a flame-dried 100 mL round-

bottom flask fitted with a condenser and flushed with nitrogen, 150 mg (0.213 mmol) of 

Pd(PPh3)2Cl2, 2.5 g (10.68 mmol) of 3-iodoanisole, 101 mg (0.534 mmol) of copper iodide 

and 6 mL (43 mmol) of degassed triethylamine were dissolved in 18 mL of anhydrous, 

degassed tetrahydrofuran.  TMS-acetylene (1.67 mL, 11.75 mmol) was then added via 

syringe all at once.  The reaction mixture turned black and began to reflux on its own 

without any added heat source.  After 1 hour, TLC indicated consumption of the starting 

material.  The reaction was diluted with water and extracted with ethyl acetate.  The organic 

extracts were dried with magnesium sulfate and the solvent was removed.  Column 

chromatography (20% dichloromethane in hexanes) gave 2.05 g (94% yield) of the 
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coupling product 2.33 as a colorless oil.  Spectral data for this compound matched the 

reported values from the literature.124 

 

 

1-Ethynyl-3-methoxybenzene (2.31): 2.06 g (10.06 mmol) of 2.33 was dissolved in 40 

mL of methanol with potassium carbonate (139 mg, 1 mmol).  The reaction was stirred at 

room temperature under nitrogen and monitored by TLC.  After full consumption of the 

starting material was observed after 2 hours, the reaction was quenched with a saturated 

ammonium chloride solution and extracted with ethyl acetate.  Drying the organic layer 

with magnesium sulfate and removing the solvent under reduced pressure gave 1.2 g (90% 

yield) of alkyne 2.31 as a volatile, colorless oil.  Spectral data for this compound matched 

the reported values from the literature.124 

 

 

1,2-Bis(3-methoxyphenyl)ethyne (2.34): In a flame-dried 3-neck 100 mL round-bottom 

flask that had been purged with nitrogen, 3-ethynylanisole (1.77 g, 13.44 mmol), 3-

iodoanisole (2.99 g, 12.80 mmol), Pd(PPh3)2Cl2 (472 mg, 0.67 mmol), and copper iodide 

(256 mg, 1.34 mmol) were dissolved in 50 mL of anhydrous, degassed THF.  

Diisopropylethylamine (7.0 mL, 40.31 mmol) was added by syringe and the reaction was 
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stirred at room temperature under nitrogen.  After 10 minutes of stirring at room 

temperature the reaction was quenched with a saturated ammonium chloride solution and 

extracted with ethyl acetate.  The organic layer was dried over magnesium sulfate and the 

solvent was removed to give a crude residue that was purified by column chromatography 

(8:1 hexanes:ethyl acetate) to give 2.95 g (97% yield) of the product 2.34 as a white solid.  

Spectral data for this compound matched the reported values from the literature.75  

 

 

(Z)-3,3’-dimethoxystilbene (2.35): In a flame-dried 2-neck 50 mL round-bottom flask 

fitted with a condenser, alkyne 2.34 (672 mg, 2.82 mmol) was dissolved in 12 mL of 

anhydrous THF.  The solution was cooled to -78 °C and Ti(OiPr)4 (1.67 mL, 5.64 mmol) 

was added via syringe.  n-butyllithium (11.28 mmol) was added dropwise to the yellow 

mixture causing a color change to red-brown.  The reaction was then warmed to 50 °C and 

the color of the solution became a deep red-black.  After 15 minutes of stirring at this 

temperature, complete consumption of the starting material was observed by TLC (10% 

ethyl acetate in hexanes).  The reaction was cooled to 0 °C and 10 mL of a saturated 

aqueous ammonium chloride solution was added followed by addition of 10 mL of ethyl 

acetate.  The mixture was extracted with ethyl acetate (3 x 20 mL) and the organic layer 

was washed with brine, dried over magnesium sulfate and the solvent was removed to give 

pure product (2.35) as an orange oil (650 mg, quantitative yield).  Spectral data for this 

compound matched the reported values from the literature.75 
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(Z)-4,9-Dimethoxy-1H-dibenzo[a,e]cyclopropa[c][8]annulen-1-one (2.36): Aluminum 

chloride (3.08 g, 23.0 mmol) and tetrachlorocyclopropene (1.45 mL, 9.24 mmol) were 

dissolved in anhydrous DCM (100 mL) in a flame-dried 3-neck 500 mL round-bottom flask 

under nitrogen and the mixture was stirred at room temperature for 20 minutes.  The 

mixture was cooled to -78 °C and (Z)-3,3’-dimethoxystilbene (1.85 g, 7.70 mmol) in 40 

mL of DCM was added over 1.5 h by syringe pump and the reaction became dark green.  

The reaction was stirred at -78 °C for 1 h and then it was allowed to warm to room 

temperature over 1 h.  100 mL of water was then added to the red/brown solution.  

Immediately upon addition of water a yellow precipitate was formed that was collected by 

filtration to afford the cyclopropenone product 2.36 as a yellow solid (1.34 g, 60% yield).  

Note: to maximize the yield, the filtrate was concentrated and filtered again.  Spectral data 

for this compound matched the reported values from the literature.75 

 

 

6,7-Dibromo-4,9-dimethoxy-6,7-dihydro-1H-dibenzo[a,e]cyclopropa[c][8]annulen-1-

one (2.37): 1.12 g (3.86 mmol) of alkene 2.36 was dissolved in 60 mL of anhydrous DCM 

in a flame-dried 2-neck 500 mL round-bottom flask under nitrogen.  The reaction was 
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cooled to 0 °C and Br2 (0.30 mL, 5.79 mmol) dissolved in DCM (20 mL) was added 

dropwise by syringe.  The orange mixture was stirred at room temperature for 2 hours and 

quenched with 60 mL of saturated aqueous sodium thiosulfate.  The product precipitated 

from the solution and was collected by filtration.  Additional product was collected by 

extracting the filtrate with dichloromethane, removing the solvent and purifying the residue 

by column chromatography (1% methanol in dichloromethane).  The product (2.37) was 

isolated as a white solid (1.25 g, 72% yield).  Spectral data for this compound matched the 

reported values from the literature.75 

 

 

4,9-Dimethoxy-6,7-didehydro-1H-dibenzo[a,e]cyclopropa[c]cycloocten-1-one (2.29): 

In a 50 mL round-bottom flask, dibromide 2.37 (150 mg, 0.33 mmol) was dissolved in 10 

mL of ethanol and a solution of potassium hydroxide (200 mg, 3.56 mmol) in 10 mL of 

ethanol was added.  The reaction was stirred overnight at room temperature.  The reaction 

was quenched with 10% HCl until the pH was ~6, then extracted with dichloromethane.  

The dichloromethane extracts were washed with saturated aqueous sodium bicarbonate, 

dried over magnesium sulfate and the solvent was removed to give alkyne 2.29 as a yellow 

solid (70 mg, 73% yield).  Spectral data for this compound matched the reported values 

from the literature.75 
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2,5-Bis(3-methoxyphenyl)thiophene 1-oxide (2.30): In a flame-dried 2-neck 100 mL 

round-bottom flask under nitrogen, Cp2ZrCl2 (1.26 g, 4.31 mmol) was dissolved in 

anhydrous THF (20 mL) and cooled to -78 °C.  n-Butyllithium (8.62 mmol) was added 

dropwise and the yellow reaction was then warmed to room temperature over an hour.  The 

dark red solution was next cooled to 0 °C and 3-ethynylanisole (1.14 g, 8.62 mmol) was 

added by syringe.  The mixture was stirred at room temperature for 90 minutes and then 

cooled to -78 °C.  SOCl2 (0.31 mL, 4.31 mmol) was added dropwise and the black mixture 

became bright yellow.  While still under nitrogen, silica for column chromatography was 

added directly to the reaction at -78 °C and the nitrogen inlet was replaced with a vacuum 

line fitted with a liquid nitrogen trap and the THF was removed under reduced pressure.  

The product was then eluted from the silica using first dichloromethane as the eluent then 

switching to 40% ethyl acetate in hexanes.  After isolation of the product spots, a filtration 

through a short plug of silica (ethyl acetate) gave thiophene oxide 2.30 as a bright yellow 

solid (200 mg, 18% yield).  1H NMR (500 MHz, CDCl3) δ 7.38-7.32 (m, 4H), 7.26 (m, 

2H), 6.94 (m, 4H), 3.86 (s, 6H) 13C NMR (125 MHz, CDCl3) δ 160.1, 152.1, 132.0, 130.2, 

123.9, 119.3, 115.3, 111.8, 55.4 HRMS ESI [M+1] calcd for C18H17O3S 313.0898; Found 

313.0904. 
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4,11-Dimethoxy-6,9-bis(3-methoxyphenyl)-1H-

tribenzo[a,c,e]cyclopropa[g][8]annulen-1-one (2.28): Thiophene oxide 2.30 (180 mg, 

0.713 mmol) and alkyne 2.29 (171 mg, 0.594 mmol) were dissolved in 8 mL of anhydrous 

toluene in a 50 mL flame-dried round-bottom flask fitted with a condenser under nitrogen.  

The solution was heated to reflux for 16 h.  The toluene was removed under reduced 

pressure and the product was purified by column chromatography (6% methanol in 

dichoromethane) to give the cycloaddition product 2.28 as a brown solid (125 mg, 38% 

yield).  The proton NMR spectrum for this compound is shown in the Appendix.     

 

 

4,11-Dimethoxy-6,9-diphenyl-1H-tribenzo[a,c,e]cyclopropa[g][8]annulen-1-one 

(2.39): 2,5-diphenyl thiophene oxide (1.35) was reacted with alkyne 2.29 in an analogous 

fashion to the preparation of compound 2.28 to give the title compound (2.39) in a 30% 

yield.  The proton NMR spectrum for this compound is shown in the Appendix. 
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7,9-Diphenyl-8H-cyclopenta[a]acenaphthylene-8-one (2.40): 1,3-diphenyl acetone (2.0 

g, 9.5 mmol) and acenaphthoquinone (1.73 g, 9.5 mmol) were dissolved in ethanol (10 mL) 

and toluene (1 mL) and a solution of potassium hydroxide (9.5 mmol) in ethanol (3 mL) 

was added.  After stirring for 5 minutes, the product was collected by filtration as a dark 

purple solid in quantitative yield.  Spectral data for this compound matched the reported 

values from the literature.84 

 

 

7,12,19,24-Tetraphenyldiacenaphtho[1,2-b:1’,2’-n]tetraphenylene (2.41): 

Cyclopentadienone 2.40 (196 mg, 0.55 mmol) and dibenzocyclooctadiyne (50 mg, 0.25 

mmol) were dissolved in 5 mL of o-dichlorobenzene in a 50 mL round-bottom flask fitted 

with a condenser under nitrogen.  The mixture was heated to 150 °C for 14 h and the solvent 

was removed under reduced pressure.  The residue was purified by column 

chromatography (30% dichloromethane in hexanes) to give a mixture of the product and 
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leftover cyclopentadienone 2.40.  Pure cycloaddition product 2.41 was isolated by 

recollecting it from several failed cyclodehydrogenation attempts.  1H NMR (CDCl3, 500 

MHz) δ 7.62 (m, 2H), 7.41 (t, J = 7.5 Hz, 1H), 7.35 (t, J = 7.5 Hz, 1H), 7.21 (t, J = 8 Hz, 

1H), 7.14 (t, J = 7 Hz, 1H), 7.06 (d, J = 7.5 Hz, 1H), 6.81 (dd, J = 3 Hz, 5.5 Hz, 1H), 6.69 

(dd, J = 3.5 Hz, 6 Hz, 1H), 6.40 (d, J = 7.5 Hz, 1H) 13C NMR (CDCl3, 125 MHz) δ 140.5, 

140.0, 139.1, 137.4, 136.6, 136.0, 133.2, 131.4, 131.3, 131.0, 129.5, 128.2, 127.8, 127.5, 

127.1, 126.4, 125.1, 123.2 HRMS ESI [M+1] Calcd for C68H40 857.3208 m/z; Found 

857.3184 m/z.  
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Chapter 3 Experimental 

 

 

3-Chloro-3-methylbut-1-ene (3.40 left) and 1-Chloro-3-methylbut-2-ene (3.41 right): 

Cold (-5 °C) HCl (56 mL) was poured into 20 mL (182 mmol) of cold (-5 °C) 2-methyl-3-

buten-2-ol.  The reaction was stirred at 0 °C for 90 minutes after which time the mixture 

was transferred to a separatory funnel and the aqueous layer removed.  The organic layer 

was washed with water (10 mL), brine (10 mL) and dried over sodium sulfate.  The product 

was obtained as a clear oil (15.5 g, 82% yield) consisting of an 11:1 mixture of the two 

allylic chlorides (3.40 and 3.41).  Spectral data for this compound matched the reported 

values from the literature.98 

 

 

2,2-dimethyl-3-butenoic acid (3.42): In a flame-dried, 3-neck 250 mL round-bottom flask 

fitted with a condenser under nitrogen, magnesium turnings (4.36 g, 179 mmol) were 

suspended in 40 mL of anhydrous THF and stirred vigorously.  The allyl chloride mixture 

(5.0 g, 48 mmol, 3.40 and 3.41) in dry THF (12 mL) was added dropwise over 15 minutes 

with continued vigorous stirring.  During this time the reaction became quite foamy and 

heated itself to reflux.  After stirring for 30 minutes and allowing the reaction to cool to 

room temperature on its own, the dark gray solution was poured into a 500 mL beaker filled 

with finely crushed (by hammer) dry ice.  The excess dry ice was allowed to sublime over 

6 hours.  The gel-like residue was acidified with 40 mL of 4 M HCl and extracted with 
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diethyl ether (2 x 50 mL).  The organics were dried with sodium sulfate, and the solvent 

was removed in vacuo to give 3.2 g (58% yield) of carboxylic acid 3.42 as a pale-yellow 

oil.  Spectral data for this compound matched the reported values from the literature.98 

 

 

2,2-dimethyl-3-butenoyl chloride (3.23): Carboxylic acid 3.42 (3.23 g, 28.3 mmol) was 

dissolved in 40 mL of anhydrous CH2Cl2 and 5 drops of DMF were added.  The solution 

was cooled to 0 °C and oxalyl chloride (34 mmol) was added dropwise.  The cold bath was 

removed and the reaction was stirred at room temperature for 3 hours.  The solvent was 

then removed under reduced pressure and the residue was purified by fractional distillation 

to give 2.00 g (53% yield) of 2,2-dimethyl-3-butenoyl chloride as a colorless oil.  Spectral 

data for this compound matched the reported values from the literature.97 

 

 

1-Diazo-3,3-dimethylpent-4-en-2-one (3.43): 2,2-dimethyl-3-butenoyl chloride (780 mg, 

5.88 mmol) was added by syringe to a 250 mL round-bottom flask containing triethylamine 

(0.82 mL, 5.88 mmol) and freshly distilled diazomethane (prepared by treating Diazald® 

[1.76 g, 8.24 mmol] with a solution of potassium hydroxide [508 mg, 9.06 mmol] in diethyl 

ether [20 mL], water [1 mL], and 2-(2-ethoxyethoxy)ethanol [3 mL]) in diethyl ether (40 

mL) at -78 °C.  The solution was allowed to warm to room temperature overnight under a 

nitrogen atmosphere.  The triethylamine hydrochloride salts were removed by filtration and 
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the salts were washed with hexanes.  Removal of the solvent under reduced pressure 

afforded 700 mg (86% yield) of the diazoketone 3.43 as a yellow oil.  Spectral data for this 

compound matched the reported values from the literature.97 

 

 

Representative procedure for the generation of β-hydroxy-α-diazo ketones.  1-diazo-

1-(1-hydroxycyclohexyl)-3,3-dimethylpent-4-en-2-one (3.30): Cyclohexanone (0.15 

mL, 1.45 mmol) and diazo ketone 3.43 (300 mg, 2.17 mmol) were dissolved in 6 mL of 

anhydrous THF in a flame-dried flask under nitrogen and the mixture was cooled to -78 

°C.  Freshly prepared lithium diisopropylamide (2.17 mmol in 6 mL of dry THF at -78 °C) 

was added dropwise and the yellow solution became red.  The mixture was maintained at 

this temperature for 1 hour at which point 20 mL of saturated aqueous ammonium chloride 

was added.  The cold bath was removed and the reaction was vigorously stirred as it 

warmed to room temperature to ensure proper mixing of the layers.  During this period of 

warming and mixing the reaction became bright yellow.  Extraction with diethyl ether, 

drying the organic layer over sodium sulfate, and removal of the solvent under reduced 

pressure gave an orange oil that was purified by column chromatography (10% ethyl 

acetate in hexanes) to afford 249 mg (73% yield) of addition product 3.30 as a bright yellow 

oil.  1H NMR (CDCl3, 500 MHz) δ 5.90 (dd, J = 10.5, 17.5 Hz, 1H), 5.21 (d, J = 10.5 Hz, 

1H), 5.10 (d, J = 18 Hz, 1H), 4.49 (s, 1H), 1.94-1.87 (m, 2H), 1.80-1.70 (m, 2H), 1.60-1.50 

(m, 3H), 1.47-1.4 (m, 2H), 1.3-1.27 (m, 1H), 1.28 (s, 6H)  13C NMR (CDCl3, 125 MHz) δ 
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199.2, 141.0, 115.1, 71.7, 50.5, 36.0, 25.4, 24.2, 21.9 IR (film) 2067 cm-1 HRMS ESI [Na 

adduct] Calcd for C13H20N2O2Na 259.1422 m/z; Found 259.1430 m/z. 

 

 

1-Diazo-1-(1-hydroxycyclopentyl)-3,3-dimethylpent-4-en-2-one (3.47): A mixture of 

cyclopentanone (0.13 mL, 1.45 mmol) and diazo ketone 3.43 (300 mg, 2.17 mmol) in THF 

(6 mL) was treated with a solution of LDA (0.36 M in THF, 2.17 mmol) according to the 

general procedure for the preparation of 3.30 to give addition product 3.47 in 40% yield 

(129 mg, 0.58 mmol). 1H NMR (CDCl3, 500 MHz) δ 5.91 (dd, J = 10.5, 17.5 Hz, 1H), 5.22 

(d, J = 10.5 Hz, 1H), 5.11 (d, J = 17.5 Hz, 1H), 4.14 (s, 1H), 2.10-2.04 (m, 2H), 1.92-1.85 

(m, 2H), 1.71-1.62 (m, 4H), 1.29 (s, 6H)  13C NMR (CDCl3, 125 MHz) δ 199.0, 141.0, 

115.2, 80.3, 50.4, 39.0, 24.1, 22.9 IR (film) 2067 cm-1  HRMS ESI [Na adduct] Calcd for 

C12H18N2O2Na 245.1266 m/z; Found 245.1267 m/z. 

 

 

2-Diazo-1-hydroxy-4,4-dimethyl-1-phenylhex-5-en-3-one (3.57): A mixture of 

benzaldehyde (154 mg, 1.45 mmol) and diazo ketone 3.43 (300 mg, 2.17 mmol) in 6 mL 

of THF was treated with a solution of LDA in THF (2.17 mmol) according to the general 

procedure for the preparation of 3.30 to give addition product 3.57 in a 70% yield (248 mg, 

1.02 mmol).  1H NMR (CDCl3, 500 MHz) δ 7.37 (d, J = 4 Hz, 4H), 7.34-7.29 (m, 1H), 6.04 
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(d, J = 3 Hz 1H), 5.92 (dd, J = 10.5, 17.5 Hz, 1H), 5.21 (d, J = 10.5 Hz, 1H), 5.12 (d, J = 

17.5 Hz, 1H), 3.29 (s, 1H), 1.31 (d, J = 8.5 Hz, 6H)  13C NMR (CDCl3, 125 MHz) δ 196.5, 

141.0, 138.5, 128.7, 128.3, 125.9, 115.4, 69.7, 50.2, 24.2 IR (film) 2083 cm-1  HRMS ESI 

[Na adduct] Calcd for C14H16N2O2Na 267.1109 m/z; Found 267.1105 m/z. 

 

 

5-Diazo-6-hydroxy-3,3-dimethyl-6-propylnon-1-en-4-one (3.55): A mixture of 4-

heptanone (165 mg, 1.45 mmol) and diazo ketone 3.43 (300 mg, 2.17 mmol) in 6 mL of 

THF was treated with a solution of LDA in THF (2.17 mmol) according to the general 

procedure for the preparation of 3.30 to give the addition product 3.55 in a 35% yield (128 

mg, 0.51 mmol).  1H NMR (CDCl3, 500 MHz) δ 5.91 (dd, J = 11, 17.5 Hz, 1H), 5.23 (d, J 

= 11 Hz, 1H), 5.11 (d, J = 17.5 Hz, 1H), 4.90 (s, 1H), 1.7-1.58 (m, 4H), 1.45-1.30 (m, 4H), 

1.28 (s, 6H), 0.92 (t, J = 7 Hz, 6H) 13C NMR (CDCl3, 125 MHz) δ 199.3, 141.1, 115.2, 

75.0, 69.1, 50.7, 41.3, 24.2, 17.1, 14.3 IR (film) 2075 cm-1 HRMS ESI [Na adduct] Calcd 

for C14H24N2O2Na 275.1735 m/z; Found 275.1732 m/z. 

 

 

4-Pentenoyl chloride: 4-pentenoic acid (2.94 g, 29.4 mmol) was dissolved in 30 mL of 

dry CH2Cl2 along with 3 drops of dry DMF.  The solution was cooled to 0 °C and a 2 M 

solution of oxalyl chloride in CH2Cl2 (35.3 mmol) was added dropwise.  The reaction was 
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stirred at room temperature for 3 hours and the solvent was then removed.  The resulting 

orange oil was purified by distillation to give 1.67 g (48% yield) of 4-pentenoyl chloride 

as a colorless oil.  Spectral data for this compound matched the reported values from the 

literature.100 

 

 

1-Diazohex-5-en-2-one (3.53): 4-pentenoyl chloride (1.67 g, 14.1 mmol) was added to a 

250 mL round-bottom flask containing a solution of freshly distilled diazomethane (19.7 

mmol, see procedure for compound 3.43 for generation of diazomethane) and triethylamine 

(2 mL, 14.1 mmol) in diethyl ether (100 mL) at -78 °C.  The reaction was allowed to warm 

to room temperature with stirring overnight.  The salts were removed by filtration and the 

solid was washed with ether.  The filtrate was transferred to a separatory funnel and washed 

with water (50 mL) and brine (50 mL).  The organic layer was dried over sodium sulfate 

and the solvent was removed to give a yellow oily residue that was purified by column 

chromatography (5:1 petroleum ether:diethyl ether) to give the product 3.53 as a yellow 

oil.  Spectral data for this compound matched the reported values from the literature.100 

 

 

1-Diazo-1-(1-hydroxycyclohexyl)hex-5-en-2-one (3.54): A mixture of cyclohexanone 

(0.17 mL, 1.61 mmol) and diazo ketone 3.53 (300 mg, 2.42 mmol) in 6 mL of THF was 
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treated with a solution of LDA in THF (2.42 mmol) according to the general procedure for 

the preparation of 3.30 to give the addition product 3.54 in a 78% yield (279 mg, 1.26 

mmol). 1H NMR (CDCl3, 500 MHz) δ 5.86-5.77 (m, 1H), 5.05 (d, J = 17 Hz, 1H), 5.02 (d, 

J = 10 Hz, 1H), 4.26 (s, 1H), 2.56 (t, J = 6.5 Hz, 2H), 2.40 (dd, J = 7.5, 14 Hz, 2H), 1.96-

1.90 (m, 2H), 1.80-1.71 (m, 2H), 1.62-1.55 (m, 2H), 1.50-1.43 (m, 2H), 1.34-1.26 (m, 1H)  

13C NMR (CDCl3, 125 MHz) δ 195.9, 136.4, 115.9, 71.0, 37.9, 36.2, 28.5, 25.3, 21.8 IR 

(film) 2067 cm-1 HRMS ESI [Na adduct] Calcd for C12H18N2O2Na 245.1266 m/z; Found 

245.1270 m/z. 

 

 

2-Diazo-1-hydroxy-1-phenylhept-6-en-3-one (3.59): A mixture of benzaldehyde (171 

mg, 1.61 mmol) and diazo ketone 3.53 (300 mg, 2.42 mmol) in 6 mL of THF was treated 

with a solution of LDA in THF (2.42 mmol) according to the general procedure given for 

the preparation of 3.30 to give the addition product 3.59 in a 76% yield (283 mg, 1.23 

mmol).  1H NMR (CDCl3, 500 MHz) δ 7.42-7.31 (m, 5H), 6.03 (s, 1H), 5.87-5.79 (m, 1H), 

5.05 (m, 2H), 3.24 (s, 1H), 2.60 (t, J = 7.5 Hz, 2H), 2.43 (dd, J = 7, 14 Hz, 2H) 13C NMR 

(CDCl3, 125 MHz) δ 193.4, 128.8, 128.5, 125.8, 115.9, 68.4, 37.6, 28.5 IR (film) 2083 cm-

1 HRMS ESI [Na adduct] Calcd for C13H14N2O2Na 253.0953 m/z; Found 253.0951 m/z. 
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(E)-1-Diazopent-3-en-2-one (3.50): THF (7 mL) was added to a 1 M solution of LiHMDS 

(13 mmol) in THF in a flame-dried flask that was cooled to -78 °C.  3-penten-2-one (1.08 

g, 11.89 mmol) was added dropwise to this yellow solution over five minutes.  The mixture 

was stirred for 30 minutes at -78 °C followed by the addition of 2,2,2-

trifluoroethyltrifluoroacetate (1.75 mL, 13.08 mmol).  After stirring for 30 minutes at -78 

°C, the reaction was transferred to a separatory funnel containing 50 mL of diethyl ether 

and 40 ml of 5% HCl.  The yellow organic layer was removed and the aqueous layer was 

extracted with 25 mL of Et2O.  The organic layers were combined and washed with brine 

(50 mL) and dried over MgSO4.  The solvent was removed to give a brown oil that was 

immediately dissolved in 10 mL of dry MeCN and 0.2 mL of water.  Triethylamine (2.5 

mL, 17.9 mmol) was then added dropwise carefully (heating and smoking were observed).  

4-acetamidobenzenesulfonyl azide (4.28 g, 17.8 mmol) in 20 mL of MeCN was then added 

dropwise over 15 minutes.  After stirring at room temperature for 30 minutes, the reaction 

was complete as indicated by TLC.  The mixture was poured into a separatory funnel 

containing 50 mL Et2O and 30 mL of 5% NaOH.  The layers were separated and the 

aqueous layer extracted with 50 mL Et2O.  The organic layers were combined and then 

washed with 5% NaOH (3 x 30 mL); during these washes the aqueous layers were 

noticeably orange and the organic layer became progressively more bright yellow.  The 

organic layer was washed with 50 mL of water followed by 50 mL of brine, dried over 

sodium sulfate and the solvent was removed under reduced pressure.  The dark yellow oil 
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was purified by column chromatography (10% ether in hexanes) to give 811 mg (62% yield 

over two steps) of the diazo product 3.50 as a bright yellow oil.  NOTE: the product is 

relatively volatile (some codistillation with hexanes was observed) and is presumed, being 

a diazo compound, to be toxic.  Appropriate safety precautions should be taken and the use 

of a pentane/diethyl ether eluent is recommended for future purifications.  Spectral data for 

this compound matched the reported values from the literature.99 

 

 

(E)-1-Diazo-1-(1-hydroxycyclohexyl)pent-3-en-2-one (3.51):  A mixture of 

cyclohexanone (118 mg, 1.21 mmol) and diazo ketone 3.50 (200 mg, 1.82 mmol) in 6 mL 

of dry THF was treated with a solution of LDA in THF (1.82 mmol) according to the 

general procedure for the preparation of 3.30 to give the addition product 3.51 in a 24% 

yield (60 mg, 0.29 mmol).  1H NMR (CDCl3, 500 MHz) δ 6.95 (m, 1H), 6.30 (dd, J = 1 

Hz, 15 Hz 1H), 4.56 (s, 1H), 2.0-1.94 (m, 2H), 1.91 (dd, J = 2 Hz, 7 Hz, 3H), 1.82-1.72 

(m, 2H), 1.64-1.56 (m, 3H), 1.50-1.44 (m, 2H), 1.35-1.25 (m, 1H).  

 

 

3-Cyclohexylidene-6,6-dimethyltetrahydro-2H-pyran-2-one (3.46): 

Trispentafluorophenylborane (224 mg, 0.437 mmol) was dissolved in 6 mL of anhydrous 
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CH2Cl2 in a flame dried flask and the solution was cooled to -20 °C.  A solution of diazo 

ketone 3.30 (103.3 mg, 0.437 mmol) in 4 mL of dry CH2Cl2 was added via syringe all at 

once.  Immediately upon this addition gas evolution was observed and the yellow solution 

became clear.  After 15 minutes of stirring at -20 °C, the cold bath was removed and the 

reaction was allowed to warm to room temperature.  The solvent was removed in vacuo.  

Purification of the residue by column chromatography (15% diethyl ether in hexanes) gave 

60 mg (0.29 mmol, 66% yield) of the lactone product 3.46 as a white solid.  1H NMR 

(CDCl3, 500 MHz) δ 2.79 (t, J = 6 Hz, 2H), 2.55 (t, J = 7 Hz, 2H), 2.34 (t, J = 6 Hz, 2H), 

1.83 (t, J = 7 Hz, 2H), 1.74-1.67 (m, 2H), 1.66-1.60 (m, 2H), 1.60-1.54 (m, 2H), 1.08 (s, 

6H) 13C NMR (CDCl3, 125 MHz) δ 177.9, 175.2, 112.1, 89.2, 77.2, 34.9, 33.8, 32.7, 29.1, 

28.9, 26.2, 25.8, 22.0 HRMS ESI [M+1] Calcd for C13H20O2 209.1542 m/z; Found 

209.1541 m/z. 

 

 

2-Cyclohexylidene-5-methylhex-4-enoic acid (3.45): Carboxylic acid 3.45 was isolated 

as a minor product from the synthesis of compound 3.46 listed above and its spectral data 

is as follows.  1H NMR (CDCl3, 500 MHz) δ 5.05 (t, J = 6.5 Hz, 1H), 3.03 (d, J = 6.5 Hz, 

2H), 2.56 (m, 2H), 2.27 (m, 2H), 1.67 (d, J = 13 Hz, 6H), 1.64-1.57 (m, 6H) 13C NMR 

(CDCl3, 125 MHz) δ 152.0, 132.3, 123.2, 122.2, 32.8, 32.0, 28.4, 28.4, 28.2, 26.5, 25.7, 

17.8.     
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3-Phenyl-5-(propan-2-ylidene)cyclopent-2-enone (3.58): BCF (197 mg, 0.385 mmol) 

was dissolved in 6 mL of anhydrous CH2Cl2 in a flame-dried flask and the solution was 

cooled to -20 °C.  A solution of diazo ketone 3.57 (94 mg, 0.385 mmol) in 6 mL of dry 

CH2Cl2 was added via syringe all at once.  Immediately after this addition gas evolution 

was observed and the bright yellow solution became pale yellow.  After 30 minutes of 

stirring at -20 °C, the cold bath was removed and the reaction was allowed to warm to room 

temperature.  The solvent was removed in vacuo.  Purification of the residue by column 

chromatography (10% ethyl acetate in hexanes) gave 70 mg (0.35 mmol, 91% yield) of the 

cyclopentenone product 3.58 as a white solid.  1H NMR (CDCl3, 500 MHz) δ 7.62-7.58 

(m, 3H), 7.51 (m, 2H), 6.99 (s, 1H), 3.78 (s, 2H), 2.49 (s, 3H), 2.27 (s, 3H) 13C NMR 

(CDCl3, 125 MHz) δ 197.8, 177.5, 164.9, 134.6, 131.6, 129.9, 129.8, 128.4, 124.9, 35.7, 

26.6, 22.4 HRMS ESI [M+1] Calcd for C14H14O 199.1123 m/z; Found 199.1121 m/z.  



142 

 

Chapter 4 Experimental 

 

 

N-(3-hydroxyphenyl)pivalamide (4.13): Pivaloyl chloride (6 mL, 48.6 mmol) was added 

to a mixture of 3-aminophenol (5 g, 45.8 mmol) and sodium bicarbonate (11.5 g, 137 

mmol) in ethyl acetate (150 mL) and water (200 mL) and the reaction was stirred at room 

temperature for 1 hour.  The reaction was transferred to a separatory funnel and the aqueous 

layer removed.  The organic layer was washed with 2 M HCl, water, brine, and dried over 

magnesium sulfate.  The solvent was removed under reduced pressure to give the anilide 

4.13 (8.47 g, 96% yield) as a white solid.  Spectral data for this compound matched the 

reported values from the literature.118 

 

 

N-(3-((tetrahydro-2H-pyran-2-yl)oxy)phenyl)Pivalamide (4.14): Anilide 4.13 (1.77 g, 

9.16 mmol) and pyridinium p-toluenesulfonate (50 mg, 0.198 mmol) were dissolved in a 

mixture of anhydrous CH2Cl2 (60 mL) and 3,4-dihydro-2H-pyran (2.5 mL, 27.4 mmol).  

The solution was capped with a septum and stirred at room temperature overnight.  After 

16 hours of stirring, the reaction was transferred to a separatory funnel and washed with 50 

mL of 1 M NaOH, brine (50 mL), and the organic layer was dried over MgSO4.  The solvent 
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was removed under reduced pressure to give 4.14 (2.4 g, 94% yield) as a white solid.  

Spectral data for this compound matched the reported values from the literature.118   

 

 

N-(2-(1-hydroxy-3-methylbut-2-en-1-yl)-3-((tetrahydro-2H-pyran-2-

yl)oxy)phenyl)Pivalamide (4.15): Ether 4.14 (1.8 g, 6.49 mmol) was dissolved in 50 mL 

of dry THF in a flame-dried flask under nitrogen atmosphere and the solution was cooled 

to 0 °C.  n-Butyllithium (14.3 mmol) was added dropwise and the resulting dark yellow 

solution was stirred at 0 °C for 1 hour before being cooled to -78 °C.  3-methyl-2-butenal 

(0.75 mL, 7.79 mmol) was added dropwise, immediately causing a color change to pale 

yellow.  The reaction was allowed to warm to room temperature over 2 hours at which 

point 50 mL of water was added.  The layers were separated, the aqueous layer was 

extracted with Et2O (2 x 30 mL) and the organic layers were combined and washed with 

brine and dried over MgSO4.  After removal of the solvent and purification by column 

chromatography (15% ethyl acetate in hexanes), the yellow solid product was isolated as a 

mixture of diastereomers 4.15 (1.5 g, 64% yield).  NMR spectra are shown in the Appendix.  

HRMS ESI [Na adduct] Calcd for C21H31NO4Na 384.2151 m/z; Found 384.2153 m/z. 
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N-(2-(1-((tert-butyldimethylsilyl)oxy)-3-methylbut-2-en-1-yl)-3-((tetrahydro-2H-

pyran-2-yl)oxy)phenyl)Pivalamide (4.20): Alcohol 4.15 (382 mg, 1.05 mmol) was 

dissolved in 25 mL of dry CH2Cl2 in a flame-dried flask under nitrogen atmosphere.  The 

solution was cooled to 0 °C and 2,6-lutidine (0.26 mL, 2.24 mmol) was added by syringe 

followed by TBSOTf (0.50 mL, 2.11 mmol).  The light orange solution was allowed to 

warm to room temperature with stirring overnight (16 h).  50 mL of water was then added 

and the layers were separated.  The organic layer was dried over MgSO4 and the solvent 

was removed in vacuo.  Purification of the residue by column chromatography (10% ethyl 

acetate in hexanes) gave the product 4.20 as a colorless oil that was a mixture of 

diastereomers (409 mg, 82% yield).  NMR spectra are shown in the Appendix.  HRMS ESI 

[Na adduct] Calcd for C27H45NO4SiNa 498.3016 m/z; Found 498.3029 m/z.   

 

 

N-(2-(3-methylbut-2-enoyl)-3-((tetrahydro-2H-pyran-2-yl)oxy)phenyl)Pivalamide 

(4.16): Alcohol 4.15 (300 mg, 0.83 mmol) and manganese dioxide (3 g, 10x weight of 

starting material) was dissolved in 15 mL of CH2Cl2.  The reaction was sealed with a 

septum and stirred at room temperature overnight (16 h).  The mixture was filtered through 

a short pad of celite followed by a pad of silica gel using ethyl acetate as the eluent.  The 

solvent was removed under reduced pressure to give 270 mg (91% yield) of ketone 4.16 as 
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a colorless wax. 1H NMR (CDCl3, 500 MHz) δ 10.04 (s, 1H), 8.04 (d, J = 8.5 Hz, 1H), 

7.32 (t, J = 8.5 Hz, 1H), 6.92 (d, J = 8.5 Hz, 1H), 6.55 (s, 1H), 3.84 (m, 1H), 3.66 (m, 1H), 

2.23 (s, 3H), 1.95 (s, 3H), 1.90-1.60 (m, 6H), 1.29 (s, 9H)  13C NMR (CDCl3, 125 MHz) δ 

195.4, 177.3, 156.0, 154.3, 138.6, 132.4, 127.8, 119.9, 115.0, 110.0, 96.9, 61.9, 40.0, 30.2, 

27.9, 27.6, 25.1, 21.2, 18.3 HRMS ESI [Na adduct] Calcd for C21H29NO4Na 382.1994 m/z; 

Found 382.1996 m/z. 

 

 

N-(2,2-dimethyl-4-oxochroman-5-yl)Pivalamide (4.17): Ketone 4.16 (975 mg, 2.71 

mmol) was dissolved in 100 mL of methanol in a 250 mL round-bottom flask and 

pyridinium p-toluenesulfonate (50 mg, 0.2 mmol) was added.  The reaction was stirred 

under a nitrogen atmosphere for 2 hours and the solvent was removed under reduced 

pressure.  An aqueous sodium hydroxide solution (0.4 M, 130 mL) was added and the 

reaction was stirred for 1 hour at room temperature.  The chromanone product was 

collected by filtration and washing with water and was obtained as a white solid 4.17 (560 

mg, 75% yield over two steps). 1H NMR (CDCl3, 500 MHz) δ 11.99 (s, 1H), 8.31 (dd, J = 

1 Hz, 8.5 Hz 1H), 7.43 (t, J = 8.5 Hz, 1H), 6.59 (dd, J = 1 Hz, 8 Hz, 1H), 2.75 (s, 2H), 1.46 

(s, 6H), 1.35 (s, 9H) 13C NMR (CDCl3, 125 MHz) δ 196.8, 178.6, 160.7, 141.7, 137.7, 

112.1, 111.6, 107.8, 78.3, 49.6, 40.4, 27.6, 26.4 HRMS ESI [Na adduct] Calcd for 

C16H21NO3Na 298.1419 m/z; Found 298.1422 m/z. 
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(R)-2-(1-hydroxybut-3-en-2-yl)Isoindoline-1,3-dione (4.11): To a flame-dried 3-neck 

100 mL round-bottom flask under nitrogen was added 5 mg (0.0136 mmol) of [(η3-

C3H5)PdCl]2, 34.0 mg of ligand X (0.043 mmol), 18.0 mg (0.17 mmol) of sodium 

carbonate, and 500 mg (3.4 mmol) of phthalimide.  The reaction flask was evacuated and 

backfilled with nitrogen after the addition of each solid.  The flask was then degassed with 

nitrogen for 1 hour.  Anhydrous CH2Cl2 (28 mL) was then added and the solution was 

stirred for 10 minutes at room temperature during which time it took on a bright yellow 

color.  Butadiene monoxide (0.27 mL, 3.4 mmol) of was added via syringe and the reaction 

was stirred at room temperature for 16 hours.  The solvent was removed under reduced 

pressure and the residue was purified by column chromatography (30% ethyl acetate in 

hexanes) to give the DYKAT product 4.11 as a white solid (730 mg, 99% yield).  Spectral 

data for this compound matched the reported values from the literature115.   
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(R)-4-Vinyloxazolidin-2-one (4.8): Oxazolidinone 4.8 was prepared from phthalimide 

4.11 according to known procedures.  Spectral data for this compound matched the reported 

values from the literature.116 

 

 

(R,E)-N-(2,2-dimethyl-4-oxo-6-(2-(2-oxooxazolidin-4-yl)vinyl)chroman-5-

yl)Pivalamide (4.18): Chromanone 4.17 (104.7 mg, 0.38 mmol), rhodium catalyst (8.1 

mg, 0.0096 mmol), AgSbF6 (13 mg, 0.038 mmol), and Cu(OAc)2·H2O (15.2 mg, 0.076 

mmol) were dissolved in 3 mL of acetone.  Oxazolidinone 4.8 (43 mg, 0.38 mmol) was 

added as a solution in 2 mL of acetone and the reaction was capped with a septum and 

stirred for 16 hours at room temperature.  The solvent was removed and the residue was 

purified by column chromatography (24:1 chloroform:methanol) to give the coupling 

product 4.18 (100 mg, 68% yield) as a brown solid. 1H NMR (CDCl3, 500 MHz) δ 10.47 

(s, 1H), 7.63 (d, J = 9 Hz, 1H), 6.78 (d, J = 8.5 Hz, 1H), 6.30 (d, J = 15.5 Hz, 1H), 5.96 

(dd, J = 7.5, 15.5 Hz, 1H), 5.12 (s, 1H), 4.58 (t, J = 8.5 Hz, 1H), 4.48 (dd, J = 7.5 Hz, 15 

Hz, 1H), 4.15 (dd, J = 7 Hz, 8.5 Hz, 1H), 2.73 (s, 2H), 1.46 (s, 6H), 1.36 (s, 9H)  13C NMR 

(CDCl3, 125 MHz) δ 195.7, 177.9, 160.8, 159.0, 136.8, 134.2, 130.8, 124.4, 123.4, 115.5, 

111.9, 79.1, 70.5, 55.3, 49.7, 40.0, 27.5, 26.5, 26.4 HRMS ESI [Na adduct] Calcd for 

C21H26N2O5Na 409.1739 m/z; Found 409.1748 m/z. 



148 

 

 

(R)-N-(2,2-dimethyl-4-oxo-6-(2-(2-oxooxazolidin-4-yl)acetyl)chroman-5-

yl)Pivalamide (4.19): Alkene 4.18 (60 mg, 0.155 mmol), Pd(OAc)2 (14 mg, 0.062 mmol), 

and 1,4-benzoquinone (25 mg, 0.232 mmol) were added to a 10 mL flask under nitrogen.  

Degassed acetonitrile (1 mL) was added followed by HBF4 (50% solution in water, 0.05 

mL) and degassed water (0.5 mL).  The solution was stirred at room temperature for 16 

hours and then transferred to a separatory funnel.  The mixture was diluted with water (10 

mL) and DCM (10 mL).  The layers were separated and the organic layer was dried over 

MgSO4.  The solvent was removed under reduced pressure and the residue was purified by 

column chromatography (20:1 chloroform:methanol) to give 40 mg (64% yield) of the 

oxidation product 4.19 as a brown solid. 1H NMR (CDCl3, 500 MHz) δ 11.62 (s, 1H), 7.52 

(d, J = 8.5 Hz, 1H), 6.74 (d, J = 9 Hz, 1H), 5.85 (s, 1H), 4.61 (t, J = 8.5 Hz, 1H), 4.50 (m, 

1H), 4.12 (dd, J = 6.5, 9 Hz, 1H), 3.18-3.06 (m, 2H), 2.78 (s, 2H), 1.48 (s, 6H), 1.30 (s, 

9H) 13C NMR (CDCl3, 125 MHz) δ 197.6, 196.0, 178.0, 162.3, 159.0, 136.5, 136.3, 134.3, 

125.5, 113.4, 110.1, 79.4, 69.6, 49.5, 49.0, 45.6, 39.7, 26.9, 26.4, 26.3 HRMS ESI [M+1] 

Calcd for C21H26N2O6 403.1869 m/z; Found 403.1874 m/z. 
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Fusarochromanone (4.1): Ketone 4.19 (25 mg, 0.062 mmol) was dissolved in 1,4-dioxane 

(0.27 mL) and 6 N HCl (0.27) in a 5 mL flask fitted with a condenser.  The reaction was 

capped and heated to 60 °C for 16 hours.  The solvent was removed in vacuo and the residue 

was purified by column chromatography (70:10:1 chloroform:methanol:NH4OH) to give 5 

mg (unoptimized 28% yield) of fusarochromanone 4.1 as a brown solid.  Spectral data for 

this compound matched the reported values from the literature.113 1H NMR (CDCl3, 500 

MHz) δ 9.57 (s, 1H), 9.40 (s, 1H), 7.84 (d, J = 9 Hz, 1H), 6.07 (d, J = 9 Hz, 1H), 3.68-3.63 

(m, 1H), 3.52-3.48 (m, 2H), 3.06-3.00 (m, 1H), 2.94-2.88 (m, 1H), 2.70 (s, 2H), 1.46 (s, 

6H) 13C NMR (CDCl3, 125 MHz) δ 198.9, 193.8, 166.1, 154.8, 140.2, 111.8, 104.5, 104.1, 

79.4, 66.7, 49.7, 49.0, 43.1, 26.5   
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APPENDIX: NMR SPECTROSCOPIC DATA
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Figure A1: 1H NMR of 1.37 in CDCl3 
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Figure A2: 1H NMR of 2.10 in CDCl3 
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Figure A3: 13C NMR of 2.10 in CDCl3 
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Figure A4: 1H NMR of 2.11 in d6-DMSO at 65 °C 
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Figure A5: 13C NMR of 2.11 in d6-DMSO at 65 °C 
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Figure A6: 1H NMR of 2.23 in CDCl3 
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Figure A7: 13C NMR of 2.23 in CDCl3 
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Figure A8: 1H NMR of 2.30 in CDCl3 
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Figure A9: 13C NMR of 2.30 in CDCl3 
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Figure A10: HSQC of 2.30 in CDCl3 
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Figure A11: 1H NMR of 2.28 in CDCl3 
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Figure A12: 1H NMR of 2.39 in CDCl3 
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Figure A13: 1H NMR of 2.41 in CDCl3 
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Figure A14: 13C NMR of 2.41 in CDCl3 
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Figure A15: 1H NMR of 3.30 in CDCl3 
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Figure A16: 13C NMR of 3.30 in CDCl3 



 

 

1
9
1

 

 

Figure A17: 1H NMR of 3.47 in CDCl3 
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Figure A18: 13C NMR of 3.47 in CDCl3 
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Figure A19: 1H NMR of 3.57 in CDCl3 
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Figure A20: 13C NMR of 3.57 in CDCl3 
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Figure A21: 1H NMR of 3.55 in CDCl3 
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Figure A22: 13C NMR of 3.55 in CDCl3 
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Figure A23: 1H NMR of 3.54 in CDCl3 
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Figure A24: 13C NMR of 3.54 in CDCl3 
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Figure A25: 1H NMR of 3.59 in CDCl3 
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Figure A26: 13C NMR of 3.59 in CDCl3 
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Figure A27: 1H NMR of 3.51 in CDCl3 
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Figure A28: 1H NMR of 3.46 in CDCl3 
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Figure A29: 13C NMR of 3.46 in CDCl3 
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Figure A30: 1H NMR of 3.45 in CDCl3 
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Figure A31: 13C NMR of 3.45 in CDCl3 
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Figure A32: HSQC of 3.45 in CDCl3 
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Figure A33: HMBC of 3.45 in CDCl3 
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Figure A34: 1H NMR of 3.58 in CDCl3 
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Figure A35: 13C NMR of 3.58 in CDCl3 
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Figure A36: DEPT-135 of 3.58 in CDCl3 
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Figure A37: HMBC of 3.58 in CDCl3 
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Figure A38: 1H NMR of 4.15 in CDCl3 
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Figure A39: 13C NMR of 4.15 (major diastereomer peaks picked) in CDCl3 
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Figure A40: 1H NMR of 4.20 in CDCl3 
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Figure A41: 13C NMR of 4.20 (major diastereomer peaks picked) in CDCl3 
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Figure A42: 1H NMR of 4.16 in CDCl3 
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Figure A43: 13C NMR of 4.16 in CDCl3 
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Figure A44: 1H NMR of 4.17 in CDCl3 
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Figure A45: 13C NMR of 4.17 in CDCl3 
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Figure A46: 1H NMR of 4.18 in CDCl3 
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Figure A47: 13C NMR of 4.18 in CDCl3 
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Figure A48: 1H NMR of 4.19 in CDCl3 
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Figure A49: 13C NMR of 4.19 in CDCl3 
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Figure A50: 1H NMR of 4.1 in CDCl3 



 

 

2
2
5

 

 

Figure A51: 13C NMR of 4.1 in CDCl3 
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