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IN VIVO CHARACTERIZATION OF PTEN KO (+/-) CA1 NEURONS 

Abstract 

While cognitive deficits have been described in the heterozygous Pten (+/-) KO mouse 

model of autism, little work has been done to demonstrate how corresponding in vitro 

physiological alterations in this model may underpin these cognitive deficits in vivo. We attempt 

to bridge this gap between cognitive and physiological dysfunction by measuring the efficacy of 

hippocampal networks through the in vivo recording of CA1 place cells. As Pten KO (+/-) is known 

to alter electrophysiological characteristics of neurons in vitro, this study measures the in vivo 

electrophysiological characteristics of CA1 interneurons, pyramidal cells, and place cells which 

may underlie the spatial cognitive deficits seen in the model. Four transgenic conditional 

heterozygous Pten+/loxPloxP;Gfap-cre mice (HetPten) and four homozygous Pten littermate control 

mice were used in this study. This transgene drives cre expression and excision of the Pten gene 

in hippocampal granule cells of the dentate gyrus, and neurons in CA2 and CA1, but not astrocytes. 

In vivo local field potentials and single cell recordings were made in CA1 of each mouse during 

an open field foraging task in two distinct arenas. HetPten mice were found to have increased 

interneuron and pyramidal cell firing rates. In addition, place cells demonstrated abnormal 

properties including increased out-of-field firing rates, an increased number of fields, and trends 

towards larger field sizes that were less stable in comparison to controls. HetPten mice had slower 

CA1 fast gamma oscillations and more variable speed/theta oscillation correlations. Behaviorally, 

there were weak trends towards decreased motor output compared to controls. These data suggest 

that the electrophysiological alterations due to Pten KO (+/-) in mouse hippocampal neurons lead 

to hyperactivation of CA1 interneurons, pyramidal cells, and place cells. Rectifying these 

abnormal network conditions through a Pten rescue may represent a possible avenue for 

therapeutic intervention in the Pten KO (+/-) model.  
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Introduction 

Autism spectrum disorders (ASD) are a set of neurological disorders characterized by 

repetitive movements, deficits in social interactions, and other cognitive impairments that can 

range from mild to severe and affect up to 1.5% of children in the United States (American 

Psychiatric Association, 2013; Christensen et al., 2016). Sibling studies have shown that families 

that have had their first child diagnosed with an ASD have up to a 26% chance of having a second 

child with an ASD, ASD-related language delay, deficits in social skills, or deficits in 

communication skills, thus highlighting the underlying genetic component to ASD (Constantino, 

Zhang, Frazier, Abbacchi, & Law, 2009). Nearly 46% of ASD families have been found to have 

gene copy number variations not seen in non-ASD families and a recent meta-analysis identified 

103 known genes associated with ASD (Marshall et al., 2008; Betancur, 2012). One of these 

underlying genes codes for the phosphatase and tensin homolog enzyme (Pten).  

In humans, Pten mutations have been implicated in up to 8.3% of ASD and a majority of 

which are heterozygous mutations affecting only a single allele of the Pten gene (Varga, Pastore, 

Prior, Herman, & McBride, 2008; McBride et al., 2010). Frazier et al (2015) found that in a cohort 

of 31 germline heterozygous Pten-ASD patients, 41% of Pten mutations were de novo, 24% were 

inherited, and 35% had no known inheritance. Additionally, the group found that 51.6% of the 

mutations were missense, and all the mutations led to a decrease in Pten expression. Clinically, 

heterozygous Pten-ASD patients have increased brain volume and white matter volume, 

subsequently leading to macrocephaly (Varga et al., 2009; Frazier et al., 2015). Additionally, 

heterozygous Pten-ASD is associated with cognitive deficits as indicated by decreased full-scale, 

verbal, and non-verbal IQ scores (Frazier et al., 2015).  
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In vitro and Pten KO mouse models have been useful in studying the effects of Pten 

mutations, although more work has gone into investigating the effects of homozygous Pten KO as 

opposed to heterozygous Pten KO models (Kwon et al., 2001; Clipperton-Allen & Page, 2014; 

Weston, Chen, & Swann, 2012). Heterozygous Pten knockout mice, however, have macrencephaly 

and deficits in social and spatial behavior, correlating to the symptomology and heterozygosity in 

the human condition (Page, Kuti, Prestia, & Sur, 2009; Kwon et al., 2006). 

Pten is a critical enzyme in the mechanistic target of rapamycin (mTOR) signaling 

pathway. This pathway functions in the regulation of protein synthesis through the activation of 

S6K1, an enzyme involved in protein translation, and the inhibition of 4E-BP1, an enzyme that 

inhibits the formation of the 5’ guanine cap on pre-mRNA transcripts (Brown et al., 1994; Holz, 

Ballif, Gygi, & Blenis, 2005; Hara et al., 1997). In the mTOR pathway, insulin receptor signaling 

activates P13K to convert PIP2 into PIP3 which then binds with PDK1 to activate the enzyme Akt 

(Volinia et al., 1995). Akt inhibits TSC1 and TSC2 which disinhibits their target (Rheb) to activate 

mTORC1 (Inoki, Li, Zhu, Wu, & Guan, 2002) (Figure A1).  

Pten acts as an early negative regulator of the mTOR pathway as it converts PIP3 to PIP2, 

thus reducing the concentration of intracellular PIP3 and limiting its downstream activation of 

mTORC1 (Cantley & Neel, 1999; Stambolic et al., 1998) (Figure A1). This action prevents the 

mTOR pathway from becoming hyperactive while a loss of Pten function, such as through an 

inactivating mutation or heterozygous knockout, leads to mTOR hyperactivity and dysregulated 

protein synthesis (Lu et al., 1999; Weston, Chen, & Swann, 2012). This dysregulation in both 

heterozygous and homozygous Pten KO leads to an increase in neuronal cell body size (Kwon et 

al., 2001; Weston, Chen, & Swann, 2012; Chen, Huang, Sejourne, Clipperton-Allen, & Page, 

2014).  
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Cell body size in neurons is directly proportional to its membrane capacitance, with an 

increase in soma size leading to an increase in membrane capacitance. The membrane capacitance 

of a neuron is inversely proportional to the membrane resistance, thus, according to Ohm’s law (V 

= IR), it is inversely proportional to the membrane voltage. With an equivalent input current to the 

membrane, such as a postsynaptic current generated from the opening of postsynaptic ionotropic 

channels, the resulting excitatory postsynaptic response will be of smaller magnitude in a larger 

neuron compared to a smaller neuron. Consequently, a greater current input is necessary for a 

larger neuron to change the membrane voltage to the equivalent magnitude on a smaller neuron. 

Conversely, in vitro neurons with homozygous Pten KO have been shown to make an 

increased number of synapses which may underlie the increased white matter volume seen in the 

human condition (Weston, Chen, & Swann, 2012; Frazier et al., 2015). Additionally, homozygous 

Pten knockout neurons have been shown to increase the evoked response in postsynaptic excitatory 

and inhibitory neurons (Weston, Chen, & Swann, 2012; Vogt, Cho, Lee, Sohal, & Rubenstein, 

2015). In cortical parvalbumin interneurons, homozygous Pten KO leads to an increase in post-

synaptic currents on layer one cortical pyramidal cells by nearly a factor of two (Vogt et al., 2015). 

Tonic stimulation of presynaptic glutamatergic neurons with a homozygous Pten KO has been 

shown to increase the spiking rate of postsynaptic neurons relative to controls. This is due to an 

increase in the number of releasable synaptic vesicles released into the synaptic cleft, an increase 

in the miniature event size, and an increase in the number of synapses formed by affected neurons 

(Weston, Chen, & Swann, 2012; Weston, Chen, & Swann, 2014).  

Pten also influences dendritic morphology, as inhibited Pten activity leads to increased 

dendritic arborization, increased density of mature mushroom spines in the dentate gyrus, and a 

decreased number of immature thin dendritic spines (Jaworski, Spangler, Seeburg, Hoogenraad, 
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& Sheng, 2005; Haws et al., 2014). These physiological alterations manifest as an overall increase 

in synaptic transmission in homozygous Pten KO neurons, leading to an increased excitation in 

excitatory neurons and increased depression of postsynaptic targets in inhibitory neurons, 

characteristics that can influence the activity of a neuronal network (Weston, Chen, & Swann, 

2014; Vogt et al., 2015).  

Neural networks represent a precise balance of regulated connectivity between neurons in 

respect to the number of synapses made in the network, the magnitude of those connections, the 

timing of inputs and outputs, and the balance between network level excitation and inhibition. 

Altering the electrophysiological characteristics of the neurons in a network and their synaptic 

transmission dynamics, as what occurs with a knockout of Pten, has critical implications for the 

functionality of a neural network. 

One of the most characterized neural networks is the hippocampal circuit which consists 

of inputs originating from layer two of the entorhinal cortex that synapse in the dentate gyrus and 

CA3 (Ramón y Cajal 1893; Steward & Scoville, 1976). Dentate gyrus granule cells then send 

mossy fibers that synapse on CA3 pyramidal cells which have autosynaptic connections and send 

Schaffer collaterals that synapse in the stratum radiatum on the apical dendrites of CA1 pyramidal 

neurons (Ramón y Cajal 1893; Blackstad, Brink, Hem, & June, 1970; Ishizuka, Weber, & Amaral, 

1990). CA1 then sends information to both layer five of the entorhinal cortex and the subiculum, 

the latter of which then sends information to layer five of the entorhinal cortex, completing the 

cyclical perforant pathway. Layer three in the entorhinal cortex also makes a reciprocal connection 

with CA1 which directly synapses in the stratum lacunosum-moleculare on the apical dendrites of 

CA1 pyramidal cells (Lorente 1934; Naber, Silva, & Witter, 2001). The hippocampal network has 

primary functions in sequence generation, pattern separation, learning, and memory processes, 
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including those involving spatial information and Pten, as part of the mTOR pathway, has been 

implicated in these cognitive processes (Fortin, Agster, & Eichenbaum, 2002; Banko, Hou, Poulin, 

Sonenberg, & Klann, 2006).  

Spatial cognition is an emergent phenomenon from the integration of signals from the 

spatial encoding system which includes grid cells, head direction cells, and place cells. Place cells 

are found in the dentate gyrus and the CA1 and CA3 regions of the dorsal hippocampus and 

characteristically fire in a discrete region in space within a given environment called a place field 

(Brun et al., 2002). Within the hippocampal place cell ensemble, each individual place field is 

thought to serve as a coordinate in a cognitive map that helps guide spatial behavior (O’Keefe, 

1976). In vivo, rat place fields are stable within a given environment indefinitely and have been 

directly linked to spatial task performance with alterations in firing properties, such as field 

stability and field size, leading to decreased spatial performance (Thompson & Best, 1990; Lenck-

Santini, Muller, Save, & Poucet, 2002; Liu et al., 2003). Furthermore, place fields have been shown 

to remap or change their firing location when moving from one context to another with different 

cognitive maps composed of ensemble place fields representing different contexts (Muller & 

Kubie, 1987; Bostock, Muller, & Kubie, 1991). Mice, on the other hand, have been shown to have 

reduced long-term stability for CA1 place fields as well as reduced CA1 remapping compared to 

rats (Kentros, Agnihotri, Streater, Hawkins, & Kandel, 2004).  

CA1 place cells receive topographically organized input from both the entorhinal cortex, 

thought to represent real-time somatosensory input to let the animal know where it currently is in 

space, and CA3, thought to represent a stored representation of the particular context (Hasselmo, 

Bodelón, & Wyble, 2002; Naber, Silva, & Witter, 2001; Ishizuka, Weber, & Amaral, 1990). These 

inputs are regulated by interneurons, such as basket cells, bistratified cells, and OLM cells, that 
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bias the impact of either CA3 or entorhinal input on the frequency and timing of the output from 

CA1 pyramidal and place cells (Freund & Buzsáki, 1996). The precise timing of place cells firing 

within hippocampal theta oscillation, rhythmic ensemble firing patterns around five to twelve 

hertz, is thought to be critical for proper spatial processing and separating phases of encoding and 

recall (Mizuseki et al., 2009; Hasselmo & Stern, 2014; Barry et al., 2016).  

Proper computation of spatial information in CA1 is dependent on the precise timing and 

firing of inputs from CA3 and the entorhinal cortex, proper integration of that input, and the 

generation of a spike output to downstream targets (Hasselmo, Bodelón, & Wyble, 2002; Naber, 

Silva, & Witter, 2001; Ishizuka, Weber, & Amaral, 1990). This computation depends not just on 

the place cells in CA1 themselves but the proper function of the entire network including both 

pyramidal cells and interneurons which underlie the excitation-inhibition balance of the circuit 

(Royer et al., 2012). Disruptions in the temporal firing pattern of inputs into CA1 place cells may 

disrupt communication from CA1 place cells to downstream targets that utilize that spatial 

information. These disruptions could stem from upstream sources such as the entorhinal cortex, 

CA3, dentate gyrus, which has been modeled as a pattern separator that feeds into CA1 and CA3, 

or from altered firing patterns from regulatory interneurons in all four regions (Heinemann et al., 

2001; Neunuebel & Knierim, 2014). Santos et al. (2017) demonstrated in vitro that homozygous 

Pten KO increased excitability in mouse dentate gyrus granule cells. A question arises as to 

whether in vivo this increased excitability due to homozygous or heterozygous Pten KO leads to 

improper pattern separation and information filtering by the dentate gyrus. As different sets or 

patterns of visual, auditory, and olfactory stimuli define different spatial environments, improper 

pattern separation may lead to a reduced capacity to discern between different environments that 

may be indicative of the spatial deficits seen in the Pten KO model (Kwon et al., 2006).  
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Understanding the changes in the electrophysiological properties of hippocampal neurons, 

especially place cells, in heterozygous Pten KO animals in comparison to controls will bridge 

observations of Pten KO induced alterations to morphology at the cellular level and the observed 

cognitive deficits at the behavioral level. If altered place field firing properties are characteristic 

of Pten (+/-) KO mice and these alterations result from network level abnormalities in the 

excitation-inhibition balance due to increased excitability and activity of heterozygous Pten KO 

pyramidal cells and interneurons, then correcting for the network level abnormalities may help 

rectify place field properties as well as improve the function of the network. If interneurons and 

non-place cell pyramidal cells have altered electrophysiological properties, such as increased firing 

rates, these may also be indicative of network level abnormalities in the excitation-inhibition 

balance and may also be corrected for by rectifying these network level abnormalities. A Pten 

rescue, whereby the excitatory effects of heterozygous Pten KO are reduced, could then lead to a 

restoration in the balance of excitation and inhibition at the network level in the hippocampal 

ensemble. This reinstatement of proper upstream inputs, such as from CA3 and the entorhinal 

cortex, could rectify CA1 place field firing properties thus both improving the spatial cognitive 

deficits in the Pten (+/-) KO model and acting as a measure for restored network functionality.  

Network level activity and functionality in the hippocampus can be assessed by local field 

potentials in the circuit. One measure of the functionality of the hippocampus is speed/theta 

integration in which CA1 theta oscillations increase in frequency as mouse or rat moves faster 

(Richard et al., 2013; Bender et al., 2015; Blumberg et al., 2016). Pten (+/-) KO induced changes 

to network dynamics would disrupt this higher order integrative function of CA1. Network 

functionality can also be assessed through measures of slow and fast gamma oscillations which 

are modulated by OLM interneurons and thought to represent the routing of information within a 
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circuit and the interactions between pyramidal cells and interneurons (Wang & Buzsáki, 1996; 

Colgin & Moser, 2010). Disruptions to gamma frequencies may underlie changes in the efficacy 

of information processing in the heterozygous Pten KO model which manifest as spatial cognitive 

deficits.  

This study aimed to measure altered in vivo electrophysiological characteristics of 

interneurons, pyramidal cells in mass, place cells, and local field potentials in the CA1 region of 

the hippocampus that arise in a heterozygous Pten (+/-) KO model of autism in mice. It was 

hypothesized that: 

1. In vivo Pten (+/-) KO induced excitability of granule cells in the dentate gyrus would 

lead to altered CA1 place field remapping compared to controls. 

2. Altered CA1 place cell remapping would be indicative of increased firing rates that 

accompany altered CA1 place field properties including the number of fields per cell, 

field size, and field coherence compared to controls. 

3. CA1 pyramidal cells and interneurons would have increased firing rates compared to 

controls, representing a local dysregulation in the excitation-inhibition balance that 

disrupts CA1 place cell properties.  

4. CA1 will have altered local field potentials, including theta, slow gamma, and fast 

gamma oscillations and changes to speed/theta correlations indicative of Pten (+/-) KO 

induced network level information routing alterations from CA3 and the entorhinal 

cortex compared to controls.  
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Methods 

Animals: 

Four transgenic conditional heterozygous Pten+/loxPloxP;Gfap-cre mice (HetPten) with a Cre 

recombinase construct under the control of a modified glial fibrillary acidic protein (Gfap) 

promoter were used in this study. This transgenic model has been characterized previously and 

was chosen, as opposed to a homozygous Pten KO model, because it parallels the heterozygosity 

of the Pten-ASDs in humans thus allowing for better translation to the human condition (Kwon et 

al., 2001; Clipperton-Allen & Page, 2014). In heterozygous mice, only a single Pten allele was 

floxed and removed by the Cre recombinase enzyme. Expression of the transgene occurs primarily 

in granule cells in the mouse nervous system, such as in the dentate gyrus, but has been found to 

infect neurons in CA2 and CA3 as well but to a lesser extent. Virtually no astrocytes have been 

reported to express cre (Kwon et al., 2001). Four homozygous Pten+/+;Gfap-cre litter control mice 

were used which had both functional copies of Pten intact.  

Apparatus: 

Two arenas were used for an open field foraging task: Arena A and Arena B. Arena A was 

a solid brown cardboard cylindrical arena 46.04 cm in diameter with a white cue card taped along 

the inside wall. The cue card spanned the height of the arena and wrapped around one-third of the 

arena’s inner circumference. Arena B was a gray plastic cylinder with a diameter of 48.26 cm and 

with a white card that ran along the inner surface, spanning the height of the wall and wrapping 

around one-third of the arena. The white card was positioned disparately to the white card in Arena 

A relative to the recording room.  

Preimplantation Protocol: Behavior Screening: 
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Prior to electrode implantation, mice were food deprived for one week to reduce their 

bodyweight to 85% of their pre-food deprivation bodyweight. Mice were screened in an open field 

paradigm. With this paradigm, each mouse was placed in Arena A for thirty-minute trials where 

they could freely roam (sample) the arena. Periodically, food pellets were dropped from an 

overhead remote feeder to promote sampling of the entire arena. At least one trial was performed 

for each individual mouse and trials were continually performed until the mouse became familiar 

with the arena and would sufficiently sample the entire arena in a thirty-minute trial window. 

Sufficient sampling was defined as the mouse traversing both along the edge of the arena along 

the wall as well as out in the center of the arena on a regular basis as mapped by video tracking of 

the animal. Four HetPten and four control mice met training criteria. Once they reached training 

criteria, mice were taken off food restriction for one week or until they returned to their pre-food 

restriction weight in preparation for surgical electrode array implantation.  

Electrode Array Implantation: 

Custom electrode implants were constructed from components obtained from Versadrive, 

Neuralynx, and GMW LLC allowing for in vivo local field potential and single cell recordings. 

Each electrode was comprised of four tetrode recording bundles each containing four individual 

recording wires, one 50-µm reference wire, and one 50-µm ground wire. Implantation surgeries 

were performed when the mice were between the ages of seven weeks and twenty-four weeks.  

 Mice were anesthetized with inhaled isoflurane and placed in a stereotaxic frame for the 

duration of the surgery. One electrode array was implanted into the CA1 region of the left 

hippocampus (AP = -2.0 mm; ML = +1.8 mm; with respect to Bregma) in each mouse. Two 

heterozygous Pten mice and one control mouse had a single ground wire implanted in the right 

cerebellum, two heterozygous Pten mice had a reference wire implanted directly into the left 
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cerebellum and a ground wire soldered to a skull screw inserted through the right side of the 

interparietal bone, and three control mice had a single ground wire soldered to a skull screw 

inserted through the right side of the interparietal bone. Introduction and then the unitary use of 

the ground wire soldered to a skull screw was found to improve the signal quality of implanted 

mice during behavioral recordings. The electrode arrays were anchored to the skull with Grip 

Cement (Dentsply Inc.) and topical antibiotics were applied to the borders of the surgical site. 

After the surgery, animals were given a one-week recovery period before being put back on food 

restriction to a bodyweight of 85% of the presurgery weight in preparation for the open field 

foraging task.  

Post-Implantation Protocol: Open Field Foraging Task: 

For the open field foraging task, mice were placed in Arena A and connected to a cable 

that was positioned directly above the recording arena. This cable was connected to a Neuralynx 

Cheetah recording system that allowed for eight-channel local field potential recordings, two per 

tetrode, and sixteen single unit electrode recordings, four per tetrode. Local field potential signals 

were preamplified at the headstage and then fed into signal amplifiers in the Neuralynx Cheetah 

recording system. Local field potentials were filtered at 1-9000 Hz and reference to the ground 

wire. Individual single unit electrode channels were referenced to another electrode channel 

determined per trial to be the least active.  

A camera was positioned directly above the arena that tracked an LED light attached to the 

connection point of the cable to the electrode implant. Mice freely sampled the arena until either 

sufficient sampling was achieved (~ 20 minutes) or it was determined that sufficient sampling 

would not be achieved in which case the trail was not analyzed. Sufficient sampling was defined 

as the animal traversing both along the edge of the arena along the wall as well as out in the center 
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of the arena on a regular basis as indicated by a heat map of the recorded trajectory. Insufficient 

sampling was defined as the animal remaining stationary for extended periods of time, was 

exclusively performing thigmotaxic behavior, or only moving around the center of the arena. Food 

pellets were periodically dropped from an overhead remote feeder to promote sampling of the 

entire arena.  

  After the first trial in Arena A, mice were taken out of the arena and placed in their 

homecage for a five to ten-minute rest period. Mice were then placed back into Arena A for a 

duplicate trial. After the duplicate trial, mice were placed back in their homecage for a five to ten-

minute rest period while Arena A was swapped from Arena B. Mice were placed into Arena B for 

a third trial for a minimum of twenty minutes to mimic the Arena A trials. After the first Arena B 

trial, mice were placed in their homecage for a five to ten-minute rest period before being placed 

in Arena B again for a duplicate trial. The full behavioral sequence consisted of all four trials: A1, 

A2, B1, and B2.  

 After a recording sequence, each tetrode was manually lowered such that new cells could 

be recorded. Recording sessions were halted when either the tetrodes could not be lowered any 

further or the recording site was determined to be beyond the CA1 region of the hippocampus.   

Histology: 

Upon completion of the electrophysiological recordings from each respective mouse, each 

mouse was perfused to allow for slice analysis to verify that recordings were made in the dorsal 

CA1 region of the hippocampus. Perfused brains were set in OCT and sectioned in 30 µm sections 

on a cryostat. Cresyl violet staining was performed to identify the lesion tracks of the electrode 

array wires in the mouse brain. First, the sections were washed in distilled water for fifteen 

seconds, then incubated for five minutes in a cresyl violet stain, then incubated in successive thirty-
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second intervals in 70% ethanol, 95% ethanol, and 95% ethanol-glacial acetic acid solutions. The 

sections were then placed in 100% ethanol for ninety seconds before two one-minute incubations 

in xylene. The sections were then allowed to set for seventy-two hours before imaging on a light 

microscope. This analysis confirmed all recordings were from the CA1 region of the left 

hippocampus (see Figure 2A for an example cresyl violet stain).  

Motor Baseline Open Field Task:  

Baseline motor behavior was measured through positional tracking in an open field maze. 

Four additional, unimplanted HetPten mice and four litter control mice were used. All mice were 

between five and six weeks old. No mouse was implanted or put on food restriction at any point 

during the experiment. On day one, each mouse was placed into Arena A and allowed to freely 

sample the arena for two thirty-minute sessions. On day two, each mouse was placed into Arena 

A for two additional thirty-minute sessions. No food pellets were dropped to encourage sampling 

on either day. Position measurements recorded by a camera positioned directly over the arena and 

were analyzed by custom software (Biosignal, Brooklyn).  

Data Analysis:  

Post Implantation Open Field Foraging Task: EEG Spectral Analysis:  

One EEG channel was taken per tetrode that had at least one recorded pyramidal cell, place 

cell, or interneuron in A1 and B1 sessions. The EEG spectral analysis was performed with a custom 

MATLAB software for fast and slow theta (5 -12 Hz), slow gamma (25 – 50 Hz), and slow gamma 

(65 – 140 Hz) frequencies along the following parameters: mean frequency, peak frequency, 

normalized mean frequency amplitude, and peak frequency amplitude. Mean frequency and 

normalized mean frequency amplitude analyses were performed across the respective frequency 

band for slow gamma, fast gamma, and combined fast and slow theta frequencies. The mean 
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frequency amplitude was normalized to minimize the bias of EEG recording site depth within CA1 

on frequency amplitudes.  

Post Implantation Open Field Foraging Task: Single Unit Recordings:  

Single unit recordings from the open field foraging task were initially analyzed with the 

cell clustering program Offline Sorter (version 2.8.8., Plexon Inc) to define which recorded action 

potentials corresponded to either a particular pyramidal cell or interneuron based on recorded 

waveform properties. All relevant spiking units were then analyzed with a custom MATLAB 

program. Interneurons were analyzed in terms of mean firing rate. Mean firing rate was defined as 

the number of action potentials per second across an entire arena across an entire trial length. 

The pyramidal cells were analyzed to determine their firing coherence and mean firing rate. 

Coherence represented a measure of how similar the firing rate of a binned pixel representing a 

discrete area within an arena was with the firing rates of its neighboring pixels. The overall 

coherence is an average of each individual pixels’ coherence.  

A subset of the pyramidal cells was separately classified and analyzed as place cells if they 

had an observed placed field based on the following criteria: in at least one session in a recording 

series, the cells had a coherence of ≥ 0.24, ≥ 9 contiguous pixels with spiking activity, a mean 

firing rate ≤ 2.6 Hz, and a field size that did not encompass the entire arena. Place cells were 

analyzed in terms of the number of place fields, coherence, out-of-field, infield, and mean overall 

firing rates, field size, and field stability. Out-of-field firing rate was defined as the mean firing 

rate across all non-place field pixels, infield firing rate was defined as the mean firing rate across 

all place field pixels, and mean overall firing rates were defined as the mean firing rate across all 

pixels within the arena. Field size was defined as the number of pixels that comprised the largest 

place field per cell per session. Field stability was defined as a function of how similar the firing 
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rate for a discrete region of an arena was between two sessions. This was calculated by averaging 

the pixel-pixel rate correlation across all corresponding pixels between pairs of sessions (A1A2, 

A1B1, A1B2, A2B1, A2B2, and B1B2). 

Motor Baseline Open Field Foraging Task:  

Baseline motor behavior for unimplanted HetPten mice and control mice was analyzed 

along the following parameters: total path traveled, average running speed, and trajectory linearity. 

The total path traveled represented the total distance (m) the mouse made during the thirty-minute 

trial. Average running speed (cm/s) was defined as the total distance the mouse traveled (cm) 

divided by the trial time (1800 seconds). Trajectory linearity was used as a measure of annular 

motion during each sampling session, with a value of one representing a perfectly linear trajectory 

and values approaching zero representing increasingly annular motion. 

Statistical Analysis: 

Statistical analyses were performed with SPSS. A generalized estimating equation (GEE) 

with a gamma log-link distribution was used to determine statistical significance by animal 

between groups (HetPten vs. control) across sessions (A1, A2, B1, and B2). This was done for 

EEG analyses, pyramidal cell mean firing rates, place cell infield, out-of-field, and mean overall 

firing rates, coherence, field size, and field stability, and the baseline behavior parameters. GEEs 

are a type of regression marginal models that allow for the analysis of correlated and clustered 

data. A gamma with log link model was used because these variables are scalar and are skewed 

toward positive values in a non-normal distribution.  

A GEE with a gamma log-link distribution was used to determine the statistical 

significance of interneuron mean firing rate by animal between groups while collapsing across 

sessions (HetPten vs. control mice). Sessions were used as a covariate for this analysis.  
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A GEE with a Poisson log-link model was used to determine statistical significance by 

animal between groups (HetPten vs. control) across sessions (A1, A2, B1, and B2) for the number 

of place fields per place cell. A Poisson log-link model was used because the number of place 

fields is a count variable that is skewed toward positive values in a non-normal distribution.  

Results 

HetPten mice have altered CA1 place field stability and remapping 

 In this Pten (+/-) KO model, granule cells in the dentate gyrus are a primary target of the 

heterozygous Pten KO leading to increased excitability in granule cells (Hasselmo, Bodelón, & 

Wyble, 2002; Naber, Silva, & Witter, 2001; Ishizuka, Weber, & Amaral, 1990). The dentate gyrus 

is involved in pattern separation including discerning between the set of sensory cues, from the 

entorhinal cortex, that that define one environment over another (Heinemann et al., 2001; 

Neunuebel & Knierim, 2014). This pattern separation would influence remapping in which one 

ensemble of place cells in CA1 representing an environment changes to a new ensemble when 

moving to a second environment. We investigated whether in vivo Pten KO induced excitability 

of granule cells in the dentate gyrus would lead to altered place field remapping in HetPten mice 

compared to controls. 

To determine this, single unit recordings of CA1 place cells were performed on HetPten (n 

= 4) and control (n = 3) mice during an open field task across four sessions in two different contexts 

(A1, A2, B1, and B2) (for cell counts across animals see Table A1). Muller rate map and smoothed 

map representations of HetPten CA1 neurons reveal place field properties as seen by two example 

place cells recorded in P1 (Figure 1). Place Cell 1 had a defined field of firing in the center of 

Arena A in session A1, with little firing along the periphery of the arena and increasing firing rates 

toward the center of the field. This feature, coupled with the high field coherence of 0.439 (S.U.), 
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a mean firing rate of 0.792 Hz, and the presence of > 9 contiguous pixels in the firing range 

characterize this as a place field. This field is not stable, however, in A2 as the field coherence 

drops to 0.151 (S.U.), thus failing to meet place field criteria. In Arena B, Place Cell 1 forms a 

field along the upper edge of the arena with proper coherence, size, and firing rate. This place field 

remains stable between B1 and B2 (Figure 1A). While the relative location of the place field in 

Arena B was similar to Arena A, the place fields in each arena have distinct firing patterns from 

one another. This demonstrates remapping in Place Cell 1 as a new field was generated for the 

Figure 1: Muller rate maps and smoothed maps of P1 place cells (n = 2) across all four open field sessions. Muller rate maps 

measure the firing rate per pixel of a place cell with cooler colors representing an increased firing rate. Smoothed maps minimize 

lower firing rate pixels and maximize higher firing rate pixels to limit the effect of recording noise. Muller rate maps and smoothed 

maps were rate filtered to only firing activity when P1 was moving ≥ 5 cm/s. The place field coherence is indicated above each 

Muller rate map for the corresponding session (left). A, Place Cell 1. B, Place Cell 2.  
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single place cell between two different contexts, a characteristic feature of place cells. HetPten 

Place Cell 2, on the other hand, had no place fields in Arena A, but in Arena B, a place field 

emerged with a field coherence, firing rate, and size that met place field criteria in both B1 and B2 

sessions. This represents another example of remapping by a HetPten place cell, as the firing field 

in Arena B was discrete from the firing activity in Arena A.  

Muller rate map and smoothed map representations of recorded control CA1 neurons reveal 

place field properties as seen in two neurons (Figure 2). Control Place Cell 1 has a defined high 

Figure 2: Muller rate maps and smoothed maps of C1 place cells (n = 2) across all four open field sessions. Muller rate maps 

measure the firing rate per pixel of a place cell with cooler colors representing an increased firing rate. Smoothed maps minimize 

lower firing rate pixels and maximize higher firing rate pixels to limit the effect of recording noise. Muller rate maps and 

smoothed maps were rate filtered to only firing activity when P1 was moving ≥ 5 cm/s. The place field coherence is indicated 

above each Muller rate map for the corresponding session (left). A, Place Cell 1. B, Place Cell 2.  
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firing rate range on the lower left quadrant of Arena A in which the highest firing rates were in the 

center of the field and lower firing rates along the right side of the arena. With a field coherence 

of 0.451 S.U., a mean firing rate of 2.376 Hz, and > 9 contiguous pixels in A1, Control Place Cell 

1 met the criteria for having a place field. This field remained stable in A2 but with the context 

switch between A2 and B1, the field remapped to a new location along the lower edge of the arena. 

This field remained relatively stable in session B2 (Figure 2A). Control Place Cell 2 had a field 

along the right edge of Arena A and a subfield along the opposing wall which remained stable in 

A2. These fields then rotated during the context switch to Arena B in B1, but in B2 the field 

degraded into four dispersed fields along the upper right and lower left portions of Arena B. This 

showed that while there was adequate field stability in Arena A, the field stability in Arena B was 

decreased (r = 0.1624 between A1A2; r = 0.0682 between B1B2) (Figure 2B).   

Place Field Stability:  

When analyzing across groups, controls place cells had a greater field stability within 

Arena A and between sessions A2 and B1 respectively compared to HetPten place cells (r = 0.060 

± 0.0124 in A1A2, and r = 0.024 ± 0.0060 in A2B1 in HetPten vs r = 0.123 ± 0.0001 in A1A2, and 

r = 0.057 ± 0.0015 in A2B1 in controls, P ≤ 0.001). HetPten place cells had an increased field 

stability in A1B1, A2B1, and A2B2 session pairs compared to controls though only the session 

pairs A1B2 and A2B2 were statistically significant (r = 0.082 ± 0.0179 in A1B2 and r = 0.059 ± 

0.0010 in A2B2 in HetPten vs r = 0.028 ± 0.0003 in A2B1 and r = 0.037 ± 0.0001 in A2B2 in 

controls, P < 0.001) (Figure 3). HetPten place cells also had a higher field stability in Arena B 



21 

IN VIVO CHARACTERIZATION OF PTEN KO (+/-) CA1 NEURONS 

compared to controls (r = 0.059 ± 0.0125 in HetPten vs r = 0.074 ± 0.0021 in controls, P < 0.001) 

(Figure 3; Table A3). 

HetPten mice have increased firing rates and altered place field properties 

We demonstrated that HetPten mice have altered CA1 remapping properties suggesting 

that HetPten CA1 place fields have altered firing patterns. Pten KO has been shown to increase 

excitability in affected neurons in vitro, thus we investigated whether in vivo HetPten CA1 place 

cells had increased firing rates and whether these were accompanied by altered place field 

properties including the number of fields per cell, field size, and field coherence compared to 

controls. To determine this, single unit recordings of CA1 place cells were performed on HetPten 

(n = 4) and control (n = 3) mice during an open field task across four sessions in two different 

contexts (A1, A2, B1, and B2) (for cell counts across animals see Table A1). 

Infield Firing Rate:  

There were no statistically significant differences between the two groups for infield firing 

rate (P > 0.05) (Figure 4A).  

Figure 3: The mean field stability as a function of the correlation of the firing rate per pixel between the indicated session pairs. N 

represents the number of cells analyzed per indicated session. All error bars represent the standard error of the mean. Asterisks 

represent statistical significance (P < 0.05). 
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Figure 4. HetPten mice (N =4) have altered place field properties compared to controls (N = 3) across four open field task sessions 

in two arenas (A1, A2, B1, B2). A, The mean in-field firing rate of place cells. B, The mean out-of-field firing rate of place cells. 

C, The mean overall firing rate of place cells. D, The mean number of place fields per place cell. E, The mean coherence of each 

place cell (in standard units – S.U.). F, The mean size of each place field. N represents the number of cells analyzed per indicated 

session. All error bars represent the standard error of the mean. Asterisks represent statistical significance (P < 0.05). 
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Out-of-Field Firing Rate:  

HetPten place cells had higher out-of-field mean firing rate across A1, A2, B1, and B2 

compared to controls (0.195 ± 0.0132 Hz in A1, 0.272 ± 0.0.0297 Hz in A2, 0.265 ± 0.0376 Hz in 

B1, and 0.320 ± 0.0211 Hz in B2 in HetPten vs 0.143 ± 0.0002 Hz in A1, 0.145 ± 0.0001 Hz in 

A2, 0.130 ± 0.0000 Hz in B1, and 0.165 ± 0.0002 Hz in B2 in controls; P < 0.01) (Figure 4B).  

Mean Overall Firing Rate:  

HetPten place cells had a higher mean overall firing rate in A2 compared to controls (0.601 

± 0.0240 Hz in HetPten vs 0.467 ± 0.0003 Hz in controls; P < 0.001) and trended toward having 

an increased firing rate in Arena A, while in Arena B control group place cells trended toward 

having a higher overall firing rate though these results were not significant (P > 0.05) (Figure 4C; 

Table A2).  

Number of Place Fields:  

HetPten place cells had a greater number of fields across all four sessions compared to 

controls with a significantly greater number of fields in A1 and B1 compared to controls (2.886 ± 

0.4020 in A1 and 3.422 ± 0.4208 in B1 in HetPten vs 1.723 ± 0.2900 in A1 and 1.874 ± 0.0340 in 

B1 in controls, P <0.05) (Figure 4D).  

Place Field Coherence:  

HetPten place cells had a decreased place field coherence across all four sessions with significant 

reductions in A1 and B1 compared to controls (0.361 ± 0.0193 S.U. in A1, and 0.376 ± 0.0231 

S.U. in B1 in HetPten vs 0.469 ± 0.0004 S.U. in A1, and 0.315 ± 0.0003 S.U. in B1 in controls, P 

<0.05) (Figure 4E).  

Place Field Size:  
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HetPten place cells had an increased field size in three sessions compared to controls with 

a statistically significant increase in A2 (171.203 ± 11.6187 pixels in HetPten vs 141.590 ± 0.1039 

pixels in controls, P = 0.005). Controls had an increased field size in B2 but this result was not 

statistically significant (P > 0.05) (Figure 4F; Table A2).  

HetPten CA1 pyramidal cells and interneurons have higher mean firing rates 

 HetPten CA1 place cells had altered place field properties compared to controls. These 

properties are regulated by the local excitation-inhibition balance of CA1 interneurons and 

pyramidal cells, thus, a disruption of this balance may contribute to changes in CA1 place cell 

properties in HetPten mice. As HetPten CA1 place cells were shown to have increased out-of-field 

and mean overall firing rates, we investigated whether CA1 pyramidal cells and interneurons had 

increased firing rates in HetPten mice compared to controls. To determine this, single unit 

recordings of pyramidal cells and interneurons were performed on HetPten (n = 4) and control (n 

Figure 5: The mean firing rate (Hz) of CA1 pyramidal cells in four HetPten and four control mice across four sessions in two 

arenas (A1, A2, B1, and B2). The number of trials analyzed per session were A1 (N = 65), A2 (N = 65), B1 (N = 66), and B2 (N = 

47). Error bars represent the standard error of the mean. Asterisks represent statistical significance (P < 0.001).   
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= 4) mice during an open field task across four sessions in two different contexts (A1, A2, B1, and 

B2) (for cell counts across animals see Table A1).  

Pyramidal Cells: 

HetPten CA1 pyramidal cells fired had a mean firing rate that was higher in A1 compared 

to controls (1.371 ± 0.1231 Hz in HetPten vs 0.763 ± 0.0491 Hz in controls, P < 0.001). HetPten 

pyramidal cells had trends towards higher mean firing rate across A2, B1, and B2 compared to 

controls though these results were not statistically significant (P > 0.05) (Figure 5; Table A4).  

Interneurons:  

When collapsing across sessions, HetPten interneurons had a mean firing rate that was 

higher compared to controls (9.580 ± 1.7213 Hz in HetPten vs 4.868 ± 1.2922 Hz in controls, P = 

0.036) (Figure 6).  

HetPten mice have slower CA1 fast gamma and more variable speed/theta correlations 

On a cellular level, HetPten CA1 interneurons, pyramidal cells, and place cells are 

hyperactive, though these results may be indicative of disrupted network level modulation. Neural 

Figure 6: Mean firing rate of CA1 interneurons in HetPten and control mice collapsed across sessions. Sixteen cells were recorded 

and analyzed in both the HetPten (N = 4) and control groups (N = 3). HetPten CA1 interneurons fired faster than controls (P = 

0.036). Error bars represent the standard error of the mean. 
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circuits rely on a precise balance of excitation and inhibition for effective integration and 

computation of information (Hasselmo, Bodelón, & Wyble, 2002; Naber, Silva, & Witter, 2001; 

Ishizuka, Weber, & Amaral, 1990). In the hippocampus, these processes can be measured through 

local field potentials, such as theta and gamma oscillations which are thought to represent proper 

communication and routing of information between different regions of the hippocampus (Colgin 

& Moser, 2010). In this Pten (+/-) KO model, granule cells in the dentate gyrus and neurons in 

CA2 and CA3 are primarily affected, leading to hyperexcitability (Santos et al., 2017). Because 

these regions, in addition to the entorhinal cortex, are upstream from CA1, we investigated whether 

the Pten (+/-) KO induced hyperexcitability of these neurons influences the hyperactivation seen 

in CA1 through changes in local field potentials. To determine this, local field potentials were 

recorded from freely roaming HetPten (n = 4) and control (n = 4) mice during an open field 

foraging task in four sessions across two distinct arenas. For analysis, one EEG channel was taken 

per tetrode that had at least one recorded pyramidal cell, place cell, or interneuron in A1 and B1 

sessions.  

Theta Frequency:  

No differences were found in the mean, slow peak, or fast peak of theta frequency, 

normalized theta frequency, or peak theta amplitude for either slow or fast theta frequencies 

between HetPten and control mice (P > 0.05) (Table A5). 

Fast Gamma:  

HetPten mice had a fast gamma frequency that was slower compared to controls (74.343 ± 

0.5297 Hz in HetPten vs 79.531 ± 2.6040 Hz in controls, p = 0.044) (Figure 7). No differences 

were found in peak fast gamma frequency, normalized fast gamma frequency, or the peak fast 

gamma amplitude between HetPten and control mice (P > 0.05) (Table A5). 
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Slow Gamma:  

No differences were found in either mean or peak slow gamma frequency, normalized slow 

gamma frequency, or the peak slow gamma amplitude between HetPten and control mice (P > 

0.05) (Table A5).  

Speed/Theta Correlations: 

Speed/theta correlations have been shown to represent a higher order integrative process 

in the hippocampus in which theta oscillations increase in frequency with increasing motor speed 

in both rats and mice (Richard et al., 2013; Bender et al., 2015; Blumberg et al., 2016). As Pten 

KO has been shown to change the electrophysiological characteristics of individual neurons in 

vitro, we wanted to determine if alterations due to Pten KO (+/-) change the relationship between 

movement speed and CA1 theta oscillations in vivo. This would suggest disrupted ensemble 

activity in CA1 and the greater hippocampal network. Speed/theta correlations were determined 

by measuring theta oscillation in CA1 local field potentials in freely roaming HetPten   

Figure 7: Mean CA1 fast gamma frequency (Hz) between HetPten and control mice collapsed across A1 and B1 sessions. Forty-

six sessions were analyzed per group. HetPten mice had mean CA1 fast gamma frequency that was 7% slower compared to controls 

(P = 0.044). Error bars represent the standard error of the mean. 
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Figure 8. Example speed/theta correlation diagrams from one session for each mouse in A, the HetPten (P1, P2, P3, and P4) and 

B, control (C1, C2, C3, and C4) groups. For each animal, the upper graph shows the amplitude (y axis) of each oscillation frequency 

(x axis) when the mouse is moving less than or equal 2 cm/s (blue line) and when the mouse is running greater than or equal to five 

cm/s (black line). The peak amplitude within the theta oscillation range (6- 12 Hz) represents both peak slow theta (during ≤ 2 cm/s 

movement speed) and peak fast theta (during ≥ 5 cm/s movement speed). The lower graph plots the instantaneous theta oscillation 

frequency (Hz) per cycle of theta and the corresponding speed of the mouse. A Pearson’s r correlation coefficient and P value are 

given for the trendline in the lower graph. Only HetPten mice (P1 and P4) had sessions with negative speed/theta correlations, 

though only 1 of 7 of these sessions was statistically significant (P <0.05).   
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(n = 4) and control (n = 4) mice during an open field foraging task in Arena A and Arena B. Mice 

were motion tracked with an overhead camera, allowing for an analysis of a mouse’s instantaneous 

movement speed (cm/s) with respect to current theta oscillation frequency (Hz).  

 These data showed that there was a statistically significant speed/theta correlation for each 

individual mouse in both the HetPten group (P1, r = 0.165: P2, r = 0.424: P3, r = 0.374: P4, r = 

0.224: P < 0.001) and control group (C1, r = 0.299: C2, r = 0.453: C3, r = 0.268: C4, r = 0.206: P 

< 0.001) (Figure 8). There were, however, no differences in speed/theta correlations between the 

HetPten and control groups (r = 0.3227 ± 0.0428 in HetPten vs r = 0.3136 ± 0.0427 in controls, P 

> 0.05) (Figure 9). While there were no differences between the mean speed/theta correlation 

coefficient, qualitatively the HetPten mice appeared to have more variability in speed/theta 

correlations both between Arena A and Arena B and within each respective arena compared to 

controls (Figure 10). Additionally, only two mice, P1 and P4, had negative speed/theta 

correlations, though only 1/7 of these individual sessions were statistically significant (P < 0.05). 

No control mice had negative speed/theta correlations.   

 

Figure 9: Mean speed/theta correlation coefficient (r) in HetPten (n = 4) and control (n = 4) mice. Movement speed was measured 

in cm/s and theta oscillations were measured in Hz. Forty-six sessions were analyzed for both the HetPten and control groups. 

There was no statistically significant difference between the groups (P > 0.05). Error bars represent the standard error of the mean.  
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Young HetPten mice trend toward reduced motor output 

 During in vivo open field foraging task recordings, it was observed that some HetPten mice 

appeared to move around the arenas in a curvilinear fashion that was beyond normal thigmotaxic 

behavior. This behavior was seen only in the HetPten mice, in particular, a mouse (P5) that ran in 

the same direction so much that the connecting cable to the electrode array became compromised 

such that no data could be recorded.  

We performed two thirty-minute trials where P5 was placed into Arena A and allowed to 

freely roam without being connected to the recording cable and analyzed P5’s mean speed, the 

total path traversed, and the linearity of its trajectory. P5 had a mean speed of 14.195 cm/s, a total 

path traversed of 255.465 m, and a linearity of 0.245 representing a notably circular trajectory 

(Figure 11). Because of the high mean speed and total path traveled and the low movement 

Figure 10: Speed/theta correlation coefficients for each mouse in the HetPten (A, P1; B, P2; C, P3; D, P4) and control (E, C1; F, 

C2; G, C3; H, C4) groups. N values represent the number of sessions analyzed for each mouse in Arena A, Arena B, and collapsed 

across both arenas. Error bars represent the standard error of the mean.   
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linearity seen in P5, we investigated whether HetPten mice had an increased motor output and 

whether this motor output was more annular compared to controls.  

To analyze the baseline behavior of HetPten mice compared to control mice, we placed 

unimplanted one-month old HetPten (n = 4) and control (n = 4) mice in Arena A for four thirty-

minute trials. We analyzed across groups in terms of mean speed, the total path traversed, the 

linearity of trajectory, and the time spent in each segment of the arena. These data showed that 

different mice followed a different pattern of motor output across the four sessions in Arena A. 

When evaluating heat maps of the trajectory of each mouse across all four sessions, PB1 displayed 

sampling across the entire arena immediately in session one and then gradually displayed more 

thigmotaxic behavior, where PB1 moved only along the edge of the arena, with each subsequent 

session (Figure 12). PB2, PB3, CB1, and CB2 all sampled the entire arena in the first two sessions, 

but in the last two sessions displayed more thigmotaxic behavior (Figure 12). PB4 and CB3 

Figure 11.: The trajectory of P5 during the first twenty seconds of the second baseline behavior trial. During this trial, P5 had a 

mean speed of 19.29 cm/s, a total path traversed of 347.16 m, and a trajectory linearity of 0.2725.  
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displayed consistent motor output throughout all four sessions with sampling across the entire 

arena but with a tendency to stay closer to the edges of the arena (Figure 12). CB4 displayed 

thigmotaxic behavior in session one but displayed less thigmotaxic behavior through the final three 

sessions (Figure 12).   

These qualitative evaluations of the motor output of each mouse did not provide any 

notable trends across groups. When analyzing linearity, mean speed, and total distance traveled 

across groups, these data showed a trend for HetPten to have a slower movement speed and 

subsequently traversing a shorter total distance across all four sessions and collapsed across 

Figure 12: Position heat map in Arena A during four baseline behavior open field foraging task sessions (S1-4) for four HetPten 

(PB1, PB2, PB3, and PB4) and four control (CB1, CB2, CB3, and CB4) mice. Warmer colors represent an increased time spent in 

a location in the arena during the indicated sessions.  
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sessions compared to controls, though these results were not statistically significant (P > 0.05) 

(Figures 13A and 13B). There were no differences in linearity between the HetPten mice and 

control mice (P > 0.05) (Figure 13C; Table A6).  

Discussion 

 In this study, we examined the in vivo electrophysiological characteristics of CA1 local 

field potentials and CA1 interneurons, pyramidal cells, and place cells in heterozygous Pten (+/-) 

conditional knockout mice during an open field foraging task. HetPten mice were found to have 

increased CA1 interneuron and pyramidal cell firing rates while HetPten place cells had altered 

place field properties. These properties included increased out-of-field firing rates, an increased 

number of place fields per cell in both Arena A and Arena B, trends towards larger field sizes, and 

abnormal field stabilities compared to controls.  

CA1 pyramidal cell, including place cell, hyperactivity may be indicative of poor feedback 

inhibition between pyramidal cells and interneurons leading to greater excitatory input onto 

pyramidal cells. This increased activity occurred only in out-of-field regions and not infield 

regions for CA1 place cells. This could be due to abnormal regulation by CA1 interneurons that 

do not properly silence CA1 place cells outside of their normal firing field, perhaps through poor 

Figure 13: Baseline motor behavior characteristics in unimplanted HetPten (n = 4) and control (n = 4) mice across four sessions in 

Arena A. A, the mean speed (cm/s) of HetPten and control mice across all four sessions and collapsed across sessions. B, the total 

path traveled (m) of HetPten and control mice across all four sessions and collapsed across sessions. C, the linearity of the trajectory 

of HetPten and control mice across all four sessions and collapsed across sessions. Higher linearity values represent more linear 

movements across the indicated sessions. There were no statistically significant differences in mean speed, total path, or linearity 

between the HetPten and control groups. Error bars represent the standard error of the mean.  
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feedback inhibition, thus leading to an increased out-of-field firing rate and an increase in the field 

size itself. Increased activity could also underlie the increased number of fields calculated per CA1 

place cell as their increased out-of-field firing rate may allowing for bundles of firing activity in 

other portions of the arena to meet place field criteria. A question that arises from this observation 

is whether those additional place fields are physiologically functional, in that they are coding for 

a coordinate on a cognitive map of a given environment, or if they are merely a byproduct of poor 

feedback inhibition. If they are functional, these additional place fields per CA1 place cell could 

interfere with the proper operation of functional place fields in spatial cognitive tasks, thus 

representing a cause of spatial cognitive deficits shown in the model (Page et al., 2009).  

Another contributor to the spatial cognitive deficits in the model may lie in the differences 

in field stability between HetPten and control mice. In vitro, both excitatory and inhibitory neurons 

with Pten knockout have been shown to increase the firing rate of postsynaptic targets (Weston, 

Chen, & Swann, 2012). In this heterozygous Pten+/loxPloxP;Gfap-cre model, granule cells in the 

dentate gyrus and neurons in CA2 and CA3 are primarily affected by the conditional knockout 

(Weston, Chen, & Swann, 2012; Weston, Chen, & Swann, 2014; Vogt et al., 2015). Here, we 

demonstrated that while CA1 interneurons had increased firing rates, CA1 pyramidal cells and 

place cells also had increased rates. In terms of place cells, this suggests that disruptions to the 

hippocampal ensemble upstream from CA1, such as in CA3 and in the dentate gyrus, lead to 

greater presynaptic input into CA1 place cells leading to increased activation.  

We hypothesized that in vivo, the Pten (+/-) induced hyperexcitability in granule cells in 

the dentate gyrus would lead to a reduction in pattern separation that would manifest as altered 

CA1 place field remapping and stability (Heinemann et al., 2001; Neunuebel & Knierim, 2014). 

HetPten mice had increased field stability in four of the six session comparisons suggesting that 
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HetPten CA1 place fields remain stable over time. This could be detrimental for place cell 

remapping between two different environments where individual cells alter their firing location 

and rate between two different environments leading to an ensemble shift in the population of 

place cells representing the cognitive maps of each environment (Bostock, Muller, & Kubie, 1991; 

Muller & Kubie, 1987).  

Increased stability across two trials in the same context would represent stable place fields 

and would be cognitively beneficial for the mouse, but increased field stability between two 

different environments would represent a reduction in remapping and indicate a reduction in the 

ability to separate patterns by the dentate gyrus. Pten (+/-) KO induced hyperactivity of granule 

cells in the dentate gyrus could result in a reduced ability to select the necessary information 

coming from the entorhinal cortex to establish a distinct representation for each environment for 

hippocampal spatial processing. This would reduce the distinction between two environments 

leading to less remapping by CA1 place cells and correspondingly greater stability or persistence 

of their place fields between the two environments. HetPten place cells had trends towards 

increased field stability in 75% of the inter-arena session pairs (A1B1, A1B2, and A2B2), 

suggesting that the place cells did not properly remap, thus underlying confusion between the two 

contexts due to poor pattern separation. In vivo single cell recordings of granule cells in the dentate 

gyrus, however, would be necessary to determine if they have increased firing patterns in the Pten 

KO (+/-) model and that these firing patterns directly correspond to reduced field remapping to 

support this hypothesis.  

Additionally, while this study involved the in vivo electrophysiological recording of CA1 

place cells, where both stored information from CA3 and current sensory information from the 

entorhinal cortex converge, future studies could elucidate the firing patterns of place cells in CA3 
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and granule cells in the dentate gyrus. CA3 is thought to store spatial information and then send 

that information to CA1 during the rising phase of theta (Hasselmo, Bodelón, & Wyble, 2002). 

CA3 also contains cells directly impacted by the conditional heterozygous Pten+/loxPloxP;Gfap-cre 

knockout in this model. Altered interneuron, pyramidal cell, and place cell properties in CA3 may 

represent a failure to properly store spatial information about a given environment, thus disrupting 

the real-time integration of stored spatial information with real-time sensory information in a given 

environment in CA1 leading to impaired spatial cognition.   

 Furthermore, in this study CA1 local field potentials were measured in HetPten and control 

mice during an open field foraging task. HetPten mice were found to have identical theta, gamma, 

and fast gamma oscillations compared to controls except for slower CA1 fast gamma oscillations. 

Fast gamma oscillations in CA1 represent the routing of real-time sensory information from layer 

three of the entorhinal cortex to CA1 pyramidal cells, including place cells (Bragin et al., 1995; 

Naber, Silva, & Witter, 2001; Colgin & Moser, 2010). With a slower CA1 fast gamma oscillation 

in HetPten mice, CA1 place cells may not be receiving proper sensory information from the 

environment possibly due to dysregulation by higher firing local interneurons, such as OLM cells 

(Wang & Buzsáki, 1996). This could represent another cause of dysregulated field stability in CA1 

place cells as too little real-time sensory information, such as salient distinguishers of two 

environments, is being conveyed to CA1 cells leading to abnormal remapping patterns. 

Alternatively, Pten KO has been associated with increased soma size, increased dendritic 

arborization, and changes in spine densities (Kwon et al., 2001; Jaworski, Spangler, Seeburg, 

Hoogenraad, & Sheng, 2005; Haws et al., 2014). Since fast gamma oscillations arises from 

entorhinal cortex inputs into CA1 pyramidal cell dendrites, Pten (+/-) induced dendritic changes 

may alter said input by changes to the dendrites’ ability to integrate and filter fast gamma (Wang 
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& Buzsáki, 1996). These data suggest that while network level connectivity, in broad, was not 

altered in the HetPten mice compared to controls, HetPten CA1 and entorhinal connections were 

disrupted.  

 Additionally, while speed/theta oscillation correlations were not found to be different 

between HetPten and control mice in this study, HetPten mice were found to have more variable 

speed/theta oscillation correlations and P1 and P4 were found to have negative speed/theta 

oscillation correlations. Speed/theta oscillation correlations represent the relationship between 

increasing theta frequency with increasing running speed of the mice, thus representing a complex 

function of the hippocampus to integrate real-time sensory information derived internal speed 

calculations with ensemble CA1 theta oscillations (Richard et al., 2013; Blumberg et al., 2016). 

The variability of speed/theta oscillation correlations in HetPten mice may represent the 

disrupted input of sensory information, such as through the fast gamma oscillations from layer 

three of the entorhinal cortex, to CA1 place cells. Alternatively, as the variability was more notable 

in two HetPten mice (P1 and P4), this result could be indicative of either a greater or fewer 

percentage of cells in the hippocampus being affected by the conditional heterozygous 

Pten+/loxPloxP;Gfap-cre knockout leading to greater disruption to the ensemble network. In vitro, 

Pten KO neurons have been shown to have greater soma sizes (Kwon et al., 2001). Therefore, 

while Pten KO neurons have increased postsynaptic currents, with a greater soma size more current 

is needed to change membrane potentials (Kwon et al., 2006; Weston, Chen, & Swann, 2012). 

Thus, if most neurons have a Pten KO, the system has a means to compensate for the increased 

firing with most cells requiring more input. Hence, it has been hypothesized that having just a few 

Pten knockout neurons would lead to a greater disruption of the network as their inputs would 

primarily fall on wildtype neurons leading to increased activity at conceivably random nodes in 
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the network (Luikart, B., personal communication). In HetPten mice, where there are just few cells 

that have a broad influence on the network, speed/theta computations could drastically vary from 

context to context as in one context only one Pten KO cell may be active while in another context, 

after remapping, multiple Pten KO cells might be active leading to a differential impact on the 

network. This differential impact would change the computation capacity of the network in 

different environments leading to variable speed/theta correlations. A future in vivo study that 

correlated speed/theta correlations with heterozygous Pten KO (+/-) models with post hoc Pten 

(+/-) KO cell counts in the hippocampus could elucidate this hypothesis.  

 Behaviorally, we hypothesized that HetPten mice would have an increased motor output 

and that this motor output would be more annular compared to controls. No differences in mean 

speed, total distance, and linearity were found, however, between HetPten and control mice, 

though HetPten mice trended toward decreased mean speed. These results contrasted the behavior 

seen in P5 where stark movement nonlinearity (0.245 in P5 vs 0.436 in controls vs 0.486 in 

HetPtens) and high mean speed and total distance traversed were observed. A reason for this 

confound may lie in the age of the tested animals. P5 was six months old at the time of electrode 

implantation while the unimplanted HetPten and control mice were approximately one month old 

during the baseline behavior open field foraging task. Unpublished observations from the Luikart, 

Weston, and Barry groups suggest that motor output becomes more abnormal as the HetPten mice 

ages leading to decreased movement linearity and increased mean speed and total distance. A 

longitudinal study assessing the motor output of HetPten mice would help further elucidate this 

hypothesis. 

The broad results of this study suggest that the electrophysiological alterations due to Pten 

KO (+/-) in mouse hippocampal neurons lead to hyperactivation of CA1 interneurons, pyramidal 
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cells, and place cells and poor pattern separation that manifested as poor CA1 place field 

remapping. These data are comparable with other autism models, including the fragile X syndrome 

model where the mental retardation protein (FMRP) is not synthesized resulting in abnormal 

synaptic plasticity and autism like symptoms (Radwan, Dvorak, & Fenton, 2015; Sparks et al., 

2017). Sparks et al. (2017) found that while CA1 place fields and local field potentials, including 

gamma and theta were normal in FMRP-null mice compared to controls, there were differences in 

experienced-based synaptic plasticity and cross-frequency organization between theta and gamma 

oscillations. In the Pten KO model, affected cells have been shown to make a greater number of 

synapses, to express a greater number of dendritic spines, and to have greater output compared to 

controls, characteristics that influence synaptic plasticity (Weston, Chen, & Swann, 2012; Haws 

et al., 2014). Additionally, HetPten mice had few differences in CA1 local field potentials though, 

in the context of the FMRP-null fragile x syndrome model, it may be that dyscoordination of these 

local field potentials underlies reduced cognition.  

More work is necessary to further characterize the in vivo cellular and network mechanics 

in CA1, CA3, and dentate gyrus, as rectifying these described abnormal conditions may represent 

a possible avenue for therapeutic intervention in the Pten KO (+/-) model.  Use of Pten rescue 

treatments may help correct for the spatial deficit component of Pten autistic cognitive 

impairments as measured by a recovery of the firing patterns of CA1 interneurons, pyramidal cells, 

and place cells and the restoration of place field properties and remapping.     
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Figure A1: Schematic of the mTOR signaling pathway. Reprinted from Inoki, Corradetti, & Guan, 2005.  
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Figure A1: Cresyl violet staining of the left (on right) and right (on left dorsal hippocampus of a HetPten mouse (P2). The arrow indicates 

electrode tracks passing through the pyramidal cell layer of CA1 of the left hippocampus as the electrodes were lowered through successive 

recording sessions. Recorded units from beyond this layer were not included in analyses.  
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Table A1: The number pyramidal cells, place cells, and interneurons recorded and analyzed from each HetPten (P1-4) and control 

(C1-4) mouse. Pyramidal cell counts include both place cells and non-place cell pyramidal cells.  
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Table A2: CA1 place cell and place field properties for HetPten (n = 4) and control (n = 3) mice, including number of place fields, 

place field coherence (standard units - S.U.), meaning firing rate (Hz), out of field firing rate (Hz), in field firing rate (Hz), and 

place field size (pixels), across four open field foraging task sessions in two arenas (A1, A2, B1, and B2). Significant P-values (P 

≤ 0.05) are indicated in bold typeface.  
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Table A3: Place field stability for CA1 place cells in HetPten (n = 4) and control (n = 4) mice between pairs of four open field 

foraging task sessions in two arenas (A1, A2, B1, and B2). Statistically significant P values (P ≤ 0.05) are indicated with bold 

typeface.  
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Table A4: The mean firing rate (Hz) for pyramidal cells, including place cells, in HetPten (n = 4) and control (n = 4) mice across 

four open field foraging task sessions in two arenas (A1, A2, B1, and B2). Statistically significant P values (P ≤ 0.05) are indicated 

with bold typeface.  
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Table A5: Spectral analysis of CA1 theta, slow gamma, and fast gamma oscillations in HetPten (n = 4) and control (n = 4) mice 

collapsed across A1 and B1 open field foraging task sessions. Statistically significant P values (P ≤ 0.05) are indicated with bold 

typeface.  
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Table A6: Total path (m), mean speed (cm/s), and linearity measures for unimplanted HetPten (n = 4) and control (n = 4) mice 

across four sessions (S1-4) and collapsed across sessions in Arena A. No measure was statistically significant (P > 0.05).  
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