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Abstract

When depositing a substance onto a surface, it follows that as one adds more of the
substance, the thickness of the film formed on the surface will grow. However, a
particle’s ability to adsorb onto the surface is dependent on the interaction potential
and geometry. For atomically flat two-dimensional materials such as graphene, it
is predicted that the interactions between the graphene sheet and light atoms in a
nearby gas are so weak that film growth may become arrested at a critical thickness.
We report on molecular dynamics simulations of nitrogen near graphene to explore
the existence and properties of the predicted critical film.
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Chapter 1

Introduction

1.1 Wetting

Wetting refers to a fluid’s ability to maintain contact with a surface. It is driven

by competition between particle-particle and particle-substrate van der Waals inter-

actions, where van der Waals interactions refers to weak forces that arise due to

uneven charge distributions, leading to momentary attraction or repulsion between

molecules. Wetting is traditionally broken down into three cases: no wetting, partial

wetting, and complete wetting [1]. The case of no wetting refers to when the particle-

particle interactions are significantly stronger than the particle-substrate interactions,

resulting in the deposited particles forming a well-defined droplet on the substrate.

As consequence, no wetting is extremely uncommon. Conversely, when the particle-

substrate interactions dominate the system, the deposited particles adsorb across the

substrate, forming a macroscopically thick film. This is the case of complete wetting.

Lastly, partial wetting is the case where the particle-particle interactions are on par

with the particle-substrate interactions, resulting in a coexistence between the well-
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defined droplet of no wetting and the thin film of complete wetting. These three cases

are shown schematically in Figure 1.1.

Figure 1.1: Visualization of the three traditional forms of wetting

Understanding wetting goes beyond the question of droplet or thin film. If a thin

film does form across the substrate, one must look then at the growth of that thin

film. In the case of complete wetting, as one adds more particles to be deposited onto

the substrate, the thickness of the layer continues to grow. This follows traditional

logic- add more material to the layer, the layer gets bigger. However, it is theorized

that for some substrates, there is a point in the film growth where it is no longer

energetically favorable to adsorb another molecule, resulting in a finite, or critical,

film distance. This strange phenomenon is known as critical wetting. The growth of

the film for complete versus critical wetting can be seen in Figure 1.2.

Figure 1.2: Film growth in complete versus critical wetting
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1.2 Substrate Dimension and Interaction Poten-

tial

Critical wetting falls in the regime between the microscopic and the macroscopic. In

order to observe this critical film distance, the film growth must be greater than a few

angstroms. Yet if the critical film height is above a couple nanometers, leading to an

effect on emergent properties, the overall system result is the same as if complete wet-

ting had occurred. Light molecules depositing onto a weakly interacting surface offer

the best chance to observe wetting in this narrow regime. Two dimensional (2D) ma-

terials offer promise in allowing critical wetting compared to many three dimensional

(3D) substrates. This can be seen via a basic calculation comparing the potential be-

tween a particle suspended above a 3D or 2D surface. In one dimension, the van der

Waals potential, or force that determines attraction over long ranges is proportional

to r−6, where r is the distance between between particles. When generalizing from the

interactions between two point particles to the interactions between a point particle

and a surface, the potential is found by integrating over the dimensions of the surface.

2D:

V (z) =
∫ ∫ C

r6 dx dy =
∫ ∫ C

(x2 + y2 + z2)3 dx dy ∼
C ′

z4

3D:

V (z) =
∫ ∫ ∫ C

r6 dx dy dz
′ =

∫ ∫ ∫ C

(x2 + y2+ | z − z′ |2)3 dx dy dz
′ ∼ C”

z3

3



where ∼ refers to the behavior in the long distance z � 1 limit which can be inferred

from dimensional analysis.

Figure 1.3: Diagrams of a particle above a surface. In three-dimensional space, the particle
is at a distance of r above the surface. The left represents a 3D surface, such as graphite,
while a 2D surface, such as graphene, is on the right.

When comparing the potentials for the 2D and 3D case, depicted in Figure 1.3,

the potential between a 2D sheet and particle decays faster by one power of inverse

distance than the potential between a 3D surface. The thinness of the 2D substrate

interaction will allow light, weakly interacting gases to stick to the surface but only

to a certain point; after which, the substrate will no longer be able to hold the gas

particles into the film layer. Ergo, the weak interaction of particles above 2D materials

is believed to lead to a finite film thickness.

1.3 Lifshitz Theory of Wetting and Graphene

Substrates

Amore formal understanding of critical wetting can be gained from the Dzyaloshinskii-

Lifshitz-Pitaevskii (DLP) theory [2], which relates the variation of the chemical po-
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tential with film thickness to the stability of its growth. Mathematically, the theory

is written as:

µ(d)− µ(d =∞) = ∆µ = δU(d)
δd

U(d) = ~
n(2π)3

∫
d2q

∫ ∞
0

dω ln ε(q, iω)

Where µ(d) is the chemical potential at height d above the substrate, and U(d) is the

van der Waals interactions between surface boundaries separated by distance d. DLP

Theory states that long as ∆µ < 0, the film will grow. In the paper “Theory of liquid

film growth and wetting instabilities on graphene,” Sengupta, Nichols, Del Maestro,

and Kotov [3] expand upon the DLP theory, placing a monolayer of graphene onto

the substrate. With the addition of graphene, the contributions of the substrate (Ud)

and graphene (Ug) can be seen directly in the correlation energy:

U(d) ' ~
n(2π)3

∫
d2q

∫ ∞
0

dω(Ud + Ug)

Where Ug is dependent on the polarization function Π:

Ug = ln(1− V2Π)

Π(q̄, iω) = − 1
4vxvy

v2
xq

2
x + v2

yq
2
y√

v2
xq

2
x + v2

yq
2
y + ω2

V2 is defined as the Coulomb potential of the deposited liquid layer, and vx and vy

are the x and y-components of the anisotropic Fermi velocity. Using this expanded

DLP theory, Sengupta et al explores three different graphene geometries named “sub-

strate,” “submerged,” and “suspended.” The substrate geometry places a layer of

5



graphene on top of an insulating substrate, and a macroscopic liquid film grows to a

thickness d where it is in equilibrium with its vapor. The submerged geometry places

graphene on top of of a liquid, and the macroscopic film that grows on the graphene

is made of the same substance. The suspended geometry places graphene above a

vacuum [3].

Figure 1.4: Three unique geometries studied in “Theory of liquid film growth and wetting
instabilities on graphene” by Sengupta et al [3]

The suspended and submerged geometries offer the opportunity to study adsorp-

tion for purely 2D systems. Comparing van der Waals interactions (Γ) to film height

(d) for each 2D geometry and the traditional 3D graphite substrate [4], the paper

states “For suspended graphene ..., we observe a novel physical effect for all elements:

there is a critical distance dc at which graphene’s (always positive) contribution be-

comes so weak it can no longer compensate the negative dielectric part and Γ(dc) =

0.” Plainly stated, the suspended graphene exhibits critical wetting. This is seen in

Figure 1.5, the plot crossing the zero line for the suspended graphene curve.

Referring back to the idea that the value of ∆µ determines film growth, critical

wetting is predicted in the textbook “Statistical Physics- Part 3” by E.M. Lifshitz and

L.P. Pitaevskii [5]. Shown in Figure 1.6, the textbook states “...if the function µ′(γ)

passes through zero and has a maximum (Fig. 76c) we have a case of wetting but with

6



Figure 1.5: Thickness dependence of van der waals interaction Γ(d) for nitrogen films formed
on submerged, suspended and traditional 3D graphite geometry (taken from the Cheng &
Cole paper [4]). The crossing of the zero line by the suspended graphene curve indicates
critical wetting.[3]

a formation of a film stable only at thickness below a certain limit.” Point A indicates

a film thickness where the liquid film is in equilibrium with vapor [5]. Looking at

the nitrogen film formed on the suspended geometry from the Sengupta et al paper

(Figure 1.7), the change in chemical potential vs film thickness curve matches the

predicted textbook curve almost exactly. Reflecting the prediction in Lifshitz’s and

Pitaevskii’s work, along with predicting critical wetting in comparing van der Waals

interactions to film height, Sengupta et al suggests nitrogen on vacuum suspended

graphene is a good system in which to study this phenomenon.

1.4 Current Work

This thesis aims to use atomistic simulations to validate the continuum Lifshitz the-

ory of critical film thickness. Using molecular dynamics (MD) simulations, the case

of nitrogen on vacuum suspended graphene is explored, allowing for additional, com-

7



Figure 1.6: The change in chemical potential vs film growth for critical wetting, from E.M.
Lifshitz and L.P. Pitaevskii “Statistical Physics- Part 3.” [5]

Figure 1.7: The change in chemical potential vs film growth for critical wetting for the
nitrogen film on graphene in the suspended geometry from “Theory of liquid film growth and
wetting instabilities on graphene” by Sengupta et al.[3]

putational evidence in studying and predicting critical wetting.
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Chapter 2

Methodology

2.1 Molecular Dynamics

MD describes computer simulations where a multiparticle system is studied via de-

termining the positions and velocities of each particle using Newton’s second law.

At each time step, each particle experiences a force due to the interaction potential

between particles. The force creates an acceleration, thus creating a velocity, and a

new position for each particle. With each new position of the particle, the interaction

between particles differs, and thus the total force on each particle changes, and by

extension, a new resultant position. As the name “molecular dynamics” would imply,

MD simulations are limited to the scale of atoms and molecules. The use of Newton’s

second law to calculate the new positions at each time step makes this a classical

system. While some atomistic experiments require quantum mechanics, classical me-

chanics can account for many phenomenon on the atomtic scale, and thus allow for

the use of MD simulations. For many systems, electrons are bound so tightly to the

nucleus of atoms that the energy required to promote an electron or remove it from
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the atom is far greater than the energy associated with the center of mass motion of

the atom. Thus, when looking at collisions between atoms, the energy scale does not

warrant the need to look at electron configurations, and “each atom can be treated

as a simple structureless particle” [6]. Additionally, the scale of atomic de Broglie

wavelength is far smaller than the actual particle separation in the simulation, thus

allowing for the atoms to be treated as simple particles, and supporting the use of

classical mechanics. The classical approach of MD provides the necessary physics to

see how particles move over time, without the computational difficulty and time cost

of a quantum simulation. This does come with some drawbacks. MD does not work

for all atomistic simulations, and has a finite scale for which it works. However, in

general MD provides a step by step view into how the system develops.

Having this step by step view of how particles move over time may seem a trivial

exercise, but MD can provide the connection “between microscopic length and time

scales and the macroscopic world of the laboratory” [7]. While lab bench experiments

can give us a view into an overall process, comparing the initial and resultant bulk

properties of a system, MD simulations can a look at what is happening between par-

ticles, and thus an idea of why such properties arise. MD can also provide a method

of testing theory. The results of the simulation can then be tested against real world

experimental values to test the validity of the model, or the model provides a means

of testing the theory for situations that are unreasonable for bench top experiments,

such as extreme temperatures, and/or pressures [7]. MD has been used to model com-

plicated biomolecular systems, such as conformational changes in proteins allowing

for allostery [8], explore behavior of nanowires containing experimentally observed mi-

crostructure [9], and study the properties of graphene, a single atom thick material.
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With it’s ability to connect the microscopic and the macroscopic, MD simulations

are useful in studying critical wetting. This MD experiment utilizes the open code

GROMACS [10].

GROMACS’ Global MD Algorithm follows a general scheme of four steps. First,

each run requires an input set of initial conditions, including positions and velocities of

all particles involved in the system, and the potential interaction as a function of par-

ticle positions. Next, the force of on any particle is computed by calculating the sum

of the force between non-bonded particle pairs, the forces due to bonded-interactions,

and the restraining and/or external forces. The movement of each particle is then

simulated by solving Newtons’ equations of motion, and the final positions, veloci-

ties, energy, temperature, etc. are written. These last three steps are repeated for

the number of time steps in the simulation run [10].

2.2 Simulation Creation

The simulation cell is designed as a sheet of graphene with a deposited layer of liquid

nitrogen, followed by a vacuum above it, a secondary layer of liquid nitrogen, and

graphene at the top of the box (see Figure 2.1). Analyzing the evaporation of liquid

nitrogen off the graphene studies the same phenomenon as the deposition of nitrogen

gas onto the substrate, but in much less time. Having the depicted dual layer system

allows for control of the pressure within the system. If there was only vacuum above

the nitrogen layer, the liquid would all evaporate. Creating the overall simulation can

be broken down into several steps.

11



Figure 2.1: Experimental setup

2.2.1 Simulating Liquid Nitrogen

In creating the dual layer system, the first stage was simulating the liquid nitrogen.

This was done in four steps: creation of the particle, adjustment of space around the

particle, multiplying the single particle to create the cubic system, and minimizing

the energy. The first three steps are depicted in Figure 2.2.

Figure 2.2: Diagram depicting the creation of coarse grain liquid nitrogen

A single particle can be created via visualization software; for this coarse grain

12



dinitrogen simulation, UCSF Chimera[11] was used. A particle can be created via the

Build Structure feature found under tools and then structure editing. By selecting the

x,y,z position option for the atom, and setting each one equal to zero, an atom is placed

at origin. When a particle is created in the simulation, an invisible box surrounds

it, showing how much space the particle takes up. When more particles are added

to the simulation, the particles (each in their individual boxes) create the overall

system volume. The specific type of atom or molecule is indicated via the topology

file [10]. The topology file names the type of molecules in the simulation and lists the

atomic number of the atoms in the molecule, the mass of the atom/molecule, charges,

and the Lennard-Jones parameters. The Lennard-Jones potential is a mathematical

model that approximates the interaction potential between neutral molecules:

VLJ = 4ε
[(
σ

r

)12
−
(
σ

r

)6]

Where r is the distance between molecules, σ is the distance in which the potential

between particles is zero, and ε is the depth of the potential well. For this exper-

iment, nitrogen’s Lennard-Jones parameters were determined from the 2016 paper

"Free Energy-Based Coarse-Grained Force Field for Binary Mixtures of Hydrocar-

bons, Nitrogen, Oxygen, and Carbon Dioxide" by F. Cao, J. Deetz, and H. Sun [12],

in which a temperature dependence is applied to ε: σ = 0.3611 nm, ε(T ) = 0.8508

kJ/mol at 65K. A plot of this Lennard-Jones potential can be seen in Figure 2.3,

and for more information on temperature-dependent Lennard-Jones parameters, see

Appendix A.

Once the single particle box is created, the size of the box can be adjusted using

editconf [10], which adjusts the lengths of the box in the x, y, and z directions to

13



Figure 2.3: Lennard-Jones potential for two nitrogen molecules, determined from Cao et al

specified values to give a new structure file. For systems with a specified density and

number of particles, the new single particle box size, and therefore the needed x, y,

z inputs, are determined by taking the cube root of the overall system volume, given

by:

V = N

ρ

where N = number of particles, ρ = density, and V = volume. For more information

on determining of the overall system volume, see Appendix B. Having the single

particle box is the desired size, the box needs to be multiplied to create the overall

cubic system. GROMACS uses the command genconf[10], taking a structure file

and multiplying it by specified values in the x, y, and z directions to create a new,

larger structure file. By setting the x, y, and z multipliers to be the cube root of

14



the total number of particles, the resulting structure file will be a cube of the right

number of particles at the desired density.

To ensure there is no unnatural stress occurring, such as two particles being placed

too close together, an energy minimization must be done on the system. To relax the

structure and minimize the energy, one first needs to create a run-input file (.tpr) by

using the line of code grompp (GROMACS preprocesser)[10]. grommp creates a .tpr

file by taking a .mdp topology file and a structure file and expanding the topology file

to match the molecular description in the structure file. The .mdp file is where one

sets up many properties of the simulation beyond just particles, such as temperature,

run time, and periodic boundary conditions. Setting the integrator in the .mdp file

to steep and running grommp, the resulting .tpr file will have the correct minimal

energy state. The final trajectory file is created by running grommp again, this time

with the input .pdb file set to the file created by the energy minimization and the

integrator set to md. With that, the simulation for liquid nitrogen is fully set up and

able to run, allowing for the positions and trajectories of the particles to be known.

With nitrogen simulated, it is necessary to check the simulation’s validity. While

the experiment uses liquid nitrogen, the validity of nitrogen was checked in the gaseous

phase; this allows for smaller and faster simulations. Nitrogen’s validity was checked

by creating a simulation of 1000 particles at 1 atm over a temperature range of 78-

98 K. The density of each simulation at each temperature was then plotted against

experimental values from the C++ library CoolProp[13]. Shown in Figure 2.3, the ex-

perimental values align with the simulation, proving this is an accurate representation

of nitrogen.
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Figure 2.4: Comparison Plot between simulated nitrogen and experimental values from Cool-
Prop

2.2.2 Generic Carbon Walls

The creation of properly simulated nitrogen allows for attention to be turned to cre-

ating the desired system layout. Before inserting the graphene sheet, the dual layer

system can be created using the GROMACS code Wall. Wall creates a smooth wall

at specific z-axis value. The wall has specified Lennard-Jones parameters, but does

not function the same as a sheet of molecules with the same Lennard-Jones param-

eters. For the initial set-up, the wall is set to have CH4 Lennard-Jones parameters,

as they were parameterized along with the coarse-grain nitrogen and give the wall

the resemblance of carbon: σ =0.3723 nm, ε(T )=1.26001 kJ/mol at 65K. To begin

creating the layout, use gmx editconf -box[10] to expand the unit cell of the newly

formed nitrogen simulation along z-axis. The full length along the z-axis will be the

height of each molecule layer (2*z-dimension of molecule cube), the space between

the molecule layers and each wall, and height of the vacuum. To prevent growth
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from the center of the box, it is important to include in the command line -noc.

One the total box size is determined, one needs to determine the location of the top

layer of nitrogen. This can be done by using gmx editconf -translate to shift

the molecules to the top of the box. The total amount of shift is equal to the height

of molecules + height of vacuum + space between molecules and wall. The output

(-o) will be a file containing the location of all of the molecules in the top layer. In

an empty text file, the initial nitrogen .pdb file and the new .pdb file can be combined

to create a record of all initial nitrogen molecule location for both layers. Once the

files have been combined, the molecules must be renumbered using gmx editconf

-resnr 1, where 1 sets the first number to 1 and counts upwards. Once the files

are combined and renumbered, it is useful to check that the layers are positioned

correctly by looking at the combined .pdb file in Chimera. It should appear as two

masses of particles, clearly separated, and the small separation between each layers

and the top and bottom of the unit cell appearing equal to the eye, see Figure 2.1.

To create a wall in a GROMACS Simulation, the .mdp file is edited. First peri-

odic boundary conditions are changed to only be xy rather than xyz. The number

of walls inserted into the system is then set with nwall, followed by the wall type.

The default for nwall is 0, but when nwall = 2, a wall is placed at z = 0 and on

the opposite end of the box, which is desired for this experiment. As for the wall

type, wall-atomtype specifies what particles create the wall, with all particles and

properties for the whole system specified in the topology (.top) file, while wall-type

determines the interaction potential exhibited by the wall, with 12-6 being the stan-

dard Lennard-Jones Potential. Once the .mdp file is edited to include a wall, the

energy minimization is run in the same manner described for creating the bulk nitro-
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gen simulation: setting the integrator to steep, keeping nsteps low (∼100), running

grommp to create a .tpr file, and then performing an mdrun to create the .pdb file as

the input for the actual simulation. Again, creating the final simulation is similar to

that of creating the final version of nitrogen. Using the energy minimized .pdb file,

gmx grompp is used to create the trajectory .tpr file, being sure to set the integrator

in the .mdp file to md and increase nsteps to the proper amount of time steps for

the simulation. With the .tpr file, mdrun can preformed and the result will be a final

.pdb and .xtc files. The .tpr and .xtc files show the positions and trajectories of all

the particles within the system and therefore can be used to examine and visualize

the model.

2.2.3 Inserting Graphene Sheets

With the determination that the system can be set up with dual layers of nitrogen

separated by a vacuum, focus shifts to the important task of inserting simulated

graphene sheets, rather than using smooth CH4 walls. The following describes the

process to create the dual-layer liquid nitrogen and graphene sheet simulation, as

depicted in the model in Figure 2.1. However, at this point, the simulation fails to

realistically portray the interactions between nitrogen and graphene. This will be

further discussed within the Results chapter, Section 3.3: Graphene Simulation and

Nitrogen Solidification.

To begin, like simulating nitrogen, one can create a .pdb file for a graphene sheet

by visualizing the system inside Chimera. For this experiment, Dr. Juan Vanegas

provided the graphene .pdb file. With the atom locations of the graphene sheet, the

next step is to create the initial system layout by combining nitrogen and graphene
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.pdb files. The nitrogen layers were already created when creating the dual layer

system with smooth CH4 walls, so the atom locations can be copied from the ex-

isting .pdb file. The initial graphene sheet generated places the sheet along the

(0,0) xy plane. The top graphene sheet can be generated by using gmx editconf

-translate to shift the molecules to the top of the box again. The atom locations

from each graphene and nitrogen .pdb file can be copied into one text file to create

an overall list of atom locations.

Following the establishment of the full atom location list, the corresponding topol-

ogy file must be created. In addition to providing Lennard-Jones parameters, the

topology file allows for the creation of groups of molecules. These groups can then

be acted upon and/or studied individually rather preforming an action on the entire

system. This helps to further distinguish the nitrogen and graphene sheets within the

simulation. As for Lennard-Jones parameters of the graphene sheet, this experiment

uses the graphene-graphene values from the L. A. Girifalco, Miroslav Hodak, and

Roland S. Lee paper "Carbon nanotubes, buckyballs, ropes, and a universal graphitic

potential" [14]: σ = 0.34148 nm and ε = 0.23059988 kJ/mol.

To access the groups specified in the topology file, GROMACS requires an index

file. The index file (.ndx) lists the atom number for each atom in each group. For this

experiment, the two groups are N2 and GRP, standing for nitrogen and graphene. N2

contains all nitrogen molecules while the GRP groups contains carbon atoms. Rather

than looking for molecules marked N2 or C each time a group is called, by setting up

an index file, it creates a list of which molecules in the .pdb file are in each group.

After the creation of an index file for the proper creation of groups, creating the

full simulation follows the same process of first running an energy minimization to to
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prevent unnatural stress and then using those output files as the inputs for the full

simulation run. However, as the graphene sheets are fixed at the top and bottom of

the box, in each .mdp file, one must include the line freezegrps = GRP. This tells

the simulation to not move any molecules listed within the GRP group, which would

be the case for atoms inside graphene sheets.

Following this process, one should end with simulation depicting graphene sheets

at the top and bottom of the simulation cell, each with a layer of deposited liquid

nitrogen, separated by vacuum. As stated, current issues facing this experiment will

be discussed later in the paper. For example code on creating the simulation up to

creating the dual layer system with the smooth walls, see Appendix C.
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Chapter 3

Results

3.1 Studying System Layout with GROMACS Walls

Creating the dual layer system with smooth, generic carbon walls gives important

insights before studying specifically the phenomenon of critical wetting. By using

GROMACS generated walls, the focus is purely on creating two layers of liquid ni-

trogen separated by vacuum.

To study the separation of layers, the system was simulated with vacuum heights

varying between 2-10 nm, and the average density of particles in the z-direction

was created for each simulation. In the overview of the results, the 6 nm vacuum

example will be used, but all density-histograms are available in Appendix D. Each

liquid nitrogen layer consists of 8,000 particles at 65K at 1 atm, starting in an initial

configuration of a cube of length 7.5645 nm for each side.

The histograms plot the density of nitrogen along the z-axis. gmx density cal-

culates density across the box and then generates an accompanying text file [10].

Traditionally, in calculating the density of the box, gmx density divides the box
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into 50 slices. However, as each box will be a different height with the variable vac-

uum height, the number of slices (-sl ) is set to match the height of each box in

angstroms, thus keeping each slice a constant 1 Å across all simulations.

Plotting the density of nitrogen along the z-axis for the 6 nm vacuum case results in

Figure 3.1. Near the locations of each wall, the density shows sharp peaks, indicating

solidification. This is expected close to the the solid wall, as particles are pulled

strongly and tightly to the wall. After this section of solidification, the density evens

off and then drops off sharply. After a section of the density appearing close to zero,

it sharply increases back to the same value as before the initial drop, and then shows

the peaks indicating solidification near the wall at the top of the box. This density

curve is characteristic of two bulk liquid layers separated by vacuum - confirming the

proposed system layout.

Figure 3.1: Density-histogram for simulation of nitrogen on GROMACS smooth walls. The
simulation was run for 10 ns, with 16,000 N2 particles (8,000 in each layer), at a temper-
ature of 65 K, and a vacuum height of 6 nm.

While setting up the system, the vacuum was created by shifting the nitrogen
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layers to be 6 nm apart. The actual height of the vacuum is calculated by determining

the two locations along the z-axis in which the density of nitrogen is half that of the

average bulk liquid density, and subtracting the difference between them. For this

trial, the calculated vacuum height is 6.008 nm, again confirming this is a good

method to create the desired system layout.

Looking through the histograms in Appendix D, they all display this same curve

indicating bulk liquid separated by vacuum with solidification near the system walls.

Differences between the proposed and measured vacuum heights are all, again, within

the thousandths of nanometers. Thus the histograms confirm the method described

in Section 2.2.2 Generic Carbon Walls creates the desired simulation.

In addition to the histograms showing a distinct drop in density, the presence of

vacuum can be confirmed by comparing the minimum density within each vacuum

region for each trial. Shown in Figure 3.2, the approximate leveling off of density

within the vacuum as vacuum height increases validates the true existence of vacuum

within the simulations.

Figure 3.2: Minimum density versus vacuum height for each dual layer nitrogen simulation
with GROMACS walls.
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3.2 Vacuum-Liquid Interface

Looking at the histograms in Appendix D, there is a distinct curve between the

vacuum and bulk liquid in each simulation. By characterizing this curve, one can

study this interface between the vacuum and bulk liquid nitrogen.

Figure 3.3: Curve between vacuum and bulk liquid from the histogram for simulation of
nitrogen on GROMACS smooth walls in Figure 3.1.

A strong candidate for fitting this interface is the the cumulative distribution

function (CDF):

Φ
(
x− µ
σ

)
= 1

2

[
1 + erf

(
x− µ
σ
√

2

)]

Where in terms of curve fitting, µ can be defined as the interface location, and a

multiple of σ can define the interface width. For this experiment, the interface width

is defined as 2σ.

Plotting the CDF function and the normalized data from the dual-layer GRO-

MACS wall simulations, the curves fit together nicely. Thus, the interface between
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Figure 3.4: CDF curve with σ = 0.000276 and µ = 0.0163

vacuum and bulk liquid can be characterized by this curve. For the 6 nm vacuum

trial, the interface width is approximately 0.473 nm. Plots showing the curve fitting

and respective interface widths for all trials can be found in Appendix E.

Figure 3.5: CDF curve overlaid on normalized data of the inferface between vacuum and
bulk liquid nitrogen from the dual-layer GROMACS wall simulation with a 6nm vacuum
height
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3.3 Graphene Simulation and Nitrogen Solidifi-

cation

As mentioned in the Methodology chapter, at this point, the simulation containing

graphene fails to realistically portray the interactions between nitrogen and graphene.

At the time of this thesis’s publication, each nitrogen layer completely solidifies on

top of each graphene sheet, see Figure 3.6. Even if this experiment failed to simu-

late critical wetting, nitrogen molecules placed about a single layer of graphene at a

temperature of 65 K should not solidify. Initial analysis suggests an error with the

code’s Lennard-Jones parameters. However, for this simulation, the code is calling

the Lennard-Jones parameters σ = 0.3611 nm, ε(T ) = 0.8508 kJ/mol for nitrogen at

65K, and σ = 0.34148 nm and ε = 0.23059988 kJ/mol for graphene. The similarity

between σ values does not suggest that the particles are becoming too close together,

leading to the formation of a solid.

Figure 3.6: Histogram showing the complete solidification of nitrogen on each graphene sheet
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Additionally, when substituting the Lennard-Jones parameters of graphene with

CH4 parameters (σ =0.3723 nm, ε(T )=1.26001 kJ/mol at 65K), as used with the

smooth walls, the problem still arises.

Figure 3.7: Histogram for simulation of nitrogen on graphene sheets, with the graphene
sheets having the same Lennard-Jones parameters as the previously used GROMACS smooth
walls. The histogram of the modified simulation still shows the solidification problem.

Determining the cause of this solidification issue is the main hurdle in creating an

accurate computational experiment, and thus being able to study critical wetting for

nitrogen on monolayer graphene.
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Chapter 4

Conclusion and Future Work

This thesis is an ongoing project. Its goal, to use atomistic simulations to validate

the continuum Lifshitz theory of critical film thickness, is unfulfilled. Yet, in the

process of creating the simulation to study the critical wetting phenomenon, one has

learned about the theory behind critical wetting, how to create a molecular dynamics

simulation, and measure the interface width between bulk liquid nitrogen and vac-

uum. Immediate work is focused on properly simulating graphene sheets, solving the

nitrogen solidification error. Once these issues are fixed, and the experiment can be

properly simulated, the actual studying of critical wetting can begin. In each trial,

the density of the overall system will vary, and in response, one can measure the

effect on film height. Additionally, in studying critical wetting, one can measure the

forces on particles at different heights within the nitrogen layers. While there is much

exciting work still left in this project, the work presented within this paper provides

a solid foundation for the project, as well as for other projects involving molecular

dynamics simulations and phenomenons related to two-dimensional materials.
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Appendix A

Lennard-Jones Parameters

For the simulation of nitrogen, this work calculated the Lennard-Jones parameters

using the 2016 F. Cao, J. Deetz, and H. Sun paper "Free Energy-Based Coarse-

Grained Force Field for Binary Mixtures of Hydrocarbons, Nitrogen, Oxygen, and

Carbon Dioxide" [12]. In the paper, ε is temperature dependent:

ε(T ) = εU + εS(T ) = εU + εS
0 + Tδε

Table 1 within the F. Cao paper (recreated below) lists the different ε variables

needed, along with σ for eight different molecules.
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Optimized FE-12-6 Force Field Parameters

σ (Å) εU(kcal/mol) ε0
S(kcal/mol) δε(cal/mol*K)

CH4 3.725 0.2851 0.018 -0.03

C2H6 4.233 0.5315 0.015 -0.23

C3H8 4.690 0.6780 0.022 -0.35

n− C4H10 5.087 0.8309 0.020 -0.43

i− C4H10 5.102 0.7678 0.037 -0.40

CO2 3.650 0.5634 0.077 -0.57

N2 3.611 0.1951 0.018 -0.15

O2 3.378 0.2385 0.013 -0.10

Using a temperature of 65K, and adjusting the ε values to have units of kJ/mol

(the units used by GROMACS), the Lennard-Jones parameters for N2 were deter-

mined.

This method was also used for determining CH4 parameters, which were used as

the Lennard-Jones parameters for the smooth walls created by GROMACS in place

of simulated graphene sheets.

For the Lennard-Jones parameters for the graphene sheets, "Carbon nanotubes,

buckyballs, ropes, and a universal graphitic potential" by L. A. Girifalco, Miroslav

Hodak, and Roland S. Lee was used [14]. The paper uses the AB form of the Lennard

Jones Potential:

VLJ(x) = −A
x6 + B

x12
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Where A and B are the attractive and repulsive constants respectively. For

graphene-graphene system:

A = 15.2 eV x Å6

B = 24.1 x 103 eV x Å12

x0 = 3.83 Å

|ε| = 2.39 meV

Using the equations:

σ =
(
B

A

) 1
6

ε = A2

4B

one can calculate σ and confirm ε values

In summary:

Lennard-Jones Parameters Used

σ (nm) ε(kJ/mol))

N2 0.3611 0.8508 (at 65K)

CH4 0.3725 1.26001 (at 65K)

Graphene-Graphene 0.34148 0.23059988
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Appendix B

Determining Simulation Volume

To determine the box size, one can use the equation:

V = N

ρ

where N = number of particles, ρ = density, and V = volume. The number

of particles is arbitrary, but the density is dependent on the number of particles,

temperature and pressure of the system. CoolProp is a C++ library containing the

equation of state and experimental values for over 122 fluids [13]. Using CoolProp,

the density of the fluid can be determined over a temperature range.

Figure B.1: Code displaying how to determine the density within a box using CoolProp
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From there, to determine the size of each unit cell surrounding a molecule, it is a

matter of taking the cube root of the overall box volume, and dividing it by the cube

root of the number of particles within the box.

35



Appendix C

Simulation Code

This section presents code for a simulation of 16,000 N2 molecules in two layers (8,000

particles per layer) separated by 6 nm of vacuum; each layer rests on smooth wall.

The simulation is at a temperature of 65K.

C.1 Single Particle Creation

The creation of a single particle in Chimera does not involve specific code. In place

of example code, Figure C.1 shows the process.

C.2 Bulk Nitrogen

Creation of the bulk nitrogen layer
1 gmx editconf -f N2CG_single.pdb -box 0.37822326 0.37822326 0.37822326 -o

↪→ T65single.pdb
2

3 gmx genconf -f T65single.pdb -nbox 20 20 20 -o N8000T65box.pdb

The first line sets the size around the particle, while the second line multiples the
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number of particles to create an 8000 N2 box.

Energy minimization
1 gmx grompp -f gromppsteep.mdp -c N8000T65box.pdb -o eminN8000T65.tpr
2

3 gmx mdrun -s eminN8000T65.tpr -c eminN8000T65.pdb -x eminN8000T65.xtc

By setting the integrator inside the .mdp file to steep, the system is set up to run a

short simulation, minimizing the energy within the system.

Final nitrogen simulation
1 gmx grompp -f gromppmd.mdp -c N8000T65.pdb -o N8kT65.tpr
2

3 gmx mdrun -s N8kT65.tpr -c N8kT65.pdb -x N8kT65.xtc

Using the minimized energy particle locations and trajectories, and by setting the

integrator in the .mdp file to md, the bulk N2 MD simulation is created.

C.3 Dual Layer System with Smooth Walls

Creating the dual layer system
1 gmx editconf -f N8kT65.pdb -translate 0 0 0.4 -o N8kT65shift_original.pdb
2

3 gmx editconf -f N8kT65shift_original.pdb -box 7.5645 7.5645 21.929 -noc -o
↪→ N8kT65zexpand.pdb

4

5 gmx editconf -f N8kT65zexpand.pdb -translate 0 0 13.9645 -o N8kT65shift.pdb

The first line shifts the existing bulk liquid nitrogen layer up 0.4 nm to create space

for the wall to be place on the (0,0) xy plane. Then, this simulation cell is expanded

to create space for the top layer and the vacuum space. The liquid nitrogen layer

in this expanded box is shifted up to the top, giving the atom locations for the top
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nitrogen layer. N8kT65shift.pdb and N8kT65zexpand.pdb are combined into one file.,

creating a dual layer system of nitrogen. In this example, this combined file is named

N8kT65systemcombine.pdb.
1 gmx editconf -f N16kT65systemcombine.pdb -resnr 1 -o N16kT65doublesystem.pdb

The atom locations in this combined system .pdb file are renumbered.

Energy minimization
1 gmx grompp -f gromppsteepwall2.mdp -c N16kT65doublesystem.pdb -o

↪→ eminN16kT65Wall2.tpr
2

3 gmx mdrun -s eminN16kT65Wall2.tpr -c eminN16kT65Wall2.pdb -x eminN16kT65Wall2.
↪→ xtc

Inside the .mdp file, the line nwall = 2 is added, adding a smooth wall to the top

and bottom of the simulation cell. Again, with a short run, the energy within the

system is minimized.

Final dual layer simulation
1 gmx grompp -f gromppmdwall2.mdp -c eminN16kT65Wall2.pdb -o N16kT65Wall2.tpr
2

3 gmx mdrun -s N16kT65Wall2.tpr -c N16kT65Wall2.pdb -x N16kT65Wall2.xtc

By switching the integrator back to md, the dual layer system is processed, and the

final simulation is created and run with mdrun.
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Figure C.1: Creation of a single particle in Chimera [11]
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Appendix D

Histograms for Simulations with CH4 Walls

Below are histograms for simulations of nitrogen on GROMACS smooth walls. The

simulations were each run for 10 ns, with 16,000 N2 particles (8,000 in each layer),

and at a temperature of 65 K. The box was 7.5645 nm along the x and y axes, while

the z axis varied with vacuum height. Vacuum ranged from 2-10 nm.

Each proposed vacuum height was coded by the amount the top layer of nitrogen

was shifted to reach the top of the simulation cell. The actual height of the vacuum is

calculated by determining the two locations along the z-axis in which the density of

nitrogen is half that of the average bulk liquid density, and subtracting the difference

between them. Differences between the proposed and measured vacuum heights are

all, again, within the thousandths of nanometers.

In addition to validating the system set up by seeing well defined bulk liquid layers

separated by vacuum, the point in which distinct liquid layers disappears can be seen

by creating histograms for vacuums starting at 1.9 nm and decreasing by 0.1 nm.
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Appendix E

Curve Fitting and Interface Widths

Below are the curve fitting plots for the liquid-vacuum interface for each varying

vacuum height trial (vacuum heights 2-10 nm). The σ, µ, and interface width values

(2σ with corrected units) are commented below each plot.
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Figure E.1: Vac = 2 nm: µ = 0.0116209970537, σ = 0.000279684965274,
Interface width = 0.47829630717595628 nm

Figure E.2: Vac = 3 nm :µ = 0.0127666512329, σ =0.000277108430307,
Interface width = 0.47410401903445332 nm
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Figure E.3: Vac = 4 nm: µ = 0.0139289632227, σ = 0.000274055408979,
Interface width = 0.46856448154715669 nm

Figure E.4: Vac = 5 nm: µ = 0.015163457968, σ = 0.000273691894628,
Interface width = 0.46745581188502044 nm
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Figure E.5: Vac = 6 nm: µ = 0.0163097473237, σ = 0.000276299459769,
Interface width = 0.47227664038778794 nm

Figure E.6: Vac = 7nm: µ = 0.0174455553662, σ = 0.000276445874517,
Interface width = 0.47274682794978706 nm
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Figure E.7: Vac = 8 nm: µ = 0.0186674236981, σ = 0.000274861115073,
Interface width = 0.46981812499405468 nm

Figure E.8: Vac = 9 nm: µ = 0.0197796938889, σ = 0.000274217882632,
Interface width = 0.46897119611470206 nm
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Figure E.9: Vac = 10 nm: µ = 0.0209330322624, σ = 0.000277613897889,
Interface width = 0.47498966162200917 nm
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