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ABSTRACT 

 

 Demand for ruminant-derived products high in beneficial fatty acids (FA) has led 

to a desire to maximize the alpha-linolenic acid (ALA) and total FA (ΣFA) content of 

forage crops. Several management factors affect the ALA and ΣFA content of forages, 

including phenology, species, season, and nitrogen fertility. Yet, the influence of 

harvest management decisions that affect wilting time of conserved forages is under-

studied. Similarly, the majority of published research regarding ALA and ΣFA content 

is of cool season (C3 photosynthetic) temperate perennial forage species, and not warm 

season (C4 photosynthetic) annual species. Sample preservation methodologies used in 

published research are often too expensive and time consuming for desired practicality, 

or unreliable. This dissertation aids in addressing these deficiencies. 

 

 In the first study, forced hot air drying of forage samples was shown to be 

unreliable for accurate FA analysis, and an alternative methodology was established 

utilizing brief microwave pretreatment of small fresh weight samples prior to forced hot 

air drying, yielding results similar in accuracy to lyophilized samples. Oxidative losses 

of ground dried forage samples were also examined, again suggesting that microwave 

pretreatment prior to forced hot air drying is a fast, inexpensive and otherwise desirable 

choice for forage sample preservation in anticipation of later FA analysis. A second 

study investigated two warm season annual forage species (sorghum-sudangrass and 

pearl millet), showing that maturity-associated declines in whole plant ALA and ΣFA 

content are largely a product of an increasing ratio of ALA- and ΣFA-scarce 

pseudostem fractions, and only secondarily resultant of maturity associated declines 

within individual plant fractions. Lamina mass ratio was identified as a correlate with 

ALA and ΣFA content, at least as useful as two common correlates - crude protein and 

neutral detergent fiber content. A third study also showed the critical influence of crop 

maturity upon ALA and ΣFA content in two warm season annual forages (pearl millet 

and sudangrass), in addition to differences between species and those resultant from 

differing nitrogen fertility. Conserved forage harvest decisions were evaluated in the 

fourth study. No difference was found between wide and narrow swath treatments (70% 

and 40% of mower width, respectively) of AM and PM mown reed canarygrass, but 

there was evidence to suggest that AM mowing may allow for a higher content of ALA 

and ΣFA content relative to PM mowing. Ensiling was also found to decrease ALA 

content or proportion. 

 

 In conclusion, management choices promoting grazing and/or harvesting of a 

higher laminae proportion, optimizing nitrogen fertility, and suitable choice of species 

for meeting these goals may be the best way to maximize the ALA and ΣFA content of 

forages grown for livestock. AM mowing may reduce ALA and ΣFA content losses 

otherwise caused by overnight wilting of forages mown for conservation, and 

microwave pretreatment prior to forced hot air drying is an advisable sample 

preservation methodology for researchers furthering the study of forage ALA and ΣFA 

content, when lyophilization is impractical or too expensive.  
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CHAPTER 1: LITERATURE REVIEW 

1.1. Research significance 

 Consumer interest in the fatty acid (FA) profile and content of ruminant-derived 

products is driving interest in the FA content of forage crops which make up a majority of 

ruminant animal diets. Generally, a decrease of saturated fatty acids (SFA, particularly 

12:0, 14:0 & 16:0) is desired in ruminant milk and dairy products, in conjunction with an 

increase of unsaturated fatty acids, particularly oleic acid (18:1 9c), n–3 polyunsaturated 

FA (PUFA), conjugated linoleic acids (CLA) – principally rumenic acid (RA, 18:2 

9c,11t), and its precursor vaccenic acid (VA, 18:1 11t) (Dewhurst et al., 2006). RA is 

produced in the rumen via microbial biohydrogenation of the PUFA linoleic acid (LA, 

18:2 9c,12c) and alpha-linolenic acid (ALA, 18:3 9c,12c,15c; Jenkins et al., 2008). Up to 

75% of the variability in milk RA content can be explained by feed content of LA and 

ALA (Mohammed et al., 2009). Very little of the PUFA that are desirable in milk can be 

synthesized de novo by ruminants, thus, long-chain FA must be ingested in dairy feed in 

order to be secreted into milk (Elgersma et al., 2006). 

 RA has been shown to reduce arthritic severity, and to be protective against 

colitis, in mouse models (Ferlay et al., 2017; Oh et al., 2017). And there is 

epidemiological evidence that RA may reduce breast and colorectal cancers in humans 

(Rodríguez-Alcalá et al., 2017), and in vitro evidence of anti-cancer activity (Oh et al., 

2014), however, further evidence of in vivo activity in humans is not yet fully 

demonstrated (Ferlay et al., 2017). Because VA and conjugated linolenic acids (CLnA) 

can be metabolized to RA in humans, they are also sought after FA components of 
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ruminant-derived products. ALA is a precursor of RA, VA and CLnA in the rumen, and 

as such, increases of ALA in the diets of cattle can increase their ruminal outflow for 

incorporation into milk and meat. Increased dietary ALA also increases ALA 

concentration in milk (Hebeisen et al., 1993). ALA is an essential n-3 FA. Beyond 

minimum essential quantities of ALA, n-3 FA are considered desirable in higher 

quantities in the human diet to reduce the n-6:n-3 FA ratio of the diet. The higher dietary 

n-6:n-3 FA ratios common in modern Western diets are associated with inflammation 

related chronic diseases including coronary heart disease, diabetes, and arthritis 

(Simopoulos, 2008; Strandvik, 2011). 

 Ruminant-derived products, including meat and/or dairy, are the only 

significant source of RA and VA in the human diet (Dhiman et al., 1999; Bessa et al., 

2000). RA levels can be increased by increasing the PUFA content of ruminant diets. 

Fresh green forages both contain high PUFA proportions, and when ingested, create a 

rumen environment with a pH that is favorable to the rumen microbes that produce VA 

and RA via biohydrogenation of ALA and LA. Thus, VA and RA are increased in high 

forage ruminant-derived products both by supplying more of their constituent precursors, 

and a microbial environment favorable to their creation (Bessa et al., 2000; Jenkins et al., 

2008; Daley et al., 2010;). n-3 FA in cattle diets, such as ALA (the primary FA found in 

forage crops), are associated with improved fertility and reproductive success in dairy 

cattle (Cerri et al., 2009; Moallem et al., 2013; Soydan et al., 2017) and may even 

influence cattle offspring sex ratio (Marei et al., 2018). Additionally, increasing the 
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PUFA content of butter, by increasing the PUFA in dairy cattle diets, can create softer, 

more easily spreadable butter (Thomson and van der Poel, 2000). 

Consumer demand for organic whole milk has less elasticity in demand response 

to price than organic skim milk (Liu et al., 2013), and more than half of respondents in an 

Italian study showed willingness to pay a price premium for n-3 FA enriched mozzarella 

cheese (Vecchio et al., 2016). This is likely due to perceived health benefits from 

beneficial FA in milkfat (Mitani et al., 2016; Kilcawley et al., 2018). There is evidence 

that interest of North American consumers in high CLA milk is unrelated to previous 

purchases of n-3 products (Peng et al., 2006), suggesting that “grass milk”, i.e., milk 

produced without grain feeding known for higher RA content (Benbrook et al., 2013, 

2018), may independently appeal to consumers for both RA and n-3 PUFA content, in 

addition to consumers that simply desire to financially support grass-based agriculture.  

At least one American supplier of organic “grass milk” closely monitors the FA 

content of their producers raw product to ensure minimum n-3 FA and CLA content, as 

well as a maximal n-6:n-3 FA ratio. In return for not feeding grain, grazing more than 

twice the minimum dry matter (DM) intake required by USDA organic standards, and 

meeting FA content expectations, these “grass milk” farmers receive a price premium of 

~15% relative to the organic milk price (Benbrook et al., 2018).  

 Common forage crops typically contain 1.0% - 4.5% FA by DM (Halmemies-

Beauchet-Filleau, 2013). As such, forage FA are a large dietary component of all 

ruminant diets, regardless of their inclusion of grain feeding. Changes in content of 

relatively energy dense FA in forages can therefore impact the bottom line of producers. 
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1.2. Fatty acids in forage crops 

 This work is focused upon herbage FA, and therefore seed FA, and seed-rich 

feedstuffs (i.e., maize silage, Zea mays L.) are not considered here.  

 There are three main FA in the most common forage crops; ALA, LA, and 

palmitic acid (16:0), accounting for up to 93 g 100g
-1

 of ΣFA (Clapham et al., 2005). Of 

these, ALA is the predominant FA, frequently making up 50-75 g 100g
-1

 of ΣFA in 

grasses (Dewhurst and Moloney, 2013; Garton, 1960; Glasser et al., 2013) and 40-50 g 

100g
-1

 of ΣFA in legumes (Glasser et al., 2013). ALA is notably also the most variable 

 
Figure 1.1. Changes in major individual fatty acids (FA, g kg

-1
 DM) in 

relation to changes in ΣFA content (g kg
-1

 DM) of grass silages (n=101). 

   Adapted from Khan et al. (2012). 
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FA in grass silages, with changes in ALA content having the greatest impact upon ΣFA 

(Figure 1.1.).  

 Most of the FA in forage crops are located in thylakoid membranes within 

chloroplasts, with lipids constituting up to 40% of chloroplast DM. Galactolipids are the 

glycolipids that principally make up thylakoid membranes and consist almost entirely of 

ALA in most higher plants. Other common FA in forage crops such as LA and palmitic 

acid, and to a lesser extent stearic acid (18:0) and oleic acid, are more often found in the 

phospholipids and other glycolipids that make up other membranes within plant cells 

(Buccioni et al., 2012; Figure 1.2.). This distinction between ALA-rich thylakoid 

membrane and other cellular membranes has profound influence upon overall forage crop 

FA content and composition.  

 Differences between species or even cultivars are often listed as a large factor in 

forage FA content and composition, and have been demonstrated in individual studies 

(Boufaïed et al., 2003; Elgersma and Smit, 2005; Palladino et al., 2009), however, apart 

from borage (Borago officinalis L.), Clapham et al. (2005) found that many common 

grasses and forbs have similar ALA, LA, and palmitic acid ratios (Figure 1.3.). That the 

photosynthetic role of triunsaturated FA, like ALA, is highly conserved, and therefore FA 

composition of forage crop components is somewhat inflexible, is supported by the 

findings of a meta-analysis of forage FA studies by Glasser et al. (2013) that no major 

differences could be distinguished between species, or even botanical families. 
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Figure 1.2. Fatty acid composition (g 100 g
-1

 ΣFA) of lipid fractions of red clover leaves: 

galactosyl glycerides, phospholipids, and triglycerides in panels A, B, and C, respectively. 

Adapted from Weenink, as cited in Buccioni et al. (2012). 
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Figure 1.3. Relative proportions of alpha-linolenic acid (ALA), linoleic acid (LA), and palmitic acid 

in 13 forage crop selections. 

Adapted from Clapham et al. (2005). 

   

 The lack of consistent differences between forage species should not be construed 

as suggesting a lack of genetic control on forage FA, however, as ryegrass studies have 

shown distinct gene pools to have different ALA and ΣFA content when receiving the 

same management (Dewhurst et al., 2001), a “stay green” trait can influence ALA and 

ΣFA content by retaining thylakoid membranes later in senescence than wild type 

(Dewhurst et al., 2002; Harwood et al., 1982), and the evidence of some possible ploidy 

level effects in perennial ryegrass (Lolium perenne L., Gilliland et al., 2002). It is likely 

that interactions with environmental and management influences (described in section 
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1.3.) simply confound and dwarf the effects of genetic control within and between 

species. Differences that have been presented between species may in fact be largely 

differences in gross plant architecture, and not finer genetic control of lipid membrane 

composition. 

 The vast majority of research describing forage FA is in temperate cool season 

(C3 photosynthetic) perennial grass species. Very little research has been directed toward 

tropical (warm season, i.e., C4 photosynthetic) perennial grass species, and even less to 

annual warm season grass species, with the exception perhaps of maize silages. Warm 

season grasses typically have a lower proportion of lamina (leaf blade) tissue than cool 

season grasses (Atkinson et al., 2016), and as a result, may be expected to contain less 

FA overall and a lower proportion of ALA. Several investigations of perennial warm 

season grasses found greater palmitic acid proportions than ALA, and a very low ΣFA 

content (O’Kelly and Reich, 1976; Martins et al., 2016; Mojica-Rodríguez et al., 2017) 

though other studies of warm season grasses found ALA proportions that were much 

closer to results reported for cool season grasses in perennial species (Khan et al., 2015; 

Dias et al., 2017) and in annual species (Vargas et al., 2013; Bainbridge et al., 2017). 

 Unlike grasses and legumes which can be grouped within what are called “18:3 

plants”, some higher plants are referred to as “16:3 plants” because they utilize the 

prokaryotic lipid metabolism pathway to produce the n-3 FA hexadecatrienoic acid (16:3 

7c,10c,13c), in addition to the eukaryotic lipid metabolism pathway that produces ALA, 

and use both of these triunsaturated FA in their membranes (Harwood, 1996). All of the 

forage crops investigated in this dissertation are 18:3 plants, however, some 16:3 plants 
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that may be used as livestock feed include Plantago spp. which may have very small 

quantities of 16:3 n-3, and the Brassicaceae family which may contain up to 30% of ΣFA 

as 16:3 n-3 (Mongrand et al., 1998). Hexadecatrienoic acid is largely absent from 

discussions of forage FA, and consequently may have been over-looked, such as in the 

investigation of Clapham et al. (2005) that included Brassica spp. and a Plantago. 

1.3. Factors that influence FA levels in forage crops 

1.3.1. Temperature 

 Temperature is a possible component of seasonal effects (Section 1.3.6.), and has 

also been suggested as a rationale for stark contrasts of ALA content reported in studies 

of warm season grasses (Dias et al., 2017; Mojica-Rodríguez et al., 2017). The nature of 

an unsaturated FA is to bend, or kink, at each double bonding site along the carbon chain 

(Figure 1.4.). In this fashion, a greater degree of unsaturation will increase the kinked 

nature of individual FA and subsequently decrease the density at which FA can be 

aligned in a lipid membrane, increasing the fluidity of that membrane. Throughout 

normal turnover of the chloroplast lipid membranes, saturation level is adjusted to 

maintain a rigidity and fluidity balance in response to temperature. A shift to lower 

temperatures activates desaturase enzymes, thereby increasing proportions of 

triunsaturated FA such as ALA (Xu and Siegenthaler, 1997), and both ALA and 

hexadecatrienoic acid in 16:3 plants (Falcone et al., 2004). Even rapid changes in rates of 

desaturation activity are slowly reflected in overall FA composition of lipids, suggesting 

that rapid temperature shifts have minimal influence and that changes in overall 

saturation are a mid- to long-term acclimation (Williams et al., 2000). In response to 
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higher temperatures, plants require an increased rigidity for optimal membrane 

performance, and thus, increase content of the fully saturated stearic acid (Harwood, 

1996). Changes in thylakoid membrane FA saturation level may be as simple as replacing 

ALA in thylakoid membranes with diunsaturated LA throughout normal membrane lipid 

turnover, over the course of 60 to 100 hours, and as such, are not in response transient 

temperature fluctuations (Falcone et al., 2004; Larkindale and Huang, 2004; Narayanen 

et al., 2016).  

 

Figure 1.4. Structural models of A) the saturated fatty acid (FA) palmitic acid (16:0), B) the 

diunsaturated FA linoleic acid (18:2), and C) the triunsaturated FA alpha-linolenic acid (18:3), 

demonstrating kinks at double bonding sites.  

Adapted from Kim et al. (2016). 

 

 In a less direct fashion, increased temperatures can also influence forage FA 

content and composition by increasing the rate of forage maturation and lignification 

(increasing neutral detergent fiber, NDF, within plant fractions), and by altering the 

relative proportions of lamina and stem/pseudostem fractions (Buxton and Fales, 1994). 
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Both of these impacts would serve to dilute the amount of ALA-rich thylakoid 

membranes on a whole plant DM basis. 

 

1.3.2. Diurnal variation 

 Diurnal fluctuations in grass ALA and ΣFA content have been reported, and 

largely attributed to increases of nonstructural carbohydrates, and subsequently DM, 

throughout the photosynthetic day diluting a constant FA presence (Avondo et al., 2008; 

Doreau et al., 2007; Vibart et al., 2017). Conversely, Gregorini et al. (2008) reported no 

diurnal FA changes, and Scollan et al. (2003) and Vasta et al. (2012) reported an opposite 

diurnal effect, however, differences reported by Scollan et al. are likely to be resultant 

from genetic differences more than diurnal effects. This opposing diurnal trend is perhaps 

best explained by the works of Browse et al. (1981) and Ekman et al. (2007), which 

displayed light-dependent oleic acid synthesis diluting the proportion of ALA as the 

photosynthetic day progressed, and light-independent desaturation activity converting 

oleic acid into ALA overnight. However, their examples may only be practically 

applicable to emerging leaves where FA synthesis is greatest (Hawke et al., 1974).  

 As plants acclimate to shading, they may increase their chloroplast concentration, 

thereby increasing their content of ALA-rich thylakoid membranes, and increasing the 

degree of unsaturation of their overall FA (Marchin et al., 2017). Dewhurst and King 

(1998), however, found that complete shading (with black plastic) for 24 hours reduced 

ALA proportion and ΣFA content. 

 There is also some evidence that FA may be used in grass leaves for short term 

energy storage of photosynthetic gains throughout the day in the form of small amounts 
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of triacylglycerols (Perlikowski et al., 2016). The creation of these triacylglycerols has 

alternatively been proposed as short-term storage of ALA and LA during membrane 

remodeling (Narayanen et al., 2016) or in response to oxidative stresses related to 

photodamage, though more research is needed to verify that claim (Marchin et al., 2017). 

1.3.3. Water relations 

Maintaining lipid membrane stability and integrity is also critical in the success of 

plants in response to water stress, however, this response is not universal and varies even 

between very closely related plants. Osmotic water stress caused a decline in membrane 

lipids in a water stress sensitive Arabidopsis thaliana (L.) Heynh., while increasing the 

membrane lipids in a more tolerant close relative, Thellungiella salsuginea (Pall.) O.E. 

Schulz. In the water-stress tolerant species, amount of FA and level of FA unsaturation 

was increased (i.e., more ALA and 16:3 n-3), suggesting that maintaining an adequate 

amount and greater ratio of unsaturated membrane FA is critical for plants to survive 

drought stress (Upchurch, 2008; Yu and Li, 2014). Similarly, withholding water for 

fourteen days to susceptible and tolerant wheat cultivars was shown to more greatly 

affect the membrane lipids of the susceptible cultivar (Quartacci et al., 1995). 

Perlikowski et al. (2016) has also attributed improved drought tolerance to earlier 

membrane lipid response and membrane regeneration when comparing two introgression 

genotypes of Lolium multiflorum x Festuca arundinacea L.. 

Water deficit can inhibit lipid biosynthesis, and stimulate lipolytic and 

peroxidative activities, which all can decrease membrane FA content (Upchurch, 2008). 

No publications examining conditions of excessive water were found. 
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1.3.4. Soil fertility 

 Supplying adequate nitrogen fertility has been identified as one of the few 

management practices through which a producer can increase the ALA proportion and 

ΣFA content of their forage crops, in a paradigm that is otherwise dominated by 

attempting to limit ALA and ΣFA losses (Glasser et al., 2013). Nitrogen fertility status 

(and subsequently crude protein content) has been linked with FA content since at least 

the works of Barta (1975) and Mayland et al. (1976), and Barta (1975) also identified that 

increasing potassium fertility status does not have a direct connection with FA content. 

Crude protein content is frequently reported in forage FA studies, and is considered the 

variable that best predicts ΣFA content (Glasser et al., 2013). Optimal nitrogen fertility 

allows for the greatest abundance of chloroplasts in grasses, and therefore, a greater 

content of ALA-rich thylakoid membranes (Dewhurst and Moloney, 2013). Boufaïed et 

al., (2003) suggested that nitrogen fertility associated FA increases in timothy (Phleum 

pretense L.) were purely an increase of chloroplast proportion within leaf fractions, as the 

nitrogen fertility also decreased the ratio of leaf to stem fractions, which would otherwise 

have likely decreased ALA and ΣFA content. Increasing phosphorus fertility status has 

been found to have little impact upon FA content and composition of grasses (Boufaïed et 

al., 2003; Lee et al., 2006). 

1.3.5. Maturity 

  Forage crop maturity has repeatedly been proposed as a major factor in 

determining forage crop FA content and composition. The designs used to examine the 



14 

 

effect of plant maturity have varied however, with treatment designations that are of 

limited comparability between studies. A meta-analysis of published studies of forage FA 

content and composition by Glasser et al. (2013) determined that vegetation stage was the 

most influential impactor of forage FA, confirming the findings of Khan et al. (2012). As 

such, NDF, a measure of structural components in plant cells that increase with 

advancing maturity and is typically lowest in leaf tissue, is an important negative 

correlate of forage FA. Whole plant measures of NDF increase both from changes within 

aging plant cells, and from phenological shifts in plant fractions, such as flowering/culm 

production at reproductive maturity, or other decreases in leaf:stem ratio through stem 

elongation or leaf senescence. The works of Cabiddu et al. (2017) and Dias et al. (2017) 

have recently highlighted the greater importance of changes in relative plant fractions 

than of cell maturation changes within plant fractions, for FA decreases associated with 

advancing maturity in berseem clover (Trifolium alexandrinum L.) and elephant grass 

(Pennisetum purpureum Schumach.), respectively. The scale at which ratios of relative 

plant fractions change with advancing maturity, and subsequently the ratio of thylakoid 

membranes relative to overall plant DM, is likely a primary distinction in the FA content 

and composition of individual species. 

1.3.6. Season 

 The meta-analysis by Glasser et al. (2013) also shows a clear seasonal variation in 

the average proportion of ALA reported in published literature (Table 1.1.), and 

concomitantly ALA and ΣFA content. Forage FA content and ALA proportion of ΣFA 

content typically decreases from spring until June and July, increasing again into the 
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autumn months. This seasonal variation is likely not a direct effect of its own, but 

resultant both from temperature differences and early season primary growth maturing to  

Table 1.1. Effect of the time in the year (Northern Hemisphere) on FA
a
 composition (g 100 g

-1
 ΣFA) 

and total FA content (g kg
-1

 DM
a
) of pure grasses and pasture. Adapted from Glasser et al. (2013). 

 

a reproductive stage in the early summer with subsequent regrowth cycles staying 

vegetative in the cool season perennial species that make up the majority of forage FA 

research. There are individual studies where a substantial FA decrease was not always 

found in the summer, or a progressive increase across the season was found (Dewhurst et 

al., 2002; Boufaïed et al., 2003; Elgersma et al., 2003b), which may be resultant from a 

later onset of sampling in the spring when grasses have reached a reproductive stage of 

maturity (missing vegetative early spring growth with its high FA content) and, at least in 

the case of Dewhurst et al. (2002), frequent cutting to avoid onset of flowering. Reports 

for legumes are mixed, possibly resultant from management decisions and/or maturity 

and phenological differences between studies, with white clover (Trifolium repens L.) 

decreasing in ALA and ΣFA from spring to summer, red clover (Trifolium pretense L.) 

increasing, and alfalfa (Medicago sativa L.) not differing greatly (Lee et al., 2006; Van 

Ranst et al., 2009).  
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1.3.7. Impacts of forage conservation 

 The meta-analysis of forage FA content and composition studies by Glasser et al. 

(2013) summarized that forage conservation practices such as haymaking and ensiling 

can sometimes influence ΣFA content and ALA proportion of grass and legume crops. 

Briefly, haymaking led to decreases in ΣFA content (-2.4 g kg
-1

 DM) and ALA 

proportion of ΣFA (-7.13 g 100 g
-1

 ΣFA) on average, though ALA proportion decreases 

were nearly twice as large in studies with poor drying conditions (-13.2 g 100 g
-1

 ΣFA). 

Ensiling, on the other hand, increased ΣFA content and did not alter ALA proportion in 

unwilted silages, and lowered ALA proportion by 5% in wilted silages. 

 FA losses during forage conservation may partially be a result of leaf shatter 

during harvest operations (Dewhurst et al., 2006), however, most forage conservation 

losses of FA are likely the result of lipolytic activity of endogenous plant enzymes, and 

subsequent oxidation of PUFA, particularly ALA. Some lipolytic enzyme activity is 

always occurring within plant cells, as thylakoid membranes are subject to constant 

turnover and replacement (Falcone et al., 2004). Wounding plants, such as mowing for 

harvest, stimulates a rapid stress response in which lipase enzymes liberate ALA and LA 

from lipid membranes. Lipoxygenase enzymes catalyze the deoxygenation of these 

PUFA, generating hydroperoxy PUFA which are the substrates for at least seven different 

enzyme families. Hydroperoxy PUFA are used to produce direct and indirect defenses to 

perceived herbivory, such as jasmonates and green leaf volatiles - the source of the “fresh 

cut grass” smell after mowing (Dar et al., 2015; Dewhurst et al., 2003; Turner et al., 

2002; Venkatesan, 2015). The “stay-green” trait that slows or reduces senescence of 
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chloroplasts has been suggested as a potential breeding target as a mechanism to limit the 

accessibility of thylakoid membranes to lipoxygenase activity (Dewhurst et al., 2003). 

 Because endogenous plant enzymes are highly active, forage samples collected 

for research must be analyzed immediately upon collection or preserved for later analysis 

in a manner that minimizes lipolysis and subsequent oxidation (Christie and Han, 2010; 

Elgersma, 2015). Inconsistencies in sample preservation methodology may reduce the 

comparability of forage FA research, and/or be a confounding factor in perceived 

treatment effects. 

1.3.8. Impact of wilting 

 Investigations into wilting losses of ALA and ΣFA in perennial ryegrass showed 

reductions after extended wilting periods (Dewhurst and King, 1998; Dewhurst et al., 

2002; Elgersma et al., 2003; Van Ranst et al., 2009a; Warren et al., 2002), and Khan et 

al. (2011) found the proportion of ALA decreased primarily in an initial wilting phase 

(up to ~ 45 g DM 100 g
-1 

fresh weight) and that ΣFA content did not continue to decrease 

in long-term controlled lab wilting beyond that point; however, field cured samples dried 

more quickly and were of a much greater DM content (67 g DM 100 g
-1 

fresh weight) 

when they reached a similar ΣFA content. This suggests that the field-cured samples 

reached a DM content at which lipolytic enzyme activity was greatly reduced while there 

were still labile FA available to be lost when overnight re-wetting increased lipolytic 

activity, whereas lab-cured samples took longer to reach a critical DM content for 

reduced lipolytic activity and readily available pools of FA had already degraded. The 

potential significance of this DM point are further corroborated by the findings of Van 



18 

 

Ranst et al. (2009a), that lipolytic enzyme activity is greatly reduced in clovers (Trifolium 

spp. L.) as they wilted to 40 - 50 g DM 100 g
-1

 fresh weight. 

 Similar studies of timothy are less congruous than those of perennial ryegrass, as 

Boufaïed et al. (2003) and Lee et al. (2006) found a drop in ALA and ΣFA content in an 

initial wilt, but little further reduction in extended drying to hay, while Shingfield et al. 

(2005) found little change within a 6 hour wilt, but reductions after extended curing to 

hay, and Arvidsson et al. (2009a) found no effect on ALA or ΣFA content when wilting 

to 33.6 or 35.0 g DM 100 g
-1 

fresh weight.  

1.3.9. Impact of ensiling 

 The impact of ensiling upon FA of conserved forage crops can be difficult to 

compare with published studies, as results have been mixed and many of the studies are 

confounded by the presence of un-sampled wilting prior to ensiling. Of the studies that 

sampled both after wilting and again after ensiling Arvidsson et al. (2009a) and Dewhurst 

and King (1998), observed no effect of ensiling on ΣFA content or ALA proportion, 

though Boufaïed et al. (2003) found increases in both ΣFA and ALA content. Of studies 

that compared unwilted forage before and after ensiling, Alves et al. (2011) and Boufaïed 

et al. (2003) both reported increases in ΣFA content, though only Boufaïed et al. (2003) 

found an increase in ALA content, and Liu et al. (2018) reported a decrease in ALA 

proportion, though no change in ΣFA content. In studies comparing fresh forage with 

silages made from wilted material, Vanhatalo et al. (2007) reported mixed results for 

ΣPUFA proportion - decreasing in grass and mature clover silages but increasing in 

young clover silages – otherwise, significant decreases in ALA proportion were 
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universal: Chow et al. (2004) and Van Ranst et al. (2009a) reported increases in ΣFA 

content, Whiting et al. (2004) reported decreases in ALA and ΣFA content, and Ding et 

al. (2013) and Elgersma et al. (2003) found decreases in both ALA proportion and ΣFA 

content, though Ding et al. reported varying degrees of ensiling decreases in both ALA 

proportion and ΣFA content, pursuant to applied pre-ensiling treatments.  

 Increases in ΣFA content of ensiled forages are typically suggested to be the result 

of DM losses associated with ensiling, such as effluent loss or respiratory/fermentative 

losses, essentially concentrating the remaining DM components, including FA (Lee et al., 

2006; Baumont, as cited in Glasser et al., 2013). In at least one example (Liu et al., 2018) 

DM content decreased 15.6 g DM 100 g
-1 

fresh weight, possibly off-setting the reported 

ALA decrease, as ΣFA content of the resulting silage was not significantly different than 

the fresh forage it was made from. 

 It was posited by Elgersma et al. (2003) that ensiling changes in FA composition 

may be resultant from endogenous plant lipolytic enzyme activity in addition to microbial 

lipolytic enzyme activity. The examination of alfalfa (Medicago sativa L.) silage by Ding 

et al. (2013) confirms that both endogenous plant enzymes and microbial enzyme activity 

can reduce ALA content and proportion, and ΣFA content. If the two effectors can be 

assumed additive, endogenous plant enzymes were responsible for approximately 28 g 

100 g
-1

 of the overall 40 g 100 g
-1

 ensiling reduction in ΣFA content found by Ding et al. 
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2.1. Abstract 

 Accurate analysis of forage fatty acid (FA) profile and content, particularly 

polyunsaturated FA (PUFA), such as alpha-linolenic acid (ALA) and linoleic acid 

(LA), is vital for ongoing research optimizing the desired FA content of ruminant-

derived foods. Lyophilization (i.e., freeze-drying) is regarded as the gold standard for 

preserving labile constituents, such as PUFA, in fresh forage samples. This method, 

however, is expensive, time consuming, and generally impractical for the large number 

and size of forage samples in agronomic studies.  

 The objective of the first experiment was to evaluate the efficacy of a brief (1 

min) microwave pretreatment prior to forced hot air drying (FHA) for preserving alfalfa 

(Medicago sativa L.) and Italian ryegrass (Lolium multiflorum L.) forage samples, 

relative to both a freeze-drying control and FHA drying alone. In a second experiment, 

similar drying methods were examined in winter rye (Secale cereale L.), as well as the 

decline of ALA proportion of total FA in ground samples stored 72 weeks.  

 In the first experiment, small fresh weight samples (100 g) receiving 1 min 

microwave pretreatment before FHA drying were found equivalent to freeze-dried 

samples in FA content and profile, and both were greater in ΣPUFA than samples that 

received FHA alone. Large fresh weight samples (400 – 500 g) receiving FHA alone, a 

common practice in agronomic studies, contained 1.5 – 2.5 fold lower total ALA 

content and 1.3 – 1.6 fold lower LA content than the freeze-dried control, while large 

fresh weight samples (400 – 500 g) receiving 1 or 2 min microwave pretreatment 

contained 1.2 – 2.2 fold lower total ALA content and 1.1 – 1.5 fold lower LA content 
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than the freeze-dried control. The second experiment revealed a reduction in ALA 

proportion of total FA of stored samples over a long period of time regardless of 

preparation method; however, FHA samples had a greater rate of reduction. 

 This study confirms that FHA drying alone is not adequate for forage sample 

preservation for FA analysis, and may lead to a significant underestimation of ALA, the 

principal FA in plants. This distorts measurements of other FA reported on a 

proportional basis (g 100g
-1

 total FA). In conclusion, a simple and inexpensive 1 minute 

microwave pretreatment prior to FHA drying results in FA analysis comparable to 

freeze-dried samples, provided that samples are of a small fresh weight (100 g).  

2.2. Introduction 

 Growing consumer interest in the fatty acid (FA) content and composition of 

ruminant-derived dairy and meat products has led to the increased study of the FA 

content and profile of forage crops – particularly the content of total polyunsaturated 

FA (ΣPUFA), alpha-linolenic acid (ALA, 18:3 9c,12c,15c), and linoleic acid (LA, 18:2 

9c,12c). Animals cannot synthesize ALA or LA de novo, thus, ALA and LA in 

ruminant-derived products result exclusively from the animals’ diets. Therefore, 

accurate analysis of the FA profile of forages is vital for ongoing research optimizing 

the desired FA content of ruminant-derived foods.  

 The lipids of forage plants are primarily found in thylakoid membranes and are 

subject to constant turnover and replacement (Falcone et al., 2004). Moreover, the 

primary plant PUFA ALA is oxygenated to produce metabolites such as jasmonates and 

green leaf volatiles in response to plant stresses, e.g., wounding (Turner et al., 2002; Vu 
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et al., 2012; Dar et al., 2015; Venkatesan, 2015; Sofo et al., 2016). As endogenous 

plant enzymes are highly active, plant tissues must either be analyzed immediately 

upon collection or preserved for later analysis in a manner that minimizes lipolysis and 

subsequent oxidation (Christie and Han, 2010; Elgersma, 2015; Sofo et al., 2016).  

 Samples of fresh forages in agronomic field studies are often large (≥400 g fresh 

weight) to be as representative of an entire plot as possible and to minimize the relative 

influence of any sampling errors (Foster and Wright, 1968). Sampling is commonly 

based on one sample (or occasionally a composite of subsamples) for both dry matter 

(DM) estimation and later analyses of forage quality. DM yield samples have been 

recommended to be as large as, or larger than, 900 g fresh weight (Hanson and 

Carnahan, 1956). Samples are typically recommended dried in a forced hot air drying 

oven, with various recommended temperatures and durations of time depending upon 

the constituents being investigated (Faithfull, 2002). In practice, however, the large 

quantity of samples that may be produced by multiple concurrent studies and the need 

to examine several constituents from each sample leads to a compromise drying 

temperature and duration being utilized for all samples.  

 Lyophilization (i.e., freeze-drying) of frozen forage samples is generally 

considered the best drying method for preserving labile constituents of fresh forage 

samples (Heberer et al., 1985; Faithfull, 2002; Arvidsson et al., 2009; Pelletier et al., 

2010; Elgersma, 2015). Freeze-drying, however, necessitates expensive equipment, is 

time intensive, and is generally impractical for a large number and size of fresh forage 

samples typically produced in agronomic field studies. Freeze-dried samples may not 
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dry as thoroughly as oven-dried samples, and special care must be taken to prevent 

rehydration before grinding as they can be stickier than oven-dried samples and may 

present difficulties in milling (Faithfull, 2002).  

 Microwave drying of plant tissues has been suggested as a means of complete 

sample drying (Hofman, 1965; Higgins and Spooner, 1986; Karn, 1986, 1991; Popp et 

al., 1996). Pelletier et al. (2010) found that a brief 1 min microwave pretreatment prior 

to forced hot air drying of fresh forage samples yielded non-structural carbohydrate 

estimates similar to those of freeze-dried samples, and much higher than forced hot air 

(FHA) dried samples that were not subjected to microwave pretreatment. Pelletier et al. 

(2010) hypothesized that the rapid heating of the microwave pretreatment denatures and 

therefore deactivates plant enzymes responsible for post-harvest respiration. This 

proposed mode of action is corroborated by similar sample preparation methods of 

highly labile constituents (e.g., polyphenols and glucosinolates) in which microwaving 

was found to limit enzymatic degradation (Gulati et al., 2003; Verkerk and Dekker, 

2004; Niu et al., 2015). In addition, heating samples at 75 °C for 15 min was utilized to 

deactivate endogenous plant lipases before sample freezing by Narayanan et al. (2016). 

Domestic microwave ovens are a suitable choice for sample preparation as they have 

been designed for even heating, utilizing lower frequency wavelengths than might 

otherwise be chosen for optimal energy to heat transfer, allowing deep penetration and 

avoiding excessive surface heating (Smith and Xiong, 2006). 

 In this paper we hypothesize that FHA drying alone may cause significant losses 

in ΣPUFA content during forage sample preservation and in storage post-grinding. 
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Additionally, we propose that 1 min microwave pretreatment of small fresh weight (100 

g) forage samples prior to FHA drying prevents those ΣPUFA losses resultant from 

sample preservation. The objectives of this study were to I) evaluate FHA drying alone 

for the preservation of FA in forage samples relative to a freeze-dried control, II) 

evaluate brief (1 or 2 min) microwave pretreatment combined with FHA drying for the 

preservation of FA in forage samples relative to a freeze-dried control, III) quantify the 

ALA proportion decreases in dried ground forage samples during storage and, IV) 

examine how sample preservation method influences storage decreases of ALA 

proportion. To the best of our knowledge, no prior research has investigated the use of 

microwave pretreatment before FHA drying to preserve FA contents in forage plants. 

Additionally, no research we are aware of has considered storage losses of ALA in 

ground dried forage samples. 

2.3. Materials and methods 

2.3.1. Experiment 1 sampling 

 Samples from first and second growth (53 days regrowth) of alfalfa (Medicago 

sativa L.) were collected in 2015 on May 14 and August 28, respectively, at stage 3 

(early bud) and stage 5 (early flower) as described by Kalu and Fick (1981). These 

were collected from two established stands at the University of Vermont Paul R. Miller 

Research and Educational Center (South Burlington, VT, USA) using handheld electric 

clippers (Gardena Accu Grass Shears ComfortCut, Husqvarna Professional Products 

Inc., NC, USA) cut at a height of 12 cm. Samples from first and fourth growth (43 days 

regrowth) of Italian ryegrass (Lolium multiflorum L. cv. ‘Green Spirit’) were collected 
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on June 24 and September 18, respectively, in 2015 from fields in Weybridge, VT and 

Jericho, VT, USA, cut at a height of 8 cm using the same handheld electric clippers. In 

both harvests, the grass stand was in a vegetative stage of growth with no evidence of 

reproductive culms. Crude protein and aNDF were determined by near infrared 

reflectance spectroscopy (FOSS NIRS DS2500; MN, USA) using 2015 NIRS 

Consortium calibrations (NIRSC, WI, USA). For both species and both sampling dates, 

the material was mixed thoroughly by hand on a large table to homogenize the sample. 

Simultaneously, any weeds and/or dead plant matter found were removed. Replicate 

piles were divided and randomly assigned to treatment groups as shown in Table 2.1. 

and described below. 

2.3.2. Experiment 1 treatments 

 Drying treatments were applied as follows:  

a) Freeze-dried (FD) - 100 g fresh weight samples were placed in 1 quart double 

zipper plastic freezer bags in a cooler with ice, and stored in a -80 °C freezer within 30 

minutes after sorting. Three days later, the samples were freeze-dried for 48 hours 

(Labconco FreeZone, MO, USA). A large FD treatment was not pursued as the small 

sample was already at the maximum size limitation of the freeze-dryer used. 

b) Small-sample forced hot air (FHA) - 100 g fresh weight samples were placed in 

15.5 x 10 x 31.5 cm brown paper bags (ULINE, WI, USA) left opened and upright on 

the top shelf of a custom-built forced hot air drying room at the University of Vermont 

Horticulture Research and Education Center (UVMHREC) set at 44 °C. 
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c) Large-sample forced hot air (FHA) - 400 and 500 g fresh weight samples were 

placed in 47 x 35 cm cotton sample bags (Legend Inc., NV, USA) but otherwise 

prepared in the same manner as small FHA samples. This sample size is representative 

of the amount collected for DM and forage quality determination from small plot field 

trials (Foster and Wright, 1968). 

d) Small-sample microwave pretreated (MW) - 100 g fresh weight samples were 

placed in paper bags identical to those used for small FHA samples and heated in a 

microwave oven (Emerson model: MW8778W, NJ, USA) at maximum power (800 W) 

for one minute. Subsequently, the paper bags were unfolded and placed opened and 

upright, intermixed on the same shelf of the UVMHREC drying room with all other 

FHA and MW samples. The small MW treatment was added to experiment 1 after first 

growth samples were analyzed, and is therefore only present in results of aftermath 

growth samples. 

e) Large-sample microwave pretreated (MW) - 400 and 500 g fresh weight samples 

were placed in cloth bags identical to those used for large FHA samples and heated in 

the same microwave oven at maximum power for 1 min for first growth samples and 2 

min for aftermath growth samples. With the inclusion of small MW samples in the 

comparison of aftermath growth samples, we chose to increase the duration of 

microwave pretreatment to 2 min for large MW samples as 1 min had proven 

insufficient in the results obtained from first growth samples. After microwave heating, 

samples were intermixed on the same shelf of the UVMHREC drying room with all 

other FHA and MW samples.  
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 All FHA and MW samples were dried for five days. Upon retrieval from drying; 

FHA, MW, and FD samples were ground in a Wiley mill (Thomas Scientific, PA, 

USA) to pass through a 2 mm screen, then ground to pass through a 1 mm screen in a 

cyclone mill (UDY Corporation, CO, USA) and stored in 10 cm x 15.25 cm x 2 mm 

plastic sample bags (G.T. Bag Company, CA, USA) at approximately 20 °C in the 

absence of light. 

2.3.3. Experiment 2 

 Winter rye (Secale cereale L.) was collected on December 8, 2014 from the 

UVMHREC at a height of 4 cm with the same electric clippers used in Experiment 1. 

The rye was in a vegetative stage of development having approximately three tillers per 

plant. The harvested material was handled in the same manner as in Experiment 1, and 

divided into eight replicate piles of homogenized material. Each replicate pile was 

divided again into three 100 g fresh weight samples that received one of the three study 

treatments: FD, FHA, or MW as described for the small treatments in Experiment 1.  

 Upon completion of freeze-drying, all dried samples (FD, FHA, and MW) were 

ground to pass through a 1 mm screen in a cyclone mill and stored in plastic bags as 

described for Experiment 1. FAME were prepared on the same day as grinding (week 

0), and the sample bags were re-sealed after squeezing out excess air. On weeks 2, 4, 6, 

8, 12, 24, 36, 48, and 72 the bags were opened, briefly mixed with a laboratory spatula, 

sampled to prepare FAME for analysis, and again re-sealed after squeezing out excess 

air. Bagged samples were stored out of the light in a cardboard box under normal 

laboratory conditions: 20 - 22 °C and 35% - 45% relative humidity. There was not 
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enough material to perform DM corrections at all samplings; data are therefore 

presented on a proportional basis (g individual FA 100g
-1

 ΣFA, Table 2.4., Fig. 2.1.), 

and on an assumed DM basis (g kg
-1

 forage DM, Table 2.4.) for week 0 samples only, 

as they were processed immediately following drying and grinding. 

2.3.4. Forage fatty acid analyses 

 FAME were prepared from the dried and ground forage samples of Experiments 1 

and 2 using a modified one step transesterification method of Sukhija and Palmquist 

(1988). Briefly; 1 mL of internal standard (1 mg 13:0 triacylglycerol mL
-1

 acetone), 2 

mL of toluene, and 2 mL of 5% methanolic sulfuric acid were added to 500 mg of 

ground forage sample. The solution was incubated at 50 °C overnight. Five mL of 5% 

sodium chloride solution and 2 mL of hexane were added. The samples were mixed and 

centrifuged for 2 minutes, and the resulting hexane layer was collected. The extraction 

procedure was repeated twice with 1 mL of hexane. Four mL of 6% potassium 

bicarbonate solution were added, the samples were mixed and centrifuged for 2 

minutes, and the resulting hexane layer was collected. Samples were then dried over 

anhydrous sodium sulfate and filtered through charcoal and silica gel. A 1% FAME 

solution was used for gas-liquid chromatographic analysis performed on a GC-2010 gas 

chromatograph (Shimadzu, Kyoto, Japan) equipped with a split injector (1 µL injection 

volume, 1:100 split ratio), flame ionization detector, and a SP-2560 fused-silica 

capillary column (100 m × 0.25 mm i.d. × 0.2 μm film thickness; Supelco, PA, USA). 

Hydrogen was used as carrier gas at a flow rate of 1 mL/min and fueling the detector at 

40 mL/min. Other gases were purified air at 400 mL/min and nitrogen makeup gas at 
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30 mL/min. The injector and detector were both maintained at 250 °C. The oven was 

programmed as follows: initial temperature of 45 °C held constant for 4 min, then 

programmed to increase 13 °C/min to 175 °C and held for 27 min, then programmed to 

increase 4 °C/min to 215 °C, and held for 35 min. Flame ionization detector response 

peaks were integrated and quantified with GCsolution software (version 2.30.00). 

Identification of FAME was accomplished by comparison of relative retention times 

with commercial FAME standards (Nu-Check Prep #463 and #674; MN, USA). Fatty 

acid content was determined using the internal standard. A leveled 15 mL scoop 

subsample of the ground forage samples taken at time of FAME preparation was dried 

at 100 °C for 24 hours for DM mass correction of ground samples. The FA results are 

presented on a forage DM basis and as proportions (weight weight
-1

) of total FA (ΣFA) 

detected with a chain length between 12 and 24 carbon atoms. The lowest level of 

detection was <0.001 g 100 g
-1

 ΣFA and FA less than 1 g 100 g
-1

 ΣFA are not reported.  

2.3.5. Experiment 1 statistical analysis 

 Statistical analysis was performed separately for first growth samples and 

aftermath growth samples as treatments and replications varied between the two 

sampling groups. The GLIMMIX procedure in SAS version 9.4 (SAS Institute, Cary, 

NC, USA) was used for all FA measures with the following model: 

Yijk = µ + Ti + Sj + TSij + eijk 

where Yijk = observation, µ = grand mean, Ti = effect of treatment (i = FD, small FHA, 

small MW, large FHA, large MW), Sj = effect of species (j = alfalfa, ryegrass), TSij = 



31 

 

interaction between treatment and species, and eijk = residual error (k = replications 1 – 

6 or 1- 5).  

 Within the LSMEANS statement of the GLIMMIX procedure, a stepdown 

Dunnett’s test was used to compare treatment means with means of the FD control for 

each species. Differences were considered significant with an adjusted P<0.05. 

2.3.6. Experiment 2 statistical analysis 

 The GLM procedure in SAS version 9.4 (SAS Institute, Cary, NC, USA) was 

used for all FA measures of Week 0 data, with the following model: 

Yij = µ + Ti + eij 

where Yij = observation, µ = grand mean, Ti = effect of treatment (i = FD, MW, FHA), 

and eij = residual error (j = replications 1 – 8). 

 Multiple comparisons were made upon least squares means with Tukey HSD P-

value adjustments and the PDGLM800 macro for SAS (Saxton, 1998). Differences 

were considered significant with an adjusted P<0.05. 

 The MIXED procedure in SAS version 9.4 (SAS Institute, Cary, NC, USA) was 

used to compare the rate of decrease in ALA measures of ground forage samples over 

time with the following model: 

Yijk = µ + τj + Ti + eijk 

where Yijk = observation, µ = grand mean, τj = covariate week of storage (j = 0, 2, 4, 6, 

8, 12, 24, 36, 48, 72 for long term analysis and j = 0, 2, 4, 6, 8, 12 for short term 

analysis), Ti = effect of treatment (i = FD, FHA, MW), and eijk = residual error (k = 

replications 1 – 8). Week of storage was designated as a repeated effect and a first order 
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autoregressive covariance structure assumed. Differences of slope were considered 

significant with a P<0.05. 

2.4. Results 

2.4.1. Experiment 1 

 In both the first growth and aftermath growth samples of Experiment 1, large 

FHA samples contained ΣFA contents that were approximately 1.8- and 1.4- to 1.5-fold 

lower, respectively, than FD samples for alfalfa and Italian ryegrass. Notably, 

reductions in ALA contents of large FHA samples were approximately 2.3- to 2.5- and 

1.5- to 1.6-fold lower, respectively, than FD samples of alfalfa and ryegrass. LA 

contents were less affected, with 1.5- to 1.6- and 1.3- to 1.4-fold decreases in the large 

FHA samples relative to the FD samples, for alfalfa and ryegrass, respectively (Tables 

2.2., 2.3.).  

 Overall, there were effects of treatment, species, and treatment by species 

interactions (Table 2.2.). For both the alfalfa and ryegrass, the FD treatment contained 

higher measures of many FA, including the predominant ALA and ΣPUFA, than the 

large 1 min MW or FHA treatments. There were no small (100 g) fresh weight MW 

samples in this first growth comparison. Exceptions included the following. On a DM 

basis (g FA kg
-1

 forage DM), the small FHA samples were similar to FD control in 

some FA measurements. Small FHA ryegrass samples were closest to FD control as 

they did not differ in total saturated FA (ΣSFA) or total monounsaturated FA (ΣMUFA) 

content. Small FHA alfalfa samples were only similar to FD control in LA and 24:0 



33 

 

content. All treatment groups of both species were lower in ALA and ΣPUFA content 

and therefore ΣFA content than the FD samples.  

 On a proportional basis (g 100g
-1

 ΣFA), LA content of small FHA ryegrass 

samples was not different from FD ryegrass samples, and again all treatment groups of 

both species were lower than FD samples in ΣPUFA content and subsequently the 

proportion of ΣSFA and ΣMUFA was greater than the FD control in all treatment 

groups (Table 2.2.). 

 Regardless of species, small 1 min MW samples did not differ from FD samples 

in the content or proportion of any measured FA; whereas, the large 2 min MW 

samples and the FHA samples (small and large) were lower for the most prevalent 

(ALA, ΣPUFA) and many other FA components, both on a DM and proportional basis 

(Table 2.3.). 

 Large 2 min MW samples of both alfalfa and ryegrass did not differ from FD 

samples in ΣSFA content. None of the alfalfa treatments differed from FD samples in 

ΣMUFA content on a DM basis, though both ryegrass FHA samples did (Table 2.3.). 

 With the exception of small 1 min MW samples, all alfalfa FA measured on a 

proportional basis differed from the FD control. In ryegrass samples, ΣMUFA content 

did not differ between any treatment and FD on a proportional basis. Large 2 min MW 

ryegrass samples were the only aftermath growth treatment, other than the small 1 min 

MW treatments, to not differ from FD in the ratio of n-6:n-3 FA (Table 2.3.).  
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2.4.2. Experiment 2 

 At week zero (FAME prepared immediately following grinding) the MW 

treatment yielded FA results that were equivalent to the FD treatment on a DM basis 

(Table 2.4.). However, as a proportion of ΣFA, MW samples had slightly more ΣSFA, 

less ΣPUFA and a higher ratio of n-6:n-3 FA compared to FD. ΣFA and 22:0 content 

did not differ between any treatments. FHA samples were lower than FD samples in LA 

and ALA. FHA samples did not differ from FD samples in LA content on a 

proportional basis or in the n-6:n-3 ratio from FD or MW samples. FHA samples were 

higher in content of most individual SFA and 18:1 9c, and in content and proportions of 

ΣSFA and ΣMUFA than MW samples, but did not differ in DM content of LA, ALA, 

and ΣPUFA. 

 Because there was not enough material to perform DM corrections at all 

samplings, the following results are presented on a proportional basis only. 

 The ground samples of all three preparation methods showed declines in ALA 

throughout 72 weeks of storage (P<0.0001, Fig. 2.1.). All three rates of decline were 

different from each other, though MW and FHA were most different (FD vs MW and 

FD vs FHA: P=0.02, MW vs FHA: P<0.0001). After 72 weeks, ALA content had 

decreased by 1.22 percentage points in MW samples, 1.77 percentage points in FD 

samples, and 2.34 percentage points in FHA samples (P<0.0001). 

 Only FHA samples exhibited a non-zero rate of decline in ALA proportion over a 

shorter time period (12 weeks), which decreased by 0.72 percentage points (P<0.0001, 

Fig. 2.1.). FD and MW rates of decline did not differ from zero (P=0.13 and 0.41, 
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respectively) or each other (P=0.62), but both differed from FHA (P=0.03 and 0.01, 

respectively). 

 Across 72 weeks of storage, ground samples of all three preparation methods 

showed a slight increase in LA as a proportion of ΣFA (P<0.001, Fig. A.1.). There was 

no statistical difference in rate of increase between the three methods. At the shorter 12 

week timescale, only MW samples exhibited a non-zero rate of decline in LA 

proportion (P=0.03), despite a lack of statistical difference between the rates of decline 

of all three preparation methods. 

2.5. Discussion 

2.5.1. Microwave pretreatment 

 A brief 1 minute microwave pretreatment before forced hot air drying was found 

to be essentially as accurate as freeze-drying for preparing forage samples for FA 

analysis, when sample fresh weight was 100 g (Tables 2.3., 2.4.). Although large MW 

samples (400, 500 g) contained a greater numerical ALA and ΣFA content than FHA 

samples, particularly when microwave duration was increased to 2 minutes (Table 

2.3.), all of the larger fresh weight samples contained lower amounts of ALA, and 

subsequently ΣFA content, than the FD control (Tables 2.2., 2.3.). Because we did not 

measure lipolytic enzyme activity, we can only speculate that either; I) larger fresh 

weight MW samples did not reach a sufficient temperature to inactivate all enzyme 

activity, and/or II) the increased quantity of confined material had a lesser ability to dry 

relative to the smaller quantity of material in the paper bags utilized for small samples, 
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and/or III) cotton sample bags utilized for large samples impeded drying relative to the 

open paper bags used for small samples. 

 In Experiment 1 aftermath growth samples, the small 1 min MW treatment did not 

differ from the FD treatment in any individual FA or group of FA for both alfalfa and 

Italian ryegrass species. With greater statistical power in Experiment 2, small 

differences were seen between MW and FD treatments in ΣSFA and ΣPUFA 

proportions, as well as the n-6:n-3 ratio. Yet, these differences are minimal enough that 

they are unlikely to be of biological significance. 

 The FD and small 1 min MW alfalfa samples from Experiment 1 contained 

similar ΣFA, ALA, and LA contents to those reported by Dierking et al. (2010), within 

which 24 day old regrowth samples were immediately frozen with liquid nitrogen and 

subsequently freeze-dried, whereas alfalfa samples that were dried via forced hot air 

alone were generally lower (Fig. 2.2.). The ΣFA, ALA, and LA contents of FD and 

small 1 min MW Italian ryegrass samples presented here were greater than those by 

Dewhurst et al. (2001) and Lee et al. (2009), within which aftermath samples ranging 

from 28 to 42 days regrowth were frozen and freeze-dried (Fig. 2.3.).  

 Our results not only suggest the efficacy of brief microwave heating to denature 

endogenous plant enzymes prior to forced hot air drying, as proposed by Pelletier et al. 

(2010) for total non-structural carbohydrate analysis, but also its potential for 

adaptation as a sample preservation method for FA analysis, provided small sample 

size. 
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2.5.2. Forced hot air drying 

 Forced hot air drying alone has proven to be an inferior method for preserving 

forage sample FA from degradation, particularly when sample fresh weights were 400 – 

500 g (Tables 2.2., 2.3.). Similarly to MW samples, the impact of sample fresh weight 

in FHA samples may have been a result of less thorough heating, a slower drying rate 

of the larger samples, and/or the cotton bags used for them. Though differences in 

preservation method may be small in some instances (Table 2.4.), results from FHA 

drying are inconsistent at best.  

 In Experiment 2, though all winter rye samples were in optimal drying conditions 

(e.g., small sample size, a near-empty drying room), FHA samples still contained lower 

ALA and ΣPUFA levels and higher ΣSFA than the FD samples, on both a DM content 

and proportional basis (Table 2.4.). 

 Our results confirm that forced hot air drying of large forage samples, often used 

in agronomic studies, is not a reliable method for FA analysis and also suggest that 

drying rate varies between forage species, and therefore, the amount of time needed to 

halt enzymatic degradation of labile FA. The impact of species shown in Experiment 1 

is perhaps attributable to the more succulent nature of alfalfa and the greater surface 

area to volume ratio of ryegrass, however, differential susceptibility to lipolysis has 

been demonstrated among cultivars of perennial ryegrass (Chow et al., 2004) and a 

reduced lipolytic activity in ‘Green Spirit’ ryegrass relative to alfalfa could be partly 

responsible for the difference between the species in ΣPUFA losses. This study did not 

monitor drying time directly, however, temperature data loggers used in the study 
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suggest that: I) large 1 min MW alfalfa samples dried more quickly than large FHA 

alfalfa samples (Fig. A.2.), II) small ryegrass samples dried more quickly than large 

ryegrass samples (Fig. A.3.), and III) ryegrass samples dried more quickly than alfalfa 

samples (Fig. A.2., A.3.). 

 The findings of the current study are in contrast to those of Arvidsson et al. 

(2009), wherein forced hot air drying of 500 g fresh weight samples at 60 °C and 35 °C 

for 1 and 6 days, respectively, was found to yield results comparable to frozen and 

freeze-dried samples. Arvidsson et al. (2009) concluded that freeze-drying samples is 

satisfactory but that forced hot air drying of samples is “just as good, or even better in 

some cases”. The difference in results may indicate sub-optimal drying conditions in the 

drying room utilized for the current study (e.g., a large quantity of samples and 

subsequently greater relative humidity, the sample bags used, etc.), or differences in 

drying rate and/or lipolytic activity of the species investigated, as Arvidsson et al. (2009) 

investigated timothy (Phleum pratense L.). The experimental design of Arvidsson et al. 

(2009) was perhaps of insufficient power to detect differences with small treatment 

sample sizes (n=2) consisting of potentially more heterogeneous material than the current 

study. Additionally, the authors only reported FA measures on a proportional basis (g 

individual FA 100 g
-1 

ΣFA) which can produce different findings than presentation on a 

DM content basis (g individual FA kg
-1

 DM), particularly when the individual FA being 

reported on is highly correlated with the ΣFA content of the sample (Mocking et al., 

2012), as is typically the case with ALA in plants.  
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 Although the lowest ΣFA, ALA, and LA contents in alfalfa in Experiment 1 were 

found in the large FHA treatments, these were greater than those reported by Whiting et 

al. (2004), in which samples of a relatively low reported NDF content (33% of DM) 

were dried in an oven at 60 °C for 48h and Boufaïed et al. (2003) wherein 500 g early 

flowering stage (10% bloom) samples were dried in a forced air oven for 55 °C for 48h 

(Fig. 2.2.). The ΣFA, ALA and LA content of large FHA samples of Italian ryegrass in 

Experiment 1 were comparable to the results found by Boufaïed et al. (2003) with 63 

day old vegetative samples dried as above, and slightly higher than those found in 

Garcia et al. (2015), wherein vegetative first growth and 1 month aftermath growth 

samples were also preserved with forced hot air drying at 60 °C for 24h (Fig. 2.3.).  

2.5.3. Storage loss of ALA in ground samples 

 At both short- and long-term timescales (12 and 72 weeks of storage, 

respectively) the rate of ALA loss in MW samples was the most different from the rate 

of ALA loss in FHA samples (Fig. 2.1.). This may have been due in part to a difference 

in the density of ground samples (FD: 0.183 g cm
-3

, FHA: 0.210 g cm
-3

, MW: 0.398 g 

cm
-3

) as more tightly packing MW samples had less space between particles, and 

therefore both lower air volume and smaller inter-particulate sites for oxidation to 

occur. This does not explain why the ALA content in FHA samples decreased at a 

higher rate than in FD samples, however, as the FD samples had the lowest density of 

all methods. The effect of sample density is more likely on a smaller scale, as 

evidenced by the slight difference in rate of ALA decline between the most and least 
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dense samples (MW and FD, respectively) detectable after 72 weeks of storage, but not 

at 12 weeks. 

 It might be expected that every subsampling time point would accelerate 

oxidation of ALA in the sample as the bag was opened and the material was being re-

mixed. Yet, during the first 12 weeks of storage, when sampling was most frequent, no 

significant rate of decline was observed in the FD and MW samples (Fig. 2.1.). 

 Because of the greater enzymatic degradation potential of ALA, and its primacy 

among thylakoid membrane FA, losses during preservation and storage can 

significantly affect ΣFA and ΣPUFA content reported. This can have a large impact 

upon reported contents of other individual FA and FA groups when presented on a 

proportional basis, as it may superficially increase their content (e.g., in Experiment 1, 

LA contents were 1.4- to 1.6-fold lower in large FHA samples relative to FD samples, 

yet LA content was greater on a proportional basis, Table 2.2., and in Experiment 2, 

the proportion of LA increased over the 72 weeks of storage, Fig. A.1.). Similarly, the 

n-6:n-3 ratio can be affected by the greater loss of the primary forage n-3 FA ALA than 

the primary forage n-6 FA LA (Table 2.2., 2.3.), although this is not always the case 

(Table 2.4.). 

 Our findings of ALA proportion decrease in a stored ground forage may initially 

appear to be in contrast to the preliminary findings of Elgersma and Wever (2008) 

wherein ALA proportion within rapidly dried grass did not change after five weeks or 

six months of storage, however, the immediate ALA content losses (25 – 45%) from 



41 

 

the extreme drying temperature utilized in that study (900 C) may have precluded any 

further ALA decline in storage. 

2.5.4. Recommended best practices 

 The effects of preservation method on FA in Italian ryegrass are likely less 

pronounced than on FA in alfalfa as a result of the greater surface area to volume ratio 

of Italian ryegrass, and therefore, shorter drying times required to inactivate enzymatic 

activity (Tables 2.2., 2.3.; Fig. 2.2., 2.3.). In addition to sample preservation method, 

some of the heterogeneity of the FA content in studies may be caused by experimental 

conditions (e.g., season, edaphic conditions, plant phenology), differences in FAME 

preparation procedure and/or gas chromatographic analysis, or possibly a lack of DM 

correction at time of FAME preparation, which would further underrepresent the 

amount of FA present in a given sample (Fig. 2.2., 2.3.). DM corrections are frequently 

not stated in the methods of forage FA studies, and thus, it becomes difficult to 

distinguish whether they were I) performed, II) calculated from the DM ratio at harvest, 

or III) simply not reported. A lack of DM correction may likely underrepresent the 

amount of FA present in a given sample, however, will not affect results presented on a 

proportional basis. Presenting results on a proportional basis must be done with care 

however, with consideration to the innate fact that a change in the proportion of one FA 

will automatically increase or decrease the relative proportion of all other FA in the 

sample (Mocking et al., 2012). As ALA is the principal FA in plants, results presented 

as a relative proportion of ΣFA are relatively recalcitrant to changes in ALA content in 
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comparison with presentation on a DM basis, as a reduction or increase in ALA content 

will concomitantly produce a substantial reduction or increase in ΣFA content. 

 Utilizing small sample or subsample size and microwave pretreatment was 

demonstrated here to be a viable methodology to preserve the FA content of alfalfa, 

ryegrass, and winter rye forage samples. The successful MW treatments in the present 

study utilized 100 g fresh weight. While this is small for typical agronomic samples, 

which are frequently 400 g fresh weight or larger to ensure an adequately representative 

sample, FA analysis typically involves a small subsample (≤5 g DM). However, care 

must be taken at time of collection to ensure that samples or subsamples are adequately 

representative, as less material is available for mixing and homogenization via grinding 

post-drying. 

 Although small studies may allow for immediate preparation of FAME from 

harvested samples, most researchers will need to store samples for later FAME 

preparation and analysis. When facilities and time allow, freezing at -80 °C and 

subsequent freeze drying remains the gold standard for preservation of labile forage 

components. When freeze-drying is impractical or too expensive, our results suggest 

that utilizing a brief (1 min) microwave pretreatment of small samples or sub-samples 

(100 g fresh weight) prior to forced hot air drying can effectively mitigate enzymatic 

degradation of PUFA, though further studies are needed to confirm this hypothesized 

mode of action. The data presented in Fig. 2.1. suggest that FAME preparation should 

be undertaken as close to the time of sample drying and grinding as possible, ideally 

within 12 weeks if samples are stored thereafter at laboratory room temperature.  
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 The direct comparison of FD and small 1 min MW sample preservation was 

limited to first growth winter rye and aftermath growth alfalfa and ryegrass samples. 

However, we propose that this is a sufficient proof of concept to recommend this 

methodology of sample preservation for FA analysis. Differences in sample fresh 

weight, and traits of individual species (succulence, surface area to volume ratio, 

lipolytic enzyme activity, etc.) may require further elaboration and explication of our 

findings to be generalizable to all forage species and sampling protocols. We suggest 

that 1 min of microwave pretreating a 100 g fresh weight sample, is a logical 

benchmark from which to start further investigations. Increased duration of microwave 

pretreatment may not have the same effect upon larger samples (Table 2.3.). Further 

research may be warranted to indicate whether larger fresh weight samples are 

experiencing FA losses because of increased post-microwaving drying time, or if the 

greater mass would simply require an increased microwaving duration to adequately 

inhibit FA losses.   

2.6. Conclusion 

 The data presented in this paper confirm that forced hot air drying alone cannot be 

considered a reliable forage sample preservation method for later FAME analysis. 

Sample size, species and succulence all affect drying rates. However, a 1 minute 

microwave pretreatment was shown to be an inexpensive, time efficient and simple 

means to insure adequate preservation of forced hot air dried alfalfa, ryegrass, and 

winter rye forage samples when there is a risk that drying conditions may be sub-

optimal, provided that sample fresh weights are 100 g. This work also demonstrated 
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that ALA proportion of dried ground forage samples decreases over time, and that the 

method of sample drying can influence the rate at which the ALA proportion decreases. 
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2.9. Figures 

 

 

Figure 2.1. Alpha-linolenic acid (ALA) proportion of total fatty acids (ΣFA) decreases over time 

(n = 8). Slope of linear regressions reported in corresponding color to right of regression line. 

FD (blue) = Freeze-dried, MW (red) = microwave pretreatment prior to forced hot air drying, FHA 

(green) = forced hot air drying alone. 
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Table 2.4. Least squares means
a
 of fatty acid content of early vegetative winter rye prepared in 

three treatment groups 

Treatment
b
 FD MW FHA SEM P value 

g kg
-1

 DM
c
      

16:0 6.30 b 6.23 b 6.67 a 0.07 0.0002 

18:0 0.45 b 0.44 b 0.48 a <0.01 <0.0001 

18:1 9c 0.41 b 0.41 b 0.52 a 0.01 <0.0001 

18:2 (LA) 4.75 a 4.69 ab 4.59 b 0.04 0.0360 

18:3 (ALA) 35.22 a 34.01 ab 32.29 b 0.44 0.0182 

22:0 0.36 0.36 0.37 <0.01 ns 

24:0 0.22 b 0.22 b 0.23 a <0.01 0.0020 

ΣFA 48.63 47.21 47.11 0.56 ns 

ΣSFA 7.96 b 7.86 b 8.45 a 0.07 <0.0001 

ΣMUFA 0.46 b 0.46 b 0.58 a 0.01 <0.0001 

ΣPUFA 40.20 a 38.89 ab 38.08 b 0.48 0.0183 

n-6:n-3 0.136 b 0.139 a 0.139 ab <0.01 0.0334 

      g 100g
-1

 ΣFA      

18:2 (LA) 9.77 ab 9.93 a 9.74 b 0.05 0.0162 

18:3 (ALA) 72.41 a 72.03 a 70.66 b 0.11 <0.0001 

ΣSFA 16.37 c 16.66 b 17.94 a 0.07 <0.0001 

ΣMUFA 0.95 b 0.97 b 1.23 a 0.01 <0.0001 

ΣPUFA 82.65 a 82.36 b 80.82 c 0.08 <0.0001 
a
Least squares means without a common letter differ significantly; P < 0.05 (Tukey’s HSD). n = 8 

b
FD = Freeze-dried, MW = 1 minute microwave pre-treatment prior to forced hot air drying, FHA = 

forced hot air (forced hot air drying alone) 
 c
Samples were processed immediately following drying and grinding and therefore are presented on an 

assumed dry matter (DM) basis as there was insufficient material to perform DM correction. 
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Core ideas 

 Fatty acid content and composition of lamina and pseudostem are markedly 

different 

 Whole plant fatty acid analysis is a non-ideal presentation for warm season annuals 

 Lamina mass ratio is an important correlate of fatty acids in warm season annuals 

 Managing for greater lamina intake may greatly influence animal fatty acid supply  



56 

 

3.1. Abstract 

 The decrease in alpha-linolenic acid (ALA) and total fatty acid (ΣFA) content in 

maturing grasses is exacerbated in tall summer annuals. ALA and ΣFA content were 

compared within plant fractions to determine if decreases are attributable to advancing 

maturity within fractions, or simply the change in proportion of the fractions. Vegetative 

and early head emergence sorghum-sudangrass were collected at one sampling date, and 

pearl millet were collected six times, from early vegetative to late boot stage. Lamina and 

pseudostem fractions were separated and whole plant FA composition was calculated 

from the weighted average of the fractions. As sorghum-sudangrass and pearl millet 

matured, ALA and ΣFA content decreased by 43% - 60% within pseudostems and on a 

whole-plant basis, though only by 10% - 13% in laminae. The ALA proportion of ΣFA 

decreased by 14% - 16% on a whole plant basis, despite not changing within constituent 

fractions. 

3.2. Background 

 The content of alpha-linolenic acid (ALA) and total fatty acids (ΣFA) decreases 

with advancing maturity in C3 photosynthetic (i.e., cool season) forage crops (Dewhurst 

et al., 2001; Boufaïed et al., 2003; Elgersma et al., 2003; Clapham et al., 2005; Glasser et 

al., 2013). There is a growing interest in C4 photosynthetic (i.e., warm season) annual 

forage species, however, little research into FA has been performed (O’Kelly and Reich, 

1976; Vargas M et al., 2013; Bainbridge et al., 2017; Dias et al., 2017). 

 Maturity-associated decreases in ALA and ΣFA content as well as lower 

proportions of ALA within ΣFA may be due, at least in part, to growth of pseudostem 
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fractions which contain less ALA and ΣFA than laminae fractions (Dewhurst et al., 2001; 

Elgersma et al., 2003, 2005; Dias et al., 2017). 

 Because many warm season annual grass species elongate and mature with large 

pseudostem fractions, we hypothesize that they will exhibit significant decreases in ALA 

and ΣFA content with advancing maturity, primarily due to the increasing dry matter 

(DM) proportion of the pseudostem fraction. The objective of this study was to determine 

the extent to which the content and proportion of ALA as well as the content of ΣFA 

change within plant fractions as they mature. 

3.3. Materials and methods 

3.3.1. Experiment 1 

 

Sorghum-sudangrass (Sorghum bicolor nothosubsp. drumondii  (Steud.) de Wet 

ex Davidse cv. ‘Blackhawk BMR 12’) samples were collected from a production field at 

The University of Vermont Horticultural Research and Education Center, South 

Burlington, Vermont, USA (44°25’N, 73°12’W) on August 24, 2015, cut at a height of 

15 cm using handheld electric clippers (Gardena Accu Grass Shears ComfortCut, 

Husqvarna Professional Products Inc.). The field was mowed once previously and 

primarily consisted of vegetative aftermath growth. Early head emergence stage plants 

that escaped mowing were also collected from sections interspersed throughout the field. 

This allowed for the comparison of two forage maturity stages (minimally elongated 

vegetative stage versus elongated early head emergence stage) grown under largely the 

same environmental and edaphic conditions. Harvested tillers were mixed thoroughly by 

hand and any weeds and/or dead plant matter found were removed. Three replicate 
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samples of each treatment were separated between lamina (separated immediately above 

the ligule) and pseudostem fractions for both vegetative and elongated samples, 

respectively. Lamina and pseudostem samples (<150 g fresh weight) were placed in 

separate paper bags, microwaved at maximum power (800 W) for one minute, and dried 

as described in Goossen et al. (2018).  

3.3.2. Experiment 2 

 Five replicate pearl millet (Pennisetum glaucum L. cv. ‘Wonderleaf’) samples 

were collected from a commercial farm field in Highgate Center, Vermont, USA 

(44°58'N, 73°01’W) six times over 19 days (July 18 – August 5, 2016) in the same 

manner as in Experiment 1. Pearl millet samples ranged from early vegetative stage on 

day one to late boot stage on day 19. All samples were divided into lamina and 

pseudostem fractions, microwaved onsite (as described above) before being transported 

to the same drying room as in Experiment 1.  

3.3.3. Forage analysis 

 Nutritive quality and FA analyses were performed as described according to 

Goossen et al. (2018). Whole plant measures were calculated for each replicate as 

weighted averages by dry weight of the constituent plant fractions, i.e., whole plant FA g 

kg
-1

 DM = (lamina FA g kg
-1

 DM x lamina proportion) + (pseudostem FA g kg
-1

 DM x 

pseudostem proportion). Variance of whole plant means estimates were weighted by the 

mean DM proportion of each plant fraction at each time point, i.e., var(piXlamina + (1-

pi)Xpseudostem) = pi
2
varlamina + (1-pi)

2
varpseudostem + 2*cov(piXlamina, (1-pi)Xpseudostem) where p 

= lamina DM proportion and i = time point. The small amount of pseudostem material 
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present at the first sampling date necessitated compositing dried samples for FA analysis, 

and as such, variance estimates could not exist for that fraction, and could not be 

calculated for the whole plant measure at that time point. 

3.3.4. Statistical analysis  

The GLM procedure in SAS version 9.4 (SAS institute, Cary, NC, USA) was 

used to perform a two-way ANOVA for Experiment 1 FA measures, testing the effects 

and interaction of maturity stage (vegetative or reproductive) and plant fraction (lamina 

or pseudostem). Differences of means were considered significant with a Tukey’s HSD 

test adjusted P<0.05. The GLM procedure was also used to perform a one-way 

ANCOVA for Experiment 2 on plant fractions, using height as covariate. The CORR 

procedure in SAS was used to generate partial correlation coefficients. 

3.4. Results 

 In Experiment 1, sorghum-sudangrass height was not recorded in this preliminary 

investigation, however, aftermath tillers were in a vegetative stage, with a lamina mass 

ratio (LMR; lamina DM / lamina + pseudostem DM) that was more than twice the LMR 

of the early heading stage first growth tillers (Table 3.1., Figure B.1.). Over the course 

of 19 days in Experiment 2, pearl millet grew from an average height of 54 cm to an 

average height of 139 cm, while the LMR decreased from 0.96 to 0.43 (Table 3.1., 

Figure B.2.). 

 In both Experiments, there was a substantial difference of ALA and ΣFA content 

and ALA proportion of ΣFA, between lamina and pseudostem fractions (Table 3.2.; 

Figure 3.1.). Though ALA and ΣFA content were affected by maturity stage and height 
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in Experiments 1 and 2, respectively, ALA proportion did not vary between maturity 

stages of the same plant fractions in Experiment 1 (Table 3.2.), nor with increasing 

height in Experiment 2 (P=0.7). In Experiment 2, despite a significant effect of height 

upon ALA content (P=0.03), neither lamina nor pseudostem fractions had a rate of 

change of ALA content or proportion different than zero. However, the rate of ΣFA 

content reduction in the pseudostem fraction was more than twice that of the lamina 

fraction (slopes = -0.11, -0.04, respectively; Figure 3.1.). 

 In Experiment 2, LMR, CP, and aNDF were all highly correlated with the three 

FA measures on a whole plant basis (Table 3.3.). Within plant fractions, lamina CP 

content was a stronger correlate of lamina ALA and ΣFA content than either LMR or 

lamina aNDF. However, lamina CP content was not associated with ALA proportion, 

with which LMR showed a slight negative correlation. In pseudostems, LMR was the 

strongest correlate with ALA and ΣFA content, though not with ALA proportion, which 

was more strongly correlated with pseudostem CP content. 

3.5. Discussion 

In agreement with our hypothesis, ALA and ΣFA content and ALA proportion 

declined rapidly with advancing maturity on a whole plant basis (Table 3.2., Figure 

3.1.). ALA and ΣFA content declines were markedly less in lamina fractions, and ALA 

proportion was unchanged in lamina and pseudostem fractions.  

In both experiments, ALA and ΣFA content declines were minor within lamina 

fractions, possibly a result of cell wall thickening as the laminae aged. ALA is vital for 

chloroplast function, which may explain why the ALA proportion of ΣFA did not 
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decrease within the lamina fraction. The decline of ALA and ΣFA in the pseudostem 

fraction is likely due to I) the greater lignification of living cells within this structurally 

important plant component, and II) a greater proportion of non- or minimally 

metabolically active tissue (e.g., pith, xylem) with consequently less lipid-rich 

membranes, and very little ALA-rich chloroplast membranes. 

This study provides evidence that declines in ALA and ΣFA content, associated 

with advancing maturity, are largely a function of a greater DM proportion of pseudostem 

fractions, which inherently contain less ALA and ΣFA. This has profound management 

implications for ruminant milk and meat producers concerned with the FA profile of their 

products, whom utilize these warm season annual forage species. ALA and ΣFA content 

decrease minimally within laminae fractions, providing an opportunity for management 

practices, such as reduced stocking pressure in grazing systems, and/or high 

mowing/chopping height, to capture a greater proportion of laminae material in older 

stands. 
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3.9. Figure 

  

Figure 3.1. Alpha-linolenic acid (ALA) content, proportion, and total fatty acid (ΣFA) 

content (panels A, B, and C, respectively) of pearl millet over 19 days, by plant fraction 

(least squares means and standard error of means, n=5 replicate samples - except 

composited pseudostem samples at the first collection.   Whole plant measure is a weighted 

mean of plant fractions.      
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3.10. Tables 
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Table 3.2. Means comparison
a
 and analysis of variance, effects of plant fraction and maturity stage 

on alpha-linolenic acid (ALA) content, proportion, and total fatty acid (ΣFA) content of sorghum-

sudangrass (n=3 replicate samples). 

 
  

 

  

Plant fraction and maturity ALA (g kg-1 DM)  ALA (g 100 g-1 ΣFA)  ΣFA (g kg-1 DM) 
Lamina Vegetative 26.8 a  66.1 a  40.5 a 

Reproductive 23.8 b  67.7 a  35.1 b 
Pseudostem Vegetative 5.1 c  24.1 b  21.1 c 

Reproductive 2.8 c  23.4 b  12.0 d 

 
SEMc 0.5 

 

 0.4 
 

 0.9 

 Whole plant  
(calculated)d 

Vegetative 20.1   58.2   34.5  
Reproductive 9.5   49.0   19.4  

Effect F-value P-value  F-value P-value  F-value P-value 

Plant fraction 1520 <.0001  14070 <.0001  592 <.0001 

Maturity stage 23 0.0013  2 nsb  69 <.0001 
Stage*fraction 0 ns  10 0.0141  5 ns 

aLeast squares means without a common letter differ significantly; P < 0.05 (Tukey’s HSD) 
bns = non-significant 

cSEM = standard error of the means 
dWhole plant measures were not included in the analysis of variance 
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Table 3.3. Pearson correlation coefficients (n = 30) of lamina mass ratio (LMR), crude protein (CP) 

and neutral detergent fiber (aNDF) content with alpha-linolenic acid (ALA) content, proportion, 

and total fatty acid (ΣFA) content of a weighted mean of constituent fractions (calculated whole 

plant basis) as well as in lamina and pseudostem fractions of pearl millet. 

 
  

  LMRa  CPb  aNDFc 

    r-value P-value  r-value P-value  r-value P-value 

W
h

o
le

 p
la

n
t ALA (g kg-1 DM) 0.87 <.0001  0.89 <.0001  -0.86 <.0001 

ALA (g 100 g-1 ΣFA) 0.86 <.0001  0.79 <.0001  -0.79 <.0001 

ΣFA (g kg-1 DM) 0.87 <.0001  0.92 <.0001  -0.87 <.0001 

La
m

in
a 

ALA (g kg-1 DM) 0.33 0.08  0.70 <.0001  -0.41 0.03 

ALA (g 100 g-1 ΣFA) -0.46 0.01  0.00 0.98  0.36 0.05 

ΣFA (g kg-1 DM) 0.43 0.02  0.76 <.0001  -0.5 0.005 

P
se

u
d

o
st

em
 

ALA (g kg-1 DM) 0.78 <.0001  0.04 0.83  -0.74 <.0001 

ALA (g 100 g-1 ΣFA) 0.02 0.93  -0.57 0.001  -0.15 0.42 

ΣFA (g kg-1 DM) 0.89 <.0001  0.3 0.1  -0.76 <.0001 
aLMR = lamina mass ratio (lamina DM / lamina + pseudostem DM) 1 
bCP = crude protein content of each plant fraction, and weighted mean on a whole plant basis 2 
caNDF= neutral detergent fiber content of each plant fraction, and weighted mean on a whole 3 

plant basis 4 
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4.1. Abstract 

 The extent to which forage management factors influence the fatty acid (FA) 

content and profile of traditional cool season (C3 photosynthesis) forage species is well 

known. There are only limited reports of warm season (C4 photosynthesis) annual forage 

species’ FA content and composition, and no investigations to the effect of key 

management factors such as plant maturity at harvest and nitrogen fertility. In this study, 

main plot effects of plant maturity at harvest (60 cm vs. 90 cm height) and sub-plot 

effects of nitrogen fertility (39, 79, 118, and 157 kg N ha
-1

) were investigated with pearl 

millet (Pennisetum glaucum L.) and sudangrass (Sorghum X drummondii (Nees ex 

Steud.) Millsp. & Chase). 

 Plant maturity had the greatest impact upon ALA and total FA (ΣFA) content in 

this study, with later maturity samples containing on average 3.2 and 4.7 g less ALA and 

ΣFA, respectively, per kg of forage dry matter than earlier maturity samples. There were 

interactions between plant maturity, cutting, site-year, and nitrogen fertility, however. 

Regrowth cuttings were lower in ALA and ΣFA, except for early maturity sudangrass 

samples in the first year, which was impacted by an unusually rainy spring. 

 N fertility had very limited effects upon ALA and ΣFA in the first year of 

sampling, where the drastic rainfall likely reduced the efficacy of N treatments, limiting 

FA. In the second year of sampling, differences between high and low N treatments were 

sizable in early maturity samples, but less so in later maturity samples.  
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 Optimizing soil nitrogen fertility and managing for high proportion of laminae t 

may be of greater importance in maximizing ALA and ΣFA content in these tall growing 

summer annual species than in traditional cool season perennial pasture species. 

4.2. Introduction 

Interest in the health effects of fatty acids (FA) in ruminant derived-products, 

such as dairy and meat, has led to an increased consumer demand for milk and meat with 

a beneficial FA profile, which is strongly associated with pasture feeding. This 

association has been attributed to the higher pH rumen environment from forage feeding, 

and the relatively large supply of the n-3 polyunsaturated FA alpha-linolenic acid (ALA; 

C18:3 9c, 12c, 15c) in fresh pasture species (Elgersma, 2015). ALA is the chief FA in 

vegetative forages and an important source of the desired FA content and profile of 

ruminant milk and meat products.  

Grazing availability from traditional perennial pasture can noticeably decrease 

during the hot dry months of the “summer slump”, forcing many producers to supplement 

with conserved forages. Conserved forages, however, often have lower contents of ALA 

relative to fresh forages (Glasser et al., 2013) because of enzymatic degradation during 

wilting (Dewhurst et al., 2003), and because they are typically harvested at an advanced 

maturity and inclusive of more pseudostem components relative to grazed forages 

(Elgersma, 2015). For this reason, there is a growing interest in utilizing warm season 

annual forages in summer months to provide fresh grazing, which is associated with 

desired FA profile. Warm season annuals exceed the productivity of cool season forages 

in hot dry weather, and can also be critical as an “emergency planting”. However, 
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compared to cool season grasses, warm season grasses typically have a lower proportion 

of lamina tissue, where the majority of forage FA are found (Atkinson et al., 2016), and 

there is limited research on the FA composition and content of warm season annual 

forage species. For example, individual and total FA (ΣFA) content was reported for 

several perennial warm season grasses (Khan et al., 2015; Mojica-Rodríguez et al., 2017; 

O’Kelly and Reich, 1976), for perennial elephant grass (Pennisetum purpureum Schum.) 

at two grazing heights and grazing intensities (Dias et al., 2017). FA composition was 

also presented at one growth stage and management condition for both pearl millet 

(Pennisetum glaucum L.) (Bainbridge et al., 2017) and Kikuyugrass (Pennisetum 

clandestinum Hochst. ex Chiov.) (Vargas et al., 2013).  

In cool season forage species, plant maturity and applied nitrogen (N) fertility are 

among the most important management factors identified to affect the overall FA content 

and ALA proportion (Glasser et al., 2013), with ALA and ΣFA content typically 

decreasing in response to advancing maturity, and increasing in response to greater N 

fertility. Therefore, this study was designed to compare four levels of N fertility at two 

maturity stages in pearl millet (Pennisetum glaucum L. cv. ‘Wonderleaf’) and sudangrass 

(Sorghum X drummondii (Nees ex Steud.) Millsp. & Chase cv. ‘Hayking’). N fertility 

levels were chosen to span from a low N application to an excessive N application (below 

and above typical agronomic recommendations, i.e., annual application rates between 90 

and 170 kg N ha
-1

), and the two maturity stages were chosen to represent an early 

vegetative stage at which grazing within a stand would typically be started, and a later 

boot stage in which a conserved forage harvest would typically be performed and/or 
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grazing would typically be concluded. We hypothesized that the greater nitrogen fertility 

levels and earlier maturity stages would result in the greatest content of ALA, and 

therefore ΣFA content and ALA proportion, in both species.  

4.3. Materials and methods 

4.3.1. Field management and site description 

 The experiment was conducted over the course of 2013 and 2014 at The 

University of Vermont Horticulture Research and Education Center (HREC) in South 

Burlington, Vermont (44°25’N; 73°12’W) and at the Borderview Research Farm (BRF) 

in Alburgh, Vermont (45°0’N; 73°18’W). The HREC location consisted of excessively 

drained deep Windsor loamy sand soils (Mixed, mesic Typic Udipsamments; Soil Survey 

Staff, 2018) with a <5% slope and the BRF location consisted of somewhat excessively 

drained Benson rocky silt loam over shaly limestone (Loamy-skeletal, mixed, active, 

mesic Lithic Eutrudepts; Soil Survey Staff, 2018) with a slope between 3% and 8%. In 

the 2014 repetition of the study, the HREC location utilized the same field with a re-

randomization of plots, and the BRF location utilized an adjacent field of the same soil 

type. 

 In 2013, the BRF and HREC locations were seeded on June 5
th

 and June 10
th

, 

respectively, and in 2014, the BRF and HREC locations were seeded on June 16
th

 and 

June 9
th

, respectively (Table 4.1.). Both sites were seeded at 15.25 cm row spacing with a 

5-row research plot seeder (Carter MFG Co., Brookston, IN, USA). Pearl millet 

(Pennisetum glaucum L. cv. ‘Wonderleaf’) was seeded at a rate of 22.4 kg ha
-1

 and 

sudangrass (Sorghum X drummondii (Nees ex Steud.) Millsp. & Chase cv. ‘Hayking’) 
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was seeded at a rate of 33.6 kg ha
-1

. Seed was procured from King’s Agriseeds (Ronks, 

PA, USA) both years. All sub-plots were seeded to be 2.3 m x 7.6 m though plot ends 

were trimmed off prior to each sampling and excluded.  

4.3.2. Treatments  

 The study utilized a split-plot design, with whole-plot differences of maturity at 

harvest. The whole plot treatments were: “pasture maturity” (PAST) harvested at 60 cm 

height and “conserved maturity” (CONS) harvested after reaching 90 cm height, 

approximating a minimally elongated vegetative stage appropriate for grazing and an 

elongated boot to early head emergence stage appropriate for mechanical harvest, 

respectively (Table 4.1.). Split-plot treatments consisted of randomized combinations of 

the two species, pearl millet and sudangrass, and four rates of N fertility applied before 

each cutting cycle (Table 4.1.): 39, 79, 118, and 157 kg N ha
-1

. All plots received the 

base rate of fertilizer (39 kg ha
-1

) in the form of composted poultry litter to provide 

adequate general nutrition of P and K (5-3-4 NPK ‘Pro Gro’ supplying 10 kg P ha
-1 

and
 

26 kg K ha
-1 

in 2013, 4-3-3 NPK ‘Cheep Cheep’ supplying 13 kg P ha
-1 

and
 
24 kg K ha

-1 

in 2014; both produced by North Country Organics, Bradford, VT, USA). Plots receiving 

additional nitrogen treatments did so in the form of Chilean nitrate (NaNO3; 16-0-0 NPK 

Allganic, SQM North America, Atlanta, GA, USA). In 2013 Chilean nitrate was applied 

immediately preceding seeding, and in 2014, approximately three weeks after 

germination to maximize uptake and utilization, and to minimize leaching losses of the 

highly soluble Chilean nitrate. All fertility treatments were re-applied approximately 

seven days following first growth cutting, with the exception of the PAST plots at the 



74 

 

BRF location in 2014 (Table 4.1.). The study was replicated five times at each location 

each year with the exception of the HREC location in 2013, which was limited to four 

replications. Samples were not collected in the first growth cutting of 2013 at the HREC 

location because of an unprecedented amount of rain that spring (2.7 fold higher than 20 

year normal for the area, Figure 4.1.) and subsequent poor growth of all treatments, 

ostensibly due to loss of nitrogen fertility in the sandy soil. All plots at the HREC 

location in 2013 were mowed on July 17 and all fertility treatments were re-applied on 

July 21. 

4.3.3. Sampling  

 Height (cm) was recorded at each sampling as a mean of three measurements per 

plot (Table 1). Chlorophyll content was estimated (SPAD units) with a Konica Minolta 

SPAD-502 (Chiyoda, Tokyo, Japan) at each sampling as a mean of ten measurements per 

plot: ten tillers representative of the plot were measured in the middle of the leaf length of 

the uppermost fully extended leaf, halfway between the midrib and the leaf margin. 

Forage yield was measured with a small plot research harvester (Carter MFG Co., 

Brookston, IN, USA) cutting a 0.9 m wide swath out of the middle of each plot at a 

stubble height of 15 cm. Immediately following yield harvests, four subsamples per plot 

were cut at the same height at random points along the unharvested plot area using 

handheld electric clippers (Gardena Accu Grass Shears ComfortCut, Husqvarna 

Professional Products Inc., NC, USA) and composited for forage quality analysis. Weeds 

were separated from each quality sample and dried separately. Five representative tillers 

from each quality sample were divided just above the ligule and dried separately as 
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lamina and pseudostem (stem, culm, and petiole, i.e., leaf sheath) fractions to provide a 

measure of “lamina mass ratio” (LMR). LMR was calculated as the proportion of the dry 

matter (DM) weight of laminae relative to the total DM weight of laminae and 

pseudostem portions. Forage quality samples were dried for 7 days in a custom-built 

forced hot air walk-in drying room at the HREC location, set to 42°C in 2013 and 44°C 

in 2014. Dried samples were ground with a Wiley mill (Arthur H. Thomas Co., 

Philadelphia, PA, USA) to pass through a 2 mm screen, and a cyclone forage mill (UDY 

Corporation, Fort Collins, CO, USA) to pass through a 1mm screen. 

4.3.4. Fatty acid analysis 

Fatty acid methyl esters (FAME) were extracted from the dried and ground forage 

quality samples using a modified one step transesterification method of Sukhija and 

Palmquist (1988) as described in Goossen et al., 2018a, with the exception of microwave 

pretreatment and DM correction at time of FAME preparation.  

4.3.5. Statistical analysis 

 The MIXED procedure in SAS version 9.4 (SAS Institute, Cary, NC, USA) was 

used for all analyses of FA measures with a single repeated measures split plot model,  

with cutting within site-year as a repeat measure, sample as subject, and assuming an 

unstructured covariance matrix. Because of unbalanced data between locations, locations 

and years were analyzed as “site-years”. Denominator degrees of freedom were computed 

using the Kenward-Roger approximation. Multiple comparisons were made upon least 

squares means with Tukey HSD P-value adjustments and the PDMIX800 macro for SAS 

(Saxton, 1998). Least squares means of interactions were limited to three terms. 
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Differences were considered significant with an adjusted P<0.05. Regrowth samples from 

the HREC location in 2013 were analyzed separately with the MIXED procedure, 

utilizing a simpler model that left out the effect of site-year, cutting cycle, and repeated 

measures, as the first growth cutting from that location was not sampled. 

4.4. Results 

 Ranges of FA content were small for the majority of individual FA measured, but 

large for ALA (Figure 4.2.). ALA is the principal and most variable FA in forages. 

Because of this, only ΣFA content (g kg
-1

 forage DM), ALA content (g kg
-1

 forage DM), 

and ALA proportion (g 100 g
-1

 ΣFA) results are presented. Plant maturity, species, 

nitrogen fertility, and cutting were all found to have significant impacts upon ΣFA and 

ALA content and ALA proportions, however, differences between site-years were also 

substantial, and produced interactions with all of the above simple effects (Tables 4.2., 

4.3.). 

4.4.1. Plant maturity 

 Plant maturity was the most significant impactor of ΣFA content and ALA 

content and proportion in this study (Table 4.2.). Overall CONS plant maturity reduced 

ΣFA and ALA content by 4.7 and 3.2 g kg
-1

 forage DM, respectively and ALA 

proportion by 5.1 g 100 g
-1

 ΣFA (Table 4.4.) relative to PAST maturity. However, these 

effects of later plant maturity were not consistent across all site-years (Figure 4.3.), with 

no statistical difference in ALA content or proportion between PAST and CONS samples 

at the BRF location in 2014. Additionally, numerical decreases in ALA content and 
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proportion in CONS samples at the BRF location in 2013 and HREC location in 2014 

were not statistically significant. 

4.4.2. Nitrogen 

 Nitrogen fertility had the second greatest impact upon ΣFA content and ALA 

content and proportion in this study with the two highest treatment levels containing 

more of all three FA measures than the lowest two treatment levels, which were also 

different from each other (Table 4.6.). However, these overall averages are driven 

primarily by PAST sample results from the 2014 site-years, as well as CONS samples 

from the BRF location in 2014 differing between the lowest and highest N treatment level 

(Figure 4.4.). 

4.4.3. Cutting 

 Regrowth cuttings were lower in ΣFA and ALA content by 1.4 and 0.9 g kg
-1

 

forage DM, respectively and ALA proportion by 1.2 g 100 g
-1

 ΣFA relative to first 

growth cuttings (Table 4.5.).  There was, however, an unexpected increase in ΣFA and 

ALA content and ALA proportion from first growth to regrowth cuttings of PAST 

samples at the BRF location in 2013. 

4.4.4. Species 

 On average, sudangrass was slightly higher in ALA and ΣFA content than pearl 

millet, though slightly lower in ALA proportion (Table 4.7.). The ALA and ΣFA content 

distinction between species was driven by large decreases in regrowth pearl millet ALA 

and ΣFA content at both locations in 2014, with a smaller decrease in sudangrass samples 
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from the HREC location, and unanticipated increases in ALA and ΣFA content in 

regrowth sudangrass in the 2013 BRF site-year samples (Figure 4.5.).  

4.4.5. HREC 2013 regrowth 

 A separate analysis of the regrowth samples harvested from the HREC location in 

2013 showed similar results to the other site years (Table C.1.). In sudangrass, ΣFA and 

ALA content was 7.2 and 6.1 g kg
-1

 DM lower in the CONS than PAST maturity 

samples, while in pearl millet the differences were not statistically significant (Table 

C.4.). ALA proportion was similar to ALA and ΣFA content, with PAST samples 13.5 g 

100 g
-1

 ΣFA higher than CONS samples for sudangrass and pearl millet differences not 

being different (Table C.4.). Unlike the BRF location samples from the same year 

(Figure 4.4.), there was a slight increase in ΣFA content in the highest N fertility, 

treatment relative to the 79 kg N ha
-1

 treatment (2.6 g kg
-1

 DM), though all other 

comparisons were not different (Table C.5.).  

4.5. Discussion 

 The largest differences in ALA content, and therefore ΣFA content, are derived 

from factors affecting the ratio of cellular photosynthetic and metabolic components 

relative to structural components (Dewhurst et al., 2001; Boufaïed et al., 2003; Dias et 

al., 2017; Goossen et al., 2018b). In this study, that ratio is approximated by a measure of 

lamina mass ratio (LMR; DM weight of laminae relative to the total DM weight of 

laminae and pseudostem). While the underlying properties in effect are likely germane to 

the FA content and composition of all grass species, the tall “stemmy” architecture of 

summer annual species allows a clear investigation of this relationship. 
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4.5.1. Plant maturity 

 The advanced maturity and greater elongation of a summer annual grass harvested 

as conserved feed impacts the ALA and ΣFA content in two related manners; I) older 

plant cells have had more time to build structural components (e.g., cell wall), in effect 

diluting the photosynthetic/metabolic cellular components which contain the vast 

majority of ALA and all FA on a DM basis (Bracher and Mosimann, 2016), and II) 

elongated tillers have greater proportions of pseudostem (leaf sheath, culm, and/or jointed 

stem) relative to laminae (leaf blades). As pseudostem is largely structural, the ratio of 

photosynthetic and metabolic cellular components relative to structural components is 

greatly reduced in these fractions (Boufaïed et al., 2003; Dewhurst et al., 2001; Dias et 

al., 2017; Goossen et al., 2018b). A warm season grass of later maturity and greater 

elongation therefore has laminae fractions which have a reduced ALA and ΣFA content, 

and a lower LMR relative to an un-elongated stage (Figure 4.3., panel D; Table 4.4.). 

Other research with warm season grasses suggests that the increased ratio of pseudostem 

components in elongated tillers may have a greater effect upon the FA composition and 

content of later maturity specimens than the impact of cell wall accumulation alone (Dias 

et al., 2017, Goossen et al., 2018b). 

4.5.2. Regrowth & Species 

 Our findings suggest that the decrease in FA content observed in samples from 

the regrowth cutting is species dependent. The FA decline from the first growth to the 

regrowth cutting in 2014 was more distinct in pearl millet than sudangrass (Figure 4.5., 

panels A, B, C). This is likely resultant from pearl millet LMR falling from 0.83 in the 
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first growth to 0.63 in the regrowth, whereas sudangrass LMR remained nearly identical 

(0.54 – 0.55).  The decrease in pearl millet LMR was particularly marked for CONS 

samples which declined from 0.78 to 0.51 compared to a decline of 0.87 to 0.74 for 

PAST samples, while the sudangrass, LMR was unchanged from the first growth to the 

regrowth for both PAST and CONS plots. These results are consistent with observations 

of Teutsch (2002) that millets often have smaller stems and are generally leafier than 

sorghum species. 

4.5.3. Nitrogen fertility 

 Higher N fertility levels led to greater ALA and therefore ΣFA content in PAST 

samples at both locations in 2014, despite the PAST plots at the BRF location not 

receiving a re-application of the N fertility treatments after first growth samples were 

harvested that year (Figure 4.4., panels A, B). This may, at least in part, explain the lack 

of FA differences between PAST and CONS samples for that site-year however. The 

greater range of N response seen at the HREC location in 2014 is likely a result of 

edaphic conditions, as that site is a very free draining sandy soil without the native 

fertility capacity of the loamy BRF location soil. N fertility effects were not significant in 

2013, with the exception of a small increase in ΣFA content in regrowth samples at the 

HREC location, which may be explained, at least in part, by the unusually high amount of 

rain early in 2013 negatively impacting soil N levels (Figure 4.4.). This may also explain 

why PAST regrowth samples from the BRF location had higher FA content than first 

growth samples, though this increase from first growth to regrowth was only seen in 

sudangrass samples (Figures 4.3., 4.5.). 
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In this study, increasing levels of N fertility typically reduced LMR at the time of 

sampling (Table 4.6.), possibly resultant from increased growth rates, as Muchow (1988) 

found in response to N in maize and sorghum. Because there was less lamina component, 

which has a higher FA content, the increase in FA content associated with higher N 

fertility is likely to derive from I) increased chloroplast quantity within laminae, and/or 

II) increased chloroplast size within laminae, or possibly, III) increased grana size and/or 

quantity within the chloroplasts. We found a chlorophyll response to N fertility 

amendments with SPAD meter readings increasing from 30 to 43.7 between the lowest 

and highest fertility treatments in the 2
nd

 cut of 2013, and from 27.7 to 40.8 in the same 

treatments in 2014. Both increased chloroplast size and grana size and quantity are 

associated with N nutrition (Hall et al., 1972; Laza et al., 1993). This conclusion is in 

agreement with the results of a study of N effects on FA content in timothy by Boufaïed 

et al. (2003).  

The effects of N fertility upon ALA and ΣFA content are likely multifaceted and 

possibly counter-effectual. Higher N may increase size, and to some extent quantity of 

ALA-rich leaves in warm season grasses (Muchow, 1988), it may also increase 

pseudostem biomass to a greater degree than lamina biomass as shown in two cool season 

grasses by (Gatti et al., 2015), and limiting N fertility has shown a decreased LMR in 

Poa and Bromus species (Muller and Gamier, 1990; Arendonk et al., 1997). 

 CONS and PAST means of ALA content and proportion in pearl millet and 

sudangrass samples in this study ranged from 4.7 – 12.7 g kg
-1

 forage DM and 40.4 – 

57.9 g 100g
-1

 ΣFA, respectively. While similar to warm season perennial grass findings 
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of Khan et al. (2015), ranging from 2.3 – 13.8 g ALA kg
-1

 forage DM and 30.0 – 60.3 g 

ALA 100g
-1

 ΣFA, these measures of ALA proportion are drastically higher than those 

reported for perennial tropical grass species in a study, utilizing similar sample 

preservation methods, by O’Kelly and Reich (1976) ranging from 12.8 to 36.1 g 100g
-1

 

ΣFA, and measures of ALA content in a study of perennial tropical grasses by Mojica-

Rodríguez et al. (2017) ranging from 0.07 – 1.22 g kg
-1

 forage DM. As described in 

Goossen et al. (2018a), forced hot air drying alone, as used in this study, can lead to a 

preservation loss of ALA and therefore ΣFA content within forage samples, and to a 

lesser extent the proportion of ALA relative to ΣFA. Additionally, a lack of DM 

correction of dried ground samples may underrepresent the content of individual and 

ΣFA, though without altering the proportion of any individual FA.  

When sample preservation methodological concerns were taken into account in 

Goossen et al. (2018b), the ALA content and proportion of pearl millet and a sorghum x. 

sudangrass hybrid at early and late maturities were shown to have higher maximum 

values, ranging from 9.2 – 20.2 g kg
-1

 forage DM and 49.0 – 61.8 g 100g
-1

 ΣFA. These 

results are much closer to the findings of Dias et al. (2017) for perennial elephant grass 

(Pennisetum purpureum) ranging in ALA proportions from 48.7 - 64.7 g 100g
-1

 ΣFA, 

despite having also utilized forced hot air drying.  

It is of note that many of these warm season grass results fall largely within the 

ALA content and proportion ranges (6.9 – 23.8 g kg
-1

 forage DM and 43.1 – 68.4 g 100g
-

1
 ΣFA) of six studies on the much lower growing cool season Italian ryegrass (Lolium 

multiflorum L.) discussed in Goossen et al., (2018a), suggesting that differences between 
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studies (whether from treatment or methodology) may be nearly as great as, or greater 

than, differences between cool season and warm season grasses, though highest attainable 

ALA content and proportion may still only be found in cool season species. A higher 

potential ALA content and proportion top range was described for a similarly tall 

growing, but cool season, annual triticale (× Triticale rimpaui (Wittm.) Muntz) in 

Clapham et al. (2005) ranging from 13.2 – 30.0 g kg
-1

 forage DM and 65 - 69 g 100 g
-1

 

ΣFA, respectively. These higher ALA values in triticale may be due, in part, to optimal 

sample preservation and handling.  

Differences between the findings of the above warm season grass studies may be 

due to temperature differences during growth (Dias et al., 2017; Falcone et al., 2004; 

Larkindale and Huang, 2004; Narayanan et al., 2016), uncertain effectiveness of 

methodologies of sample preservation (Goossen et al., 2018a), the species investigated, 

or other factors. Further research into FA content and composition of warm season (C4) 

grasses is therefore crucial for a more thorough understanding, and must incorporate a 

diversity of species, maturities, and concomitantly the different LMR created by these 

combinations. Further research would ideally contain a difference of temperature, and be 

performed with great care to sample preservation/preparation methodology to eliminate 

ALA losses. 

 An unavoidable limitation of the present study was that regrowth harvests could 

not begin at the same date for PAST and CONS treatments as different first growth 

sampling dates were inherent to the treatments. Additionally, unusually heavy rains in 

early 2013 impaired normal plant growth to the point of severe chlorosis in the first 
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growth at the HREC location. These rare conditions likely affected the comparability of 

results between years. Potential limitations of sample preservation method are described 

in greater detail in Goossen et al., 2018a. 

4.6. Conclusion 

 Though there were small effects of N fertility, and differences between species, 

the greatest impact upon ALA and ΣFA content was the maturity stage of plants at 

harvest. Managing for high proportion of laminae to produce forage with greater ALA 

and ΣFA content may be of greater importance in these tall growing summer annual 

species. 
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4.10. Figures 

 

 

Figure 4.1. Rainfall (right Y axis, blue) and average daily temperature (left Y axis, black) at the 

HREC (South Burlington, VT) location and BRF (Alburgh, VT) location for duration of 

experiment in 2013 and 2014. Orange lines indicate timing of seeding, harvests, etc., as indicated in 

the text. 
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  Figure 4.2. Box and whiskers plot of fatty acid (FA) content range of individual 

FA with a maximum > 0.5 g kg-1 forage, of all samples combined (pearl millet 

(Pennisetum glaucum L. cv. ‘Wonderleaf’) and sudangrass (Sorghum X 

drummondii (Nees ex Steud.) Millsp. & Chase cv. ‘Hayking’). Whiskers show 

minimum and maximum values, box encapsulates 25th to 75th percentile, and 

center line (where visible) shows median value. 
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Figure 4.3. Plant maturity (PAST = pasture maturity, CONS = conservation maturity) by cutting 

(white bars = first growth, grey bars = regrowth) by site-year effects on least squares means of total 

fatty acid (ΣFA) content, alpha-linolenic acid (ALA) content, ALA proportion, and lamina mass 

ratio (LMR),  and their standard error of means in panels A, B, C, and D, respectively. Least 

squares means without a common letter differ significantly; P < 0.05 (Tukey’s HSD). 
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Figure 4.4. Plant maturity (PAST = pasture maturity, CONS = conservation maturity) by nitrogen 

fertility (kg ha
-1

) by site-year effects on least squares means of total fatty acid (ΣFA) content, 

alpha-linolenic acid (ALA) content, ALA proportion, and lamina mass ratio (LMR),  and their 

standard error of means in panels A, B, C, and D, respectively. Individual means (▼) or groups of 

means (within Π bracket) denoted with * differ significantly; P < 0.05 (Tukey’s HSD). 

  



92 

 

 

Figure 4.5. Plant species (PM = pearl millet, SG = sudangrass) by cutting (white bars = first 

growth, grey bars = regrowth) by site-year effects on least squares means of total fatty acid (ΣFA) 

content, alpha-linolenic acid (ALA) content, ALA proportion, and lamina mass ratio (LMR),  and 

their standard error of means in panels A, B, C, and D, respectively. Least squares means without 

a common letter differ significantly; P < 0.05 (Tukey’s HSD). 
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4.11. Tables 
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Table 4.2. Effects of plant maturity, species (Sp), nitrogen fertility (N), cutting (Cut), site-year, and 

their interactions on total fatty acid (ΣFA) content, alpha-linolenic acid (ALA) content, ALA 

proportion, and lamina mass ratio. 

 

 
ΣFA(g kg

-1
 

forage DM
a
) 

ALA (g kg
-1

 

forage DM) 

ALA (g 100 g
-1

 

ΣFA) 

Lamina mass 

ratio 

Effect 
F-

Value 

P-

value 

F-

Value 

P-

value 

F-

Value 

P-

value 

F-

Value 

P-

value 

Rep 2.0 ns 2.4 ns 1.8 ns 1.1 ns 

Maturity 313.2 <.0001 286.4 <.0001 256.4 <.0001 152.0 <.0001 

Sp 35.1 <.0001 15.8 0.0001 3.9 0.05 825.6 <.0001 

Maturity*Sp 7.0 0.01 4.0 0.05 0.0 ns 0.1 ns 

N 40.8 <.0001 37.7 <.0001 22.3 <.0001 13.8 <.0001 

Maturity*N 8.0 <.0001 7.7 <.0001 1.1 ns 3.4 0.02 

Sp*N 0.1 ns 0.0 ns 0.4 ns 2.3 ns 

Maturity*Sp*N 3.0 0.03 2.7 ns 1.3 ns 0.5 ns 

Cut 51.3 <.0001 44.7 <.0001 26.0 <.0001 56.2 <.0001 

Maturity*Cut 7.3 0.01 4.7 0.03 9.4 <0.01 27.3 <.0001 

Sp*Cut 28.6 <.0001 37.4 <.0001 70.1 <.0001 167.9 <.0001 

Maturity*Sp*Cut 0.0 ns 1.2 ns 5.8 0.02 55.3 <.0001 

N*Cut 1.0 ns 0.9 ns 4.3 <0.01 1.1 ns 

Maturity*N*Cut 1.8 ns 2.1 ns 2.1 ns 0.1 ns 

Sp*N*Cut 0.0 ns 0.1 ns 0.1 ns 0.7 ns 

Maturity*Sp*N*Cut 0.6 ns 0.6 ns 1.8 ns 0.4 ns 

Site-year 65.7 <.0001 87.4 <.0001 188.7 <.0001 3.6 0.05 

Maturity*Site-year 15.1 0.0001 18.3 <.0001 51.0 <.0001 0.8 ns 

Sp*Site-year 40.3 <.0001 31.5 <.0001 14.2 <.0001 15.3 <.0001 

Maturity*Sp*Site-year 2.2 ns 2.9 ns 1.3 ns 0.1 ns 

N*Site-year 10.7 <.0001 9.6 <.0001 4.3 <0.001 6.1 <.0001 

Maturity*N*Site-year 4.1 <0.001 4.0 0.001 2.2 0.05 1.6 ns 

Sp*N*Site-year 1.6 ns 1.6 ns 1.1 ns 1.0 ns 

Maturity*Sp*N*Site-year 1.4 ns 1.5 ns 1.4 ns 0.6 ns 

Cut*Site-year 51.9 <.0001 61.5 <.0001 47.7 <.0001 41.6 <.0001 

Maturity*Cut*Site-year 43.5 <.0001 52.0 <.0001 44.6 <.0001 7.1 <0.01 

Sp*Cut*Site-year 4.4 0.01 6.1 <0.01 4.9 <0.01 3.3 0.04 

Maturity*Sp*Cut*Site-

year 
2.8 ns 4.0 0.02 7.0 0.001 0.0 ns 

N*Cut*Site-year 1.3 ns 1.4 ns 2.1 ns 1.5 ns 

Maturity*N*Cut*Site-year 2.0 ns 1.9 ns 0.9 ns 0.6 ns 

Sp*N*Cut*Site-year 0.7 ns 0.5 ns 1.0 ns 3.5 <0.01 

Maturity*Sp*N*Cut*Site-

year 
1.6 ns 1.2 ns 1.0 ns 1.2 ns 

a
DM = dry matter

 1 
b
ns = non-significant 2 
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Table 4.3. Site-year least squares means of total fatty acid (ΣFA) content, alpha-linolenic acid 

(ALA) content, ALA proportion, and lamina mass ratio (LMR), and their SEM
a
. 

 
 

Table 4.4. Maturity stage least squares means of total fatty acid (ΣFA) content, alpha-linolenic acid 

(ALA) content, ALA proportion, and lamina mass ratio (LMR), and their SEM
a
. 

 
 

Table 4.5. Cutting cycle least squares means of total fatty acid (ΣFA) content, alpha-linolenic acid 

(ALA) content, ALA proportion, and lamina mass ratio (LMR), and their SEM
a
. 

 
 

Table 4.6. Nitrogen fertility effects on least squares means of total fatty acid (ΣFA) content, alpha-

linolenic acid (ALA) content, ALA proportion, and lamina mass ratio (LMR), and their SEM
a
. 

 
 

  

Site-year BRF 2013 BRF 2014 HREC 2014 

ΣFA (g kg
-1

 DM
b
) 15.1 c 0.2 18.8 a 0.3 16.5 b 0.2 

ALA (g kg
-1

 DM) 7.0 c 0.1 10.0 a 0.2 8.5 b 0.2 

ALA (g 100 g
-1

 ΣFA) 45.2 c 0.3 52.8 a 0.3 50.0 b 0.3 

LMR 0.64 ab 0.01 0.62 b 0.01 0.66 a 0.01 

Least squares means without a common letter differ significantly within a row; P < 0.05 (Tukey’s HSD) 1 
a
Standard error of means 2 

b
DM = dry matter

 3 

Maturity Pasture Conserved 

ΣFA (g kg
-1

 DM
b
) 19.2 a 0.2 14.5 b 0.2 

ALA (g kg
-1

 DM) 10.1 a 0.1 6.9 b 0.1 

ALA (g 100 g
-1

 ΣFA) 51.9 a 0.2 46.8 b 0.2 

LMR 0.71 a 0.01 0.56 b 0.01 

Least squares means without a common letter differ significantly within a row; P < 0.05 (Tukey’s HSD) 1 
a
Standard error of means 2 

b
DM = dry matter

 3 

Cutting First Regrowth 

ΣFA (g kg
-1

 DM
b
) 17.5 a 0.2 16.1 b 0.2 

ALA (g kg
-1

 DM) 9.0 a 0.1 8.1 b 0.1 

ALA (g 100 g
-1

 ΣFA) 49.9 a 0.2 48.7 b 0.2 

LMR 0.66 a 0.01 0.61 b 0.01 

Least squares means without a common letter differ significantly within a row; P < 0.05 (Tukey’s HSD) 1 
a
Standard error of means 2 

b
DM = dry matter

 3 

Nitrogen (kg ha
-1

) 39 79 118 157 

ΣFA (g kg
-1

 DM
b
) 15.3 c 0.2 16.2 b 0.2 17.5 a 0.2 18.3 a 0.2 

ALA (g kg
-1

 DM) 7.5 c 0.2 8.1 b 0.2 9.0 a 0.2 9.5 a 0.2 

ALA (g 100 g
-1

 ΣFA) 47.8 c 0.3 49.0 b 0.3 50.1 a 0.3 50.5 a 0.3 

LMR 0.67 a 0.01 0.64 b 0.01 0.62 bc 0.01 0.61 c 0.01 

Least squares means without a common letter differ significantly within a row; P < 0.05 (Tukey’s HSD) 1 
a
Standard error of means 2 

b
DM = dry matter

 3 
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Table 4.7. Species least squares means of total fatty acid (ΣFA) content, alpha-linolenic acid (ALA) 

content, ALA proportion, and lamina mass ratio (LMR), and their SEM
a
. 

 
    

Species Pearl Millet Sudangrass 

ΣFA (g kg
-1

 DM
b
) 16.2 b 0.2 17.4 a 0.2 

ALA (g kg
-1

 DM) 8.2 b 0.1 8.8 a 0.1 

ALA (g 100 g
-1

 ΣFA) 49.6 a 0.2 49.1 b 0.2 

LMR 0.74 a 0.01 0.53 b 0.01 

Least squares means without a common letter differ significantly within a row; P < 0.05 (Tukey’s HSD) 1 
a
Standard error of means 2 

b
DM = dry matter 3 
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5.1. Abstract 

Increased wilting times during forage conservation are associated with losses in 

alpha-linolenic acid (ALA) and total fatty acid (ΣFA) content. This study compared the 

FA content and ALA proportion of reed canarygrass (Phalaris arundinacea L.) mown in 

the evening (PM) and following morning (AM) in both wide and narrow swaths at three 

cuttings in 2015 and again in 2016. Differences across the season in both years, and 

resultant from initial wilting periods were the most pronounced and consistent result 

found in this study. There was little evidence that the swath widths used in this study 

produced forages with any difference in FA content or composition. AM mowing may 

allow for higher content or proportion of ALA, and ΣFA content up to 2 g kg
-1

 DM 

greater than PM mowing, though the effect was small enough to only be discernible with 

increased statistical power. We found that ensiling reduces ALA content and/or 

proportion of ΣFA beyond that of the initial wilting period preceding ensiling. In 

conclusion, harvest management strategies such as wide vs. narrow swathing, or AM vs. 

PM mowing, may have a smaller role for reed canarygrass in optimizing FA content of 

feed than other production practices. 

5.2. Introduction 

Wilting forages for conservation (i.e., making silage or hay) has been shown to reduce 

their content of the polyunsaturated fatty acid (FA) alpha-linolenic acid (ALA; 18:3 n-3) 

which is both the primary FA in forages and considered desirable as a feedstuff 

component to promote a healthy FA profile in ruminant animal products (Dewhurst and 

King, 1998; Boufaïed et al., 2003; Elgersma et al., 2003a, 2003b; Glasser et al., 2013). 
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This may explain, at least partially, why FA beneficial to human health (e.g., rumenic 

acid) in ruminant-derived products are found at their maxima during grazing months 

(Benbrook et al., 2013).  

 ALA in forage plants is primarily found in thylakoid membranes, and is subject to 

continual turnover and replacement (Falcone et al., 2004). In addition to enzyme activity 

facilitating this persistent turnover, ALA is highly susceptible to lipoxygenase enzymes 

in response to stress, e.g., wounding, to produce metabolites such as jasmonates and 

green leaf volatiles (Dar et al., 2015; Venkatesan 2015; Sofo et al., 2016). As such, 

enzymatic degradation of polyunsaturated FA (PUFA) begins immediately following 

mowing, and continues until forage dry matter (DM) is high enough that appreciable 

plant enzyme activity ceases (above 60 g DM 100 g
-1

 fresh weight; Rotz and Muck, 

1994) or oxidation is prevented by the anaerobic conditions of ensiling. Because of the 

greater enzymatic degradation potential of ALA, its content and proportion of ΣFA are 

the most evident consequence of FA losses during conservation. 

 Increasing swath width at mowing, relative to the mower width, has been shown 

to hasten wilting of forages (Jones and Harris, 1980; Wright et al., 1997; Kung et al., 

2010). Conversely, choosing to harvest at the end of the photosynthetic day (PM), with 

the goal of capturing a greater content of non-structural carbohydrates, can extend forage 

wilting overnight and may subsequently decrease ALA and ΣFA content of the conserved 

forage relative to a morning (AM) mowing. Therefore, we hypothesized that management 

choices that influence wilting duration would alter the ALA and ΣFA content available to 

ruminant livestock from conserved forages. 
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 In this study, we sought to: I) evaluate FA changes in reed canarygrass (Phalaris 

arundanacea L.) over two seasons, II) test the impact of AM vs. PM cutting times on 

ALA and ΣFA content, and ALA proportion of reed canarygrass harvested at two target 

DM content levels (45 and ≥60 g DM 100 g
-1

 fresh weight), III) test the impact of wide or 

narrow swathing on ALA and ΣFA content, and ALA proportion of reed canarygrass 

harvested at two target DM content levels (45 and 60+ g DM 100 g
-1

 fresh weight), and 

IV) test the impact of ensiling on ALA and ΣFA content, and ALA proportion of reed 

canarygrass. 

5.3. Materials and methods 

5.3.1. Experiemental design  

 The experiment was conducted on an existing hayfield at the Borderview 

Research Farm in Alburgh, Vermont (45°0’N; 73°18’W), consisting primarily of reed 

canarygrass (Phalaris arundinacea L.) on well drained Nellis silt loam with a 3% - 8% 

slope (coarse-loamy, mixed, superactive, mesic Typic Eutrudepts; Soil Survey Staff, 

2018). Harvests were performed at three cutting dates per year in 2015 and 2016 (Table 

5.1.). The study utilized a split-split-plot design with four replications. The whole plot 

treatment was time of mowing (morning, AM vs. evening, PM) and the split-plot 

treatment was swath width (narrow, 40% of mower width vs. wide, 70% of mower width) 

using a New Holland 415 discbine. The split-split-plot was wilt stage (WS0, WS1, and 

WS2). AM harvests always followed PM harvests (Table 5.1). Main plots were 14.4 m 

wide (two mower passes) and 30.5 m long at the first harvest, but shortened to 22.9 m for 

all the subsequent harvests. Split-plots were two mower widths (half of the main plot). 
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Split-split-plots were one mower width (half of the split-plot). Replicate plots were 

separated by 10.8 m buffer strips mowed immediately preceding harvests. Nitrogen (N) 

fertility was supplied at a rate of 54 kg N ha
-1

 in the form of Chilean nitrate (NaNO3), on 

June 6 2015, and again on June 7 2016 at a rate of 103 kg N ha
-1 

in the form of urea 

(CO(NH2)2). After the wilting period of each cutting, forage was chopped with a John 

Deere 3940 forage harvester and blown into a feed wagon outfitted with weigh cells to 

record harvest yields. 

 Fresh forage samples (WS0) were collected by hand at the time of mowing, by 

three composited hand grab samples from the length of each WS2 subplot.  

Representative hand grab samples of wilted forage were collected from the chopped 

material at target DM contents of 45 g DM 100 g
-1

 fresh weight, approximating a typical 

ensiled forage harvest (WS1), and ≥60 g DM 100 g
-1

 fresh weight when respiration had 

ceased (Barnes et al., 2003) and enzymatic activity was minimized (Rotz and Muck, 

1994; Van Ranst et al., 2009a), approximating a hay harvest (WS2). Harvest cutting and 

sampling times are shown in Table 5.1., though specific times were lost for the first 

cutting of 2015. WS1 samples were split into quarters with one subsample dried for 

analysis, and the remaining three subsamples, packed in vacuum sealed plastic bags and 

ensiled out of the light for 40 days, at which time the three subsamples were composited 

and a representative sample dried for analysis. All samples, save the first cutting 2015 

PM WS0 samples, received a microwave pretreatment prior to forced hot air drying for 24 

hours at 38 °C, to halt enzymatic degradation of non-structural carbohydrates (Pelletier et 

al., 2010) and FA (Goossen et al., 2018). In the first cutting of 2015, target sample fresh 
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weights were 400 g, and samples received 1 min microwave pretreatment prior to forced 

hot air drying. As initial results of Goossen et al. (2018) became apparent, samples from 

the second cutting of 2015 (target: 400 g fresh weight) received 2 min microwave 

pretreatment prior to drying. As further findings of Goossen et al. (2018) were 

recognized, samples from the third cutting of 2015 and all three cuttings of 2016 (target: 

100 - 150 g fresh weight) received 1 min microwave pretreatment prior to drying. 

5.3.2. Fatty acid analysis 

 Fatty acid methyl esters (FAME) were prepared from the dried and ground forage 

samples using a modified one step transesterification method of Sukhija and Palmquist 

(1988) as described in Goossen et al. (2018).  

5.3.3. Statistical analysis 

 Statistical analysis of all FA measures was performed with the MIXED procedure 

in SAS version 9.4 (SAS Institute, Cary, NC, USA) for each year, with season (cuttings 

1, 2, and 3) as a repeated measure, whole plot as subject, and assuming a compound 

symmetry covariance matrix. Denominator degrees of freedom were computed using the 

Kenward-Roger approximation. Sample DM was included as a covariate to control for 

any unintended DM differences within wilt stages. There were no four-way interactions 

so interactions were limited to three terms, and multiple comparisons were made upon 

least squares means with Tukey HSD P-value adjustments and the PDMIX800 macro for 

SAS (Saxton, 1998). Differences were considered significant with an adjusted P<0.05. 

Ensiled WS1 samples were compared with unensiled WS1 samples as above, with the 
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substitution of the term “ensiling” in place of the “wilt stage” term and an “ensiling by 

season” interaction as a repeat measure. 

5.4. Results 

5.4.1. WS0, un-ensiled WS1, and WS2 samples 

 In both 2015 and 2016, the effects of season, wilt stage, and their interaction 

explained the majority of variation in ALA and ΣFA content (Table 5.2.). The same was 

true for ALA proportion of ΣFA in 2015, though the simple effect of season was not 

significant in 2016, despite the recurrent interaction between season and wilt stage. There 

were no simple effects of time of mowing or swath width in either year, however, they 

were included in some interactions in 2015 (Appendix D).  

5.4.2. Effect of season 

The ΣFA content of WS0 samples did not differ in 2015 samples, but was greater in the 

third cutting of 2016 than the first and second cuttings (Figure 5.2.; panel A). The ALA 

content of WS0 samples was greater in the third cutting than the first in 2015, and greater 

in the third than the first and second cuttings in 2016 (Figure 5.2.; panel B). The ALA 

proportion of WS0 samples was greater in the third cutting than the first in both 2015 and 

2016, but the third cutting only differed from the second cutting in 2015 which was also 

greater than the first cutting (Figure 5.2.; panel C). 

 Unensiled WS1 samples did not differ in ALA or ΣFA content between cuttings in 

2015, although ALA content was higher in the third cutting than the second cutting of 

2016, and ΣFA content was lower in the second cutting than either the first or third 

cuttings (Figure 5.2.; panels A, B). ALA proportion was greater in the second cutting 
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than the first cutting of 2015, however, unchanged throughout the three cuttings in 2016 

(Figure 5.2., panel C).  

 WS2 samples had greater contents of ALA and ΣFA, and a higher 

proportion of ALA in the third cutting of 2015 than both the first and second cuttings, 

and lower contents of ALA and ΣFA, and a lower proportion of ALA in third cutting of 

2016 than the first cutting (Figure 5.2.). 

5.4.3. Effect of wilting 

 Unensiled WS1 samples were lower in ALA and ΣFA content and ALA 

proportion than WS0 samples in the third cutting of 2015, and in all three cuttings of 2016 

(Figure 5.2.). WS2 samples were only statistically different from WS0 and unensiled WS1 

samples in ALA and ΣFA content in the third cutting of 2016. 

5.4.4. Ensiled and un-ensiled WS1 samples 

 Comparing ensiled and unensiled WS1 samples revealed an effect of ensiling, 

decreasing ALA content and proportion in the third cutting of 2015 and across all 

cuttings in 2016 (Table 5.3., Figure 5.3.). By limiting the dataset to WS1 samples and 

adding ensiled samples, the number of total WS1 samples (ensiled and unensiled) 

available for statistical analysis was concomitantly doubled. With this greater statistical 

power, time of mowing had an effect on ALA and ΣFA content in WS1 samples in the 

first and third cuttings of 2015 (Figure 5.4.), and PM mown samples had a reduction in 

ALA proportion relative to AM mown samples across all cuttings of 2016, from 55.2 to 

54.2 g 100g
-1

 ΣFA. In 2015, ΣFA content was consistent across the season in wide swath 

samples, but narrow swath samples were greater in the first cutting than the third (Figure 
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D.4.). The season by time of cutting by swath width interaction in 2015 (Figure D.5.) 

shows that AM mown wide swath samples were higher in ALA proportion than narrow 

swath and all PM samples in the first cutting. 

5.5. Discussion 

 Results from 2015 and 2016 were not compared against each other statistically, 

however, the greater ALA and ΣFA content of WS0 samples in 2016 is readily apparent 

(Figure 5.2.). This is possibly representative of I) a greater amount of labile ALA being 

preserved by the microwave pretreatment methodology of Goossen et al. (2018) being 

fully refined and employed only for the third cutting of 2015 and beyond, and II) impacts 

of higher applied N fertility in 2016. 

5.5.1. Effect of season 

While the impact of season on ALA and ΣFA content can be difficult to parse 

from its constituent/concomitant factors (i.e., forage maturity, day length, temperature, 

etc.) a meta-analysis by Glasser et al. (2013) showed a distinct trend among published 

studies of mid-season minima for ΣFA content and ALA proportion. The first and second 

cutting of the present study coincide with these minima, as well as the third cutting 

coinciding with the beginning of autumnal increases in ALA proportion and ΣFA content 

as reported by Glasser et al. (2013). While evolving sample preservation methodology in 

the present study may have accounted for some of the seasonal variation in 2015, the 

impact of methodology is likely more evident in the interactions involving season in 

2015, that were not present in 2016.  

5.5.2. Effect of wilting (wilt stage) 
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 Unensiled WS1 samples were lower in ALA and ΣFA content than in unwilted 

WS0 samples in the third cutting of 2015 and all three cuttings of 2016, which coincides 

with our adoption of the small sample fresh weight microwave pretreatment preservation 

method for FA analysis described in Goossen et al. (2018). WS2 samples were only 

statistically lower than both unensiled WS1 and WS0 samples in the third cutting of 2016. 

This is despite a visibly distinct downward trend in the least squares means of 

progressing wilt stages at all cuttings except WS2 in the third cutting of 2015 (Figure 

5.2.). The difference in WS2 ALA and ΣFA content in the third cutting of 2016 may be 

due a culmination of several factors that contributed to a greater initial ALA and ΣFA 

content in unwilted WS0 samples; I) a potentially greater supply of N fertility from the 

greater fertilizer application rate in 2016, II) a greater content of ALA in the late season 

(effect of season). 

 Earlier investigations into wilting losses of ALA and ΣFA in perennial ryegrass 

(Lolium perenne L.) showed reductions after extended wilting periods (Dewhurst and 

King, 1998; Dewhurst et al., 2002; Elgersma et al., 2003; Van Ranst et al., 2009a; 

Warren et al., 2002), and Khan et al. (2011) found the proportion of ALA decreased 

primarily during an initial wilting phase (up to ~ 45 g DM 100 g
-1 

fresh weight) and that 

ΣFA content did not continue to decrease in long-term controlled lab wilting beyond that 

point; however, field cured samples dried more quickly and were of a much greater DM 

content (67 g DM 100 g
-1 

fresh weight) when they reached a similar minimum of ΣFA 

content. This suggests that the field-cured samples may have reached a DM content at 

which lipolytic enzyme activity was greatly reduced while there was still labile FA 
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available to be lost when overnight re-wetting increased lipolytic activity, whereas lab-

cured samples took longer to reach a critical DM content for reduced lipolytic activity 

and readily available pools of FA had already degraded. In the present study, DM 

contents similar to the potentially critical ~ 45 g DM 100 g
-1 

fresh weight shown by Khan 

et al. (2011) were achieved between 2.25 and 5.5 hours for AM mown WS1 samples, and 

between 16.25 and 19.5 hours for PM mown WS1 samples, which likely explains the 

difference between AM and PM mowing shown in the comparison of ensiled and 

unensiled WS1 samples (Figure 5.4.). The potential significance of this DM point is 

further corroborated by the findings of Van Ranst et al. (2009a), demonstrating that 

lipolytic enzyme activity is greatly reduced in clovers (Trifolium spp. L.) as they wilted to 

40 - 50 g DM 100 g
-1 

fresh weight. 

 Similar studies of timothy (Phleum pretense L.) are less congruous than those of 

perennial ryegrass, as Boufaïed et al. (2003) and Lee et al. (2006) found a drop in ALA 

and ΣFA content in an initial wilt, but only marginal further reduction in extended drying 

to hay, while Shingfield et al. (2005) found little change with a 6 hour wilt, but 

reductions after extended curing to hay, and Arvidsson et al. (2009a) found no effect on 

ALA or ΣFA content when wilting to 33.6 or 35.0 g DM 100 g
-1 

fresh weight.  

5.5.3. Effect of ensiling 

 ALA content and proportion of ΣFA in WS1 samples decreased with ensiling in 

the third cutting of 2015, and across all cuttings of 2016 (Figure 5.3., Panels B and C), 

again coinciding with adoption of improved sample preservation methodology. These 

ensiling decreases averaged 0.51 g kg
-1

 DM and 2.4 g 100 g
-1

 ΣFA in 2016 for ALA 



108 

 

content and proportion of ΣFA, respectively. It is difficult to directly compare these 

findings with published studies, as results have been mixed and many studies are 

comparing non-wilted fresh samples with wilted ensiled samples; therefore, the impact of 

ensiling is confounded with the impact of wilting. The meta-analysis of Glasser et al. 

(2013) found average reductions of ALA in silage samples that were very similar to what 

we have reported here for WS1 samples, however, the results of those studies included 

effects of wilting in addition to ensiling. Of the studies that sampled both after wilting 

and again after ensiling, Arvidsson et al. (2009a) and Dewhurst and King (1998) found 

no effect of ensiling on ΣFA content or ALA proportion, while Boufaïed et al. (2003) 

found increases in both ΣFA and ALA content. Of studies that compared unwilted forage 

before and after ensiling, Alves et al. (2011) and Boufaïed et al. (2003) both reported 

increases in ΣFA content, though only the latter found an increase in ALA content, while 

Liu et al. (2018) reported a decrease in ALA proportion, however, with no change in 

ΣFA content. In studies comparing fresh forage with silages made from wilted material 

Vanhatalo et al. (2007) reported mixed results for ΣPUFA proportion – decreasing in 

grass and mature clover silages but increasing in young clover silages – otherwise, 

reductions in ALA proportion were universal: Chow et al. (2004) and Van Ranst et al. 

(2009a) reported increases in ΣFA content, Whiting et al. (2004) reported decreases in 

ALA and ΣFA content, and Ding et al. (2013) and Elgersma et al. (2003) found decreases 

in both ALA proportion and ΣFA content, though Ding et al. (2013) reported varying 

degrees of ensiling decreases in both ALA proportion and ΣFA content, pursuant to 

applied pre-ensiling treatments.  
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 We found no effect of ensiling upon ΣFA content (Figure 5.3., Panel A), 

however, increases in ΣFA content are perhaps the most paradoxical and intriguing result 

of ensiling reported by several other studies (Alves et al., 2011; Boufaïed et al., 2003; 

Chow et al., 2004; Van Ranst et al., 2009a). Increases in ΣFA content are typically 

suggested to be the result of DM losses associated with ensiling, such as effluent loss or 

respiratory/fermentative losses, essentially concentrating the remaining DM components, 

including FA. In at least one example (Liu et al., 2018) DM content decreased 15.6 g DM 

100 g
-1 

fresh weight, possibly off-setting the reported ALA decrease, as ΣFA content of 

the resulting silage was not different than the fresh forage it was made from. In our study, 

ensiled WS1 samples had a lower DM content than unensiled WS1 samples in 2015, but 

not in 2016, which may explain in part why ALA content was lower in all ensiled 2016 

samples, but only in the third cutting of 2015. This would not, however, explain by itself 

the lack of effects on ΣFA content resultant from ensiling in both years, or the decreases 

in ALA proportion. 

 It was posited by Elgersma et al. (2003) that ensiling changes in FA composition 

may be resultant from endogenous plant lipolytic enzyme activity in addition to microbial 

lipolytic enzyme activity. The examination of alfalfa (Medicago sativa L.) silage by Ding 

et al. (2013) confirms that both endogenous plant enzymes and microbial actors reduce 

ALA content and proportion, and ΣFA content. If the two effectors can be assumed 

additive, endogenous plant enzymes were responsible for approximately 28 g 100 g
-1

 of 

the overall 40 g 100 g
-1

 ensiling reduction in ΣFA content found by Ding et al. (2013). 

The need for further research into relative rates of endogenous plant lipolytic activity 
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between subtribes and individual species is apparent when the lack of ensiling effects 

upon ΣFA content in reed canarygrass in this study are considered with the above results 

of Ding et al. (2013). Van Ranst et al. (2009a) found that white and red clover have 2 - 3 

fold greater lipase activity in silo than perennial ryegrass, however, with methodological 

limitations to comparability between species, and no correlation between lipase activity 

and overall lipolysis. Even the inconclusive findings of relative lipolysis rates between 

clovers and perennial ryegrass at lower DM contents in Van Ranst et al. (2009b) suggest 

a need for further study. It may be that grasses have a reduced rate of endogenous plant 

lipolytic enzyme activity, relative to legumes, lowering ΣFA content. Further, some grass 

subtribes (e.g., Phalaridinae, Phleinae) may have a reduced lipolytic enzyme activity 

relative to others (e.g., Loliinae). This could help to explain why treatment differences 

that affected wilt durations in the present study had minimal impacts upon ALA and ΣFA 

content, and why Arvidsson et al. found little effect of wilting upon the ALA and ΣFA 

content of timothy (2009a) and minimal treatment differences between different sample 

preservation methods, again with timothy (2009b). 

5.5.4. Effect of time of mowing 

 In this study, the effect of time of mowing was expected to influence ALA and 

overall ΣFA content by providing longer wilting intervals for PM mown samples. This 

was suggested by higher ALA and ΣFA content in some AM mown samples in 2015 

(Figures 5.4., D.3. Panel A) and in ALA proportion (Figures D.3. Panel B, D.5.).  

However, the time of mowing difference also seen in some WS0 samples in 2015 (Figure 

D.2.) may be resultant of an underlying diurnal variation in ALA and concomitantly ΣFA 
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content on a DM basis. The same trend has been reported previously (Avondo et al., 

2008; Doreau et al., 2007; Vibart et al., 2017), and is largely attributed to photosynthetic 

increases of nonstructural carbohydrates, and subsequently DM, throughout the day 

diluting FA content. However, Gregorini et al. (2008) reported no diurnal changes and an 

opposite diurnal effect has also been reported by Vasta et al. (2012) and Scollan et al. 

(2003) – however, the differences reported in Scollan et al. (2003) are likely a result of 

genetic differences more than diurnal effects.  This opposite diurnal trend is perhaps best 

explained by the work of Browse et al. (1981) and corroborated by the work of Ekman et 

al. (2007), which displayed light-dependent synthesis of oleic acid, diluting the 

proportion of ALA as the photosynthetic day progressed, and light-independent 

desaturation activity overnight increasing ALA proportion and concomitantly decreasing 

oleic acid proportion, however, their examples may only be practically applicable to 

emerging leaves where FA synthesis is greatest (Hawke et al., 1974). 

 The inconsistency of the time of mowing effects seen in this study is exacerbated 

by the fact that the first and second cutting of 2016 had one hour longer wilting time 

between the PM harvest and the AM harvest, yet, the only time of mowing effect seen 

was in ALA proportion, and not ALA and ΣFA content as was sometimes shown in 2015. 

These differences may once again be resultant of improved sample preservation 

methodology in 2016, and subsequently reduced variability relative to the 2015 results. 

Furthermore, the analysis of simple main effects other than ensiling, in ensiled and un-

ensiled WS1 samples may arguably be considered as utilizing pseudo-replication of the 
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same split-split-plots. As such, great caution should be exercised in interpreting the time 

of mowing effect shown here. 

5.5.5. Effect of swath width 

In this study, there was no consistent effect of swath width upon ALA and ΣFA content 

and ALA proportion of ΣFA, however, drying times to wilt stage were similar between 

swath widths, and it has been recommended that full benefits of wide-swathing may only 

be realized with a swath width that is above 80% (Hay and Forage Grower, 2017) or even 

90% of the mowing width for best effect (Cherney and Cherney 2006).  

 Time of mowing and swath width effects may have a greater impact on 

species with high lipolytic enzyme activity, longer wilting requirements, and if a forage 

crop’s maximum ALA content potential has been reached through optimal N fertility. 

Additionally, wide swathing may be most impactful in late season harvests when ALA 

content is typically greater, and when prime wilting/drying time is in short supply (i.e., 

shorter day length in late season, weaker sun angle). Conversely, time of mowing and 

swath width may have less impact in June, July and August when days are longer and 

initial ALA and ΣFA content may already be lower. 

5.6. Conclusion 

 The swath widths investigated in this study had no consistent effect upon the FA 

content of conserved reed canarygrass. There may be potential to increase the ALA and 

ΣFA content of forages by mowing as early in the day as possible. 
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5.9. Figures 

 

Figure 5.1. Average daily temperature (left Y axis, black line) and rainfall (right Y axis, blue line) 

at experiment site (Alburgh, VT) in 2015 and 2016. Orange lines indicate commencement of 

harvests. 
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Figure 5.2. Least-squares means and standard error of means, of total fatty acid (ΣFA) content 

(panel A), alpha-linolenic acid (ALA) content (panel B), and ALA proportion (panel C) in 

unensiled WS0 (green circles), WS1 (red squares) and WS2 (blue triangles) reed canarygrass 

samples in 2015 and 2016. 
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Figure 5.3. Least-squares means and standard error of means, of total fatty acid (ΣFA) content 

(panel A), alpha-linolenic acid (ALA) content (panel B), and ALA proportion (panel C) in 

unensiled WS1 (grey bars) and ensiled WS1 (black bars) samples of reed canarygrass in 2015 and 

2016. 
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Figure 5.4. Least-squares means and standard error of means, of total fatty acid (ΣFA) content 

(panel A), and alpha-linolenic acid (ALA) content (panel B) across unensiled and ensiled WS1 

samples from PM mown (blue square) and AM mown (orange circle) treatments of reed 

canarygrass in 2015. Least squares means without a common letter differ significantly; P < 0.05 

(Tukey’s HSD). 
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5.10. Tables 
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Table 5.2. Effect of season, time of harvest, swath width, wilting stage and their interactions (up to 

three terms) on total fatty acid (ΣFA) content, alpha-linolenic acid (ALA) content, and ALA 

proportion in unwilted WS0, unensiled WS1 and WS2 samples of reed canarygrass. 

  

 2015 ΣFA (g kg-1 forage DMa) ALA (g kg-1 forage DM) ALA (g 100 g-1 ΣFA) 
Effect F-Value P-value F-Value P-value F-Value P-value 

Dry matter content 2.0 nsb 2.2 ns 0.9 ns 
Season (cutting) 12.7 <.0001 27.1 <.0001 49.3 <.0001 
Time of mowing (am vs pm) 6.3 ns 7.6 ns 2.4 ns 
Season*time of mowing 1.6 ns 2.4 ns 4.0 0.0212 
Swath width (40% vs. 70%) 0.0 ns 0.0 ns 0.1 ns 
Season*swath width 4.7 0.0119 3.2 0.047 1.5 ns 
Time of mowing*swath 2.5 ns 1.9 ns 0.3 ns 
Season*time*swath 1.4 ns 3.3 0.0416 6.9 0.0016 
Wilt stage (silage vs. hay) 4.2 0.0182 9.9 0.0001 16.5 <.0001 
Season*wilt stage 3.3 0.0141 4.4 0.0028 6.4 0.0001 
Time of mowing*wilt stage 1.1 ns 0.5 ns 0.8 ns 
Season*time*wilt 1.0 ns 1.2 ns 0.7 ns 
Swath*wilt stage 0.2 ns 0.6 ns 2.1 ns 
Season*swath*wilt stage 0.2 ns 0.1 ns 0.3 ns 
Time*swath*wilt stage 4.4 0.0156 4.9 0.0095 1.6 ns 

2016 ΣFA (g kg-1 forage DM) ALA (g kg-1 forage DM) ALA (g 100 g-1 ΣFA) 

 
F-Value P-value F-Value P-value F-Value P-value 

Dry matter content 4.5 0.0353 3.7 ns 0.1 ns 
Season (cutting) 21.4 <.0001 16.9 <.0001 0.0 ns 
Time of mowing (am vs pm) 1.6 ns 0.9 ns 0.2 ns 
Season*time of mowing 0.3 ns 0.2 ns 0.1 ns 
Swath width (40% vs. 70%) 0.0 ns 0.0 ns 0.2 ns 
Season*swath width 2.0 ns 1.9 ns 1.3 ns 
Time of mowing*swath 0.7 ns 0.6 ns 0.1 ns 
Season*time*swath 0.8 ns 1.1 ns 0.7 ns 
Wilt stage (silage vs. hay) 16.7 <.0001 31.1 <.0001 54.4 <.0001 
Season*wilt stage 10.3 <.0001 13.3 <.0001 10.1 <.0001 
Time of mowing*wilt stage 0.7 ns 0.4 ns 0.5 ns 
Season*time*wilt 0.5 ns 0.6 ns 0.5 ns 
Swath*wilt stage 0.9 ns 0.6 ns 0.1 ns 
Season*swath*wilt stage 0.8 ns 0.7 ns 0.4 ns 
Time*swath*wilt stage 0.1 ns 0.1 ns 0.1 ns 
aDM = dry matter 

bns = non-significant
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Table 5.3. Effect of season, time of harvest, swath width, ensiling and their interactions (up to three 

terms) on total fatty acid (ΣFA) content, alpha-linolenic acid (ALA) content, and ALA proportion 

in ensiled and unensiled WS1 samples of reed canarygrass, controlling for dry matter content. 

  

 2015 ΣFA (g kg-1 forage DMa) ALA (g kg-1 forage DM) ALA (g 100 g-1 ΣFA) 
Effect F-Value P-value F-Value P-value F-Value P-value 

Dry matter content 8.0 0.0062 3.1 ns 0.3 ns 

Season (cutting) 3.5 0.0349 9.4 0.0003 27.5 <.0001 

Time of mowing (am vs pm) 10.3 0.0158 19.1 0.0137 1.8 ns 

Season*time of mowing 3.4 0.0410 3.3 0.0417 1.0 ns 

Swath width (40% vs. 70%) 0.1 ns
b
 0.7 ns 2.2 ns 

Season*swath width 4.6 0.0135 1.4 ns 1.8 ns 

Time of mowing*swath 1.5 ns 2.3 ns 2.7 ns 

Season*time*swath 0.1 ns 1.2 ns 3.5 0.0373 

Ensiling 0.7 ns 9.0 0.0037 30.4 <.0001 

Season*ensiling 4.1 0.0218 9.2 0.0003 9.5 0.0002 

Time of mowing*ensiling 0.2 ns 0.0 ns 0.3 ns 

Season*time*ensiling 0.6 ns 0.2 ns 0.1 ns 

Swath*ensiling 0.1 ns 0.6 ns 0.9 ns 

Season*swath*ensiling 0.7 ns 0.9 ns 0.2 ns 

Time*swath*ensiling 0.6 ns 1.0 ns 0.5 ns 

2016 ΣFA (g kg-1 forage DM) ALA (g kg-1 forage DM) ALA (g 100 g-1 ΣFA) 

 
F-Value P-value F-Value P-value F-Value P-value 

Dry matter content 4.5 0.0380 2.8 ns 0.9 ns 

Season (cutting) 55.4 <.0001 53.1 <.0001 5.7 0.0050 

Time of mowing (am vs pm) 3.9 ns 0.7 ns 6.0 0.0326 

Season*time of mowing 0.4 ns 0.4 ns 0.8 ns 

Swath width (40% vs. 70%) 1.2 ns 0.5 ns 1.1 ns 

Season*swath width 0.8 ns 0.4 ns 1.2 ns 

Time of mowing*swath 0.7 ns 0.4 ns 0.1 ns 

Season*time*swath 1.9 ns 1.9 ns 2.7 ns 

Ensiling 0.0 ns 8.2 0.0055 153.3 <.0001 

Season*ensiling 1.8 ns 1.3 ns 1.9 ns 

Time of mowing*ensiling 0.1 ns 0.1 ns 0.1 ns 

Season*time*ensiling 0.1 ns 0.1 ns 0.3 ns 

Swath*ensiling 0.3 ns 0.7 ns 1.3 ns 

Season*swath*ensiling 0.0 ns 0.1 ns 1.6 ns 

Time*swath*ensiling 0.1 ns 0.2 ns 0.1 ns 

aDM = dry matter 

bns = non-significant
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CHAPTER 6: SUMMARY, LIMITATIONS, AND CONCLUSIONS 

6.1. Research summary 

 The research presented in this dissertation contributes to a limited scientific body 

of knowledge regarding the fatty acid (FA) content of forage crops, and emphasizes 

modes of inquiry and methodologies that improve the ease and accuracy of future 

scientific investigations (Figure 6.1.). 

 

Figure 6.1. Comparison of forage ALA content ranges from this dissertation and from published 

studies of cool season species. *Adapted from Clapham et al. (2005) and Dierking et al. (2010). 

 Chapters 3 and 4 present FA content data for representatives of two genera of 

annual warm season forage grasses, of which only pearl millet has been described 

previously, in only one growth condition (Bainbridge et al., 2017). These studies have 

shown the impact of advancing maturity in these species, and highlighted the role which 

a decreasing lamina mass ratio (LMR; lamina DM / lamina + pseudostem DM) plays in 

associated alpha-linolenic acid (ALA) and ΣFA content declines. Additionally, the role in 
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which nitrogen (N) fertility may ameliorate some of the FA losses associated with 

decreasing LMR was investigated in chapter 4. 

 The comparison of individual plant fractions in chapter 3 (i.e., laminae and 

pseudostems) moves away from more customary whole-plant analysis. This highlights 

the difference between the FA of these two fractions, and the manner in which their ratio 

affects overall whole-plant FA content and composition, which will be important in 

future considerations of these species, and others with a similarly tall growing 

architecture. 

 Evaluating the impacts of several forage conservation practices helps to inform 

production. The results of chapter 5 suggest that impacts of two easily approached 

practices (i.e., swath width, and time of harvest) are relatively minimal on the final FA 

content and composition, at least when optimal drying conditions are present.  

 The examination of forage sample preservation methodologies in chapter 2 

reinforces that what might otherwise be a typical agronomic research practice (i.e., forced 

hot air drying of relatively large fresh weight samples) should not be considered 

consistently accurate or dependable enough for FA analysis. A simple and inexpensive 

alternative preservation strategy was presented that appears to work as well as 

lyophilization. Additionally, oxidative losses of ALA in ground dried forage samples 

were shown to be a valid concern when considering long term storage, as losses could be 

greater than 2 percentage points of ΣFA after 72 weeks, though preferred preservation 

methods (i.e., lyophilization or microwave pretreatment) had lesser ALA losses. 
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6.2. Research limitations 

 The examination of maturity and N fertility effects upon the FA content of 

sudangrass and pearl millet in chapter 4 took place before the sample preservation 

method study in chapter 2. Though samples were preserved in accordance with a 

published method that purported to be “as good or better” than freeze drying (Arvidsson 

et al., 2009b), the slow to dry nature of the species that we investigated may have 

underestimated the true ALA and ΣFA content at harvest. While the relative differences 

between treatments that we identified are likely indicative of actual treatment differences, 

we may have lost signal definition that could have otherwise aided clear interpretation of 

our data. An unavoidable limitation in chapter 4 was that regrowth harvests could not 

begin at the same date for both plant maturity treatments, as different first growth 

sampling dates were inherent to the treatments. Additionally, unusually heavy rains 

impaired normal plant growth to the point of severe chlorosis in the first growth harvest 

of 2013 at the South Burlington location with extremely sandy soil.  

 The sample preservation method study (chapter 2) had an evolving methodology 

as it progressed, which unfortunately did not allow for a direct comparison of first growth 

and regrowth harvests. Additionally, limitations of funding and time practicalities 

restricted the possibilities of comparing further combinations of species, microwave 

pretreatment durations, and countless other variables (e.g., vegetative maturity stage, 

drying temperature, air flow). Another limitation inherent to re-sampling the same 

bagged sample for the oxidation loss investigation, was introduction of fresh air at each 

sampling time point. The results, however, do not appear to indicate a greater impact 
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from a higher rate of sampling than from time elapsed, as later time points were fewer 

and further between. 

 In the examination of forage conservation practices in chapter 5, harvest date 

selection was pursued in accordance with standard agricultural practice, and therefore 

optimal drying conditions were sought out. Wide swathing may hasten primary drying 

enough to better preserve ALA and ΣFA content than narrow swathing in situations with 

less optimal drying conditions (e.g., cloudier days, higher humidity, intermittent rain). 

Additionally, a wide swath that represents a greater percentage of mower width may be 

more effective. A mixed hayfield was selected for the study, however, stand composition 

was primarily reed canarygrass. Differences in wilting time may be more readily apparent 

in stands dominated by other species (e.g., alfalfa), that may take longer to dry, or 

possibly have greater lipolytic enzyme activity. 

6.3. Future perspectives 

 Warm season summer annuals are often planted for supplemental grazing in mid-

summer months. They are also utilized as an emergency planting for producing silage 

when maize plantings have failed. Considering their natural desiccation resistance, warm 

season annual species may require a long wilting duration, and subsequently be 

susceptible to significant wilting losses of ALA and ΣFA content. As such, research into 

harvest strategies for their conservation is likely warranted. Swath width may have a 

greater effect on the FA content and composition of wilted warm season grass silages. 

 A future avenue of FA research may be the description of the FA content and 

composition of brassica forage varieties. The majority of forage FA research is performed 
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in grass and legume species, and as such, the FA standards used to identify 

chromatographic peaks may not include hexadecatrienoic acid. If significant quantities of 

hexadecatrienoic acid can be found in a moderately high brassica diet, a further 

investigation into its fate in the rumen would be justified. Being highly unsaturated, 

hexadecatrienoic acid is likely bacteriostatic in the same manner that ALA is. 

Biohydrogenation of hexadecatrienoic acid by rumen bacteria would likely form 

biohydrogenation intermediate isomers that would end up in milk and meat, which may 

include 16 carbon analogues of the 18 carbon biohydrogenation intermediates RA and 

VA. Investigation into the effect of these isomers upon consumption by humans may be 

of great interest as such FA have likely rarely occurred in the human diet. 

6.4. General conclusions 

 The research presented in this dissertation reaffirms the importance of forage 

maturity in dictating FA content and composition, while highlighting the role that the 

ratio of lamina and pseudostem plays in FA declines associated with advancing maturity. 

The positive impact of N fertility was also shown, confirming that increased chloroplast 

content can off-set FA losses that might otherwise be expected from a reduced lamina 

mass ratio. Both factors can be summarized as the maximization of ALA-rich thylakoid 

membrane on an overall forage DM basis. Warm season annual grasses were found to fall 

generally within ranges of ALA and ΣFA content of the better studied cool season 

species. 

 Forage conservation practices that involve wilting will likely always result in a 

reduction of ALA and ΣFA content, as the lipoxygenation of ALA is a major stress 
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response mechanism in plants. Simple management changes such as changing swath 

width or time of harvest seem to have limited potential for reducing those conservation 

losses of FA. This research has also contributed to an unsettled inquiry into small diurnal 

fluctuations of FA content, and reinforced observed autumnal increases in FA content. 

 The analysis of research sample preservation method shows ample evidence of 

the insufficient performance of forced hot air drying alone to preserve accurate forage FA 

content and composition. A simple and inexpensive microwave pretreatment before 

forced hot air drying was proposed as a new method for preserving forage samples for 

FA analysis. Additionally, ground dried samples were shown to decreased in ALA 

content. 

  



132 

 

CHAPTER 7: COMPREHENSIVE BIBLIOGRAPHY 

Alves, S.P., A.R.J. Cabrita, E. Jerónimo, R.J.B. Bessa, and A.J.M. Fonseca. 2011. Effect 

of ensiling and silage additives on fatty acid composition of ryegrass and corn 

experimental silages1. J. Anim. Sci. 89:2537–2545. doi:10.2527/jas.2010-3128. 

Arendonk, V., J.J.C. M, G.J. Niemann, J.J. Boon, and H. Lambers. 1997. Effects of 

nitrogen supply on the anatomy and chemical composition of leaves of four grass 

species belonging to the genus Poa, as determined by image‐processing analysis 

and pyrolysis–mass spectrometry. Plant Cell Environ. 20:881–897. 

doi:10.1046/j.1365-3040.1997.d01-135.x. 

Arvidsson, K., A.-M. Gustavsson, and K. Martinsson. 2009a. Effects of conservation 

method on fatty acid composition of silage. Anim. Feed Sci. Technol. 148:241–

252. doi:10.1016/j.anifeedsci.2008.04.003. 

Arvidsson, K., A.M. Gustavsson, and K. Martinsson. 2009b. Fatty acids in forages: A 

comparison of different pre-treatments prior to analysis. Anim. Feed Sci. Technol. 

151:143–152. doi:10.1016/j.anifeedsci.2008.12.003. 

Atkinson, R.R.L., E.J. Mockford, C. Bennett, P.-A. Christin, E.L. Spriggs, R.P. 

Freckleton, K. Thompson, M. Rees, and C.P. Osborne. 2016. C4 photosynthesis 

boosts growth by altering physiology, allocation and size. Nat. Plants 2:16038. 

doi:10.1038/nplants.2016.38. 

Avondo, M., A. Bonanno, R.I. Pagano, B. Valenti, A.D. Grigoli, M.L. Alicata, V. 

Galofaro, and P. Pennisi. 2008. Milk quality as affected by grazing time of day in 

Mediterranean goats. J. Dairy Res. 75:48–54. doi:10.1017/S0022029907003019. 

Bainbridge, M.L., E. Egolf, J.W. Barlow, J.P. Alvez, J. Roman, and J. Kraft. 2017. Milk 

from cows grazing on cool-season pastures provides an enhanced profile of 

bioactive fatty acids compared to those grazed on a monoculture of pearl millet. 

Food Chem. 217:750–755. doi:10.1016/j.foodchem.2016.08.134. 

Barnes, R.F., C.J. Nelson, M. Collins, and K.J. Moore eds. 2003. Forages, Volume 1: An 

Introduction to Grassland Agriculture. 6th edition. Wiley-Blackwell, Ames. 

Barta, A.L. 1975. Higher Fatty Acid Content of Perennial Grasses as Affected by Species 

and by Nitrogen and Potassium Fertilization1. Crop Sci. 15:169–171. 

doi:10.2135/cropsci1975.0011183X001500020007x. 

Bauchart, D., R. Verite, and B. Remond. 1984. Long-Chain Fatty Acid Digestion in 

Lactating Cows Fed Fresh Grass from Spring to Autumn. Can. J. Anim. Sci. 

64:330–331. doi:10.4141/cjas84-285. 



133 

 

Belury, M.A. 2002a. Inhibition of carcinogenesis by conjugated linoleic acid: potential 

mechanisms of action. J. Nutr. 132:2995–2998. 

Belury, M.A. 2002b. DIETARY CONJUGATED LINOLEIC ACID IN HEALTH: 

Physiological Effects and Mechanisms of Action. Annu. Rev. Nutr. 22:505–531. 

doi:10.1146/annurev.nutr.22.021302.121842. 

Benbrook, C.M., G. Butler, M.A. Latif, C. Leifert, and D.R. Davis. 2013. Organic 

Production Enhances Milk Nutritional Quality by Shifting Fatty Acid 

Composition: A United States–Wide, 18-Month Study. PLoS ONE 8:e82429. 

doi:10.1371/journal.pone.0082429. 

Benbrook, C.M., D.R. Davis, B.J. Heins, M.A. Latif, C. Leifert, L. Peterman, G. Butler, 

O. Faergeman, S. Abel-Caines, and M. Baranski. 2018. Enhancing the fatty acid 

profile of milk through forage-based rations, with nutrition modeling of diet 

outcomes. Food Sci. Nutr.. doi:10.1002/fsn3.610. 

Bessa, R.J., J. Santos-Silva, J.M. Ribeiro, and A. Portugal. 2000. Reticulo-rumen 

biohydrogenation and the enrichment of ruminant edible products with linoleic 

acid conjugated isomers. Livest. Prod. Sci. 63:201–211. doi:10.1016/S0301-

6226(99)00117-7.  

Bergamo, P., E. Cocca, A. Monaco, V. Cozzolino, F. Boscaino, I. Ferrandino, F. 

Maurano, and M. Rossi. 2017. Protective effect of Rumenic acid rich cow’s milk 

against colitis is associated with the activation of Nrf2 pathway in a murine 

model. Prostaglandins Leukot. Essent. Fat. Acids PLEFA 125: 14–23. doi: 

10.1016/j.plefa.2017.08.006. 

Boufaïed, H., P.Y. Chouinard, G.F. Tremblay, H.V. Petit, R. Michaud, and G. Bélanger. 

2003. Fatty acids in forages. I. Factors affecting concentrations. Can. J. Anim. 

Sci. 83:501–511. doi:10.4141/A02-098. 

Bracher, A., and E. Mosimann. 2016. The potential of α-linolenic acid to predict herbage 

quality. Mult. Roles Grassl. Eur. Bioeconomy Proc. 26th Gen. Meet. Eur. Grassl. 

Fed. Trondheim Nor. 4-8 Sept. 2016 194–196. 

Browse, J., P.G. Roughan, and C.R. Slack. 1981. Light control of fatty acid synthesis and 

diurnal fluctuations of fatty acid composition in leaves. Biochem. J. 196:347–354. 

Buccioni, A., M. Decandia, S. Minieri, G. Molle, and A. Cabiddu. 2012. Lipid 

metabolism in the rumen: New insights on lipolysis and biohydrogenation with an 

emphasis on the role of endogenous plant factors. Anim. Feed Sci. Technol. 

174:1–25. doi:10.1016/j.anifeedsci.2012.02.009. 

 



134 

 

Buxton, D.R., and S.L. Fales. 1994. Plant Environment and Quality. p. 155–199. In 

Fahey, G.C. (ed.), Forage Quality, Evaluation, and Utilization. Madison, WI, 

USA. American Society of Agronomy (ASA); Crop Science Society of America 

(CSSA); Soil Science Society of America (SSSA). 

Cabiddu, A., M. Wencelová, G. Bomboi, M. Decandia, G. Molle, and L. Salis. 2017. 

Fatty acid profile in two berseem clover (Trifolium alexandrinum L.) cultivars: 

Preliminary study of the effect of part of plant and phenological stage. Grassl. Sci. 

101–110. doi:10.1111/grs.12159. 

Cerri, R.L.A., S.O. Juchem, R.C. Chebel, H.M. Rutigliano, R.G.S. Bruno, K.N. Galvão, 

W.W. Thatcher, and J.E.P. Santos. 2009. Effect of fat source differing in fatty 

acid profile on metabolic parameters, fertilization, and embryo quality in high-

producing dairy cows. J. Dairy Sci. 92:1520–1531. doi:10.3168/jds.2008-1614. 

Cherney, D.J., and J. Cherney. 2006. Wide swathing to facilitate the drying of cut forage 

in the field. Ann Mtg Amer Soc Agron Abstr 73–18. 

Chow, T.T., V. Fievez, M. Ensberg, A. Elgersma, and S. De Smet. 2004. Fatty acid 

content, composition and lipolysis during wilting and ensiling of perennial 

ryegrass (Lolium perenne L.): preliminary findings. Pages 981–983 in Land use 

systems in grassland dominated regions. Proceedings of the 20th General Meeting 

of the European Grassland Federation, Luzern, Switzerland, 21-24 June 2004. 

Christie, W.W., and X. Han. 2010. Lipid Analysis: Isolation, Separation, Identification 

and Lipidomic Analysis. Elsevier. 

Clapham, W.M., J.G. Foster, J.P.S. Neel, and J.M. Fedders. 2005. Fatty Acid 

Composition of Traditional and Novel Forages. J. Agric. Food Chem. 53:10068–

10073. doi:10.1021/jf0517039. 

Daley, C.A., A. Abbott, P.S. Doyle, G.A. Nader, and S. Larson. 2010. A review of fatty 

acid profiles and antioxidant content in grass-fed and grain-fed beef. Nutr. J. 9:10. 

doi:10.1186/1475-2891-9-10. 

Dar, T.A., M. Uddin, M.M.A. Khan, K.R. Hakeem, and H. Jaleel. 2015. Jasmonates 

counter plant stress: A Review. Environ. Exp. Bot. 115:49–57. 

doi:10.1016/j.envexpbot.2015.02.010. 

Dewhurst, and King. 1998. Effects of extended wilting, shading and chemical additives 

on the fatty acids in laboratory grass silages. Grass Forage Sci. 53:219–224. 

doi:10.1046/j.1365-2494.1998.00130.x. 

Dewhurst, R.J., and A.P. Moloney. 2013. Modification of animal diets for the enrichment 

of dairy and meat products with omega-3 fatty acids. Woodhead Publishing 

Limited. 



135 

 

Dewhurst, R.J., J.M. Moorby, N.D. Scollan, J.K.S. Tweed, and M.O. Humphreys. 2002. 

Effects of a stay-green trait on the concentrations and stability of fatty acids in 

perennial ryegrass. Grass Forage Sci. 57:360–366. doi:10.1046/j.1365-

2494.2002.00336.x. 

Dewhurst, R.J., N.D. Scollan, M.R.F. Lee, H.J. Ougham, and M.O. Humphreys. 2003. 

Forage breeding and management to increase the beneficial fatty acid content of 

ruminant products. Proc. Nutr. Soc. 62:329–336. 

Dewhurst, R.J., N.D. Scollan, S.J. Youell, J.K.S. Tweed, and M.O. Humphreys. 2001. 

Influence of species, cutting date and cutting interval on the fatty acid 

composition of grasses. Grass Forage Sci. 56:68–74. doi:10.1046/j.1365-

2494.2001.00247.x. 

Dewhurst, R.J., K.J. Shingfield, M.R.F. Lee, and N.D. Scollan. 2006. Increasing the 

concentrations of beneficial polyunsaturated fatty acids in milk produced by dairy 

cows in high-forage systems. Anim. Feed Sci. Technol. 131:168–206. 

Dhiman, T.R., G.R. Anand, L.D. Satter, and M.W. Pariza. 1999. Conjugated Linoleic 

Acid Content of Milk from Cows Fed Different Diets. J. Dairy Sci. 82:2146–

2156. doi:10.3168/jds.S0022-0302(99)75458-5. 

Dias, K.M., D. Schmitt, G.R. Rodolfo, F.C. Deschamps, G.N. Camargo, R.S. Pereira, and 

A.F. Sbrissia. 2017. Fatty acid profile in vertical strata of elephant grass subjected 

to intermittent stocking. An. Acad. Bras. Ciênc. 89:1707–1718. 

doi:10.1590/0001-3765201720150272. 

Dierking, R.M., R.L. Kallenbach, and C.A. Roberts. 2010. Fatty acid profiles of 

orchardgrass, tall fescue, perennial ryegrass, and alfalfa. Crop Sci. 50:391. 

doi:10.2135/cropsci2008.12.0741. 

Ding, W.R., R.J. Long, and X.S. Guo. 2013. Effects of plant enzyme inactivation or 

sterilization on lipolysis and proteolysis in alfalfa silage. J. Dairy Sci. 96:2536–

2543. doi:10.3168/jds.2012-6438. 

Doreau, M., D. Rearte, J. Portelli, and J.-L. Peyraud. 2007. Fatty acid ruminal 

metabolism and digestibility in cows fed perennial ryegrass. Eur. J. Lipid Sci. 

Technol. 109:790–798. doi:10.1002/ejlt.200700003. 

Ekman, Å., L. Bülow, and S. Stymne. 2007. Elevated atmospheric CO2 concentration 

and diurnal cycle induce changes in lipid composition in Arabidopsis thaliana. 

New Phytol. 174:591–599. doi:10.1111/j.1469-8137.2007.02027.x. 

 



136 

 

Elgersma, A. 2015. Grazing increases the unsaturated fatty acid concentration of milk 

from grass-fed cows: A review of the contributing factors, challenges and future 

perspectives. Eur. J. Lipid Sci. Technol. 117:1345–1369. 

doi:10.1002/ejlt.201400469. 

Elgersma, A., G. Ellen, P.R. Dekker, H. van der Horst, H. Boer, and S. Tamminga. 

2003a. Effects of perennial ryegrass (Lolium perenne) cultivars with different 

linolenic acid contents on milk fatty acid composition. Asp. Appl. Biol. 107–114. 

Elgersma, A., G. Ellen, H. van der Horst, B.G. Muuse, H. Boer, and S. Tamminga. 

2003b. Influence of cultivar and cutting date on the fatty acid composition of 

perennial ryegrass (Lolium perenne L.). Grass Forage Sci. 58:323–331. 

doi:10.1046/j.1365-2494.2003.00384.x. 

Elgersma, A., G. Ellen, H. Van der Horst, B.G. Muuse, H. Boer, and S. Tamminga. 

2003c. Comparison of the fatty acid composition of fresh and ensiled perennial 

ryegrass (Lolium perenne L.), affected by cultivar and regrowth interval. Anim. 

Feed Sci. Technol. 108:191–205. 

Elgersma, A., P. Maudet, I. m. Witkowska, and A. c. Wever. 2005. Effects of Nitrogen 

fertilisation and regrowth period on fatty acid concentrations in perennial ryegrass 

(Lolium perenne L.). Ann. Appl. Biol. 147:145–152. doi:10.1111/j.1744-

7348.2005.00020.x. 

Elgersma, A., and Smit, HJ. 2005. Effect of perennial ryegrass cultivars on the fatty acid 

composition in milk of stall-fed cows. Page 186 in XX International Grassland 

Congress: Offered papers XX International Grassland Congress, Dublin, Ireland. 

Elgersma, A., S. Tamminga, and G. Ellen. 2006. Modifying milk composition through 

forage. Anim. Feed Sci. Technol. 131:207–225. 

doi:10.1016/j.anifeedsci.2006.06.012. 

Elgersma, A., and A.C. Wever. 2008. Fatty acids in fresh and artificially dried grass. 

Pages 657–659 in Biodiversity and animal feed: future challenges for grassland 

production. Proceedings of the 22nd General Meeting of the European Grassland 

Federation, Uppsala, Sweden, 9-12 June 2008. Swedish University of Agricultural 

Sciences. 

Faithfull, N.T. 2002. The analysis of silage. CABI, Oxfordshire, UK. 

Falcone, D.L., J.P. Ogas, and C.R. Somerville. 2004. Regulation of membrane fatty acid 

composition by temperature in mutants of Arabidopsis with alterations in 

membrane lipid composition. BMC Plant Biol. 4:17. doi:10.1186/1471-2229-4-

17.  



137 

 

Ferlay, A., L. Bernard, A. Meynadier, and C. Malpuech-Brugère. 2017. Production of 

trans and conjugated fatty acids in dairy ruminants and their putative effects on 

human health: A review. Biochimie 141: 107–120. doi: 

10.1016/j.biochi.2017.08.006. 

Foster, C.A., and C.E. Wright. 1968. Sample size and sampling intensity in relation to the 

precision of small-plot herbage sward trials. J. Agric. Sci. 70:19–27. 

doi:10.1017/S0021859600017135. 

Garcia, P.T., A. Pordomingo, C.D. Perez, M.D. Rios, A.M. Sancho, G. Volpi Lagreca, 

and J.J. Casal. 2015. Influence of cultivar and cutting date on the fatty acid 

composition of forage crops for grazing beef production in Argentina. Grass 

Forage Sci. 71:235–244. doi:10.1111/gfs.12167. 

Garton, G.A. 1960. Fatty Acid Composition of the Lipids of Pasture Grasses. Nature 

187:511–512. doi:10.1038/187511b0. 

Gatti, M.L., A.T. Ayala Torales, P.A. Cipriotti, and R.A. Golluscio. 2015. Dynamics of 

structural traits in two competing C3 grass species: influence of neighbours and 

nitrogen. Grass Forage Sci. 70:102–115. doi:10.1111/gfs.12099. 

Gilliland, T.J., P.D. Barrett, R.L. Mann, R.E. Agnew, and A.M. Fearon. 2002. Canopy 

morphology and nutritional quality traits as potential grazing value indicators for 

Lolium perenne varieties. J. Agric. Sci. 139. doi:10.1017/S0021859602002575. 

Glasser, F., M. Doreau, G. Maxin, and R. Baumont. 2013. Fat and fatty acid content and 

composition of forages: A meta-analysis. Anim. Feed Sci. Technol. 185:19–34. 

doi:10.1016/j.anifeedsci.2013.06.010. 

Goossen, C.P., S.C. Bosworth, H.M. Darby, and J. Kraft. 2018. Microwave pretreatment 

allows accurate fatty acid analysis of small fresh weight (100 g) dried alfalfa, 

ryegrass, and winter rye samples. Anim. Feed Sci. Technol. 239:74–84. 

doi:10.1016/j.anifeedsci.2018.02.014. 

Gregorini, P., K.J. Soder, and M.A. Sanderson. 2008. Case Study: A Snapshot in Time of 

Fatty Acids Composition of Grass Herbage as Affected by Time of Day. Prof. 

Anim. Sci. 24:675–680. 

Gulati, A., R. Rawat, B. Singh, and S.D. Ravindranath. 2003. Application of microwave 

energy in the manufacture of enhanced-quality green tea. J. Agric. Food Chem. 

51:4764–4768. doi:10.1021/jf026227q. 

Hall, J.D., R. Barr, A.H. Al-Abbas, and F.L. Crane. 1972. The ultrastructure of 

chloroplasts in mineral-deficient maize leaves 12. Plant Physiol. 50:404–409. 



138 

 

Halmemies-Beauchet-Filleau, A. 2013. Role of forage species and conservation method 

in ruminal lipid metabolism, mammary lipogenesis and milk fatty acid 

composition in lactating cows. Doctoral dissertation (article based) Thesis. 

University of Helsinki,. 

Hanson, A.A., and H.L. Carnahan. 1956. Breeding perennial forage grasses. U.S. 

Department of Agriculture. 

Harwood, J.L. 1996. Recent advances in the biosynthesis of plant fatty acids. Biochim. 

Biophys. Acta BBA - Lipids Lipid Metab. 1301:7–56. doi:10.1016/0005-

2760(95)00242-1. 

Harwood, J.L., A.V.H.M. Jones, and H. Thomas. 1982. Leaf senescence in a non-

yellowing mutant of Festuca pratensis. Planta 156:152–157. 

doi:10.1007/BF00395429. 

Hawke, J.C., M.G. Rumsby, and R.M. Leech. 1974. Lipid biosynthesis by chloroplasts 

isolated from developing Zea mays. Phytochemistry 13:403–413. 

doi:10.1016/S0031-9422(00)91224-X.  

Hay and Forage Grower. 2017. Forage Shop Talk: Tom Kilcer. Hay and Forage Grower 

(August/September 2017): 22. 

Hebeisen, D.F., F. Hoeflin, H.P. Reusch, E. Junker, and B.H. Lauterburg. 1993. Increased 

concentrations of omega-3 fatty acids in milk and platelet rich plasma of grass-fed 

cows. Int. J. Vitam. Nutr. Res. Int. Z. Vitam.- Ernahrungsforschung J. Int. 

Vitaminol. Nutr. 63:229–233. 

Heberer, J.A., F.E. Below, and R.H. Hageman. 1985. Drying method effect on leaf 

chemical constituents of four crop species. Crop Sci. 25:1117–1119. 

doi:10.2135/cropsci1985.0011183X002500060053x. 

Higgins, T.R., and A.E. Spooner. 1986. Microwave drying of alfalfa compared to field-

and oven-drying: Effects on forage quality. Anim. Feed Sci. Technol. 16:1–6. 

doi:10.1016/0377-8401(86)90044-1. 

Hofman, M.A.J. 1965. Microwave heating as an energy source for the predrying of 

herbage samples. Plant Soil 23:145–148. doi:10.1007/BF01349126. 

Jenkins, T.C., R.J. Wallace, P.J. Moate, and E.E. Mosley. 2008. BOARD-INVITED 

REVIEW: Recent advances in biohydrogenation of unsaturated fatty acids within 

the rumen microbial ecosystem1. J. Anim. Sci. 86:397–412. 

doi:10.2527/jas.2007-0588. 



139 

 

Jones, L., and C.E. Harris. 1980. Plant and swath limits to drying. Pages 53–60 Forage 

conservation in the 80’s (Occasional Symposium No.11). [Thomas, C. (Editor)]. 

British Grassland Society. 

Kalu, B.A., and G.W. Fick. 1981. Quantifying morphological development of alfalfa for 

studies of herbage quality. Crop Sci. 21:267–271. 

doi:10.2135/cropsci1981.0011183X002100020016x. 

Karn, J.F. 1986. Microwave-oven drying of forage samples collected via esophageal 

fistula. J. Anim. Sci. 63:595–602. doi:10.2527/jas1986.632595x. 

Karn, J.F. 1991. Chemical composition of forage and feces as affected by microwave 

oven drying. J. Range Manag. 44:512–515. doi:10.2307/4002755. 

Khan, N.A., J.W. Cone, V. Fievez, and W.H. Hendriks. 2011. Stability of fatty acids 

during wilting of perennial ryegrass (Lolium perenne L.): effect of bruising and 

environmental conditions. J. Sci. Food Agric. 91:1659–1665. 

doi:10.1002/jsfa.4363. 

Khan, N.A., J.W. Cone, V. Fievez, and W.H. Hendriks. 2012. Causes of variation in fatty 

acid content and composition in grass and maize silages. Anim. Feed Sci. 

Technol. 174:36–45. doi:10.1016/j.anifeedsci.2012.02.006. 

Khan, N.A., M.W. Farooq, M. Ali, M. Suleman, N. Ahmad, S.M. Sulaiman, J.W. Cone, 

and W.H. Hendriks. 2015. Effect of species and harvest maturity on the fatty 

acids profile of tropical forages. J. Anim. Plant Sci. 25:739–746. 

Kilcawley, K.N., H. Faulkner, H.J. Clarke, M.G. O’Sullivan, and J.P. Kerry. 2018. 

Factors Influencing the Flavour of Bovine Milk and Cheese from Grass Based 

versus Non-Grass Based Milk Production Systems. Foods 7:37. 

doi:10.3390/foods7030037. 

Kim, S., P.A. Thiessen, E.E. Bolton, J. Chen, G. Fu, A. Gindulyte, L. Han, J. He, S. He, 

B.A. Shoemaker, J. Wang, B. Yu, J. Zhang, and S.H. Bryant. 2016. PubChem 

Substance and Compound databases. Nucleic Acids Res. 44:D1202–D1213. 

doi:10.1093/nar/gkv951. 

Kung Jr., L., E.C. Stough, E.E. McDonell, R.J. Schmidt, M.W. Hofherr, L.J. Reich, and 

C.M. Klingerman. 2010. The effect of wide swathing on wilting times and 

nutritive value of alfalfa haylage. J. Dairy Sci. 93:1770–1773. 

doi:10.3168/jds.2009-2451. 

Larkindale, J., and B. Huang. 2004. Changes of lipid composition and saturation level in 

leaves and roots for heat-stressed and heat-acclimated creeping bentgrass 

(Agrostis stolonifera). Environ. Exp. Bot. 51:57–67. 



140 

 

Laza, R.C., B. Bergman, and B.S. Vergara. 1993. Cultivar Differences in Growth and 

Chloroplast Ultrastructure in Rice as Affected by Nitrogen. J. Exp. Bot. 44:1643–

1648. doi:10.1093/jxb/44.11.1643. 

Lee, M.R.F., V.J. Theobald, J.K.S. Tweed, A.L. Winters, and N.D. Scollan. 2009. Effect 

of feeding fresh or conditioned red clover on milk fatty acids and nitrogen 

utilization in lactating dairy cows. J. Dairy Sci. 92:1136–1147. 

doi:10.3168/jds.2008-1692. 

Lee, S.-W., Y. Chouinard, and B.N. Van. 2006. Effect of Some Factors on the 

Concentration of Linolenic Acid of Forages. Asian-Australas. J. Anim. Sci. 

19:1148–1158. 

Liu, Q.H., Z.H. Dong, and T. Shao. 2018. Effect of additives on fatty acid profile of high 

moisture alfalfa silage during ensiling and after exposure to air. Anim. Feed Sci. 

Technol. 236:29–38. doi:10.1016/j.anifeedsci.2017.11.022. 

Liu, Z., C.A. Kanter, K.D. Messer, and H.M. Kaiser. 2013. Identifying significant 

characteristics of organic milk consumers: a CART analysis of an artefactual field 

experiment. Appl. Econ. 45:3110–3121. doi:10.1080/00036846.2012.699189. 

Marchin, R.M., T.L. Turnbull, A.I. Deheinzelin, and M.A. Adams. 2017. Does 

triacylglycerol (TAG) serve a photoprotective function in plant leaves? An 

examination of leaf lipids under shading and drought. Physiol. Plant. 161:400–

413. doi:10.1111/ppl.12601. 

Marei, W.F.A., W.A. Khalil, A.P.G. Pushpakumara, M.A. El-Harairy, A.M.A. Abo El-

Atta, D.C. Wathes, and A. Fouladi-Nashta. 2018. Polyunsaturated fatty acids 

influence offspring sex ratio in cows. Int. J. Vet. Sci. Med.. 

doi:10.1016/j.ijvsm.2018.01.006. 

Martins, S. c. s. g., G. g. p. Carvalho, A. j. v. Pires, R. r. Silva, L. c. Leite, E. c. q. 

Lacerda, J. v. Moreira, C. h. Cruz, and B. m. a. Carvalho. 2016. Use of 

Chemically Treated Tropical Forage on the Fatty Acid Profile of Milk. J. Food 

Qual. n/a-n/a. doi:10.1111/jfq.12228. 

Mayland, H.F., L.F. Molloy, and T.W. Collie. 1976. Higher Fatty Acid Composition of 

Immature Forages as Affected by N Fertilization1. Agron. J. 68:979–982. 

doi:10.2134/agronj1976.00021962006800060035x. 

Mitani, T., K. Kobayashi, K. Ueda, and S. Kondo. 2016. Discrimination of “grazing 

milk” using milk fatty acid profile in the grassland dairy area in Hokkaido. Anim. 

Sci. J. 87:233–241. doi:10.1111/asj.12422. 

 



141 

 

Moallem, U., A. Shafran, M. Zachut, I. Dekel, Y. Portnick, and A. Arieli. 2013. Dietary -

linolenic acid from flaxseed oil improved folliculogenesis and IVF performance 

in dairy cows, similar to eicosapentaenoic and docosahexaenoic acids from fish 

oil. Reproduction 146:603–614. doi:10.1530/REP-13-0244. 

Mocking, R.J.T., J. Assies, A. Lok, H.G. Ruhé, M.W.J. Koeter, I. Visser, C.L.H. 

Bockting, and A.H. Schene. 2012. Statistical methodological issues in handling of 

fatty acid data: percentage or concentration, imputation and indices. Lipids 

47:541–547. doi:10.1007/s11745-012-3665-2. 

Mohammed, R., C.S. Stanton, J.J. Kennelly, J.K.G. Kramer, J.F. Mee, D.R. Glimm, M. 

O’Donovan, and J.J. Murphy. 2009. Grazing cows are more efficient than zero-

grazed and grass silage-fed cows in milk rumenic acid production. J. Dairy Sci. 

92:3874–3893. doi:10.3168/jds.2008-1613. 

Mojica-Rodríguez, J.E., E. Castro-Rincón, J. Carulla-Fornaguera, C.E. Lascano-Aguilar, 

J.E. Mojica-Rodríguez, E. Castro-Rincón, J. Carulla-Fornaguera, and C.E. 

Lascano-Aguilar. 2017. Effect of stage of maturity on fatty acid profile in tropical 

grasses. Corpoica Cienc. Tecnol. Agropecu. 18:217–232. 

doi:10.21930/rcta.vol18_num2_art:623. 

Mongrand, S., J.-J. Bessoule, F. Cabantous, and C. Cassagne. 1998. The C16:3\C18:3 

fatty acid balance in photosynthetic tissues from 468 plant species. 

Phytochemistry 49:1049–1064. doi:10.1016/S0031-9422(98)00243-X. 

Muchow, R.C. 1988. Effect of nitrogen supply on the comparative productivity of maize 

and sorghum in a semi-arid tropical environment I. Leaf growth and leaf nitrogen. 

Field Crops Res. 18:1–16. doi:10.1016/0378-4290(88)90055-X. 

Muller, B., and E. Garnier. 1990. Components of Relative Growth Rate and Sensitivity to 

Nitrogen Availability in Annual and Perennial Species of Bromus. Oecologia 

84:513–518. 

Narayanan, S., P.J. Tamura, M.R. Roth, P.V.V. Prasad, and R. Welti. 2016. Wheat leaf 

lipids during heat stress: I. High day and night temperatures result in major lipid 

alterations. Plant Cell Environ. 39:787–803. doi:10.1111/pce.12649. 

Niu, Y., A. Rogiewicz, C. Wan, M. Guo, F. Huang, and B.A. Slominski. 2015. Effect of 

microwave treatment on the efficacy of expeller pressing of Brassica napus 

rapeseed and Brassica juncea mustard seeds. J. Agric. Food Chem. 63:3078–3084. 

doi:10.1021/jf504872x.  

Oh, J.-J., J.-S. Lee, J.-N. Lim, T. Wang, S.-H. Kim, and H.-G. Lee. 2014. Trans vaccenic 

acid (trans-11 18:1), a precursor of cis-9, trans-11-conjugated linoleic acid, exerts 

a direct anti-carcinogenic function in T47D breast carcinoma cells. Food Sci. 

Biotechnol. 23(2): 641–646. doi: 10.1007/s10068-014-0087-3. 



142 

 

O’Kelly, J.C., and H.P. Reich. 1976. The fatty-acid composition of tropical pastures. J. 

Agric. Sci. 86:427–429. doi:10.1017/S0021859600054915.  

Olson, J.M., A.W. Haas, J. Lor, H.S. McKee, and M.E. Cook. 2017. A Comparison of the 

anti-inflammatory effects of cis-9, trans-11 conjugated linoleic acid to Celecoxib 

in the collagen-induced arthritis model. Lipids 52(2): 151–159. doi: 

10.1007/s11745-016-4228-8. 

Palladino, R.A., M. O’Donovan, E. Kennedy, J.J. Murphy, T.M. Boland, and D.A. 

Kenny. 2009. Fatty acid composition and nutritive value of twelve cultivars of 

perennial ryegrass. Grass Forage Sci. 64:219–226. doi:10.1111/j.1365-

2494.2009.00683.x. 

Pelletier, S., G.F. Tremblay, A. Bertrand, G. Bélanger, Y. Castonguay, and R. Michaud. 

2010. Drying procedures affect non-structural carbohydrates and other nutritive 

value attributes in forage samples. Anim. Feed Sci. Technol. 157:139–150. 

doi:10.1016/j.anifeedsci.2010.02.010. 

Peng, Y., G.E. West, and C. Wang. 2006. Consumer Attitudes and Acceptance of CLA-

Enriched Dairy Products. Can. J. Agric. Econ. Can. Agroeconomie 54:663–684. 

doi:10.1111/j.1744-7976.2006.00072.x. 

Perlikowski, D., S. Kierszniowska, A. Sawikowska, P. Krajewski, M. Rapacz, Ä. 

Eckhardt, and A. Kosmala. 2016. Remodeling of Leaf Cellular Glycerolipid 

Composition under Drought and Re-hydration Conditions in Grasses from the 

Lolium-Festuca Complex. Front. Plant Sci. 7. doi:10.3389/fpls.2016.01027. 

Popp, M., W. Lied, A.J. Meyer, A. Richter, P. Schiller, and H. Schwitte. 1996. Sample 

preservation for determination of organic compounds: microwave versus freeze-

drying. J. Exp. Bot. 47:1469–1473. 

Quartacci, M.F., C. Pinzino, C. Sgherri, and F. Navari-Izzo. 1995. Lipid Composition and 

Protein Dynamics in Thylakoids of Two Wheat Cultivars Differently Sensitive to 

Drought. Plant Physiol. 108:191–197. doi:10.1104/pp.108.1.191. 

Rodríguez-Alcalá, L.M., M.P. Castro-Gómez, L.L. Pimentel, and J. Fontecha. 2017. Milk 

fat components with potential anticancer activity - A review. Biosci. Rep. 

BSR20170705. doi:10.1042/BSR20170705. 

Rotz, C.A., Muck, R.E., 1994. Changes in Forage Quality During Harvest and Storage, 

in: Fahey, G.C. (Ed.), Forage Quality, Evaluation, and Utilization (pp. 828-868). 

Madison, WI, USA. American Society of Agronomy (ASA); Crop Science 

Society of America (CSSA); Soil Science Society of America (SSSA). 

Saxton, A.M. 1998. A macro for converting mean separation output to letter groupings in 

Proc Mixed. Proc 23rd SAS Users Group Intl SAS Inst. Cary NC 1243–1246. 



143 

 

Scollan, N.D., M.R.F. Lee, and M. Enserb. 2003. Biohydrogenation and digestion of long 

chain fatty acids in steers fed on Lolium perenne bred for elevated levels of water-

soluble carbohydrate. Anim. Res. 52:501–511. doi:10.1051/animres:2003040. 

Shingfield, K.J., P. Salo-Väänänen, E. Pahkala, V. Toivonen, S. Jaakkola, V. Piironen, 

and P. Huhtanen. 2005. Effect of forage conservation method, concentrate level 

and propylene glycol on the fatty acid composition and vitamin content of cows’ 

milk. J. Dairy Res. 72:349–361. doi:10.1017/S0022029905000919. 

Simopoulos, A.P. 2008. The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in 

Cardiovascular Disease and Other Chronic Diseases. Exp. Biol. Med. 233:674–

688. doi:10.3181/0711-MR-311. 

Smith, F., and G. Xiong. 2006. Microwave Techniques. John Wiley & Sons, Ltd. 

Sofo, A., A. Scopa, A. Hashem, and E.F. Abd-Allah. 2016. Lipid metabolism and 

oxidation in plants subjected to abiotic stresses. M. Azooz and P. Ahmad, ed. 

John Wiley & Sons, Ltd. 

Soil Survey Staff. 2018. Natural Resources Conservation Service, United States 

Department of Agriculture. Accessed March 20, 2018. 

https://websoilsurvey.sc.egov.usda.gov/App/WebSoilSurvey.aspx. 

Soydan, E., U. Şen, and E. Şirin. 2017. Relationship Between Dietary Fatty Acids and 

Reproductive Functions in Dairy Cattle. Turk. J. Agric. - Food Sci. Technol. 

5:1575–1579. doi:10.24925/turjaf.v5i12.1575-1579.1271. 

Strandvik, B. 2011. The omega-6/omega-3 ratio is of importance!. Prostaglandins 

Leukot. Essent. Fatty Acids 85:405–406. doi:10.1016/j.plefa.2011.09.001. 

Sukhija, P.S., and D.L. Palmquist. 1988. Rapid method for determination of total fatty 

acid content and composition of feedstuffs and feces. J. Agric. Food Chem. 

36:1202–1206. doi:10.1021/jf00084a019. 

Teutsch, C. 2006. Warm-season annual grasses for summer forage. Virginia Cooperative 

Extension, Virginia Polytechnic Institute and State University. 

Thomson, N.A., and W. van der Poel. 2000. Seasonal variation of the fatty acid 

composition of milkfat from Friesian cows grazing pasture. Proc. N. Z. Soc. 

Anim. Prod. 60:314–317. 

Turner, J.G., C. Ellis, and A. Devoto. 2002. The Jasmonate signal pathway. Plant Cell 

14:S153–S164. doi:10.1105/tpc.000679. 



144 

 

Upchurch, R.G. 2008. Fatty acid unsaturation, mobilization, and regulation in the 

response of plants to stress. Biotechnol. Lett. 30:967–977. doi:10.1007/s10529-

008-9639-z. 

Van Ranst, G., V. Fievez, J. De Riek, and E. Van Bockstaele. 2009a. Influence of 

ensiling forages at different dry matters and silage additives on lipid metabolism 

and fatty acid composition. Anim. Feed Sci. Technol. 150:62–74. 

doi:10.1016/j.anifeedsci.2008.08.004. 

Van Ranst, G., V. Fievez, M. Vandewalle, J. De Riek, and E. Van Bockstaele. 2009b. 

Influence of herbage species, cultivar and cutting date on fatty acid composition 

of herbage and lipid metabolism during ensiling. Grass Forage Sci. 64:196–207. 

doi:10.1111/j.1365-2494.2009.00686.x. 

Vanhatalo, A., K. Kuoppala, V. Toivonen, and K.J. Shingfield. 2007. Effects of forage 

species and stage of maturity on bovine milk fatty acid composition. Eur. J. Lipid 

Sci. Technol. 109:856–867. doi:10.1002/ejlt.200700023. 

Vargas M, J., J. Mojica R, M. Pabón R, and J. Carulla F. 2013. Kikuyo grass (Pennisetum 

clandestinum) allowance, state of lactation and milk fatty acid profile. Rev. MVZ 

Córdoba 18:3681–3688. 

Vasta, V., R.I. Pagano, G. Luciano, M. Scerra, P. Caparra, F. Foti, C. Cilione, L. Biondi, 

A. Priolo, and M. Avondo. 2012. Effect of morning vs. afternoon grazing on 

intramuscular fatty acid composition in lamb. Meat Sci. 90:93–98. 

doi:10.1016/j.meatsci.2011.06.009. 

Vecchio, R., A. Lombardi, L. Cembalo, F. Caracciolo, G. Cicia, F. Masucci, and A.D. 

Francia. 2016. Consumers’ willingness to pay and drivers of motivation to 

consume omega-3 enriched mozzarella cheese. Br. Food J. 118:2404–2419. 

doi:10.1108/BFJ-01-2016-0013. 

Venkatesan, R. 2015. Biosynthesis and regulation of herbivore-induced plant volatile 

emission. J. Indian Inst. Sci. 95:25–34. 

Verkerk, R., and M. Dekker. 2004. Glucosinolates and myrosinase activity in red cabbage 

(brassica oleracea l. var. capitata f. rubra dc.) after various microwave treatments. 

J. Agric. Food Chem. 52:7318–7323. doi:10.1021/jf0493268. 

Vibart, R.E., M. Tavendale, D. Otter, B.H. Schwendel, K. Lowe, P. Gregorini, and D. 

Pacheco. 2017. Milk production and composition, nitrogen utilization, and 

grazing behavior of late-lactation dairy cows as affected by time of allocation of a 

fresh strip of pasture. J. Dairy Sci.. doi:10.3168/jds.2016-12413. 

 



145 

 

Vu, H.S., P. Tamura, N.A. Galeva, R. Chaturvedi, M.R. Roth, T.D. Williams, X. Wang, 

J. Shah, and R. Welti. 2012. Direct infusion mass spectrometry of oxylipin-

containing arabidopsis membrane lipids reveals varied patterns in different stress 

responses. Plant Physiol. 158:324–339. doi:10.1104/pp.111.190280. 

Warren, H.E., Tweed, J.K.S., Youell, S.J., Dewhurst, R.J., Lee, M.R.F. & Scollan, N.D., 

2002, Effect of ensiling on the fatty acid composition of the resultant silage. in 

Durand, J-L., Emile, J-C., Huyghe, C., & Lemaire, G. (eds), Multi-Function 

Grasslands: Quality Forages, Animal Products and Landscapes. Grassland 

Science in Europe, vol. 7, European Grassland Federation, pp. 1001-101, 

Proceedings of the 19th General Meeting of the European Grassland Federation 

(EGF), La Rochelle, France, 27/05/2002. 

Whiting, C.., T. Mutsvangwa, J. Walton, J. Cant, and B. McBride. 2004. Effects of 

feeding either fresh alfalfa or alfalfa silage on milk fatty acid content in Holstein 

dairy cows. Anim. Feed Sci. Technol. 113:27–37. 

doi:10.1016/j.anifeedsci.2003.11.004. 

Williams, J.P., V. Imperial, M.U. Khan, and J.N. Hodson. 2000. The role of 

phosphatidylcholine in fatty acid exchange and desaturation in Brassica napus L. 

leaves. Biochem. J. 349:127–133. doi:10.1042/bj3490127. 

Witkowska, I.M., C. Wever, G. Gort, and A. Elgersma. 2008. Effects of Nitrogen Rate 

and Regrowth Interval on Perennial Ryegrass Fatty Acid Content during the 

Growing Season. Agron. J. 100:1371–1379. doi:10.2134/agronj2007.0215. 

Wright, D.A., J.P. Frost, D.C. Patterson, and D.J. Kilpatrick. 1997. The influence of 

weight of ryegrass per unit area and treatment at and after mowing on rate of 

drying. Grass Forage Sci. 52:86–98. doi:10.1046/j.1365-2494.1997.00058.x. 

Xu, Y., and P.-A. Siegenthaler. 1997. Low Temperature Treatments Induce an Increase in 

the Relative Content of Both Linolenic and λ3-Hexadecenoic Acids in Thylakoid 

Membrane Phosphatidylglycerol of Squash Cotyledons. Plant Cell Physiol. 

38:611–618. 

Yu, B., and W. Li. 2014. Comparative profiling of membrane lipids during water stress in 

Thellungiella salsuginea and its relative Arabidopsis thaliana. Phytochemistry 

108:77–86. doi:10.1016/j.phytochem.2014.09.012. 

  



146 

 

APPENDIX A  

 

 
Figure A.1. Linoleic acid (LA) proportion of total fatty acids (ΣFA) over time (n=8). 

Slope of linear regressions reported in corresponding color to right of regression line.  

FD (blue) = Freeze-dried, MW (red) = microwave pre-treatment prior to forced hot air drying, FHA 

(green) = forced hot air drying alone. 

  



147 

 

 

 

 

 

 

 

 

 

 

  

Figure A.2. Experiment 1 first growth sampling drying room temperature data from loggers:  

exposed (blue), in a large FHA sample bag (red), and in a large 1 min MW sample bag (green) 
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Figure A.3. Experiment 1 aftermath sampling drying room temperature data from data 

loggers: in a large FHA sample bag (blue), in a small FHA sample bag (red), and in a large 2 

min MW sample bag (green) 
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Figure B.1. Sample dry weight mean, by plant fraction of sorghum-sudangrass in Experiment 1 
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Figure B.2. Mean dry matter yield, by plant fraction, of pearl millet in Experiment 2 
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APPENDIX C  

 

Figure C.1. Dry weight yields of pearl millet (yellow) and sudangrass (green) in the first (shaded) 

and second (unshaded) harvests of 2014. 
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Table C.1. Effects of plant maturity, species (Sp), nitrogen fertility (N), and their interactions on 

total fatty acid (ΣFA) content, alpha-linolenic acid (ALA) content, ALA proportion, and lamina 

mass ratio in 2013 HREC regrowth samples. 

 
 

Table C.2. Maturity stage least squares means of total fatty acid (ΣFA) content, alpha-linolenic 

acid (ALA) content, ALA proportion, and lamina mass ratio (LMR), and their SEM
a
 in 2013 

HREC regrowth samples. 

 
 

Table C.3. Species least squares means of total fatty acid (ΣFA) content, alpha-linolenic acid (ALA) 

content, ALA proportion, and lamina mass ratio (LMR), and their SEM
a
 in 2013 HREC regrowth 

samples. 

 
  

 
ΣFA(g kg

-1
 forage 

DM
a
) 

ALA (g kg
-1

 forage 

DM) 

ALA (g 100 g
-1

 

ΣFA) 

Lamina mass 

ratio 

Effect 
F-

Value 
P-value F-Value P-value 

F-

Value 
P-value 

F-

Value 

P-

value 

Maturity 44.16 0.0006 74.43 0.0001 106.84 <.0001 35.16 0.0010 

Sp 73.96 <.0001 106.16 <.0001 121.51 <.0001 103.17 <.0001 

Maturity*Sp 20.04 <.0001 48.37 <.0001 108.62 <.0001 5.68 0.0218 

N 3.00 0.0412 2.44 0.0774 1.24 0.3074 33.05 <.0001 

Maturity*N 0.20 0.8975 0.12 0.9506 0.53 0.6620 1.95 0.1368 

Sp*N 0.63 0.6023 0.68 0.5673 1.47 0.2369 3.98 0.0139 

Maturity*Sp*N 0.27 0.8449 0.49 0.6885 2.10 0.1148 1.77 0.1681 
a
DM = dry matter

 1 

Maturity Pasture Conserved 

ΣFA (g kg
-1

 DM
b
) 17.5 a 0.5 13.1 b 0.5 

ALA (g kg
-1

 DM) 9.3 a 0.3 5.8 b 0.3 

ALA (g 100 g
-1

 ΣFA) 51.7 a 0.5 44.0 b 0.5 

LMR 0.84 a 0.01 0.73 b 0.01 

Least squares means without a common letter differ significantly within a row; P < 0.05 (Tukey’s HSD) 1 
a
Standard error of means 2 

b
DM = dry matter

 3 

Species Pearl Millet Sudangrass 

ΣFA (g kg
-1

 DM
b
) 12.6 b 0.5 18.0 a 0.5 

ALA (g kg
-1

 DM) 5.7 b 0.3 9.4 a 0.3 

ALA (g 100 g
-1

 ΣFA) 44.8 b 0.5 50.8 a 0.5 

LMR 0.86 a 0.01 0.70 b 0.01 

Least squares means without a common letter differ significantly within a row; P < 0.05 (Tukey’s HSD) 1 
a
Standard error of means 2 

b
DM = dry matter

 3 
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Table C.4. Maturity stage by species least squares means of total fatty acid (ΣFA) content, alpha-

linolenic acid (ALA) content, ALA proportion, and lamina mass ratio (LMR), and their SEM
a
 in 

2013 HREC regrowth samples. 

 
 

Table C.5. Nitrogen fertility effects on least squares means of total fatty acid (ΣFA) content, alpha-

linolenic acid (ALA) content, ALA proportion, and lamina mass ratio (LMR), and their SEM
a
 in 

2013 HREC regrowth samples. 

  

Species Pearl Millet Sudangrass 

Maturity PAST CONS PAST CONS 

ΣFA (g kg
-1

 DM
b
) 13.4 bc 0.6 11.8 c 0.6 21.6 a 0.6 14.4 b 0.6 

ALA (g kg
-1

 DM) 6.2 b 0.4 5.2 b 0.4 12.5 a 0.4 6.4 b 0.4 

ALA (g 100 g
-1

 ΣFA) 45.9 b 0.7 43.8 b 0.7 57.6 a 0.7 44.1 b 0.7 

LMR 0.90 a 0.01 0.83 b 0.01 0.77 b 0.01 0.62 c 0.01 

Least squares means without a common letter differ significantly within a row; P < 0.05 (Tukey’s HSD) 1 
a
Standard error of means 2 

b
DM = dry matter

 3 

Nitrogen (kg ha
-1

) 39 79 118 157 

ΣFA (g kg
-1

 DM
b
) 14.9 ab 0.6 14.3 b 0.6 15.1 ab 0.6 16.9 a 0.6 

ALA (g kg
-1

 DM) 7.4 0.4 7.1 0.4 7.3 0.4 8.4 0.4 

ALA (g 100 g
-1

 ΣFA) 48.5 0.6 47.6 0.6 47.1 0.6 48.2 0.6 

LMR 0.92 a 0.01 0.78 b 0.01 0.72 bc 0.01 0.71 c 0.01 

Least squares means without a common letter differ significantly within a row; P < 0.05 (Tukey’s HSD) 1 
a
Standard error of means 2 

b
DM = dry matter

 3 
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APPENDIX D  

 

Figure D.1. Least-squares means and standard error of means, of total fatty acid (ΣFA) content 

(panel A),  and alpha-linolenic acid (ALA) content (panel B) across unensiled WS0, WS1 and WS2 

samples from narrow (green triangle) and wide(orange square) swath treatments of reed 

canarygrass in 2015. Least squares means without a common letter differ significantly; P < 0.05 

(Tukey’s HSD). 
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Figure D.2. Least-squares means and standard error of means, of total fatty acid (ΣFA) content 

(panel A),  and alpha-linolenic acid (ALA) content (panel B) in unensiled WS0, WS1 and WS2 

samples from narrow (triangle) and wide(square) swath treatments mown in the PM (blue) and the 

following AM (orange) across three cuttings of reed canarygrass in 2015. Least squares means 

without a common letter differ significantly; P < 0.05 (Tukey’s HSD). 
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Figure D.3. Least-squares means and standard error of means, of alpha-linolenic acid (ALA) 

content (panel A), and ALA proportion (panel B) across unensiled WS0, WS1 and WS2 samples 

from narrow (triangle) and wide (square) swath treatments of reed canarygrass mown in the PM 

(blue) and following AM (orange) across three cuttings in 2015. 

  



157 

 

 

Figure D.4. Least-squares means and standard error of means, of total fatty acid (ΣFA) content 

across unensiled and ensiled WS1 samples from narrow (green triangle) and wide(orange square) 

swath treatments of reed canarygrass in 2015. Least squares means without a common letter differ 

significantly; P < 0.05 (Tukey’s HSD). 

 

 

 

 

Figure D.5. Least-squares means and standard error of means, of alpha-linolenic acid (ALA) 

proportion across unensiled and ensiled WS1 samples from narrow (triangle) and wide (square) 

swath treatments mown in the PM (blue) and following AM (orange) across three cuttings of reed 

canarygrass in 2015. 
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