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ABSTRACT 

 

Cryptosporidiosis is a common diarrheal disease caused by intestinal infection 

with the apicomplexan parasite Cryptosporidium, in humans usually either with C. 

hominis or C. parvum.  Unfortunately, given a large burden of disease in children and 

immunocompromised people like AIDS patients, the only currently approved treatment, 

nitazoxanide, is unreliable for these patient populations. To address the urgent need for 

new drugs for the most vulnerable populations, large phenotypic screening efforts have 

been established to identify anti-Cryptosporidium growth inhibitors in vitro (hits).  

However, in the absence of a gold standard drug, the in vitro and in vivo characteristics 

that should be used to prioritize screening hits are not known.  This thesis is focused on 

identifying promising anti-Cryptosporidium hits and drug leads, and using them to 

establish validated methods to guide hit-to-lead studies for anti-Cryptosporidium drug 

development. 

 

A re-analysis of our phenotypic screen of the Medicines for Malaria Venture 

Open Access Malaria Box identified a promising C. parvum growth inhibitor, 

MMV665917.  It had similar in vitro activity against C. hominis, C. parvum Iowa, and 

C. parvum field strains, and it was amenable to preliminary structural activity 

relationship studies using commercially available variants, with one variant 

demonstrating nanomolar potency.  Furthermore, MMV665917 was effective in vivo in 

an acute interferon-γ mouse model of cryptosporidiosis; and it appeared to cure an 

established infection in the chronic NOD SCID gamma (NSG) mouse model, unlike 

nitazoxanide, paromomycin, and clofazimine.  We hypothesized that anti-

Cryptosporidium activity in the highly immunocompromised chronic NSG mouse 

model might relate to compounds being capable of killing and eliminating parasites 

(cidal), rather than only preventing growth (static).  To test this, we developed a novel 

in vitro parasite persistence assay that showed that MMV665917 was potentially cidal, 

whereas nitazoxanide, paromomycin and clofazimine appeared static.  This 

pharmacodynamic assay also provided the concentration of compound required to 

maximize rate of parasite elimination, which could help design in vivo experiments.   

 

To further characterize compounds based on mechanism of action, we 

developed a range of in vitro medium-throughput life-stage assays.  To validate and 

gain value from the assays, a “learner set” of compounds from our in-house screens and 

collaborations were tested in all of the in vitro assays and in the in vivo NSG mouse 

model.  Using these assays, it was possible to group molecules based on chemical 

class/mechanism of action.  Because compounds from distinct groups showed activity 

in the NSG mouse model, these methods could be used to obtain a diverse set of early-

stage Cryptosporidium inhibitors for prioritization.  Furthermore, compounds that 

appeared static in the in vitro parasite persistence assay did not have activity in the 

NSG mouse model.  In summary, we report the identification and development of a 

highly promising initial lead, MMV665917, and report a range of in vitro assays that 

can be used to prioritize anti-Cryptosporidium hits and leads.
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 CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW 

1.1.  Introduction 

The goal of this thesis is to identify and develop anti-Cryptosporidium 

compounds, with a major focus to develop relatively inexpensive in vitro assays to 

rationally aide the initial stages of Cryptosporidium drug discovery and development.  

This Chapter provides a background about the medical importance of the disease, 

followed by early stage drug development strategies used for other neglected tropical 

diseases, and how we have adapted them in part for anti-Cryptosporidium drug 

development. 

Cryptosporidiosis is a water-borne diarrheal disease that is caused by eukaryotic 

Cryptosporidium parasites, of which there are many species.  Cryptosporidium belongs 

to the phylum Apicomplexa, which also includes other well-studied and medically 

important parasites like Toxoplasma and Plasmodium species (Perkins, Barta, Clopton, 

Peirce, & Upton, 2000). 

 

1.2.  Historical Perspective   

Although first reported in the peptic glands of the common mouse by Ernest 

Edward Tyzzer in 1907 (Tyzzer, 1907, 1910), Cryptosporidium was reported to cause 

disease in animals only in 1955 after the identification of C. meleagridis in turkeys 

(Slavin, 1955).  Medical and agricultural interest in Cryptosporidium grew after reports 

of its ability to cause disease in cattle in the early 1970s (Meuten, Van Kruiningen, & 

Lein, 1974; Panciera, Thomassen, & Garner, 1971).  Soon after, two separate human 
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reports of watery diarrhea caused by intestinal Cryptosporidium infection in a 3-year-

old child and a 39-year-old immunosuppressed patient with exposure to cattle, emerged 

in 1976 (Meisel, Perera, Meligro, & Rubin, 1976; Nime, Burek, Page, Holscher, & 

Yardley, 1976).  In 1979 two more immunosuppressed human cryptosporidiosis cases 

were published, wherein the patients did not live on a farm and the source of infection 

was unclear (Lasser, Lewin, & Ryning, 1979; Weisburger et al., 1979).  These reports 

suggested a possible link between immunosuppression and cryptosporidiosis.  During 

the same period, several Cryptosporidium species were identified in animals ranging 

from snakes and rabbits to sheep and monkeys.  However, the role of Cryptosporidium 

infection in humans came to prominence after the discovery of the human 

immunodeficiency virus (HIV) in the 1980’s.  The Centers for Disease Control and 

Prevention (CDC) reported several cases of untreated chronic and prolonged diarrhea 

caused by Cryptosporidium infections in acquired immunodeficiency syndrome (AIDS) 

patients ("Cryptosporidiosis: assessment of chemotherapy of males with acquired 

immune deficiency syndrome (AIDS)," 1982).  In the same decade several cases of 

shorter term, self-resolving diarrheal cases of cryptosporidiosis in 

immunocompromised patients were also described, along with transmission of the 

parasite to humans from infected farm cattle ("Human cryptosporidiosis--Alabama," 

1982; Reese, Current, Ernst, & Bailey, 1982).  In the developing world, 

cryptosporidiosis was reported not only to be a common cause of chronic diarrhea, but 

also associated with malnutrition in young children (Macfarlane & Horner-Bryce, 

1987).   
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Research in the field was still highly limited until the United States’ largest 

recorded waterborne outbreak caused more than 400,000 people to fall sick with 

cryptosporidiosis in Milwaukee in 1993 (Mac Kenzie et al., 1994).  Despite numerous 

reports documenting cryptosporidiosis in immunosuppressed children in developing 

countries, Cryptosporidium was not considered a major pathogen until most recently 

after the report of the Bill and Melinda Gates Foundation funded the Global Enteric 

Multicenter Study (GEMS) (Kotloff et al., 2013).  GEMS was the largest and most 

comprehensive study of childhood diarrhea, involving seven sites in Africa and Asia, 

and it identified cryptosporidiosis as the third most common cause of severe diarrhea in 

young children (J. Liu et al., 2016).  The GEMS study used more sensitive detection 

techniques to identify Cryptosporidium species and corrected for co-infections with 

various other pathogens to find the pathogen responsible for the disease (Kotloff et al., 

2013; J. Liu et al., 2016).  Cryptosporidiosis was not considered a major pathogen for a 

long time and hence, the true extent of spread had never previously been thoroughly 

examined.  All these factors combined with the fact that the earlier human studies have 

used less-sensitive methods of detection (Chalmers & Katzer, 2013) make it difficult to 

comprehend the true extent of infection. 

 

1.3.  Transmission 

The predominant mode of infection is thought to be the fecal-oral route, as 

several logs per gram of environmentally stable oocysts are shed in the feces of infected 

individuals and calves, and as little as 9 oocysts of some virulent strains are sufficient 



4 

 

to cause disease in ~50% of the healthy volunteers (ID50) (DuPont et al., 1995).  The 

thick-walled oocysts shed in the feces are also highly stable in water for several months 

and are resistant to bleach, making water treatment complicated in developed countries 

as well (Rose, Huffman, & Gennaccaro, 2002).  This has led to several outbreaks in the 

US and Europe, including the Milwaukee outbreak in the US that was mainly caused 

due to malfunction in the municipal water filtration unit.  Frequent outbreaks in 

developed countries also occur due to infections from recreational water in swimming 

pools and playgrounds (Hlavsa et al., 2011).    

C. parvum and C. hominis are the Cryptosporidium species that account for 

more than 90% of the infections in humans (Cacciò, 2005; Checkley et al., 2015).  C. 

hominis is the species that is associated with majority of the waterborne outbreaks and 

was also responsible for most of the infections in children in the GEMS study (Sow et 

al., 2016).  Although C. hominis can infect calves as well (Akiyoshi, Feng, Buckholt, 

Widmer, & Tzipori, 2002), C. hominis infections in humans are thought to be 

predominantly spread from other symptomatic and/or asymptomatic human carriers 

(Chalmers & Katzer, 2013; Hunter & Thompson, 2005).   On the other hand, C. parvum 

can be transmitted from infected calves and humans (Hunter & Thompson, 2005). 

 

1.4.  Epidemiology 

1.4.1.  Children 

Diarrhea is the second leading cause of death in children below 5 years of age, 

causing more than 499,000 deaths in 2015 (Disease, Injury, & Prevalence, 2016).  
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Shockingly, this is similar to the number of deaths due to all the cancers combined in 

the United Sates (U.S. Cancer Statistics Working Group, 2017).  Although the number 

of deaths caused by diarrhea is on a steady decline, the decrease in incidence of 

diarrhea has been marginal, with the low- and middle- income regions of South Asia 

and sub-Saharan Africa worst affected  (Disease et al., 2016; Mortality & Causes of 

Death, 2016).  Cryptosporidiosis is a leading cause of infectious diarrhea in children 

(Kotloff et al., 2013; Jie Liu et al., 2016; Platts-Mills et al., 2015).  Apart from being 

fatal, diarrhea is detrimental to the health of children, leading to long term 

developmental and growth defects (Bushen et al., 2007; Guerrant et al., 1999; Korpe et 

al., 2016; Kotloff et al., 2013).  There is also a strong correlation between 

Cryptosporidium infections and malnutrition in children, although it is not clear if 

cryptosporidiosis is the predominant cause of malnutrition or if malnourished children 

are predisposed to cryptosporidiosis; both may be true (Macfarlane & Horner-Bryce, 

1987; Shirley, Moonah, & Kotloff, 2012).  It is also not known if during infections in 

infants, especially malnourished and immunocompromised children, the disease is only 

limited to the gastrointestinal tract. 

 

1.4.2.  Immunocompetent and Immunocompromised Adults 

Cryptosporidiosis is self-limiting in immunocompetent adults, with infections 

ranging from asymptomatic to 2 weeks or longer of diarrhea (Chen, Keithly, Paya, & 

LaRusso, 2002).  The infections are predominantly limited to the gastrointestinal tract 

with only a few cases of extra-intestinal infection reported in immunocompetent 
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patients with C. hominis (Hunter et al., 2004).  In contrast, the infection is more likely 

to extend beyond the intestine in individuals with limited or no cell-mediated immunity, 

like AIDS patients and organ transplant recipients (Chen et al., 2002; Malebranche et 

al., 1983; Navin et al., 1999).  The biliary tract usually gets infected in these patients 

and is thought to be a reservoir of infection (Chen et al., 2002).  Most AIDS patients 

experience prolonged diarrhea, which lasts more than two months.  Only about 4% of 

the patients shed the parasite without showing diarrhea symptoms.  The symptoms in 

AIDS patients are inversely proportionate to the CD4+ T-cell counts, and treatment 

with highly active anti-retroviral therapy (HAART) can restore health (Flanigan et al., 

1992).  

 

1.5.  Life Cycle 

Cryptosporidium completes its life cycle in one host (monoxenous) (refer 

Figure 1 for schematic).  The ingested thick-walled oocysts are triggered for 

excystation by the acid in the stomach followed by the bile salts, temperature and pH 

change in the intestine.  A suture in the oocyst wall opens to release the infectious 

motile sporozoites.  Sporozoites attach and invade the intestinal epithelial cells lining 

the lumen to form an unusual intracellular but extra-cytoplasmic niche called the 

parasitophorous vacuole (PV).  This niche gives the parasite the advantage to steal 

nutrients from the lumen of the intestine as well as the cytoplasm of the host cell.  The 

initial uninucleate intracellular form is called a trophozoite.  The trophozoites undergo 

asexual replication (merogony) to form type I meronts, each containing six to eight 
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merozoites.  The merozoites egress out of the PV to infect more epithelial cells.  Each 

merozoite is thought to form a new trophozoite that can undergo merogony to form 

type I or type II meronts (containing only 4 nuclei).  Type I meronts are thought to 

repeat the asexual replication cycle, while Type II meronts are believed to give rise to 

the sexual stages of microgamonts and macrogamonts.  Each microgamont contains 

several motile microgametes (sperm equivalent), which upon release find and fertilize 

the uninucleate macrogamont (egg cell equivalent) to form thin- or thick-walled oocysts 

that sporulate in situ.  The thin-walled oocysts are presumed to cause further local 

infection in the same host, while thick-walled oocysts are secreted in the feces for 

dissemination (Current & Reese, 1986; Fayer & Xiao, 2007).  The life-cycle of 

Cryptosporidium is primarily based on visualization of stages using histology and/or 

electron microscopy techniques, and has not been validated by genetic or molecular 

approaches. 

 

1.6.  Current Treatment Options 

There are no vaccines for cryptosporidiosis.  The only U.S. Food and Drug 

Administration (FDA) approved medicine, nitazoxanide, has variably efficacy, with 

poor activity in the most affected populations.  A placebo controlled study in HIV 

positive patients with cryptosporidiosis showed nitazoxanide to be completely 

ineffective (Abubakar, Aliyu, Arumugam, Hunter, & Usman, 2007).  In a study with 

malnourished children with chronic cryptosporidiosis, nitazoxanide cured the diarrhea 

symptoms at day 7 in 56% of the patients, as opposed to the 23% of cured cases with 
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placebo alone (B. Amadi et al., 2009).  Nitazoxanide is most effective in 

immunocompetent individuals, in whom it speeds up recovery (Beatrice Amadi et al., 

2002).  Paromomycin has shown good efficacy in mouse models of cryptosporidiosis, 

but is not useful in AIDS patients with cryptosporidiosis.  Several other molecules 

including azithromycin, spiramycin, and immunoglobulin have proven ineffective 

against cryptosporidiosis in AIDS patients (Cabada & White, 2010; Checkley et al., 

2015).  Even with HAART therapy in AIDS patients, significant mortality is observed 

early on (Dillingham et al., 2009).   Halofuginone is approved in Europe for use as a 

prophylactic drug for cryptosporidiosis in calves (Trotz-Williams, Jarvie, Peregrine, 

Duffield, & Leslie, 2011), but not in humans, due to its toxicity and side effects (Pham 

et al., 2014).  There is a clear and desperate need for better treatments for 

cryptosporidiosis in the most vulnerable populations. 

 

1.7.  An Overview of Drug Discovery and Development 

A general drug discovery and development scheme involves multiple stages that 

progress from identifying an active compound in vitro to activity in animal models to 

patient populations.  Drug development generally happens at a pharmaceutical 

company wherein the efforts are well coordinated between diverse groups of people 

with specific expertise who are provided with clear go/no-go decisions set at every 

stage of drug development.  An overview of the key stages is discussed below. 

The initial discovery phase starts with a basic R&D exploratory stage that 

requires understanding biology of the disease.  This is followed by development of a 
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reliable and robust screening assay with a goal to obtain diverse chemical scaffolds 

with desired activity against the disease.  When available, a high-throughput screening 

assay is generally preferred, which could be a target-based or phenotype-based 

screening assay.  In the phenotype-based approach, a collection of small molecules is 

tested for their effect on a biological process, for example, inhibition of asexual 

replication of a parasite in an in vitro cell based assay.  On the other hand, a target-

based approach involves screening of small molecules that alter the activity of a natural 

or recombinant protein that is crucial to the disease.  The second approach requires the 

target be validated and activity of the molecules reconfirmed against intact cells.  

Although several recent advancements in genomics and computer-based modelling 

have dramatically aided target-based screening, it is unclear which of the screening 

approaches is more productive, as several successful drugs have been developed with 

both methodologies and it is not mandatory to know the target for a drug to be 

approved. 

Screening data are analyzed to identify molecules with desired effects (hits). 

The hits need to be further validated based on biological, physical and chemical 

properties.  Drug development in general has a very high attrition rate that depends a lot 

on the quality of the initial molecules.  Furthermore, the investment for drug 

development increases dramatically following hit identification, demanding 

prioritization of quality hits.  Prioritized hits with favorable pharmacodynamic (PD) 

and pharmacokinetic (PK) properties are tested for toxicity and efficacy in an animal 

model, which hopefully gives rise to an early lead molecule.  The early leads undergo 
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several rounds of structural optimization for selectivity, potency, and PK-PD among 

other parameters to give rise to a drug candidate.  

The drug candidate is further developed and tested in the preclinical 

development stage.  This stage includes the study of process chemistry factors such as 

assessment of cost of goods, compound stability and further comprehensive preclinical 

safety studies in animals under Good Laboratory Practices (GLP) conditions.  Once an 

investigational new drug application (IND) has been successfully accepted by a 

regulatory agency such as the US FDA, the molecule goes into preliminary Phase I 

clinical trials.  Upon successful completion of Phase I, dosing regimens are optimized 

in Phase II, followed by a study against the comparator product in Phase III.  If the 

molecule is successful in the clinical trials, a Marketing Authorization Application 

(MAA) is submitted to request full approval.  There are numerous reasons that drug 

candidates fail.  The lack of efficacy has contributed to 21% of the failures, while 21% 

have failed due to toxicity.  Biopharmaceutical properties like oral bioavailability and 

formulation issues account for 39% of failures (Nwaka & Ridley, 2003). 

The Cryptosporidium drug development pathway is not very well established 

(Huston et al., 2015; Manjunatha, Chao, Leong, & Diagana, 2016), with the first 

medium-throughput phenotypic screening assay published in 2013 (Bessoff, Sateriale, 

Lee, & Huston, 2013).  The following sections are going to discuss some of the key 

aspects of the initial stages of drug development up to lead identification successfully 

used for other neglected infectious diseases, followed by a discussion of how these 

could be applied for Cryptosporidium drug development.   
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1.8.  Neglected Disease Drug Development 

Neglected tropical diseases (NTDs) are a group of infectious diseases that 

predominantly affect low-income populations in the less-developed world.  The 

infections are widespread, causing severe morbidity and mortality while also costing 

developing economies billions of dollars every year.  The lack of a market incentive 

along with challenging drug R&D and the high financial cost of drug development has 

hindered pharmaceutical investment for NTDs.  Although NTDs account for more than 

11% of the global disease burden, less than 1% of the approved drugs from 1975-2004 

were for neglected tropical diseases (Trouiller et al., 2002).  Since then, the formation 

of public-private partnerships (PPPs) and product development programs (PDPs) along 

with philanthropic and government funding has significantly improved the efforts 

towards developing therapeutics for NTDs.  The PDP model involves a collaborative 

approach for drug development.  PDPs essentially provide the oversight framework for 

drug discovery and development in a non-profit neglected disease setting.  They 

provide structure in the form of disease specific goals based on patient needs, facilitate 

key collaborations fostering sharing and openness, and require standardized assays that 

enable logical go/no-go decisions, which results in appropriate prioritization and 

resource distribution.  Some of the salient strategies used by PDPs like the Medicines 

for Malaria Venture (MMV), TB alliance, the Drug development for Neglected Disease 

Initiative (DNDi) for Chagas and visceral leishmaniasis are discussed below (Katsuno 

et al., 2015). 
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Setting clear goals for NTD drug development by understanding patient 

populations and needs has been successful in many instances.  Target candidate profiles 

(TCP) are put in place to guide development of new molecules and target product 

profiles (TPP) for new medicines (Katsuno et al., 2015).  There can be multiple TPPs 

and TCPs, and these keep evolving based on the need, since drug development usually 

takes a decade to complete during which disease landscape and patient needs can 

change, and major technological improvements in drug development may occur.  For 

example, malaria drug development has two TPPs and five TCPs, with TCPs used to 

prioritize hits based on rate of action of compounds and life stage activity with clear 

gold standards used for every assay (Burrows et al., 2017; Burrows, van Huijsduijnen, 

Mohrle, Oeuvray, & Wells, 2013).  The TPP for TB focuses on developing new drugs 

that are active against the drug-sensitive and drug-resistant TB, and reduce the duration 

of current treatments (Katsuno et al., 2015).  The minimum requirement for visceral 

leishmaniasis includes greater than 90% clinical efficacy in a ten-day treatment regimen 

with activity against all resistant strains of L. donovani, along with no drug-drug 

interaction issues with malaria, TB and HIV treatments (Chatelain & Ioset, 2011).  The 

TPP for Chagas disease at a minimum demands superiority to the current standard of 

care, benznidazole (Chatelain & Ioset, 2011).  The presence of a gold standard drug has 

greatly helped set clear goals for TPPs and TCPs for these diseases. 

Apart from the high-cost, there are several unique challenges facing drug 

development for NTDs.  A high proportion of the patients reside in areas with poor 

infrastructure and highly limited healthcare resources.  Therefore, the drugs need to be 
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stable under high-temperature and humidity conditions for long durations.  

Furthermore, drugs should be administered with no or limited oversight for dosing.  

Hence, oral drugs with minimal doses are favored.  Co-infections are common in the 

tropical areas requiring a potential for multiple treatments at the same time requiring 

drugs with low drug-drug interactions so that there is no interference with other 

medicines.  

 

1.8.1.  Assay development 

In general, it is unclear if target or phenotype-based screening is more fruitful 

(Eder, Sedrani, & Wiesmann, 2014; Swinney, 2013).  There are several advantages to 

using a target-based screen.  The knowledge of a target is exceptionally helpful in that 

it can aid in optimization of a chemical scaffold for selectivity towards the pathogen 

over the human host.  Medicinal chemistry is also much easier to perform to improve 

potency, pharmacokinetic and pharmacodynamics properties.  Knowledge of the target 

at the start can also help predict any toxicity issues that might come up later in the 

process.  In disease areas where drugs with different mechanisms of action are desired, 

it is beneficial to know the target.  Genome sequencing considerably eased the process 

for target identification, but target validation can be challenging, especially in the case 

of poorly studied NTDs.  Furthermore, there is an added requirement to test the 

feasibility of the compound against the intact whole pathogens.  In some cases, 

discrepancies have been observed between in vitro target inhibition studies and activity 

against whole pathogens for NTD drug development.  There could be discrepancies 
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between activity against a target versus whole cell due to several reasons, such as 

inaccessibility of the target due to membrane permeability issues, off-target effects, 

alternate compensatory pathways, etc. (Nwaka & Hudson, 2006).  

On the other hand, phenotypic screens are performed against the whole 

pathogen.  Phenotypic screens are not biased and have the potential to quickly provide a 

large number of diverse hits, although the success of the hit and its druggability cannot 

be determined until later on.  Recent improvement in genetics and molecular biology 

techniques, especially omics technologies, can aid in figuring out targets after 

phenotypic screening.  Furthermore, phenotypic assays have been more productive for 

anti-bacterial drug development (Payne, Gwynn, Holmes, & Pompliano, 2007).  

Phenotype-based screens also provide a resource to screen and identify hits from a 

larger chemical space as compared to target-based screens.  For these reasons, 

phenotypic screens have been more widely used for NTDs.  For an efficient and reliable 

high throughput screen (medium throughput screen at the minimum), the assay needs to 

be robust with a good signal to noise ratio, which is often assessed using statistical 

metrics such as the Z and Z’ scores (Zhang, 1999).  Apart from the primary screening 

assay, several other follow-up assays aide in prioritization of hits with respect to TCPs 

and TPPs.   

The in vitro culture of asexual blood stages of all major species of Plasmodium 

has been extremely important for malarial drug development (Schuster, 2002).  Further 

breakthroughs in assays for the different life stages have been key in obtaining diversity 

and addressing specific needs such as activity against liver stages of species that 
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establish dormancy (Burrows et al., 2013).  To directly compare compounds and avoid 

discrepancies between groups, MMV contracts out each of these assays to experts at 

specific locations for testing all the molecules under similar conditions.  

 

1.8.2.  Screening compound source  

The quality of starting chemical entities is extremely important, especially for 

NTDs, wherein there is an urgent medical need, but the resources are highly limited.  

Pharmaceutical and biotech companies have a rich source of unique chemical 

compounds and associated expertise.  PDPs utilize the collaborative model, wherein 

pharmaceutical and biotech industries contribute sets of diverse small molecules 

containing annotated analogues along with the knowledge and expertise associated with 

it (Chatelain & Ioset, 2011).  MMV has also gone a step further and put together 

libraries of compounds with analogues from pharmaceutical companies and made them 

freely available for NTD research.  To add further value, MMV asks for the screening 

data to be made available to the public in return for the compounds.  The libraries 

include the ‘Malaria Box’, which is a set of 400 unique and diverse compounds active 

against blood stage of P. falciparum from phenotypic screens of over 6 million 

compounds performed by GlaxoSmithKline (GSK), the Genomics Institute of the 

Novartis Research Foundation (GNF), and St. Jude Children's Research Hospital (Van 

Voorhis et al., 2016).  Furthermore, all the 400 compounds are commercially available 

and there is significant data shared for safety including: host cell toxicity using several 

cell lines and zebrafish; absorption, distribution, metabolism and elimination (ADME); 
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PK; and activity against several different pathogens.  MMV has also recently put 

together a ‘Pathogen Box’, which includes 400 molecules with activity against at least 

one of several different pathogens that cause NTDs, including malaria, TB, 

kinetoplastids, helminths, cryptosporidiosis, toxoplasmosis and dengue virus (Duffy et 

al., 2017).  Similar to the Malaria Box collection, significant investment has been made 

for these compounds, with data for host cell toxicity, ADME properties and PK made 

available.  These data are extremely valuable for follow-up, saving time and resources 

while accelerating drug development for NTDs.  For some of the compounds the 

biological targets are known, and this can aid in use of these molecules as chemical 

probes to explore the biology of the less-studied NTDs.  PDPs have also initiated 

collaborations with pharmaceutical companies to obtain libraries of classes of inhibitors 

along with analogues that inhibit a specific known biochemical pathway of importance 

(Chatelain & Ioset, 2011). 

There has been some success in repurposing existing drugs or compounds with 

significant previous investment for NTDs, especially compounds that have been taken 

into clinical trials, as it reduces the associated financial risk.  For example, eflornithine 

was initially developed as an anti-cancer drug, but was later found to have great activity 

for treating Human African Trypanasomaisis (HAT).  Miltefosine was initially taken to 

human trials for its anti-cancer properties, but then was taken for clinical trials for 

leishmaniasis due to its superior efficacy compared to existing treatments in the rodent 

model (Andrews, Fisher, & Skinner-Adams, 2014).  The NIH clinical collection library 

serves as a useful source for repurposing, as it is composed of FDA-approved drugs and 
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molecules that have been taken into clinical trials (Bessoff et al., 2013).  A major 

concern with repurposing already existing profit-making drugs is that the companies 

owning the drugs could be unwilling to share them in fear of identification of new 

safety concerns or other issues that might affect existing use (Pink, Hudson, Mouries, & 

Bendig, 2005).   

 

1.8.3.  Hit Identification 

Phenotypic screens against the whole pathogen make it possible to screen 

thousands to millions of compounds in a short amount of time.  There is no single 

formula or global potency threshold cut-off to identify hits from the screens, as the 

potency depends on several factors, including the assay type, assay set-up conditions 

(serum concentration, detection methods, compound concentration etc.), nature of the 

chemical library, and the pathogen under study.  Several assays can be used as primary 

screens that can yield different results.  For visceral leishmaniasis, a direct comparison 

of the axenic assays with adapted extracellular amastigotes that are thought to mimic 

intracellular stages gave a higher false-positive hit rate than the L. donovanii amastigote 

intracellular assay (De Rycker et al., 2013).  The P. falciparum intracellular blood stage 

assay is the most widely used assay for primary screening for malaria.  But the different 

TCPs could require alternate primary screening assays, like a malaria liver 

schizonticidal assay used to identify compounds active against latent liver stages that 

complicate treatment of malaria (Burrows et al., 2017; Burrows et al., 2013).  PDPs 



18 

 

focus towards standardizing primary screening or follow-up potency assays for disease 

types so that compounds identified from various sources can be directly compared. 

The hit cut-off can vary dramatically between pathogens due to differences in 

the biology of the diseases.  For example, asexual blood stages of Plasmodium involve 

processes like host membrane re-arrangement that are targeted by the general drug-like 

molecules.  On the other hand, L. donovanii has its intracellular stage inside acidic 

compartments of the phagolysosome of macrophages that are hard to access and retain 

drug activity in (Katsuno et al., 2015). 

 

1.8.4.  Hit Validation 

The initial hits from the primary screen need to be further tested for several 

general and disease specific parameters to be considered a validated hit.  The 

compound needs to be re-synthesized/re-purified with a conventionally decided purity 

of greater than 90% and tested against the pathogen to confirm its activity.  Dose 

response curves should be performed against the pathogen to determine the half-

maximal inhibitory concentration (EC50), with the compound able to attain 100% 

inhibitory activity (usually demonstrating a sigmoidal concentration versus growth 

inhibition curve with a Hill coefficient ideally between 0.5 and 1.8).  Potency varies 

with disease with a reasonable cut-off selected based on other compounds identified.  

For example, for malaria where it has been relatively easy to identify hits, a cut-off of 

1-2 µM is used (Gamo et al., 2010; Guiguemde et al., 2010; Plouffe et al., 2008).  It 

should be noted that potency has little to do with potential efficacy, but has a large 
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impact on manufacturing costs.  The molecule should have at least greater than a 10-

fold selectivity window over a relevant mammalian cell line.  Keeping in line with 

lower manufacturing costs, the molecule should be easy to synthesize, ideally in less 

than 5 steps with acceptable yield.  Preliminary structural-activity relationship studies 

(SAR) should show potential for medicinal chemistry changes and the molecule should 

not have any unstable or highly reactive moieties in the core pharmacophore (Katsuno 

et al., 2015; Nwaka & Hudson, 2006; Nwaka et al., 2009).   

 

1.8.5.  Hit-to-lead and Early Lead Identification 

An early lead compound should demonstrate acceptable in vivo PK, toxicity and 

efficacy in a relevant animal model of the disease.  The hit-to-lead prioritization is an 

extremely crucial step in NTD drug development as the finances, time and resources 

are highly limited.  Added on, the high attrition rate of drug development is inversely 

proportionate to the quality of the chemical entities.  Furthermore, since the investment 

in cost and time dramatically increases as one goes further in drug development, it is 

critical that quality lead compounds are prioritized (Khanna, 2012; Nwaka & Hudson, 

2006).  Hit-to-lead prioritization is generally guided by clear go/no-go decisions based 

on the TPPs and TCPs.  In general, a diverse set of molecules with different 

mechanisms of action are preferred, as this gives a better chance for at least one 

molecule to make it all the way, rather than prioritizing all compounds with similar 

profiles (Katsuno et al., 2015). 
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For example, malarial drug development has clear TCPs based on life stage 

mechanism of action studies.  The validated hits are screened against all the life stage 

assays along with key mechanistic assays and these results are used for further 

prioritization of compounds.  The presence of gold standard compounds for comparison 

in each assay dramatically helps in characterizing the compounds (Burrows et al., 2017; 

Burrows et al., 2013). 

The choice of in vivo model is extremely important.  This was particularly true 

for a recent promising drug candidate, posaconazole, for Chagas disease.  Posaconazole 

was highly promising in vitro, in an animal model for Chagas and preclinical efficacy 

studies.  It also had a different mode of action from the only approved class of 

nitroheterocyclics.  But the compounds failed during clinical treatment, as it performed 

poorer than the approved benznidazole nitroheterocycle class.  Looking back, 

posaconazole was only tested in the acute disease mouse model, while the chronic stage 

is an important cause of disease, underscoring the importance of using the correct 

models (Chatelain, 2015; Molina et al., 2014). 

 

1.9.  Anti-Cryptosporidium Drug Development 

The only FDA approved drug for cryptosporidiosis, nitazoxanide, is not very 

effective in young children and immunocompromised patients, but the reasons for its 

failures are not known.  The lack of a highly efficacious drug complicates drug 

development, since there is no standard to follow.  
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Cryptosporidium biology is poorly understood, as there is no continuous in vitro 

culture system.  A few rounds of asexual replication followed by formation of gamonts 

can be achieved in vitro, after which the culture crashes.  Based on visualization 

techniques, it is thought that the parasite needs to undergo asexual followed by sexual 

replication to sustain an infection in vivo, but such details of the life cycle have not 

been confirmed by genetics or molecular methods.  Based on the few rounds of asexual 

growth in vitro, a medium-throughput cell based phenotypic screening assay using the 

C. parvum Iowa isolate was developed for the first time and published in 2013.  Prior to 

this, most of the drug development efforts were hypothesis driven or random, with a 

few groups taking advantage of genomic data and using target-based screening efforts.  

Due to the lack of genetic tools for Cryptosporidium, none of the targets were 

effectively validated.  After the GEMS reports demonstrating cryptosporidiosis as a 

leading cause of severe diarrhea in children, there has been a lot of interest in 

Cryptosporidium drug development efforts including from pharmaceutical companies, 

and funding from the Bill and Melinda Gates Foundation.  PATH, a non-profit 

organization, has also started an accelerator for Cryptosporidium research and drug 

development to reduce child mortality (ACCORD) program to facilitate the 

development of new therapeutics for cryptosporidiosis (Shoultz, de Hostos, & Choy, 

2016). 
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1.9.1.  Target Product Profile 

The first TPP for cryptosporidiosis was published by Huston et. al. in 2015 

(Huston et al., 2015).  This has been followed up by a slightly modified TPP put 

forward by Majunatha et. al. in 2016 (Manjunatha et al., 2016), demonstrating the 

evolving nature of the TPPs.  The profiles are predominantly similar with major 

differences in the duration of desired treatment regimen, method of treatment, and 

desired microbial and clinical efficacy, including extra-gastrointestinal infections.  Both 

the publications put forward minimum and ideal TPPs for cryptosporidiosis.  Since 

developing drugs and performing clinical trials on infants < 6 months of age is 

complicated, the initial idea is to first focus on C. hominis or C. parvum infected infants 

6-24 months old that do not have HIV.  It is assumed that a drug effective in infants 

would also work in immunocompetent children and adults. Ideally, the target 

populations would include children greater than 1 month of age with or without HIV 

and immunocompromised adults.  Huston et. al. recommends a new drug should at least 

have microbial (clear fecal parasite shedding) and clinical efficacy (resolution of 

clinical diarrhea symptoms) that is superior to nitazoxanide in malnourished children, 

and similar to nitazoxanide in immunocompetent individuals.  Ideally, the drug should 

be able to clear fecal parasite shedding quickly (e.g. < 2 days) and have > 90% efficacy 

in all patient populations.  Manjunatha et. al. suggest that the drug needs to show 

clinical and microbial efficacy by 4 days of treatment with > 90% efficacy in the 

minimum target population and > 95% efficacy in the ideal case target population with 

clearance of extra-gastrointestinal infections.  Microbial efficacy is achieved when fecal 
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parasite test is negative for 2 consecutive days.  Huston et. al., recommend an oral 

treatment that is at the minimum of superiority over nitazoxanide in the vulnerable 

populations, while ideally a single dose cure is preferred.  Manjunatha et. al., call for a 

3-day dosing cure with a maximum of thrice a day dosing regimen, and acceptance of a 

parenteral dosing regimen in a hospital setting.  Based on market analysis and the 

desired public health benefit, the cost of the complete treatment should not be more 

than US$2.00, which is the cost of a complete treatment with nitazoxanide in India.  

Ideally, the treatment should cost US$0.50 (Huston et al., 2015). 

 

1.9.2.  Hit Identification and validation 

The medium-throughput screening assay has been further optimized by the 

California Institute for Biomedical Research (Calibr) into a high-throughput screening 

assay with more than 1,000,000 compounds screened to date ((Love et al., 2017) and 

personal communication).  There are several different assays developed along with 

different isolates of C. parvum Iowa strain used for potency studies (Bessoff et al., 

2014; Castellanos-Gonzalez et al., 2013; Chao et al., 2018; Gorla et al., 2014; Love et 

al., 2017; Manjunatha et al., 2017; Ndao et al., 2013).  The differences between assays 

or a standardized assay needs to be finalized in order to directly compare hits and leads.  

With the lack of a better standard, in vitro potency requirements are based on 

nitazoxanide with a recommended EC50 equal to or less than that of nitazoxanide along 

with at least a 10-fold selectivity window against the HCT-8 mammalian cell line that 

is routinely used for screening (Huston et al., 2015).  
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1.9.3.  Hit-to-lead and Early Lead Identification 

C. parvum Iowa isolates have been passed in calves with several logs of oocysts 

shed per gram feces during peak infection.  This has provided a constant supply of 

oocysts for in vitro studies, as the parasite cannot be continuously cultured using a 

simple in vitro system (Arrowood, 2002).  On the other hand, the laboratory strain of C. 

hominis, TU502 whose genome has been sequenced, has been maintained in 

gnotobiotic piglets that require expensive special housing and maintenance with poorer 

yields compared to calves.  Furthermore, isolated C. parvum oocysts are stable at 4 °C 

for up to 4-5 months in phosphate buffered saline, whereas, C. hominis TU502 are 

highly unstable, retaining in vitro viability only a few days after shedding.  This has 

made C. parvum the strain of choice for in vitro studies.  Even though a substantial 

portion of the human infections are caused by C. hominis.  Therefore, it is imperative 

that compounds be tested for activity against C. hominis as well.  Furthermore, the 

infectious dose and in vitro drug susceptibility for field isolates is known to vary.  

Hence, it is extremely beneficial to test hits against at least C. parvum farm field 

isolates to avoid unexpected concerns further in the drug development process. 

Learning from other NTD drug development strategies, development of several 

other assays has been suggested by Huston et. al. as part of the hit-to-lead prioritization 

cascade.  These include: in vitro rate of action; static versus cidality; tendency to 

develop resistance; and life stage activity and other mechanistic assays to differentiate 

between hits and help select a diverse set of compounds despite the lack of knowledge 
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of molecular mechanism of action (Huston et al., 2015).  Poor understanding of 

Cryptosporidium biology, unavailability of reliable markers and gold standard controls, 

lack of a continuous culture system, and asynchronous in vitro infections with mixed 

parasite populations are some of the factors that have made development of these 

assays very challenging.  It is not clear if the sexual stages of the parasite have to also 

be affected to clear an infection, and/or if the sexual stage alone can be targeted to clear 

infection.  Recently, the first report of genetic manipulation of Cryptosporidium was 

published.  The method is not very convenient yet, as it involves making mutants by 

performing surgeries in mice and maintenance of oocysts in vivo, but it provides a great 

potential to help in understanding biology and developing assays along with identifying 

and validating targets (Pawlowic, Vinayak, Sateriale, Brooks, & Striepen, 2017; 

Vinayak et al., 2015). 

Cryptosporidium has an unusual intracellular but extra-cytoplasmic niche with 

access to the intestinal lumen as well as the cytoplasm of the cell.  Generally, for 

intracellular infections drugs with good oral bioavailability are preferred as the drug 

gets absorbed and accumulates in the blood and then reaches inside the infected cells.  

For an extracellular pathogen in the intestine, it is preferred that the drug does not get 

absorbed and rather stays in the intestine and locally acts on the pathogen.  

Cryptosporidium has this in-between niche, making it unclear if a drug needs to be 

absorbed or stay in the intestine.  It is more likely that the PK characteristics desired 

will vary based on the drug and its mechanism of action.  It is very likely that the PV 

membrane is selective, allowing only certain molecules to pass through.  Also, an 
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effective anti-Cryptosporidium drug could potentially target a process in the host cell 

that is crucial for the parasite’s survival (but not critical for the host), as 

Cryptosporidium is thought to rely heavily on the host.  For extra-intestinal infections, 

systemic exposures would likely be important to clear the pathogen. 

Several acute and chronic rodent models of cryptosporidiosis have been used to 

test only microbial efficacy of hits, as the rodent models do not get diarrhea (Gorla et 

al., 2014; Love et al., 2017; Manjunatha et al., 2017; Ndao et al., 2013).  The acute 

models resolve infection after a few days, giving a small window for testing hits.  The 

chronic mouse model includes the IFN-gamma knockout model, but its infection 

outcome varies between different groups, from self-resolving to lethal infections (Love 

et al., 2017; Manjunatha et al., 2017; Ndao et al., 2013).  Nitazoxanide does not have 

any activity in the rodent models tested.  In part due to the lack of a gold standard drug, 

it is not clear which of the rodent models best reflects disease in humans.  Infection of 

calves with C. parvum is used as a clinical model for diarrhea symptoms and microbial 

efficacy (Manjunatha et al., 2017; Schaefer et al., 2016; Stebbins et al., 2018).  

Although extremely expensive, gnotobiotic piglets are used for microbial and clinical 

efficacy studies of C. hominis TU502 (Theodos, Griffiths, D'Onfro, Fairfield, & 

Tzipori, 1998). 

 

1.9.4.  Our Strategy 

A key gap exists in the nascent Cryptosporidium drug development pipeline 

between screening to identify potential starting points and testing in rodents.  As noted 
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above, methods are needed for prioritization according to the likelihood of in vivo 

success, and to maintain mechanistic diversity.  Development of such key methods is 

the focus of this thesis.  Since no gold standard drug exists and very few leads have 

been reported to date, our strategy was to collaborate and obtain as many leads as  

possible from various groups with a goal to obtain a diverse set of “learner hits and 

leads” to test and validate the value of our prioritization assays. 

Our group was the first to report a robust cell-based screening assay for 

Cryptosporidium.  We have collaborated with various groups performing target- and 

phenotype-based anti-Cryptosporidium drug development and provided a cell-based 

screening facility using our assay to directly compare the potency of all of the 

compounds (Figure 2).  We have also developed a highly immunocompromised NOD 

SCID gamma (NSG) mouse model that represents chronic cryptosporidiosis, as in 

AIDS patients, providing the ability to test the effect of a molecule on an established 

infection, and also follow-up for relapse after cessation of treatment.  In line with the in 

vitro assays, these compounds were tested in the same animal model providing for 

direct comparison between all these assays.  These results formed the basis to directly 

compare the molecules in the established in vitro prioritization assays.  Chapter two 

describes prioritization of a promising hit identified from the Malaria Box screen to an 

early lead compound with activity in the NSG and IFN-gamma knockout mouse model. 

The chapter also demonstrates that a parasite persistence assay to identify potentially 

static versus cidal compounds by comparing the rate of parasite kill in vitro is a 

valuable tool to differentiate compounds.  Chapter three describes a range of life stage 
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assays that can differentiate hits based on mode of action and can be used as a tool to 

obtain a diverse set of compounds.  
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Figure 1.  Life cycle of Cryptosporidium parvum depicted using transmission electron microscopy 

pictures. 
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Figure 2.  Collaborations and source of anti-Cryptosporidium hits and leads used in this thesis. 
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2.1.  Abstract 

Cryptosporidiosis causes life-threatening diarrhea in children under age five, 

and prolonged diarrhea in immunodeficient people, especially AIDS patients.  The 

standard of care, nitazoxanide, is modestly effective in children and ineffective in 

immunocompromised individuals.  In addition to a need for new drugs, better 
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knowledge of drug properties that drive in vivo efficacy is needed to facilitate drug 

development.  We report identification of a piperazine-based lead compound for 

Cryptosporidium drug development, MMV665917, and a new pharmacodynamic 

method used for its characterization.  MMV665917 was identified from the Medicines 

for Malaria Venture Malaria Box, followed by dose response studies, in vitro toxicity 

studies, and structure activity relationship studies using commercial analogues.   

Potency against C. parvum Iowa and field isolates, and C. hominis was comparable.  

Furthermore, unlike nitazoxanide, clofazimine, and paromomycin, MMV665917 

appeared to be curative in a chronic NOD SCID gamma mouse model of 

cryptosporidiosis.  MMV665917 was also efficacious in an acute interferon-γ knockout 

mouse model.  To determine if efficacy in this chronic mouse model might relate to 

whether compounds are cidal or static for C. parvum, we developed a novel in vitro 

parasite persistence assay.  This assay suggested that MMV665917 was cidal, unlike 

nitazoxanide, clofazimine, and paromomycin.  It also enabled determination of the 

compound concentration required to maximize the rate of parasite elimination.  This 

time-kill assay can be used to prioritize early-stage Cryptosporidium drug leads, and 

may aide in planning in vivo efficacy experiments.  Collectively, these results identify 

MMV665917 as a promising lead, and establish a new method for characterizing 

potential anticryptosporidial agents. 
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2.2.  Introduction 

Cryptosporidiosis, caused by infection of the gastrointestinal epithelium by 

Cryptosporidium parasites, is a major cause of life-threatening diarrhea in children, 

particularly those under 1 year of age (Kotloff et al., 2013; Liu et al., 2016; Platts-Mills 

et al., 2015).  It is also highly associated with growth stunting and developmental 

delays (Bushen et al., 2007; Guerrant et al., 1999; Korpe et al., 2016; Kotloff et al., 

2013).  Two species, Cryptosporidium hominis and Cryptosporidium parvum, cause 

more than 98% of human cases (Checkley et al., 2015).  While cryptosporidiosis 

predominantly affects children in developing countries, it is also the most important 

cause of waterborne diarrhea in the United States (Hlavsa et al., 2011), and a frequent 

cause of diarrhea in immunocompromised individuals, especially AIDS patients and 

transplant recipients, amongst whom the infection is typically prolonged and can be 

fatal (Malebranche et al., 1983; Navin et al., 1999).   

Better treatments for cryptosporidiosis are badly needed.  Nitazoxanide, the 

current standard of care, accelerates recovery in immunocompetent individuals 

(Beatrice Amadi et al., 2002).  However, nitazoxanide is only partially effective in 

children, and is no better than placebo in AIDS patients (Abubakar, Aliyu, Arumugam, 

Hunter, & Usman, 2007; B. Amadi et al., 2009).  Paromomycin, which is used as a 

positive control in rodent drug efficacy studies, is also ineffective in AIDS patients 

(Abubakar et al., 2007).  Unfortunately, the reasons for nitazoxanide and paromomycin 

failure are not known.  One possibility is that both drugs inhibit Cryptosporidium 
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growth, but do not actually kill Cryptosporidium (i.e. they may be “static” rather than 

“cidal”), depending on the host’s immune system to clear the infection. 

Several recent target- and phenotype-based screening efforts have resulted in the 

identification of multiple lead compounds with promising in vivo efficacy (Bessoff, 

Sateriale, Lee, & Huston, 2013; Bessoff et al., 2014; Castellanos-Gonzalez et al., 2013; 

Gollapalli et al., 2010; Gorla et al., 2014; Love et al., 2017; Manjunatha et al., 2017; 

Maurya et al., 2009; Murphy et al., 2010; Ndao et al., 2013; Sonzogni-Desautels et al., 

2015), but there is no established pathway for the development of effective 

Cryptosporidium drugs (Huston et al., 2015).  The lack of a reliably efficacious drug to 

serve as a benchmark and variable outcomes of existing leads in different animal 

models both complicate compound prioritization for further development, since the 

meaning of variable outcomes in different animal models and compound characteristics 

that predict efficacy are unknown.  Thus, appropriate prioritization of such compounds 

for further development is poorly defined and new prioritization methods are needed.  

Here, we report the discovery of a promising new piperazine-based drug lead for 

treatment of cryptosporidiosis by using an immunocompromised mouse model of 

prolonged infection in combination with a novel in vitro assay that is analogous to a 

classical bacterial time-kill curve assay.  By reanalyzing our prior Medicines for 

Malaria Venture (MMV) Malaria Box screening data (Bessoff et al., 2014), we 

identified MMV665917 as a highly selective Cryptosporidium inhibitor with activity 

against multiple parasite isolates.  Nitazoxanide, clofazimine, and paromomycin were 

not curative in chronically infected NOD SCID gamma (NSG) mice, but clofazimine 
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and paromomycin were effective in an acute mouse model.  On the other hand, 

MMV665917 was effective in both chronic and acute mouse models of 

cryptosporidiosis.  Measurement of the rate of parasite elimination following exposure 

to different drug concentrations enabled determination of the concentration of 

MMV665917 needed to maximize the rate of parasite elimination.  Furthermore, the 

data suggested that MMV665917 was cidal against Cryptosporidium, while 

nitazoxanide, clofazimine, and paromomycin appeared to be static.  We believe this 

parasite persistence assay has general value for Cryptosporidium drug development, 

since information from it may be useful for prioritizing early-stage drug leads, and for 

planning and understanding the results of in vivo efficacy studies.  

 

2.3.  Materials and Methods 

2.3.1.  Re-analysis of MMV Malaria Box screening data 

Previously published screening data of the MMV Malaria Box used a screening 

“hit” definition of 80% inhibition to identify potential Cryptosporidium growth 

inhibitors (Bessoff et al., 2014).  These data were re-analyzed to identify additional 

Cryptosporidium inhibitors, by assuming that the average compound in the collection 

had no effect and using a statistical approach to identify compounds that differed from 

the average.  For this, the average number of parasites per host nuclei for all 

compounds was set to zero effect.  Data for each compound were then normalized to 

this average and the difference from the population mean for each compound was 

plotted on a frequency distribution plot.  Using GraphPad Prism version 6.01, normality 
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was tested with the D’Agostino-Pearson omnibus K2 test and the 95th percentile range 

was calculated.  Inhibitors at or beyond the 95th percentile were considered hits. 

 

2.3.2.  Cell culture and parasites 

Human ileocecal adenocarcinoma (HCT-8) cells (ATCC) were cultured in RPMI-

1640 medium (Invitrogen) supplemented with 10% heat-inactivated fetal bovine serum 

(Sigma-Aldrich) and 120 U/mL penicillin and 120μg/mL streptomycin (ATCC) at 37°C 

and 5% CO2.  HCT-8 cells were used between passage 9 and 39 for all experiments.  C. 

parvum Iowa isolate oocysts were purchased from Bunch Grass Farms, (Deary, Idaho).  

Oocysts were stored in phosphate buffered saline (PBS) with penicillin and 

streptomycin at 4°C, and were used within 5 months of shedding.  C. hominis TU502 

isolate oocysts were purchased from the Tzipori laboratory (Tufts University), and field 

C. parvum isolates were kindly provided by Jennifer Zambriski (Washington State 

University) and Daryl Nydam (Cornell University). 

 

2.3.3.  Cryptosporidium growth inhibition immunofluorescence assay 

C. parvum growth inhibition was measured as previously described (Bessoff et 

al., 2013).  Oocysts were excysted by treating with 10 mM hydrochloric acid (10 mins 

at 37°C), followed by exposure to 2 mM sodium taurocholate (Sigma-Aldrich) in PBS 

for 10 mins at 16°C.  Excysted oocysts were then added to >95% confluent HCT-8 cell 

monolayers in 384-well plates at a concentration of 5,500 Iowa isolate oocysts per well.  

For C. parvum field isolates, the inoculum required to give an infection level similar to 
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that produced by 5,500 Iowa isolate oocysts per well was determined and used for 

subsequent assays of parasite inhibition.  Compounds were added just before or 3 h 

after infection, and assay plates were incubated for 48 h post-infection at 37°C and 5% 

CO2.  Wells were then washed 3 times with PBS containing 111 mM D-galactose, fixed 

with 4% paraformaldehyde in PBS for 15 mins at room temperature, permeabilized 

with 0.25% Triton X-100 for 10 mins at 37°C, washed 3 times with PBS with 0.1% 

Tween 20, and blocked with 4% bovine serum albumin (BSA) in PBS for 2 h at 37°C 

or 4°C overnight.  Parasitophorous vacuoles were stained with 1.33 µg/mL of 

fluorescein-labeled Vicia villosa lectin (Vector Laboratories) diluted in 1% BSA in PBS 

with 0.1% Tween 20 for 1 h at 37°C, followed by addition of Hoechst 33258 (Anaspec) 

at a final concentration of 0.09 mM diluted in water for another 15 mins at 37°C.  Wells 

were then washed 5 times with PBS containing 0.1% Tween 20.  A Nikon Eclipse 

Ti2000 epifluorescence microscope with an automated stage was programmed using 

NIS-Elements Advanced Research software (Nikon, USA) to focus on the center of 

each well and take a 3×3 composite image using an EXi blue fluorescence microscopy 

camera (QImaging, Canada) with a 20X objective (NA = 0.45).  Nuclei and parasite 

images were separately exported as .tif files and analyzed using macros developed on 

the ImageJ platform (National Institutes of Health) (Bessoff et al., 2013).  The only 

modification from the published macro used to count parasites was that the lower size 

threshold for parasites was decreased from 16.5 to 4 pixels (1 pixel = 0.65 µm).  Graphs 

were plotted, and half maximal effective concentration (EC50) and 90% effective 

concentration (EC90) values were calculated using GraphPad Prism software version 
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6.01.  For every C. parvum field isolate experiment, a dose response against the C. 

parvum Iowa isolate was performed simultaneously as a reference. 

Cryptosporidium hominis growth inhibition assays were performed at the 

California Institute for Biomedical Research (Calibr, San Diego, CA) using a slightly 

modified immunofluorescence assay to enable automated compound handling and the 

use of 1536-well microtiter plates (Love et al., 2017).  The HCT-8 culture medium was 

replaced with RPMI 1640 supplemented with 2% heat-inactivated horse serum, 100 

U/mL penicillin, and 100 mg/mL streptomycin 24 h prior to infection with either C. 

hominis or the C. parvum Iowa isolate as a reference.  For these assays, D-galactose 

was found to be unnecessary and was eliminated from the plate wash buffer.  Imaging 

was performed using a CellInsight CX5 High Content Screening Platform (Thermo) 

with a 10X objective and acquisition of one microscopic field per well.  Images were 

processed using HCS Studio Scan software, and the Selected Object Count (HCT-8 

cells) and Spot Count (C. hominis) were analyzed in Genedata Screener (v13.0-

Standard).  Dose response curves and EC values were calculated using the Smart Fit 

function of Genedata Analyzer. 

 

2.3.4.  Parasite persistence assay 

Excysted C. parvum oocysts were added to >90% confluent HCT-8 cells in 384-

well plates.  Compounds were added at EC50 or multiples of EC90 concentrations ~24 

hours after infection.  At ~24 h (i.e. the time of compound addition) and the indicated 

time intervals thereafter, parasites were washed, fixed, permeabilized, stained and 
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imaged as in the C. parvum growth assay.  For the extended compound exposure 

experiments, the media and compound were replaced every three days.  A separate 384-

well plate was used for each time interval.  Parasite numbers were normalized to host 

nuclei numbers and expressed as % parasite per nuclei.  In order to fit parasite decay 

curves, the effect of drugs was isolated from expected changes in parasite numbers over 

time by expressing parasite numbers as the % of DMSO control for each time point.  

Exponential decay curves were fit using GraphPad Prism software version 6.01, and 

curve validity was assessed using the replicates test. 

 

2.3.5.  Host cell toxicity assay 

Host cell toxicity was measured as previously described (Bessoff et al., 2013).  

HCT-8 cells were grown to >95% confluence in 384-well plates.  Increasing 

concentrations of compounds were added and assay plates incubated at 37°C, 5% CO2 

for 48 h.  The corner wells of each plate were trypsinized to remove cells and used as a 

blank for measuring absorbance at 490 nm.  Cell proliferation was measured using the 

CellTiter AQueous assay kit (Promega, USA) following the manufacturer’s instructions, 

and was expressed as the percent of vehicle control (DMSO).  GraphPad Prism 

software version 6.01 was used to plot graphs and calculate the concentration that 

inhibits 50% of host cell proliferation compared to DMSO control (TC50).  A selectivity 

index (SI) was calculated as the ratio of C. parvum EC50 to the host cell TC50. 
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2.3.6.  Pharmacokinetic measurements 

Mouse single-dose plasma pharmacokinetic (PK) studies were previously 

performed as part of the Malaria Box program (Van Voorhis et al., 2016), and data 

were kindly provided by the Medicines for Malaria Venture (Geneva, Switzerland).  

Three overnight fasted CD-1 male mice were each given an oral suspension of 55 

mg/kg of MMV665917 in 5% DMSO solution in 1% hydroxylpropyl methyl cellulose 

(HPMC).  Blood samples were collected at 0.083, 0.25, 1, 2, 4, 6, and 9 hours post-

treatment, transferred to microcentrifuge containing 1000 IU/mL of sodium heparin, 

and spun at 3000×g for 15 min at 4°C.   MMV665917 levels were then measured by 

liquid chromatography-tandem mass spectrometry (LC/MS/MS), using an API 4000 

AB Sciex Instruments mass spectrometer with a Phenomenex Kinetex C18 (2.6 µm × 

2.1 × 50 mm) column (phase A:  0.1% formic acid/4.9% acetonitrile/95% water; phase 

B:  0.1% formic acid/4.9% water/95% acetonitrile).  Compound spiked into control 

plasma was used as a standard. 

Fecal and intestinal content MMV665917 concentrations were measured 

following compound extraction.  Feces or intestinal contents were homogenized in PBS 

(0.1 g/mL) in a polypropylene tube and then further diluted prior to addition of an 

internal standard (enalapril) and acetonitrile protein precipitation.  The supernatant was 

then transferred to a fresh polypropylene tube and dried using a speed vac.  Samples 

were then resuspended and analyzed using LC/MS/MS.   
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2.3.7.  In vivo efficacy 

All NOD SCID gamma mouse studies were performed in compliance with animal 

care guidelines and were approved by the University of Vermont Institutional Animal 

Care and Use Committee.  Normal flora NOD SCID gamma mice (NOD.Cg-Prkdcscid 

IL2rgtm1Wjl/SzJ) (Shultz et al., 2005) were purchased from Jackson laboratory (Maine, 

USA) and housed for at least a week for acclimatization.  At 4—5 weeks of age, mice 

were infected with 105 C. parvum Iowa isolate oocysts.  Fecal oocyst shedding is 

detected 6 days after infection using a qPCR assay, so treatment was started on day 

seven after infection.  Mice (n=4 per experimental group) were treated orally (p.o.) with 

MMV665917 30 or 60 mg/kg BID, intraperitoneally (i.p.) with MMV665917 60 mg/kg 

BID, or p.o. with 1000 mg/kg BID paromomycin.  MMV665917 was suspended in 

DMSO, sonicated for 30 secs three times to get a fine suspension, aliquoted and stored 

at -80°C for less than 10 days.  On the day of treatment, DMSO aliquots of 

MMV665917 were thawed, mixed well using a vortexter and diluted with 1% HPMC 

and sonicated as before, three times for 30 secs each, mixed well and given to mice 

either p.o. or by i.p. injection.  A final 5% DMSO concentration was used in 100 µL of 

1% HPMC per dose.  For the additional malaria box compounds and compound 

variants tested, the doses were prepared in the same way and specific dosages tested are 

included in Table S3.  Mice were treated for either four or seven days as indicated, 

allowed to recover for a week and then sacrificed.  Oocyst shedding in feces was 

monitored throughout by qPCR, including relapse in infection post-treatment. 
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All interferon-gamma (IFNγ) knockout mouse studies were performed in 

compliance with animal care guidelines and were approved by Explora BioLabs (San 

Diego, CA) Institutional Animal Care and Use Committee.  Four-week old female 

normal flora C57BL/6 IFNγ-/- mice were purchased from the Jackson Laboratory and 

acclimated for three days prior to infection by oral gavage with 106 C. parvum Iowa 

isolate oocysts (Sterling Parasitology Laboratory, University of Arizona) suspended in 

sterile distilled water.  At the indicated times post infection, mice were treated with 

compound vehicle alone, clofazimine (positive control), or MMV665917.  As described 

previously, fecal parasite shedding was quantified at the indicated times post infection 

by isolating oocysts using a sucrose gradient centrifugation method (Arrowood & 

Sterling, 1987), followed by staining for immunofluorescence microscopy using a 

fluorescein isothiocyanate-conjugated mouse anti-Cryptosporidium antibody (0.25 µg 

per sample), and analysis with a Guava EasyCyte flow cytometer and CytoSoft Data 

Acquisition and Analysis software (v5.3; Guava Technologies, Inc.).  Oocyst 

counts/mL of sample were exported to Excel (Microsoft Corp.), and normalized to 

counts/mg feces.  Final data analysis and graphing were done using GraphPad Prism 

software (version 6.01). 
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2.4.  Results 

2.4.1.  Re-analysis of the MMV Malaria Box C. parvum screen identified new 

inhibitors 

The results from the recently screened MMV Open Access Malaria Box (Bessoff 

et al., 2014) were re-analyzed using a modified hit definition.  The mean of parasite 

numbers normalized to host nuclei numbers was determined for the full library and set 

to zero.  The results for each compound were then expressed as the distance from the 

mean and used to generate a frequency distribution plot, giving rise to a normal 

distribution (Fig. S1).  Using the 95th percentile as the cutoff, 20 potential inhibitors 

were identified.  Three of the 20 compounds also affected host nuclei numbers and 

were therefore excluded from further analysis.  Fifteen of the remaining 17 were 

purchased and confirmed as selective in vitro inhibitors of C. parvum development.  

This re-analysis gave an overall hit rate of 3.75% (15/400), and yielded six 

Cryptosporidium inhibitors that were not identified in our previous study (Table S1) 

(Bessoff et al., 2014).  The parent compound and/or commercially available variants for 

eight of the fifteen Cryptosporidium inhibitors were subsequently tested in an 

immunocompromised mouse model of chronic cryptosporidiosis (Table S2).  Only 

MMV665917 was efficacious at the dose tested.  

 

2.4.2.  MMV665917 is a highly selective inhibitor of Cryptosporidium 

A piperazine-containing scaffold, MMV665917 (Fig. 1A), appeared to be a 

particularly promising new hit, since its activity was highly selective for 
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Cryptosporidium and erythrocyte-stage Plasmodium species (Van Voorhis et al., 2016).  

MMV665917 was previously reported to be inactive in numerous biological assays, 

including assays against eleven species of bacteria (e.g. Escherichia coli, Klebsiella 

pneumoniae, Salmonella typhimurium, Staphylococcus aureus, and Streptococcus suis), 

twelve protozoa, and seven helminths (Van Voorhis et al., 2016).  Based on previously 

reported toxicity profiling (Van Voorhis et al., 2016), MMV665917 was not toxic to 

zebrafish and had a selectivity index (SI) of > 20 for C. parvum over five mammalian 

cell lines.  MMV665917 was also known to have modest plasma protein binding 

(83.3% and 88.8%  for mouse and human, respectively), to have a low potential for 

significant drug-drug interactions based on low inhibition of five human and one mouse 

cytochrome P450 (CYP) isoforms (1A2, 2C9, 2C19, 2D6, 3A4-M, 3A4-T) at 10 µM, 

and to have a kinetic solubility of 18 µM at pH 7.4 (Van Voorhis et al., 2016).  The 

major known liability for development was hERG inhibition, a marker for potential 

cardiotoxicity, by 58% at 11 µM (Van Voorhis et al., 2016). 

The half maximal effective concentration (EC50) of MMV665917 against asexual 

stages of the C. parvum Iowa isolate was 2.10 µM (Fig. 1B).  There was no toxic effect 

on host HCT-8 cell proliferation at concentrations up to 100 µM (Fig. 1C), giving an SI 

of > 47.  MMV665917 displayed a similar EC50 against three C. parvum field isolates 

isolated from calves, and an EC50 of 4.05 µM against C. hominis (TU502 isolate) (Fig. 

1D).  A preliminary structure activity relationship (SAR) study using commercially 

available analogues showed that changes could be made around the piperazine linker to 

both the R and R’ groups defined in Fig. 1A without losing anti-Cryptosporidium 
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activity (Table S3; Figures S2 and S3).  Addition of a second chlorine at the meta 

position of the urea’s terminal aryl ring increased potency (Fig. 1E).  Compounds with 

an aryl urea at the R position were generally more active than aryl carboxamides, 

oxyacetamides, and sulfonamides (Fig. 1E).  It is worth noting that compounds with an 

altered substituent on the terminal aryl ring of the carboxamides and sulfonamides 

regained some potency (Fig. 1E, D-44 and D-79), suggesting options for further 

improvement of potency.  More detailed preliminary SAR are shown in Supplementary 

Figures S2 and S3. 

 

2.4.3.  Oral MMV665917 is curative in both chronic and acute mouse models of 

cryptosporidiosis 

Most prior in vivo studies of potential Cryptosporidium treatments have used one 

of several self-resolving infection models, and therefore, focused on the acute phase of 

infection (Campbell, Stewart, & Mead, 2002; Gorla et al., 2014; Love et al., 2017; You 

et al., 1998).  Others have used interferon-gamma (IFNγ) knockout (KO) mice to model 

chronic infection (Griffiths, Theodos, Paris, & Tzipori, 1998), but the results from 

different research groups are variable, ranging from lethal in some cases to self-limited 

infection in others (Griffiths et al., 1998; Love et al., 2017; Ndao et al., 2013; 

Sonzogni-Desautels et al., 2015).  In our hands, infection of IFNγ KO mice is self-

resolving (Love et al., 2017).  Therefore, to mimic chronic infection in 

immunocompromised people and afford the opportunity to assess relapse after 

treatment, we developed a new immunocompromised mouse model using NOD SCID 
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gamma (NSG) mice.  In addition to the severe combined immunodeficiency deficiency 

(SCID) defect, NSG mice lack known sources of IFNγ, including the 

monocyte/macrophage lineage and natural killer cells (Ito et al., 2002).  Our intention 

was to more cheaply mimic a previously reported model using SCID mice treated with 

an IFNγ neutralizing antibody (Tzipori, Rand, & Theodos, 1995).  Much as reported in 

that study, infection of NSG mice was reliably established by six days following oral 

gavage of 4-5 week old NSG mice with ~105 C. parvum oocysts, and asymptomatic 

fecal shedding of oocysts continued for greater than two months (data not shown). 

Paromomycin (positive control; 1,000 mg/kg oral twice daily (BID)) and 

MMV665917 (30 or 60 mg/kg oral BID) were compared in the NSG mouse 

cryptosporidiosis model with treatment of mice beginning seven days after infection.  

Mice treated for 7 days with paromomycin relapsed promptly upon cessation of 

treatment (Fig. 2A).  Twice daily 30 mg/kg MMV665917 reduced oocyst shedding by 

> 90%, but similar to paromomycin, mice treated at this dose relapsed.  Mice treated 

with MMV665917 60 mg/kg twice daily, on the other hand, were apparently cured, 

with no oocyst shedding observed at any time after stopping treatment (Fig. 2A).  As 

with the other commonly used cryptosporidiosis mouse models, nitazoxanide did not 

reduce oocyst shedding in NSG mice (Fig. 2B).  Clofazimine was also tested using 

several different vehicles, and completely lacked efficacy in the NSG mouse model 

(Fig. 2B and data not shown (various vehicles)).  This was surprising based on its 

known efficacy in an acute mouse model (Love et al., 2017). 
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To better enable comparison of results amongst different mouse models, the 

efficacy of MMV665917 30 mg/kg twice daily was directly compared to that of 

clofazimine in an IFNγ KO mouse model.  As noted above and for unknown reasons, 

C. parvum infection of IFNγ KO mice ranges from a self-resolving acute infection to 

lethal; in our hands, the infection is self-resolving (Love et al., 2017).  MMV665917 

was highly efficacious in this acute infection model (Fig. 3A and B); clofazimine 

efficacy was also confirmed. 

 

2.4.4.  Intraperitoneal dosing of MMV665917 

In hopes of determining if MMV665917 efficacy was due to intestinal or oral 

exposure, we compared the efficacy of oral and i.p. MMV665917 in the NSG mouse 

model.  MMV665917 was equally efficacious regardless of the route of administration 

(Fig. 4A).  This suggested the possibilities that: 1) MMV665917 undergoes biliary 

excretion into the intestinal lumen; 2) systemic compound concentrations drive in vivo 

efficacy of MMV665917; or 3) both. 

Fecal concentrations of MMV665917 were determined during treatment of 

cryptosporidiosis, and fecal MMV665917 levels vastly exceeded the measured EC90 

concentration regardless of the route of administration (Fig. 4B).  In fact, very high 

levels of MMV665917 were detected in the feces shortly after even a single 60 mg/kg 

i.p. dose (approximately 78× EC90 vs. 490× EC90 when given orally) (Fig. 4B).  

Following euthanasia on day 14 between 12 and 15 h after the final dose, the intestinal 

contents contained MMV665917 at many times the EC90 concentration regardless of 
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the route of administration (Fig. 4C).  Serum samples from these infected NSG mice 

treated orally or i.p. with MMV665917 were unfortunately lost during shipping.  Based 

on an independent PK exposure study in CD-1 male mice, MMV665917 plasma levels 

continued to increase for 9 hours following administration of a single oral dose of 55 

mg/kg, demonstrating that in contrast to the immediately elevated fecal levels observed, 

MMV665917 plasma concentrations build over time (Supplemental Fig. S4).  The 

possible interpretation of these data is limited, since the terminal time point was quite 

early.  Collectively, however, these data demonstrated biliary excretion of 

MMV665917, but did not provide any insight into whether MMV665917 works via 

presence in the gut lumen, the tissue, or both.   

 

2.4.5.  Rate of parasite elimination 

Adapted from classical anti-bacterial time-kill curves, we developed an in vitro 

parasite persistence assay to determine the concentration of compound required to 

achieve the maximal anti-Cryptosporidium response, and the rate of parasite 

elimination following exposure to different compound concentrations.  A similar 

approach has been applied by the Medicines for Malaria Venture to compare anti-

malaria drug candidates to benchmark compounds in immunocompromised mice 

(Angulo-Barturen et al., 2008; Burrows, van Huijsduijnen, Mohrle, Oeuvray, & Wells, 

2013).  C. parvum cannot be continuously cultured using simple in vitro methods, with 

growth in epithelial monolayers peaking at ~60 h post-infection.  In the parasite 

persistence assay, we used this narrow time window to mimic treatment of an 
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established in vivo infection by allowing infection of epithelial cell monolayers to 

progress for 24 hours prior to addition of compounds at the EC50 or multiples of the 

EC90 and then sequentially quantifying parasite numbers (schematic in Fig. 5A).    

Predicted outcomes include continued growth of control-treated parasites, or parasite 

growth inhibition versus parasite elimination for potentially static (or slowly cidal) or 

rapidly cidal compounds, respectively (Fig. 5B).  In this assay, parasites persist at the 

highest non-toxic concentrations of nitazoxanide, paromomycin, and clofazimine (Fig. 

5C and Supplemental Fig. S5).  MMV665917, on the other hand, reduced parasite 

numbers at concentrations higher than the EC90, with a maximal rate of parasite 

elimination achieved at a concentration of 3×EC90 (Fig. 5D).  However, significant 

parasite numbers remained at 72 hours following even the highest dose treatment with 

MMV665917.  To further assess if MMV665917 results in parasite elimination 

compared to paromomycin, an extended treatment experiment was performed in which 

the culture medium and drugs were replaced every three days for a total of 14 days (i.e. 

13 days of drug exposure) (Fig. S6).  As expected, parasite numbers continued to fall 

during treatment with the vehicle alone, reaching a low of ~6% of host cells infected by 

day 13.  Paromomycin treatment closely mirrored the DMSO vehicle control at five 

days of culture and beyond, but MMV665917 treatment resulted in a progressive 

decline in the percent of host cells infected to nearly zero by day 13 of treatment 

(~0.1% of host cells positive).  These data suggested that MMV665917 is cidal for C. 

parvum, while paromomycin is static. 
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Data from the parasite persistence assay were next used to estimate the in vitro 

rate of parasite elimination in the presence of MMV665917, nitazoxanide, 

paromomycin, and clofazimine.  The parasite numbers for the tested highest non-toxic 

concentration were expressed as percent of the DMSO control for each time-point in 

order to isolate the anti-Cryptosporidium effect attributable to each drug, and one-phase 

exponential decay curves were fit to calculate decay constants (Fig. 5E and 5F, and 

Supplemental Fig. S5).  Note that it was not possible to fit exponential decay curves to 

the data for nitazoxanide, paromomycin, or clofazimine (p < 0.05 for each; replicates 

test; GraphPad Prism), but a high-quality curve was readily generated for 

MMV665917.  The maximal rate of parasite elimination was achieved at 3×EC90 

concentration of MMV665917, with the rate of parasite decay similar for 3×EC90 and 

12×EC90 (decay rate constant, r = 0.05346 and 0.05864 for 3×EC90 and 12×EC90 

respectively).  The difference in the ability to fit decay curves for MMV665917, 

nitazoxanide, clofazimine, and paromomycin gave an objective indication that 

MMV665917 reduced parasite numbers under the conditions of the parasite persistence 

assay in a manner distinct from the other drugs tested.   

 

2.5.  Discussion 

The most important result of this study is the identification of MMV665917 as a 

novel, piperazine-based lead compound for treatment of cryptosporidiosis.  It is active 

against C. hominis and field isolates of C. parvum, shows no in vitro cytotoxicity at 

high concentrations, and consistent with previously published data on the MMV 
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Malaria Box (Van Voorhis et al., 2016), is highly specific for Cryptosporidium 

parasites and blood stage Plasmodium species.  MMV665917 appears to cure 

established cryptosporidiosis in highly immunocompromised NSG mice, unlike 

paromomycin (the most commonly used positive control), nitazoxanide, and the 

recently identified repurposing lead clofazimine.  It is also highly efficacious in an 

acute IFNγ KO mouse model of infection.  Interestingly, MMV665917 is efficacious in 

NSG mice regardless of dosing by oral or i.p. routes, and accumulates rapidly in the 

feces following i.p. dosing, indicating that it is at least partially excreted via the biliary 

tract.  To further understand MMV665917’s in vivo efficacy, we developed and used a 

new in vitro PD assay to measure parasite elimination vs. time at varying 

concentrations of compound.  Efficacy in the chronic NSG mouse model correlated 

with progressive parasite elimination in the presence of compound, since MMV665917 

appeared to be cidal and resulted in parasite elimination over time, while nitazoxanide, 

paromomycin, and clofazimine all appeared to be static. These features of 

MMV665917 and the methods used to define them provide guidance for further 

development of this piperazine-based compound series to treatcryptosporidiosis.  Given 

the lack of a clearly defined developmental pathway for anti-cryptosporidials, we 

believe these studies provide general guidance for Cryptosporidium drug development. 

Since MMV665917 is active against both C. hominis and a variety of C. parvum 

isolates and it is relatively specific for Cryptosporidium (Van Voorhis et al., 2016), it is 

an especially promising lead.  The in vivo efficacy studies done here, however, only 

used C. parvum and non-clinical rodent models of cryptosporidiosis.  While both C. 
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parvum and C. hominis cause human disease, and both species are also believed to be 

distributed similarly within tissues, it is important to note that the majority of children 

with life-threatening cryptosporidiosis are actually infected with C. hominis (Liu et al., 

2016).  Thus, additional early-stage testing is needed as proof of principle for in vivo 

treatment of C. hominis with MMV665917.  The gnotobiotic piglet model is the 

preferred model for such studies (Akiyoshi, Mor, & Tzipori, 2003).  Similarly, 

MMV665917 needs to be tested in a clinical model of cryptosporidiosis in which the 

host develops diarrhea, such as the dairy calf model (Manjunatha et al., 2017; Schaefer 

et al., 2016; Zambriski et al., 2013). 

Although in vitro cytotoxicity was not observed with MMV665917 for host cell 

lines and it is well tolerated in zebra fish and mice, the inhibition of hERG (58% at 11 

µM) presents a potential cardiotoxicity liability.  This is confounded by the modest 

potency of the compound versus Cryptosporidium, which suggests the possibility of a 

narrow therapeutic window in animals (Van Voorhis et al., 2016).  The results of the in 

vitro Cryptosporidium time-kill curve assay should aide in design of such studies, since 

ignoring protein binding, a concentration of compound 3×EC90 maximized the anti-

parasitic effect.  The preliminary SAR studies presented here also suggest that this 

hERG liability may be addressed through medicinal chemistry to significantly improve 

compound potency and/or reduce hERG inhibition.   Of course, such a program would 

be aided by identification of the molecular mechanism of action of MMV665917, 

which remains unknown. 
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Since MMV665917 was present in the feces regardless of administration via the 

oral or i.p. route, no conclusion is possible about the PK characteristics that drive in 

vivo efficacy (i.e. intestinal vs. systemic exposure).  This is a very important area of 

investigation for Cryptosporidium drug development in general, since the parasite 

resides in an unusual parasitophorous vacuole on the luminal surface, but enclosed 

within intestinal epithelial cells.  The fecal levels measured only provide an indirect 

view of cumulative drug exposure in the intestinal mucosa, since the fecal levels 

include both compound being eliminated and compound that is never absorbed after 

oral administration.  Furthermore, the day-to-day variability seen in Figure 4B may 

simply represent variation in drug excretion and/or fecal volumes.  The important 

conclusion from the limited PK analysis performed here is that MMV665917 is at least 

partially excreted in the feces, and presumably undergoes enterohepatic recirculation.  

Further studies to define the PK characteristics that drive MMV665917 in vivo efficacy 

are needed, and should aide in medicinal chemistry and formulation strategies for 

optimization. 

Variability in outcomes in different rodent models of cryptosporidiosis and lack 

of knowledge of the basis and significance of such variability greatly complicates 

Cryptosporidium drug development.  Our approach comparing results in chronically 

infected NSG mice to results in an acute IFNγ KO mouse model suggests that the 

chronic NSG mouse model sets a more stringent standard than acute models, since 

MMV665917 was highly efficacious in both models, but several compounds with good 

efficacy in an acute IFNγ KO mouse model were ineffective in NSG mice (i.e. 



61 

 

clofazimine, paromomycin, and data not shown).  However, it should be stressed that 

this conclusion is based on only a small number of compounds and, in any case, it 

remains unknown if such a high standard is required to achieve reliable efficacy in 

people.  In addition, we have only included data for one chronic model and one acute 

model of infection, and results may differ further amongst the other available models.  

The best pathway for developing anti-Cryptosporidium drugs is still being determined, 

and the predictive value of Cryptosporidium animal models for drug efficacy within 

different patient populations is not known.  Our data suggest that the chronic NSG 

mouse model is a model of greater stringency than the acute (i.e. self-curing) IFNγ KO 

mouse model.  As noted above, in some mouse facilities, infection of IFNγ KO mice is 

lethal (Griffiths et al., 1998; Ndao et al., 2013; Sonzogni-Desautels et al., 2015), and 

may represent a similarly high-stringency model.  In any case, there is likely value to 

prioritizing compounds in development by testing them in animal models of differing 

stringency.  A lack of efficacy in the NSG model may not preclude high-value 

compounds from advancing in development (e.g. repurposing of clofazimine); 

however, this model may help to further differentiate and prioritize the growing number 

of lead compounds that have recently been discovered.  It is logical that efficacy in a 

chronic mouse model such as the NSG model may predict drugs that will be efficacious 

for treatment of AIDS patients with chronic cryptosporidiosis and severely 

malnourished children.   

The data also suggest that efficacy in NSG mice, which lack all aspects of 

adaptive immunity, may depend on the ability of a compound to eliminate parasites in 
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the absence of a competent immune system (i.e. compound parasite killing or so-called 

cidality) and/or the rate of parasite elimination at physiologically relevant compound 

concentrations.  By quantifying parasite persistence vs. elimination in the presence of 

different drug concentrations, it is possible to determine the concentration required to 

maximize the effect of a compound.  In the absence of a simple continuous culture 

system, it is not formally possible to prove cidality on a routine basis (e.g. use of the 

recently reported hollow-fiber culture system (Morada et al., 2016) would require a 

large amount of compound and be prohibitively expensive).  However, this time-kill 

curve assay enables determination of whether a compound eliminates parasites or 

simply blocks further growth during the time frame of the assay, which likely indicates 

whether a compound is cidal or static under the conditions tested.  More importantly, 

the method is simple, inexpensive, and requires only a small amount of compound, so 

this method provides the opportunity to directly compare different compounds or 

compound classes to aide in prioritization of early-stage drug leads.  The numbers of 

compounds studied here are too few to enable an absolute conclusion, but based on our 

experience with the NSG mouse model and analogy with general principles for 

treatment of infections in highly immunocompromised individuals, it is likely that cidal 

compounds will be of the greatest value for treatment of cryptosporidiosis in the very 

patients for whom nitazoxanide is either ineffective (e.g. AIDS patients and/or 

transplant patients) or only modestly effective (e.g. malnourished children).  In this 

regard, MMV665917 is in keeping with a recently proposed ideal product profile for an 

anti-cryptosporidial drug (Huston et al., 2015). 
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In summary, we present MMV665917 as a promising lead for further 

development of an anticryptosporidial drug, and new methods with general value for 

Cryptosporidium drug development.  Current studies with MMV665917 include testing 

in a clinical model of infection in dairy calves, additional SAR studies to eliminate 

hERG inhibition and improve potency, and efforts for drug-target identification. 
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2.7.  Figure Legends 

Figure 1.  The piperazine-based Malaria Box compound, MMV665917, is a 

selective inhibitor of Cryptosporidium growth in vitro.  (A) Structure of 

MMV665917 showing a piperazine linker connecting the indicated R and R’ groups.   

(B) Dose response curve showing inhibition of intracellular C. parvum growth in HCT-

8 cells after 48 h of incubation.  Parasite numbers were normalized to DMSO vehicle 

control data.  Each point represents the mean and SD of 3 biological replicates with 4 

technical replicates per experiment.  (C) Effect of MMV665917 on proliferation of host 

HCT-8 cells as assessed by CellTiter AQueous assay (Promega).  Data are the mean and 

SD combined from 2 biological replicates with 4 technical replicates each.  (D) 
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MMV665917 activity against C. hominis TU502 and 3 different bovine field isolates of 

C. parvum.  The mean and SD of 2 independent experiments with 4 technical replicates 

per experiment are shown, except for C. hominis TU502 where mean of 3 replicates 

from 1 biological experiment is shown.  (E) Preliminary structure activity relationship 

studies using commercially available variants on R demonstrating a preference for aryl 

urea (D-28) over carboxamides (D-46, D-44), oxyacetamides (D-41), and 

sulphonamides (D-23, D-79) (see also Fig. S2 and Table S2). 

 

Figure 2.  MMV665917 cures NOD SCID gamma mice with established 

cryptosporidiosis.  (A)  Efficacy of MMV665917 compared to paromomycin (positive 

control) in NOD SCID gamma (NSG) mice.  NSG mice were infected by oral gavage 

of C. parvum Iowa isolate oocysts.  Fecal parasite shedding is detected by qPCR on day 

6, after which animals were treated with the indicated drug regimens for one week, and 

then monitored for relapse of infection (n = 4 mice per experimental group, except 

paromomycin where n = 3; data are the mean and SEM;  **, p ≤ 0.01 and ns, p > 0.05, 

by non-parametric multiple comparisons Kruskal-Wallis test for each treatment vs. 

vehicle control; BID = twice daily dosing regimen).  (B) Short-term efficacy of 

nitazoxanide, paromomycin, and clofazimine in the NSG mouse model.  NSG mice 

were infected and fecal parasite shedding was measured by qPCR as above.  Beginning 

7 days after infection, mice were treated with the indicated drug regimens.  Fecal 

parasite shedding was measured just prior to initiation of treatment and the day 
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following completion (n = 4 mice per experimental group; data are the mean and SEM:  

* indicates p ≤ 0.05 by Mann-Whitney test). 

 

Figure 3.  MMV665917 is effective in IFNγ knockout mice acutely infected with C. 

parvum.  (A) Efficacy of MMV665917 and clofazimine (positive control) in the acute 

IFNγ knockout (KO) mouse model.  IFNγ KO mice were infected by oral gavage of C. 

parvum Iowa isolate oocysts.  Compounds or the indicated vehicles were dosed as 

indicated twice daily on days 4, 5, and 6 post-infection.  Fecal parasite shedding was 

measured by isolation of oocysts using sucrose gradient flotation, followed by 

immunofluorescence staining and detection by flow cytometry. (n = 4 mice per 

experimental group).  (A) Time course comparing MMV665917 to clofazimine 

(positive control).  Data are the mean and SEM.  Horizontal dashed line indicates 

reliable limit of detection.  (B) Total fecal shedding for days 4-7.  Each symbol 

indicates an individual mouse.  GraphPad Prism was used to calculate the area under 

the fecal shedding vs. time curves.  Data are the mean and SD:  * indicates p ≤ 0.05; ** 

indicates p ≤ 0.01 by two-tailed student’s t-test. 

 

Figure 4.  Oral vs intraperitoneal (i.p.) treatment with MMV665917.  (A) Efficacy 

data measured by fecal qPCR following administration of MMV665917 at the indicated 

dose by either oral gavage or intraperitoneal (i.p.) injection.  Efficacy was independent 

of the dosing route (data are the mean and SEM; n = 4 for oral dosing; n = 3 for i.p. 

dosing; ns indicates p = 0.2 (Mann-Whitney test)).  (B) Fecal MMV665917 levels of 



66 

 

mice treated for 7 days orally or i.p. with 60 mg/kg twice daily (BID) from first 12 h of 

treatment and every 24 h thereafter.  (C) Small intestinal MMV665917 levels following 

euthanasia 12 to 15 h after the last treatment dose.  For (B) and (C) data expressed in 

µM of MMV665917 after considering 1g of intestinal contents or feces as equivalent to 

1 mL.   

 

Figure 5.  Parasite persistence assay showing in vitro elimination of C. parvum 

following MMV665917 exposure vs. parasite persistence in the presence of 

nitazoxanide.  (A) Experimental design of the parasite persistence assay.  After 

establishing an infection for approximately 24 h, compounds are added at varying 

concentrations as labeled, and then parasites and host cells are enumerated at multiple 

time points using immunofluorescence microscopy.  (B) Cartoon showing predicted 

outcomes for potentially cidal or static compounds compared to vehicle control 

(DMSO).  (C, D) Data showing parasite numbers normalized to host nuclei over time 

with increasing concentrations of (C) nitazoxanide, or (D) MMV665917.  These data 

shown are representative of 3 independent experiments (n = 4 per data point; mean and 

SD).  (E) Nitazoxanide and (F)) MMV665917 one-phase exponential decay curve fit 

using parasite persistence assay data normalized to percent of the DMSO control for 

each time point.  Data points are the mean and SD; n = 4; representative of 3 

independent experiments.  The p value is the replicates test result (note that p ≥ 0.05 

indicates a valid curve fit). 
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Supplementary Figure 1.  Re-analysis of MMV box screening data identifies new 

Cryptosporidium inhibitors.  The previously published screening data of 400 

compounds of the MMV box were re-analyzed (Bessoff et al., 2014).  Parasite numbers 

were normalized to nuclei and expressed as percent nuclei.  Mean of % parasite / nuclei 

was determined and each individual value subtracted from the cumulative mean to 

determine the distance from mean.  A frequency distribution plot of each compound’s 

distance from the mean gave rise to a normal distribution.  The upper 95th percentile 

concentration was set as a cut-off to identify potential inhibitors.   

 

Supplementary Figure 2.  Preliminary structure activity relationship studies using 

commercially available variants on the left-hand side R position.  The mean EC50 

for 2 biological replicates is shown, as measured against C. parvum in HCT-8 cells. 

 

Supplementary Figure 3.  Preliminary structure activity relationship studies using 

commercially available variants on the right-hand side R’ position.  The mean EC50 

for 2 biological replicates is shown, as measured against C. parvum in HCT-8 cells. 

 

Supplementary Figure 4.  Plasma pharmacokinetic information.  Male CD-1 mice 

were administered 55 mg/kg of MMV665917 orally, after which plasma levels were 

measured at the indicated times (data for individual mice are shown). 
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Supplementary Figure 5.  Clofazimine and paromomycin both appear to be static 

for C. parvum.  (A and B) Parasite persistence assay data for the highest non-toxic 

concentrations of (A) clofazimine and (B) paromomycin.  (C and D) Parasite 

elimination curves for (C) clofazimine and (D) paromomycin.  These data were 

normalized to the DMSO control for each time point; GraphPad Prism was used to try 

to fit a single-phase exponential decay curve.  For both drugs, it is not possible to fit a 

decay curve (replicates test; p < 0.05).  Data are representative of 3 independent 

experiments (mean and SD; n = 4 per experiment). 

 

Supplementary Figure 6.  Effects of prolonged MMV665917 vs. paromomycin 

exposure.  The parasite persistence assay was extended by replacing the media and 

compound every 3 days for a total of 14 days of infection (i.e. 13 days of drug 

exposure).  (A) MMV665917 treatment.  (B) Paromomycin treatment.  Data points are 

the mean and SD (n=12). 
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Figure 1.  The piperazine-based Malaria Box compound, MMV665917, is a 

selective inhibitor of Cryptosporidium growth in vitro. 
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Figure 2.  MMV665917 cures NOD SCID gamma mice with established 

cryptosporidiosis. 
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Figure 3.  MMV665917 is effective in IFNγ knockout mice acutely infected with  

C. parvum. 
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Figure 4.  Oral vs intraperitoneal (i.p.) treatment with MMV665917. 
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Figure 5.  Parasite persistence assay showing in vitro elimination of C. parvum 

following MMV665917 exposure vs. parasite persistence in the presence of 

nitazoxanide. 
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Supplementary Figure 1.  Re-analysis of MMV box screening data identifies new 

Cryptosporidium inhibitors.
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Supplementary Figure 2.  Preliminary structure activity relationship studies using 

commercially available variants on the left-hand side R position. 
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Supplementary Figure 3.  Preliminary structure activity relationship studies using 

commercially available variants on the right-hand side R’ position. 
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Supplementary Figure 4.  Plasma pharmacokinetic information. 
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Supplementary Figure 5.  Clofazimine and paromomycin both appear to be static 

for C. parvum. 
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Supplementary Figure 6.  Effects of prolonged MMV665917 vs. paromomycin 

exposure. 
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Table S1.  Open access Malaria Box anti-C. parvum confirmed screening hits using 

new hit-definition. 

Compound ID Smiles

Repurchased

source

Mol wt 

(g/mol) ALogP

C. parvum  EC50 

(95% CI) (µM)
b

MMV006169
a C(Nc1nc(Nc2ccccc2)nc3ccccc13)c4ccccc4 Biomolecules 326.39 4.28 1.5 (1.2-1.9)

MMV403679
a c1(c(cnn1c2cccc(C)c2)C(=O)N3)N=C3n4nc(C)cc4NC(=O)c5cc(cccc6)c6o5 SPECS 465.46 4.34 0.12 (0.10-0.14)

MMV009085 OCCCCN1C(=O)c2ccc3C(=O)N(CCCCO)C(=O)c4ccc(C1=O)c2c34 SPECS 410.42 1.01 2.6 (1.9-3.5)

MMV665852 Clc1ccc(NC(=O)Nc2ccc(Cl)c(Cl)c2)cc1Cl SPECS 350.03 5.18 3.4 (3.1-3.7)

MMV000720
a Cc1ccnc(NC(c2cccc(OCc3ccccc3)c2)c4ccc5cccnc5c4O)c1 ChemDiv 447.53 6.22 0.21 (0.17-0.27)

MMV001246
a CSc1ccccc1C(=O)Nc2nc(cs2)c3ccccn3 ChemDiv 327.42 3.38 1.8 (1.3-2.6)

MMV665814
a Oc1c(ccc2cccnc12)C(Nc3ccccn3)c4cccc(Oc5ccccc5)c4 SPECS 419.47 5.73 0.59 (0.52-0.67)

MMV665917 Clc1ccc(NC(=O)N2CCN(CC2)c3ccc4nncn4n3)cc1 SPECS 357.80 1.69 2.1 (1.9-2.3)

MMV665941
a CN(C)c1ccc(cc1)C(O)(c2ccc(cc2)N(C)C)c3ccc(cc3)N(C)C ChemBridge 389.53 4.76 0.83 (0.69-1.0)

MMV666054
a

COc1ccc(cc1)C(=O)NC(c2ccc(Cl)cc2Cl)c3cc(Cl)c4cccnc4c3O ChemBridge 487.76 6.15 0.81 (0.58-1.1)

MMV006753 CC1=CC(=O)Oc2c1ccc3oc(C(=O)c4ccccc4)c(C)c23 SPECS 318.32 4.83 0.25 (0.03-2.3)

MMV011944 n1c(NCCO)c2c(cccc2)nc1Nc3cccc(OC)c3 SPECS 310.35 2.14 3.5 (2.9-4.3)

MMV665909 Brc1ccccc1C(=O)Nc2nc(cs2)c3ccccn3 SPECS 360.23 3.59 3.3 (2.9-3.8)

MMV000760 Oc1c(CN2CCN(CC2)c3ccccc3F)cc(Br)c4cccnc14 SPECS 416.29 4.43 0.29 (0.23-0.37)

MMV665969
a

COc1cccc(c1)C(=O)NC(c2ccc(C)cc2)c3cc(Cl)c4cccnc4c3O ChemBridge 432.90 5.31 0.054 (0.041-0.070)

a 
Previously repurchased and confirmed hits from reference 1

b
 EC50, indicates 50% inhibitory concentration
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Table S2.  Summary of NSG mouse efficacy experiments for Malaria Box screening 

hits. 

Compound ID Smiles Supplier

Dose 

(mg/kg)

Interval

(h)

Duration 

(days) Vehicle

NSG 

efficacy

MMV006169 v1 C(Nc1nc(Nc2ccccc2)nc3ccccc13)c4ccccc4 Life Chemicals 50 12 4 1% HPMC
a
 / 5% DMSO No

MMV006169 v2 C1CCC(C1)Nc1nc(NCc2ccccc2)c2c(n1)cccc2 Life Chemicals 50 12 4 1% HPMC
a
 / 5% DMSO No

MMV006169 v3 COc1ccc(cc1Cl)Nc1nc(NCc2ccccc2Cl)c2c(n1)cccc2 Life Chemicals 50 12 4 1% HPMC
a
 / 5% DMSO No

MMV403679 v1 c31c(cnn1-c2cc(ccc2)C)C(=O)NC(=N3)n4c(cc(n4)C)NC(=O)c5c(cc(cc5)OC)OC Life Chemicals 100 24 7 1% HPMC
a
 / 5% DMSO No

MMV403679 v2 c31c(cnn1-c2cc(ccc2)C)C(=O)NC(=N3)n4c(cc(n4)C)NC(=O)C5CC5 Life Chemicals 100 24 7 1% HPMC
a
 / 5% DMSO No

MMV403679 v3 c31c(cnn1-c2cc(ccc2)C)C(=O)NC(=N3)n4c(cc(n4)C)NC(=O)C5CCCC5 Life Chemicals 100 24 7 1% HPMC
a
 / 5% DMSO No

MMV403679 v4 c31c(cnn1-c2ccccc2)C(=O)NC(=N3)n4c(cc(n4)C)NC(=O)c5oc6c(c5)cccc6 Life Chemicals 100 24 7 1% HPMC
a
 / 5% DMSO No

MMV403679 v5 c31c(cnn1-c2cc(ccc2)C)C(=O)NC(=N3)n4c(cc(n4)C)N Life Chemicals 100 24 7 1% HPMC
a
 / 5% DMSO No

MMV009085 OCCCCN1C(=O)c2ccc3C(=O)N(CCCCO)C(=O)c4ccc(C1=O)c2c34 - - - - - ND

MMV665852 Clc1ccc(NC(=O)Nc2ccc(Cl)c(Cl)c2)cc1Cl - - - - - ND

MMV000720 Cc1ccnc(NC(c2cccc(OCc3ccccc3)c2)c4ccc5cccnc5c4O)c1 - - - - - ND

MMV001246 CSc1ccccc1C(=O)Nc2nc(cs2)c3ccccn3 Enamine 50 12 4 1% HPMC
a
 / 5% DMSO No

MMV665814 Oc1c(ccc2cccnc12)C(Nc3ccccn3)c4cccc(Oc5ccccc5)c4 SPECS 50 12 4 No

MMV665917 Clc1ccc(NC(=O)N2CCN(CC2)c3ccc4nncn4n3)cc1 Life Chemicals 30 12 4 1% HPMC
a
 / 5% DMSO Yes

MMV665941 CN(C)c1ccc(cc1)C(O)(c2ccc(cc2)N(C)C)c3ccc(cc3)N(C)C SPECS 50 12 4 1% HPMC
a
 / 5% DMSO No

MMV666054 COc1ccc(cc1)C(=O)NC(c2ccc(Cl)cc2Cl)c3cc(Cl)c4cccnc4c3O - - - - - ND

MMV006753 CC1=CC(=O)Oc2c1ccc3oc(C(=O)c4ccccc4)c(C)c23 - - - - - ND

MMV011944 n1c(NCCO)c2c(cccc2)nc1Nc3cccc(OC)c3 - - - - - ND

MMV665909 Brc1ccccc1C(=O)Nc2nc(cs2)c3ccccn3 Enamine 50 12 4 1% HPMC
a
 / 5% DMSO No

MMV000760 Oc1c(CN2CCN(CC2)c3ccccc3F)cc(Br)c4cccnc14 - - - - - ND

MMV665969 COc1cccc(c1)C(=O)NC(c2ccc(C)cc2)c3cc(Cl)c4cccnc4c3O SPECS 50 12 4 1% HPMC
a
 / 5% DMSO No

a
HPMC, hydroxypropyl methyl cellulose
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Table S3.  Structure-activity relationship of MMV665917. 

 

Compound_ID  Supplier SMILES

Mol wt 

(g/mol) miLogP
a

TPSA
b

(Å
2
)

C. parvum  EC50 

(95% CI) (µM)
c

D-1 (MMV665917) Life Chemicals Clc1ccc(NC(=O)N2CCN(CC2)c3ccc4nncn4n3)cc1 357.81 2.40 78.67 2.1 (1.9-2.3)

D-2 Vitas M Labs CN1CCN(CC1)c1ccc2n(n1)c(nn2)C(F)(F)F 286.26 1.37 49.57 >25

D-3 Vitas M Labs FC(c1nnc2n1nc(cc2)N1CCN(CC1)Cc1ccccc1)(F)F 362.35 2.77 49.57 >25

D-4 Vitas M Labs CCOC(=O)N1CCN(CC1)c1ccc2n(n1)c(nn2)C(F)(F)F 344.29 1.82 75.87 >25

D-9 Vitas M Labs c1ccc(cc1)N1CCN(CC1)c1ccc2n(n1)cnn2 280.33 2.07 49.57 >25

D-12 Vitas M Labs CC(=O)N1CCN(CC1)c1ccc2n(n1)c(nn2)C(F)(F)F 314.27 0.74 66.64 >25

D-18 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)cnn2)Nc1ccccc1 323.35 1.72 78.67 >25

D-19 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)cnn2)Nc1ccc2c(c1)OCO2 367.36 1.61 97.13 >25

D-20 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)cnn2)NC1CCCCC1 329.40 2.48 78.67 >25

D-21 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)c(C)nn2)NCc1ccccc1 351.41 2.06 78.67 >25

D-22 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)c(nn2)C1CC1)NC1CCCCC1 369.46 2.94 78.67 >25

D-23 Life Chemicals Clc1ccc(cc1)S(=O)(=O)N1CCN(CC1)c1ccc2n(n1)cnn2 378.84 1.96 83.71 >25

D-26 Life Chemicals Fc1ccc(cc1)OCC(=O)N1CCN(CC1)c1ccc2n(n1)cnn2 356.35 1.54 75.87 20 (17-23)

D-27 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)cnn2)Nc1cccc(c1)C(F)(F)F 391.35 2.59 78.67 17 (14-22)

D-28 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)cnn2)Nc1ccc(c(c1)Cl)Cl 392.24 3.01 78.67 0.55 (0.46-0.65)

D-29 Life Chemicals Fc1ccc(cc1)C(=O)N1CCN(CC1)c1ccc2n(n1)c(nn2)C1CC1 366.39 1.55 66.64 >25

D-31 Vitas M Labs COc1ccc(cc1)N1CCN(CC1)c1ccc2n(n1)cnn2 310.35 2.13 58.80 >25

D-32 Life Chemicals Clc1ccc(c(c1)NC(=O)N1CCN(CC1)c1ccc2n(n1)cnn2)Cl 392.24 3.01 78.67 ~24.81

D-33 Life Chemicals CCOc1ccccc1NC(=O)N1CCN(CC1)c1ccc2n(n1)cnn2 367.41 2.11 87.90 >25

D-34 Life Chemicals COc1ccc(cc1NC(=O)N1CCN(CC1)c1ccc2n(n1)cnn2)C 367.41 2.16 87.90 >25

D-35 Life Chemicals COc1cc(cc(c1)OC)NC(=O)N1CCN(CC1)c1ccc2n(n1)cnn2 383.40 1.76 97.13 >25

D-36 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)cnn2)Nc1ccc(cc1)C(C)C 365.43 3.23 78.67 >25

D-37 Life Chemicals Fc1ccc(c(c1)NC(=O)N1CCN(CC1)c1ccc2n(n1)cnn2)F 359.33 1.98 78.67 >25

D-38 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)cnn2)Nc1ccc(c(c1)Cl)F 375.79 2.49 78.67 12 (11-14)

D-40 Life Chemicals COc1ccc(cc1NC(=O)N1CCN(CC1)c1ccc2n(n1)cnn2)OC 383.40 1.76 97.13 >25

D-41 Life Chemicals Clc1cccc(c1)OCC(=O)N1CCN(CC1)c1ccc2n(n1)cnn2 372.81 2.03 75.87 18 (16-21)

D-42 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)cnn2)Cc1ccccc1Cl 356.81 2.13 66.64 >25

D-43 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)c(nn2)C1CC1)Nc1ccc(c(c1)Cl)F 415.85 2.94 78.67 >25

D-44 Life Chemicals O=C(c1ccc(cc1)S(=O)(=O)N(C)C)N1CCN(CC1)c1ccc2n(n1)cnn2 415.47 0.25 104.02 7.1 (5.9-8.5)

D-45 Life Chemicals O=C(c1ccc(cc1)S(=O)(=O)N)N1CCN(CC1)c1ccc2n(n1)cnn2 387.42 -0.37 126.80 >25

D-46 Life Chemicals Clc1ccc(cc1)C(=O)N1CCN(CC1)c1ccc2n(n1)cnn2 342.78 1.61 66.64 >25

D-47 Life Chemicals Clc1ccc(c(c1)C(=O)N1CCN(CC1)c1ccc2n(n1)cnn2)Cl 377.23 2.22 66.64 >25

D-48 Life Chemicals O=C(c1ccc(cc1)S(=O)(=O)N1CCCC1)N1CCN(CC1)c1ccc2n(n1)cnn2 441.51 0.65 104.02 >25

D-49 Life Chemicals O=C(N1CCN(CC1)c1ccc2n(n1)cnn2)Cc1noc2c1cccc2 363.37 1.53 92.67 >25

D-50 Life Chemicals Clc1ccc(c(c1)Cl)OCC(=O)N1CCN(CC1)c1ccc2n(n1)cnn2 407.25 2.66 75.87 16 (14-18)

D-51 Life Chemicals Clc1ccc(c(c1)Cl)OC(C(=O)N1CCN(CC1)c1ccc2n(n1)cnn2)C 421.28 3.02 78.87 >25

D-53 Life Chemicals N1CCN(CC1)c1ccc2n(n1)cnn2 204.23 -0.22 58.36 >25

D-60 Vitas M Labs O=C(N1CCN(CC1)c1ccc2n(n1)c(C)nn2)OC(C)(C)C 318.37 1.50 75.87 >25

D-74 Sigma O=C(Nc1ccc(Cl)c(Cl)c1)N2CCN(CC2)c3ccccc3 350.25 4.56 35.57 20 (12-32)

D-75 Life Chemicals FC(F)(F)c1ccc(cc1)NC(=O)N2CCN(CC2)c3ccc4nncn4n3 391.36 2.62 78.67 11 (9.3-13)

D-76 Life Chemicals FC(F)(F)Oc1ccc(cc1)NC(=O)N2CCN(CC2)c3ccc4nncn4n3 407.36 2.69 87.90 >25

D-77 Life Chemicals Clc1cccc(c1)NC(=O)N2CCN(CC2)c3ccc4nncn4n3 357.81 2.38 78.67 ~23.67

D-78 Life Chemicals O=C(N1CCN(C2=NN3C(C=C2)=NN=C3)CC1)NC5=CC=C(Cl)C=C5 357.80 2.40 78.67 >25

D-79 Life Chemicals O=S(N1CCN(C2=NN3C(C=C2)=NN=C3)CC1)(C4=CC=C(OC5=CC=CC=C5)C=C4)=O 436.50 3.04 92.94 12 (9.2-16)

D-80 Life Chemicals O=C(N1CCN(C2=NC3=C(C=CC=C3)N2)CC1)NC4=CC=C(Cl)C(Cl)=C4 390.27 4.38 64.26 17 (14-20)

D-81 Life Chemicals O=C(N1CCN(CCN2N=CC=C2)CC1)NC3=CC=C(Cl)C(Cl)=C3 368.27 2.94 53.40 >25

a
 and 

b
, calculated using molinspiration property engine versions v2013.09, v2014.11, and v2016.10

c
 EC50, indicates half maximal effective concentration  
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3.1.  Abstract 

Cryptosporidiosis, is a diarrheal disease due to intestinal infection with one of 

several Cryptosporidium species.  It is a leading cause of life-threatening diarrhea in 

young children and causes prolonged disease in malnourished children and 

immunocompromised people like AIDS patients.  Nitazoxanide, the only approved 

drug, is not very effective in these populations.  Large-scale phenotypic screens are 

ongoing to identify anti-Cryptosporidium growth inhibitors (hits).  In the absence of a 

gold standard drug, the in vitro and in vivo properties to guide prioritization of hits are 

not known.  With a goal to prioritize a diverse set of hits without knowledge about the 
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actual mechanism of action, we developed a range of medium-throughput life stage 

assays, including an assay for asexual to sexual conversion that can be used to quickly 

screen a large number of the phenotypic hits.  Fifty-five hits and leads from several 

collaborators in the Bill and Melinda Gates’ Foundations’ Cryptosporidium Consortium 

were tested in all these assays and data was used to cluster compounds.  The 

compounds segregated into seven different clusters with related chemical classes and 

compounds with similar mechanism action grouping together.  Furthermore, 

compounds from different clusters were active in the chronic NOD SCID gamma 

mouse model of cryptosporidiosis, suggesting the assays could be used to obtain and 

maintain diversity in Cryptosporidium drug development pipeline. 

 

3.2.  Introduction 

Diarrhea still causes ~8% of all deaths globally in children under five years of 

age (Disease, Injury, & Prevalence, 2016).   Amongst infectious etiologies, 

cryptosporidiosis recently garnered increased interest when the Global Enteric 

Multicenter Study (GEMS) reported it as a leading cause of life-threatening childhood 

diarrhea in Africa and the Indian subcontinent (Kotloff et al., 2013; Liu et al., 2016).  

Cryptosporidiosis was also strongly associated with malnutrition and mortality.  

Infection of the intestinal epithelium by apicomplexan Cryptosporidium parasites 

causes cryptosporidiosis, and, although over twenty species of Cryptosporidium have 

been reported, Cryptosporidium parvum and Cryptosporidium hominis account for 

almost all human cases (Checkley et al., 2015).  Despite numerous earlier studies that 
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suggested the importance of Cryptosporidium parasites in young children (Shirley, 

Moonah, & Kotloff, 2012), cryptosporidiosis was previously known best as a cause of 

prolonged diarrhea in immunocompromised people, especially AIDS patients in whom 

it is reported to cause as much as 50% of cases (Malebranche et al., 1983; Navin et al., 

1999).  Unfortunately, treatment options for cryptosporidiosis are very limited 

(Checkley et al., 2015).  The only approved drug, nitazoxanide, is equivalent to a 

placebo in AIDS patients (Abubakar, Aliyu, Arumugam, Hunter, & Usman, 2007).  

And its efficacy in young children is modest, with improvement after one week of 

treatment in just over half of children studied compared to spontaneous improvement of 

approximately one quarter of untreated children (Amadi et al., 2009).  Thus, there is a 

clear public health need for improved drugs to treat children and immunocompromised 

people with cryptosporidiosis. 

Given that there is no highly effective treatment for cryptosporidiosis in the 

most affected populations, it follows that there is no well-validated developmental 

pathway for anti-Cryptosporidium drugs (Huston et al., 2015; Manjunatha, Chao, 

Leong, & Diagana, 2016).  Ideally, early-stage investments should be made in 

compounds with a diverse set of molecular mechanisms, since there is currently no 

means to judge which will succeed and which will fail (Katsuno et al., 2015).  The 

situation is further complicated by both economic and technical issues.  First, the 

potential market for anti-Cryptosporidium drugs is small, since the disease 

predominantly affects people in low and middle income countries.  Second, despite 

successful use of CRISPR/Cas9 for genome manipulation, genetic studies must 
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presently be carried out in a mouse, which limits the ability to validate potential drug 

targets (Pawlowic, Vinayak, Sateriale, Brooks, & Striepen, 2017; Vinayak et al., 2015).  

These financial and technical limitations generally favor phenotypic screening 

approaches to identify potential starting points for drug development, since cell-based 

methods typically result in a shorter time to market (i.e. reduced cost of development) 

and do not restrict potential chemical starting points to those that affect a small number 

of previously validated drug targets (Nwaka & Hudson, 2006).  Accordingly, several 

phenotypic cell-based screening methods have now been used successfully to identify 

Cryptosporidium growth inhibitors, and there is a growing number of compounds in the 

developmental pipeline (Bessoff, Sateriale, Lee, & Huston, 2013; Bessoff et al., 2014; 

Chao et al., 2018; Love et al., 2017).  However, without drug target identification, 

which is difficult even in the most developed experimental systems, the current 

approach forfeits the many advantages of target-based drug development for 

compounds for which knowledge from other systems provides no likely mechanism of 

action.  One key disadvantage of a developmental pipeline that is wholly dependent on 

cell-based screening for a single phenotype, is that there is no means to ensure that the 

chemical starting points in development work by a variety of molecular mechanisms. 

In this study, we hypothesized that additional phenotypic assays might provide a 

means to group compounds that correlates with molecular mechanism, even if the 

molecular mechanism of a class of compounds is not known.  Such a collection of 

assays with adequate throughput to be applied to a large number of in vitro inhibitors 

would provide important information for prioritizing early-stage inhibitors by aiding in 
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maintenance of a diverse portfolio of compounds in the pipeline.  The Medicines for 

Malaria Venture (MMV) employs a similar approach for maintenance of the malaria 

drug pipeline (Burrows et al., 2017).  Here, we present new moderate-throughput 

assays assessing compound effects on different life-cycle stages in a C. parvum tissue 

culture infection model, including assays for host cell invasion, intracellular DNA 

replication, parasite egress and reinvasion, and sexual differentiation.  The methods 

were employed on a diverse set of compounds, and using the results from this panel of 

assays, we show that compounds are accurately clustered into different chemical and/or 

mechanistic groups.  These data confirm that the approach enables maintenance of 

mechanistic diversity within the Cryptosporidium drug development portfolio.  We also 

show that compounds targeting different life-cycle stages are active in a highly 

immunocompromised mouse model, which further supports the value of a diverse 

portfolio. 

 

3.3.  Results 

Our overall strategy to determine if life-stage specific phenotypic assays enable 

classification of compounds according to chemical class/mechanism of action was to 

develop a panel of suitable assays and then use them to test a panel of “learning” 

compounds, which enabled subsequent clustering of compounds based on phenotype.  

The learning compounds used were from a variety of sources.  For assay development 

and initial validation, publically available drug screening hits and anti-Cryptosporidium 

compounds disclosed in the literature were tested (e.g. from the Medicines for Malaria 
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Venture Open Access Box and the National Institutes of Health (NIH) Clinical 

Collection) (Bessoff et al., 2013; Bessoff et al., 2014; Jumani et al., 2018).  To 

subsequently enlarge the database and determine if grouping compounds according to 

phenotype results in segregation of compounds by chemical class and/or mechanism of 

action, we also utilized proprietary compounds provided by collaborators within the 

Bill and Melinda Gates Foundation Cryptosporidium Drug Accelerator consortium.  In 

most cases, these compounds were identified as C. parvum inhibitors by screening 

libraries of compounds partially developed for other indications (e.g. treatment of 

malaria, trypanosomiasis, tuberculosis, etc.), and many of these compounds had the 

advantage for purposes of our study that their likely molecular mechanisms of action 

are known (Castellanos-Gonzalez et al., 2013; Gorla et al., 2012; Jain et al., 2017; Kato 

et al., 2016; Love et al., 2017; Shibata et al., 2011). 

As a first step in developing specific Cryptosporidium life-stage assays, we 

conducted a series of light microscopy time-lapse and transmission electron microscopy 

(TEM) timecourse experiments in order to precisely define C. parvum development in 

our hands in the HCT-8 cell culture system.  Consistent with previously published 

studies, all life-cycle stages were observed, including development of type II meronts, 

macro- and micro-gametocytes, and rarely, even fertilization (Fig. 1).  Although 

Cryptosporidium parasites in the HCT-8 cell culture system were not fully 

synchronized, initial excystation and cell invasion occured within an ~2.5 hour 

window, resulting in a roughly synchronized infection.  This knowledge was exploited 

to modify a previously developed high-content microscopy assay to focus on major 
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life-stage events observed in the HCT-8 culture system; assays for host cell invasion, 

intracellular replication, host cell egress and establishment of new parasitophorous 

vacuoles, and sexual differentiation were developed (see light microscopy images or 

transmission electron micrographs (TEMs) in each assay figure) with the goal of 

enabling classification of multiple compounds to assist with drug development. 

 

3.3.1.  Host cell invasion assay 

The first step in infection is host cell invasion and involves a complex 

phenotype encompassing oocyst excystation, parasite motility, adhesion, and ultimately 

parasitophorous vacuole formation (Fig. 2A).  Our strategy to assay for invasion 

inhibitors was simply to expose C. parvum to compounds immediately after triggering 

excystation and throughout the invasion process, but with enumeration prior to 

allowing intracellular parasites to replicate (summarized in Fig. 2B).  The resultant 

assay method was the same as a high-content microscopy assay method for C. parvum 

development that we published previously (Bessoff et al., 2013), except for the time 

points of compound addition and monolayer fixation.  Like the prior method, this 

method has medium-throughput, and it has a Z’ score of ≥ 0.2. 

Neural Wiskott Aldrich syndrome protein (N-WASP) and Cdc42 pathway are 

important for the initial host cell actin remodeling required for Cryptosporidium 

parasitophorous vacuole formation (Chen et al., 2004), and the small molecule 

wiskostatin has been shown to inhibit purified N-WASP at 10 µM, including 

competitive inhibition of its activation by Cdc42 (Peterson et al., 2004).  Therefore, 
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wiskostatin was used as a positive control for initial assay validation and optimization 

of the C. parvum invasion assay.  Wiskostatin was active in the 48 hour C. parvum 

development assay with a 90% effective concentration (EC90) of 11.3 µM.  Wiskostatin 

also inhibited parasitophorous vacuole formation at this EC90 concentration, giving 

results similar to those obtained using heat-killed oocysts or fixed HCT-8 cells (Fig. 2C 

and 2D).  As further proof-of-concept, confirmed C. parvum inhibitors from the MMV 

Malaria Box and commercially available chemical analogues of each (Supplementary 

Table 1) were tested at the EC90 concentration measured previously for each using the 

48 hour C. parvum development assay (Fig. 2D).  The anti-C. parvum 2,4-

diaminoquinazolines inhibited host cell invasion, while allopurinol-, quinolinol-, and 

piperazine-based anti-C. parvum compounds had no effect on parasitophorous vacuole 

formation.  The approved drug nitazoxanide and paromomycin, which is often used as a 

positive control in Cryptosporidium mouse models, also had no significant effect (Fig. 

2D).   

 

3.3.2.  DNA replication assay 

Following cell invasion, Cryptosporidium trophozoites grow and multiply to 

give rise to multinucleated type I meronts (Fig. 3A).  The thymidine analog 5-ethynyl-

2´-deoxyuridine (EdU) is efficiently incorporated into newly synthesized DNA, and can 

be readily detected using click chemistry (Salic & Mitchison, 2008).  We therefore used 

EdU to measure parasite intracellular DNA synthesis, which is a surrogate for the more 

complex phenotype of intracellular growth and division.  The approach for 
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differentially labeling newly synthesized parasite DNA compared to host cell DNA was 

to take advantage of the fact that C. parvum replicates more quickly than the nearly 

confluent host cells.  Thus, by adding EdU for a short time period shortly before egress, 

it was possible to preferentially label replicating parasites (Fig. 3B and C).  In contrast, 

DNA staining with Hoechst labelled all of the host and parasite DNA, making it 

challenging to visualize and quantify parasite DNA due to excessive host DNA.  A 

simple DNA stain would also not distinguish pre-existing DNA from newly synthesized 

DNA (Fig. 3C).  In contrast, EdU labeling only occurs with incorporation into newly 

synthesized DNA.  Incorporated EdU was then easily stained for immunofluorescence 

and labeled parasites were quantified using high-content microscopy and an NIH 

ImageJ macro (Fig. 3C, DMSO condition).  The thymidine analogue hydroxyurea (10 

mM), a known inhibitor of DNA replication, was used as a positive control for assay 

validation.  As expected, hydroxyurea at this concentration blocked both parasite and 

HCT-8 cell DNA replication (Fig. 3C).  The MMV Malaria Box quinolinol series, 

compounds previously identified as selective C. parvum inhibitors, appeared to 

selectively block C. parvum replication (Fig. 3C and D).  The 2,4-diaminoquinazolines 

(parent MMV006169), which all inhibited host cell invasion, had no effect on 

intracellular replication.  Results for the other compounds tested were also consistent 

within chemical groups:  the allopurinol-based chemical scaffold MMV403679 blocked 

C. parvum replication, while the piperazine-based scaffold (MMV665917) and 

paromomycin had no effect on EdU incorporation (Fig. 3D).   As noted above, 

compounds with activity in this assay cannot be concluded to be DNA synthesis 
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inhibitors; rather, they affect at least one of the many things that DNA synthesis 

requires.  Also, as is evident from the images, it would be feasible to enumerate the 

number of nuclei present in each vacuole to obtain subtler information; however, for 

the purpose of classifying compounds, we found that a readout based simply on C. 

parvum EdU counts normalized to total parasite numbers was readily automated using 

NIH ImageJ and worked well (Fig. 3D).  

 

3.3.3.  Parasite egress and host cell reinvasion assay 

Type I meronts release motile merozoites that infect new HCT-8 cells and 

repeat the asexual replication cycle.  We performed live microscopy on infected cells to 

visualize and better understand these processes in the in vitro assay system.  There was 

modest experiment-to-experiment variation in the timing of events, with egress 

sometimes beginning as early as 12 h post infection and observed as late as 18 h post 

infection; within each experiment, the cultures were more synchronized with all egress 

occurring within an ~ 2.5 h time window.  Individual C. parvum egress and reinvasion 

events were rapid, with parasitophorous vacuole rupture, merozoite release and re-

attachment completed within 10 minutes.  Re-infection was inefficient, and each 

parasitophorous vacuole egress event only produced ~ 2-3 new vacuoles (Fig. 4A, and 

Supplementary Video 1). 

To identify a suitable positive control compound to aid in development of a 

quantitative assay, we reasoned that compounds active in the DNA replication assay 

would also inhibit this subsequent stage of parasite development.  Thus, we used time-
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lapse light microscopy to assess inhibition of cell egress by the allopurinol-based 

scaffold MMV403679 (C-1), which was active in the DNA replication assay.  As 

anticipated, C-1 at the 2 × EC90 (1.3 µM total) inhibited parasite egress during live 

microscopy (Fig. 4B, and Supplementary Videos 2 and 3).  Furthermore, based on the 

time-lapse observations, it was clear that in this crudely synchronized culture system 

parasite vacuole numbers did not increase smoothly; rather, vacuole numbers increased 

by ratcheting up by two to three-fold during the window of egress and infection of new 

host cells.  This observation was confirmed by comparing parasite numbers in the 

presence of C-1 vs. the vehicle control at time points approaching and just following 

the approximate time of cell egress and reinvasion (Fig. 4C). 

This observation suggested a less labor intensive method to estimate the effect 

of compounds on parasite egress and establishment of new parasitophorous vacuoles 

simply by measuring the ratio of the number of parasite vacuoles following and before 

the egress/reinvasion life-cycle stage (Fig. 4D).  Time points of 19.5 h post-infection 

and 6 h post-infection were selected empirically.  As seen in the timecourse experiment 

with the DMSO vehicle, the ratio of parasites at 19.5 hours to parasites at 6 hours 

ranged from 2.5 to 3-fold (Fig. 4C and 4E).  Compounds acting at all stages up to and 

including parasite egress and reinvasion would be expected to reduce this ratio; 

furthermore, rapidly cidal compounds that act early, or compounds that permit egress 

but block subsequent reinvasion would result in a ratio below 1. 

Given the complexity of this phenotype and the need to interpret the results in 

the context of the results of assays of earlier life-stages, it is not surprising that the 
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learner compounds tested resulted in a range of ratios.  Wiskostatin, which here was 

added at three hours post-infection, following the invasion step, resulted in a ratio of 

almost precisely one.  The allopurinol-based and quinolinol compounds consistently 

displayed ratios that were reduced but under 1, whereas the piperazines, 2,4-

diaminoquinazolines, nitazoxanide and paromomycin all displayed ratios above 1.  As 

with the other assays, the results were similar for all compounds within each chemical 

group.  And, as expected, compounds acting at earlier stages showed at least some 

reduction in the ratio of vacuoles at 19.5 hours to vacuoles at 6 hours (Fig. 4E and 

Supplemental Table 2).  This was especially evident for compounds such as the 

quinolinols and allopurinol-based compounds that blocked intracellular development, 

and likely occurred simply because no merozoites matured for egress. 

 

3.3.4.  Sexual differentiation assay 

Unlike malaria parasites for which only a small fraction of blood stage parasites 

undergo sexual differentiation, Cryptosporidium is believed to undergo sexual 

differentiation in an obligate manner after only three to four rounds of asexual 

replication.  Furthermore, a single host serves as the site of both asexual and sexual 

reproduction (i.e. is both the intermediate and definitive host) (Current & Reese, 1986).  

Therefore, although all of the early-stage drug leads studied to date for 

cryptosporidiosis were identified using assays that measure only effects on asexual 

development, it is theoretically possible to target sexual development for treatment of 
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cryptosporidiosis.  Based on this logic, we sought a method to quantify C. parvum 

sexual differentiation. 

 

3.3.4.1.  Identification of DMC1 (cgd7_1690) as a marker for sexual stages   

Based on the accepted Cryptosporidium life-cycle, C. parvum is haploid at all 

stages except for just after fertilization, at which time the diploid zygote quickly 

undergoes meiosis to give rise to haploid spores within thick and thin-walled oocysts 

that are either passed in the feces or excyst to perpetuate the infection (Current & 

Reese, 1986).  Since meiosis only occurs following fertilization, we reasoned that genes 

encoding proteins specifically involved in meiosis might only be expressed in sexual 

forms of the parasite, including either the zygote or gamonts.  Using gene expression 

data publically available via CryptoDB (http://cryptodb.org) (Mauzy, Enomoto, Lancto, 

Abrahamsen, & Rutherford, 2012), we selected the DNA Meiotic Recombinase 1 gene, 

DMC1 (cgd7_1690), as a likely candidate for use as a C. parvum sexual stage marker, 

since this gene increases in expression dramatically following ~48 of culture in HCT-8 

cells and is also specific to Plasmodium sexual differentiation (Mlambo, Coppens, & 

Kumar, 2012).  The predicted C. parvum DMC1 protein sequence is 99% identical to 

the predicted orthologous C. hominis (Chro.70199) protein, and the C. parvum protein 

sequence is 65% identical to the orthologue in Plasmodium berghei 

(PBANKA_0714000). 

 

 

http://cryptodb.org/
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3.3.4.2.  Validation of DMC1 in vitro 

Real-time PCR (qRT-PCR) and transmission electron microscopy (TEM) were 

used to determine if DMC1 expression correlated with the appearance of sexual-stage 

parasites in the HCT-8 culture system.  To avoid slight variations in growth kinetics 

that occur between experiments, samples from neighboring wells of the same infection 

were analyzed, focusing on finer time-points around 48 h post-infection when gamonts 

were first expected to appear.  DMC1 expression was first detected at 42 h post-

infection, simultaneously with the first appearance of gamonts seen by TEM (Fig 5A 

and 5B).  DMC1 mRNA levels increased by > 100-fold between 36 hours and 72 hours 

of culture, and DMC1 mRNA was not detected in sporozoites or oocysts.  Interestingly, 

DMC1 expression decreased after peaking at 72 h post-infection. 

An anti-C. parvum DMC1 mouse monoclonal antibody was produced in order 

to determine if DMC1 protein expression also correlated with the life-stages present in 

culture, and to generate a potential reagent to assay C. parvum sexual development by 

high-content immunofluorescence microscopy.  A clear subset of parasite vacuoles 

stained positive for DMC1 at 72 hours post-infection, confirming the specificity of the 

reagent (Fig. 5C).  DMC1 was detected exclusively in vacuoles that were not multi-

nucleated, suggesting that it may be specifically expressed in macrogametocytes and/or 

fertilized zygotes.  Immunogold staining and TEM with the anti-DMC1 antibody was 

unsuccessful, however, so the specific life-stage stained could not be determined with 

certainty.  The timing of protein expression was similar to that of mRNA expression, 

with DMC1 positive parasites first detected at 42 h post-infection, peaking at 72 h post-
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infection and then decreasing in number (Fig 5D).  At peak expression levels, ~55 % of 

the lectin-positive parasites expressed DMC1. 

 

3.3.4.3.  Assay to identify inhibitors of asexual to sexual stage conversion 

Based on the results above, we utilized DMC1 as a marker of C. parvum sexual 

development, and used the anti-DMC1 monoclonal antibody to develop a moderate-

throughput high-content microscopy assay for characterizing anti-Cryptosporidium 

compounds (Fig. 6A).  Since the percent of DMC1 positive parasites began to increase 

just prior to 48 hours after infection in the HCT-8 cell system, the strategy was to test 

the specific effect of compounds on sexual development simply by delaying addition of 

compounds until 48 hours post-infection and then monitoring the effect on the number 

of DMC1 positive parasites at 72 hours.  Compounds with equal efficacy on the asexual 

and sexual stages would be expected to have equal potency both before and after 48 

hours.  The piperazine-based compound D1 (MMV665917) was such a compound (Fig. 

6B).  On the other hand, the 2,4-diaminoquinazoline B1 (MMV006169) was far less 

potent when used during the sexual phases of development (Fig. 6B), suggesting that it 

is relatively specific for asexual development.  In practice, many compounds gave an 

intermediate phenotype with partial inhibition of DMC1 expression when added at 48 

hours.  Therefore, in order to enable numerical comparison of the ability of compounds 

to block sexual development with moderate throughput, we adopted a strategy of 

reporting the percent inhibition of DMC1 expression by the previously determined EC90 

in the standard/asexual development assay (Fig. 6C and Supplementary Table 3). 



102 

 

3.3.5.  Identification of hit diversity based on life-stage activity 

A major goal of our study was to determine if compounds could be grouped by 

chemical class/mechanism of action using these phenotypic assays, in which case they 

could be used to maintain mechanistic diversity in the Cryptosporidium drug 

development pipeline even in the absence of knowledge of the molecular mechanisms 

of phenotypic screening hits.  To test this idea, the panel of phenotypic assays described 

above was used to characterize a panel of fifty-five compounds, and the data were 

analyzed using a clustering algorithm based on the Ward error of sum of squares 

hierarchical clustering method with a distance matrix generated using Euclidean 

distances calculated for each compound with respect to another.  Specific phenotypic 

assay data for each compound are given in Supplementary Table 3.  The method 

separated the compounds into distinct clusters, grouping compounds based on the same 

chemical scaffold (i.e. presumed to have the same molecular MOA) and compounds 

known to work via the same/highly similar MOAs (e.g. compounds effecting a variety 

of tRNA-sythetases) (Fig. 7). 

 

3.3.6.  Correlation between in vitro assay activity and in vivo efficacy 

It is feasible that Cryptosporidium is most susceptible to drug treatments that 

target a specific life cycle stage (e.g. the relatively prolonged intracellular growth and 

replication stage).  Therefore, for the strategy of ensuring mechanistic diversity in the 

Cryptosporidium drug development pipeline based on activity against different life 

cycle stages, it was critical to determine if compounds belonging to different 
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phenotypic clusters (as in Fig. 7) could have in vivo efficacy.  For this, a variety of 

compounds were tested in a mouse model of chronic C. parvum infection. 

The factors that drive compound efficacy in a mouse model of cryptosporidiosis 

are not known.  This is particularly complicated by the fact that, although drugs are 

obviously needed at the intestinal site of the infection, the precise pharmacokinetic 

properties desired for an effective drug are not certain and might vary based on the 

mechanism of action of different drugs.  Furthermore, different animal models with 

varying stringency (e.g. self-resolving vs. chronic infection models) have been used for 

lead identification (Castellanos-Gonzalez et al., 2013; Gorla et al., 2014; Jumani et al., 

2018; Love et al., 2017; Manjunatha et al., 2017; Ndao et al., 2013).  To directly 

compare in vivo efficacy of compounds, we tested most of these compounds in the 

highly immunocompromised NOD SCID gamma (NSG) mouse model of established C. 

parvum infection.  The in vitro and in vivo data provide a rich source to identify 

correlations between in vitro activity in these assays and in vivo efficacy in the NSG 

mouse model.  Along with the above life cycle assays, we also tested all of the 

compounds in the previously reported in vitro parasite persistence assay to determine 

rate of parasite elimination in vitro (Jumani et al., 2018).  While screening a larger 

number of compounds, we found the earlier definition of static versus cidal too 

simplistic.  Compounds behaving like nitazoxanide were still classified as static, 

whereas compounds with an fast rate of parasite decay like in the case of MMV665917 

were categorized as exponential inhibitors and compounds with a slow rate of parasite 

elimination similar to paromomycin were categorized as linear inhibitors 
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(Supplementary Table 3).  There was no specific asexual stage assay that alone 

correlated with in vivo efficacy, and all of the compounds with in vivo activity had at 

least a partial activity in the asexual to sexual conversion assay.  None of the static 

compounds were active in the NSG mouse model (Supplementary Table 3).  

 

3.4.  Discussion 

We report a range of inexpensive medium-throughput C. parvum life stage 

assays that can be used to classify compounds quickly and obtain a diverse set, which 

can aid in prioritization of hits and leads for further drug development.  We found a 

good correlation between variants within a chemical series, and for compounds with 

several putative mechanisms of action, including ATG-8 inhibitors, CDPK-1 inhibitors, 

and four different classes of tRNA synthetase inhibitors.  And importantly, compounds 

belonging to numerous mechanistic clusters were effective in the NSG mouse model. 

Currently, large-scale phenotypic screening efforts are ongoing to identify hits 

against Cryptosporidium (Chao et al., 2018; Love et al., 2017).  There are no 

established methods to help prioritize these hits.  In malaria drug development, stage 

specific assays have been used for prioritization of compounds, with distinct target 

candidate profiles based on rate of parasite elimination and stage specific activity 

(Burrows et al., 2017; Burrows, van Huijsduijnen, Mohrle, Oeuvray, & Wells, 2013; 

Delves et al., 2012).  This strategy helps maintain diversity in the pipeline drug 

development pipeline and increases the chances of delivering quality preclinical 

candidates.  This is particularly important in the case of malaria where drug resistance 
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is a major issue.  We have already reported an in vitro parasite persistence assay to 

determine the rate of C. parvum elimination following compound exposure (Jumani et 

al., 2018).  We believe these specific life stage assays are a quick, relatively 

inexpensive way to prioritize anti-Cryptosporidium hits in a manner similar to that used 

for malaria drug development.  Genetic studies can then be done on a smaller set of 

promising leads to identify the targets (Pawlowic et al., 2017). 

The set of 55 compounds used here is relatively small to draw correlations 

between in vitro assays and in vivo efficacy, especially without considering the PK 

properties of the compounds.  However, this is the first report of directly comparing in 

vivo efficacy with in vitro assays for such a large number of anti-Cryptosporidium hits.  

These data can be used to understand factors critical for in vivo efficacy in the absence 

of an effective benchmark drug.  These correlations can be better understood with an 

increase in the number of compounds, and with human and calf model clinical efficacy 

data.  Apart from the life stage assays, pharmacodynamic parasite persistence assay and 

PK considerations, several other factors like an effect on microbiome could drive in 

vivo efficacy and should be measured (Gorla et al., 2014).  These assays are not an 

exhaustive list, but rather should be used as a starting point. 

To directly compare all compounds irrespective of potency, the EC90 

concentration from our standard asexual inhibition assay was used in all life stage 

assays.  A single EC90 concentration was chosen to determine the predominant effect of 

the compound on parasite life stage with a goal to directly compare compounds to 

attain diversity in a relatively quick and inexpensive manner using small quantities of 
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compounds.  It is possible that at higher concentrations, compounds would be active 

against more than one stage.  For compounds of high interest, it may be worth 

following up with dose response curves for all life stage assays. 

With the idea to develop a medium-throughput assay along with the technical 

difficulties involved, the invasion assay protocol exposes sporozoites directly to 

compounds for a fleeting time.  The design of the assay makes it easier to identify 

compounds that inhibit invasion by acting on host cells and this should be kept in mind 

when interpreting this assay’s results.  Interestingly, none of the compounds active in 

the invasion assay were efficacious in the NSG mouse model.  This could be due to a 

small sample size of compounds tested and should not be interpreted as evidence that 

invasion inhibitors are inactive in vivo against cryptosporidiosis. 

Compounds with activity against any process post-invasion and not just 

replication inhibitors are expected to be active in the DNA synthesis assay.  Hence, one 

potential reason that all the aminoacyl tRNA synthetase inhibitors were potent in this 

assay could be that they are all lethal to the parasite before it incorporates EdU.  N-

WASP and host actin re-modeling are important for intracellular Cryptosporidium, in 

addition to their role in host cell invasion  (Elliott et al., 2001).  It is not surprising, 

therefore, that wiskostatin was active in both the DNA synthesis assay and the invasion 

assay. 

Interestingly, all compounds had some activity, but to varying extents in the 

egress, merozoite motility and reinvasion assay.  A ratio of less than one would signify 

disintegration of existing vacuoles without egress and/or egress without formation of 
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new vacuoles.  The 2,4-diaminoquinazolines were potent sporozoite invasion inhibitors 

but had a ratio of greater than 1, suggesting that they do not affect merozoite invasion 

as efficiently.  Using the parasitophorous vacuole number ratio was useful to classify 

compounds based in a higher throughput manner.  Nonetheless, these data can be used 

to further investigate specific mechanisms.  For example, a sub-set of compounds could 

be used in the live egress assay set-up to identify if egress or merozoite release, motility 

or reinvasion is specifically affected. 

We have shown that in vitro C. parvum DMC1 mRNA and protein expression 

coincides with appearance of sexual gamont stages in HCT-8 cells.  Although a strong 

correlation between appearance of gamonts and DMC1 has been demonstrated, it is 

only correlative.  Since immunogold staining with this antibody failed, and there are no 

other tools to label C. parvum gamonts, we cannot determine the specific parasitic stage 

wherein DMC1 appears.  Our data show that at 72 h, when 80 % of the parasites were 

gamonts by TEM, ~55 % of parasites were DMC1 positive by immunofluorescence.  

Added on, DMC1 is not expressed in multinucleated cells.  Microgamonts are 

multinucleated due to multiple microgametes per vacuole.  Assuming microgamont 

nuclei get stained with Hoechst, DMC1 is not expressed in microgamonts, leaving the 

only possibility being fertilized or non-fertilized macrogamonts.  The fertilization of a 

macrogamont is considered a rapid process, as only the macrogamonts or early oocysts 

can be predominantly imaged by TEM with an intermediate containing a 

distinguishable macrogamete nucleus very rarely seen.  Hence, the C. parvum DMC1 

could be expressed in a fertilized or non-fertilized macrogamont.  Given the role of the 
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conserved DMC1 during meiosis in other organisms, it is possible that DMC1 

expression comes up after fertilization and fusion of the macrogamete nucleus with the 

macrogamont nucleus, making DMC1 a marker for fertilization.  On the other hand, 

DMC1 could be pre-expressed in macrogamonts to facilitate rapid fertilization and 

oocyst formation, giving the parasite an advantage for rapid turnover and re-infection.  

Either way, these raise very interesting possibilities about the biology of 

Cryptosporidium.  The identification of DMC1 as a marker for the appearance of 

gamonts makes it more feasible to explore the sexual stage biology of Cryptosporidium.  

Until now there has only been a screening assay to predominantly look at asexual stage 

inhibitors, but with the DMC1 antibody a high-throughput screening assay can be 

developed for the first time to identify potential sexual stage inhibitors.  Apart from 

drug candidates, the results can potentially yield invaluable tool compounds to explore 

Cryptosporidium biology. 

This is a first report of dose response curves against asexual to sexual stage 

conversion.  It was interesting to find compounds with similar potency against the 

asexual stages and DMC1 assay.  Partial inhibitors are more difficult to interpret, as the 

C. parvum in vitro growth assay is a mixed and asynchronized culture with a 

combination of asexual and sexual stages present.  The DMC1 assay was designed such 

that compounds were added after about 20% gamonts were already formed.  Therefore, 

compounds with pan activity against both stages are expected to completely inhibit 

DMC1, whereas fast acting compounds with activity against asexual stage parasites still 

present at 48 h might appear to partially affect sexual development.  Furthermore, it is 
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not clear if a drug needs to be active against the asexual and sexual stages of the 

parasite, or if activity against any one stage is sufficient.  It was interesting to note that 

all the compounds that were active in vivo in the NSG mice had some activity in the 

DMC1 assay.  It would be interesting to identify pure inhibitors of sexual development 

and test if they would be active in the NSG mouse model.  

In summary, we report and validate a range of medium-throughput in vitro life 

stage assays, including an asexual to sexual stage conversion assay.  This panel of 

assays can form the basis to directly compare compounds, thereby obtaining diversity 

and aiding prioritization at an early stage of Cryptosporidium drug development. 

 

3.5.  Methods 

3.5.1.  Cell culture and C. parvum excystation and infection 

HCT-8 cells were purchased from ATCC and cultured in ATCC modified 

RPMI-1640 medium (Invitrogen), supplemented with 10% heat-inactivated fetal bovine 

serum (Sigma-Aldrich) and 120 U/mL penicillin and 120 μg/mL streptomycin (ATCC) 

(culture media).  For dose response assays using DMC1, amphotericin B at 0.5 μg/mL 

was included in the culture media.  For all experiments, HCT-8 cells between passages 

9 and 39 were used.  C. parvum oocysts were purchased from Bunchgrass Farms, stored 

at 4°C and used within 5 months of being shed.  Oocyst excystation was performed as 

described previously (Bessoff et al., 2013).  Briefly, oocysts were first treated with 10 

mM hydrochloric acid for 10 min at 37°C, spun at 14000 g for 4:30 min at room 
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temperature, then treated with 2 mM sodium taurocholate for 10 min at 16°C, spun as 

before and resuspended in culture media for infection.  

 

3.5.2.  Invasion assay 

C. parvum invasion inhibition was measured by modifying a previously 

described immunofluorescence assay (Bessoff et al., 2013).  HCT-8 cells at >99% 

confluence in 384-well plates were pre-treated with 2 × EC90 concentration of 

compounds for 1 h before infection with parasites.  In the meantime, Iowa strain 

oocysts were excysted.  To each well, 49500 oocysts triggered for excystation were 

added to HCT-8 cell monolayers containing DMSO or compounds diluted to a final 

concentration of EC90 with the addition of oocysts.  Plates were incubated at 37°C and 

5% CO2 for 3 h.  Wells were then washed 3 times with PBS containing 111 mM D-

galactose (PBS-D-gal), fixed with 4% paraformaldehyde (PFA) in PBS for 15 mins at 

room temperature, permeabilized with 0.25% Triton X-100 for 10 mins at 37°C, 

washed 3 times with PBS with 0.1% Tween 20, and blocked with 4% bovine serum 

albumin (BSA) in PBS for 2 h at 37°C or 4°C overnight.  Parasitophorous vacuoles 

were stained with 1.33 µg/mL of fluorescein-labeled Vicia villosa lectin (Vector 

Laboratories) diluted in 1% BSA in PBS with 0.1% Tween 20 for 1 h at 37°C, followed 

by addition of Hoechst 33258 (Anaspec) at 0.09 mM diluted in water for another 15 

mins at 37°C.  Wells were then washed 5 times with PBS containing 0.1% Tween 20.  

A Nikon Eclipse Ti2000 epifluorescence microscope with an automated stage was 

programmed using NIS-Elements Advanced Research software (Nikon, USA) to focus 
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on the center of each well and take a 3×3 or 6×6 composite image using an EXi blue 

fluorescence microscopy camera (QImaging, Canada) with a 20X objective (NA = 

0.45).  Nuclei and parasite images were separately exported as .tif files and analyzed 

using macros developed on the ImageJ platform (National Institutes of Health) (Bessoff 

et al., 2013).  The only modification from the published macro used to count parasites 

was that the lower size threshold for parasites was decreased from 16.5 to 4 pixel (1 

pixel = 0.65 µm).  The same microscope, camera and softwares were used for all 

immunofluorescence assays. 

 

3.5.3.  DNA synthesis assay 

Glass bottom 96 or 384 well plates were coated with 50 µg/mL fibronectin (BD 

Pharmingen) as per manufacturers protocol.  HCT-8 cells were grown to greater than 

90% confluence in the coated glass bottom plates.  Oocysts at a concentration of 55000 

per well were triggered for excystation and added to cells.  After allowing 3 h for 

invasion, cells were treated with EC90 concentration of compounds for 6 h followed by 

addition of 10 mM 5-ethynyl-2´-deoxyuridine (EdU).  After incubation of cells with 

EdU for 2 h, cells were washed 3 times with PBS-D-gal and then fixed with PBS 

containing 4% PFA.  Cells were then permeabilized and stained for EdU using the 

Click-iT® assay kit (Thermo Fisher Scientific) as per manufacturers indication.  Cells 

were then imaged using a 40X air objective (0.7 NA) and EdU and lectin numbers 

quantified using ImageJ software and developed macros (Supplementary Method 1). 
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3.5.4.  Time-lapse light microscopy for visualizing live C. parvum egress 

Glass bottom 60 mm MatTek dishes (MatTek) were first coated with 50 µg/mL 

fibronectin (BD Pharmingen) as per manufacturer’s protocol and then HCT-8 cells 

were grown to >95% confluence before infecting each MatTek dish with 48×104 

oocysts that had been triggered for excystation.  Cells were then imaged live with 5 min 

intervals using a DIC phase and a 60X oil objective (1.4 NA).  For effect of compound 

C-1 on egress using live microscopy, 16 well polystyrene dishes (Greiner Bio-One™) 

were similarly coated with 50 µg/mL fibronectin (BD Pharmingen).  HCT-8 cells were 

grown to >95% confluence before infection with 15×104 oocysts triggered for 

excystation.  After 3 h cells were gently washed with warm complete media to remove 

oocysts shells before compound or DMSO addition.  Large 2×2 images were taken live 

with 20 min intervals using a 40X air objective (0.7 NA) to visualize live egress. 

 

3.5.5.  Egress, motility, reinvasion assay 

For quantification of parasitophorous vacuoles for timecourse experiment and 

ratio experiment, HCT-8 cells were grown to greater than 90% confluence in 384 well 

plates and infected with 11000 oocysts after they were triggered for excystation.  

Compounds at EC90 concentration were added to cells 3 h after infection and cells were 

washed, stained and imaged at different time points using the same protocol as 

mentioned in the invasion assay. 
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3.5.6.  C. parvum DMC1 (cgd7_1690) identification 

The predicted protein sequence of Plasmodium berghei DMC1 was obtained 

from PlasmoDB (plasmodb.org), the free online Plasmodium genome database, and a 

protein BLAST against C. parvum genome was perfromed using the default settings in 

the free online Cryptosporidium genome database, CryptoDB (http:cryptodb.org).  

 

3.5.7.  Quantitative Real-time PCR 

HCT-8 cells were seeded into 12 well culture plates (Corning) and grown to 

greater than 90 % confluence.  Oocysts at a concentration of 1.92 × 105 oocysts per 

well were excysted and added to cells.  Infected HCT- 8 cells were then incubated for 

varying lengths of time post-infection until RNA extraction was performed.  

At given time points, infected cells were trypsinized, pelleted and RNA 

extracted as previously described (Hobbs et al., 2014).  Briefly, infected cell pellets 

were homogenized with TRIzol™ (Invitrogen), treated with chloroform, and then RNA 

precipitated with ethanol.  RNA was purified using RNeasy kit (Qiagen) according to 

manufacturer’s protocol, and quantitated using NanoDrop.   Superscript III First-Strand 

Synthesis System for RT-PCR (Invitrogen) was used to convert 730ng of RNA per 

sample into cDNA following the manufacturer’s protocol.  To amplify cDNA samples, 

a BIO-RAD CFX96 real-time PCR machine was used with iTaq™ Universal SYBR® 

Green Supermix (BIO-RAD) following the manufacturer’s protocols including melting 

curve analysis.  Real-time PCR primers were designed for DMC1 (cgd7_1690) using 

IDT’s real-time primer design tool, and the sequences used are as follows: forward 
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sequence- GTTGATGGGCGGATTTGAAAG, reverse sequence- 

AACAGACTTTCCCATTACCTCC.  The expression of the DMC1 (cgd7_1690) gene 

was normalized to C. parvum 18s rRNA using the delta CT method (Rider et al., 2005).  

 

3.5.8.  Transmission electron microscopy 

HCT-8 cells were grown and infected with C. parvum oocysts as mentioned 

above for real-time PCR.  Infected cells were harvested at specific time points using 

trypsin, pelleted and fixed in preparation for electron microscopy as previously 

described, with minor modifications, including substitution of 0.1 M cacodylate buffer 

for millonig phosphate buffer.  In short, pelleted cells were fixed for 1 h at 4°C using 

half-strength Karnovsky’s fixative (1% Paraformaldehyde, 2.5% Glutaraldehyde in 0.1 

M cacodylate buffer (pH 7.2)), embedded in 2 % agarose, crosslinked with 

Karnovsky’s fixative, and post-fixed with 1 % Osmium tetraoxide (Barkhuff et al., 

2011).  Samples were then dehydrated with increasing amounts of ethanol, followed by 

propylene oxide (PO), and then infiltrated gradually from PO into Spurr’s resin, 

embedded and polymerized.  Semi-thin sections (1 mm2) were cut with glass knives on 

a Reichert Ultracut microtome.  Ultra-thin sections (60-80 nm) were cut with a 

diamond knife, retrieved onto 200 mesh copper grids, contrasted with uranyl acetate 

(2% in 50% ethanol) and lead citrate, and examined with a JEM 1400 transmission 

electron microscope (JEOL USA, Inc, Peabody, Mass) operating at 80 kV. 
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3.5.9.  DMC1 Immunofluorescence microscopy 

Monoclonal antibody production in mice was contracted out to GenScript who 

generated antibodies using recombinant C. parvum DMC1.  Several monoclonal 

antibodies were screend by immunofluorescence microscopy with clone 1H10G7 

giving the best signal.   

Greater than 90 % confluent HCT-8 cells grown in fibronectin coated 60 mm 

glass bottom dishes (MatTek) were infected with excysted oocysts for specified 

amounts of time.  Oocysts at 1e6 oocysts per dish were taken for excystation.  At given 

time points post-infection, infected cells were washed 3 times with PBS containing 111 

mM of D-galactose, fixed for 15 min at room temperature with 4 % paraformaldehyde 

in PBS, and permeabilized with 0.25 % triton X-100 in PBS for 10 min at 37°C.  Cells 

were then washed 3 times with PBS and blocked at least overnight at 4°C with 1 % 

BSA in PBS (block).   Cells were stained with monoclonal antibody (1H10G7), either 

neat culture supernatant or 12.8 µg/mL of purified protein in block for 1 h at 37°C, 

followed by 2 washes with PBS.  Cells were then co-stained with goat anti-mouse 

Alexa fluor 568 (Invitrogen) and 1.33 µg/mL fluorescein labeled Vicia villosa lectin 

(Vector Laboratories) diluted in block for 1 h at 37°C.  Stains were then removed and 

0.09 mM Hoechst 33258 (Anaspec) also diluted in block added for another 15 min at 

37°C, followed by 2 PBS washes and imaging on Nikon Eclipse Ti2000 

epifluorescence microscope run with NIS-Elements Advanced Research software 

(Nikon, USA) and equipped with EXi blue fluorescent microscopy camera (QImaging, 

Canada).  For counting, large 2 × 2 images with 15 % overlap were taken using a 40X 
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air objective (0.7 NA), and for finer details Z stack images taken using a 60X oil 

objective (1.4 NA).  Lectin positive cells in focus were first counted, followed by 

DMC1.   

For compound dose response studies, assays with similar protocol were 

performed in 384 well plates and imaged using a 20X air objective (NA = 0.45) with 4 

× 4 binning, and large 4 × 4 to 6 × 6 images were taken using an automated stage.  

Images were analyzed using ImageJ software and the macro developed (Supplementary 

Method 2). 

 

3.5.10.  Clustering analysis 

Life stage assay results were compiled into a data frame of continuous variables 

(see Supplemental Table 3).  For each assay, data was scaled about the mean for that 

particular assay.  Scaled data was then used to find the Euclidean distances of each 

compound from other compounds and generate a distance matrix for the entire data 

frame.  The distance matrix was then used to generate a dendrogram using the Ward 

error sum of squares hierarchical clustering method as defined by Ward in 1963 (Ward 

Jr, 1963) and improved upon by Murtagh and Legendre (Murtagh, 2014).   A code was 

developed and run using R studio (Supplementary Method 3).  Label coloring is only 

included for identification purposes, and has no influence on cluster composition in the 

generated dendrogram.  
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3.5.11.  Mouse model of chronic C. parvum infection 

The animal care guidelines were strictly followed for all animal studies, and 

were performed only after obtaining approval by the University of Vermont 

Institutional Animal Care and Use Committee.   

NOD SCID gamma mice studies were performed as previously described 

(Jumani et al., 2018).  Mice that were 3 weeks (± 3 days) of age were purchased from 

Jackson Laboratories, allowed to acclimatize for one week, and then infected with 

100000 oocysts per mouse.  Oocyst shedding in feces was monitored by qPCR for 18s 

rRNA.  DNA was extracted by the Omega bio-tek’s E.Z.N.A. stool DNA kit per the 

manufacturer’s protocol, with a modification of initialy using 6 flash freeze and thaw 

cycles in liquid nitrogen to disrupt oocysts.  Different amounts of oocysts were spiked 

in feces, followed by DNA extraction and qPCR to generate a standard curve, which 

was run each time and used to calculate oocyst shed per mg feces.  Mice consistently 

started shedding detectable oocysts in feces by qPCR 6 days after infection.  Hence, 

mice were treated twice daily with 50 mg/kg of compounds by oral gavage from 7th day 

after infection for 4 days, and oocysts shedding in feces was monitored every day after 

onset of treatment.  Relapse was tested for 7 days after cessation of treatment.  Based 

on power calculations using Statistical Solutions, LCC’s software, 4 mice per group 

were used to obtain at least 50% reduction in parasite infections with a power of 80%. 
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3.6.  Supplementary Methods 

 

3.6.1.  Supplementary Method 1.  ImageJ macro for quantification of DNA 

synthesis assay. 

 

Title = getTitle(); 

Title = replace(Title, ".tif", ""); 

run("Stack to Images"); 

rename ("lectin-"+Title); 

selectWindow(Title+"-0001"); 

rename ("edu-"+Title); 

run("Enhance Local Contrast (CLAHE)", "blocksize=9 histogram=256 maximum=3 

mask=*None*"); 

run("Enhance Local Contrast (CLAHE)", "blocksize=9 histogram=256 maximum=3 

mask=*None*"); 

run("Subtract Background...", "rolling=1"); 

setAutoThreshold("Default dark"); 

//run("Threshold..."); 

setThreshold(3000, 65535); 

run("Convert to Mask"); 

selectWindow("lectin-"+Title); 

run("Subtract Background...", "rolling=15"); 

setAutoThreshold("Default dark"); 

//run("Threshold..."); 

setThreshold(400, 65535); 

run("Convert to Mask"); 

run("Fill Holes"); 

run("Watershed"); 

run("Analyze Particles...", "size=50-Infinity circularity=0.50-1.00 show=[Count 

Masks] display clear summarize in_situ"); 

setAutoThreshold("Default dark"); 

//run("Threshold..."); 

setThreshold(0, 0); 

run("Create Selection"); 

selectWindow("edu-"+Title); 

run("Restore Selection"); 

run("Clear", "slice"); 

run("Select None"); 

run("Analyze Particles...", "size=3-Infinity circularity=0-1.00 show=Outlines display 

clear summarize in_situ"); 
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3.6.2.  Supplementary Method 2.  ImageJ macro for quantification of DMC1 in the 

asexual to sexual conversion assay. 

Title = getTitle(); 

Title = replace(Title, ".tif", ""); 

run("Stack to Images"); 

rename ("nuc-"+Title); 

run("Subtract Background...", "rolling=15"); 

run("Unsharp Mask...", "radius=3 mask=0.70"); 

//run("Threshold..."); 

setAutoThreshold("Huang dark"); 

run("Convert to Mask"); 

run("Watershed"); 

run("Analyze Particles...", "size=40-Infinity show=Outlines display clear summarize 

in_situ"); 

selectWindow(Title+"-0002"); 

rename ("lectin-"+Title); 

selectWindow(Title+"-0001"); 

rename ("dmc1-"+Title); 

run("Subtract Background...", "rolling=1"); 

setAutoThreshold("Huang dark"); 

//run("Threshold..."); 

setThreshold(373, 16383); 

run("Convert to Mask"); 

run("Fill Holes"); 

run("Watershed"); 

selectWindow("lectin-"+Title); 

run("Subtract Background...", "rolling=1"); 

setAutoThreshold("Huang dark"); 

//run("Threshold..."); 

setThreshold(1300, 16383); 

run("Convert to Mask"); 

run("Fill Holes"); 

run("Watershed"); 

run("Analyze Particles...", "size=2-50 circularity=0.06-1.00 show=[Count Masks] 

display clear summarize in_situ"); 

setAutoThreshold("Huang dark"); 

//run("Threshold..."); 

setThreshold(0, 0); 

run("Create Selection"); 

selectWindow("dmc1-"+Title); 

run("Restore Selection"); 

run("Clear", "slice"); 
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run("Select None"); 

run("Analyze Particles...", "size=0-Infinity circularity=0.5-1.00 show=Outlines display 

clear summarize in_situ"); 

run("Images to Stack", "name=[] title=[] use"); 

 

 

 

 

3.6.3.  Supplementary Method 3.  Code used for clustering analysis using R studio. 

#For generating Dendrograms 

 

setwd("WORKING DIRECTORY HERE") #working directory 

library(xlsx)             #Importing relevant libraries 

library(ggplot2) 

library(magrittr) 

library(cluster) 

library(graphics) 

library(fpc) 

library(RColorBrewer) 

library(pvclust) 

 

 

##### Data Import ###### 

 

comp_df<-data.frame(read.xlsx("FILE NAME.xlsx",  

                              sheetName = "SHEET NAME", header = TRUE, rowIndex = 

c(4:59),  colIndex = c(2:9))) 

 

 

 

names(comp_df)<-c("Name","Lab Code", "Mechanism", "ID", "Invasion", "DNAsyn", 

"Motility", "SexDiff") 

 

##### Data Cleaning ######  

 

 

##Preparing Data for Dendrograms  

 

char_list<-vector(mode = "integer", length = 33)  #Empty vector to hold count values 

letter_list<-c("A","B","C","D","E","F","G","H","I","J","K", 

               "L","M","N","O","P","Q","R","S","T","U","V", 

               "W", "X", "Y", "Z", "AA", "AB", "AC", "AD",  
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               "AE", "AF", "AG") #Possible Groups, this needs additions if more groups 

emerge 

for(x in comp_df[,3]){  #Counting group ID occurances 

  char_list[which(x == letter_list)] <- char_list[which(x == letter_list)] + 1 

} 

 

repeated_values<- letter_list[which(char_list > 1)] #List of repeated groups 

 

i<-1 

for(y in comp_df[,3]){  #IDs compounds belonging to a group 

   

  if (y %in% repeated_values){ 

    comp_df[i,9]<-which(as.character(repeated_values) == as.character(y)) 

  }else{ 

    comp_df[i,9]<-0 

  } 

  i <- i + 1 

} 

 

### Graphs Generation ###  

 

labelColors = c("#0000FF", "#FF3030", "#228B22", "#D15FEE", "#00CED1", 

"#8B7355", "#E67732", "#AD00FA", "#FEFF0E" ) #blue, red, green, orchid, turquoise, 

brown, purple, bright yellow 

 

colLab <<- function(n) {      #Function for coloring labels and assigning compund 

names as labels 

  if(is.leaf(n)) { 

    a <- attributes(n) 

    attr(n, "nodePar") <-c(a$nodePar, list(lab.col = labelColors[which(repeated_values 

== as.character(comp_df[a$label,3]))], lab.font = 2)) 

    attr(n, "label") <- as.character(comp_df[a$label,1]) 

  } 

  n 

} 

 

cluster_counts<- c(2,3,4,5,6,7) #Number of Clusters 

 

clust_df=dist(comp_df[,c(5:8)], method = "euclidean") #distance matrix with euclidean 

values 

 

dendro_df<-hclust(clust_df,method = "ward.D2")%>% as.dendrogram() 

 

##### Scaling Data Frames ##### 
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comp_mean<-apply(na.omit(comp_df[5:8]), 2, mean) 

comp_sd<-apply(na.omit(comp_df[5:8]), 2, sd) 

comp_max<-apply(na.omit(comp_df[5:8]), 2, max) 

comp_min<-apply(na.omit(comp_df[5:8]), 2, min) 

comp_mad<-apply(na.omit(comp_df[5:8]), 2, mad) 

 

comp_df_scaled<-data.frame(scale(na.omit(comp_df[5:8]), center = comp_mean, scale 

= comp_sd)) 

comp_df_scaled<-cbind(na.omit(comp_df[which(!is.na(comp_df$DNAsyn)),1]), 

comp_df_scaled) 

 

clust_scaled_dist<-dist(comp_df_scaled, method = "euclidean") 

 

dendro_scaled_dist<-hclust(clust_scaled_dist, method = "ward.D2") %>% 

as.dendrogram() 

 

 

##### Dendrograms ############ 

 

par(mar = c(8, 4, 5, 17))  #margins 

 

plot(dendrapply(dendro_scaled_dist, colLab), horiz = TRUE,  

     main = "Using Numerical Data Scaled about the mean\n Euclidean Distances 

\nWard Method\nEgress Ratio",  

     xlab = "Distance Between Clusters") 
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3.8.  Figure Legends 

Figure 1.  Transmission electron microscopy timecourse showing C. parvum life 

cycle stages present in the HCT-8 cell culture system.  C. parvum Iowa oocysts 

purified from calf feces were artificially excysted in vitro and used to infect HCT-8 

monolayer.   Parasite was allowed to grow and at different time points from 12 h to 96 

h post-infection, cells were analyzed by transmission electron microscopy (TEM) to 

visualize different stages of the parasite life cycle observed in our culture system. 

 

Figure 2.  Invasion Assay.  (A) Demonstration of the parasite stage investigated during 

the invasion assay using representative TEM images of C. parvum Iowa oocysts and 

infected HCT-8 cells (Scale = 500 nm for oocysts image and 2 µm for image with 

infected cell).  (B) Schematic of experimental design.  Confluent HCT-8 monolayers 

were treated with 2 × EC90 of compounds for 1 h followed by infection with oocysts 

triggered for excystation.  Oocysts were allowed to excyst to release sporozoites for 

invasion of HCT-8 cells to form parasitophorous vacuoles for 3 h in presence of EC90 

concentration of compounds, following which cells were washed, fixed, stained, 

imaged and counted.  (C) Representative images of invaded parasites stained with Vicia 

villosa lectin (green) and host cell nuclei (blue) after treatment with DMSO control or 

EC90 concentration (11.34 µM) of wiskostatin.  Scale = 10 µm.  (D)  Quantified results 

for various controls and compounds identifying 2,4-diaminoquinazoline series from 

MMV Malaria Box to be potent inhibitors of invasion.  Each point represents the mean 

and SD of at least 2 biological replicates with 4 technical replicates per experiment. 
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Figure 3.  DNA Synthesis Assay.  (A) TEM images of C. parvum infected HCT-8 

cells demonstrating parasite processes measured by the DNA synthesis assay (Scale = 

500 nm).  (B) Overview of the experimental methodology.  Confluent HCT-8 cell in 

glass bottom plates were infected with C. parvum, and following invasion compounds 

were added at EC90 concentration.  At 9 h post-infection, 10 µM EdU was added for 

another 2 h and then cells were washed, fixed, stained and imaged.  (C)  Representative 

40X air images of parasitophorous vacuoles (green), nuclei (blue) and EdU (magenta) 

after treatment with DMSO, EC90 concentration (1.33 µM) of quinolinol A-6, or 10 

mM hydroxyurea.  Scale = 5 µm.  (D)  EdU incorporation was quantified demonstrating 

quinolinols and allopurinol-based series effect process that lead to inhibition of DNA 

synthesis.  Data are mean and SD of at least 2 independent experiments, except for 

paromomycin, 2,4-diaminoquinazolines and D-44 wherein data represents mean from 

one experiment.  ND represents data not determined. 

 

Figure 4.  Assay to measure parasitophorous vacuole (PV) egress, merozoite 

motility and reinvasion to form new parasitophorous vacuole.  (A)  Live 

microscopy DIC images taken using 60X oil objective displaying rapid events of 

parasitophorous vacuole (PV) egress to release motile merozoites that re-invade 

neighboring HCT-8 cells to form a new infection.  Scale = 5 µm.  (B)  Live microscopy 

40X air DIC timecourse images of C. parvum parasitophorous vacuoles in presence of 

allopurinol-based C-1 scaffold at 2 × EC90 concentration (1.3 µM) or matched DMSO 
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control.  Scale = 10 µm.  (C)  Timecourse infection experiment in the presence of 

DMSO or allopurinol-based scaffold C-1 at EC90 or 2 × EC90 concentration measuring 

parasitophorous vacuole numbers over time by immunofluorescence microscopy.  Data 

points are mean and SD, n=4, representative of 3 independent experiments.  (D)  

Outline of the experimental design.  Infected HCT-8 cells were treated with EC90 

concentration of compound 3 h after infection and parasitophorous vacuole numbers 

counted before egress at 6 h (count 1), and after egress at 19.5 h after infection (count 

2) by immunofluorescence microscopy and ImageJ macro.  Parasitophorous vacuole 

ratio of count 2 by count 1 taken for all compounds as a read out for the assay.  (E)  

Quantification of ratio of parasitophorous vacuole numbers showing all compounds 

inhibited parasite numbers compared to DMSO, but to varying degrees with good 

correlation observed within chemical series.  Data combined from at least 2 

independent experiments with 4 technical replicates each, mean and SD shown.  

 

Figure 5.  DMC1 (cgd_1690) mRNA and protein expression correlates with 

appearance of sexual stages.  Confluent HCT-8 cells grown in 12 well plates were 

infected with excysted C. parvum oocysts for different amounts of time before 

harvesting cells for (A) isolation of RNA followed by quantitative reverse transcription 

PCR (qRT-PCR) to quantify expression of C. parvum DMC1 (cgd7_1690) relative to 

18s RNA, and (B) transmission electron microscopy (TEM) to visualize stages of 

parasitic vacuoles at given times.  To get a more specific time-frame correlation, both 

(A) and (B) were analyzed from the same experiment, and the data are representative of 
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2 independent experiments.  Scale bar = 500nm.  Mouse monoclonal antibodies were 

raised against recombinant C. parvum DMC1 and used for immunofluorescence 

staining in in (C) and (D).  (B) and (C) Infected HCT-8 monolayers were harvested at 

different time points, fixed and stained for total parasitic vacuoles with Vicia villosa 

lectin (green), for nuclei with Hoechst (blue), and DMC1 (red).   (B) Higher resolution 

images taken with a 60X oil immersion objective showing representative vacuoles with 

DMC1 (red) expression absent in multi-nucleate parasitic vacuoles at 72 h post-

infection.  Scale bar = 5 µm.  (C) Large 2 × 2 images were taken using a 40X air 

objective as described in materials and methods for counting total and DMC1 positive 

parasitic vacuoles.  Data combined from 2 biological experiments with at least 127 

(except 14 h, where n=92) lectin positive vacuoles per experiment were considered for 

counting DMC1 positive parasites per time point. 

 

Figure 6.  Assay to Measure Asexual to Sexual Stage Conversion.  (A)  Schematic 

demonstrating experimental overview for compound dose response studies against 

asexual to sexual stage conversion as measured by DMC1.  HCT-8 cells were infected 

for 48 h, followed by addition of compound for another 24 h.  Cells were then washed, 

fixed, stained, imaged and parasites counted.  (B) Dose repose curves against the 

asexual stage as measured by the regular 48 h infection assay using V. villosa lectin, 

compared with DMC1 inhibition in the asexual to sexual stage conversion assay for 

piperazine, D-1 and 2,4-diaminoquinazoline, B-1.  The mean and SD from at least 2 

biological replicates with 4 technical replicates per experiment are shown. 
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Figure 7.  Clustering Analysis of Life Stage Assay Results for 55 Anti-

Cryptosporidium hits.  Results from the life stage assays were used to calculate a 

distance matrix using Euclidean distances followed by clustering to generate a 

dendorgram using the Ward error sum of squares hierarchical clustering method as 

described in the methods section.  Compound classes are shown in colors, whereas 

single compounds with no related variants are shown in black. 
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Figure 1.  Transmission electron microscopy timecourse showing C. parvum life 

cycle stages present in the HCT-8 cell culture system. 
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Figure 2.  Invasion Assay. 
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Figure 3.  DNA Synthesis Assay. 
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Figure 4.  Assay to measure parasitophorous vacuole (PV) egress, merozoite 

motility and reinvasion to form new parasitophorous vacuole.   
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Figure 5.  DMC1 (cgd_1690) mRNA and protein expression correlates with 

appearance of sexual stages.  
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Figure 6.  Assay to Measure Asexual to Sexual Stage Conversion.  
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Figure 7.  Clustering Analysis of Life Stage Assay Results for 55 Anti-

Cryptosporidium hits. 
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Supplementary Table 1.  Compounds from the Medicine for Malaria Venture 

Open Access Malaria Box and their variants used in the life stage assays. 

 

Compound 

ID

Huston lab 

ID
SMILES Structure

C. 

parvum 

EC90 (µM)

MMV665814 A-2

  

Oc1c(ccc2cccnc12)C(NC(=O)c3

ccccc3)c4ccccc4 

1.34

MMV666080 A-5
Oc1c(ccc2cccnc12)C(NC(=O)c3

ccccc3)c4ccccc4 
4.35

MMV000760 A-6
Oc1c(CN2CCN(CC2)c3ccccc3F)

cc(Br)c4cccnc14
1.33

MMV006169 B-1
C(Nc1nc(Nc2ccccc2)nc3ccccc1

3)c4ccccc4
2.27

OSSL_32439

9
B-5

C1CCC(C1)Nc1nc(NCc2ccccc2)

c2c(n1)cccc2
7.22

OSSL_72364

1
B-13

COc1ccc(cc1Cl)Nc1nc(NCc2ccc

cc2Cl)c2c(n1)cccc2
1.39

OSSL_32437

3 / DBeQ
B-23

c1ccc(cc1)CNc1nc(NCc2ccccc2

)c2c(n1)cccc2
10.9

MMV403679 C-1

c1(c(cnn1c2cccc(C)c2)C(=O)N3

)N=C3n4nc(C)cc4NC(=O)c5cc(c

ccc6)c6o5

0.65

F2135-0883 C-2

c31c(cnn1-

c2cc(ccc2)C)C(=O)NC(=N3)n4c(

cc(n4)C)NC(=O)c5c(cc(cc5)OC)

OC

0.65

MMV665917 D-1 
Clc1ccc(NC(=O)N2CCN(CC2)c3

ccc4nncn4n3)cc1
2.1

F5123-0135 D-28
O=C(N1CCN(CC1)c1ccc2n(n1)c

nn2)Nc1ccc(c(c1)Cl)Cl
1.5

F5313-0562 D-44

O=C(c1ccc(cc1)S(=O)(=O)N(C)

C)N1CCN(CC1)c1ccc2n(n1)cnn

2

11.6

MMV001246
CSC1=CC=CC=C1C(=O)NC2=N

C(=CS2)C3=CC=CC=N3
5.39

MMV665909
Brc1ccccc1C(=O)Nc2nc(cs2)c3c

cccn3 
6.84

N
H
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N
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Supplementary Table 2.  Grouping of select inhibitors based on the asexual life 

stage assays. 

 

Scaffold class Compound ID

Sporozoite 

invasion DNA synthesis

Egress/motility/

re-invasion

B-1 yes no 1.58

B-5 yes no 1.49

B-13 yes no 1.42

B-23 yes no 1.55

A-2 no yes 0.69

A-5 no yes 0.32

A-6 no yes 0.79

Floxuridine no no 0.74

Tegaserod no no 1.01

Quinolinols

2,4-diamino 

quinazolines
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Supplementary Table 3.  Compiled in vitro life stage assays, parasite persistence 

assay and in vivo NSG efficacy data for 55 anti-Cryptosporidium hits. 

 

Compound ID

Huston 

Lab 

Code

Putative 

mechanism/chemical 

relatedness

Sporozoite 

invasion (% 

inhibition)

DNA 

synthesis

Egress/moti

lity/re-

invasion 

(ratio)

Asexual to 

sexual 

differentiation 

(% inhibition)

Parasite 

persistence 

assay

In vivo 

activity 

(NSG-

inhibition)

In vivo 

cure (NSG)

Nitazoxanide 13.83 -9.16 1.40 73.48 static no

Gentian Violet -6.62 47.40 1.37 8.16 exponential no

Pyrvinium 25.69 88.30 0.61 68.07 static no

2,4-diaminoquinazoline_B-13 B-13 2,4-diaminoquinazoline 82.51 -3.46 1.42 11.26 exponential no

AN11429 -2.64 25.22 1.57 -51.37 exponential yes

Torkinib -21.41 -16.16 1.61 11.19 linear no

2,4-diaminoquinazoline_B-23 B-23 2,4-diaminoquinazoline 83.80 1.59 1.55 -6.40 static

Tegaserod 13.93 -6.72 1.01 12.05 linear no

Allopurinol-based_C-1 C-1 Allopurinol-based -10.80 91.44 0.80 30.35 exponential no

AN6426_LeuRS inhibitor tRNA Synthetase inhibitor -16.44 86.81 0.93 62.47 no

DDD01510706_Lysyl-tRNA tRNA Synthetase inhibitor -7.33 85.17 0.83 75.98 exponential yes

ATG8-inhibitor_MMV001246 ATG-8 inhibitor -7.41 72.11 0.43 45.66 exponential no

Floxuridine Pyrimidine analog -28.03 20.42 0.74 -7.53 linear no

Piperazine_D-1 (MMV665917) D-1 Piperazine -25.16 23.98 1.86 79.37 exponential yes yes

AN8453 -19.64 5.29 1.42 2.66 no

BK1-1294 -6.64 -5.73 1.49 45.56 no

DDD01510289_Lysyl-tRNA tRNA Synthetase inhibitor 7.92 86.82 0.90 75.58 exponential yes

BRD7929_Phe-tRNA tRNA Synthetase inhibitor 0.40 93.39 0.72 63.11 exponential yes yes

Cladosporin_Lysyl-tRNA tRNA Synthetase inhibitor -6.64 93.15 0.68 94.16 exponential

Piperazine_D-28 D-28 Piperazine -13.23 3.38 1.28 81.40 exponential yes yes

Clofazimine 66.45 88.58 0.77 89.18 linear no

ATG8-inhibitor_MMV665909 ATG-8 inhibitor -12.01 90.80 0.41 53.05 exponential no

Quinolinol_A-6 A-6 Quinolinol -20.21 89.49 0.79 17.22 exponential

Itraconazole -29.72 -4.89 1.77 63.93 linear no

Atorvastatin HMG-CoA reductase inhibitor -38.43 -4.60 1.88 36.34 linear no

Piperazine_D-44 D-44 Piperazine -11.48 12.07 2.21 74.35

Quinolinol_A-5 A-5 Quinolinol -13.46 99.95 0.32 65.35 no

AN7973 -21.37 23.10 1.70 -52.26 exponential yes

UW2093_Met-tRNA tRNA Synthetase inhibitor -9.92 83.14 1.99 7.79 exponential yes

2,4-diaminoquinazoline_B-1 B-1 2,4-diaminoquinazoline 56.43 -31.43 1.58 14.70 linear no

Wiskostatin (MMV672987) N-WASP inhibitor 88.58 36.39 1.04 45.76 exponential no

Quinolinol_A-2 A-2 Quinolinol -15.19 100.00 0.69 36.33 no

AN12387 -12.29 31.06 1.21 58.22 yes

Paromomycin -28.42 18.81 2.15 43.80 linear yes no

2,4-diaminoquinazoline_B-5 B-5 2,4-diaminoquinazoline 82.99 -9.25 1.49 7.84 static no

DDD01538714_Lysyl-tRNA tRNA Synthetase inhibitor 14.15 89.96 0.95 86.44 exponential yes

Cal44 9.83 -18.41 2.16 -5.22 linear

Halofuginone_Propyl-tRNA tRNA Synthetase inhibitor 6.92 88.20 0.69 51.29

Oryzalin Plant Microtubule agent 1.23 12.01 2.39 -62.75

Cal49 -5.39 -27.43 1.51 -4.71 linear

Allopurinol-based_C-4 C-4 Allopurinol-based 9.11 99.18 0.48 41.59 exponential no

Docetaxel Human Microtubule agent -8.63 16.66 1.76 34.13

Cal48 -22.39 -45.18 1.63 50.94

Cal46 -0.21 -17.33 1.72 21.47 linear yes no

Allopurinol-based_C-5 C-5 Allopurinol-based 13.07 98.17 0.31 30.15 exponential no

DDD01538844_Lysyl-tRNA tRNA Synthetase inhibitor 4.99 81.67 0.89 94.82 exponential yes yes

BK1-1553 CDPK1 inhibitor -3.92 9.91 1.94 -13.81 yes no

Cal50 -27.90 -25.65 1.44 49.26 exponential no

Allopurinol-based_C-2 C-2 Allopurinol-based 3.65 98.27 0.34 13.19 exponential no

Cal45 -18.17 -16.81 1.35 1.98 exponential

Nilotinib -21.88 22.05 1.05 70.96 static no

Cal47 -10.53 -61.28 1.44 -36.14 linear yes no

BK1-1770 CDPK1 inhibitor -2.21 4.28 1.44 -37.39

BK1-1369 CDPK1 inhibitor -7.94 16.97 1.41 -4.30 yes no

IMPDH_P257 IMPDH inhibitor 9.88 97.76 0.84 70.52 linear no  



138 

 

 

3.8.  References 

Abubakar, I., Aliyu, S. H., Arumugam, C., Hunter, P. R., & Usman, N. K. (2007). 

Prevention and treatment of cryptosporidiosis in immunocompromised patients. 

Cochrane Database Syst Rev(1), CD004932. 

doi:10.1002/14651858.CD004932.pub2 

Amadi, B., Mwiya, M., Sianongo, S., Payne, L., Watuka, A., Katubulushi, M., & Kelly, 

P. (2009). High dose prolonged treatment with nitazoxanide is not effective for 

cryptosporidiosis in HIV positive Zambian children: a randomised controlled 

trial. BMC infectious diseases, 9, 195. doi:10.1186/1471-2334-9-195 

Barkhuff, W. D., Gilk, S. D., Whitmarsh, R., Tilley, L. D., Hunter, C., & Ward, G. E. 

(2011). Targeted disruption of TgPhIL1 in Toxoplasma gondii results in altered 

parasite morphology and fitness. PLoS One, 6(8), e23977. 

doi:10.1371/journal.pone.0023977 

Bessoff, K., Sateriale, A., Lee, K. K., & Huston, C. D. (2013). Drug Repurposing 

Screen Reveals FDA-Approved Inhibitors of Human HMG-CoA Reductase and 

Isoprenoid Synthesis that Block Cryptosporidium parvum Growth. 

Antimicrobial agents and chemotherapy. doi:10.1128/AAC.02460-12 

Bessoff, K., Spangenberg, T., Foderaro, J. E., Jumani, R. S., Ward, G. E., & Huston, C. 

D. (2014). Identification of Cryptosporidium parvum active chemical series by 

Repurposing the open access malaria box. Antimicrob Agents Chemother, 58(5), 

2731-2739. doi:10.1128/AAC.02641-13 

Burrows, J. N., Duparc, S., Gutteridge, W. E., Hooft van Huijsduijnen, R., Kaszubska, 

W., Macintyre, F., . . . Wells, T. N. C. (2017). New developments in anti-

malarial target candidate and product profiles. Malaria journal, 16(1), 26. 

doi:10.1186/s12936-016-1675-x 

Burrows, J. N., van Huijsduijnen, R. H., Mohrle, J. J., Oeuvray, C., & Wells, T. N. 

(2013). Designing the next generation of medicines for malaria control and 

eradication. Malaria journal, 12, 187. doi:10.1186/1475-2875-12-187 

Castellanos-Gonzalez, A., White, A. C., Jr., Ojo, K. K., Vidadala, R. S., Zhang, Z., 

Reid, M. C., . . . Van Voorhis, W. C. (2013). A novel calcium-dependent protein 

kinase inhibitor as a lead compound for treating cryptosporidiosis. J Infect Dis, 

208(8), 1342-1348. doi:10.1093/infdis/jit327 

Chao, A. T., Lee, B. H., Wan, K. F., Selva, J., Zou, B., Gedeck, P., . . . Manjunatha, U. 

H. (2018). Development of a Cytopathic Effect-Based Phenotypic Screening 

Assay against Cryptosporidium. ACS Infect Dis. 

doi:10.1021/acsinfecdis.7b00247 

Checkley, W., White, A. C., Jr., Jaganath, D., Arrowood, M. J., Chalmers, R. M., Chen, 

X. M., . . . Houpt, E. R. (2015). A review of the global burden, novel 

diagnostics, therapeutics, and vaccine targets for cryptosporidium. Lancet Infect 

Dis, 15(1), 85-94. doi:10.1016/s1473-3099(14)70772-8 

Chen, X. M., Huang, B. Q., Splinter, P. L., Orth, J. D., Billadeau, D. D., McNiven, M. 

A., & LaRusso, N. F. (2004). Cdc42 and the actin-related protein/neural 



139 

 

Wiskott-Aldrich syndrome protein network mediate cellular invasion by 

Cryptosporidium parvum. Infect Immun, 72(5), 3011-3021.  

Current, W. L., & Reese, N. C. (1986). A comparison of endogenous development of 

three isolates of Cryptosporidium in suckling mice. J Protozool, 33(1), 98-108.  

Delves, M., Plouffe, D., Scheurer, C., Meister, S., Wittlin, S., Winzeler, E. A., . . . 

Leroy, D. (2012). The activities of current antimalarial drugs on the life cycle 

stages of Plasmodium: a comparative study with human and rodent parasites. 

PLoS Med, 9(2), e1001169. doi:10.1371/journal.pmed.1001169 

Disease, G. B. D., Injury, I., & Prevalence, C. (2016). Global, regional, and national 

incidence, prevalence, and years lived with disability for 310 diseases and 

injuries, 1990-2015: a systematic analysis for the Global Burden of Disease 

Study 2015. Lancet, 388(10053), 1545-1602. doi:10.1016/S0140-

6736(16)31678-6 

Elliott, D. A., Coleman, D. J., Lane, M. A., May, R. C., Machesky, L. M., & Clark, D. 

P. (2001). Cryptosporidium parvum infection requires host cell actin 

polymerization. Infect Immun, 69(9), 5940-5942.  

Gorla, S. K., Kavitha, M., Zhang, M., Liu, X., Sharling, L., Gollapalli, D. R., . . . Cuny, 

G. D. (2012). Selective and potent urea inhibitors of cryptosporidium parvum 

inosine 5'-monophosphate dehydrogenase. Journal of medicinal chemistry, 

55(17), 7759-7771. doi:10.1021/jm3007917 

Gorla, S. K., McNair, N. N., Yang, G., Gao, S., Hu, M., Jala, V. R., . . . Hedstrom, L. 

(2014). Validation of IMP dehydrogenase inhibitors in a mouse model of 

cryptosporidiosis. Antimicrob Agents Chemother, 58(3), 1603-1614. 

doi:10.1128/aac.02075-13 

Hobbs, C. V., Neal, J., Conteh, S., Donnelly, L., Chen, J., Marsh, K., . . . Duffy, P. E. 

(2014). HIV treatments reduce malaria liver stage burden in a non-human 

primate model of malaria infection at clinically relevant concentrations in vivo. 

PLoS One, 9(7), e100138. doi:10.1371/journal.pone.0100138 

Huston, C. D., Spangenberg, T., Burrows, J., Willis, P., Wells, T. N., & van Voorhis, 

W. (2015). A Proposed Target Product Profile and Developmental Cascade for 

New Cryptosporidiosis Treatments. PLoS Negl Trop Dis, 9(10), e0003987. 

doi:10.1371/journal.pntd.0003987 

Jain, V., Yogavel, M., Kikuchi, H., Oshima, Y., Hariguchi, N., Matsumoto, M., . . . 

Sharma, A. (2017). Targeting Prolyl-tRNA Synthetase to Accelerate Drug 

Discovery against Malaria, Leishmaniasis, Toxoplasmosis, Cryptosporidiosis, 

and Coccidiosis. Structure, 25(10), 1495-1505.e1496. 

doi:10.1016/j.str.2017.07.015 

Jumani, R. S., Bessoff, K., Love, M. S., Miller, P., Stebbins, E. E., Teixeira, J. E., . . . 

Huston, C. D. (2018). A Novel Piperazine-Based Drug Lead for 

Cryptosporidiosis from the Medicines for Malaria Venture Open Access 

Malaria Box. Antimicrob Agents Chemother. doi:10.1128/aac.01505-17 

Kato, N., Comer, E., Sakata-Kato, T., Sharma, A., Sharma, M., Maetani, M., . . . 

Schreiber, S. L. (2016). Diversity-oriented synthesis yields novel multistage 

antimalarial inhibitors. Nature, 538(7625), 344-349. doi:10.1038/nature19804 



140 

 

Katsuno, K., Burrows, J. N., Duncan, K., Hooft van Huijsduijnen, R., Kaneko, T., Kita, 

K., . . . Slingsby, B. T. (2015). Hit and lead criteria in drug discovery for 

infectious diseases of the developing world. Nat Rev Drug Discov, 14(11), 751-

758. doi:10.1038/nrd4683 

Kotloff, K. L., Nataro, J. P., Blackwelder, W. C., Nasrin, D., Farag, T. H., 

Panchalingam, S., . . . Levine, M. M. (2013). Burden and aetiology of diarrhoeal 

disease in infants and young children in developing countries (the Global 

Enteric Multicenter Study, GEMS): a prospective, case-control study. Lancet, 

382(9888), 209-222. doi:10.1016/S0140-6736(13)60844-2 

Liu, J., Platts-Mills, J. A., Juma, J., Kabir, F., Nkeze, J., Okoi, C., . . . Houpt, E. R. 

(2016). Use of quantitative molecular diagnostic methods to identify causes of 

diarrhoea in children: a reanalysis of the GEMS case-control study. Lancet, 

388(10051), 1291-1301. doi:10.1016/S0140-6736(16)31529-X 

Love, M. S., Beasley, F. C., Jumani, R. S., Wright, T. M., Chatterjee, A. K., Huston, C. 

D., . . . McNamara, C. W. (2017). A high-throughput phenotypic screen 

identifies clofazimine as a potential treatment for cryptosporidiosis. PLoS Negl 

Trop Dis, 11(2), e0005373. doi:10.1371/journal.pntd.0005373 

Malebranche, R., Arnoux, E., Guerin, J. M., Pierre, G. D., Laroche, A. C., Pean-

Guichard, C., . . . et al. (1983). Acquired immunodeficiency syndrome with 

severe gastrointestinal manifestations in Haiti. Lancet, 2(8355), 873-878.  

Manjunatha, U. H., Chao, A. T., Leong, F. J., & Diagana, T. T. (2016). 

Cryptosporidiosis Drug Discovery: Opportunities and Challenges. ACS Infect 

Dis, 2(8), 530-537. doi:10.1021/acsinfecdis.6b00094 

Manjunatha, U. H., Vinayak, S., Zambriski, J. A., Chao, A. T., Sy, T., Noble, C. G., . . . 

Diagana, T. T. (2017). A Cryptosporidium PI(4)K inhibitor is a drug candidate 

for cryptosporidiosis. Nature, 546(7658), 376-380. doi:10.1038/nature22337 

Mauzy, M. J., Enomoto, S., Lancto, C. A., Abrahamsen, M. S., & Rutherford, M. S. 

(2012). The Cryptosporidium parvum transcriptome during in vitro 

development. PLoS One, 7(3), e31715. doi:10.1371/journal.pone.0031715 

Mlambo, G., Coppens, I., & Kumar, N. (2012). Aberrant sporogonic development of 

Dmc1 (a meiotic recombinase) deficient Plasmodium berghei parasites. PLoS 

One, 7(12), e52480. doi:10.1371/journal.pone.0052480 

Murtagh, F., & Legendre, P. (2014). Ward’s Hierarchical Agglomerative Clustering 

Method: Which Algorithms Implement Ward’s Criterion? . Journal of 

Classification, 31(3), 274-295.  

Navin, T. R., Weber, R., Vugia, D. J., Rimland, D., Roberts, J. M., Addiss, D. G., . . . 

Bryan, R. T. (1999). Declining CD4+ T-lymphocyte counts are associated with 

increased risk of enteric parasitosis and chronic diarrhea: results of a 3-year 

longitudinal study. J Acquir Immune Defic Syndr Hum Retrovirol, 20(2), 154-

159.  

Ndao, M., Nath-Chowdhury, M., Sajid, M., Marcus, V., Mashiyama, S. T., Sakanari, J., 

. . . Caffrey, C. R. (2013). A cysteine protease inhibitor rescues mice from a 

lethal Cryptosporidium parvum infection. Antimicrob Agents Chemother, 

57(12), 6063-6073. doi:10.1128/aac.00734-13 



141 

 

Nwaka, S., & Hudson, A. (2006). Innovative lead discovery strategies for tropical 

diseases. Nat Rev Drug Discov, 5(11), 941-955. doi:10.1038/nrd2144 

Pawlowic, M. C., Vinayak, S., Sateriale, A., Brooks, C. F., & Striepen, B. (2017). 

Generating and Maintaining Transgenic Cryptosporidium parvum Parasites. 

Curr Protoc Microbiol, 46, 20B 22 21-20B 22 32. doi:10.1002/cpmc.33 

Peterson, J. R., Bickford, L. C., Morgan, D., Kim, A. S., Ouerfelli, O., Kirschner, M. 

W., & Rosen, M. K. (2004). Chemical inhibition of N-WASP by stabilization of 

a native autoinhibited conformation. Nature structural & molecular biology, 

11(8), 747-755. doi:10.1038/nsmb796 

Rider, S. D., Jr., Cai, X., Sullivan, W. J., Jr., Smith, A. T., Radke, J., White, M., & Zhu, 

G. (2005). The protozoan parasite Cryptosporidium parvum possesses two 

functionally and evolutionarily divergent replication protein A large subunits. J 

Biol Chem, 280(36), 31460-31469. doi:10.1074/jbc.M504466200 

Salic, A., & Mitchison, T. J. (2008). A chemical method for fast and sensitive detection 

of DNA synthesis in vivo. Proc Natl Acad Sci U S A, 105(7), 2415-2420. 

doi:10.1073/pnas.0712168105 

Shibata, S., Gillespie, J. R., Kelley, A. M., Napuli, A. J., Zhang, Z., Kovzun, K. V., . . . 

Buckner, F. S. (2011). Selective inhibitors of methionyl-tRNA synthetase have 

potent activity against Trypanosoma brucei Infection in Mice. Antimicrob 

Agents Chemother, 55(5), 1982-1989. doi:10.1128/aac.01796-10 

Shirley, D. A., Moonah, S. N., & Kotloff, K. L. (2012). Burden of disease from 

cryptosporidiosis. Current opinion in infectious diseases, 25(5), 555-563. 

doi:10.1097/QCO.0b013e328357e569 

Vinayak, S., Pawlowic, M. C., Sateriale, A., Brooks, C. F., Studstill, C. J., Bar-Peled, 

Y., . . . Striepen, B. (2015). Genetic modification of the diarrhoeal pathogen 

Cryptosporidium parvum. Nature, 523(7561), 477-480. 

doi:10.1038/nature14651 

Ward Jr, J. H. (1963). Hierarchical grouping to optimize an objective function. Journal 

of the American statistical association, 58(301), 236-244.  



142 

 

CHAPTER 4: DISCUSSION AND FUTURE DIRECTIONS 

This chapter will briefly summarize the results from chapters 2 and 3, provide 

an update on developments that have occurred most recently in this rapidly changing 

field, and then discuss strategies for further development of MMV665917 and 

additional needs to establish a Cryptosporidium drug development pipeline. 

We have identified a highly promising piperazine-based lead, MMV665917 

from the Medicines for Malaria Venture Open Access Malaria Box that was active 

against C. hominis and C. parvum Iowa strain and field isolates in vitro, was efficacious 

in the acute interferon-γ (IFN-γ) mouse model, as well as appeared to cure the chronic 

NOD SCID gamma (NSG) mouse model of cryptosporidiosis (Chapter 2).  On the other 

hand, paromomycin and clofazimine were effective in the IFN-γ mouse model, but did 

not cure the disease in NSG mice.  Since the NSG mice are highly 

immunocompromised, we hypothesized that the compounds need to be cidal to cure the 

disease in the NSG mouse model.  To aid general in vivo efficacy studies, we 

developed an in vitro pharmacodynamic (PD) parasite persistence assay to determine 

potentially static versus cidal compounds and identify the concentration of compound 

required to maximize the rate of parasite elimination (Chapter 2).  MMV665917 

appeared cidal in the parasite persistence assay, whereas, nitazoxanide, paromomycin 

and clofazimine seemed potentially static (Jumani et al., 2018). 

Currently, there are several large phenotypic screening efforts underway to 

identify anti-Cryptosporidium compounds, with thousands of hits expected soon 

(Bessoff, Sateriale, Lee, & Huston, 2013; Bessoff et al., 2014; Chao et al., 2018; Love 
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et al., 2017).  In the absence of a reliable drug, the in vitro and in vivo characteristics 

desired for prioritization are not known.  A strategy to obtain diverse hits with different 

mechanisms of action has been used to prioritize hits for parasitic drug development 

(Burrows et al., 2017; Burrows, van Huijsduijnen, Mohrle, Oeuvray, & Wells, 2013; 

Katsuno et al., 2015).  With a goal to obtain diversity among anti-Cryptosporidium hits, 

we developed a range of life-stage specific assays and screened a set of 34 “learner” 

hits that had activity against the asexual stage of C. parvum.  Interestingly, several 

compounds behaved differently in the life-stage assays, forming distinct groups, but 

structural variants and multiple different tRNA synthetase inhibitors grouped together 

(Chapter 3).  

Anti-Cryptosporidium drug development efforts have been growing at an 

extremely fast pace and large developments have been made since the start of this 

thesis.  In fact, significant updates have occurred in the past few months during the 

writing of this thesis.  MMV665917 has been shown to be highly efficacious in the 

clinical calf model, reducing parasite shedding as well as alleviating the symptoms of 

diarrhea (Stebbins et al., 2018).  The compound also abrogated parasite shedding in 

gnotobiotic piglets infected with the C. hominis TU502 strain, but surprisingly, the 

compound alone induced diarrhea in this model, unlike in calves wherein it reduced C. 

parvum induced diarrhea (personal communication with Dr. Saul Tzipori, Tufts 

University).  Interestingly, MMV665917 has shown the best anti-C. hominis efficacy to 

date in the gnotobiotic piglet model of cryptosporidiosis.  The most potent variant of 

MMV665917 identified, D-28, also cured cryptosporidiosis in the NSG mouse model.  
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After a four-day treatment with twice-daily dose of 60 mg/kg of MMV665917 or D-28 

variant, mice did not shed any detectable parasites in feces for up to 26 days after 

cessation of treatment (Huston lab, unpublished data). Since MMV665917 is active 

against P. falciparum blood stages and these cultures can be continuously maintained in 

vitro, resistance studies were performed in this system.  More than 20 different 

MMV665917 resistant strains with varying degrees of resistance with a 1.3 to > 36 fold 

decrease in potency have been obtained (personal communication with Dr. Audrey R. 

Odom, Washington University School of Medicine).  These resistant strains can be 

sequenced and can potentially provide the likely target of the drug.  Large-scale 

screening has been performed using DMC1 as a marker to identify asexual and sexual 

stage specific and pan stage inhibitors (Huston lab, unpublished data).  Genetic strains 

of Cryptosporidium with the inosine-5′-monophosphate dehydrogenase (IMPDH) 

knockout have been created and were viable in vivo, ending the IMPDH drug 

development program (Dr. Boris Striepen’s talk at Bill and Melinda Gates Foundation’s 

2nd Annual Cryptosporidium Drug Discovery Program Meeting, Tres Cantos, Spain, 

June 2017).  The IMPDH inhibitors had been earlier identified using target-based 

screens and were shown to be active in the acute IL-12 knockout mouse model of 

cryptosporidiosis (Gorla et al., 2012; Gorla et al., 2014).  

 

4.1.  MMV665917 Lead Optimization and Pharmacokinetic Considerations 

MMV665917 is a promising lead compound with impressive activity in several 

animal models, something which has not been seen with any other anti-

Cryptosporidium compound to date.  The compound is quite safe in vitro, except for 
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potential hERG liabilities at higher concentrations and drug-drug interaction issues, 

which are compounded by a modest anti-Cryptosporidium in vitro potency.  The other 

initial concern is the compound-induced diarrhea in gnotobiotic piglets during initial 

studies.  Since the compound was highly efficacious, a more comprehensive dose-

response study with a lower dose needs to be tested to abrogate compound induced 

diarrhea.  Preliminary structure-activity relationship (SAR) studies appear promising, 

lending credence to addressing these issues using a medicinal chemistry program.  The 

success of the medicinal chemistry program would depend on understanding the 

pharmacokinetic parameters (PK) of MMV665917 that drive in vivo efficacy.  The first 

step would be to perform a thorough PK study with 30 and 60 mg/kg of MMV665917 

in mice and model these data to design further in vivo experiments to determine 

minimal dose(s) required to achieve efficacy.  A comparison of the PK parameters of 

the variant, D-28, with those of the parent could provide helpful insights about PK 

parameters that drive in vivo efficacy.  A comprehensive medicinal chemistry program 

can not only aid in identifying compounds with improved potency, but also variants 

with different PK properties, which can then be used as tools to understand PK 

properties that drive in vivo efficacy. 

The ideal PK parameters for anti-Cryptosporidium drugs have been a major 

unanswered question in Cryptosporidium drug development in general.  There have 

been reports with Bumped Kinase inhibitors (BKI) and IMPDH inhibitors suggesting 

that intestinal exposure is important for efficacy (Arnold et al., 2017; Gorla et al., 

2014).  Using structural variants of BRD7929 (a validated Cryptosporidium Phe-tRNA 
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synthetase inhibitor (Kato et al., 2016)) with different PK properties, it is clear that 

systemic exposure is critical for activity of this series in the NSG mouse model.  Hence, 

we believe the optimal PK parameters could vary depending on the compound class.  

Added on, there is a possibility that the PK parameters could depend on the mouse 

model used as well, as different mouse models have been used in the above studies.  As 

in immunocompromised patients, the biliary tree gets infected in the NSG mice (data 

not shown) and it is possible that this site acts as a reservoir of infection, with systemic 

or enterohepatic recirculation of drugs required to cure the disease from these animals.  

Paromomycin is a poorly absorbed drug that reduces oocyst shedding in the NSG mice, 

but the infection relapses on cessation of treatment (Jumani et al., 2018).  

Paromomycin’s inability to cure the biliary tree infection in these mice could be one 

among several reasons why paromomycin-treated mice relapse.  To address variability 

between mouse models of infection, we have tested the BKI and IMPDH inhibitors in 

the NSG mouse model, but they were ineffective.  The results are inconclusive, as the 

inactivity could be due to several reasons apart from PK parameters.  Interestingly, 

clofazimine was active in the IFN-γ mouse model but not in the NSG model, whereas, 

MMV665917 was active in both models.  Thus, an understanding of MMV665917 PK 

parameters would shed some light on understanding if the PK parameters desired for 

various mouse models are different.  Confidence in these studies can be added by 

comparing several leads across the different mouse models of cryptosporidiosis. 

An in vitro transmembrane assay could be potentially used to predict the PK 

properties desired (see Appendix II).  This would involve developing a polarized 
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monolayer of intestinal cells using a transmembrane chamber and testing efficacy of 

compounds when added to the apical or basolateral side of the polarized monolayer.  

This assumes the apical side represents the intestinal lumen, while the basolateral side 

represents systemic exposure.  The major challenge for the assay is to measure and 

correct for transport of compounds across the polarized monolayer. 

 

4.2.  Target of MMV665917 

A knowledge of the target of MM665917 is not mandatory for drug 

development but would have several advantages.  A knowledge of the target would be 

extremely helpful in the medicinal chemistry program and would help in increasing 

selectivity for the parasite over the unwanted host toxicity.  There is a possibility that 

MMV665917 might fail as a drug candidate due to PK, selectivity issues, cost, or other 

reasons, but the target can potentially be a validated drugable candidate, especially as 

MMV665917 works remarkably well in several animal models.  Thus, identification of 

the target would be an invaluable resource that can be helpful in developing new 

classes of compounds against cryptosporidiosis using a target-based screening strategy. 

Since MMV665917 was identified from a whole cell screening assay where the 

parasite growth is dependent on the host, the target of the drug could be in the parasite 

or host cell pathway that is essential for parasitic growth.  Since the drug is active 

against the related Apicomplexan parasite Plasmodium blood stages as well, we 

hypothesize that the drug potentially targets the parasite and not the host and that the 

target is conserved between the 2 parasites.  The resistant P. falciparum strains recently 
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generated serve as a promising tool to identify a target.  We are also collaborating with 

GlaxoSmithKline (GSK) to use their thermal proteome shift technology to identify a 

potential proteome target (Savitski et al., 2014).  One of the partially active variants, D-

74, is closely related to a kinase inhibitor identified in a patent application which was 

found using the chemical structure search function of the Chemical Abstracts Service 

(CAS) SciFinder database (https://scifinder.cas.org/).  Using a similar strategy, our 

collaborator Dr. Marv Meyers found C. parvum Cyclin Dependent Kinase 8 to be a 

potential target for MMV665917 and is using medicinal chemistry strategies to test the 

same.  Our collaborator Dr. Ray Hui at the University of Toronto has expressed several 

C. parvum kinases and is currently screening MMV665917 and its select variants 

against the kinases.  These different strategies could yield a potential target, which can 

be confirmed in C. parvum by performing over-expression and mutation studies using 

the recently developed CRISPR/Cas9 genetics system (Pawlowic, Vinayak, Sateriale, 

Brooks, & Striepen, 2017; Vinayak et al., 2015). 

 

4.3.  Compare Mouse Models and in vitro Assays 

Numerous mouse models and in vitro assays are currently in use for 

Cryptosporidium drug development (Castellanos-Gonzalez et al., 2013; Gorla et al., 

2014; Jumani et al., 2018; Love et al., 2017; Manjunatha et al., 2017; Ndao et al., 

2013).  The in vitro and in vivo data reported in this thesis are the first direct 

comparison of a large number of promising anti-Cryptosporidium hits and leads from 

various groups in the same in vitro assays and in vivo mouse model (Bessoff et al., 

https://scifinder.cas.org/
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2013; Bessoff et al., 2014; Castellanos-Gonzalez et al., 2013; Downey, Chong, 

Graczyk, & Sullivan, 2008; Gorla et al., 2012; Jumani et al., 2018; Kato et al., 2016; 

Love et al., 2017; Shibata et al., 2011).  This has been extremely helpful in directly 

comparing compounds and characterizing them.  It is interesting to note that many of 

the compounds that were active in the acute mouse models were not active in the NSG 

mouse model of cryptosporidiosis.  This includes the IMPDH inhibitors whose target 

has been shown to be non-essential for Cryptosporidium.  The failure of IMPDH 

inhibitors serve as a classical example for drawbacks of target-based drug development 

for poorly studied neglected disease where target validation is extremely difficult.  This 

also raises questions about the validity of the acute IL-12 knockout mouse model for 

Cryptosporidium drug development.  BKI-1294 was also inactive in NSG mice, but has 

shown efficacy in the clinical calf model when given prophylactically.  It is interesting 

to note that MMV665917 and AN7973 had activity in the NSG mice, and when dosed 

after onset of infection in calves worked much better than prophylactic administration 

of BKI-1294 (Huston lab, unpublished data).  These preliminary correlations are 

interesting to note, but too small in number to draw any significant conclusions.  The 

only other compound (apart from MMV665917 and AN7979) tested with good activity 

in the calf model is a phosphatidylinositol-4-OH kinase (PI(4)K) inhibitor, KDU731, 

from Novartis (Manjunatha et al., 2017).  This compound is the only other promising 

lead that has not been tested in our in vitro assay or NSG mouse model.  A variant of 

the KDU731 is on course to be tested in these models for a direct comparison and could 

yield meaningful results.  KDU731 was tested in the chronic IFN-γ mouse model using 
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a mouse adapted nano-luciferase (Nluc) expressing C. parvum (Manjunatha et al., 

2017).  The lysine-tRNA synthetase inhibitors from Dundee have been tested in this 

chronic IFN-γ mouse model as well as the NSG mouse model with good efficacy 

correlation between the two mouse models.  Hence, we expect the KDU731 to have 

similar activity in our NSG mouse model as well. 

With many compounds inactive in the NSG mice but active in the other acute 

mouse models, there was a growing concern in the drug development community that 

the bar is very high to achieve activity in the NSG mice, which might eliminate most of 

the hits.  This has not been the case, as after testing 29 different scaffolds in the NSG 

mice, we have found 9 different scaffolds (~31% hit rate) with activity in the NSG 

mouse model.  There is a chance that screening in the NSG mouse model alone might 

eliminate interesting hits.  Since there is no gold standard drug, the only way to know 

that activity in mouse models correlates with clinical efficacy is by identifying a drug 

that works in humans.  For now, it could be extremely valuable to test all the existing 

promising leads in the critical mouse models and compare efficacy with the  clinical 

calf model.  This would be invaluable in establishing a standardized drug development 

cascade and reducing variability and redundant efforts for future lead identification 

studies.  Further value can be added to these comparisons by understanding correlations 

between in vivo efficacy in various mouse models and efficacy in the parasite 

persistence assay. 

Similarly, there are several different in vitro assays used to identify hits, which 

include immunofluorescence assays, assays using Nluc expressing parasites, RNA 
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detection using real-time quantitative PCR assay, and assays measuring host cytopathic 

effect (Bessoff et al., 2013; Castellanos-Gonzalez et al., 2013; Chao et al., 2018; Love 

et al., 2017; Vinayak et al., 2015).  A correlation between assays using a learner set of 

compounds needs to be established to directly compare hits from the various assays.  

The assays also use different sources of oocysts, with the C. parvum Iowa strain from 

Bunch Grass Farm and the University of Arizona Sterling Laboratory being the major 

sources.  There have been studies from our group and others to compare activity of 

promising hits against the Iowa strains and field isolates of C. parvum, and C. hominis 

TU502 strain as well.  This should be a requirement for Cryptosporidium drug 

development, and studies against C. hominis field strains should also be performed, 

given the variation in virulence across strains.  The latter studies are usually hindered 

due to lack of availability. 

 

4.4.  Prioritization Assays 

The life stage assays have been used in this thesis to determine diversity based 

on predominant effect on compounds on the life stages.  There is a possibility that the 

compounds grouped in the same cluster by this method could have different 

mechanisms of action, i.e., compounds could be affecting different pathways that 

provide the same life stage affect.  This method has a caveat that it could potentially 

eliminate useful drug candidates at an early stage.  However, the current prioritization 

method is random and this provides a logical method that has worked well for other 

neglected tropical diseases (NTDs).  Based on experience with other NTDs, the lack of 
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prioritization has led to numerous cases wherein chemical series were pursued far too 

long, wasting precious resources, time and careers that could have been spent much 

more wisely.  Since there are now an ample supply of early-stage Cryptosporidium 

inhibitors, the risk associated with a high attrition rate in drug development outweighs 

the initial risks of losing a few potential drug candidates. 

The life cycle stage assays used the effective concentration that inhibited 90% 

of parasites in the regular asexual stage assay (EC90) to determine the predominant 

effect of the compounds.  At this concentration (EC90), activity against no single life 

stage alone correlated with efficacy in vivo.  This method is extremely useful in 

grouping hits for obtaining diversity, but does not mean that the compounds do not 

have any activity in the other stages.  A dose response study against all stages would 

help better understand the effect on specific stages, and this could be more helpful in 

determining correlations between stage activity and in vivo efficacy.  This is even more 

critical for the DMC1 assay as the life cycle of cryptosporidiosis has not been validated.  

It is not clear if targeting the asexual (or sexual) stages alone is sufficient for clearing 

the infection in vivo.  Although MMV665917 had a similar potency against the asexual 

stages and DMC1 in vitro, many of the compounds tested had a shifted dose response 

curve with no compound more potent against the DMC1 stage.  Interestingly, all 

compounds that were active in vivo had > 70% at or below a concentration of 9×EC90 

from asexual stage.  

The results from these assays provide valuable starting point information to 

determine if compounds could be potentially synergistic or antagonistic based on life 
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stage activity.  Checkerboard assays with representative compounds from each group 

can be used to test this idea.  These assays also open up doors to explore the biology of 

the parasite.  

The parasite persistence assay for a number of these hits showed that all 

compounds with in vivo efficacy had an exponential or linear rate of parasite 

elimination.  None of the static compounds were active in the NSG mouse model.  Not 

all of the exponential and linear compounds were active in vivo, which indicates the 

importance of other factors including PK and effects on the microbiome, among others.  

In summary, we report MMV65917 as a highly promising lead, a parasite 

persistence assay to determine in vitro rate of kill and concentration desired to 

maximize rate of parasite elimination that can aid in hit-to-lead prioritization studies 

and in designing in vivo experiments.  We also report a range of in vitro life stage 

assays that can aide in prioritization of anti-Cryptosporidium hits based on diversity. 
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APPENDIX I: UPDATES ON DEVELOPMENT OF MMV006169 AND ITS 

VARIANTS FOR TREATMENT OF CRYPTOSPORIDIOSIS 

 

The screen of the Medicines for Malaria Ventures Open Access Malaria Box 

also identified MMV006169 (B-1) as a promising hit with several potent variants (2,4-

diaminoquinazoline series) (Bessoff et al., 2014) and this chapter will discuss some of 

our efforts towards developing these hits for cryptosporidiosis.  Chemical structure 

search using the SciFinder database (https://scifinder.cas.org/) identified the series to be 

related to DBeQ, which is a reversible inhibitor of the p97 ATPase (Chou et al., 2011).  

The protein p97 belongs to the ATPase associated with diverse cellular activities 

(AAA) family, and is conserved across eukaryotic species.  In fact, retrospectively we 

found that DBeQ was one of the active variants identified from our structural activity 

relationship studies (B-23).  This compound behaved similarly to all other 2,4-

diaminoquinazolines in the various life stage assays tested in chapter 3.  The protein 

p97 is involved in a variety of functions, including shuttling of protein across the 

endoplasmic reticulum (ER) membrane as part of the ER-associated degradation 

pathway (ERAD), and is essential for viability in budding yeast (Giaever et al., 2002) 

and mice (Muller, Deinhardt, Rosewell, Warren, & Shima, 2007).  Interestingly, this 

pathway has been explored for drug targets in malaria as several protozoan pathogens 

contain a minimal ERAD pathway when compared to the mammalian host making 

them more sensitive to drugs targeting this pathway (Harbut et al., 2012).   The yeast 

p97 (called cdc48 or YDL126C) protein sequence from lab strain W303 was obtained 

from the Saccharomyces genome database (https://www.yeastgenome.org/) and a 

https://scifinder.cas.org/
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protein BLAST was performed against C. parvum Iowa and C. hominis TU502 

genomes on the CryptoDB website (http://cryptodb.org/).  This identified cgd1_330 in 

C. parvum Iowa and Chro.10043 in C. hominis with 63% identity.   

The protein is vital for yeast survival and temperature sensitive mutants of this 

protein have been used to study its function in yeast (Hsieh & Chen, 2011).  We 

intended to make use of this yeast system to study the C. parvum p97 gene and test the 

hypothesis that B-1 inhibits the C. parvum p97.  The high temperature sensitive cdc-48 

mutant strain (cdc48-3) that cannot grow at 37 °C since the cdc48 is not functional 

along with control W303 strain were a kind gift from Dr, Rey-Huei Chen (Institute of 

Molecular Biology, Academia Sinica, and National Defense Medical Center, Taipei, 

Taiwan).  Growth can be rescued in these strains with expression of wild type cdc48 

using a shuttle vector.  We plan to transfect the yeast cdc48-3 mutants with a plasmid 

expressing the C. parvum p97 gene under a gal promotor, and check if this gene 

complements the function of the yeast cdc48-3 mutant at the high temperatures.  The 

cdc48-3 mutant is in the W303 strain background and the genotype of W303 is as 

follows: 

Genotype: MATa/MATα leu2-3,112 trp1-1 can1-100 ura3-1 ade2-1 his3-11,15 

Dr. Doug Johnson provided us with low expressing shuttle vectors p416 and 

high expression shuttle vector p426 (Mumberg, Muller, & Funk, 1994).  When induced 

with galactose the temperature sensitive mutant (cdc48-3) transformed with vectors 

expressing yeast cdc48 grew normally at 30 °C and the growth was partially rescued 

growth at 37 °C with both p416  (Fig. 1) and p426 vactors (Fig. 2).  Surprisingly, the 
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cdc48-3 mutants with vectors containing C. parvum p97 in p416 (Fig. 1) and p426 

vectors (Fig. 2) did not grow at 30 °C and 37 °C in the presence of galactose.  All these 

strains grew fine in the absence of galactose indicating inhibition of yeast growth upon 

expression of C. parvum p97. 

We also collaborated with Dr. Adam Sateriale in Dr. Boris Striepen’s lab to 

transiently overexpress C. parvum p97 in vitro and check for decrease in MMV006169 

potency.  However, the overexpression did not decrease MMV006169 potency.  The 

transient system is not an ideal system due to low transfection efficiencies combined 

with short window of parasite culture.  It is rather recommended to perform stable 

overexpression, but is more cumbersome as it involves surgeries and passage in mice to 

select the population desired.  We have also collaborated with Dr. Bart Staker to 

express this protein as its ATPase activity can be tested in vitro to determine direct 

inhibition by the compound. 

We also tested three scaffolds from this series, namely B-1, B-5 and B-13 in our 

chronic NOD SCID gamma mouse model of cryptosporidiosis, but the compounds did 

not have any efficacy (data not shown). 

Transmission electron microscopy to visualize parasites after compound 

addition in the parasite persistence assay did not reveal any obvious differences in the 

parasitophorous vacuoles between MMV0061619 and DMSO treated samples (data not 

shown).   
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Figure 1.  Attempt to complement yeast with C. parvum p97 using p416 vector.  
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Figure 2.  Attempt to complement yeast with C. parvum p97 using p426 vector. 
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 APPENDIX II: UPDATES ON DEVELOPMENT OF MMV403679 AND ITS 

VARIANTS FOR TREATMENT OF CRYPTOSPORIDIOSIS 

 

MMV40679 (C-1) is an allopurinol-based scaffold identified as a promising hit 

from the Medicines for Malaria Venture Open Access Malaria Box (Bessoff et al., 

2014).  This section is going to outlay the developments made towards progressing this 

series for cryptosporidiosis.   There were several promising variants with nanomolar 

potency against C. parvum identified  ((Bessoff, Sateriale, Lee, & Huston, 2013) and 

data not shown).  The washout experiment determined it to be a fast acting drug 

(Bessoff et al., 2013).  It also displayed an exponential rate of parasite decay in the 

parasite persistence assay with maximum rate of parasite elimination achieved at 

3×EC90.  Morphology of parasites were also visualized using transmission electron 

microscopy (TEM) using the parasite persistence assay experimental design (Fig. 1).  

TEM images showed that a higher proportion of parasites were in the meront stage 

compared to DMSO control.  Furthermore, C-1 treated vacuoles were degenerating 

(Fig. 1).  These data indicate that C-1 is cidal and possibly inhibits parasite egress when 

added at 24 hours on a mixed culture.  However, the DNA synthesis assay showed that 

C-1 inhibits DNA synthesis when added earlier in infection cycle (3 hours post-

infection), and hence, was active in the egress, motility and re-invasion assay (Chapter 

3, Fig. 3).  This was not known when the below mouse experiments were being 

conducted and it was assumed that C-1 is an egress inhibitor. 

We tested several variants of C-1 in our chronic NOD SCID gamma mouse 

model of cryptosporidiosis and measured plasma levels of the compounds in these 
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experiments with a view to understand the pharmacokinetic (PK) properties that drive 

in vivo efficacy for this series.  All the variants got absorbed to different degrees with 

20 to 2830 × EC90 plasma levels achieved within 4 hours of a single oral dose of 100 

mg/kg (Fig. 2).  Nevertheless, none of the compounds reduced parasite shedding even 

after 7 days of dosing 100 mg/kg once daily (Fig. 3).  Similar results were found when 

twice-daily dose, each of 50 mg/kg was given to mice for 4 days (data not shown).  

None of the compounds showed any signs of in vitro toxicity against host HCT-8 cells 

up to 100 µM (data not shown).   Surprisingly, C-2 (F5091-0186) was toxic to mice at 

once daily dose of 100 mg/kg and killed mice 3 out of the 4 mice about 7 days after 

cessation of treatment.  However, in the second experiment, it did not have any toxicity 

when 50 mg/kg was given twice a day (total of 100 mg/kg per day) for 4 days.  This 

indicates that the compound is toxic when given at a higher single dose of 100 mg/kg or 

when given for a longer duration of 7 days or both.  Based on the results we planned 

follow-up experiments such that each dose is ≤ 50 mg with not more than 100 mg given 

per day and mice not treated for more than 4 days.   

We hypothesized that the C scaffold requires compounds to be continuously 

available in intestinal (apical side of cells) to be effective.  Since C-2 was poorly 

absorbed compared to other variants, we wanted to test if the compound would be 

active when dosed frequently, such that high levels are continuously available in the 

intestine.  Furthermore, to test the effect of drug on egress, we wanted to target the first 

stage of parasite life cycle in vivo; hence, mice were treated the same day after oral 

gavage with C. parvum oocysts (similar to acute mouse models of C. parvum infection 



174 

 

experiments wherein mice are treated soon after infection (Gorla et al., 2014)).   In a 

modification of the egress, motility re-invasion assay, C-1 seemed to be ineffective 

when washed out after ~9.5 hours after infection, but appeared to be partially active 

when added ~9.5 hours post-infection as compared to addition at 3 hours post-infection 

(Fig. 4).  Based on this experiment, in vivo dosing regimens were decided (Table 1).   

Based on gut transit times in mice from published literature (Padmanabhan, Grosse, 

Asad, Radda, & Golay, 2013), mice were treated either with 8 doses every 2 hours (to 

mimic complete exposure with compound added 3 hours post-infection in vitro), or 

given 4 doses every 2 hours after infection (mimic the in vitro washout experiment) (4 

doses a.m.), or given 4 doses every 2 hours from ~10 hours post-infection (to mimic in 

vitro compound addition before egress).  The total dose given was the same in all cases, 

that is, 100 mg/kg, which was divided into 4 doses or 8 doses.  Mice were treated only 

on this day 1, and then mice were allowed to incubate as these mice start reliably 

shedding oocysts in the feces only after 6 days post-infection.  Interestingly, all doses 

reduced oocysts shedding, but unfortunately, the mice starting getting sick about 6 days 

after treated.  The mice treated with 4 doses soon after infection (4 doses am) were the 

worst hit and mice died on day 8 post infection.  Mice treated with 4 days from ~10 

hours post-infection did not die but were lethargic, with mice treated with 8 doses the 

least sick.  Hence, although C-2 reduced oocysts shedding in all conditions (Fig. 5), the 

data are inconclusive as the compound could be indirectly altering oocysts shedding as 

it was lethal to mice.  However, the data is indicative of apical exposure requirement 

for this series, and this should be confirmed with a different non-toxic variant and/or 
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tested with multiple doses on an established infection.  The timing did not seem to 

make a difference (except for toxicity which could be due to higher amounts per dose 

in 4 doses) The increased toxicity might be related to the age of the mice, as these mice 

were treated approximately a week earlier than the previous experiments.   The toxicity 

might be also due to co-infection of mice. 

To test the apical or basolateral exposure requirement, we developed a transwell 

assay using HCT-8 and measurement of transwell resistance (Fig 6).  The differentiated 

Caco2 cells were first tested in this assay, but an acceptable level of infection could not 

be established (data not shown).  Hence, the assay was established with HCT-8 cells, 

which has the advantage of direct comparison with our regular assay and also, the assay 

is quick with only 2-3 days required to establish the resistance.  The resistance of the 

monolayer decreases when the parasites egress and destroy the monolayer.  Therefore, 

the assay cannot be used for compounds that act on stages after egress.  But for C-1, an 

inhibitor of DNA synthesis, this assay is perfect.  The only caution that the transport of 

C-1 across the monolayer is not known and might need to be determined to interpret the 

assay results.  This assay can also be used to identify egress inhibitors.  Furthermore, 

parasites could be stained using immunofluorescence by the regular assay method and 

imaged (data not shown) adding further value to the assay.  

Scifinder search identified C-1 to be related to a human phosphodiesterase 

(PDE) inhibitor (Meng et al., 2012).  A protein BLAST on CryptoDB of human PDE 

(GenBank: AAC39778.1) identified cgd6_500 as a homolog with E value 3e-35 on 

October 26, 2015.   As with p97, Dr. Adam Sateriale transiently overexpressed C. 
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parvum cgd6_500 in vitro and tested C-1, but the potency did not decrease.  The gene 

needs to be stably expressed to confirm the result.  We have also collaborated with Dr. 

Bart Staker at the Center for Infectious Disease Research to express, purify and 

crystalize the Cryptosporidium protein.  Potential future experiments include 

determining the effect of C-1 and its structural variants on phosphodiesterase activity of 

the protein in vitro using purified protein, and co-crystal structures of the protein with 

compound bound.  
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Figure 1.  Transmission electron microscopy to get an insight into mechanism of 

action. 
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Figure 2.  Plasma levels of MMV665917 variants in C. parvum 

infected NSG mice. 

C-4 

Mean serum  levels 

67µM (1460 x EC90) at 0.5 h 

130µM (2830 x EC90) at 4 h 

C-2 

Mean serum  levels 

2.5µM (60 x EC90) at 0.5 h 

13µM (330 x EC90) at 4 h 

C-35 

Mean serum  levels 

4.8µM (25 x EC90) at 0.5 h 

3.8µM (20 x EC90) at 4 h 

C-5 

Mean serum  levels 

21µM (330 x EC90) at 0.5 h 

29µM (460 x EC90) at 4 h 
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Figure 3.  In vivo C. parvum efficacy study of MMV403679 variants on an 

established infection in NSG mice. 
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Washout 
C-1 

Figure 4.  Washout or addition of MMV403679 (C-1) 

before initiation of parasite egress. 

Add C-1 
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Figure 5.  In vivo efficacy of MMV403679 variant, F5091-0186 (C-2) soon after 

infection of NSG mice. 
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Figure 6.  Transwell assay to measure effect of apical or basolateral exposure of 

compound on parasites. 
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Table 1.  Compound C-2 dosing regime soon after infection 

 
8:00 AM 10:00 AM 12:00 PM 2:00 PM 4:00 PM 6:00 PM 8:00 PM 10:00 PM 12:00 AM

 10^5 oocysts

C-2 Compound A + X X X X X X X X

C-2 Compound B + X X X X - - - -

C-2 Compound C + - - - - X X X X

DMSO D + X X X X X X X X

DMSO E + X X X X - - - -

DMSO F + - - - - X X X X

Paromomycin G + X - - - - - - -

Compound treatemnt
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APPENDIX III: STRATEGIES TO IDENTIFY DRUG COMBINATIONS FOR 

TREATING CRYPTOSPORIDOSIS 

 

Evolution of drug resistance to monotherapy is a major problem for infectious 

disease, particularly malaria.  We anticipate similar problems with cryptosporidiosis in 

the future.  Hence, efforts should be made to identify drug combinations to treat 

cryptosporidiosis.  To this end, we have tested combinations of drug using our regular 

48 hours asexual assay, wherein compounds are added, alone or in combinations at 3 

hours post-infection and parasite number measured 48 hours post-infection.  This 

strategy has not been very successful in identifying synergistic combinations, with 

itraconazole and tegaserod to be the most synergistic combination determined to date 

(Table 1).  Since we have developed specific life stage assays, we wanted to logically 

combine representative compounds from each cluster to identify potentially synergistic 

or antagonistic set of compounds.  But the invasion assay involves addition of 

compound before infection of host monolayer.  Addition of compounds after 3 hours of 

invasion would lose the effect of compounds on this stage.  One strategy would be to 

design the experiments with compounds added before infection.  We tested this 

experimental design using a combination of nitazoxanide (inactive in the invasion 

assay) and clofazimine (invasion inhibitor) with compounds added before infection.  

The compounds were more potent than in this assay with only few lower concentrations 

providing a window to look for combinatorial effect.  There seemed to be some hint of 

antagonism (Table 2).   
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Addition of compounds early might potentially give an advantage for certain 

compounds that act on the early stages, negating the effect of compounds that act later. 

Also, early on the infection is roughly synchronized with only trophozoites available in 

culture.  It would be more relevant to look for combination of compounds on a mixed 

culture.  Hence, we plan to test compound combinations on an established culture, with 

compounds added at about 24 hours post-infection and parasite number readout taken at 

48 and 72 hours post-infection to cover almost all stages of the life cycle.  Furthermore, 

we also have data from the parasite persistence assay, which similarly tests effects of 

compounds on an established infection.  This assay also differentiates compounds to be 

potentially static while others to be potentially cidal.  It would be ingesting to test if 

potentially static and cidal compounds would look different when combined.    
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Table 1.  Checkerboard assay using the regular 48 h assay with compounds added 

3 h post-infection. 

 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 ###

[Itraconazole] µM

7.24

3.62

1.81

0.91

0.45

0.23

0

10.32

[Tegaserod] µM

0 0.3225 0.645 1.29 2.58 5.16

91

0 2 8 25 30 91 88

-15 -14 21 25 76 87

92

27 -2 44 61 82 94 85

-8 5 40 90 93 86

92

14 70 94 80 89 81 90

82 76 94 85 83 76

% inhibition

67 50 52 51 75 84 96
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Table 2.  Checkerboard assay with compounds added before infection and 

parasite numbers measure 48 h post-infection. 

 

0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 ##

Clofazimine (CFZ)

19.6

9.8

4.9

2.45

1.2

0.6

0

3.52

[Nitazoxanide] µM

0 0.11 0.22 0.44 0.88 1.76

95

0 48 66 78 87 94 96

43 69 80 90 94 95

95

51 71 86 93 94 96 95

67 76 89 95 95 95

95

79 89 94 95 96 95 95

88 93 95 96 96 95

% inhibition

97 97 98 98 97 96 96
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