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ABSTRACT 

 

 Neurons are polarized cells with dendrites and an axon projecting from their cell 

body. Due to this polarized structure a major challenge for neurons is the transport of 

material to and from the cell body. The transport that occurs between the cell body and 

axons is called Axonal transport.  Axonal transport has three major components: 

molecular motors which act as vehicles, microtubules which serve as tracks on which 

these motors move and microtubule associated proteins which regulate the transport of 

material. Axonal transport maintains the integrity of a neuron and its dysfunction is 

linked to neurodegenerative diseases such as, Alzheimer’s disease, Frontotemporal 

dementia linked to chromosome 17 and Pick’s disease. Therefore, understanding the 

process of axonal transport is extremely important. 

 

 Single particle tracking is one method in which axonal transport is studied. This 

involves fluorescent labelling of molecular motors and microtubule associated proteins 

and tracking their position in time. Single particle tracking has shown that both, 

molecular motors and microtubule associated proteins exhibit motion with multiple 

components. These components are directed, where motion is in one direction, diffusive, 

where motion is random, and static, where there is no motion. Moreover, molecular 

motors and microtubule associated proteins also switch between these different 

components in a single instance of motion. 

 

 We have developed a MATLAB program, called MixMAs, which specializes in 

analyzing the data provided by single particle tracking. MixMAs uses a sliding window 

approach to analyze trajectories of motion. It is capable of distinguishing between 

different components of motion that are exhibited by molecular motors and microtubule 

associated proteins. It also identifies transitions that take place between different 

components of motion. Most importantly, it is not limited by the number of transitions 

and the number of components present in a single trajectory. The analysis results 

provided by MixMAs include all the necessary parameters required for a complete 

characterization of a particle’s motion. These parameters are the number of different 

transitions that take place between different components of motion, the dwell times of 

different components of motion, velocity for directed component of motion and diffusion 

coefficient for diffusive component of motion.  

 

 We have validated the working of MixMAs by simulating motion of particles 

which show all three components of motion with all the possible transitions that can take 

place between them. The simulations are performed for different values of error in 

localizing the position of a particle. The simulations confirm that MixMAs accurately 

calculates parameters of motion for a range of localization errors. Finally, we show an 

application of MixMAs on experimentally obtained single particle data of Kinesin-3 

motor. 
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CHAPTER 1: INTRODUCTION 

1.1. Summary 

A major challenge for neurons is transport of material from the cell body to the 

axon terminal and vice versa. Understanding the process of axonal transport will not only 

enhance our knowledge of neurons but it is crucial for understanding the pathology of 

neurodegenerative diseases associated with disruptions in axonal transport, such as 

Alzheimer’s Disease (AD), Frontotemporal Dementia Linked to Chromosome 17 (FTDP) 

and Pick’s disease (Connell et al., 2001; Barghorn et al., 2004; Bunker et al., 2006a; 

LeBoeuf et al., 2008a; Smith et al., 2009; Iyer et al., 2013; Gatchel et al., 2017). 

The basic machinery of axonal transport involves movement of proteins along 

microtubules. This process involves numerous tubulin interacting proteins, including 

Microtubules Associated Proteins (MAPs) and cytoskeletal motors (Maday et al., 2014).  

Understanding the properties of their motion along microtubules provides a fundamental 

foundation for understanding axonal transport in general.  

Advances in protein labelling (Adams et al., 2002; Andresen et al., 2004; Chen et 

al., 2005; DeRocco et al., 2010; Campos et al., 2011; Benke et al., 2012; Shank et al., 2013; 

Raeisolsadati Oskouei and Brouwer, 2017), fluorescent microscopy (Thompson and 

Lagerholm, 1997; Pierce and Vale, 1999; Gustafsson, 2000; Schmoranzer et al., 2000; 

Toomre and Manstein, 2001; Betzig et al., 2006; Willig et al., 2006b; Willig et al., 2006a; 

Kellner et al., 2007; Willig et al., 2007; Schermelleh et al., 2008) and computational 

approaches to particle tracking techniques (Sage et al., 2005; Jaqaman et al., 2008; Ram et 

al., 2008; Ruhnow et al., 2011; Liu et al., 2013; Chaphalkar et al., 2016; Mangeol et al., 

2016; Xiao et al., 2016) provide the essential technical means to experimentally study 
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protein movement along microtubules in great detail. Using Single Particle Tracking (SPT) 

a term that defines the entire experimental process, from labelling to tracking particles in 

images, the function of MAPs such as Tau and molecular motors such as Kinesin-3 is being 

investigated. But there is a limited availability of tools specialized for analyzing data 

gathered using SPT (Heaslip et al., 2014; Chaphalkar et al., 2016; Mangeol et al., 2016). 

These tools are also limited to analyzing SPT data when particle trajectories have no 

transitions from one component to another (Chaphalkar et al., 2016; Mangeol et al., 2016), 

or only have a single transition (Heaslip et al., 2014). To fill this gap, we have developed 

a MATLAB (MathWorks, Natick, 2015) program that is specifically designed to analyze 

SPT data in which particle trajectories can have multiple components of motion with 

multiple transitions between these components.  

In the following section, a literature review of axonal transport and its major 

components; microtubules, Tau and molecular motors will be presented. The need for the 

current study in the context of investigations that are using SPT will be presented in section 

2.1 of chapter 2. 

1.2. Axonal transport 

1.2.1. A summary of neuron structure and its role in the nervous system 

Neurons, the basic information processing units of the nervous system, consist of 

a cell body with processes emanating from it. One of these processes is called a dendrite. 

A neuron can have a variable number of dendrites depending on its type. Dendrites receive 

signals from other neurons and electrically transmit these signals to the cell body of the 

neuron. The cell body then performs summation of these signals and then sends a signal to 

the axon, a long single process emanating from the cell body of the neuron. Signal form 
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the cell body is sent by initiating an action potential at the axon initial segment (AIS). This 

signal, then in the form of an axon potential, moves towards the axon terminal. Here 

numerous processes can occur. For example, for a motor neuron the signal will cause some 

motor activity. In another example, if the axon terminal makes a synapse with dendrites of 

one or more neurons it will initiate activity in those neurons (Kandel, 1995; Lodish H, 

2000). This example implies that neurons can be linked together with one or more neurons 

receiving a signal and transmitting it to the connected neurons which then produce an 

output.  

A collection of neurons linked together form a neural network (Reece, 2011) 

capable of performing computations much like a computer program where an input is 

received and an output is generated. In the case of a neural network the input is a stimulus 

and the output is a decision which alters some physiological or cognitive function. The 

human brain can be regarded as a collection of many neural networks linked to each other 

forming a supra neural network controlling physical and cognitive functions   

1.2.2. Axonal transport: its need and its major components 

The need for axonal transport 

A problem for neurons, that arises due to their polarized structure (Kandel, 1995; 

Lodish H, 2000; Reece, 2011) is the transport of proteins that are required in certain distant 

regions but are synthesized in the cell body. Considering that axon lengths can vary from 

a range of millimeters to meters, the transport of material from the cell body to the axon 

and vice versa is a major challenge for proper functioning of neurons (Maday et al., 2014).  

Major components of axonal transport  
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The process of transport of material from the cell body to axons and vice versa is 

termed as axonal transport. In axonal transport a cargo, the material to be transported, binds 

to a motor protein. The motor protein can also bind microtubules, which serve as tracks for 

the motor protein’s motion. The motor protein with the cargo, then moves along the 

microtubule in a directional manner (Hirokawa, 1998). The direction in which a motor 

protein moves depends on the motor’s type. A family of motor proteins called Kinesin 

(Vale et al., 1985), with a few exceptions, transports cargo towards the axon terminal 

(Okada et al., 1995). Another family of proteins called Dynein transports cargo towards 

the cell body (Schnapp and Reese, 1989). 

Apart from microtubules and motor proteins, MAPs are also an important 

component of axonal transport as they regulate the transport of material. This regulation 

can be achieved in numerous ways which include, altering microtubule structure, 

preventing motor proteins binding to the microtubule, regulating microtubule dynamics 

and altering motor protein’s motion along the microtubule (Amos and Schlieper, 2005).  

In summary, the major components of axonal transport include microtubules, 

motors proteins and MAPs (Figure 1). Therefore, a comprehensive study of axonal 

transport requires a comprehensive study of these components. The study of these 

components is also necessary because, as mentioned before, dysfunction of axonal 

transport is implicated in Alzheimer’s disease, FTDP-17 and numerous other 

neurodegenerative diseases (Connell et al., 2001; Barghorn et al., 2004; Bunker et al., 

2006a; LeBoeuf et al., 2008a; Smith et al., 2009; Iyer et al., 2013; Gatchel et al., 2017).  
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1.3. Microtubules serve as tracks for axonal transport 

1.3.1. Microtubule structure  

Microtubules are polymers composed of tubulin dimers (Figure 2). A tubulin 

dimer consists of α-tubulin and β-tubulin. In a microtubule these dimers interact 

longitudinally in an end to end fashion with α-tubulin of one dimer interacting with β-

tubulin of another dimer (Amos and Klug, 1974). Interaction in this fashion results in a 

single polar filament, called a protofilament, with α-tubulin at one end (referred to as the 

minus end) and β-tubulin at the other end (referred to as the plus end) (Amos and Baker, 

1979). A number of these protofilaments, usually 13 (Tilney et al., 1973; Jones, 1975), 

interact laterally (Henderson and Unwin, 1975), with a vertical off set of 3 monomers 

between 2 laterally interacting filaments, to form, an approximately 25 nm in diameter, a 

hollow helical structure called microtubule. As all laterally interacting protofilaments have 

Figure 1: Axonal transport components: Microtubules act as tracks on which Kinesin motors 

move cargo and Tau regulates axonal transport 
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their plus ends at one end of the microtubule and their minus ends are at the other end of 

the microtubule, the microtubule also become a polar structure with a minus and a plus end 

(Jones, 1975; Beese et al., 1987; Nogales et al., 1999; Song et al., 2013). This polarity has 

physiological consequences because, in axons microtubules are arranged with their minus 

ends towards the cell body and their plus ends towards the axon terminal (Baas et al., 1988). 

This arrangement is important because, as mentioned before, motor proteins, show 

specificity in the direction in which they move along a microtubule  (Schnapp and Reese, 

1989; Okada et al., 1995; Hirokawa, 1998).  

 

 

1.3.2. Microtubule formation  

Formation of microtubules is a 2-stage process. The first stage is called nucleation 

in which tubulin dimers interact to form a structure from which a microtubule will be 

polymerized (Zheng et al., 1995; Oakley et al., 2015; Sulimenko et al., 2017). Tubulin 

dimers are GTPases, which incorporate into the microtubule lattice in a Guanosine-tri-

Figure 2: Microtubule structure: (1) Tubulin heterodimers interact longitudinally to form proto-filaments. 

(2) Proto-filaments interact laterally to form a 2-D sheet. (3) The 2-D sheet closes to form a hollow structure 

of 13 proto-filaments called microtubule.  
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phosphate (GTP) bound state where it is hydrolyzed to Guanosine-di GDP (Hyman et al., 

1992; Chen and Doxsey, 2012). In vitro, a high concentration of tubulin and an excess of 

GTP means that nucleation does not require additional proteins, whereas in vivo, 

microtubule nucleation occurs from structures, composed of different proteins, called 

Microtubule Organizing Centers (MTOC) (Zheng et al., 1995; Oakley et al., 2015; 

Sulimenko et al., 2017). Nucleation stage results in the formation of a seed from which a 

microtubule can polymerize. 

The second stage in the formation of microtubules is the polymerization stage. In 

this stage GTP incorporated tubulin dimers are added to the ends of the microtubules. This 

addition of dimers occurs at both the minus and the plus end of a microtubule but the rate 

of addition of dimers at the plus end is much higher than the rate of addition of tubulin 

dimers at the minus end. Therefore, the growth velocity of a microtubule at the plus end is 

much higher than the growth velocity of the microtubule at the minus end (Walker et al., 

1988; Stewart et al., 1990; Kerssemakers et al., 2006). 

1.3.3. Dynamic instability of microtubules; Description and importance  

The discussion so far has focused on the structure, formation and growth of 

microtubules but microtubules are dynamic polymers. What that means is that they can 

alternate between a polymerization phase, where tubulin dimers are added to the ends of 

microtubules resulting in growth of a microtubule, and a depolymerization phase, where 

tubulin dimers leave the ends of microtubules resulting in shortening of a microtubule. This 

dynamic behavior of microtubules is termed as dynamic instability (Mitchison and 

Kirschner, 1984; Gardner et al., 2013; Li et al., 2014) (Figure 3). To characterize the 

dynamic instability of a microtubule the following parameters need to be calculated: The 
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growth velocity in the polymerization phase (this is usually measured for the plus end of a 

microtubule), the shortening velocity (this too is usually measured for the plus end of a 

microtubule), the frequency of transitions from the growth phase to the shortening phase 

(this transition is called a catastrophe) and the frequency of transitions from the shortening 

phase to the growth phase (this transition is called a rescue) (Mitchison and Kirschner, 

1984; Gardner et al., 2013; Li et al., 2014).  

A complete characterization of microtubule dynamic instability is an important 

scientific goal since dynamic instability behavior of microtubules is crucial for numerous 

cellular processes.  Axonal transport requires proper regulation of microtubule dynamics, 

as dysfunction of MAPs which regulate microtubule dynamics, is linked to 

neurodegenerative disorders (Goedert et al., 1998; Henriques et al., 2010; Gauthier-

Kemper et al., 2011; Cartelli et al., 2016). Microtubule dynamics also needs to be tightly 

regulated for the formation of growth cones (Kempf et al., 1996) and axonal regeneration 

(Ruschel et al., 2015). 
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1.4. Tau regulates axonal transport 

1.4.1. Tau isoforms and its primary structure  

Tau is a MAP expressed mainly in neurons and localized mainly in axons. It 

performs a wide range of functions including regulation of axonal transport, and regulation 

of development of polarity in neurons. Tau has also been shown to be involved in numerous 

other important physiological processes. Tau’s dysfunction is linked to numerous diseases 

including Alzheimer’s disease, FTDP-17, Pick’s disease and progressive supra nuclear 

palsy  (Brandt et al., 2005; Cowan and Mudher, 2013; Wang et al., 2013).  

Six major isoforms of Tau are expressed in the adult human brain (Goedert and 

Jakes, 1990). These isoforms differ in their primary structures (Figure 4). Near the carboxy-

terminus of Tau protein there are tandem repeats which form a part of the region called, 

Figure 3: Microtubule dynamic instability: Microtubule length shown as a function of time. 
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the Microtubule binding domain (Gustke et al., 1994). These repeats are variable in 

isoforms leading to Tau isoforms division into two classes; 1- Isoforms with three 

microtubule binding repeats (3R) and 2- Isoforms with four microtubule binding repeats 

(4R). Another variable region in the primary structure of Tau is near the amino-terminus 

of the protein, where there are a variable number of 29 amino acid long acidic inserts.  An 

isoform of Tau, within each class (based on the number of microtubule binding repeats), 

can either have zero (S), one (M) or two (L) amino-terminal acidic inserts (Gustke et al., 

1994). In this way the six isoforms can be defined as 3RS, 3RM, 3RL, 4RS, 4RM and 4RL. 

These six isoforms range from 352 to 441 amino acids in length and from 48 to 67 Kilo 

Daltons in molecular weight. (Goedert and Jakes, 1990; Gustke et al., 1994). 

 

 

1.4.2. Tau regulates microtubule dynamics 

Tau regulates microtubule dynamics and numerous studies emphasizing Tau’s 

physiological importance have focused on this function of Tau. Methods used to study 

microtubule dynamics include light scattering assays, direct observation using dark field 

Figure 4: (a) Schematic of the primary structure of the longest isoform of Tau (4RL). (b) Table 

illustrating the differences in the primary structure of the six isoforms of Tau. 
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microscopy and direct observation using total internal reflection (TIRF) microscopy. The 

prevailing consensus is that Tau ‘stabilizes’ microtubules. But, as some conflicting results 

have been obtained from different studies and the term ‘stability’ has been used in different 

contexts in different studies, it is more useful to focus on specific parameters that describe 

microtubule dynamic instability. These include microtubule growth rate, microtubule 

shortening rate, microtubule catastrophe frequency (switch from growing phase to 

shortening phase) and microtubule rescue frequency (switch from shortening phase to 

growing phase). As mentioned before, Tau interacts with microtubules with its microtubule 

binding domain, therefore, studies on Tau’s regulation of microtubule dynamics have 

focused on the role of 3R and 4R isoforms of Tau (Weingarten et al., 1975; Witman et al., 

1976; Drechsel et al., 1992; Esmaeli-Azad et al., 1994; Panda et al., 1995; Panda et al., 

2003; Bunker et al., 2004; Levy et al., 2005; Bunker et al., 2006b; LeBoeuf et al., 2008b). 

In these studies, the analysis of results has focused on the number of microtubule binding 

repeats of Tau and the results have been generalized for all the isoforms containing those 

microtubule binding repeats. 

Here we describe the results obtained from a meta-analysis of studies (Weingarten 

et al., 1975; Witman et al., 1976; Drechsel et al., 1992; Esmaeli-Azad et al., 1994; Panda 

et al., 1995; Panda et al., 2003; Bunker et al., 2004; Levy et al., 2005; Bunker et al., 2006b; 

LeBoeuf et al., 2008b) which focused on Tau’s regulation of microtubule dynamics (Figure 

6). According to the meta-analysis 4R isoforms largely affect the microtubule shortening 

rate and microtubule catastrophe frequency. More specifically, microtubule shortening rate 

and microtubule catastrophe frequency is decreased and therefore, 4R isoforms can be said 

to ‘stabilize microtubules against shortening’. As far as microtubule growth rate is 
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concerned, the meta-analysis shows that there is no consensus regarding 4R isoforms effect 

on these parameters. 4R isoforms have been shown to, both, increase the microtubule 

growth rate and decrease the Microtubule growth rate.  

According to the meta-analysis, 3R isoforms show no effect on microtubule 

rescue frequency. As far as the other parameters of dynamic instability are concerned, we 

find that there is no consensus regarding them. 3R isoforms have been shown to increase, 

decrease or not affect the microtubule growth rate at all. But it is important to note that this 

lack of consensus might be due to the finding that 3R isoforms regulate microtubule growth 

rate in a concentration dependent manner. At low Tau to tubulin ratio 3R isoforms 

decreases the microtubule growth rate and at high Tau to tubulin ratio 3R isoform increase 

the microtubule growth rate. This can be a reason for the lack of consensus regarding 3R 

isoforms regulation of microtubule growth rate. But as far as lack of consensus on 3R 

isoforms effect on microtubule shortening rate and microtubule catastrophe frequency is 

concerned, no reasonable explanation can be given. 3R isoforms have been shown to 

decrease or not affect the microtubule shortening rate. As far as microtubule catastrophe 

frequency is concerned, 3R isoforms have been shown to both, increase the microtubule 

catastrophe frequency and decrease the microtubule catastrophe frequency. 
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In summary, despite extensive study, Tau’s regulation of different parameters of 

microtubule dynamic instability is still an open question (Weingarten et al., 1975; Witman 

et al., 1976; Drechsel et al., 1992; Esmaeli-Azad et al., 1994; Panda et al., 1995; Panda et 

al., 2003; Bunker et al., 2004; Levy et al., 2005; Bunker et al., 2006b; LeBoeuf et al., 

2008b). More importantly the mechanism by which Tau regulates microtubule dynamics 

remains unknown. 

 

1.4.3. Tau’s interaction with microtubules 

Understanding Tau’s interaction with microtubules is critical to understanding its 

functions. Disruption of these interactions might also be involved in the early stages of 

tauopathies like Alzheimer’s disease. Initial studies of Tau-Tubulin interactions focused 

on the Microtubule binding repeats of Tau as it is the primary site of interaction between 

Tau and Microtubules (Butner and Kirschner, 1991; Gustke et al., 1994; Mandelkow et al., 

1995). These studies showed that Microtubule binding repeats bind Microtubules through 

a series of numerous weak electrostatic interactions (Butner and Kirschner, 1991; Gustke 

et al., 1994; Mandelkow et al., 1995) and the 13-14 amino acid long linker regions between 

Figure 5: A meta-analysis of research studying Tau’s regulation of microtubule dynamics. 
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the Microtubule binding repeats do not directly interact with the Microtubules (Butner and 

Kirschner, 1991; Gustke et al., 1994; Mandelkow et al., 1995). Building on this model, 

later studies confirmed the delocalized interactions between Microtubule binding repeats 

and Microtubules, but regions of stronger discrete interactions were also found. More 

specifically, the linker region between Microtubule binding repeat 1 and Microtubule 

binding repeat 2 (IR1), binds microtubules with twice the binding affinity of any individual 

Microtubule binding repeat (Goode and Feinstein, 1994). Interaction between IR1 and 

Microtubules is also significant as IR1 is only present in 4R isoforms hinting to functional 

differences between the 3R and 4R isoforms (Goode et al., 2000). 

  Interaction between Tau and microtubules is also dependent on the region 

flanking the Microtubule binding repeats; proximally the proline rich region and distally 

the pseudo repeat region (Trinczek et al., 1995; Preuss et al., 1997; Mukrasch et al., 2007). 

In fact, peptides which have the Microtubule binding repeats and the flanking regions show 

highly enhanced binding to microtubules, compared to peptides which only have 

Microtubule binding repeats (Trinczek et al., 1995; Preuss et al., 1997; Mukrasch et al., 

2007). Peptides with just the flanking regions also bind microtubules more strongly than 

peptides which have Microtubule binding repeats and no flanking regions. This contrasts 

with the model presented in the earlier studies which were mentioned in the previous 

paragraph. But, functional assays, mostly involving light scattering assays, to measure the 

microtubule assembling ability and microtubule polymerization ability of Tau reveal that 

although peptides with only the flanking regions bind microtubules strongly, these 

constructs are not functional. Functionality is rescued with constructs in which Microtubule 

binding repeats are present in addition to the flanking regions. Constructs with only the 
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Microtubule binding repeats show limited functionality (Trinczek et al., 1995; Preuss et 

al., 1997; Mukrasch et al., 2007).  

These observations have led to the ‘jaws model’ of microtubule binding. In this 

model the flanking regions act as jaws which are mainly involved in binding of Tau to 

microtubules with the Microtubule binding repeats acting as the functional domain of the 

protein. The flanking regions and the Microtubule binding repeats together constitute the 

Microtubule binding domain of Tau. This model has also been tested, in vivo, in CHO cells 

(Preuss et al., 1997). 

The crucial point to note from the preceding discussion and the conclusions 

presented by the studies mentioned, is that Tau binding to microtubules is relatively weak. 

The implication of this relatively weak binding is that Tau shows motion along the 

microtubules and this motion has multiple components. The importance of this multi-

component motion will be discussed in the proceeding sections.   

1.4.4. Tau’s motion along the Microtubules has 2 components  

As mentioned earlier, the interaction of Tau with microtubules is relatively weak. 

and, therefore Tau’s behavior when bound to microtubules is dynamic. The dynamicity is 

exhibited in two ways: 1- Tau exists in a state of equilibrium between freely diffusing 

unbound state in solution and a bound state on the Microtubules (Samsonov et al., 2004). 

2. Tau bound to Microtubules displays motion along the microtubule lattice and this motion 

has a static component and a dynamic component (Figure 5) (Mercken et al., 1995; 

Konzack et al., 2007; Hinrichs et al., 2012). In the dynamic component of motion, 

movement occurs in both directions of the microtubules and, evidence suggests that Tau 

can also switch protofilaments during the course of the dynamic component (Samsonov et 
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al., 2004). This multi component mode of motion of Tau on microtubules has physiological 

consequences as the state of equilibrium between the two components of motion modulate 

Tau’s ability to regulate motor directed transport. Statically bound Tau can act as a barrier 

for molecular motors moving along the microtubule surface, but as Tau’s motion also has 

a dynamic component, therefore, a Tau molecule cannot act as a permanent barrier for 

molecular motors. 
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1.4.5. Tau’s inhibition of molecular motors is dependent on the equilibrium between 

the 2 components of motion 

 Neurotransmitters, proteins and many other components required for axonal 

integrity, need to be transported to or from the cell body along the axon. One of the major 

functions of Tau includes regulation of axonal transport. In vivo, studies have shown that 

Figure 7: (a) Tau shows multiple components of motion when bound to the microtubule: Dynamic 

component and a static component. (b) Tau’s ability to inhibit kinesin’s motion depends on the equilibrium 

between diffusive and static components of Tau. 

(a) 

Figure 6: (a)Tau shows multiple components of motion when bound to the microtubule: Dynamic component 

and a static component. (b) Inhibition of kinesin-1 by Tau depends on the equilibrium between the dynamic 

and static components of Tau. 

(b) 
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disrupting Tau’s activity alters the balance between anterograde (away from the cell body) 

and retrograde (towards the cell body) transport (Trinczek et al., 1999; Stamer et al., 2002; 

Mandelkow et al., 2003; Stoothoff et al., 2009b). In CHO cells transfected with Tau, 

anterograde transport is affected relatively more than retrograde transport, resulting in 

retraction of mitochondria towards the cell body. In a similar but different experiment Tau 

overexpression leads to a failure of transport of mitochondria to axons in CHO cells and 

differentiated neuroblastoma N2a cells. Similarly, in cultured neurons, Tau inhibits 

anterograde transport of peroxisomes, neurofilaments and Golgi-derived vesicles 

(Trinczek et al., 1999; Stamer et al., 2002; Mandelkow et al., 2003; Stoothoff et al., 2009b). 

Single molecule experiments show that one way in which Tau regulates axonal 

transport is selective inhibition of molecular motors. This is dependent on a number of 

factors: 1- the isoform of Tau, 2- the molecular motor (Kinesin or Dynein) involved, and 

3- the underlying microtubule lattice (Seitz et al., 2002; Vershinin et al., 2007; Dixit et al., 

2008b; Vershinin et al., 2008; McVicker et al., 2011b; McVicker et al., 2014). Tau’s 

inhibition of Kinesin, which carries cargo away from the cell body is more profound than 

its inhibition of Dynein, which transports cargo in the reverse direction. Kinesin is inhibited 

at one tenth of the concentration of Tau required to inhibit Dynein.  Even concentrations 

of Tau that completely block Kinesin binding to microtubules, do not block Dynein binding 

(Dixit et al., 2008b). In summary, Tau has more of an impact on Kinesin dependent 

transport than it has on Dynein dependent transport 

Apart from its dependence on the molecular motor involved, modulation of axonal 

transport by Tau is also isoform specific. 3RS isoform of Tau is more inhibitory to Kinesin-

1 than the 4RL isoform. An important point to note is that 3RS isoform’s motion along the 
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microtubule is biased towards the static component., whereas, for 4RL isoform the 

equilibrium between the static and dynamic components shows no bias towards either of 

the components (McVicker et al., 2011b; McVicker et al., 2014). Moreover, 

Phosphorylation of 3RS isoform at site Y18E alters the equilibrium of 3RS isoform motion 

and the bias towards the static component shown by 3RS isoform is removed (it behaves 

like the 4RL isoform). Consequently, like 4RL isoform its ability to inhibit Kinesin-1 is 

also reduced (Stern et al., 2017).   

The discussion above shows that molecular motor inhibition by Tau and 

consequently, its ability to regulate axonal transport is dependent on the equilibrium 

between the two components of Tau’s motion along microtubules (Figure 6b). Therefore, 

quantifying the multi component motion of Tau along the microtubule lattice is critical to 

understanding its function and its role in molecular motor inhibition. Development of a 

tool that performs this quantification in an automated, objective and time-efficient manner 

will be a major contribution towards the study of Tau. 

1.5. Cargo transport towards axon terminal is carried out by a family of Kinesin 

motors 

1.5.1. Structure of Kinesin motors  

Kinesins act as cellular vehicles to transport material along the axon. For this they 

need to bind the cargo that needs to be transported. They also need to bind microtubules 

which serve as tracks for kinesin motion. There are two different regions of kinesin motors 

for cargo binding and Microtubule binding. Kinesin motors have a head domain which 

binds to the microtubules and shows motor activity. The head is linked to a filamentous 
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stalk which is linked to the globular tail. Cargo attachment occurs at the tail of a Kinesin 

motor (Hirokawa et al., 1989; Yang et al., 1989). 

Based on the location of the head domain of kinesin motors, they are divided into 

3 types: N-kinesins, M-kinesins and C-kinesins. N-kinesins have the head domain in the 

N-terminal region of the amino acid sequence, whereas, C-kinesins have the head domain 

in the C-terminal region of the amino acid sequence. In M-kinesins, the head domain is in 

the middle of the amino acid sequence (Aizawa et al., 1992). Classification based on the 

location of the head domain is important as this determines the direction in which a kinesin 

motor moves along a microtubule. N-kinesins, an example being Kinesin-1, move towards 

the plus end of the microtubules, whereas C-kinesins, an example being Ncd protein, move 

towards the minus end of the microtubule. M-kinesins move towards both directions 

(Aizawa et al., 1992). Apart from the classification mentioned above, kinesins are also 

grouped based on structural and functional differences. Based on this grouping 14 kinesins 

have been discovered (Dagenbach and Endow, 2004; Lawrence et al., 2004).  
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1.5.2. Mechanism of Kinesin motor movement. 

Kinesin motors move along the microtubule by converting chemical energy 

through hydrolysis of Adenosine-tri-phosphate (ATP) to mechanical energy. The head 

domain of kinesin motors possesses an ATP binding site. In the nucleotide free state, the 

Kinesin motor attaches to the microtubule (Okada and Hirokawa, 2000). Upon binding of 

ATP to the head domain of kinesin motor, there is a conformational change in the neck 

linker region (region that connects the head of a kinesin motor to the stalk) of kinesin motor 

which results in the rotational movement of the head domain (Rice et al., 1999). Upon ATP 

hydrolysis and subsequent phosphate release the head domain detaches from the 

microtubule. In a dimeric kinesin this cycle of ATP binding to phosphate release translates 

to the movement of one head domain while the other head domain is attached to the 

Figure 8: Structure of Kinesin dimer: Head domains bind to the microtubule, which are connected through 

a stalk to Kinesin tails, where the cargo binds. 
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microtubule. The repetition of this cycle results in movement in a step wise manner of 

kinesin motor along the microtubule lattice with a step size typically being 8 nm (Svoboda 

et al., 1993).      

 1.5.3. Biophysical properties associated with Kinesin motors  

In vitro studies in which individual kinesin motors moving along the microtubules 

have been imaged, have been conducted to study the biophysical properties of these motors. 

Such properties include parameters such as motor velocity, motor run length (distance 

travelled by a motor without detaching from the microtubule lattice) and motor dwell time 

(time a motor spends on the microtubule lattice without detaching).  

Kinesin-1 moves along the microtubule surface in a directed fashion making it 

relatively simple to obtain these parameters. But, introducing Tau in the system makes 

analysis of this data relatively complex, as kinesin-1 now pauses at locations where Tau is 

bound and detaches frequently (Dixit et al., 2008a; Stoothoff et al., 2009a; McVicker et al., 

2011a; Stern et al., 2017). Consequently, single, directed component kinesin-1 motion, 

becomes multi component. Analysis of this motion needs to include the following 

additional components: kinesin-1 dwell time for the paused (or static) component, the 

frequency of pauses and the number of times kinesin-1 successfully navigates the Tau 

barrier. Analysis of kinesin-2 motion is similarly complex and the same parameters, as 

were needed for kinesin-1, need to be calculated. But the complexity of data analysis 

increases even more in the case of kinesin-3. 
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1.5.4. Role of Kinesin-3 in the context of the current study 

For the current study, kinesin-3 is an ideal candidate as it displays 3 different 

components of motion. It has been shown that kinesin-3 can move along the microtubule 

lattice in a directed manner and it can also show non-directed movement on the microtubule 

lattice. Recently, kinesin-3 has been shown to switch between the 3 components of motion: 

directed, non-directed and static1. 

For this study, analyzing kinesin-3 SPT data is extremely enticing as it shows 

transitions between non-directed, directed and static components. For a complete 

biophysical characterization of kinesin-3, not only the transitions need to be identified and 

counted, but dwell times for different components of motion, alpha values (which 

differentiates between directed and non-directed motion), step size for non-directed 

component of motion and velocity for the directed component of motion needs to be 

measured. For these reasons, analysis of experimentally obtained kinesin-3 SPT data will 

be ideal to highlight the capabilities of the  SPT data analysis tool. In the next chapter we 

discuss a novel analysis tool that is automated, user-friendly, less time-intensive and 

analyzes data in an objective manner. In the last section of the chapter we show the results 

obtained for kinesin-3 SPT data analyzed by the tool that we have developed.  

 

 

 

 

 

 

 

                                                 
1 Unpublished data, courtesy of Dominique Lessard (Berger lab) 
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CHAPTER 2: ANALYSIS OF SINGLE PARTICLE TRACKING DATA FOR 

MULTI COMPONENT MOTION 

2.1. The need for an automated, user-friendly, time-efficient tool 

Chapter 1 highlights a few examples of biological phenomenon where SPT is 

being used to investigate functions of different proteins such as molecular motors and 

MAPs.  Advances in microscopy such as Total Internal Reflection Microscopy (TIRF), 

which allows in vitro studies of cytoskeletal proteins with high signal to background ratio 

and super resolution microscopy, with   nearly 7-10 fold greater resolution (in the range of 

10s of nm) have greatly facilitated the utility of SPT in studying motion of small 

intracellular structures, and even individual molecules (Thompson and Lagerholm, 1997; 

Pierce and Vale, 1999; Gustafsson, 2000; Schmoranzer et al., 2000; Toomre and Manstein, 

2001; Betzig et al., 2006; Willig et al., 2006b; Willig et al., 2006a; Kellner et al., 2007; 

Willig et al., 2007; Schermelleh et al., 2008). We have focused on the use of SPT to study 

axonal transport, but another area where SPT is being extensively used is in the study of 

membrane properties (Pralle et al., 2000; Schutz et al., 2000; Eggeling et al., 2009; Sahl et 

al., 2010; Vicidomini et al., 2015; Abboud et al., 2018). Moreover, numerous techniques 

and methods have been developed which allow users to track single molecules in images 

obtained from microscopy with high accuracy and, in some cases, in an automated manner 

(Sage et al., 2005; Jaqaman et al., 2008; Ram et al., 2008; Ruhnow et al., 2011; Liu et al., 

2013; Chaphalkar et al., 2016; Mangeol et al., 2016; Xiao et al., 2016). But few tools exist 

for analyzing the SPT data in an automated, user-friendly, time-efficient and objective 

manner. Therefore, there is a critical need for the development of such a tool.  
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To address this need we have developed a MATLAB program called Mixed 

Motion Analysis (MixMAs), which takes SPT data as input and analyzes it using a sliding 

window analysis technique. The users only need the SPT data, an estimate of the error in 

determining the position of the tracked particle and an estimate of the size of the step, in 

the time interval between 2 consecutive image frames, of their particle of interest. MixMAs 

then analyzes the SPT data and outputs the parameters required for complete 

characterization of the multi component motion of the particle. In the following sections 

the techniques used to develop MixMAs, the validation of MixMAs using simulated data 

and application of MixMAs on Kinesin-3 SPT data is presented. 

2.2. Methods 

2.2.1. Data needed to use MixMAs 

The data used as input to MixMAs is the tracking data generated from imaging 

fluorescently labelled single molecules and tracking them (i.e., getting their position (X-

coordinate, Y-coordinate)). These coordinates need to be stored in an excel file with 

different columns for identification labels of different particles, X-coordinates of different 

particles and Y-coordinates of different particles. The columns do not need to have any 

specific order as the program asks the users to input the excel column label where 

identification labels of particles, their X-coordinates and their Y-coordinates are stored. 

This excel file is referred to as the coordinates file. This coordinates file is an input to 

MixMAs which it uses to analyze particle’s motion. 

Apart from the coordinates file, an estimate of the error in determining the position 

of the tracked particle is also needed. This error is referred to as the localization error. The 

localization error depends on the resolving power of the microscope and the accuracy of 
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the tracking method used. An estimate of the size of the step, in the time interval between 

2 consecutive image frames, of their particle of interest, in µm is also needed. This is 

referred to as the step size.   

2.2.2. Algorithm  

The algorithm uses the following steps for analyzing motion of particles: 

1- Coordinates file is read and events which appear for a number of image 

frames that is lower than a user supplied minimum value are removed. 

Coordinates for every particle are stored in individual cells (A MATLAB 

data type). 

2- For every particle the displacement for each time step and the smallest 

angle, that two such displacements make, from the positive X-axis is 

calculated Both these values are stored in different vectors (A MATLAB 

data type). 

3- Sliding window analysis is performed on the displacement vector generated 

in step 2, and regions within the window are classified into dynamic or static 

components using a cutoff value  

4-  Sliding window analysis is performed on the angle vector, generated in step 

2, for the dynamic components identified in step 3, and the regions are 

further sub-classified as directed or non-directed using another cutoff value. 

Non-directed, static and directed components are given identification values 

of 1,2 and 3 respectively. These values are stored in a vector (A MATLAB 

data type). 
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5- The cutoff values, mentioned in step 3 and 4, are generated by simulating 

motion of particles using 2 estimates that the user provides. The first of 

these is the step size of the particle and the second estimate is the 

localization error.  

6- Using the identification values vector, generated in step 4, transitions 

between different states are identified and dwell times for different states, 

transition frequencies for different transitions, alpha values for different 

components, step size (for non-directed motion), and velocity (for directed 

motion) are calculated. These parameters stored in a structure (A MATLAB 

data type). This is the output that is generated by MixMAs. 

2.2.3. Displacement and angle calculation  

X and Y coordinates are used to calculate displacement between two points. For 

particle k the displacement sk
i between time points i and i + 1 is calculated: 

��� = 
(��� − ����� )� + (��� −  ����� )�  

The displacement values for particle k are stored in a vector: 

�� = [��� , ����� ,…..] 

X and Y coordinates are also used to calculate the smallest angle that a displacement vector 

���  makes with the positive X-axis: 

��� =  ��� �tan�� ������� − ��� 
������ −  ��� !"  

To ensure that ��� is calculated from the positive X-axis the following checks are 

implemented in the program: 
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• if  ������ − ���   is > 0 and ������ −  ���  is < 0, ��� is subtracted from 180 and the 

result is used as ���. 

• if  ������ − ���   is < 0 and ������ −  ���  is < 0, ��� is added to 180 and the result is 

used as ���. 

• if  ������ − ���   is < 0 and ������ −  ���  is > 0, ��� is subtracted from 360 and the 

result is used as ���. 

To ensure that the smallest value of ��� from the positive X-axis is calculated the following 

check is implemented in the program: 

• If ��� is > 180, ��� is subtracted from 360 and the result is used as ���. 

The angle values for particle k are stored in a vector: 

  ��) = [���, ����� ,…..] 

2.2.4 Sliding window analysis to identify transition points  

Sliding window analysis is performed on the generated vector   ��)  and ��,  and 

two parameters are calculated for each step i of the window: 1- -./01023��: the maximum 

of the displacements within the window and 2- 4560735.2��: the standard deviation of 

angles within the window (Figure 8). If the movement parameter is greater than a user 

specified cutoff value then the component of particle’s motion within the sliding window 

is classified as dynamic, otherwise it is classified as static. For dynamic component, if the 

direction parameter is greater than a user specified value then the component is further sub 

classified as non-directed, otherwise it is sub-classified as directed. In this way, a 

component vector for particle k is generated for every step of the window. Within the 

vector, 1 designates non-directed, 2 designates static and 3 designates directed motion: 
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9.1:.2023� = [2, 2, 2, 3, 3, 1, …] 
The component vector is then refined by combining consecutive similar components. The 

component vector is then checked for changes of components. The frame where a 

component change occurs, is classified as a transition and a transition vector, containing 

the frame number, for particle k is generated: 

<6�2�535.2� = [5, 10, 22, …] 
The transition vector is refined by adding a start value of the trajectory, frame at which a 

trajectory started, and the end value of the trajectory, frame at which the trajectory ended. 

The default length of the sliding window is two time intervals but the users have the option 

to change this value. All the analysis performed in this study use the default value of the 

sliding window size. 
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2.2.5. Calculation of movement and direction cutoff values 

Simulation of static particles, diffusive particles and directed particles is 

performed which uses a user specified input value of the estimated step size of the particle 

and an estimated value of the localization error for the particle in µm (Figure 12). 

To calculate the Direction cutoff value, the script called 

FindDiffusiveDirectedCutoff for 2-dimensional (2-D) motion analysis and 

FindDiffusiveDirectedCutoff1D for 1-dimensional (1-D) motion analysis is run. Both the 

scripts are identical with the exceptions that in the 1-D script, motion occurs only in the 

horizontal direction and variations in vertical direction are due to the localization error.  

Figure 9: Calculation of two parameters for a sliding window of size 3: Four example trajectories with three 

steps each are shown. For every step a displacement value (s) and the smallest angle (θ) from the positive X-

axis is calculated. Parameter 1 is the maximum of the three displacements (s1, s2, s3) and parameter 2 is 

standard deviation of the three angles (θ1, θ2, θ3). If parameter 1 is greater than a specified movement cutoff 

value then the region is classified as dynamic. If, for a dynamic region, parameter 2 is greater than a specified 

direction cutoff value then the region is sub classified as diffusive. 
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Using FindDiffusiveDirectedCutoff script, 200 diffusive particles and 200 

directed particles are simulated. Sliding window analysis is then performed and the 

direction parameter is calculated and stored (Figure 8). A range of direction cutoff values 

are then tested and regions where the direction parameter is greater than the direction cutoff 

value is classified as diffusive, otherwise it is classified as directed. For every direction 

cutoff value tested the percentage of diffusive components that are missed (% diffusive 

missed) and the percentage of directed components that are missed (% directed missed) is 

calculated (Figure 9a). The direction cutoff value at which both the missed events, % 

diffusive missed (Figure 9d) and % directed missed (Figure 9c) are minimized is stored. 

The entire process is repeated 100 times and the mean of the direction cutoff values is 

calculated. This is the suggested direction cutoff value that a user should use for performing 

analysis with MixMAs (Figure 9b). 
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A similar process is used for calculating the movement cutoff value, except for 

the following changes: 

• Static and diffusive or diffusive and directed particles are simulated instead of 

diffusive and directed particles. The default that the script uses is static and 

diffusive particles.  

• Movement parameter is used instead of direction parameter. 

• FindDynamicStaticCutoff script is used instead of FindDiffusiveDirectedCutoff 

for 2-D analysis and FindDynamicStaticCutoff1D script is used instead of 

FindDiffusiveDirectedCutoff for 1-D analysis. 

 

Figure 10: (a) Plot of direction cutoff value (used for separating diffusive and static components) and the % 

of missed events for different values of localization error.  The value where the diffusive missed (%) is equal 

to the directed missed (%) is recorded. The simulation is run 100 times to generate (b) 100 direction cutoff 

values, (c) 100 missed directed component (%) values and (d) 100 missed diffusive component (%) values. 

Mean of (b) the direction cutoff values  is suggested to be used in MixMAs. 



33 

 

 2.2.6. Simulation of particles to generate coordinates files 

200 particles are simulated to generate coordinates files which are then analyzed 

by MixMAs. Simulations are performed both in 1-D, using the script Mixed Motion 

Simulation 1-D (MixMSi1D), and in 2-D, using the script Mixed Motion Simulation 

(MixMSi). To simulate the motion of a particle it is given a starting x and y position of 10 

µm. Then, after every iteration these positions are changed based on the component of the 

motion. The particle’s position is updated 10 times for each component of motion. The 

order of components used in the simulations are as follows: 

[Directed, Static, Diffusive, Directed, Diffusive, Static, Directed] 
As there are a total of 7 components with each being updated 10 times simulation of a 

single particle generates a total of 70 positions. In an experimental setup this will translate 

to 70 frames. For 2-D directed motion the positions are updated in the following way: 

�G =  �G��  +  H4560730I�30:�5J0 ×  cos(M�2I.1N2OP0[0 − 360])Q  
+   HR.7�P5J�35.2S66.6 ×  cos(M�2I.1N2OP0[0 − 360])Q 

�G =  �G��  +  H4560730I�30:�5J0 ×  sin(M�2I.1N2OP0[0 − 360])Q
+  HR.7�P5J�35.2S66.6 × sin(M�2I.1N2OP0[0 − 360])Q 

In the above equations for a continuous directed motion the RandomAngle is chosen only 

once, at the start of the directed motion, and then the same angle is used until the end of 

the directed motion. For 2-D diffusive motion the same equations are used except that the 

RandomAngle is chosen whenever the position of a particle is updated and 

DiffusiveStepSize is used instead of DirectedStepSize. For static component, only the 

LocalizationError is added to update the particle position. For example, to update static x 

position “HR.7�P5J�35.2S66.6 ×  cos(M�2I.1N2OP0[0 − 360])Q)” is added to the previous 
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x position and to update y position “HR.7�P5J�35.2S66.6 ×  sin(M�2I.1N2OP0[0 − 360])Q” 

is added to the previous y position. In the static case, just as in the diffusive case, the 

RandomAngle is chosen whenever the position of a particle is updated. 

Simulations for the 1-D particle motion utilize similar equations with a few 

changes which are outlined below: 

• Only the x position is updated for all the components, while update of y position 

only involves adding the localization error multiplied with 

“(M�2I.1TU1�06[1 .6 − 1])”. The changes described below are only applied to 

the x position of the particles. 

• For directed motion the DirectedStepSize is multiplied with 

“(M�2I.1TU1�06[1 .6 − 1])” and the LocalizationError is also multiplied with 

“(M�2I.1TU1�06[1 .6 − 1])”. Like the 2-D case, the RandomNumber is chosen 

only once (at the start of the directed motion) and then the same angle is used 

until the end of the directed motion. 

• For diffusive motion the DiffusiveStepSize is multiplied with 

“(M�2I.1TU1�06[1 .6 − 1])" and the LocalizationError is also multiplied with 

“(M�2I.1TU1�06[1 .6 − 1])”. Like the 2-D case, the RandomNumber is chosen 

every time the particle’s position is updated. 

• For static component, only the LocalizationError is multiplied with 

“(M�2I.1TU1�06[1 .6 − 1])”. The RandomNumber is chosen whenever the 

position of a particle is updated. 
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Users can set a time interval value for an update in the position of a particle. The 

default value is set to 0.1s and this value is used in this study except otherwise stated. The 

resulting, coordinates values are stored in an excel file for further use in MixMAs.  

2.2.7. Procedure to use the program 

The procedure to use the program is shown in figure 10. Users are required to 

provide an estimate of the localization error in µm and the step size of the particle in µm. 

The program uses these two values to determine two cutoff values: 1- direction cutoff 

value, and 2- movement cutoff value. The two cutoff values along with the coordinates file 

are used as input to analyze the motion of particles. 

The following scripts are used as part of the work flow: 

• FindDynamicStaticCutoff: Finds movement cutoff value for 2-D analysis. 

• FindDynamicStaticCutoff1D: Finds movement cutoff value for 1-D 

analysis. 

• FindDiffusiveDirectedCutoff.: Finds direction cutoff value for 2-D 

analysis. 

• FindDiffusiveDirectedCutoff1D: Finds direction cutoff value for 1-D 

analysis. 

• MixMAs: The main program which takes as input the coordinates file and 

the cutoff values to analyze SPT data.  
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2.2.8 Calculation of step size and alpha values  

The first time that MixMAs is used it analyzes the motion of particles and outputs 

the results. It also calculates the mean squared displacement for each component of motion 

and saves it. The user can then run MixMAs again and choose the option of analyzing mean 

squared displacement which results in the output of an alpha value and the step size.  

For every component of motion identified by MixMAs, the mean squared 

displacement and time interval for which this displacement was measured, is fit to the 

diffusion equation: 

〈X〉 = �43Z 

Figure 11:  Workflow for motion analysis: An estimate of the step size of the particle and the error in the 

localization of the particles is used to simulate diffusive, static and dynamic events and two cutoff values (1-

for separating dynamic and static events (Movement cutoff) and 2- for separating dynamic events into 

diffusive and directed events (Direction cutoff)) are generated using scripts indicated in the figure. These 

values and the coordinates file are then used as inputs for the motion analysis program, Mixed Motion 

Analysis (MixMAs). 
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Where, 〈X〉  is the mean squared displacement, t is the time interval, 4 is the diffusion 

coefficient, a is the dimensionality factor, 2 for 1-D motion and 4 for 2-D motion, and α 

defines the component itself. In an ideal case, for diffusive component α is 1 and for 

directed component it is 2. A value of α less than 1 designated anomalous diffusion. The 

value of α obtained for our simulations and experimental data also ensure that MixMAs 

accurately separates the different components of motion.  

To calculate mean squared displacement, it is first calculated for individual 

particles. Then the mean squared displacement of individual particles is averaged. To do 

this mean squared displacement for a specific time interval is averaged over all the particles 

to get a mean value and a standard deviation value for that time interval. As not all 

trajectories belonging to a specific component of motion are of the same length of time, 

〈X〉 is fit up to the time interval for the particle which had the shortest trajectory. This 

ensures that there are equal number of particles that were averaged, for every value of 〈X〉. 
We calculated the step size of a particle instead of directly using the diffusion 

coefficient since step sizes were used as input for the simulations performed. This made 

the comparison between the input given to the simulation and the result given by MixMAs 

easier. 

2.3. Results 

2.3.1 Validation using simulation of particles 

 We validated the algorithm by simulating motion of particles (Figure 11) using 

MixMSi script for 2-D simulations and MixMSi1D script for 1-D simulations. In both the 

scripts, 200 particles were simulated with the following input component vector: 

[Directed, Static, Diffusive, Directed, Diffusive, Static, Directed] 
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Simulated motion produced an excel track file which was then used as an input with an 

estimate of step size and localization error to the analysis program, MixMAs (Figure 12). 

Simulations were performed for different values of the ratio of step size to localization 

error to check the robustness of MixMAs. The step size was fixed at 1 µm. Ratios of step 

size to localization error used in the simulations were 1%, 5%, 10%, 20% and 50%. 

Simulations were performed in 1-D and in 2-D. Every coordinate file generated from a 

simulation was analyzed using MixMAs and the results were saved. This was repeated 10 

times, therefore, 10 values of the number of transitions, dwell times, alpha (α) values and 

step sizes were calculated. Then the mean and the standard deviation of these values was 

plotted alongside the input values used in the simulations.    
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Figure 12: Motion Simulation: Motion in space of 2 simulated particles is shown. Every particle trajectory 

has 1 of each of the following: Directed (red) to static (green) transition, directed (red) to diffusive (blue) 

transition, static (green) to directed (red), static (green), to diffusive (blue), diffusive (blue) to static (green) 



40 

 

and diffusive (blue) to directed (red). As static motion in space is relatively small, arrows are used to 

highlight static regions. 

 

 

 

Figure 13: Motion is simulated by supplying localization error and step size estimates to scripts mentioned 

in the figure which then generate an excel coordinate file. This file can then be used as input for MixMAs.   

  

The analysis results show that the algorithm is validated for a range of localization 

error values for both, 1-D and 2-D case (Figure 13, Figure 14, Figure 15, Figure 16). The 

number of transitions (Figure 13a) and dwell times calculated by the program (Figure 13b) 

are comparable to the input values given in the 1-D simulations. alpha values for diffusive 

component of motion are very close to 1 whereas the alpha values for the directed 

component of motion are very close to 2. This is true for all values of step size to 

localization error ratio that were tested (Figure 14a). Step sizes are calculated using alpha 
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values fixed (Alpha fixed) at 1 for diffusive component and 2 for directed component 

(Figure 14b). Similarly, step sizes are calculated using alpha values calculated in figure 

14a (Alpha floating). Floating and fixed values of alpha generate similar results (Figure 

14b). 

 

 

Figure 14: Results from motion of particles simulated in 1-D. 200 particles are simulated ‘(see figure 4 & 

5)’ for different values of localization error. For each localization error (%) the simulation is run 10 times. 

The number of different transitions is then calculated. (a) Plots for the mean number of transitions for 

different values of localization error are shown. (b)  Plots of mean of the dwell times for different values of 

localization error are shown. The title of each graph shows the type of motion for which the dwell times are 

calculated, and for the type of transition that is observed. (Bars indicate standard deviation). 
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Figure 15: (a) Alpha values for diffusive, static and directed motion for different values of localization 

error are calculated for motion simulated in 1-D. Step size values for diffusive, static and directed motion 

for different values of localization error are calculated (b) using alpha value fixed at 1 for diffusive and 

static motion, and 2 for directed motion and (b) using alpha values calculated in (a). (Bars indicate standard 

deviation). 

  

The algorithm was also validated for motion in the 2-D case as shown in figure 

15 and figure 16. The results show that the program performs as well in the 2-D case as it 

does in the 1-D case. 
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Figure 16: Results from motion of particles simulated in 2-D. 200 particles are simulated (see figure 4 & 

5) for different values of localization error. For each localization error (%) the simulation is run 10 times. 

The number of different transitions is then calculated. (a) Plots for the mean number of transitions for 

different values of localization error are shown. (b) Plots of mean of the dwell times for different values of 

localization error are shown. The title of each graph shows the type of motion for which the dwell times 

are calculated, and the type of transition that is observed. (Bars indicate standard deviation). 
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Figure 17: (a) Alpha values for diffusive, static and directed motion for different values of localization 

error are calculated for motion simulated in 2-D. Step size values for diffusive, static and directed motion 

for different values of localization error are calculated (b) using alpha value fixed at 1 for diffusive and 

static motion, and 2 for directed motion and (b) using alpha values calculated in (a). (Bars indicate standard 

deviation). 

2.3.2. Application 

Kinesin-3 shows 3 components of motion; diffusive, directed and static. These 

components transition between each other within a single run making experimentally 

collected kinesin-3 SPT data an ideal candidate for analyses using MixMAs.  

To analyze kinesin-3 SPT data2 the workflow shown in figure 3 was followed. 

Firstly, cutoff values were calculated by using an estimated step size of 0.2 µm and an 

estimated localization error of 0.2 µm. The cutoff scripts used were those for 1-D motion. 

                                                 
2 Unpublished data, courtesy of Dominique Lessard (Berger lab) 
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These scripts yielded a movement cutoff value of 0.22 and direction cutoff value of 60o. 

These cutoff values along with an excel file containing coordinates data for 134 kinesin-3 

molecules were input in MixMAs for analysis of kinesin-3 motion. The results obtained 

are shown in figure 18. The most important point to note in the figure is that for diffusive 

component of motion the alpha value is very close to 1 and for the directed component of 

motion it is very close to 2 (Figure 18d, 18f). This information is crucial as it increases 

confidence in the results obtained for the number of transitions, dwell times and velocity 

for Kinesin-3. To further validate these results, motion of kinesin-3 was simulated using 

MixMSi1D script with a step size of 0.4 µm and a localization error of 0.2 µm and a time 

interval value of 0.2s. The results of the simulation show that the input values for all the 

parameters are comparable to the values resulting from MixMAs analysis (Figure 19). This 

result combined with the alpha values obtained (Figure 18d, 18f) validates the results 

obtained for kinesin-3 with a high degree of confidence. 

Looking at the fit between the mean squared displacements and time for diffusive 

and static components, we thought that the slopes of the fit (diffusion coefficients) for 

diffusive and static components are very close to each other. This raises a problem because, 

if true, this means that there is no difference between the static and diffusive components.  

To explore this further we calculated diffusion coefficients for static and diffusive 

components for alpha values fixed at 1 and for alpha values shown in figure 18d and 18e 

(Figure 18g). The results show that using alpha values shown in figure 18d and 18e, there 

is no difference between the diffusion coefficients of the two components. But, this is not 

an ideal comparison as the alpha values for the two components are different. As, the alpha 

values for both the components are close to 1, it is reasonable to calculate the diffusion 
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coefficients for these two components using an alpha value fixed at 1. As shown in figure 

18g when the alpha value is fixed at 1, there is indeed a difference between then diffusion 

coefficients of the static and diffusive components.   

 

  

 

                                                                

 

 

 

Figure 18: Motion of Kinesin-3 is analyzed and (a) dwell times for different states and (c) number of 

transitions are calculated. Alpha values for (d) diffusive, (e) static and (f) directed motion are also 

calculated. (b) Velocity for directed motion is calculated using alpha values (alpha floating) calculated in 

(f) and using a fixed alpha value of 2. Diffusion coefficients for static and diffusive components are shown 

(g) 
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for alpha values fixed at 1 (alpha fixed) and for alpha values calculated in (f) (alpha floating). (Bars indicate 

standard deviation). 

 

  

Figure 19: Kinesin-3 motion is simulated by simulating particle motion in 1-D with a step size of 0.4 µm 

for diffusive and directed motion with localization error of 0.2 µm. A total of 200 particles are simulated. 

The simulation is run for 10 times. (a) Mean dwell times for different states, (b) alpha values and (c) 

number of transitions are shown. Step size is calculated using (d) alpha value fixed at 1 for diffusive and 

static motion, and 2 for directed motion and (e) using alpha values calculated in (Alpha floating) (b). (Bars 

indicate standard deviation). 
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CHAPTER 3: DISCUSSION 

3.1. Conclusions 

We have developed a MATLAB program, called MixMAs, to analyze SPT data. 

To validate the analysis routine, we simulated motion of particles with multiple 

components of motion, both in 1-D and 2-D, and analyzed the simulated SPT data with 

MixMAs. The results of the validation show that MixMAs works accurately for a range of 

step size to localization error ratios. This is true for both 1-D and 2-D cases. Finally, 

experimentally obtained Kinesin-3 SPT data was analyzed with MixMAs and the results 

obtained show that MixMAs works accurately for experimentally obtained data as well. In 

summary, the MixMAs program analyzes SPT data for particles with multiple components 

of motion in an objective, automated, user friendly and time-efficient manner.      

3.2. Features of the current implementation 

3.2.1. Bias towards the dynamic component for motion length smaller than the size 

of the sliding window 

Inherent to the sliding window analysis method used in the MixMAs program is 

a bias towards the dynamic component of motion when static events are smaller than the 

size of the sliding window. The reason for this is the use of the criteria of using maximum 

displacement, within a sliding window to classify dynamic and static components. The 

following 2 examples characterize the features of this limitation in detail. 

Example 1: 

Suppose for a sliding window size of 3 a transition occurs from a dynamic 

component to a static component at time point to. When the entry of the sliding window is 
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at to, the component will be classified as dynamic, as it should be. Now, the window takes 

a step such that the exit of the sliding window is now at to+1. To check the component of 

motion the maximum displacement with in the window is calculated which will still lead 

to a dynamic component as the window includes displacements of the dynamic region (to-

1 and to-2). The next step that the window takes will still result in a dynamic component as 

the displacement of to-1 will be included in the sliding window. Only, on the next step of 

the sliding window, where the entry of the sliding window is at to, will the component be 

classified as static. The question that arises from this example is which point should 

MixMAs consider as the point of transition, entry point of the sliding window or the exit 

point. In this case, the transition should be the point where the sliding window starts, and 

therefore the MixMAs program is designed to exactly that for dynamic to static transitions.   

But, this static component will only be identified if the length of the static 

component is at least equal to the size of the sliding window. If the static component is 2 

frames long (to to to+2), and a dynamic component follows it, then, when the sliding window 

start point is at to, its end will be at to+3. In this case the component will still be identified 

as dynamic.  Thus, if a static component has a length less than the size of the sliding 

window MixMAs will miss it. This puts a limit to the length of identifiable static 

components equal to the size of the sliding window. 

Example 2: 

Consider the reverse case in which a transition occurs from a static component to 

a dynamic component at time point to.  Still using a sliding window size of 3, when the exit 

of the sliding window is at to, the component will be classified as static as it should be. 

Now, the window takes a step such that the exit of the sliding window is now at to+1. To 
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check the component of motion the maximum displacement with in the window is 

calculated which will lead to a dynamic component be identified as the window includes 1 

displacement of the dynamic region (to+1). In example 1, it was concluded that point of 

transition is at the entry point of the sliding window, which in this case if clearly wrong as 

the transition occurs at to and the entry of the sliding window at which MixMAs identifies 

the transition is to-2. In this case, the transition should be the point where the sliding window 

exits and therefore MixMAs is designed to do exactly that for static to dynamic transitions. 

If the dynamic component is then followed by a static component, as in example 

1, and the length of the dynamic component is less than the size of the sliding window then, 

in contrast to the missed brief static component in example 1, the brief dynamic component 

will still be identified. For example, if the length of the dynamic component occurring 

within an extended static state is two time intervals long followed by a transition back to a 

the extended static state, and if the window size is 3 time intervals, the window will contain 

a dynamic displacement for three steps.  

In summary, dynamic regions with lengths less than the size of the sliding window 

will be successfully identified by MixMAs, whereas, static regions with lengths less than 

the size of the sliding window will be missed.  

A pseudo-solution to this problem is using the smallest possible size of sliding 

window which is two time intervals (also the default size used by MixMAs). Another way 

in which this limitation of MixMAs can be overcome, is by increasing the rate at which the 

images are acquired. What this translates to is the following: 

• Before (at a lower acquisition rate), the static events that were missed had 

a length lower that the size of the sliding window. 
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• By increasing the acquisition rate, the missed static region will now have 

a length that is greater than the size of the sliding window, therefore, it 

will not be missed. 

• If, increasing the acquisition rate does not change the number of static 

events then, that means that no static events were being missed at the 

initial acquisition rate.  

3.2.3. Other limitations 

MixMAs currently analyzes 1-D and 2-D SPT data. It cannot currently analyze 3-

D SPT data.  However, this is not a limitation inherent to the algorithms used in the 

program, and future versions of MixMAs can be designed to include 3-D functionality.   

Another limitation of MixMAs concerns the number of components it can 

recognize. In this study we have focused upon 3 components of motion; static, diffusive 

and directed. As a starting point for such a study this focus is sufficient and justified but 

one cannot ignore that motion can have some further sub-components. Also, one important 

parameter required for a complete description of directed motion (i-e., the direction of 

motion) cannot be determined by MixMAs. The following points highlight these 2 

limitations: 

In this study we have defined diffusive motion as a single component. MixMAs 

has been shown to identify diffusive components in a trajectory of a particle that has 

multiple components of motion and provide an alpha value and a step size for the diffusive 

motion. But a particle can have diffusive motion with 2 or more different diffusion 

coefficients, meaning it moves with a specific step size for a part of the diffusive motion 

but moves at significantly different step size for another part of the diffusive motion. In 
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this case, a particle has 2 sub-components within a diffusive component. A particle can 

have a number of such sub-components. MixMAs is limited in this regard, as it treats 

diffusive component as 1 single component and, therefore, in cases where a diffusive 

component has 2 or more sub-components, MixMAs’s utility will be limited. 

In this study we have defined directed motion and shown the capability of 

MixMAs to identify it in a trajectory for a particle that has multiple components of motion. 

But directed component also has a directionality associated with it. For example, a 

molecular motor can move towards the plus end of a microtubule or the minus end. 

MixMAs does not give any information regarding directionality and only provides an alpha 

value and a velocity value for the directed motion.  

Lastly, MixMAs does not have the ability to perform brightness analysis. Due to 

this limitation, it assumes that all the particles in the data are single particles. Therefore, if 

complexes of particles are formed in an experiment, and their tracking information is 

included in the data input to MixMAs, these complexes will still be treated as single 

particles by MixMAs. The ability to perform brightness analysis can overcome this 

limitation as, MixMAs will then be able to distinguish single particles from complexes. 

3.3 Future 

3.3.1. Improvements 

MixMAs uses a sliding window approach to identify transitions from one 

component of motion to another. As shown in the results section of chapter 2, this approach 

is suitable for particles that show motion with multi components. Another approach that 

has been used to tackle a similar problem is the ‘Changepoint’ approach (Heaslip et al., 

2014). This approach is used to identify a single transition between diffusive and directed 
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components. In this approach a particle’s trajectory is divided in to 2 parts. Then each part 

is fit to the diffusion equation and goodness of fit parameters (gofs) are calculated. These 

gofs are then used as variables for Bayesian Information Criterion (BIC) which gives a 

score as a result. The goal of the approach is to minimize the BIC score. To achieve this 

division of particle’s trajectory, the division is performed at every time point and a BIC 

score is calculated. The time interval where the BIC score is minimum is classified as a 

transition point or a ‘Changepoint’.  

The advantage of this approach over the sliding window approach used in 

MixMAs is its accuracy in determining the point of transition. This is because, in sliding 

window analysis, when the sliding window spans the point of transition and classifies 

regions into different components, the identified transition point can have a maximum error 

that is equal to the size of the sliding window. Considering this fact, one can mistakenly 

conclude that the ‘Changepoint’ approach is better than the sliding window approach. But 

there is a major disadvantage to the ‘Changepoint’ approach. The ‘Changepoint’ approach 

only works for particles that only have a single transition point. This is because 

‘Changepoint’ separates trajectories into 2 regions and if there is more than 1 transition the 

model fitting fails in the separated region where another transition is present as it was 

assumed that there is only 1 transition in the particle’s trajectory.  In contrast, as has been 

demonstrated, MixMAs succeeds even if there are 3 components of motion and all possible 

types of transitions take place between these 3 components. 

The above discussion shows that both the approaches have their limitations and 

advantages. The above discussion also shows that if used together, the 2 approaches will 

complement each other nicely. MixMAs can be used to identify transition points first. 
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Then, based on the results ‘Changepoint’ can be used to separate trajectories within a few 

frames of the identified transition points and then, using the results from MixMAs about 

the components spanning the transition points fit the separated trajectories accordingly. An 

approach like this will increase accuracy of identification of transition points and will also 

work on trajectories with more than 2 components of motion and multiple transitions. 

Another improvement that can be implemented in MixMAs is the ability of 

subtracting localization error from the displacement values. A point to consider here is that 

this can only be achieved if localization error has already been experimentally obtained. 

Apart from subtracting localization error, brightness analysis can also be incorporated into 

MixMAs. As already mentioned in the limitations section without this ability MixMAs is 

unable to distinguish between single particles and complexes of particles. With the 

incorporation of brightness analysis, MixMAs will be able to categorize particles into 

single particles and complexes. It will also be able further sub-categorize complexes based 

on the number of particles in those complexes.      

3.4. Current study in a wider context: fluidity of lipid membranes 

3.4.1. Membrane fluidity 

Lipid bilayers form biological membranes such as cell membrane and membranes 

enclosing an organelle. The basic structure of a lipid bilayer is 2 layers of phospholipids 

with the hydrophilic phosphate containing heads exposed at the surfaces and the inner core 

composed of hydrophobic fatty acid chains.  

In the structure described above the lipid bilayer is homogenous in which proteins 

can diffuse without any hinderance. But a biological membrane is more complex as it also 

has membrane proteins which are embedded in the lipid bilayer. These proteins also 
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interact with lipids and can also form protein complexes. Moreover, the fatty acid tails also 

differ in their composition; they can be saturated or unsaturated. Additionally, sterols are 

also imbedded in the membranes. The above-mentioned complexity results in a membrane 

that is not homogenous but has domains of different fluidity (also referred to as viscosity) 

(Pralle et al., 2000; Schutz et al., 2000). The study of membrane fluidity is crucial as it 

plays an important part in numerous physiological processes. 

3.4.2. Physiological importance of regulating membrane fluidity 

The physiological role of membrane fluidity is an area of active research. The 

evidence, so far, suggests that precise control of membrane fluidity is crucial for numerous 

cell processes, including protein sorting and trafficking in a cell, and cell signaling 

pathways. In protein trafficking pathway, membrane fluidity decreases from the start of the 

pathway in endoplasmic reticulum to the plasma membrane in a gradual manner. Evidence 

suggests that this gradient must be maintained for proper protein trafficking (Holthuis and 

Menon, 2014). Membrane fluidity also plays a crucial part in certain signaling cascades, 

such as receptor tyrosine kinase signaling pathways (Ge et al., 2001). In such signaling 

pathways, membrane sub-domains called ‘lipid rafts’ play an important role. Lipid rafts 

are subdomains of membranes which contain saturated phospholipids and cholesterol both 

of which decrease membrane fluidity and make these raft regions rigid. Receptors proteins 

can also be embedded in these rafts and in cases where an agonist needs to bind an activated 

receptor, these rafts, one containing the receptor protein and the other containing the 

activator protein, can coalesce allowing the agonist to bind the receptor and initiate its 

signaling cascade (Pralle et al., 2000; Ge et al., 2001). 
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Dysregulation of membrane fluidity has also been linked to the pathology of some 

diseases. For example, cardiolipin, which regulates mitochondrial membrane fluidity, 

dysfunction has been linked to Alzheimer’s disease and traumatic brain injury. Although, 

whether cardiolipin’s inability to regulate membrane fluidity is a part of the pathology of 

these diseases or not is still being researched (Zeczycki et al., 2014; Monteiro-Cardoso et 

al., 2015). 

3.4.3. Determination of membrane fluidity using SPT in the context of current study 

Over the years many techniques have been utilized to study membrane fluidity 

including Electron Paramagnetic Resonance, Fourier Transform Infrared Spectroscopy, 

Differential Scanning Calorimetry and fluorescence anisotropy. These techniques provided 

valuable information about membrane fluidity but were limited in the sense that they 

measured bulk fluidity of a membrane (Shinitzky et al., 1971; Lande et al., 1995; 

Subczynski et al., 2010; do Canto et al., 2016). 

Although SPT analysis of in vivo membrane fluidity could in theory provide 

fluidity information about membrane sub-domains, its practical implementation was 

hindered by limitations in spatial resolution inherent to conventional light microscopy 

techniques.  

  With the advent of super resolution microscopy, it has become possible to achieve 

spatial resolutions of < 50nm. This advance in microscopy has led to numerous studies 

which have used SPT to study membrane fluidity in vivo, (Schutz et al., 2000; Eggeling et 

al., 2009; Sahl et al., 2010; Vicidomini et al., 2015) and the MixMAs analysis method is 

well suited for analysis of such data. 
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For example, in a membrane with distinct fluidity sub-regions, a particle can 

diffuse more freely where the membrane is relatively fluid, and less freely in regions with 

relatively lower fluidity such as lipid rafts. What this means is that such a dynamic particle 

will show motion with multiple components, just as do MAPs or molecular motor proteins.   

The algorithm defined in this study and used in MixMAs is thus applicable to the SPT data 

generated for such a particle. 

This shows that there is a wide range of applicability of MixMAs; from analyzing 

SPT data of a molecular motor such as Kinesin-3 or a MAP such as Tau, to analyzing 2-D 

SPT data of a particle diffusing in a lipid membrane. It is hoped that availability of 

MixMAs will not only aid in the analysis of SPT data for molecular motors, MAPs and 

particles motion in a lipid membrane, but it will be useful for SPT data generated from a 

wide variety of studies from different areas of biology.  
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APPENDIX 

  The following points are intended to aid users in the interpretation of the results 

obtained from MixMAs. Additionally, a few suggestions are also given which will improve 

the accuracy of MixMAs, and therefore increase the confidence of users on the obtained 

results. 

• Although not required, it is suggested that the users know the number and the types 

of motion components their particle of interest exhibits. This knowledge can be 

obtained from a preliminary analysis of the data. Such analysis can be based on a 

visual inspection of a few kymographs or a visual inspection of a few displacement 

vs. time graphs. As an example, kymographs for Tau show that it has diffusive and 

static components only, whereas kymographs for Kinesin-3 show that it has all 

three components of motion. So, for Tau, the direction cutoff can be safely set to 0 

and for Kinesin-3 it can be determined by MixMAs. 

• MixMAs assumes that all the particles are of a single type. By this, I mean that all 

the particles are either monomers or dimers or complexes etc. The reason for this 

assumption is that brightness analysis of particles is not incorporated into MixMAs. 

If possible, brightness analysis should be performed before analyzing data using 

MixMAs. Another way in which the probability of tracking single particles can be 

increased is by using a relatively low concentration of labelled particles, thereby 

decreasing the probability of particles forming complexes. 

• The cutoffs generated by MixMAs rely on two variables: an estimate of the 

localization error and an estimate of the particle step size. A suggestion for 

increasing the accuracy of MixMAs is to determine the localization error 



70 

 

experimentally rather than estimating it. This can be achieved by fixing the particle 

of interest to a glass slide or a coverslip (or any other way that ensures that the 

particle is static) and then tracking its motion. The mean of the displacements 

obtained from the tracking data will yield a better estimate of localization error and 

therefore improve the accuracy of MixMAs. 

• The algorithm used in MixMAs has an inherent limitation: if a static component’s 

length is less than the size of the sliding window, then that component is missed. A 

possible solution to overcoming this limitation is to increase the rate at which 

images are acquired. If the results obtained from MixMAs do not change then the 

user can be confident that no static events are missed. If, there is an increase in the 

number of static events then the image acquisition rate should be increased further 

until the results do not change. One problem that arises by increasing the image 

acquisition rate is that the probability of photobleaching increases. Therefore, if 

such a case arises, then this inherent limitation of MixMAs should be considered 

when interpreting the results obtained from analysis with MixMAs. 
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