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ABSTRACT 

 
Near Burlington, Vermont, the Champlain Thrust fault placed massive Cambrian 

dolostones over calcareous shales of Ordovician age during the Ordovician Taconic 
Orogeny. Although the Champlain Thrust has been studied previously throughout the 
Champlain Valley, the architecture and structural evolution of its fault zone have never 
been systematically defined.  To document these fault zone characteristics, a detailed 
structural analysis of multiple outcrops was completed along a 51 km transect between 
South Hero and Ferrisburgh, Vermont.  
 

The Champlain Thrust fault zone is predominately within the footwall and 
preserves at least four distinct events that are heterogeneous is both style and slip direction.  
The oldest stage of structures—stage 1—are bedding parallel thrust faults that record a slip 
direction of top-to-the-W and generated localized fault propagation folds of bedding and 
discontinuous cleavages.  This stage defines the protolith zone and has a maximum upper 
boundary of 205 meters below the Champlain Thrust fault surface.  Stage 2 structures 
define the damage zone and form two sets of subsidiary faults form thrust duplexes that 
truncate older recumbent folds of bedding planes and early bedding-parallel thrusts. 
Slickenlines along stage 2 faults record a change in slip direction from top-to-the-W to top-
to-the-NW.  The damage zone is ~197 meters thick with its upper boundary marking the 
lower boundary of the fault core.  The core, which is ~8 meters thick, is marked by the 
appearance of mylonite, phyllitic shales, fault gouge, fault breccia, and cataclastic lined 
faults. In addition, stage 3 sheath folds of bedding and cleavage are preserved as well as 
tight folds of stage 2 faults.  Stage 3 faults include thrusts that record slip as top-to-the-NW 
and -SW and coeval normal faults that record slip as top-to-the-N and -S.  The Champlain 
Thrust surface is the youngest event as it cuts all previous structures, and records fault 
reactivation with any top-to-the-W slip direction and a later top-to-the-S slip.  Axes of 
mullions on this surface trend to the SE and do not parallel slickenlines. 
 

The Champlain Thrust fault zone evolved asymmetrically across its principal slip 
surface through the process of strain localization and fault reactivation.  Strain localization 
is characterized by the changes in relative age, motion direction along faults, and style of 
structures preserved within the fault zone.  Reactivation of the Champlain Thrust surface 
and the corresponding change in slip direction was due to the influence of pre-existing 
structures at depth.  This study defines the architecture of the Champlain Thrust fault zone 
and documents the importance of comparing the structural architecture of the fault zone 
core, damage zone, and protolith to determine the comprehensive fault zone evolution. 
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CHAPTER 1: INTRODUTION 

The Chaplain Thrust fault zone exposed in northwest Vermont preserves brittle and 

ductile structures that record the history of deformation that occurred at the leading edge 

of a fold-and-thrust belt.  The goal of this project is to determine the spatial and temporal 

evolution of the Champlain Thrust fault zone through a macroscale analysis of its 

architecture.  

In general, fault zones preserve critical information regarding recent to ancient 

tectonic processes while also directly influencing modern sub-surface processes.  The 

overall extent, motion history, strain accumulation, total displacement, and possible 

reactivation of faults are all recorded during the structural evolution of the fault zone.  In 

addition to preserving information regarding its deformational history, fault zones within 

the upper crust directly influence sub-surface fluid flow (Eichhubl and Boles, 2000; Wall, 

2006; Bense et al., 2013).  These fluids include groundwater aquifers (Anderson and 

Bakker, 2008; Bense et al., 2008; Mundy et al., 2016), contaminant plumes (Ryan et al., 

2013), natural gas (Paul et al., 2009; Hennings et al., 2012), and injected waste fracking 

fluids (Ellsworth, 2013; Keranen et al., 2014; Yeck et al., 2016).  Recent studies have been 

conducted that analyze the hydrogeologic effects the Champlain Thrust fault has on local 

groundwater flow (Mundy et al., 2016).  This study focuses the structural evolution of the 

Champlain Thrust fault zone to understand how a fault zone develops at the leading edge 

of a mountain building event. 

The Champlain Thrust fault is a low-angle frontal thrust of the Taconic orogeny 

(ca. 475-450 Ma) in northwest Vermont (Stanley, 1987; Hayman and Kidd, 2002) (Figure 
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1.1).  East of the Champlain Thrust, many structures associated with the Taconic orogeny 

have been deformed or overprinted by younger orogenic events (Tremblay and Pinet, 

2016).  The Champlain Thrust fault records no apparent deformation associated with later 

events, therefore providing the opportunity to determine the progressive evolution of a fault 

zone that developed during a single orogenic event.  

Figure 1.1:  Vermont bedrock units of various ages.  The Champlain Thrust, exposed along the 
western edge of Vermont, is a low-angle frontal thrust associated with the Taconic orogeny.  
The Champlain Thrust fault emplaces massive Cambrian carbonate and siliciclastic units atop 
Ordovician shales. 
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 The Champlain Thrust fault surface and portions of the fault zone in close 

proximity to the principal slip surface have been previously mapped and characterized 

(Rowley, 1982; Stanley and Ratcliffe, 1985; Stanley, 1987).  However, the full extent of 

structures and their evolution within the fault zone have yet to be described.  Outcomes of 

this project will provide new insights into the following questions regarding the Champlain 

Thrust fault zone: (1) Where are the boundaries of the fault zone and what are the structures 

that define them? And, (2) How did the fault zone evolve through space and time? 

Combined, the structures that define fault zone boundaries refer to its overall 

architecture.  Through this study, I will be able to determine if the structural architecture 

of the Champlain Thrust fault zone is homogenous throughout its extent or if there are 

changes in structural style or motion preserved within its architecture.   

Four theoretical reference models describing shear zone evolution through time 

have been previously derived (Means, 1995; Vitale and Mazzoli, 2008; Fossen and 

Cavalcante, 2017) (Figure 1.2).  These end member models describe Type 1–4 shear zones 

and indicate how a shear zone grows during times of active deformation.  Type 1 shear 

zones thicken over time by accumulating deformation at their active boundaries (Figure 

1.2A).  Type 2 shear zones thicken over time by accumulating deformation towards their 

center (Figure 1.2B).  Type 3 shear zones remain a constant thickness by deformation being 

homogenously distributed during active deformation (Figure 1.2C).  Type 4 shear zones 

thicken evenly during active deformation (Figure 1.2D).  I used these criteria for shear zone 

development to determine which model best describes the evolution of the Champlain 

Thrust fault zone spatially and temporally. 
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Previous studies of fault zones from around the world have documented how the 

evolution of a fault zone can be inferred by distinguishing its overall architecture (Chester 

and Logan, 1986; Caine et al., 1996; Kim et al., 2004; Faulkner et al., 2010; Choi et al., 

2016; O’Hara et al., 2017).  To answer the questions associated with the Champlain Thrust 

fault zone, I completed a detailed structural analysis of various exposures of the Champlain 

Thrust fault zone.  At each location I generated outcrop-scale structural maps that display 

the spatial distribution of faults, folds, and cleavages.  I recorded the orientation and sense-

Figure 1.2:   Four theoretical end member models that describe shear zone evolution through time.  A) 
Type 1 model indicates that active deformation accumulates at shear zone boundaries.  B) Type 2 model 
indicates that active deformation localizes towards the center of the shear zone.  C) Type 3 model 
indicates that active deformation is homogeneously distributed through the shear zone through time.  
D) Type 4 model indicates that active deformation evenly grows through the fault zone through time. 
(Means, 1995; Vitale and Mazzoli, 2008).  Figure adapted from Fossen and Cavalcante (2017). 
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of-shear preserved on these structures to determine changes in style and motion within the 

fault zone.  I used the principle of cross-cutting relations to determine the relative age of 

each structure and used that information to understand how the structures within the fault 

zone changed through time.  Finally, I qualitatively defined various relative strain zones 

and used the spatial distribution of those zones as well as the relative age of structures 

preserved within each zone to determine how strain localized during fault zone evolution.  

I joined these descriptions to develop a comprehensive model of fault zone architecture 

and used that model to interpret the evolution of the fault zone.   

Through this project, I was able to determine previously unknown aspects of the 

Chaplain Thrust fault zone including: (1) the approximate boundaries of the fault core, 

damage zone, and protolith; (2) the localization of strain towards the fault core 

characterized by a progressive change in motion history and a progressive change in 

structural style, and (3) a reactivation of the Champlain Thrust principal slip surface as an 

inferred result of propagating over a pre-existing extensional structure during basin 

inversion.  
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CHAPTER 2: GEOLOGIC BACKGROUND 

2.1. Introduction 

The northern New England and southern Quebec landscapes record a complex 

tectonic history that includes continental break-up, marine sediment deposition, plutonic 

and volcanic activity, and multiple mountain building events (Figure 2.1).  In Vermont, 

this suite of geologic processes is recorded and deformed through a series of tectonic events 

that occurred during the late Proterozoic through the late Devonian (620–375 Ma) (Figure 

2.2).  These events include the rifting of Laurentia from Rodinia, the opening of the Iapetus 

Ocean and Taconic seaway, and the accretion of Gondwanan-derived microcontinents onto 

Laurentia driven by the closure of the Iapetus ocean (Tremblay and Pinet, 2016).  Separate 

orogenic events occurred as a result of the Laurentian collision with the Shelburne Falls 

arc and Moretown terrane (Taconic, ca. 475–450 Ma), Ganderia (Salinic, ca. 450–410 Ma), 

and Avalonia (Acadian, ca. 380–370 Ma) (St-Julien and Hubert, 1975; Williams, 1979; 

Stanley and Ratcliffe, 1985; van Staal et al., 1998; Van Staal and Barr, 2012; De Souza et 

al., 2014; Macdonald et al., 2014; Tremblay and Pinet, 2016; Karabinos et al., 2017; 

Macdonald et al., 2017).  The following section provides (1) a brief summary of tectonic 

events from oldest to youngest that attributed to the deposition and subsequent deformation 

Vermont’s bedrock units up through the Late Devonian and (2) defining characteristics of 

key terms used within this project including: fault zone, strain localization, thrust ramps, 

and fault reactivation. 
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2.2 Regional Tectonic History 

The oldest events were (1) the formation of the Laurentian margin, and (2) the 

subsequent opening of the Iapetus Ocean, due to the Neoproterozoic breakup of Rodinia 

through a system of low-angle detachment and transform faults (Allen et al., 2009). 

O’Brien and van der Pluijm (2012) used 40Ar/39Ar dating of pseudotachylyte preserved 

along normal faults within the present-day Quebec Appalachians and determined that the 

earliest rifting occurred between ca. 610 and 619 Ma. Volcanic and plutonic rocks have 

been used as evidence that rifting in western New England occurred between 570–555 Ma 

(Walsh and Aleinikoff, 1999; Karabinos et al., 2017), and magmatic rocks in southern 

Figure 2.1:  Approximate terrane boundaries associated with late Proterozoic through late Devonian 
orogenic events in present day New England and Southern Quebec.  Boundaries and terrane names from 
Karabinos et al. (2017). 
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Quebec have been used as evidence for a rifting event occurring around ca. 558 Ma 

(Tremblay and Pinet, 2016).  Within rift-generated basins, Neoproterozoic–Cambrian 

sediments were deposited atop magmatic and metamorphic rocks associated with the 

Grenville orogeny (1250–980 Ma).  These sedimentary deposits define the present day 

Green Mountain bedrock belt in Vermont (Figure 2.3). 

Figure 2.2:  Simplified tectonic model of orogenic events in New England during early to 
mid-Paleozoic.  Modified from Karabinos et al. (2017).   
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  During the rift-drift transition, Cambrian–Ordovician clastic sedimentary and 

carbonate rocks were deposited as a carbonate platform along the passive Laurentian 

margin (Allen et al., 2010; Karabinos et al., 2017).  These ancient carbonate platform rocks 

are the bedrock units that comprise Vermont’s Champlain Valley (Figure 2.3).  The 

Taconic Seaway separated the Laurentian passive margin from the Neoproterozoic–

Cambrian Rowe Schist (Stanley and Ratcliffe, 1985; Macdonald et al., 2014) which was 

separated from Gondwanan microcontinents to the east by the Iapetus Ocean (Karabinos 

et al., 2017) (Figure 2.2).   

 

Figure 2.3:   Mapped bedrock belts across Vermont.  Modified from Kim et al. (2011). 
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During this time, an eastward dipping subduction zone (modern day coordinates) 

was active off the coast of the Laurentian margin below the Gondwanan-derived Moretown 

terrane ~500–475 Ma (Karabinos et al., 2017) (Figure 2.2).  Subduction of oceanic 

lithosphere — the leading edge of Laurentia — resulted in the formation of the magmatic 

Shelburne Falls arc along the leading edge of the Moretown terrane (Karabinos et al., 1998; 

Macdonald et al., 2017).  This subduction also attributed to the closure of the Iapetus Ocean 

and the subsequent collision along the Laurentian margin. 

At 475 Ma, the Taconic orogeny began as a result from the collision between the 

Laurentian margin and the Moretown terrane (Karabinos et al., 2017; Macdonald et al., 

2017) (Figure 2.2).  This collision marks the suture zone of Laurentian–Gondwanan crust 

(Karabinos et al., 2017) and defines the Rowe-Hawley bedrock belt in present day 

Vermont.  Arc-continent collision continued for ~15 M.y. (De Souza et al., 2014) or up to 

~23 M.y. (Macdonald et al., 2017).  It was during this collision that the Mesoproterozoic 

basement and overlying late Proterozoic–Cambrian rocks of the Green Mountain massif 

were thrust onto the foreland over the carbonate platform of the Champlain Valley 

(Ratcliffe et al., 2011; Karabinos et al., 2017).  The Taconic Allochthon in southwest 

Vermont was also obducted onto the Laurentian margin during this time (Figure 2.3).   

The next event occurred at ~465 Ma.  At this time the east dipping subducting slab 

separated, and a reversal of polarity generated a westward dipping subduction zone beneath 

the Laurentian margin and the recently collided Moretown terranes (Karabinos et al., 2017) 

(Figure 2.2).  By ~455 Ma, the Bronson Hill arc formed above the westward dipping 

subduction zone along the eastern edge of the accreted Moretown terrane (Karabinos et al., 
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2017; Macdonald et al., 2017).  Rocks associated with the Bronson Hill arc comprise the 

Bronson Hill bedrock belt along the eastern edge of Vermont (Figure 2.3).  Large-scale 

sinistral oblique thrusting events ended the Taconic orogeny ~ 453–451 Ma (MacDonald 

et al., 2017). 

The next major event occurred at ~450 Ma when the Gondwanan-derived Ganderia 

terrane docked against the composite Laurentian margin due to continued oceanic closure 

driven by the westward-dipping subduction zone (Tremblay and Pinet, 2016) (Figure 2.2).  

This docking event generated the Salinic Orogeny which is recorded through early stage 

(450–425 Ma) and late stage (425–410 Ma) deformation.  Early deformation was 

predominately accommodated through hinterland-propagating backthrusts, folds, and 

retrograde metamorphism (Tremblay and Pinet, 2016).  Slab delamination during the late 

stage of the Salinic orogeny generated a sedimentary basin through crustal extension 

(Rankin et al., 2007; Tremblay and Pinet, 2005, and 2016).  Marine sediments were 

deposited within this basin and define the Connecticut Valley bedrock belt in eastern 

Vermont (Figure 2.3). 

Late Devonian deformation ended with the Acadian orogeny (Figure 2.2).  This is 

defined by the collision of the deformed Laurentian margin with Avalonia from ~380–370 

Ma (Hussey et al., 2010; van Staal and Barr, 2012; Tremblay and Pinet, 2016; and 

references therein).  Deformation generated from the Acadian orogeny includes west and 

east-propagating thrust faults (Tremblay and Pinet, 2016) and metamorphism of the Green 

Mountain, Rowe-Hawley, Connecticut Valley, and Bronson Hill bedrock belts of Vermont 

(Figure 2.3). 
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2.3 The Champlain Thrust and Hinesburg Thrust 

In northwest Vermont, two exposed thrust faults record the western-directed crustal 

shortening that occurred during the Taconic orogeny—the Champlain Thrust fault and the 

Hinesburg Thrust.  The Champlain Thrust fault emplaced early Cambrian to Middle 

Ordovician carbonate rocks atop Late Ordovician carbonate-rich shales (Figure 2.4) 

(Stanley and Sarkisian, 1972; Stanley, 1987), and has been mapped from the Catskill 

Plateau in eastern New York, along the western edge of Vermont, and into southern Quebec 

where it becomes known as the Logan’s Line (Keith, 1923; Stanley and Sarkisian, 1972; 

Rowley, 1983; Stanley and Ratcliffe, 1985; Stanley, 1987; Hayman and Kidd, 2002; 

Thompson and Thompson, 2003; Sejourne and Malo, 2007).  In northwest Vermont, the 

hanging wall of the Champlain Thrust fault is the Lower Cambrian Dunham Dolostone, 

whereas south of Burlington Bay, the fault cuts up section ~700 meters into the basal 

member of the Middle Cambrian Monkton Quartzite (Stanley, 1987).  Total displacement 

accommodated by the Champlain Thrust fault was estimated to be 60-80 kilometers with a 

total stratigraphic throw of ~2700 meters (Stanley, 1987). 

The Hinesburg Thrust, exposed ~15 km to the east of the Champlain Thrust, 

emplaced Late Proterozoic–Early Cambrian rift clastic sediments atop weekly 

metamorphosed sedimentary rocks of the Champlain Valley (Stanley and Ratcliffe, 1985).  

The Hinesburg Thrust has been interpreted to have formed because of continual 

deformation along the axial plane of an overturned nappe fold (Dorsey et al., 1983).  Total 

displacement accommodated by the Hinesburg Thrust was estimated to be ~6–7 kilometers 

(Stanley and Wright, 1997).  Exposures of the Hinesburg Thrust and the Champlain Thrust 
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fault provide the opportunity to interpret the structural evolution of fault zones associated 

with the Taconic orogeny in northwest Vermont. 

 

Figure 2.4:  Lithostratigraphic column of rock units associated with the Champlain Thrust and 
Hinesburg Thrust faults exposed in northwest Vermont.  Modified from Kim et al. (2011). 
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2.4 Fault Zone Development 

Caine et al. (1996) defined a fault zone as being comprised of three separate 

components—the core, the damage zone, and the protolith (Figure 2.5). In brittle fault 

zones, the core is defined by a principal slip surface, or multiple slip surfaces (Choi et al., 

2016), and may contain brittle fault rocks such as breccia, gouge, and cataclasite (Sibson 

1977; Bastesen and Braathen, 2010).  In ductile fault zones, the core may consist of a 

localized region of mylonite or highly-sheared rocks with gradational boundaries (Caine et 

al., 2010). The core, in both brittle and ductile fault zones, are zones of variable thickness 

that accommodated most of the displacement and associated strain during fault zone 

development.   

 

Figure 2.5:  A simplified model of fault zone architecture and components.  Modified from Mitchell and 
Faulkner (2009) and Caine et al. (2010). 
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In a brittle fault zone, the damage zone surrounds the fault core and contains 

subsidiary structures such as faults, folds, fractures and veins (Faulkner et al., 2010) (Figure 

2.5).  These subsidiary structures accommodate the remaining displacement and strain 

accumulation, with the thickness of the damage zone dependent on overall fault 

displacement (Mitchell and Faulkner, 2009).  The presence of a damage zone within a 

purely ductile fault zone is more difficult to determine due to gradational contacts of ductile 

deformation and strain zones (Caine et al., 2010). 

The protolith is defined as the country rock not effected by the fault or shear zone 

(Figure 2.5).  However, structures such as faults, fractures, cleavages, and folds may be 

present within the protolith and any measurable changes in frequency, intensity, style, or 

relative age of these structures may indicate the transition into the damage zone (Riley et 

al., 2010; Choi et al., 2017).   

 

2.5 Strain Localization 

Strain refers to the distortion of a material through linear extension, shortening, 

shear, volumetric change, translation, rotation, or a combination thereof (Twiss and 

Moores, 1992).  Strain localization is defined as the narrowing of zones that accommodate 

active deformation during fault zone evolution (Adam et al., 2004; Frost et al., 2009).   

During evolution of a fault zone, strain can localize in various locations relative to 

the principal slip surface (Figure 1.2).  Variations in strain localization patterns can be 

attributed to strain hardening or strain softening within the fault zone.  Strain softening 

refers to the weakening of rocks as deformation is being accommodated (White et al., 
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1980).  Strain softening, and subsequent strain localization, is typically attributed to grain-

size reduction (Montesi, 2013), geometric softening (Passchier and Trouw, 2005); reaction 

softening (Olio et al., 2010), and fluid-related softening (Finch et al., 2016).  Identifying 

where strain localized in relation the principal slip surface, as well as the contributing 

mechanisms, will provide great insight to how the fault zone thickened or thinned during 

its progressive evolution and displacement. 

 

2.6 Thrust Ramps 

 For this project, I refer to terms of thrust fault geometry defined by Butler (1982).  

Thrust faults are typically not consistently planar features, but rather a series of flats and 

ramps.  Flats are defined as portions of the thrust fault that remain parallel to bedding or 

other layers during propagation (Butler, 1982).  If a thrust fault cuts upwards in the 

transport direction and therefore cross-cuts bedding or layering, this is defined as a thrust 

ramp (Butler, 1982).  Thrust ramps are considered hanging wall ramps if hanging wall 

layers are cut, and footwall ramps if the layer that are cut are within the footwall.  Ramps 

are also defined by their orientation to overall transport direction.  Ramps that are oriented 

perpendicular to transport direction are defined as frontal ramps, whereas ramps that are 

oriented parallel to transport direction are considered lateral ramps (Butler, 1982).  Oblique 

ramps are defined as ramps that are oriented at some angle relative to overall transport 

direction (Butler, 1982).   

 Changes in thrust fault geometry can generate folds that accommodate deformation 

within the surrounding rock (Fossen, 2016).  As displaced rock units move over frontal or 
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lateral ramps, a series of fault-bend-folds can form, some of which may stack and form a 

package of thrust duplexes (Suppe, 1983; Stanley, 1990).  Fault-bend folds have been 

observed within fold-and-thrust belts from all over the world (Savage and Cooke, 2003; 

Suppe et al., 2004; Muñoz, 2017) and are important indicators to how fault geometry 

effects the structural evolution of the surrounding fault zone (Brandes and Tanner, 2014). 

 

2.7 Fault Reactivation 

 Fault reactivation is defined as separate displacement events along a pre-existing 

fault plane with intervals of inactivity greater than 1 Ma. (Holdsworth et al., 1997).  Fault 

reactivation can be evidenced through stratigraphic, structural, geochronological, or 

neotectonic characteristics (Holdsworth et al., 1997).  Fault reactivation commonly occurs 

when extensional basins undergo compression—which is defined as basin inversion 

(Bonini et al., 2012).   

The final state of basin inversion structures is typically complex as their formation 

was controlled by pre-existing structures (Bonini et al., 2012).   During basin inversion, 

pre-existing normal faults can become reactivated as thrust faults—known as positive 

inversion (Cooper and Williams, 1989).  Alternatively, pre-existing thrust or reverse faults 

that reactivate as normal faults during extension—a processes known as negative inversion 

(Harding, 1985).  Pre-existing faults typically reactivate during shortening, however new 

faults can develop in the sedimentary cover of extensional basins (Turner and Williams, 

2004).  These faults and their kinematics may be influenced or controlled by the pre-

existing structures over which they develop (Scisciani, 2009; Bonini et al., 2012).  
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Identifying fault reactivation and the influence of pre-, syn-, or post-orogenic faults or folds 

is critical to understanding the structural history of a fault zone that evolved in a region that 

experienced multiple orogenic events (Calamita, 2017). 
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CHAPTER 3: THE ARCHITECTURE OF THE CHAMPLAIN THRUST FAULT 

ZONE 

3.1 Introduction 

The overarching goal of this chapter is to provide a detailed description of the 

architecture of the Champlain Thrust fault zone through the structural analysis of various 

outcrops exposed throughout northwestern Vermont.  Specifically, I use the data collected 

from the structural analysis to address three previously undescribed aspects of the 

Champlain Fault zone which include: (1) the structural characteristics of the fault core, 

damage zone, and protolith, (2) the spatial extent of the core damage and protolith 

boundaries within northwestern Vermont, and (3) the stage of development preserved 

within the fault zone.  I will use these aspects to determine if the architecture of the 

Champlain Thrust fault zone is homogenous throughout its extent, or if there are changes 

of structural style or motion preserved. 

In northwest Vermont, the Champlain Thrust fault is a multi-kilometer scaled 

structure associated with the leading edge of the Taconic orogeny (Stanley, 1987).  It 

records no apparent deformation associated with later orogenic events that altered or 

overprinted similar structures to the east.  Due to the absence of multi-orogenic 

deformation within its fault zone, the Champlain Thrust records how fault zones evolve in 

the upper crust at the forefront of a mountain building event. 

Previous studies of the Chaplain Thrust fault provide a great deal of information 

regarding its location, extent, deformed stratigraphy, orientation, and chronology (Keith, 

1923; Keith, 1932; Clark, 1934; Cady, 1945; Welby, 1961; Stanley and Sarkisian, 1972, 
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Stanley, 1987).  Other previous studies have provided detailed analysis of imbricate thrust 

fault formation (Stanley, 1990), lithological constraints of structure style (Kim et al., 2011), 

and hydrologic effects (Mundy et al., 2016) of localized parts of the Champlain Thrust fault 

zone.   

For this project, I focused on six separate field sites and analyzed them using field-

based structural analysis (Figure 3.1).  These sites are separated by a geographical distance 

of 51 kilometers north-to-south, yet each site corresponds to a different depth below a 

westward projection of the previously mapped Champlain Thrust principal slip surface 

(Figure 3.2).  The depth of each field site was calculated by projecting the Champlain 

Thrust westward at an assumed constant dip of 10°–15° (Stanley, 1990) and accounting for 

elevation differences between the field site and the mapped location of the Champlain 

Thrust fault due east.  This calculation also assumes constant planarity of the project fault 

surface. 

In general, shear zone development and strain localization within a fault zone tend 

to occur within the rheological weaker layers or at lithologic contacts (Fossen and 

Cavalcante, 2017).  This generality applies to the Champlain Thrust fault zone as most of 

the accommodated deformation is recorded in the carbonate-rich shales of the footwall.  

Though the hanging wall offers key information regarding overall stratigraphic throw, fault 

surface geometry, and syn-faulting deformation, it was only observed at Lone Rock Point 

(Figure 3.1).  The massive Cambrian Dunham Dolostone of the hanging wall contains 

numerous sub-vertical fractures with three dominant orientations: NE, SE, and SW strikes 

(Figure 3.3).  There are localized portions of the hanging wall—directly above the principal 
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slip surface—that reveal a <1-meter thick damage zone consisting of micro-faults that cut 

calcite veins and foliated rocks (Figure 3.4).  Due to the very thin damage zone and 

homogeneity of structures above, this study focuses on the fault zone preserved within the 

footwall. 

 

Figure 3.1:  Location of field sites analyzed for determining the extent and characteristics of the 
Champlain Thrust fault zone exposed in northwestern Vermont.  Map adapted from Ratcliffe et 
al. (2011). 
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Each of the six field sites analyzed for this project preserves multiple stages of 

deformation, some of which are recognized at multiple sites.  I first determined the various 

types of structures preserved at each of the six field sites, and determined their relative age 

based on cross-cutting relations.  I then generated structural maps for each of the six field  

Figure 3.2: The calculated depth of each field site below the westward projection of the Champlain 
Thrust surface.  The top of the bar represents location for an assumed 10° constant dip of the fault 
surface and the bottom bar represents an assumed 15° constant dip (Stanley, 1990). 
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Figure 3.3: Photograph of the heavily fractured Champlain Thrust hanging wall exposed at Lone 
Rock Point.  Fractures are predominately sub-vertical with three common orientations: NE 
striking, SE striking, and SW striking. 

Figure 3.4: Photograph of a localized region of the hanging wall that preserves a < 1-meter 
damage zone of foliated rock with minor faults and fractures that cut foliation.  Due to the 
extreme asymmetry of fault zone width across the Champlain Thrust fault, this project focuses 
primarily on the complex fault zone preserved in the footwall. 
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Table 3.1:  Field location and relative age (stage) of structures preserved throughout the Champlain 
Thrust fault zone within northwestern Vermont 
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sites to determine the spatial distribution of these structures.  Finally, I combined the data 

describing the temporal and spatial characteristics of preserved structures to determine the 

overall architecture of the Champlain Thrust fault zone.  Table 3.1 provides a brief 

description of the defining structures, relative ages, and locations of each of the 

deformation stages.  

  Key findings of this analysis include: (1) the thickness of the fault core is ~8 meters; 

(2) the thickness of the damage zone is ~197 to 430 meters; (3) the upper limit of the 

protolith is constrained to ~205–450 meters below the Champlain Thrust fault surface; (4) 

the record of at least 4 evolutionary stages; (5) relative strain localized through the footwall 

toward the fault surface during active deformation; (6) motion within the fault changes 

from top-to-the-west, -northwest, - north, -south, and -southwest; (7) changes in structural 

style from bedding-parallel faults and localized fault-bend-folds in the protolith, to duplex-

forming thrust faults and associated folds in the damage zone, to anastomosing thrust faults 

and normal faults within the core; and (8) the Champlain Thrust fault records reactivation 

with a change in motion direction from top-to-the-west to top-to-the-south.  

 

3.2 Lessors Quarry, South Hero, Vermont 

Lessors Quarry (44° 38’ 57.21” N; 73° 19’ 44.50” W) (Figure 3.1), an abandoned 

quarry of the Glens Falls Limestone in South Hero, Vermont, corresponds to a calculated 

depth of 1.65–2.51 kilometers below the Champlain Thrust fault surface (Figure 3.2).  

Along the ~10-meter vertical exposures of north, east, and south oriented walls, early and 

late stage 1 structures are preserved. (Table 3.1) (Figure 3.5a).   
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Bedding is preserved throughout the quarry consists of interbedded layers of a light-

grey weathered limestone averaging 9 cm thick and a dark-grey weathered fossiliferous 

limestone with an average thickness of 8 cm (Figure 3.6).  Bedding is cut by an early stage 
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1 pressure-solution cleavage which is best observed along north wall of the quarry.  Using 

the defining criteria based on cleavage spacing first described by Alvarez et al. (1978), 

these discontinuous cleavage planes are considered weak as they average ~30 cm in length 

and are spaced ~17 cm apart east to west.  Filled with aligned clay minerals, this cleavage 

has an angle to bedding by ~67°, consistently strikes north, and steeply dips to the east at 

73° (Figure 3.5b). 

 

There are at least two generations of stage 1 faults preserved at this location.  Early 

stage 1 faults are bedding-parallel thrusts that are best observed along the north, south, and 

east walls (Figure 3.5a).  The exposure of these faults provides no detail on overall 

geometry or displacement indicators. These early stage 1 faults parallel bedding that has 

an average strike of 265° and a shallow 18° dip towards the north-east (Figure 3.5b).  Along 

Figure 3.6:  Bedding at Lessors Quarry consists of interbedded layers of light-grey limestone and a 
dark-grey to brown fossiliferous limestone.  Bedding is cut by an early dissolution cleavage that has 
~17cm spacing. 
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the north wall, there is one preserved early stage 1 fault, and it is presently synformally 

folded and cut by a through-going late stage 1 fault.  There are at least two separate late 

stage 1 faults preserved within the quarry, which are best observed along the south and 

north walls.  These faults generated two stacked fault-bend-folds of bedding, early 

cleavage, and early faults, which rotated the early cleavage and bedding by ~35° to the 

west. Several components of a fault-bend-fold geometry are observed within the quarry 

and include a hanging wall flat, ramp, flat sequence, a footwall flat, flat, ramp sequence, 

and a syncline to anticline fold sequence (Suppe, 1983).  The remaining hanging wall flat, 

footwall flat, and anticline to syncline fold sequence are inferred to exist to the east.  The 

interlimb angles of the exposed syncline and anticline are approximately 110°–140°.  

Based on slickenline orientation preserved along the late stage 1 faults and the exposed 

components of the fault-bend-fold, sense of shear was determined to be top-to-the-WNW 

(Figure 3.5b). These late stage 1 faults are lined with veins of white calcite that vary in 

thickness across the faults from sub-centimeter to ~10 centimeters. 

 

3.3 “The Beam”, South Hero, Vermont 

Early and late stage 1 structures are also observed at “the beam” (44° 39’ 4.64” N; 

73° 18’ 59.36” W) (Figure 3.1).  First described by Stanley (1990), “the beam” corresponds 

to a calculated depth of 1.49–2.26 kilometers below projected Champlain Thrust fault 

surface (Figure 3.2). “The beam” is the non-technical name given to a ~3-meter vertical 

exposure of the Middle Ordovician Cumberland Head Formation.  Bedding consists of thin 

beds of a light-grey calcareous shale surrounding a 30-cm-thick micrite layer (Figure 3.7a).   
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Bedding has a mean strike towards the southwest and a shallow dip of 18° toward 

the northwest (Figure 3.7b).  An early stage 1 dissolution cleavage cuts bedding and early 

stage 1 faults and is the predominant structure observed at “the beam”.  This early cleavage 

has an average spacing of 5.6 cm and accommodated layer-parallel shortening on the range 

of 11–16% (Stanley, 1990).  The early cleavage has a mean strike to the north, and dips 

moderately to the east at 63°.  Early stage 1 bedding parallel faults are preserved and are 

lined with thin veins of sparry calcite. 

Figure 3.7: A) Illustrated composite of 
early and late stage 1 structures 
preserved at “the beam”.  Late stage 1 
faults formed a series of five stacked 
duplexes involving a 30-centimeter 
thick micrite layer.  B) Equal area 
stereographic projections of stage 1 
structures including bedding, early 
cleavage, late stage thrust faults, and 
late stage 1 fault zone cleavage.  
Slickenline orientations from late stage 
1 faults indicate slip was top-to-the-
NW. 
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Late stage 1 bedding-parallel thrust faults localized along the micrite layer and form 

a series of 5 thrust horses that stack in order from east to west (Stanley, 1990) (Figure 3.7a). 

The floor and roof thrusts are oriented with a mean strike to the northwest and a shallow 

12° dip to the northeast, whereas the thrust ramps strike in a similar orientation, yet have a 

slightly steeper dip of 18° to the northeast (Figure 3.7b).  The floor thrust of this duplex 

system hosts a localized fault-zone cleavage that dips 18° to the east and thick veins of 

calcite.  Stanley (1990) described this vein thickness as evidence for the reactivation of the 

floor thrust during the development of each thrust duplex.  Motion was interpreted to be 

progressive along this floor thrust for each duplex generation, whereas the thrust ramps 

and roof thrust were interpreted to be active only during the development of that specific 

associated duplex.  Unlike Lessors Quarry, fault related folds are restricted only to the 

thrust horses within the centimeter scale micrite layer.  Slickenlines preserved along these 

faults, along with a slight asymmetry of the early cleavage below the thrusts, indicate that 

slip along these late stage 1 faults was top-to-the-west-northwest (Figure 3.7b). 

 

3.4 Ferrisburgh Quarry, Ferrisburgh, Vermont 

An active quarry of the Glens Falls Limestone in Ferrisburgh, Vermont (44° 11’ 

21.21” N; 73° 14’ 37.93” W) (Figure 3.1) corresponds to a calculated depth of 450–684 

meters below the Champlain Thrust surface (Figure 3.2).  Within the ~12 vertical meter 

exposure, early and late stage 1 structures are preserved (Figure 3.8a). 

The Glens Falls Limestone at this location is a dark-grey to black limestone with 

veins of sparry calcite dispersed throughout.  Bedding primarily strikes NNE, and dips 
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shallowly to the east at 04° (Figure 3.8b).  A well-developed, moderate, early stage 1 

dissolution cleavage is the predominant structure throughout the quarry and has an average 

spacing of 4.5 cm.  These north-striking early cleavage planes dip 65° to the east and cut 

bedding (Figure 3.8b). 

Figure 3.8: A) Composite diagram of 
early and late stage 1 structures 
preserved at the Ferrisburgh Quarry.  
Late stage 1 faults are bedding parallel 
and cut an early stage 1 dissolution 
cleavage.  B) Equal area stereographic 
projections of early and late stage 1 
structures include bedding, early 
dissolution cleavage, and late stage 
faults.  Slickenlines preserved on late 
stage 1 faults indicate slip was top-to-
the-west. 
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Late stage 1 thrust faults are also preserved at this location (Figure 3.8a). These 

through going bedding-parallel thrusts strike to the north, dip moderately to the east at 21°, 

and cut the early stage 1 cleavage planes (Figure 3.8b).  These faults are lined with thin 

veins of white calcite and preserved localized regions of an associated fault-zone cleavage.  

Slickenlines preserved along these faults, in conjunction with early cleavage asymmetry, 

indicate that motion was primarily top-to-the-west, with a few faults recording top-to-the-

northwest slip (Figure 3.8b). Unlike the previously mentioned field sites that preserve stage 

1 structures, there are no apparent folds associated with stage 1 structures at this quarry 

location. 

 

3.5 “The Driveway” and “The Flea Market”, Charlotte, Vermont 

Along Vermont’s Route 7, “the driveway” (44° 19’ 4.64” N; 73° 14’ 53.44” W) 

and the “flea market” (44° 18’ 17.02” N; 73° 14’ 38.89” W) (Figure 3.1) are two road-cut 

exposures of moderately deformed Middle Ordovician Stony Point Shale.  “The driveway” 

corresponds to a calculated depth of 180–237 meters below the Champlain Thrust surface 

and “the driveway” corresponds to 194–243 meters below (Figure 3.2).  At these locations, 

the hanging wall of the Champlain Thrust is composed of the massive Cambrian Monkton 

Formation—a heterolithic sandstone, siltstone and dolostone (Cady, 1945).  At this 

location, the Monkton Formation is best exposed on the western side of Pease Mountain 

(Kim et al., 2011). 

The Stony Point Shale at both field sites consists of alternating beds of blue-grey 

to light-brown dolostones, buff to dark-brown shale, and dark-grey to black calcareous 
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shales.  Bedding thickness is highly variable across these outcrops and ranges from 0.5 to 

35 cm (Figure 3.9).  Based on similarity of bedding thickness, I determined the presence 

of two mappable sub-units.  Areas where beds have an average thickness range of 0.5–11 

cm were considered unit 1 (Figure 3.9a), whereas areas with beds of average thickness 

ranging from 0.5–35 cm were considered unit 2 (Figure 3.9b).  When mapped across the 

Route 7 outcrops, the “flea market” consists of sub-unit 1 (Figure 3.10a), whereas “the 

driveway” consists of sub-unit 2 on the southern end of the exposure and sub-unit 1 at the 

northern end (Figure 3.11a).  

Figure 3.9:  Bedding of the Stony Point Shale exposed at the “flea market” and “the driveway” 
are composed of alternating layers of dolostone, brown-weathered shale, and black-weathered 
shales.  Bedding thickness varies across the outcrops and was used to determine the presence 
of two mappable sub-units.  A) Unit 1 consists of beds that average 0.5 – 11 centimeters thick, 
whereas B) unit 2 consists of beds that average 0.5 – 35 centimeters thick. 
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At both Route 7 outcrops, late stage 1 bedding-parallel thrust faults are preserved 

and record a top-to-the-west direction of slip (Figures 3.10c, 3.11b).  These late stage 1 

faults are transformed and cut by younger stage 2a folds and faults.  When plotted as poles 

on an equal-area stereonet, a calculated pi axis for late stage 1 faults plots in the same 

position as pi axes for early stage 2a folds (Figure 3.11b). 

Early stage 2a folds incorporated bedding and late stage 1 faults, generated an axial 

planar cleavage, and vary in scale.  At the “flea market”, early stage 2a folds are moderately 

to gently inclined to the east, gently plunging toward the northeast, and are 10–30 cm wide 

(Figure 3.10c).  The interlimb angles of early stage 2a folds range from 19°–26°.  Localized 

folds of dolostone layers are rootless and thicken towards the hinge zone, indicating 

flexural-flow (Figure 3.10b).  At “the driveway”, stage 2a folds are moderately inclined to 

the east, moderately plunging toward the east, and are 5–10 m wide (Figure 3.11b).  The 

interlimb angles of these larger scaled folds range from 34°–46°.  Some stage 2a folds at 

“the driveway” also contain minor faults within the hinge zone (Figure 3.11a).  The spacing 

of the generated axial planar cleavage varies between the shale and dolostone layers.  

Within the shale layers, cleavage spacing is sub-centimeter, yet within the folded dolostone 

layers, spacing ranges from 2 cm at the hinge zone to 10 cm near the inflection point (Figure 

3.12).  This cleavage refraction between shale layers and dolostone layers indicate how the 

difference in rock type, bedding thickness, and mechanical properties of various rock types 

influence structural style (Treagus, 1988). 

Bedding, stage 1 faults, and early stage 2a folds are all cut by late stage 2a thrust 

faults that accommodate approximately 15–29 m of displacement (See Appendix 1 for  
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calculations).  These through-going thrust faults anastomose across the outcrops with a 

mean strike to the northeast and a 28°–44° dip to the southeast (Figure 3.10c, 3.11b).  These 

late stage 2a faults record a top-to-the-NNW motion.  Sense of shear was determined by 

slickenline orientations, offset bedding, and slicken steps preserved along fault planes.  At 

the “flea market”, these late stage 2a faults generate thrust wedges of bedding and earlier 

faults (Figure 3.10a), whereas at “the driveway” the late stage 2a faults generate tight 

recumbent folds of bedding and localized regions of fault zone cleavage (Figure 3.11a).  

 

3.6 Lone Rock Point, Burlington, Vermont 

Lone Rock Point (44° 29’ 27.68” N; 73° 14’ 56.12” W) (Figure 3.1) provides 10–

30-meter vertical exposures of the highly deformed Ordovician Iberville Shale of the 

Figure 3.12:  Variability of cleavage spacing within shale and dolostone layers at “the driveway” and the 
“flea market”.  Cleavage spacing within the shales is sub-centimeter, whereas cleavage spacing within the 
dolostone is ~ 2 cm near the hinge zone of folds and ~ 10 cm near inflection point.  This cleavage refraction 
indicates the role that various rock type with various mechanical properties plays on cleavage formation 
(Treagus, 1988). 
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footwall, the Champlain Thrust fault surface, and the slightly deformed base of the massive 

Cambrian Dunham Dolostone of the hanging wall.  This inverted stratigraphy represents 

an interpreted stratigraphic throw of ~2,700 meters (Stanley, 1987).  The Dunham 

Dolostone is a light-pink dolostone that weathers beige to buff colored.  Using x-ray 

diffraction, Mundy et al. (2016) determined that this unit is comprised of 85% dolomite 

with calcite, quartz, and illite accessory minerals. Bedding within the dolostone is cryptic 

and not well observed in the cliff face exposures.  The Iberville Shale is composed highly-

cleaved interbedded marly-shales, slate, and dolostone with white-calcite veins observed 

both parallel and normal to layers. Using X-ray diffraction, Mundy et al. (2016) determined 

the mineralogical composition of the Iberville shale to be 75% calcite, 15% quartz, and 

10% illite and other phyllosilicates.  

To map the distribution of structures observed at the Lone Rock Point exposure, I 

first made a profile map of the Champlain Thrust’s fault surface (Figure 3.13).  Using an 

arc laser rangefinder, I measured the elevation (+ 1 meter) of the fault surface above a mid-

summer water level of Lake Champlain along a horizontal transect in 2-m increments.  At 

the northernmost extent of the transect, the Champlain Thrust surface is at its highest 

elevation of 18 m above the Lake Champlain shore (Figure 3.13).  Moving south from its 

highest point, the Champlain Thrust surface decreases in elevation by 14 m vertically 

across a 150 m horizontal distance—a 9% gradient.  Continuing southward, the fault 

surface remains at 4 to 5 m above the lake until it finally dives below the Lake Champlain 

water level at the southernmost tip of the Lone Rock Point peninsula (Figure 3.13).  Using 

the profile of the fault surface, I mapped the distribution and extent of all major faults, 
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folds, and cleavage trends along a 340 m transect.  I divided this transect into four separate 

sections based on continuous footwall exposure (Figure 3.14–3.17).  Sense of shear along 

the measured faults was determined based on a combination of observable displacement of 

bedding, veins, and cleavage, asymmetric cleavage planes, shear bands, and slicken steps. 

The oldest structures preserved at Lone Rock Point are rootless recumbent folds of 

relict dolostone bedding that generated an axial planar cleavage (Figure 3.18a).  These early 

stage 2a folds are 20-cm-wide with an interlimb angle of ~20° and are primarily observed 

in locations greater than 15 m below the Champlain Thrust fault surface. The spacing of 

the axial planar cleavage associated with the early 2a folds is ~2.8 cm. Late stage 2a thrust 

faults are also preserved within the footwall and are best preserved at distances greater than 

12 m below the Champlain Thrust fault surface (Figure 3.14a).  These faults are parallel to 

bedding and cleavage planes and record a top-to-the-northwest slip (Figures 3.14b, 3.15b, 

3.16b). 

3.13:  A north to south profile of the Champlain Thrust fault surface 
exposed at Lone Rock Point.  The elevation (+ 1 meter) of the fault 
surface above a mid-summer water level of Lake Champlain was 
measured using an arc laser range finder in 2-meter increments along 
a horizontal transect.  For location of aerial image see Figure 3.1. 
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Most of the stage 2a faults and folds are overprinted by early stage 2b folds and late 

stage 2b faults (Figures 3.14a, 3.15a, 3.16a).  The early stage 2b folds, which incorporate 

bedding, early stage 2a cleavage, and late stage 2a faults, are the dominant fold generation 

preserved at Lone Rock Point (Figure 3.18b).  These folds are predominately north–

Figure 3.18: A) Early stage 2a folds incorporated bedding and generated an axial planar cleavage.  
These folds are primarily preserved at distances greater than 15 meters below the Champlain 
Thrust fault surface.  B) Early stage 2b folds incorporated 2a cleavage and 2a faults.  Early 2b 
folds are the dominant generation of folds preserved at Lone Rock Point.  

B
 

A
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northeast verging, moderately inclined to upright, with axes that plunge moderately to sub-

horizontally to the northeast, east, and southeast (Figure 3.14b, 3.15b, 3.16b).  These early 

stage 2b folds have an average interlimb angle of 59° and range in width from ~ 2 to tens 

of centimeters.  These folds are associated with late stage 2b thrust faults (Figures 3.14a, 

3.15a, 3.16a).  

Late stage 2b thrust faults cut and transform bedding, early stage 2a cleavage, and 

late stage 2a faults.  These late stage 2b faults record a top-to-the-northwest slip (Figure 

3.14b. 3.15b, 3.16b, 3.17b) and generate localized fault-bound lozenges that stack along 

thrust faults that cut up towards the Champlain Thrust surface (Figure 3.14a, 3.15a).  These 

packages of stacked lozenges are observed throughout Lone Rock Point and are best 

preserved at distances greater than 10 m from the Champlain Thrust surface.  The 

observable geometry of these faults combined with their distribution on stereographic 

projections suggest that these late stage 2b faults are duplexes that stack at various scales.  

Though a common floor and roof thrust are not observed, the 2b thrusts that cut up toward 

the Chaplain Thrust surface form ramps that cut earlier cleavage and stage 2a faults (Figure 

3.14a, 3.15a).  The smaller scaled lozenges that stack along these ramps also cut and 

transform bedding and early cleavage, but at a smaller scale.  The thrust ramp that they are 

stacked on generates a common floor thrust for these smaller scaled duplexes.  These 

smaller duplexes appear to mimic the larger duplex geometry in which they are nested.  A 

series of these late stage 2b thrust duplexes has been mapped that spans ~120 meters 

(Figures 3.14a, 3.15a). 
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As the Champlain Thrust fault is approached from the footwall, stage 3a structures 

become dominant at distances less than 5 m from the fault surface (Figure 3.17a).  Early 

stage 3a folds incorporate bedding, cleavage associated with 2b folds, and late stage 2b 

faults.  These folds are west to northwest verging, gently to moderately inclined, and gently 

to sub-horizontally plunging to the east and southeast (Figure 3.17b). These folds are less 

than 10 cm wide with interlimb angles ~50°.  These early stage 3a folds are cut by late 

stage 3a faults. 

Late stage 3a faults consist of both thrust faults and normal faults (Figure 3.19).  

Late stage 3a thrust faults are tightly spaced anastomosing faults that record a top-to-the-

northwest slip, whereas late stage 3a normal faults record top-to-the-north and top-to-the-

south slip (Figure 3.17b).  Based on cross-cutting relations, both late stage 3a thrust and 

normal faults are interpreted to be coeval.  Some late stage 3a thrusts are cut by normal 

faults (Figure 3.20a), yet in other places, late stage 3a thrusts cut late stage 3a normal faults 

(Figure 3.20b). These normal faults are primarily preserved within 5 m of the Chaplain 

Thrust surface (Figure 3.16a, 3.17a).  However, a few have normal faults have been 

mapped at approximately 12 m from the Champlain Thrust surface (Figure 3.14a) and up 

to a few centimeters from the fault surface.  No normal faults have been observed to cut or 

displace the Champlain Thrust fault surface, indicating that these late stage 3a faults are 

older than the last stage of motion along the Champlain Thrust. 

Above stage 3a faults and folds is a zone of cleavage intensification that varies from 

tens of centimeters thick to <6 meters thick (Figure 3.21).  This zone contains a very strong 

cleavage with spacing on the millimeter scale.  This zone is observed ~2 m below the 
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Champlain Thrust surface and though some discontinuous veins are preserved, no other 

measurable structures are observed.  

 

 

Figure 3.19:  Illustrated image of early and late stage 3a structures from Lone Rock Point section 4 (See 
figure 3.17).  Early stage 3a folds incorporate bedding and stage 2b modified cleavage.  Late stage 3a 
thrust and normal faults cut these folds.  Thrust faults record slip top-to-the-NW; whereas normal faults 
record slip top-to-the-N and top-to-the-S. 
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Figure 3.20: Late stage 3a thrusts and normal faults are considered coeval.  A) Late stage 3a normal 
faults are observed to cut late stage 3a thrusts.  B) Late stage 3a thrusts are also observed to cut late 
stage 3a normal faults 

Figure 3.21:  Cleavage intensification zone.  Cleavage spacing is on the millimeter scale and contains 
discontinuous veins and no other measurable structures. 
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In localized lenses above this cleavage intensified zone are rocks of varying types 

with brittle and ductile tectonites not observed anywhere else within the footwall (Figure 

3.22a) (Stanley, 1987).  These rock types include marble, phyllitic-shale, and dolostone.  

Brittle tectonites include limestone breccia, fault gouge, and cataclastic lined faults. 

Figure 3.22:  A) Structural map of early and late stage 3b structures and associated rock types.  Early 
stage 3b fault zone cleavage is incorporated into early stage 3b folds and cut by late stage 3b faults.  B) 
Equal area stereographic projections indicate these faults record a unique NE-SW direction of motion.  
3b fold axes plunge to the NE, E, and SE, with a few plunging to the NW.  For image location, see Figure 
3.15. 



50 
 

Ductilely sheared rocks include protomylonite, mylonite and boudinaged layers of 

dolostones.  Fault zone cleavage, tight folds, fault breccia, ductile shear zones, and boudin 

structures all constitute early stage 3b (Figure 3.23).  The tight early stage 3b folds have 

axes orientations that range from the northeast, east, and southeast, with some axes trending 

toward the northwest (Figure 3.22b). 

Late stage 3b structures include rootless sheath folds and cataclastic faults that cut 

early stage 3a fault zone cleavage and protomylonites (Figure 3.23).  Late stage 3b faults 

are tightly spaced anastomosing faults that record top-to-the-southwest slip (Figure 3.22b).  

This motion direction is observed only along these late 3b faults and has not been observed 

at any other location within this study. 

Finally, the Champlain Thrust fault—the contact of the Iberville Shale and the 

Dunham Dolostone—is considered the final stage of deformation as it cut all other 

structures within the footwall and hanging wall (Table 3.1).  The orientation of the 

Champlain Thrust principal slip surface varies slightly across the Lone Rock Point (Figure 

3.24a) and has a mean strike toward the north and shallow dip to the east at 13° (Figure 

3.24b). 

Slickenlines, although rare and predominately weathered, have been discovered 

along the bottom of the fault surface (Figure 3.25).  Two main sets of slickenlines with 

different orientations were observed in the same location, separated by ~1 m.   The relative 

age of these slickenlines was determined by the amount of apparent weathering effecting 

the appearance—the least weathered corresponds to the youngest generation.  Both 

generations of slickenlines have observable chatter marks (slickensteps) preserved on the  



51 
 

surface, providing the evidence needed to determine sense of shear.  The oldest generation 

of slickenlines record a top-to-the-west slip on the Champlain Thrust (Figure 3.25a), 

whereas the youngest set records a top-to-the-south slip direction (Figure 3.25b).  These 

slickenline orientations suggest a sharp change in motion direction along the Chaplain 

Thrust fault by approximately 90°.  

Figure 3.23:  Images of various early and late stage 3b structures.  Early stage 3b structures include fault 
breccia, fault gouge, mylonite, and boudin structures.  Late stage 3b structures include cataclastic lined 
faults and sheath folds. 
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Fault mullions are also preserved on the principal slip surface and are best observed 

along overhanging portions of the slip surface. The mullions have an average wavelength 

of 162 cm from peak to peak and have axes consistently oriented toward the southeast with 

a mean plunge of 11° (Figure 3.25b).  These fault mullions have previously been used as 

an indication of motion direction on the Champlain Thrust fault (Stanley, 1987; Mundy et 

al., 2016).  Though the orientation of the mullions matches the orientation of slickenlines 

preserved on stage 2a, 2b and 3a thrust faults within the footwall, they do not match the 

orientation of preserved slickenlines along the principal slip surface. 

 

Figure 3.24:  A) The slight variations in orientations of the Champlain Thrust fault at Lone Rock Point, 
Burlington. B) Stereographic projection of Champlain Thrust fault surface with slickenline and mullion 
orientations.  The oldest generation of slickenlines preserved on the Champlain Thrust fault indicate that 
motion was top-to-the-west, whereas the youngest generation indicates that motion was top-to-the-south.  
These directions do not match the axes orientations of fault mullions.   
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Figure 3.25:  Images of slickenlines preserved on the Champlain Thrust fault surface.  A) The oldest 
generation of slickenlines is highly weathered with a slickenstep indicating that oldest recorded motion 
is top-to-the-west.  B) The youngest generation is less weathered with predominant slickensteps 
indicating that the youngest recorded motion was top-to-the-south.  Both images are looking up at the 
bottom of the Champlain Thrust fault surface, and both slickenline sets were separated by ~0.5 m. 
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3.7 Fault Zone Architecture 

Combining the data presented in Table 3.1 with the structural maps of each location, 

I generated a scaled composite diagram of structures observed at all six field sites (Figure 

3.26).  Lessors Quarry, “the beam”, and the Ferrisburgh Quarry are dominated by early 

dissolution cleavage planes that are cut and locally folded by late stage 1 faults.  At these 

locations—which correspond to calculated depths of 450 meters and greater below the 

Chaplain Thrust fault surface—late stage 1 thrust faults are not deformed and are the 

youngest event preserved.   

Late stage 1 faults are then incorporated into early stage 2a folds preserved at the 

“flea market” and “the driveway” outcrops.  The early stage 2a folds generated an axial 

planar cleavage and are later cut by through going late stage 2a thrust faults.  It is at these 

locations that correspond to a minimum calculated depth of 205 m or less below the 

Champlain Thrust surface that folds contain an axial planar cleavage and older faults are 

cut and displaced by younger ones.  

At Lone Rock Point, early stage 2a folds are preserved and predominately 

overprinted by late stage 2b faults and duplex style folding. These stage 2b duplexes are 

preserved at distances greater than 8 m below the Champlain Thrust fault surface and are 

cut and folded by stage 3a structures.  Early stage 3a folds are close folds of bedding and 

stage 2b faults and folds.  These folds are then cut and displaced by late stage 3a thrust 

faults and normal faults.  Stage 3a structures are confined to distances less than 5 m below 

the Champlain Thrust surface.  Early stage 3b mylonite, boudin structures, fault breccia, 

and fault zone cleavage are cut and transformed by late stage 3b sheath folds, and faults.  
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Figure 3.26: A scaled composite diagram of structures preserved within the footwall and hanging wall 
of the Champlain Thrust fault from each of the six field sites.  The distance below the Champlain Thrust 
fault corresponds the calculated location of each location (Figure 3.2). 



56 
 

These late stage 3b structures are preserved within 2 m or less from the Champlain Thrust 

fault surface.  Finally, the Champlain Thrust surface cuts all older structures and the motion 

on the fault generated fault mullions, multiple slickenlines, fault gouge, and mylonite. 

Based on these compiled descriptions and datasets, the boundaries of the 

Champlain Thrust fault zone in northwestern Vermont can be defined (Figure 3.27).  The 

core (which includes the principal slip surface) can be subdivided into upper and lower 

portions.  The upper core is defined by presence of late stage 3b structures and the cleavage 

intensified zone, whereas the lower core is defined by early stage 3b structures.  Overall, 

the core varies in thickness but can reach up to 8 m in thickness.   

The damage zone is observed in both the hanging wall and the footwall.  The 

damage zone in the hanging wall is < 1 m thick and contains micro-faults that cut calcite 

veins and foliated rocks.  The damage zone in the footwall can be subdivided into upper 

and lower sections.  The upper damage zone is defined by the presence of late stage 2b 

structures including the variable scaled thrust duplexes.  The upper damage zone is 

expressed within the remainder of the Lone Rock Point footwall exposure, therefore 

constraining the minimum thickness of the upper damage zone to 10 m.  The lower damage 

zone is defined by the presence of early stage 2a folds with axial planar cleavage and late 

stage 2a thrust faults.  This portion of the damage zone is only expressed along the Route 

7 exposures, therefore constraining the maximum thickness of the lower damage zone to 

430 m.  Combined the minimum thickness of the entire damage zone is 197 m with the 

minimum boundary residing at approximately 205 m below the Champlain Thrust fault 

surface.  The lower boundary of the lower damage zone corresponds to the upper boundary  
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Figure 3.27:  Boundaries of the Champlain Thrust fault zone within northwestern Vermont.   
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of the protolith zone.  The protolith zone is therefore defined by locations that contain only 

stage one structures that are not cut by the younger stage 2 or stage 3 faults or folds. 

 By defining the boundaries of the fault zone and describing the structures preserved 

within them, I determined the structural architecture of the Champlain Thrust fault zone 

exposed in northwest Vermont. The fault zone is predominately preserved within the 

Champlain Thrust’s footwall.  Asymmetry is common within other known fault zones 

(Clausen et al., 2003; Dor et al., 2006; Mitchell et al., 2011; Choi et al., 2016) and can be 

attributed contrasting rock strength across the fault plane (Berg and Skar, 2005; Choi et al., 

2016).  An analysis of the fault zone architecture provided insights into the distribution of 

strain during its evolution. 

  

3.8 Relative Strain Description and Distribution 

A goal of this study was to determine the distribution of relative strain throughout 

the fault zone.  For this study, I use the term strain to reflect a distortion of a material 

through extension, shortening, volumetric change, translation, rotation, or a combination 

thereof.  Determining the distribution of strain throughout the fault zone provides insight 

to how strain localized during fault zone development.  The localization of strain is 

indicated by the narrowing of zones that accommodate active deformation as the fault zone 

developed (Adam et al., 2004; Frost et al., 2009).   This information allows for a greater 

understanding of the spatial and temporal growth of the Champlain Thrust fault zone and 

will allow for a determination of which fault zone type model the Champlain Thrust fault 

zone is. 
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Five relative strain domains were defined based on macroscale observations of the 

number of deformation stages present, fold tightness, cleavage spacing, and the presence 

of ductile sheared fabrics (Table 3.2).  Low strain is defined by containing: only stage 1 

structures, continuous bedding planes, dispersed layer parallel veins, spaced dissolution 

cleavage planes greater than 4.5 cm apart, bedding parallel faults, and gentle to open folds 

of bedding, cleavage, and earlier faults with interlimb angles greater than 100°.  

Intermediate strain is defined by: zones containing two deformation stages—stage 2a 

structures that modify stage 1—continuous bedding, an increase in vein density, close to 

tight folds of bedding or earlier structures with interlimb angles ~20°–40°, and an axial 

planar cleavage that is spaced less than 10 cm.  High strain is defined by: zones containing 

three deformation stages—stage 2a structures that are modified by stage 2b which are 

modified by stage 3a—axial planar cleavage planes that are altered by later stages and 

spaced 0.5–5 cm apart, a predominant presence of veins, continuous bedding up to ~10 m, 

and close folds of bedding, cleavage, veins, and earlier faults with interlimb angles ~50°–

60°.  Very high strain is defined by: zones of intensified cleavage that is spaced sub-

millimeter, discontinuous bedding, and discontinuous veins.  Finally, ultra-high strain is 

defined by: zones containing stage 3b structures, fault zone cleavage with less than 1-cm 

spacing, tight to close folds with interlimb angles ~30°–50°, and the presence of sheared 

or boudinaged layers, mylonite, fault gouge, cataclasite, and sheath folds. 

Using these various strain zone criteria, I mapped the distribution of these relative 

strain zones at each of the six field locations.  Lessors Quarry, “the beam”, and the 

Ferrisburgh Quarry are dominated by low strain, constraining the upper boundary of the  
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low strain zone to 205–450 meters below the Champlain Thrust surface.  The “flea market” 

and “the driveway” are dominated by intermediate strain, suggesting the thickness of this 

intermediate strain zone is between 187–430 meters.  At Lone Rock Point, the distribution 

of strain is much more heterogeneous (Figure 3.28, 3.29).  High strain is the dominant 

Table 3.2:  Defining characteristics and examples of relative strain zones within the Champlain Thrust 
fault zone 



61 
 

Fi
gu

re
 3

.2
8:

  D
is

tri
bu

tio
n 

of
 re

la
tiv

e 
st

ra
in

 z
on

es
 a

cr
os

s 
Lo

ne
 R

oc
k 

Po
in

t s
ec

tio
ns

 1
 a

nd
 2

.  
H

ig
h 

st
ra

in
 z

on
es

 a
re

 lo
ca

liz
ed

 a
ro

un
d 

m
aj

or
 f

au
lts

 a
nd

 s
ur

ro
un

d 
re

gi
on

s 
of

 in
te

rm
ed

ia
te

 
st

ra
in

.  
V

er
y 

hi
gh

 st
ra

in
 a

nd
 u

ltr
a-

hi
gh

 st
ra

in
 a

re
 c

on
fin

ed
 to

 th
e 

to
p 

8 
m

et
er

s o
f t

he
 fo

ot
w

al
l. 

m
et

er
s 

meters meters 

m
et

er
s 



62 
 

Fi
gu

re
 3

.2
9:

  D
is

tri
bu

tio
n 

of
 re

la
tiv

e 
st

ra
in

 z
on

es
 w

ith
in

 L
on

e 
Ro

ck
 P

oi
nt

 se
ct

io
ns

 3
 a

nd
 

4.
  H

ig
h 

st
ra

in
 z

on
es

 is
 th

e 
do

m
in

an
t z

on
e 

ex
po

se
d,

 w
ith

 v
er

y 
hi

gh
 a

nd
 u

ltr
a-

hi
gh

 s
tra

in
 

zo
ne

s c
on

str
ai

ne
d 

to
 w

ith
in

 4
 m

et
er

s o
f t

he
 C

ha
m

pl
ai

n 
Th

ru
st

 fa
ul

t s
ur

fa
ce

. 

m
et

er
s 

m
et

er
s 

meters meters 



63 
 

strain zone observed and is between 14–176 meters thick.  Very-high strain is focused to 

the cleavage intensification zone and can be up to 3 m thick.  Ultra-high strain is always 

observed in contact with the Chaplain Thrust fault surface and can be up to 2 m thick. 

Within the Champlain Thrust fault zone relative strain increases from low to ultra-

high strain from the protolith to the upper core (Figure 3.30).  The changes in strain 

intensity also correlate to the relative age of structures preserved within each zone—low 

strain zones include the oldest structures, whereas ultra-high strain zones include the 

youngest.  The changes in strain intensity also corresponds to a narrowing of strain zone 

thickness.  These spatial and temporal changes of relative strain zones record a progressive 

localization of strain upwards in the footwall of the Champlain Thrust fault zone. 

 

3.9 Conclusion 

Through a structural analysis of the six field sites, I was able to determine three 

previously undescribed aspects of the Champlain Thrust fault zone which include: (1) the 

structural based characteristics of the fault core, damage zone, and protolith; (2) the spatial 

extent of the core, damage zone, and protolith boundaries within northwestern Vermont; 

and (3) the stages of development preserved within the fault zone. The final architecture of 

the Champlain Thrust fault zone documented here provides two new aspects of its 

evolution including: (1) the progressive localization of strain; and (2) the reactivation of 

the Champlain Thrust fault after localization had occurred.  These aspects and the processes 

that drove them will be discussed in Chapter 4 and used to develop a model of the structural 

evolution of The Champlain Thrust fault zone. 
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Figure 3.30:  Composite diagram of Champlain Thrust fault zone with relative strain distribution.  
Strain increases as the Champlain Thrust is approached from the protolith in the footwall.  Strain zone 
thickness decreases towards the fault surface indicating a progressive localization of strain. 
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CHAPTER 4: THE PROGRESSIVE EVOLUTION OF THE CHAMPLAIN 

THRUST FAULT ZONE 

4.1 Introduction 

Progressive evolution describes the repeated process of altering one type of pre-

existing structure, or a zone of structures, through younger deformational events.  Within 

the Champlain Thrust fault zone, structures of similar type, style, orientation, and relative 

age can be traced across the boundaries of the protolith, damage zone, and core. With each 

stage, older structures become increasingly altered, or completely overprinted, by younger 

structures as distance to the Champlain Thrust surface decreases.  The two main aspects 

that record this progression within the Champlain Thrust fault zone are the localization of 

strain and the reactivation of the Champlain Thrust fault. 

The progressive localization of strain within the fault zone is characterized by (1) a 

change in motion along minor faults from top-to-the-west, -northwest, -south, -north, and 

-southwest, and (2) a change in structural style from bedding-parallel faults with open 

folds, to duplex-forming thrust faults and close folds, to anastomosing faults and close to 

tight folds.  The reactivation of the Champlain Thrust fault was determined from multiple 

slickenline orientations indicating a change in motion from top-to-the-west to top-to-the-

south.  

In the following sections, I strive to use the descriptions of fault architecture 

(Chapter 3) to interpret how the Champlain Thrust fault zone evolved through space and 

time.  I will separately describe the various aspects of progressive deformation including: 

strain localization, changes in motion direction, changes in structural style, and fault 
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reactivation.  I will briefly explore previously understood mechanisms that contribute the 

various aspects of progressive deformation in fault zones to determine which ones were 

likely contributing to the evolution of the Champlain Thrust fault zone.  Although I separate 

these aspects to simplify my description of fault zone evolution, it is not assumed that these 

aspects of progressive deformation acted independently.  Rather, the Champlain Thrust 

fault zone likely evolved as a dynamic system so that a change in one aspect influenced or 

reflected changes within another aspect. 

 

4.2 Fault Zone Evolution 

 Within the footwall, deformation temporally and spatially localized towards the 

principal slip surface during fault zone evolution.  The total thickness of the fault zone was 

developed during early evolutionary stages, whereas the active thickness of the fault zone 

diminished—or localized—over time.  Of the four different types of shear zone models 

(Figure 1.2), the Champlain Thrust fault zone evolved as a modified type 2 shear zone 

(Figure 4.1).   

 Within a type 2 shear zone, strain localizes toward its center during time 

transgressive evolution (Hull, 1988; Vitale and Mazzoli, 2008; Fossen and Cavalcante, 

2017).  This localization of strain without the widening of the fault zone indicates strain 

softening (White et al., 1980).  Several mechanisms have been described that can generate 

strain softening in a shear zone (Cobbold, 1977; White et al., 1980) and include grain-size 

reduction (Herwegh, 2005; Warren and Hirth, 2006; Platt, 2015), mineral recrystallization 
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Passchier and Trouw, 2005), preferred crystallographic orientation (Ji et al., 2004), shear 

heating (Platt, 2015), and the influence of fluids (Hirth and Tullis, 1992; Finch et al., 2016). 

 

Most of these mechanisms are preserved at the microscale.  For this project, I did 

not conduct a microstructural analysis, therefore cannot interpret how the Champlain 

Thrust fault zone evolved at the grain scale.  However, I did observe calcite veins at each 

Figure 4.1:  A modified model of the Champlain Thrust fault zone as a type 2 shear zone.  This type of 
shear zone records a time progressive localization of strain towards the active slip surface.  In this 
model for the Champlain Thrust, strain localizes into narrower zones over time and increases in 
intensity.  Adapted from Fossen and Cavalcante (2017). 
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of the of the six field sites and used an increase in apparent density as a criterion for 

determining relative strain zones (Table 3.2).  Calcite veins, which are evidence for 

mobilized fluid flow through the fault zone, can further accommodate strain softening 

within a shear zone as they may be weaker and easier to deform than their surrounding 

rock (Davis et al., 2012).  This increase in calcite vein density through the fault zone 

suggests that the Champlain Thrust fault zone evolved as a modified type 2 shear zone 

through the process of strain softening.  Mechanisms preserved at the microscale are 

presumed to have played a critical role in strain softening as well, yet the microstructural 

investigation to determine which specific mechanism(s) is beyond the scope of this project. 

The progressive strain localization that defines type 2 shear zones is characterized 

in the Champlain Thrust fault zone by (1) changes in slip direction along faults and (2) 

changes in structural style. 

 

4.3 Change in Slip Direction Along Faults 

Using slickenline orientations in conjunction with offset layers, asymmetric 

cleavages, shear bands, or slickensteps, I determined there are five distinct motion 

directions recorded throughout the Champlain Thrust fault zone (Figure 4.2).  These 

changes in slip direction are recorded on faults of varying relative ages.  Stage 1 thrust 

faults preserved in the protolith zone and the lower damage zone record a top-to-the-west 

slip.  Stage 2a thrust faults preserved in the lower and upper damage zone record top-to-

the-northwest slip.  Stage 2b thrusts preserved within the upper damage zone also record 

top-to-the-northwest slip.  Within the lower core, stage 3a thrust faults record top-to-the-
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northwest slip and stage 3a normal faults record top-to-the-north and top-to-the-south slip.  

Within the upper core, stage 3b thrust faults record top-to-the-southwest slip.  Finally, the 

Champlain Thrust records two distinct episodes of slip.  The oldest recorded motion is top-

to-the-west and the youngest is top-to-the-south (Figure 4.2). 

Changes in slip direction along faults within a fault zone reflect changes in local 

principal stress orientations attributed to mechanical heterogeneities (Gudmundsson et al., 

2010) or changes in elastic properties of deformed rocks (Faulkner, 2006).  Mechanical 

heterogeneities are the result of a fault zone that contains multiple rock types with variable 

mechanical properties.  Changes to lithology, bedding thickness, rock strength, and pre-

existing structures such as older faults or cleavages all contribute to the mechanical 

heterogeneity within a fault zone.  Gudmundsson (et al., 2010) described how mechanical 

heterogeneities within a fault zone allow for local principal stresses to differ in magnitude 

and orientation than regional stresses.  Faulkner (et al., 2006) quantitively modeled how 

local stresses within a damage zone will rotate as deformation changes the elastic properties 

of the material.  

The Champlain Thrust fault zone incorporates different lithologies with varying 

bedding thickness and strength.  Within this project, field sites attributed to the protolith 

were predominately exposures of centimeter thick beds of limestone, micrite, and some 

shale.  Here, motion was predominately top-to-the-west.  Exposures of the damage zone 

consisted of 0.5–35-centimeter-thick beds of alternating dolostone and calcareous shales.  

Here motion direction along faults was predominately top-to-the-west.  Within the lower 

core, bedding consists of centimeter to millimeter thick beds of intensely cleaved 
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Figure 4.2:  Simple models for each stage of Champlain Thrust fault zone evolution.  Colors in block 
diagram indicate zone of active deformation and relative strain intensity at that stage.  Center squares 
indicate type of structures that formed during that stage.  Equal area lower hemisphere stereonets of 
slickenline orientations preserved on thrust faults (or normal where indicated).  Contours are generated 
using Kamb contour method with intervals of 2.  Mean vectors are plotted for slickenlines clusters with 
a 95% confidence interval. 
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calcareous shale, Here, motion on thrust faults was top-to-the-northwest and normal faults 

record motion top-to-the-north and -south. The upper core consists of centimeter to 

millimeter thick beds highly deformed phyllitic shales, mylonite, and breccia.  Here motion 

on thrust faults is top-to-the-southwest.   

Major changes in motion direction along faults within the fault is consistent with 

changes in rock type, bedding thickness, and increased deformation.  This suggests that 

local stress orientations were likely to have rotated during the progressive evolution of the 

fault zone due to the mechanical heterogeneities and changes in deformation intensity from 

the protolith through the core.  These rotations in local stress orientations could have caused 

slip to occur in varying direction along faults.  

 

4.4 Change in Structural Style 

The three most common classes of structures observed within the Champlain Thrust 

fault zone are dissolution cleavages, thrust faults, and folds of bedding and cleavage.  As 

the Champlain Thrust surface is approached from the footwall protolith, faults change in 

style, folds become tighter, and cleavage spacing decreases (Figure 4.2).  Within the 

protolith, thrust faults are bedding parallel and dissolution cleavages are perpendicular to 

bedding with spacing > 4.5 cm. Folds preserved in the portions of the protolith analyzed 

for this project were localized fault-bend-folds with tightness > 100°.  In the damage zone, 

bedding parallel faults are incorporated into folds of bedding and cleavages and cut by 

younger through going faults.  These folds, which have a tightness from 20°–60°, generated 

a dominant axial planar cleavage that is spaced from 0.5–10 cm.  Within the core, cleavage 
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becomes intensified to sub-millimeter spacing in the lower portions, whereas a fault zone 

cleavage with sub-centimeter spacing is preserved in the upper portions.  Folds of bedding 

and cleavage have a tightness of 30°–50°, and ductile structures such as mylonite, sheath 

folds, boudins, and fault gouge are present.  Faults within the core vary from tightly spaced 

thrust faults to normal faults.  Within the hanging wall, a < 1-m thick damage zone is 

present and contains minor faults that cut veins and foliations within the rock.  The 

remainder of the hanging wall consists of vertical fractures with no apparent offset—a 

structural style unique only to the hanging wall. 

Previous studies have determined that in general, the heterogeneity of structures 

within a fault zone can be attributed to pre-existing structures, changes in pressure and 

temperature conditions, changes in stress field orientations, interaction or linkage of 

structures during development, and changes in rock type throughout the fault zone 

(Wibberley et al., 2008).  Furthermore, complexity in fault zone architecture has also been 

attributed to the rheologic differences and mechanical anisotropy of multilayered rock 

types within the fault zone (Carreras et al., 2013).  Mechanical anisotropy is defined as the 

ratio of a rocks ability to resist compression to the rocks ability to resist shear (Biot, 1965).  

Factors that attribute to mechanical anisotropy include bedding planes, schistosity, and 

cleavage formation (Carreras et al., 2013).   

As with changes in motion direction along faults, changes in structural style within 

the Champlain Thrust fault zone occur in conjunction with changes in lithology (Figure 

4.2).  The thicker bedded limestones of the protolith preserve bedding parallel faults and 

open folds of bedding and cleavages, whereas the thinner bedded calcareous shales of the 
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damage zone preserve anastomosing thrust faults and close folds of bedding and cleavages.  

The hanging wall observed at Lone Rock Point, which consist of massive bedded 

dolostone, consists primarily of vertical fractures with no observable faults or folds.  This 

indicates that rock strength played a key role in how structures developed within the 

Champlain Thrust fault zone.  The thicker bedded and rheologically stronger hanging wall 

unit did not deform as easily, nor in the same style, as the thinner bedded and weaker shales 

and limestones within the footwall.   

Within the Champlain Thrust fault zone, the variability of bedding thickness not 

only influences the strength of the rock, but also contributes to mechanical anisotropies.  

Within the protolith, bed thickness ranges of ~8 to tens of cm thick.  Within the lower 

damage zone, beds range from 0.5–35 cm thick, whereas within the upper damage zone, 

beds are <10 centimeters thick.  Bedding thickness within the core ranges from centimeter 

to millimeter scale, whereas bedding within the hanging wall is massive.  This decrease in 

bedding thickness as the Champlain Thrust fault surface is approached through the footwall 

correlates to an increase in mechanical anisotropies within the upper portions of the fault 

zone. 

Another contributing factor to the increase in mechanical anisotropy is dissolution 

cleavages (Table 3.2).  Within the protolith, dissolution cleavages are discontinuous and 

spaced >4.5 centimeters apart.  These cleavages are also oriented perpendicular to bedding 

and thrust faults within the protolith.  In the lower damage zone, cleavage is axial planar 

to large scaled folds with spacing ranging from sub-centimeter up to 10 cm apart.  In the 

upper damage zone, cleavages are axial planar to early folds and modified by younger folds 
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and faults.  Spacing of these modified cleavages decrease to 0.5–5 cm apart.  Finally, within 

the lower core, cleavage is intensified to sub-millimeter spacing, and in the upper core, 

cleavage is sub-centimeter spaced.  This progressive change in cleavage spacing 

throughout the fault zone allows of greater mechanical anisotropy in the upper portions of 

the fault zone.   

If regional pressure and temperature conditions remained constant throughout the 

development of the Champlain Thrust fault zone, changes in structural style can be 

attributed to changes in rock strength and the progressive increase in mechanical 

anisotropy.  Increases in mechanical anisotropy is attributed to the changes in bedding 

thickness and cleavage spacing throughout the fault zone. 

In summary, strain localized within the Champlain Thrust fault zone because of 

strain softening.  Characterizing this strain localization at the macroscale are changes in 

motion direction along faults and changes in structural style.  The changes in motion 

directions can be attributed to local stress rotation influenced by changes in rock type, 

bedding thickness, and increased deformation.  Changes in structural style can be attributed 

to changes in rock strength, bedding thickness, and cleavage spacing (Wojtal and Mitra, 

1986).  Combined, this indicates that the heterogeneous layering of rocks within the fault 

zone influence the localization of strain within the Champlain Thrust fault zone towards 

the principal slip surface.   
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4.5 Champlain Thrust Fault Reactivation 

Holdsworth (et al., 1997) defined fault reactivation as separate motion events along 

a pre-existing fault plane with intervals of inactivity greater than 1 Ma.  For this project, 

fault reactivation is defined as a slip surface that accommodated active slip more than once 

and in more than one direction.  This applies directly to the Champlain Thrust fault as two 

separate sets of superimposed slickenlines, each recording a different direction of slip, are 

preserved on the principal slip surface (Figure 4.2).  The oldest set of slickenlines on the 

Champlain Thrust surface indicates that motion on the fault was top-to-the-west, whereas 

the youngest set of slickenlines, preserved a few centimeters away from the older, indicate 

that motion was also top-to-the-south (Figure 3.25).   

The cause of this change in motion direction along the Champlain Thrust is 

unknown.  Here I present three hypotheses that could explain this change in motion 

direction during fault reactivation. 

First, this reactivation could represent deformation associated with younger 

orogenic events such as the Salinic (ca. 450–410 Ma) or the Acadian (ca. 380–370 Ma).  

The Salinic orogeny defines the docking of Ganderia against Laurentia, whereas the 

Acadian orogeny marks the accretion of Avalonia onto the composite Laurentian margin 

(Tremblay and Pinet, 2016).  Deformation associated with both orogenic events migrated 

through New England and southeast Canada towards the north west (Bradley et al., 2000; 

Tremblay and Pinet, 2016).  In Vermont, Salinic deformation is attributed to large 

backthrusts and later normal faults in the Green Mountain belt, and Acadian deformation 

is attributed to polyphase folding within the Connecticut Valley trough and the formation 
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of the Green Mountain anticlinorium (Tremblay and Pinet, 1994).  Due to no apparent or 

observable structures associated with these younger orogenic events deforming the 

Champlain Thrust fault surface within this project’s field locations, I propose that the 

reactivation recorded on the Champlain Thrust was during the Taconic orogeny.  Although 

the history of motion recorded on the Champlain Thrust is complex, multiple orogenic 

deformation is not needed to generate such complexities.   

Second, the reactivation on the Champlain Thrust and the change in hanging wall 

units along strike of the fault may indicate the presence of a lateral ramp.  A lateral ramp 

is defined as an inclined potion of the fault plane that cuts beds within the footwall and has 

a strike orientation parallel to thrust transport direction (Butler, 1982) (Figure 4.3).  Due to 

the parallel orientation of the ramp to the thrust fault, strike-slip displacement becomes 

dominant (Boyer and Elliott, 1982), yet the motion direction does not change (Figure 4.3).  

If the Champlain Thrust fault interacted with a lateral ramp, then slickenline orientations 

should be consistent, yet this is not the case (Figure 4.2).  The presence of a lateral ramp 

may explain the change in the Champlain Thrust hanging wall lithology from Dunham 

Dolostone in the north to the stratigraphically higher Monkton Formation in the south.  

However, a simple interaction with a lateral ramp does not include the change of motion 

direction that occurred along the Champlain Thrust surface (Figure 4.3).  Therefore, I 

suggest a lateral ramp did not cause the reactivation along the Champlain Thrust surface.    

Finally, this reactivation could represent the complexities associated with basin 

inversion.  Basin inversion is defined as the shortening of extensional basins (Bonini et al., 
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2012) and contribute to a wide variety of internal deformation patterns during shortening 

(Turner and Williams, 2004; Bonini et al., 2012).  Through the results of sandbox 

experiments, Ventisette et al. (2006) describes that variations in deformation during 

shortening is directly controlled and influenced by pre-existing extensional structures.  

Furthermore, Ventisette et al. (2006) also modeled that thrust faulting can occur with 

variable displacement patterns when compression is oriented obliquely to extensional 

structures. 

Although most basin inversion models indicate the direct reactivation of normal 

faults as thrust faults—also known as positive inversion (Cooper and Williams, 1989)—

some models indicate that thrust faults can propagate over or cut through pre-existing 

normal faults (Figure 4.4a).  Thrust faults that develop in the overriding sedimentary cover 

of extensional basins may reflect kinematic changes that are controlled by pre-existing 

Figure 4.3:  A block diagram of a lateral ramp along a thrust fault.  A lateral ramp is defined as a portion 
of a fault plane that cuts bedding and has a strike direction parallel to transport direction (Boyer, 1982).  
Along a lateral ramp, faults exhibit strike-slip components, yet slickenlines preserved on the fault plane 
should be a consistent orientation.  Slickenlines along the Champlain Thrust fault record motion in two 
distinct orientations, therefore suggesting reactivation was not due to a lateral ramp. 
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Figure 4.4:  A) During basin inversion, newly formed thrust faults can propagate through rift-basin 
sediments over pre-existing extensional structures.  Both images depict complex deformation within the 
thrust fault’s footwall and hanging wall.  Modified from Bonini et al. (2012).  B) Block diagram of 
proposed Champlain Thrust evolution as a result of basin inversion.  Reactivation of the Champlain 
Thrust fault surface, and heterogenous motion recorded in the fault zone, was likely influenced by buried 
pre-existing extensional structures.  Slickenline projections mimic orientations from measured data. 
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extensional structures (Scisciani, 2009).  I suggest that this model of kinematic control that 

pre-existing extensional features exert on newly formed thrust faults that propagate through 

sedimentary cover of rift basin be applied to the Champlain Thrust fault. 

The Neoproterozoic–Cambrian sedimentary rocks associated with the Champlain 

Thrust fault were deposited in pre-Taconic rift-basins (Figure 4.4b).  These basins formed 

through low-angle detachment faults associated with Laurentia-Rodinia rifting (Allen et 

al., 2009).  Although there is no direct evidence that the Champlain Thrust fault is a 

reactivated pre-existing normal fault, the change in motion direction recorded on the 

Champlain Thrust surface is likely influenced by buried extensional structures.  This 

hypothesis of basin inversion is supported not only by the multiple motions recorded on 

the fault surface, but also the complex changes in structural style and motion directions 

within the fault zone, and the change in hanging wall units (Figure 4.4b).  

This process of thrust fault interaction with an unknown buried structure has been 

suggested to have occurred on the Morgan’s Corner Fault in the Quebec Appalachians 

(Sejourne and Malo, 2007).  The Morgan’s Corner Fault is the eastward bounding fault to 

the Saint-Dominique carbonate slice in southeast Quebec.  The Saint-Dominique slice is 

bound to the west by the Champlain Thrust fault (known as Logan’s Line in Quebec) 

(Sejourne and Malo, 2007).  Within the Morgan’s Corner fault zone Sejourne and Malo 

(2007) document three different deformation stages that also record changes in motion 

including: (1) dextral strike-slip faults in the footwall; (2) top-to-the-northwest thrusting of 

the main fault; and (3) sinistral reactivation of the thrust fault.  Because of these kinematic 

changes, the Morgan’s Corner fault is interpreted to have developed over an oblique ramp 
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that greatly influenced the geometry of structures within its fault zone (Sejourne and Malo, 

2007).  Sejourne and Malo (2007) also note that seismic time-structures built by SOQUIP 

(1982, 1984) indicate the presence of a possible normal fault extending from underlying 

Grenvillian basement into the autochthonous sedimentary cover.  

The data within this project confirm the reactivation of the Champlain Thrust, and 

suggest that the change in motion recorded along the fault surface was influenced by a 

buried pre-existing extensional structure.  The complexity of motion recorded on the 

Champlain Thrust surface and within the fault zone suggest oblique compression during 

basin inversion. 
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CHAPTER 5: SUMMARY AND FUTURE WORK 

5.1 Introduction 

The results of this study demonstrate how deformation is accommodated at the 

forefront of a fold-and-thrust belt.  I utilized fault, fold, and cleavage plane data collected 

from six separate exposures of the Champlain Thrust fault footwall to define and evaluate 

the architecture of the core, damage zone, and protolith of the Champlain Thrust fault zone.  

I also used this data to determine the progressive spatial and temporal evolution of this 

fault zone in northwestern Vermont.  This section summarizes several key discoveries 

made regarding the Champlain Thrust fault zone architecture and evolution, and concludes 

with suggestions for future research regarding the fault zone 

 

5.2 Fault Zone Architecture Summary 

The architecture of the Champlain Thrust fault zone is asymmetric across the 

principal slip surface (Figure 3.27).  The deformation and development of the fault zone 

occurred predominately within the carbonate rich Ordovician units of the footwall.  The 

internal boundaries of the fault zone were determined using (1) changes in the relative age 

of faults, folds, and cleavages, (2) changes in structural style of faults, folds and cleavages, 

and, (3) the intensity of strain preserved within each region.   

The fault zone core records the youngest evolutionary stage.  The Champlain Thrust 

fault surface is the youngest preserved feature of the fault zone as it cuts all older structures 

within its footwall.  Stage 3a and 3b faults within the core are observed as anastomosing 

thrust faults and normal faults.  Variations of cleavage within the core range from altered 
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axial planar cleavage, to a zone of very strong cleavage, to localized fault zone cleavage.  

The core also includes ductile structures such as mylonite, boudinaged layers, and sheath 

folds.  The core, which is dominated by ultra-high and very high strain zones, can be 

subdivided into upper and lower portions with a combined thickness of ~8 meters.  

The damage zone contains the second youngest stage of faults and folds—stage 2a 

and 2b—which vary in style from duplex forming faults and associated folds to 

anastomosing faults that cut inclined folds.  Cleavage within the damage zone is axial 

planar to the inclined folds and is deformed by thrust duplexes.  The damage zone can also 

be subdivided into upper and lower portions with a combined thickness of ~197 to 430 m. 

The protolith zone contains the oldest observed stage of faults and associated 

folds—stage 1.  Faults within the protolith are bedding parallel that generated localized 

fault-bend-folds.  Cleavage within the protolith are weak dissolution cleavages that are 

normal to bedding planes.  The protolith is dominated by low relative strain with its upper 

boundary constrained to ~205–450 m below the Champlain Thrust fault surface. 

 

5.3 Fault Zone Evolution Summary 

The Champlain Thrust fault zone evolved as a modified type 2 shear zone (Figure 

4.1).  Type 2 shear zones record a progressive localization of strain toward the slip surface 

with the zone of active deformation narrowing over time (Fossen and Cavalcante, 2017).  

The Champlain Thrust fault zone records the progressive localization of strain towards the 

principal slip surface through time.  However, strain was predominately accommodated 

within the footwall, therefore making the Champlain Thrust fault zone a modified type 2 
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shear zone (Figure 4.1).  I determined the presence of five relative strain zones based on 

the number of deformational stages preserved, cleavage spacing, and fold tightness (Table 

3.2).  The progressive localization of strain zones was determined by the spatial narrowing 

of the strain zone through the fault zone (Figure 3.30). 

The progressive localization of strain within the Champlain Thrust fault zone was 

determined to be the result of strain softening during fault zone development.  Strain 

softening was interpreted by the apparent increase in calcite vein density moving towards 

the fault surface from the protolith.  The apparent increase in calcite vein density towards 

the fault surface indicates the increase in fluid flow towards the fault surface.  Calcite veins 

can may have accommodated deformation easier than their surrounding host rock (Davis, 

2012).  This process was one of the mechanisms that drove strain softening within the fault 

zone.  The progressive localization of strain was characterized by changes in motion 

direction along faults within the fault zone and changes in structural style. 

The recorded direction of motion on faults changed from: (1) top-to-the-west in the 

protolith; (2) to top-to-the-northwest in the damage zone and lower core; (3) to top-to-the-

north and -south within the core;, (4) to top-to-the-southwest in the upper core; and (5) to 

top-to-the-west then top-to-the-south along the Champlain Thrust surface (Figure 4.2).  

These changes in motion recorded along faults was the result of local changes in principal 

stress orientation and fault reactivation. Changes in rock type, rock strength, bedding 

thickness, and increased deformation all contribute to mechanical heterogeneities within 

the fault zone and can contribute to the rotation of local principal stress orientations during 

active deformation.  The reactivation of the Champlain Thrust surface, specifically 



84 
 

reactivation with a change in motion direction, also contributed to changes in motion within 

the fault zone. 

The style of cleavage, folds, and faults also change as the Champlain Thrust fault 

is approached from the protolith zone within the footwall (Figure 4.2).  These changes in 

structural style can be attributed to changes in rheologic differences throughout the fault 

zone and the progressive increase in mechanical anisotropy.  Rheologic differences are 

evidenced by the changes in rock type from limestones in portions of the protolith, to 

carbonate-rich shales of the damage zone and core, to dolostones in the hanging wall.  The 

increases in mechanical anisotropy is attributed to: (1) the changes in bedding thickness 

from tens of centimeters in the protolith and lower damage zone, to <10 centimeters in the 

upper damage zone, to sub-centimeters in the core, and to massive within the hanging wall; 

and (2) changes in cleavage spacing throughout the fault zone from >4.5 centimeters within 

portions of the protolith, to <10 centimeters within the damage zone, to sub-centimeter 

within the core. 

Finally, the Champlain Thrust fault surface records a reactivation with a change in 

slip direction from an early top-to-the-west to a later top-to-the-south direction (Figure 4.2) 

This reactivation likely occurred during the Taconic orogeny as there is no apparent 

deformation associated with later orogenic events deforming the Champlain Thrust fault 

surface.  This reactivation of the Champlain Thrust fault was the likely response to 

interaction with a pre-existing structure during oblique basin inversion (Figure 4.4b).  

Kinematic complexities commonly occur on thrust faults that propagate through rift-basin 

sediments and over buried extensional structures (Figure 4.4a) (Bonini et al., 2012).  The 
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Champlain Valley and Green Mountain bedrock belts in Vermont are both associated with 

the Champlain Thrust and fault and deposited in rift basins along the passive Laurentian 

margin (Kim et al., 2011).  The reactivation of the Champlain Thrust fault was likely 

influenced by a buried pre-existing extensional structure as it propagated through the 

sedimentary cover of a rift basin.  The presence of a buried fault influencing the kinematics 

of an overriding thrust fault was reported along the Morgan’s Corner Fault within the 

southern Quebec Appalachians (Sejourne and Malo, 2007). 

 

5.4 Future Work 

This project and the results presented within have been a continuation of previous 

studies on the Champlain Thrust fault and the preserved deformation associated with its 

fault zone (Keith, 1923; Keith, 1932; Clark, 1934; Cady, 1945; Welby, 1961; Stanley and 

Sarkisian, 1972; Stanley, 1987; Stanley, 1990; Kim et al., 2011; Mundy et al., 2016).   

Though I was able to determine characteristics regarding its architecture and temporal 

evolution, there is still much work to be done to understand the mechanisms that drove the 

progressive deformation and fault reactivation within this fault zone.  Here, I propose 

where future work should be focused to increase the understanding of the Champlain 

Thrust fault zone. 

The most intriguing mystery associated with the Champlain Thrust fault zone is the 

cause of reactivation along the fault surface.  I suggested that this reactivation was a result 

of the fault surface propagating over a pre-existing structure during oblique basin inversion.   

I would suggest a detailed transect of all exposures of the Champlain Thrust surface to 
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determine if evidence for reactivation is preserved elsewhere apart from Lone Rock Point.  

I would also suggest the Champlain Thrust fault surface, and the fault core be dated for 

absolute dates.  If the Champlain Thrust fault or core preserve dates younger than the 

Taconic orogeny, than reactivation can then be suggested to have occurred as a result of 

younger mountain building events. 

Secondly, I would suggest a microstructural analysis of each relative strain zone as 

well as each evolutionary stage.  This would allow for a greater understanding of the fault 

zone’s temporal and structural changes at the microscale.  This analysis would also provide 

information regarding grain-scale deformation mechanisms that aided in fault zone 

development.  If recrystallization is preserved, this analysis may provide information 

regarding pressure and temperature conditions during strain localization. 

I would also suggest a detailed study regarding the distribution and chemistry of 

calcite veins preserved throughout the fault zone.  In this study, I suggest that the increase 

in calcite veins was a mechanism that drove strain softening during fault zone growth.  I 

suggest that the chemistry of these calcite veins be analyzed to determine if they were 

precipitated from fluids internal to the fault zone or external.    

Finally, I would suggest a structural analysis of other Taconic thrust faults that are 

to the east of the Champlain Thrust (e.g. the Hinesburg Thrust and Underhill Thrusts).  

Comparing fault zone architecture and evolution of other Taconic thrust faults with that of 

the Champlain Thrust may provide greater insight to progressive deformation at the 

tectonic scale.  
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APPENDIX I 
  

Approximate net displacement on late stage 2a thrust faults observed at “the 
driveway” was calculated to be 15–29 meters.  This approximation was determined by 
the following steps: 

 
1. I first located a stage 2a thrust fault that could be traced for an extended 

distance. 
2. I located a unit that was cut by the fault and located portions of this unit in 

both the hanging wall and the footwall of the fault. 
3. I measured the distance of apparent offset between these layers.  For this fault 

it was 10.1 m.  I also included the maximum apparent displacement of 21.8 m. 
4.  I measured the orientation of the fault – 340/34 NE 
5. I measured the orientation of the outcrop face – 213/57 NW 
6. I measured the orientation of the slickenlines – 27-110 
7. I determined the rake of the fault against the outcrop face at 49° 
8. Using trigonometry, I calculated the approximate net displacement of this 

fault to be 15.4 meters [minimum] and 29 meters [maximum]. 
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APPENDIX II  
The following table provides information regarding thin sections cut from 

samples collected from Lone Rock Point, Burlington, Vermont.  Sample R7-02-17 was 
collected from “The Driveway”. 

Sample ID Single Arrow Face Purpose S/D of 
Sample Notes 

R7-02-17 48-108 198 Lith; Kin 108/85 
Cut along fault in line 
with slicks. Bottom of 

sample is fault 

CT-HW-
01A-17 

06-185  
Arrow points 

to 005 
264 Lith; Normal 

Fault 005/86 

Normal faults within 
vein?  From hanging 

wall.  Bottom of hand-
sample is CT 

CT-HW-
01B-17 

06-185  
Arrow points 

to 005 
264 Lith; Kin 005/86 

Cut next to HW-01A.  
No apparent faults.  
Vein cuts mineral 

below. 

CT-HW-02-
17 

06-175  
Arrow points 

to 355 
265 Lith; Fault 

Rocks; Kin 348/90 

From hanging wall.  
Bottom of hand 

sample is CT. Veins are 
folded? Or thrust 

faults?  

CT-HWF-
01A-17 NA NA Lith; Fault 

Rocks NA 
What is the black vein?  

Bottom of hand 
sample is CT. 

CT-HW-
03A-17 260-05 170 Lith; Fault 

Rocks; Kin 260/85 

Hanging wall rock.  
Black fault rock to top.  
Normal fault top right. 

Unknown Lith. 

CT-HW-
03C-17 

350-10 
Arrow points 

to 170 
80 Lith; Fault 

Rocks; Kin 170/85 

Hanging wall rock.  
Micro faults with 

unknown lith and fault 
rocks 

CT-HW-04-
17 

100/05 
Arrow points 

to 280 
190 Lith; Kin 280/90 

Hanging wall fault rock.  
Black vein at top?  

Sheared lithology, with 
micro-faults 

CT-C-01-17 175-35 275 Lith; Kin 170/75 
Core Rock .  Slicks on 

opposite side of arrow.  
Micro faults and folds. 
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CT-C-02-17 SOUTH 
Unknown 

sample 
destroyed 

Lith; Kin, Fold 
Characteristics Unknown 

Folded shale and veins.  
From S3 High strain 

zone.   

CT-C-02.3-
17 

185-32  
Arrow point 

to 005 
270 Lith; Kin; Fold 185/90 

High strain rock.  Folds 
of shale? Very 

deformed. 

CT-C-03A-
17 110-00 200 Lith; Mylonite 110/90 Mylonite.  Unknown 

Lth. Fault within it 

CT-C-03B-
17 110-00 200 Lith; Mylonite 110/90 Mylonite.  Unknown 

Lth.  Folded. 

CT-C-03C-
17 145-00 235 Lith; Kin 145/90 Mylonite of unknown 

lith 

CT-C-03D-
17 145-00 235 Lith; Kin 145/90 Mylonite of unknown 

lith 

CT-HW-
06A-17 108-15 18 Lith; Vein 288/85 

Dunham Dolostone.  
Look at lith.  Vein is 

offset - steeply 

CT-HW-
06B-17 108-15 198 Lith; Vein 288/85 

Dunham Dolostone.  
Vein is not offset but 

cut another vein. 

CT-HW-
07A-17 104-14 194 Lith; Fault 

Rock; Kin 104/90 

Hanging wall.  Bottom 
of sample is CT.  

Unknown Lith of fault 
rock 

CT-HW-
07B-17 000-00 95 Lith; Fault 

Rock; Kin 185/80 

Hanging wall.  Bottom 
of sample is CT.  

Unknown Lith of fault 
rock.  Normal fault is 

present. 

CT-C-10-17 155-25 60 Lith 350/70 

Core Rock from S4 
Outcrop  Just below 

cataclasite in contact 
with CT 
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CT-C-11A-
17 BOTTOM Unknown Lith Unknown Cataclasite.  Top is in 

contact with CT 

CT-C-11B-
17 BOTTON Unknown Lith Unknown Cataclasite.  Top is in 

contact with CT 

CTF-01-16 NA NA Lith Float Unknown Lith.  What is 
the black stuff? 

CTF-02-16 NA NA Lith Float Unknown Lith.  What is 
the black stuff? 

CTF-03-16 NA NA Lith Float Unknown Lith. 

CTF-04-16 NA NA Lith Float Unknown Lith. 

CTF-05-16 NA NA Lith Float Unknown.  Folded 

CTF-06-16 NA NA Lith Float Unknown. Folded 

PST-01X NA NA Lith Float 

PST.  Perpendicular 
(apparent) to bedding.  
Is it PST.  What is host 

rock? 

PST-01A NA NA Lith Float PST. 

PST-01B NA NA Lith Float PST. 

PST-01C NA NA Lith Float PST. 
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