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Abstract

We first describe a general class of optimization problems that describe many natu-
ral, economic, and statistical phenomena. After noting the existence of a conserved
quantity in a transformed coordinate system, we outline several instances of these
problems in statistical physics, facility allocation, and machine learning. A dynamic
description and statement of a partial inverse problem follow. When attempting to
optimize the state of a system governed by the generalized equipartitioning princi-
ple, it is vital to understand the nature of the governing probability distribution.
We show that optimiziation for the incorrect probability distribution can have catas-
trophic results, e.g., infinite expected cost, and describe a method for continuous
Bayesian update of the posterior predictive distribution when it is stationary. We
also introduce and prove convergence properties of a time-dependent nonparametric
kernel density estimate (KDE) for use in predicting distributions over paths. Finally,
we extend the theory to the case of networks, in which an event probability density is
defined over nodes and edges and a system resource is to be partitioning among the
nodes and edges as well. We close by giving an example of the theory’s application
by considering a model of risk propagation on a power grid.
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Chapter 1

The generalized equipartitioning

principle

We describe a general class of optimization problems that describe many

natural, economic, and statistical phenomena. After noting the existence

of a conserved quantity in a transformed coordinate system, we outline

several instances of these problems in statistical physics, facility allocation,

and machine learning. A dynamic desription and statement of a partial

inverse problem follow, along with questions for further research.

1.1 Introduction and background

Methods for solving continuous optimization problems are almost as old as calculus,

which was developed in the 17th century. Johann Bernoulli posed and solved the

famous problem of determining the curve of minimal travel time traced out by a par-

ticle acting only under the influence of gravity, otherwise known as the brachistocrone
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problem. A few years before, Isacc Newton (who also solved the brachistocrone prob-

lem) posed the problem of determining a solid of revolution that experience minimal

resistance when rotated through fluid. The number of problems of this nature under

consideration by the mathematical community were greatly increased with the advent

of analytical mechanics, developed by d’Alembert, Lagrange, and others. They real-

ized that Newton’s classical mechanics, in which the motion of objects is described via

three fundamental equations related momentum, acceleration, and total force, could

be re-expressed using the potential and kinetic energy of particles. This discovery

revolutionized physics and made way for the formal development of the calculus of

variations, which we use extensively in this paper. William Rowan Hamilton further

generalized this principle in his further reformulation of classical mechanics, leading

(eventually) to the formulation of quantum mechanics.

Optimization under uncertainty has a similarly illustrious history. The first academic

mention of this concept appears to be due to Blaise Pascal in his formulation of the

philosophical concept that, in choosing whether or not to believe in God, humans are

performing an expected utility maximization procedure (though he did not state it in

this manner explicity). Daniel Bernoulli also addressed the maximization of expected

utility explicitly, providing one of the first examples of the modern understanding

of utility functions. Interest in this subject flowered in the 20th century, with von

Neumann and Morgenstern publishing a set of “axioms" concerning rational decision-

making under uncertainty that is still a foundation of economic theory today.

The combination of continuum problem formulation and optimization under uncer-

tainty is a relatively new development, as to be well-formulated it required the de-

velopment of measure-theoretic probability which was not truly complete until Kol-

2



mogorov’s work in 1933. The concept of finding an optimal decision field S(x), where

x ∈ Ω ⊆ Rn and the optimizer attempts to mitigate events occuring according to the

probability measure P (x), is largely confined to statistics (in the field of empirical

risk minimization, c.f. Sec. 1.3.4) and economics (in the field of microeconomics, and

particularly in the field of decision theory). Practically, of course, it is understood

heuristically by practitioners in professional fields that are fundamentally concerned

with either profiting by purchasing and selling risk or with mitigating risk exposure,

such as finance, insurance, and medicine. Even where problem domains are not con-

tinuous (c.f. Chapter 3) a continuum formulation can often ease analysis; the methods

of functional analysis that underlie the contiuum formulation of problems are often

applicable to problems formulated on lattices and other discrete structures. The core

utility of the method lies in its ability to generate, via the machinery of the varia-

tional principle, sets of algebraic or differential equations that can be solved using

well-known analytical tools and numerical routines.

Our work collates, extends, and unifies work done in three disparate areas: statis-

tical physics, microeconomics and operations research, and machine learning. Much

as neural networks can be studied (as a canonical ensemble) from the point of con-

densed matter theory, we have found that a particular class of continuum optimiza-

tion problems (described in Sec. 1.2) can be described neatly via a simple generalized

equipartitioning principle; the above problem domains are contained wholly within

this general class of problems. Figure 1.1 gives a partial scope of the hierarchy of

problems treated by the generalized equipartitioning principle. Under this unifying

theory, we posit the existence of isomorphisms between the problems of minimizing

the risk of a forest fire or cascading failure in the Internet, understanding the distribu-

3



Equipartitioning principle: min
∫

dx p(x)π(S(x)) −∑N
i=1 λi

(
Ki −

∫
dx fi(S(x))

)

HOT

Forest fires (D&C 1999) Internet (D&C 2000)

Facility allocation

Sources and sinks (G&N 2006) Public vs. private (Um et al. 2009)

Machine learning

Neural networks Clustering algorithms Regression

Network optimization

Power grids (c.f. Chapter 3)

Figure 1.1: A partial scope of the hierarchy of problems subsumed by the generalized equipar-
titioning principle. Of course, not all possible realizations of this general problem are treated
here. In fact, this is what makes this formulation so powerful: any problem that can be re-
cast in this formulation will have an invariant quantity (Eq. 1.4), leading to deep insights
about the nature of the problem and its effect on the system in which it is embedded.

tion of firms in a geographic location, and finding functions that best fit a particular

dataset—tasks that a priori seem almost entirely unrelated.

We outline the theory of the generalized equipartitioning principle below and de-

scribe some classes of problems to which it applies. In particular, we note that the

generic supervised machine learning problem is a subclass of this formalism; algo-

rithms constructed for use in these problems could reasonably be applied to solve

physical problems (such as highly-optimized tolerance and facility allocation) and,

conversely, physical techniques developed in these areas can be tailored to solve clas-

sification and regression problems in machine learning. Section 1.2 gives the general

theoretical results, section 1.3 gives applied context, section 1.4 describes the optimal

allocation of resources under the influence of time-dependenbt coordinates, and sec-

tion 1.5 describes the pseudo-inverse problem of finding the distribution for which a

system was most likely optimized and suggests a method for its solution.

1.2 Theory

Let Ω ⊆ RN and let p : Ω → R be a probability density function, S : Ω → R be a

resource allocation function in L1(Ω) ∩ L2(Ω), and π : R→ R be a differentiable net

4



benefit function. Consider the optimization problem

max
∫

Ω
dx p(x)π(S(x))

s.t.
∫

Ω
dx fi(S(x)) = Ki, i = 1, ...,M.

(1.1)

The action associated with this problem is

J =
∫

Ω
dx p(x)π(S(x))

−
M∑
i=1

λi

(
Ki −

∫
Ω
dx fi(S(x))

)
,

(1.2)

where fi : R → R are constraint functions. The optimal state of the system is given

by δJ/δS = 0, which here takes the form

p(x)∂π
∂S

+
M∑
i=1

λi
∂fi
∂S

= 0. (1.3)

We consider diffusion of the probability density p(x). Solution of the diffusion

equation with q(x, 0) = p(x) and the Neumann boundary conditions on Ω (necessary,

as we must have zero probability flux) defines a functional transform p(x) D7−→ Unif,

where Unif is the uniform distribution on Ω. The resultant steady state of the diffusion

equation is 〈p〉. Transforming x 7→ D(x) and substitution into Eq. 1.3 results in the

expression

〈p〉 = −
λ`

∂f (`)

∂S

∂π/∂S
, (1.4)

(where we are now employing the Einstein summation convention), showing that

the quantity λ`
∂f (`)

∂S
/ ∂π
∂S

remains constant across Ω. This quantity is seen to be a

function of the constraint-weighted marginal benefit; in the transformed coordinate

5



(Sunopt, p(0))

δJ
δS

=0

��

∇2p=0

δJ
δS

=0

##

(Sopt, p(0))
∂tp=∇2p

// (Sopt, p(∞))

Figure 1.2: A diagrammatic representation of the optimization process. The edge with
∇2p = 0 and δJ/δS = 0 gives an immediate transform from the initial unoptimized system
(Sunopt, p(0)) to the optimized system in the coordinates x 7→ D(x), written (Sopt, p(∞)).
The link from (Sunopt, p(0)) to (Sopt, p(0)) shows the relaxation to the optimal state given by
δJ/δS = 0 in the natural (un-diffused) coordinate system. Subsequently diffusing the coor-
dinates via solution of ∂tp = ∇2p again gives the diffused and optimized state (Sopt, p(∞)).

system, marginal benefit is inversely proportional to (constant) event probability and

proportional to the weighted constraint gradient.

1.3 Application

We consider three systems in particular (with a note on the equipartition theorem

first): Doyle and Carlson’s models of highly optimized tolerance (HOT) [1, 2]; Gastner

and Newmans’s approach to the optimal facility allocation (k-medians) problem [3, 4];

and a generalized form of supervised machine learning [5].

6



1.3.1 Statistical mechanics: the equipartition

theorem

The well-known equipartition theorem is a simple consequence of this formalism. Let

P be a probability measure on phase space and let dΓ = ∏
i dxidpi be phase space

differential. Denoting the Hamiltonian of the system by H (p, x), the integral to

minimize is given by

∫
dP(Γ)H (p, x)− λ

(
1−

∫
dΓ e−βH (p,x)

)
. (1.5)

Performing the optimization gives the value of the Hamiltonian at the optimum to

be

H (p, x) = −T log P(Γ)
Z

, (1.6)

where T is the thermodynamic temperature and Z is the partition function. The

equipartition principle follows via integration by parts of the constraint equation.

The usual connections to information theory also follow: denoting the information

contained in the random variable Γ by I(Γ) = − logP(Γ), we can rewrite the minimal

energy Hamiltonian as H (p, x) = T (logZ + I(Γ)). Substitution into the objective

function gives ∫
dP(Γ)H (p, x) =

∫
dP(Γ) [T (logZ + I(Γ))]

= T (logZ +H(Γ)),

where H(Γ) is the entropy of Γ. In physics the probability measure P is the uni-

form distribution over state space. In the systems considered below this is almost

universally not the case; indeed, the interesting behavior in such systems is partially

7



generated by the inhomogeneity of the probability distributions over their “phase

space".

1.3.2 HOT

Carlson and Doyle introduced the idea of highly-optimized tolerance (HOT) in a series

of papers in 1999 and 2000 [1, 2]. Of the previous work known to the author that is

related to this paper, Carlson and Doyle came closest to uncovering the true generality

of the generalized equipartitioning principle. They found that many physical systems

are created, via evolution or design, to minimize expected cost due to events ocurring

with some distribution p(x) over state space x ∈ Ω ⊆ R2. A purely physical argument

relating event cost to area affected by the event, C ∝ Aα, and subsequently relating

affected event area to the amount of system resource in the area, A ∝ S−β, gave the

expected cost to be
∫
dx p(x)C(x) ∝

∫
dx p(x)S(x)−αβ. Carlson and Doyle supposed

the constraint on the system took the form of a maximum available amount of the

system resource, K =
∫
dx S(x). The integral to minimize is thus

∫
Ω
dx p(x)S−γ(x)− λ

(
K −

∫
Ω
dx S(x)

)
, (1.7)

giving the optimum S(x) ∝ p(x)
1

γ+1 . They showed that this result is reflected em-

pirically in the distribution of forest fire breaks. Figure 1.3 shows evolution to the

HOT state as proposed in [1]. The evolution results in structurally-similar final states

regardless of spatial resolution, as shown in the figure.

8



x

y

x x

Figure 1.3: Realizations of evolution to the HOT state as proposed in Carlson and Doyle.
The “forest" is displayed as yellow while the “fire breaks" are the purple boundaries. The
evolution to the HOT state results in structurally-similar low-energy states regardless of
spatial resolution, as shown here. From left to right, 32 × 32, 64 × 64, and 128 × 128
grids. The probability distribution is p(x, y) ∝ exp(−(x2 + y2)) defined on the quarter plane
with the origin (x, y) = (0, 0) set to be the upper left corner.

1.3.3 Facility placement

A classical problem in geography and operations research is to minimize the median

(or average) distance between facilities in the plane. This problem, known as the k-

medians (or k-means) problem, is NP-hard, so approximation algorithms and heuris-

tics are often used to approximate general solutions. Considering the objective func-

tion corresponding to the median distance between facilities,
∫
p(x) mini=1,...,k ||x −

xi|| dx, Gastner and Newman found the optimal solution in two dimensions to scale

as S(x) ∝ p(x)2/3, where here S is interpreted as facility density (S ∝ A−1) and p as

population density. The N -dimensional version of this problem follows by minimizing

the integral ∫
Ω
dx p(x)V (x)1/N − λ

(
K −

∫
Ω
dx V (x)−1

)
, (1.8)
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which leads to a solution of the form S(x) ∝ p(x)
N
N+1 , notably resulting in γ = 2/3

scaling in N = 2 dimensions (as found by Gastner and Newman) and γ = 3/4 in

N = 3 dimensions. Considering instead the average (least squares) distance between

facilities results in the minimization of

∫
Ω
dx p(x)V (x)2/N − λ

(
K −

∫
Ω
dx V (x)−1

)
, (1.9)

resulting in optima given by S(x) ∝ p(x)
N
N+2 , e.g., γ = 1/2 in N = 2 dimensions and

γ = 3/5 in N = 3 dimensions.

1.3.4 Machine learning

We give a short overview of the general supervised machine learning problem in RN .

We observe data x ∈ RN and wish to predict values y ∈ R, some of which we also

observe, based on these data. In general, we fit a model S(x) to the data and evaluate

its error against y via a loss function L(y, S(x)). The data is distributed x ∼ p(x),

although in any applied context this distribution is never known. Thus the general

unconstrained problem is to search a particular space of functions V for a function

S∗ such that

S∗(x) = arg min
S∈V

∫
RN

dx p(x)L(y, S(x)). (1.10)

The empirical approximation of this problem often goes by the moniker of empirical

risk minimization.

It is often desireable to impose restrictions on the function S∗. For example, one may

wish to limit the size of the function as measured by its L1 or L2 norms, or to mandate
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that the function assign a certain value to a particular subdomain D ⊆ RN . A

common example is that of the elastic net, introduced by Zou and Hastie in [5], which

penalizes higher L1 and L2 norms. The solution to the corresponding constrained

problem is thus

S∗(x) = arg min
S∈L1(RN )∩L2(RN )

∫
RN

dx p(x)L(y, S(x))

− λ1

(
M1 −

∫
RN

dx |S(x)|
)

− λ2

(
M2 −

∫
RN

dx S(x)2
)
.

(1.11)

This formulation, while perhaps unduly formal, does encapsulate the entirety of this

field, from the simplest of examples (linear regression) to the most complicated (deep

neural networks). Restricting the function space V to be linear functions X 7→ Xβ,

approximating p(x) ≈ 1
N

∑N
i=1 1xi(x), and solving the unconstrained version of the

problem using the mean squared error loss function gives minβ 1
N

∑N
i=1(Yi − xTi β)2 =

minβ ||Y − βX||22, which is easily seen to be the canonical ordinary least squares

problem, while incorporating L2 regularization as above gives minβ ||Y − βX||22 +

λ||β||22, the ridge regression problem [5]. On the other end of the model complexity

spectrum, approximating p(x) via a variational autoencoder [6] and subsequently

fitting a regularized deep neural network perhaps most closely approximates the true,

continuum form (Eq. 1.11) due to the function-approximating properties of neural

networks. The ability to closely approximate the true form of the action integral

may explain these models’ success in many forms of classification and regression

[7, 8]. We note also that the isometry between physical problems, such as HOT,

and supervised machine learning problems mean that algorithms developed for the

11



latter may be used to great utility in the former; instead of laboriously constructing

highly-optimized forest fire breaks via artificial evolution, as done in [1], or using

computationally-intensive simulated annealing algorithms to allocate facilities, as in

[4], one may simply use a fast approximation algorithm, such as k-medians or SVM,

to obtain the same result. Conversely, insights from physical problems could be used

to create new machine learning algorithms or paradigms, e.g., in the inference of more

effective loss functions for regression or classification problems.

1.3.5 Empirical evidence

We provide empirical evidence for the hypothesis by constructing realizations of the

diffusion transform acting on disparate datasets and for a variety of probability dis-

tributions. Figure 1.4 displays the equipartitioning process as applied to the facility

allocation problem (using simulated data) and a binary classification problem imple-

mented via support vector machine (SVM) (using the Wisconsin breast cancer dataset

[9]).

The top and middle figure display the result of heuristically solving the k-medians

problem using the standard expectation-maximization (EM) algorithm. Beginning

with two different distributions (Gaussian and exponential) defined on the quarter

plane {(x, y) ∈ R2 : x ≥ 0, y ≥ 0}, the EM algorithm is run with the specification

that N = 50 locations be placed—that is, the constraint is
∫
dx A(x)−1 = 50 in

the manner of [4], as area is two-dimensional volume—and optimized locations are

shown on the left. The diffusion equation is then solved numerically (using Fourier

cosine series) and the facilities’ locations are transformed via the resulting diffusion

transformation; the results are plotted on the right.
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Figure 1.4: The equipartitioning principle The equipartitioning principle as observed
in facility allocation and machine learning. Here, the support vector machine (SVM) algo-
rithm is used for binary classification and class labels are displayed. The SVM loss function,
known as the hinge loss, is given in its continuum form by L(S) = max{0, 1−Y (X)S(X)},
which is commonly minimized subject to L1 and L2 constraints as discussed above.
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The bottom figure displays the result of learning a binary classification of subjects

into breast cancer (Y = 1) / no breast cancer (Y = 0) categories using SVM. As the

probability of a subject having breast cancer is (in untransformed space) much less

probable than not having breast cancer, the left plot, which shows the result of the

classification, has a high density of subjects Y = 0 and a much more diffuse density

of Y = 1. When the diffusion transform is applied and the result plotted on the right,

the density is nearly equalized. We note that, in diffused coordinates, the decision

boundary of the SVM is given by a vector that splits the data essentially in half,

consistent with the imposed constraint that there be only two classes; the classes are

equipartitioned across the space.

1.4 Dynamic allocation

Thus far we have restricted our attention to a static problem; implicitly we have

assumed that there is no cost associated in transporting S from location to location.

While transport costs can safely be neglected in many scenarios, still others remain in

which transport is a primary consideration. We now generalize the above result to a

dynamic result for the time-dependent field S(x, t) where x is some finite-dimensional

vector that may depend on time (the case of moving coordinates is treated explicitly).

We will consider only the cost minimization problem as the above-treated net-benefit

maximization is essentially identical. Assume a cost function of the form

Ctotal = Ctransport + 〈Cevent〉+ Cconstraint, (1.12)
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where the expectation is taken over all (x, t) with respect to p(x, t). We will assume

that the transport costs are proportional to a suitably generalized notion of the work

done on the resource in the process of moving it; letting W be the work, we suppose

Ctransport ∝ Wα/2 ∝ 1
α

(
DS

Dt

)α
, (1.13)

where 1 ≤ α ≤ 2 and D
Dt

= ∂
∂t

+ dxi
dt

∂
∂xi

, the material derivative, which is the correct

generalization of the derivative in the case of moving coordinates dx
dt

= g(x, t). (The

reader should note that when coordinates are stationary this becomes the standard

time operator ∂
∂t

as usual.) We seek a minimum of the action
∫
dt

∫
dx L , where L

is the Lagrangian density given by

L = 1
α

(
DS

Dt

)α
− p(x, t)L(S(x))− λ`f (`)(S(x)), (1.14)

Introducing the generalized momentum Π = δL
δDtS

the Hamiltonian density is given

by
H = DS

Dt
Π−L

= α− 1
α

Π
α
α−1 + p(x)L(S(x)) + λ`f

(`)(S(x)).
(1.15)

Hamilton’s field equations are DΠ
dt

= − δH
δS

and DS
Dt

= δH
δΠ , resulting in

DΠ
Dt

= −p(x, t)∂L
∂S
− λ`

∂f (`)

∂S
(1.16)

DS

Dt
= Π

1
α−1 . (1.17)

A proof of correctness is given in Appendix A. Two cases bear special mention. When

α = 2 and coordinates are stationary, these are the standard Hamiltonian field equa-
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tions ∂Π
∂t

= − δH
δS

and ∂S
∂t

= Π, resulting in the expected oscillatory behavior of S in

time. When α = 1 and coordinates are stationary, we have

DΠ
Dt

= ∂Π
∂t

= (α− 1)
(
∂S

∂t

)α−2
∂2S

∂t2
= 0, (1.18)

along with limα→1+
DS
Dt

= limα→1+ Π
1

α−1 → +∞, translating to infinitely fast alloca-

tion of S with the equilibrium state given by p(x)∂L
∂S

+ λ`
∂f (`)

∂S
= 0— in other words,

the static optimum. Thus the static theory is entirely recovered as a special case of

the current structure, as expected given that L 7→ L + div S gives rise to the same

Euler-Lagrange equations as L . It should also be noted that the loss function L

may take into account time discounting via an appropriate discount factor; we thus

can account for a wide range of economic behavior when applying this framework to

intertemporal choice.

We note also that disspative forces can be introduced via the Rayleigh function

V =
∫
dx k(x)

2

(
DS
Dt

)2
, whereupon the nonconservative force F = − δV

δṠ
= −k(x)DS

Dt

is incorporated into the Euler-Lagrange equation. In the case where dxi/dt = 0 and

α = 2, this becomes

∂2S

∂t2
+ k(x)∂S

∂t
= −p(x)∂L

∂S
− λ`

∂f (`)

∂S
. (1.19)

In some cases the overdamped limit of Eq. 1.19,

∂S

∂t
= − 1

k(x)

(
p(x)∂L

∂S
+ λ`

∂f (`)

∂S

)
, (1.20)

may be a practical approximation to Eqs. 1.16 when Ctransport is small and observed
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dynamical allocation of an system resource relaxes monotonically to the static opti-

mum. We will have occasion to use Eq. 1.20 in the context of inferring the probability

p(x, t) in Chapter 2; in fact, it should be noted that a time discretization of Eq. 1.20

corresponds exactly to minimization of Eq. 1.2 via functional gradient descent, writ-

ten as

Sn+1(x) = Sn(x)− γ∇SLstatic(Sn(x)), (1.21)

where the learning rate γ corresponds with the inverse friction k(x)−1 and Lstatic(S) =

p(x)L(S(x)) + λ`f
(`)(S(x)).

1.5 Discovery of underlying distributions

We now consider the psuedo-inverse problem to the one discussed above and propose

an algorithm for its solution. Suppose we observe a noisy representation of a sys-

tem resource Y (x) = S(x) + ε that is prima facie distributed unequally over some

domain. We wish to find the density distribution p(x) in accordance with which the

system resource is optimally distributed as outlined above. If given a family of can-

didate distributions {pi(x)}n1 and a family of candidate models {fj(x|p)}mj=1, we may

determine the most likely underlying distribution as follows: for each distribution pi

and candidate function fj, fit the model Ŷi,j(x) = fj(x|pi). Let Di be the functional

defined by the solution to ∂tq = ∇2q on Ω with q(x, 0) = pi(x), so that pi
Di7−→ Unif,

the uniform distribution. Then compute

Ŷ diffused
i,j (x) = Di ◦ fj(x|pi) (1.22)
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and choose p∗, the optimal distribution, as

p∗(x) = arg min
pi: i∈{1,...,n}, j∈{1,...,m}

||∇Ŷ diffused
ij (x)||, (1.23)

for || · || some appropriate norm. In other words, given sets of candidate distributions

and functions, the distribution for which the system was most likely designed is the

one that, when diffused, generates via the transformDi◦fj the most evenly-distributed

diffused resource Ŷ diffused
i,j .

In application we will notice two hurdles that will affect the utility of this algorithm.

First, in finite time we know that Di will not actually generate the uniform distri-

bution. Even if an analytical solution to the diffusion equation is used (e.g., Fourier

cosine series, as used here and in [4]) one must make a finite approximation. Sec-

ond, and more problematically, there is no general principled way to construct the

functions fi given only this collection of distributions and an observed resource. In

practice these functions must be generated either using statistical methods or from

first principles; one may use this decision process to as a method to help determine

which physical theory of many under consideration is more likely to be correct.

Implementation of the above procedure would proceed using standard methods. For

simplicity’s sake, use the L1 norm and approximate as

||∇Ŷ diffused
i,j (x)|| =

∫
Ω
dx |∇Ŷ diffused

i,j (x)|

≈
∑

x∈Λ(Ω)
|∇discŶ

diffused
i,j (x)|,

(1.24)

where Λ(Ω) is a lattice approximation to Ω and ∇disc is a discrete approximation to

18



the gradient. Calculating this quantity for each combination (pi, fj) and taking the

most evenly distributed quantity should give the most nearly correct distribution.

1.6 Concluding remarks

We have demonstrated a property that appears to be universal to many physical

and social systems, summarized as follows: resources that appear to be unevenly

distributed in optimized systemsial are, in fact, evenly distributed with respect to

some other distribution on the underlying space. This is the conserved quantity

〈p〉+λ` ∂f
(`)

∂S
/ ∂π
∂S

. This description is not limited to static systems, as we have extended

the framework to allow for time-dependent allocations vís-a-vís transport costs and

even for moving coordinate systems. In constructing this further generalization, we

note that the static optimum arises naturally as a special case. Finally, we outline

the partial inverse problem of determining a distribution p(x) for which an observed

quantity Y = S(x) + ε was most likely optimized—assuming that the system is

governed by the generalized equipartitioning principle.

We note a meta-optimization procedure that is implied by the existence of the equipar-

titioned system. Let us take the context of machine learning as an example. We want

to know the true distribution p(x); we are interested in finding S(x) ∈ V that mini-

mizes L; we should analyze the loss function L; we should understand the form of the

n constraints. In order to do this one must consider all factors of the minimization

problem:

• the probability distribution p(x) (or measure P (x))

• the loss function L
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• the functional form of S—that, is the function space V and its characterization

• the constraints fi—their functional form and their number

• the domain of integration Ω

Each one of these components of the optimization can be analyzed and, in a sense,

optimized themselves. Figure 1.5 demonstrates this meta-optimization process and

p(x)

L

V S(x)

Data x

Ω
J

f1

f2

fN

N = ? Functional form?

Result = arg minS∈V J

∫ dx
p(x

)L(S(x))

p(x′|x) =
∫

d θ p(x′|θ)p(θ|x)

S ∈ V

x ∈
Ω

...

Figure 1.5: A decomposition of a system subject to the generalized equipartitioning principle
into its component parts. A system designer must consider each of these parts carefully when
implementing or analyzing such a system. In particular, we consider the specification of p(x)
and its inference in
Chapter 2.

a decision mechanism for its implementation. Every square box is an input that is

controlled by the system designer: what data to use in the model, what function space

to search (linear, quadratic, integrable,...), what form the constraints take and how

many of them there are. Other nodes must also be considered; while the probability of

observing data is a determined quantity once a dataset is chosen, how that probability

distribution is updated (if at all) can be determined by the system designer. All of

these components feed into the action J , which generates the optimal system state.
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Chapter 2

Estimation of governing probabil-

ity distribution

When attempting to optimize the state of a system governed by the gen-

eralized equipartitioning principle, it is vital to understand the nature of

the governing probability distribution. We show that optimiziation for

the incorrect probability distribution can have catastrophic results, e.g.,

infinite expected cost, and describe a method for continuous Bayesian up-

date of the posterior predictive distribution when it is stationary. We also

introduce and prove convergence properties of a time-dependent nonpara-

metric kernel density estimate (KDE) for use in predicting distributions

over paths.
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2.1 Misspecification

2.1.1 Loss due to misspecification

Consider two probability density functions p(x) and q(x). Suppose we have minimized

the functional

J(p) =
∫ (

p(x)L(S(x)) +
M∑
i=1

λifi(S(x))
)
dx,

but in fact the “true" functional to minimize is J(q) — we have mistaken p(x) for

the true density q(x). Denoting by S(p)(x) = arg minS∈V J(p;S) and S(q)(x) =

arg minS∈V J(q;S), the expected opportunity cost due to the misspecification is given

by
〈Copp(p||q)〉 =

∫
(q(x)− p(x))L(S(p)(x)) dx

=
〈
C(p)

〉
q
−
〈
C(p)

〉
p
,

(2.1)

where we use the notation 〈C(u)〉v =
∫
v(x)L(S(u)(x)) dx. We will see in Sec. 2.2.1

that misspecification can, especially in unbounded domains, lead to rather dramatic

consequences. A useful quantity is the proportion of total cost incurred under the

distribution q by misspecifying for the distribution p, given by

ρ(p||q) = 〈Copp(p||q)〉
〈C(p)〉q

= 1−

〈
C(p)

〉
p

〈C(p)〉q
.

(2.2)

As the opportunity cost becomes the majority of the cost incurred in the system as

a whole, we have ρ(p||q)→ 1; we will demonstrate an example of this presently.
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2.1.2 Estimation of q

How should we estimate the true distribution q(x) as we observe a time-ordered

sequence of data during the optimization process? The most obvious answer is to

use some sort of Bayesian estimation process, but as we must (in the limit) update

continuously in time, the method by which this is accomplished is not obvious. We

will first outline the theory where q(x) is stationary, t ∈ [0, 1], and x ∈ [a, b]; though

we have not extended the theory to RN , it should follow directly from consultation

with the particle filter literature [10]. We then extend the theory to nonstationary

q(x) and present a nonparametric estimation procedure that converges to the true

distribution as time progresses.

Stationary q(x)

Updating occurs via a kind of particle filter. Given an initial prior distribution p(θ0)

and k observed data points x1(t1), ..., xk(tk) ordered so that t1 < · · · < tk, we compute

the posterior distribution as

pk(θ|x) = p(θk|xk, ..., x1) = p(θ)Lk(θ|x)
p(xk)

, (2.3)

where Lk(θ|x) = ∏k
j=1 p(xj|θj) and

p(xk) =
k∏
j=1

∫
p(xj|θj)p(θj|xj−1, ..., x1)dθj.
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The posterior predictive distribution is then

p(xk+1|xk, ..., x1) =
∫
p(xk+1|θk)p(θk|xk, ..., x1) dθk. (2.4)

As k → ∞, p(xk|xk−1, ..., x1) → q(x); this is thus the correct distribution for the

decision-maker to use at time tk. We must now rectify this procedure with the

continuous process of dynamically allocating the system resource S(x, t). Recall from

Eq. 1.20 that we can consider the state of the system resource as evolving via gradient

descent,
∂S

∂t
= −δJ

δS
. (2.5)

Let n ∈ N be given, let {tk}nk=1 be a partition of [0, 1] with tk− tk−1 = 1
n
, and {xk}nk=1

be a partition of [a, b]. From Eq. 1.21, the discrete evolution equation is

Sk−1(x)− Sk(x) = − 1
n

δJ

δS

= − 1
n

(
p(x|xk−1, ..., x1)∂L

∂S
+

M∑
i=1

λi
∂fi
∂S

)
,

(2.6)

where we use our discrete-update posterior predictive distribution (Eq. 2.4) as the

true probability distribution. As the above equation is well-defined for any n ∈ N,

taking n→∞ a priori gives the correct evolution equation for S when the estimated

probability density updates continuously in time. We note that these probability

distributions may be indexed by a collection of information sets, {It}t∈[0,1] with It ⊆

It+s, such that for any increasing convergent sequence {tk}∞k=1 ⊆ [0, 1], the collection

{Itk}
∞
k=1 satisfies

p(x|xk−1, ..., x1) = p(x|Itk). (2.7)
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Then the evolution equation is given by

∂S

∂t
= −

(
p(x|It)

∂L

∂S
+

M∑
i=1

λi
∂fi
∂S

)
. (2.8)

The careful reader will note an implicit assumption in the assertion that limn→∞ pn →

q. As the sequence of observations is time ordered—we observe x1, then x2, etc., we

are assuming that the process generating these samples is ergodic, to be interpreted as

follows. Let T : [a, b]→ [a, b] be a measure-preserving transformation on the support

of q that evolves the observation of the data x. Let Q be a probability measure on [a, b]

and let f be a Q-measurable function denoting some observable, where dQ/dx = q.1

Then our assumption is

lim
n→∞

1
n

n∑
k=1

f(T kx0) =
∫

[a,b]
f dQ (2.9)

almost surely, where x0 is some initial point from which T begins to evolve the

observations. (When the observable is the probability distribution itself we take

f = Kh in Eq. 2.9 to be some proper kernel function.) If this requirement is not

satisfied the above result does not hold.

Nonstationary q(x, t)

The convergence properties of the above nonparametric estimation largely carry over

to the nonstationary case where the decision-maker observes multiple event paths
1To be interpreted as the Radon-Nikodym derivative for Q absolutely continuous with respect to

Lebesgue measure if Q is nondifferentiable as a real function.
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{Xk(t)}Nk=1 and wishes to estimate q(x, t). We will define the probability kernel to be

Gaussian, Kh(x, t) = 1
2πh exp(− 1

2h(x2 + t2)). At each Xk(t) = (xk, tk), place a kernel

Kh(x− xk, t− tk) and make the finite estimate

G
(N)
h (x.t) = 1

N

N∑
k=1

Kh(x− xk, t− tk). (2.10)

An appropriate limit of this function converges to the true distribution q(x, t). To

see this, note first that

lim
N→∞

G(N)
n (x, t) =

∫
dt′

∫
dx′ Kh(x− x′, t− t′)q(x′, t′), (2.11)

by (assumed) ergodicity, where the integrals are meant in the Riemann sense. (We

will denote limN→∞G
(N)
h (x, t) = Gh(x, t).) Define the Fourier transform to be F̃ (ω) =

F [f ](ω) =
∫
drf(r)eßωr and note that

G̃h(ω) = F [Gh](ω) = K̃h(ω)q̃(ω)

= exp
(
−ßµω − ωTΣω

)
q̃(ω),

(2.12)

by the convolution theorem, where µ = (x′, t′) and Σ = ( h 0
0 h ) is the covariance ma-

trix. Now G̃(ω) = limh→0+ G̃h(ω) = exp(−ßµω)q̃(ω), whereupon the inverse Fourier

transform gives

G(x, t) =
∫

dt′
∫

dx′ δ(x′ − x, t′ − t)q(x′, t′) = q(x, t), (2.13)

as claimed.

We emphasize two points. First, note that this is not an algorithm for predictive
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inference of individual sample paths x(t) but a nonparametric estimation technique

for a posteriori updating about the distribution of all sample paths arising from some

process. Second, though in the proof of convergence we set Kh to be Gaussian,

this is not strictly necessary. This proof holds in the case of an arbitrary kernel

Kh(x − x′, t − t′) with bandwidth function Σ(h) that satisfies limh→0+ F [Kh](ω) =

exp(−ßµω), as this is at the core of the proof.

2.2 Examples and application

2.2.1 Misspecification consequences

Consider a cost minimization problem

min
S(x)

∫
q(x)C(x) dx

s.t.
∫
S(x) dx = K,

(2.14)

where C(x) = S(x)−1, a simple form of the HOT formalism. The solution to Eq. 2.14

is found to be

S(x) = Kq(x) 1
2∫

q(x) 1
2dx

. (2.15)

Suppose that we actually optimize for p rather than q; we are interested in the

quantities 〈C(p)
opp〉 and ρ(p||q). We will consider p = N (0, σp) and q = N (0, σq) in R2,

where σq ≥ σp, and consider the opportunity cost 〈Copp〉 over Ω compact and R2.
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Substituting Eq. 2.15 into Eq. 2.1, we have

〈C(p)
opp〉 =

∫
dx dy

(
q(x, y)p(x, y)−1/2 − p(x, y)1/2

)
=
∫

dx dy
[
(2π)1/2e

( 1
4σ2−

1
2σ2
q

)(x2+y2)

− (2π)−1/2e−
1

4σ2 (x2+y2)
]
.

(2.16)

When this integral is taken over all R2, it converges only when σ2
q < 2σ2

p; ρ(p||q)

approaches one as σ2
q → 2σ2

p when the domain of integration is unbounded. Figure

2.1 demonstrates this convergence on a compact domain Ω ⊂ [0, 1]× [0, 1] (displayed

in the inset plot) and on R2. This emphasizes the importance of accurate estimation

of q; in the case where Ω = R2, we see that the opportunity cost quickly becomes the

dominant cost term.

2.2.2 Example: discrete allocation

A practical implementation of problem 2.14 in Rn entails division of Ω ⊂ Rn into

M compact subdomains to each of which the system resource is allocated; we can

imagine that we discretize the space and allocate M blobs of resource to each in

order to mitigate cost inside each blob’s respective subdomain. Supposing x ∼

Categorical(p1, ..., pM) and p ∼ Dirichlet(α1, ..., αM), a standard calculation gives

the posterior predictive distribution for each new observed xN to be

p(xN |xN−1, ..., x1) =
M∑
i=1

δ(x, i)
(

αi + ni

N +∑M
i=1 αi

)
,
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Figure 2.1: Proportion of cost due to opportunity cost in Eq. 2.14. The probability densities
p and q are Gaussian, with q’s standard deviation ranging from one to twice the size of p’s.
The integrals always converge on compact Ω; for Ω small enough (in the Lebesgue-measure
sense) in proportion to the standard deviation of q, the proportion converges to a relatively
small value as q appears more and more like the uniform distribution. As σq/σp → 2 the
integral diverges and ρ → 1. Integrals were calculated using Monte-Carlo methods. (We
choose Ω to be disconnected to emphasize the notion that the generalized equipartitioning
principle applies to arbitrary domains.)
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where δ(x, i) is one if x = i and zero otherwise. Using the above analytical solution,

the empirical optima are given by

Ŝ(x, tN) =
K
(∑M

i=1 δ(x, i)
(

αi+ni
N+
∑M

i=1 αi

)) 1
2

∑M
i=1

(
αi+ni

N+
∑M

i=1 αi

) 1
2

. (2.17)

In taking the continuum limit N →∞, it is tacitly assumed that all pi ∈ (0, 1); that

is, we must have ni = Θ(N) for all i. The dynamic allocation of S for any instance

of this problem is given by the solution to the differential equation

∂S(x, t)
∂t

= p(x|It)S(x, t)−2 −
( 1
K

∫
p(x|It)

1
2 dx

)2
, (2.18)

which here it takes a simplified form due to the discrete nature of the spatial coor-

dinate. Figure 2.2 demonstrates the convergence of the dynamic allocation given by

Eq. 2.18 to the static optima as pk(x)→ q(x) as the probability is updated according

to the procedure outlined in Sec. 2.1.2.

2.2.3 Example: continuous time update with non-

stationary distribution

We briefly mentioned an example of a common nonstationary distribution in Section

2.1.2; we continue this discussion now. Consider the probability distribution on R

induced by the Weiner process dXt = µ dt + σ dWt with X0 = x0. Intuitively the

stationary update process could not hope to produce a realistic estimate of the true
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Figure 2.2: Dynamic allocation of system resource in the toy HOT problem given by Eq.
2.14. Dashed lines are the static optima when the true distribution q(x) is known. The
solid lines are the dynamic allocation of S(x, t) as the estimate pk(x) is updated. The inset
plot illustrates the convergence of pk(x) to the true distribution via the updating process
described in Sec. 2.1.2. To demonstrate the effectiveness and convergence properties of the
procedure we initialize the probability estimates and initial system resource allocations to
wildly inaccurate values.
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Figure 2.3: Empirical estimation of the distribution q(x, t) ∼ N (µt, σ
√
t) generated by

a Weiner process with drift µ and volatility σ. The estimation was generated using the
procedure described in Sec. 2.1.2.

probability distribution q(x, t), which is given by

q(x, t) = H(t)√
2πσ2t

exp
(
−(x− µt)2

2σ2t

)
, (2.19)

whereH(t) is Heaviside’s function2. We implement the nonstationary updating proce-

dure described in Sec. 2.1.2 and infer the probability distribution; results are displayed

in Figure 2.3. The top plot displays the results of the estimation, while the bottom

displays results of the true unconditional distribution given by Eq. 2.19.

2See Appendix A for a derivation.

32



Chapter 3

Equipartitioning on networks

As noted in the introduction, even over non-continuum domains the for-

malism of the generalized equipartitioning principle can be used to great

effect. Here we extend the theory to the case of networks, in which an

event probability density is defined over nodes and edges and a system

resource is to be partitioning among the nodes and edges as well. We

derive the governing equations of such a system, showing that they cor-

respond exactly with Eq. 1.3, and give an example of their application

by considering a model of risk propagation on a power grid. We close by

identifying an extension of the power grid optimization problem to a more

realistic contagion process.

3.1 Theory

We consider time-dependent loss functions that account for both node and edge ef-

fects. Events occur at edge ai,j with probability pi,j, though it will be seen that this
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formulation can also account for events occuring exclusively in node space. A net-

work is more intrinsically detailed than the continuum; we must consider the case

of allocation of resource S to node i, which we will denote by Si, and allocating a

(possibly different!) resource T to edge aij, denoted by Tij. The Lagrangian density

is the probability density-weighted loss function,

L = pi,jL (Si, Si,t, Sj, Sj,t, Tij,t, Tij,t) , (3.1)

where we denote the partial derivative of g with respect to x by g,x. The quantity∫ ∑
i,j L dt is to be minimized subject to m constraints of the form

∫ ∑
i,j

f (`)(Si, Si,t, Sj, Sj,t, Tij,t, Tij,t)dt = K`, (3.2)

where ` = 1, ...,m. This results in the action given by

J =
∫ ∑

i,j

L dt−
m∑
`=1

λ`

K` −
∫ ∑

i,j

f (`)dt
 (3.3)

(In all generality, pi,j may also evolve in time, but we assume this evolution is governed

by a separate process.) The optimal intertemporal allocation of resources is given by

the Euler-Lagrange equations, which for Sj read

pij

(
∂L

∂Sj
− ∂

∂t

∂L

∂Sj,t

)
+

m∑
`=1

λ`

(
∂f (`)

∂Sj
− ∂

∂t

∂f (`)

∂Sj,t

)
= 0. (3.4)

The form of the equations is identical for Si and Tij. From this it can be seen

that, in all generality, the governing equations of such an optimization procedure are

significantly more intimidating than those defined in the continuum, since we are now
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confronted with a system of coupled nonlinear PDEs. We also note that, unlike in

the continuum, the optimal allocation of resources here will depend integrally on the

nature of the contagion mechanism within the network.

3.2 Examples

3.2.1 HOT on networks: node allocation

We re-do the theoretical analysis of highly-optimized tolerance (HOT) systems on

networks, where the spreading mechanism considered here is generated by an event

at aij and annihilates both i and j before ceasing to propagate. We wish to find the

optimal allocation of resource at i, S(i); we will not consider a resource allocated to

edges. The objective function is ∑i,j pijCij, where we suppose Cij ∝ S−γii S
−γj
j , which

we minimize subject to the constraint ∑i Si = K. The action is

∑
i,j

pijS
−γi
i S

−γj
j Aij − λ

(
K −

∑
i

Si

)
. (3.5)

Differentiating and rearranging terms gives the scaling relationship

Sγi+1
i ∝

∑
j

pijS
−γj
j Aij. (3.6)

Denoting the conditional probability of an event at i given an event at j by pi|j, we

note ∑
j

pijS
−γj
j =

∑
j

pi|jS
−γj
j Aijpj

=
〈
pi|jS

−γj
j

〉
j∈N (i)

,
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where N (i) is the neighbor set of node i, so that Eq. 3.6 becomes

Si ∝
〈
pi|jS

−γj
j

〉 1
γi+1

j∈N (i)
. (3.7)

The optimal allocation of resources across the network is given by the simultaneous

solution of all N (one for each node) of these equations.

3.2.2 US power grid: edge allocation

As a practical example we consider the minimization of cost in a power grid. Suppose

that events occur at nodes (power generation facilities, substations, etc.) that impose

costs on the rest of the network via propagation along edges (transmission lines).

A resource Sij may be deployed on transmission lines to alleviate these costs (for

simplicity we will assume Sij ∝ C−1
ij ) that also imposes a (monetary) cost on the

transmission of electricity; we wish to minimize the expected event cost subject to

the constraint that the total monetary cost throughout the network is within our

budget.

Neighborhood costs

In the simplest case, events at node i affect only i’s neighbor nodes and monetary

cost scales linearly with resource placement. Define A to be the adjacency matrix of

the power grid and assume that edges are undirected so that A is symmetric. The
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form of the action is then

J =
∑
i

pi
∑

j∈N (i)
S−1
ij + λ

K −∑
ij

Sij


=
∑
i

pi
∑
j

S−1
ij Aij + λ

K −∑
ij

Sij


= piS

−1
ij Aij + pjS

−1
ji Aji + · · · other terms

= (pi + pj)S−1
ij Aij︸ ︷︷ ︸

since the network is undirected

+ · · · other terms.

(3.8)

Performing the optimization gives the optimal scaling of resource Sij as S2
ij = λ−1(pi+

pj)Aij. Saturation of the resource constraint yields λ = K−2
(∑

i,j(pi + pj)1/2Aij
)2
,

whereupon substitution into the scaling relationship gives the analytical optimum to

be

Sij = K(pi + pj)1/2Aij∑
k,`(pk + p`)1/2Ak`

. (3.9)

As noted above, these networked optimization problems depend heavily on the under-

lying contagion mechanism, which can introduce its own distributional effects. In the

problem considered above, the neighborhood contagion mechanism generates direct

dependence of the allocation of the resource on node degree, which was not explicitly

considered in the problem formulation. If the event probability distribution pi is not

correlated with neighborhood structure, it is in fact possible under this contagion

mechanism for the associated distribution Pr(pi + pj) to be nearly constant over the

entire network. Consider the case of an infinite network with contagion mechanism

and event distribution as defined above. Since ∑i pi = 1, for any ε > 0 there exists

N ∈ N such that for all n ≥ N , pn < ε 1. Choose i any node and let j be its neighbor.
1This is an incredibly weak statement.
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Since the probability distribution is uncorrelated with neighborhood structure, the

pair pi and pj are statistically identical to any arbitrary pair of node event probabil-

ities pk and p`. From the above, pk + p` ≤ 2ε for most pairs k and `; we thus expect

the associated distribution Pr(pi + pj) to be tightly centered around a small value.

Thus in the case of uncorrelation of event probability with neighborhood structure

we can approximate Sij ≈ KAij∑
k,`

Ak,`
, so that

∑
j

Sij ≈
Kρi∑
k ρk

, (3.10)

where ρi is the node degree of i. Figure 3.1 displays the theoretical optimum in Eq.

3.10 along with results from simulation on the western US power grid dataset2. The

event probability pi was set without dependence on i’s node degree; the inset plot

notes that the distribution of pi + pj is nearly constant as predicted above. We thus

treat pi+pj ≈ constant and plot the resulting linear fit between∑j Sij andKρi/
∑
k ρk

in the main plot, which demonstrates good agreement between simulation and theory.

Subgraph costs with signal loss

In a more realistic scenario, cost propagates across the subgraph connected to node

i. If we assume slightly lossy transmission lines, signal drop across a path from i to

j scales approximately as exp (−d(i, j)), where we will take d(i, j) to be the shortest

path distance between i and j [11]. Assuming that event cost scales with signal
2 Data available at http://konect.uni-koblenz.de/networks/opsahl-powergrid
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Figure 3.1: Simulated optimum of Eq. 3.8 plotted against the theoretical approximate opti-
mum Eq. 3.10 on the western US power grid dataset. Eq. 3.8 was minimized using simulated
annealing, the implementation of which is described in Appendix B. Optimization was per-
formed with the restriction Sij ∈ [1,∞). The inset plot demonstrates that Pr(pi + pj) is
highly centralized.
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strength and maintaining the linear monetary cost as above, we arrive at the action

J =
∑
i

piL (Subgraph(i))− λ
K −∑

i,j

Sij

 , (3.11)

where we define

L (Subgraph(i)) =
∑

j: path(i,j) exists

∑
k∈SP(i,j)
k�k′

e−d(i,k′)S−1
k′k. (3.12)

Here � is an ordering on a path such that k � k′ if k appears after k′ in traversing the

path from i to j, and SP(i, j) denotes the shortest path from i to j. Define Pi : G×

G→ Z≥0 to be Pi(k′, k) = # of times ak′,k appears in a shortest path in i’s subgraph.

Then Eq. 3.12 can be rewritten

L (Subgraph(i)) =
∑
k,k′

Pi(k′, k)e−d(i,k′)S−1
k′,k. (3.13)

Extension of this present research could focus on simulating the above problem and

comparing the results with actual costs in power grids, e.g., damage caused by outages.
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Appendix A: Derivations

A.1 Field equations under dynamic co-

ordinates

We derive the representation of Hamilton’s field equations in the case of moving

coordinates. Recall from standard field theory (under stationary coordinates) for S

a field over x ∈ RN that the Lagrangian density is given by

L = T (S, Ṡ,∇S, x, t)− V (S, Ṡ,∇S, x, t), (A.1)

with the corresponding action integral

J =
∫

dx
∫

dt L . (A.2)

Defining the conjugate momentum as Π = δL
δṠ

, the Hamiltonian is given by

H = ∂S

∂t
Π−L , (A.3)
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with Hamilton’s equations thus given as

∂Π
∂t

= −δH
δS

(A.4)
∂S

∂t
= δH

δΠ . (A.5)

We claim that this formalism generalizes exactly as one would expect when the Eu-

lerian operator ∂
∂t

is replaced by the Lagrangian operator D
Dt

= ∂
∂t

+ dxi
dt

∂
∂xi

, where we

are employing the Einstein summation convention. Specifically, we claim that

Theorem A.1.1. Hamilton’s equations derived from the Hamiltonian

H = DS

Dt
Π−L (A.6)

are equivalent to the Euler-Lagrange equations derived from the Lagrangian given in

Eq. 1.14 with ∂
∂t
7→ D

Dt
.

We first show that

Lemma A.1.1. The following holds: δ
δS

1
2

(
DS
Dt

)2
= − D

Dt
DS
Dt
≡ −D2S

Dt2
.

Proof. Computing directly, we have

δ

δS

DS

Dt
= −

(
∂

∂t

∂

∂Ṡ
+ ∂

∂xi

∂

∂S,xi

)
1
2

(
∂S

∂t
+ dxi

dt

∂S

∂xi

)2

= −
(
∂

∂t
+ dxi

dt

∂

∂xi

)(
∂S

∂t
+ dxi

dt

∂S

∂xi

)

= − D

Dt

DS

Dt
= D2S

Dt2
,

as claimed.
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We next show that

Lemma A.1.2. The Euler-Lagrange equations for the action J =
∫
dx

∫
dt 1

α

(
DS
Dt

)α
is given by −(α − 1)

(
DS
Dt

)α−2
D2S
Dt2

= 0, in perfect analogy with the field and particle

cases.

Proof. To this end, we compute δJ = 0 and find

δ

δS

1
α

(
DS

Dt

)α
= 1
α

(
∂

∂S
− ∂

∂t

∂

∂Ṡ
− ∂

∂xi

∂

∂S,xi

)(
∂S

∂t
+ dxi

dt

∂S

∂xi

)α

= −
(
∂

∂t
− dxi

dt

∂

∂xi

)(
∂S

∂t
+ dxi

dt

∂S

∂xi

)α−1

= −(α− 1)
(
∂S

∂t
+ dxi

dt

∂S

∂xi

)α−2 (
∂

∂t
+ dxi

dt

∂

∂xi

)(
∂S

∂t
+ dxi

dt

∂S

∂xi

)

= −(α− 1)
(
DS

Dt

)α−2 D2S

Dt2
,

by the definition of the material derivative and the above derivation for the second

material derivative.

We can now prove the theorem.

Proof. Calculation of the conjugate momentum proceeds in the standard manner,

resulting in Π ≡ δL
δṠ

=
(
∂S
∂t

+ dxi
dt

∂S
∂xi

)α−1
×1. Forming the Hamiltonian in accordance

with Eq. A.3 results in

H = DS

Dt
Π−L

= α− 1
α

(
DS

Dt

)α
+ p(x)L(S(x)) + λ`f

(`)(S(x))

= α− 1
α

Π
α
α−1 + p(x)L(S(x)) + λ`f

(`)(S(x)).

(A.7)
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Hamilton’s equations are given by Eqs. A.4 and take the form

DΠ
Dt

= −p(x)∂L
∂S
− λ`

∂f (`)

∂S
(A.8)

DS

Dt
= Π

1
α−1 . (A.9)

Noting that DΠ
Dt

= D
Dt

(
DS
Dt

)α−1
= (α − 1)

(
DS
Dt

)α−2
D2S
Dt2

by above results, we find that

the first of Hamilton’s equations is identical to the Euler-Lagrange equation, which

was the desired result.

A.2 Weiner process probability distri-

bution

This is essentially a standard derivation that we repeat and elucidate here for com-

pleteness’s sake. We consider the overdamped Langevin equation dXt = µ dt+σdWt

with initial condition X0 = x0, where this equation is understood in the Itô sense. By

convention we denote the Weiner process by Wt. We have σ > 0 and are interested

in deriving the probability distribution q(x, t) of finding a realization of the process

at x at time t. By Itô’s lemma and integration by parts, the Fokker-Planck equation

that governs the evolution of q on R is given by

∂q

∂t
= −µ∂q

∂x
+ σ2

2
∂2q

∂x2 , q(x, 0) = q0(x). (A.10)

As in Section 2.1, we will take the initial condition to be q(x, t) = δ(x). We solve

Eq. A.10 by means of the Fourier transform, which we will define here as F (ξ) =
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1√
2π
∫
R f(x)eßξxdx. Transforming both sides of the equation and the initial condition,

we form the ODE

dF
dt = −

(
µßξ + σ2

2 ξ
2
)
F (t), F (0) = 1, (A.11)

the solution to which is given by

F (t) = exp
[
−
(
µßξ + σ2ξ2/2

)
t
]
. (A.12)

Setting ζ = µt and ν = σ
√
t, we recognize F (t) as the characteristic function of a

Gaussian distribution with mean ζ and standard deviation ν. Thus q(x, t) is given by

q(x, t) = 1√
2πν2

exp
(
−(x− ζ)2

2ν2

)

= H(t)√
2πσ2t

exp
(
−(x− µt)2

2σ2t

)
,

(A.13)

as claimed above.
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Appendix B: Software

B.1 Simulated annealing

Simulated annealing is a Markov Chain Monte Carlo (MCMC) algorithm closely

related to the celebrated Metropolis-Hastings algorithm. We describe it briefly here

and detail our software implementation.

Consider a canonical ensemble exchanging energy, but not particles, with an external

heat bath. The probability of such an ensemble being in a particular energy state

E is given by Pr(E) = 1
Z

exp (−βE), where we have set Boltzmann’s constant to

unity in the appropriate units, β is the inverse temperature of the ensemble, and

Z = ∑
E′ exp (−βE ′) is the partition function. Thus the maximum probability state

is that with lowest energy; if the system is such that energy in a state x is given by

the Hamiltonian H(x) = Ex, one may (in principle) find the system configuration x

that minimizes the system’s energy. Simulated annealing uses this fact to perform

stochastic global optimization. Algorithm 1 displays the algorithm. Unlike the stan-

dard implementation of simulated annealing in scientific Python, our implementation

does not assume any underlying set or space in which states x are required to lie; our

implementation can find states that minimize arbitrary Hamiltonians defined over

48



elements in any set.1

Algorithm 1 The simulated annealing algorithm. The function a is a perturbation
function that slightly modifies the state x to a “nearby" state x′. P is a probability
measure on states (in physical scenarios proportional to exp (−βE)), ε is a numerical
tolerance, B is a function that yields successive inverse temperatures, and τ is a time
delay against which to check numerical tolerance.
1: procedure SimulatedAnnealing(H, a, P , ε, B, β0, x0, τ)
2: t← 0
3: x← x0
4: β(t)← β0
5: while β <∞ and |E(t+ τ)− E(t)| > ε do
6: E(t)← H(x)
7: x′ ← a(x)
8: E ′(t)← H(x′)
9: u ∼ U(0, 1)
10: if E ′ < E or P (E ′, β(t))/P (E, β(t)) ≥ u then
11: x← x′

12: end if
13: t← t+ 1
14: β(t)← B(β(t− 1))
15: end while
16: end procedure

Clearly the construction of the perturbation function a is critical to the effectivness

of this algorithm. This is a domain-specific question; we will focus here on the cases

where x ∈ Rn or x ∈Mm×n(R), the space of m×n matrices over the ring (or monoid)

R.

• When x ∈ Rn, we select k ∼ Udiscrete(0, nmax) elements of x for perturbation,

where nmax ≤ n. We then set xi ← xi + ξ for each selected xi, where ξ ∼

N (0, σ(x)) and σ(x) is the standard deviation of the elements of x. Successive
1The standard implementation can be found at https://docs.scipy.org/doc/scipy-0.18.

1/reference/generated/scipy.optimize.basinhopping.html
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applications of a thus define a type of normal random walk on Rn; this is similar

to the original Metropolis jump kernel.

• When x ∈ Mm×n(R) the perturbation is essentially identical to that outlined

above (selecting k random elements of the matrix instead of the vector). When

R = Z or R = {0, 1} we must alter the algorithm so that ∀x, y, z ∈ R,

x 7→ yx + z ∈ R as well. This is accomplished simply by choosing an ap-

propriate probability measure P over R, drawing from this distribution p ∼ P

and generating xij ← xij + σ(x)p. In the particularly simple (and useful!) case

where R = {0, 1}, the initial random selection of matrix elements acts is the

only randomization used and the selected elements are just bit-flipped.

In some cases we may want to restrict elements to certain subsets of R. This is

accomplished by checking whether the new point x′ is in the desired subset Σ (which

we take to be a compact set); if it is not, x′ is assigned to be x′′ = arg minx′′∈∂Σ ||x′−

x′′||2, where ∂Σ is the boundary of Σ. Figure B.1 demonstrates our implementation

of the simulated annealing algorithm converging to the global minimum of Eq. 3.8

with the restriction that xi ∈ [1,∞).
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Figure B.1: The above simulated annealing algorithm converging to the global minimum of
the action given in Eq. 3.8. In this case, x ∈M6594×6594(R≥1).
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