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ABSTRACT 

 

 

Stormwater runoff from existing impervious surfaces needs to be managed to protect 

downstream waterbodies from hydrologic and water quality impacts associated with 

development. As urban expansion continues, increasing impervious cover, and climate 

change yields more frequent extreme precipitation events, this increases the need for 

improved stormwater management. Although green infrastructure such as bioretention 

has been implemented in urban areas for stormwater quantity and quality improvements, 

these systems are seldom monitored to validate their performance. Herein, we evaluate 

flow attenuation, stormwater quality performance, and nutrient cycling from eight 

roadside bioretention cells. Bioretention cells received varying treatments: (1) vegetation 

with high (7 species) and low-diversity (2 species) plant mixes; (2) proprietary 

SorbtiveMediaTM (SM) containing iron and aluminum oxide granules to enhance 

phosphorus sorption; and (3) enhanced rainfall and runoff (RR) to certain cells, 

mimicking anticipated precipitation increases from climate change. Bioretention water 

quality parameters monitored include total suspended solids (TSS), and dissolved and 

total nitrogen (N) and phosphorus (P) in the cells’ inflows and outflows across 121 

storms. Simultaneous measurements of flow rates and volumes allowed for evaluation of 

the cells’ hydraulic performances and estimation of pollutant load and event mean 

concentration (EMC) removal. We also monitored soil CO2 and N2O fluxes and 

determined C and N stocks in the soil media, microbial and vegetation biomass to 

determine the overall C and N balances in these systems.  

 

Significant average reductions in effluent stormwater volumes and peak flows were 

reported, with 31% of the storms events completely captured. Influent TSS loads and 

EMCs were well retained by all cells irrespective of treatments, storm characteristics, or 

seasonality. Nutrient removal was treatment-dependent, where the SM treatments 

consistently removed P loads and EMCs, and sometimes N as well. The vegetation and 

RR treatments mostly exported nutrients to the effluent. We attribute observed nutrient 

exports to the presence of excess compost in the soil filter media. Rainfall depth and peak 

inflow rate undermined bioretention performance, likely by increasing pollutant 

mobilization through the filter media. While the bioretention cells were a source of CO2, 

they varied between being a sink and source of N2O. However, soil C and N, and plant C 

and N in biomass was seen to largely offset respiratory CO2-C and biochemical N2O-N 

losses from bioretention soil. The use of compost in bioretention soil media should be 

reduced or eliminated. If necessary, compost with low P content and high C: N ratio 

should be considered to minimize nutrients losses via leaching or gas fluxes.  

 

To understand trade-offs stemming from compost amendments, we conducted a 

laboratory pot study utilizing switchgrass and various organic soil amendments (e.g., 

different compost types and coir fiber) to heavy metal contaminated soils and studied 

potential nutrient leaching and pollutant uptake.  Addition of organic amendments 

significantly reduced metal bioavailability, and improved switchgrass growth and metal 

uptake potential. While no differences in soil or plant metal uptake were observed among 

the amendments, significant differences in nutrient leaching were observed.    
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DISSERTATION OVERVIEW 

 

Stormwater is one of the pressing water quality challenges of today, and is 

responsible for impairing surface water bodies throughout the United States. Urban 

stormwater, which is runoff generated from developed lands, is major contributor to non-

point source (NPS) pollution (NRC, 2008; Hsieh and Davis, 2005; Wang et al., 2000). 

Pollution from urban storm runoff is responsible for 15% percent of all impaired rivers 

(38,114 miles), 18% of all impaired lakes (1482 square miles) and 32% of all impaired 

estuaries (2742 square miles) in the United States (NRC, 2008). Pollutants commonly 

detected in urban storm runoff include nutrients such as phosphorus (P) and nitrogen (N), 

sediments, pathogens, and toxic substances such as heavy metals, petroleum 

hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and pesticides (Davis et al., 

2003a; Gilbreath and McKee, 2015; Klein, 1979; Walsh et al., 2005).   

The Clean Water Act of 1972 spurred the development and widespread adoption 

of various stormwater best management practices (BMPs) to manage the quantity and 

quality of urban storm flows (Roy-Poirier et al., 2010). The low impact development 

(LID) approach was introduced in the 1990s in Prince George’s County, Maryland as an 

alternative to conventional stormwater management approaches (LID Center, 2007). LID, 

also called Green Stormwater Infrastructure (GSI), comprises of a set of site design 

strategies which aims to mimic the hydrologic regime of predeveloped conditions by 

promoting infiltration, evapotranspiration, filtration, increasing concentration time for 

runoff, soil storage, groundwater recharge, and re-use of stormwater, while concurrently 

minimizing impervious cover and runoff (PGC, 1999; Davis, 2007; Hinman, 2005; Roy 

et al., 2008). LID or GSI employs wide array of small-scale technologies ranging from 

http://www.sciencedirect.com/science/article/pii/S0043135411008220#bib49
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bioretention, green roofs, pervious pavements, swales, planter boxes, infiltration trenches, 

rain barrels or cisterns, and constructed wetlands that treat water at the site level (PGC, 

1999; LID Center, 2007; VT DEC1). However, the LID approach has historically focused 

on storm volume and peak flow reduction for flood control rather than targeting the 

treatment of specific contaminants in the stormwater (Roseen et al., 2006; Roy et al., 

2008). More research is needed on the design choices that effectively target removal of 

specific pollutants through use of appropriate soil amendments, soil composition and 

plant selection. Improved understanding of subsurface flow, retention time needed for 

chemical sorption reactions and microbial transformations under various soil types, and 

the interplay between these factors can help enhance design features of GSI systems.  

Bioretention, a prominent GSI option, is increasingly and commonly being 

implemented as a stormwater control measure in urbanized watersheds in the U.S. and 

abroad in the last decade (Davis et al., 2009a; Roy-Poirier et al., 2010). However, there 

has been very little monitoring to validate bioretention performance. Much of the 

research evaluating bioretention performances are from laboratory based column studies, 

and field performance data is lacking. Field confirmation of laboratory results is 

becoming more important because of the complexity associated with field installations, 

and the variability in the inputs of storm volumes and pollutant levels and plant survival 

(Davis, 2007). A limited number of field monitoring studies exist, which have showed 

that their performances are variable and the removal efficiencies are dependent on the 

pollutant type and the soil media composition itself. An increasing number of monitoring 

studies have in fact showed substantial leaching of phosphorus from compost-amended 

                                                 
1 http://www.watershedmanagement.vt.gov/stormwater/htm/sw_gi_gsi.htm 
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bioretention systems (Dietz and Clausen, 2005, 2006a; Hatt et al., 2009; Hunt et al., 

2006; McPhillips Lauren et al., 2018). In the light of this, it is becoming far more 

important to study and test the role of different soil amendments to enhance field 

performances of bioretention media.   

Bioretention can increase urban landscape resiliency as an adaptation to 

mitigating climate change, but climate change could also affect bioretention functioning. 

Virtually no field installations have addressed the potential effects of climate change (i.e., 

altered precipitation regimes) on bioretention performances. With the projected increases 

in precipitation and extreme events for the northeastern U.S. including Vermont 

(Frumhoff et al., 2006; Hayhoe et al., 2007; Guilbert et al., 2014), it becomes important 

to understand the role of bioretention in not only mitigating water quality, but also in 

influencing urban landscape biogeochemical processes (Pataki et al., 2011) such as 

greenhouse gas (GHG) fluxes in meeting environmental goals.  

Eight bioretention cells were constructed adjacent to paved roads at the University 

of Vermont (UVM) Bioretention Laboratory for improving storm runoff quality. The 

study included different treatments associated with bioretention soil, vegetation diversity 

and hydrology (e.g. drainage area and precipitation) that were informed particularly by 

pollution concerns in Lake Champlain (Guercio, 2010) and climate change predictions 

for Vermont (Guilbert et al., 2014).  A fine-scale time resolution monitoring scheme was 

employed to sample influent and effluent water for comparing traditional water quality 

parameters. Gas fluxes from the soil were measured, and soil and vegetation nutrient 

content were quantified to study nutrient cycling dynamics from the cells. The results 
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from this study can inform stormwater design and management community about which 

attributes of bioretention design features are effective and resilient. 

Chapter 1 is a comprehensive literature describing the impacts of urbanization and 

climate change on urban hydrology and watershed processes, the importance of 

bioretention as storm control measure, bioretention design features, major stormwater 

pollutants, precedent studies on bioretention performances, and biogeochemistry 

controlling nutrient fate in bioretention.   

 Chapter 2 is a field study investigating the water quality performance of eight 

roadside bioretention systems receiving different soil media, vegetation, and hydrologic 

treatments. The study evaluates (a) the composition of N and P species in bioretention 

inflows and outflows, (b) hydraulic performances, and pollutant (nutrients, sediments, 

metals) mass removal efficiencies (MRE), and event mean concentrations (EMCs) 

removal efficiencies from bioretention, (c) influence of environmental factors 

(precipitation depth, antecedent dry period (ADP), seasonality), hydrological factors 

(inflow volumes, inflow mass, peak flow, hydraulic loading ratio), and treatments 

(vegetation, soil media, hydrologic) on bioretention performance.  

Chapter 3 investigates soil media CO2 and N2O fluxes from the bioretention cells. 

Gas fluxes represent a potential nutrient loss pathway from bioretention, and must be 

evaluated. Most bioretention research focuses on water quality functions, but little is 

known about the potential for this practice to mitigate climate change. This chapter 

evaluates (a) soil media CO2 and N2O fluxes (b) treatment, soil temperature and moisture 

effects on gas fluxes, (c) total amounts of C and N stored in the bioretention soil, 

microbes and aboveground plant biomass stocks to estimate overall C and N balance. 
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Lastly, the study compares fluxes to those from other bioretention studies, stormwater 

treatment systems, and land use types. 

Chapter 4 is a laboratory pot study to explore water quality tradeoffs of using 

organic matter such as compost for phytoremediation. The study investigates the capacity 

for switchgrass, in combination with various organic amendments (e.g., different compost 

types and coconut coir fiber), to remediate soils contaminated by heavy metals. The study 

investigates the effects of the different organic amendments on pollutant uptake, plant 

growth, metal bioaccumulation, and nutrient leaching. 
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CHAPTER 1: COMPREHENSIVE LITERATURE REVIEW 

 

1.1 Urbanization impact on watershed processes 

 

Urbanization is increasing rapidly around the world, and this trend is expected to 

continue with human populations expanding in future decades (United Nations World 

Urbanization Prospects 2008 Revision). More than 75% of the U.S. population lives in 

urban areas, and it is anticipated that over 60% of the world’s population will live in 

urban areas by the year 2030, with the majority of growth occurring in the developing 

nations (Paul and Meyer, 2001). Urbanization brings about physical, chemical, and 

biological changes in watersheds by increasing areas that are largely impervious (e.g., 

roadways, sidewalks, parking lots, roofs) and inhibit natural infiltration of rainfall (Klein, 

1979; Walsh et al., 2005, 2012). While in many natural ecosystems, more than 90% of 

water drains from uplands to streams by subsurface flow (Kaye et al., 2006). In contrast 

such hydrological flow paths are bypassed to produce moresurface runoff in urban areas. 

The reduction in infiltration and groundwater recharge seen in watersheds with greater 

impervious area, also reduces the influence of soil and plant on water chemistry and 

evapotranspiration (Gold et al., 2001; Walsh et al., 2012). In humid cities like Baltimore, 

a 10-20% in impervious surface area doubled the volume of surface runoff, reduced lag 

times between the onset of storms and peak discharge, and increased overall discharges 

during storms (Paul and Meyer, 2001). Higher peak discharges and runoff volumes 

increases the severity of flooding. Large runoff volumes and high intensity rains transport 

pollutants in the “first flush” of runoff and increase peak pollutant loading during storms 

(Aryal et al., 2010; Klein, 1979; Walsh et al., 2005). Physical effects from altering 

catchment hydrology with impervious surfaces can cause downstream channel erosion 
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and widening streams (Hollis, 1975; Klein, 1979; Ragan et al., 1977). In addition stream 

temperatures can increase (Galli, 1990), and water tables in riparian areas (known to be 

hotspots for nitrogen removal) might be lowered (Groffman et al., 2002), inhibiting 

denitrification functions. Meanwhile chemical changes can occur via elevated inputs of 

pollutants such as organics, nutrients (N and P), suspended solids, and heavy metals 

(Porcella and Sorensen, 1980) to public waters. Stream biology is also altered and 

compromised as a stream catchment is urbanized, with multiple studies having 

documented decreased fish, invertebrate and insect diversity with urbanization (Jones and 

Clark, 1987; Klein, 1979; Pratt et al., 1981; Shaver et al., 1995). Klein (1979) found that, 

across twenty-seven watersheds, and found that the stream quality was severely degraded 

in watersheds with greater than 30% imperviousness. Simulations predicted that water 

quality in small sub-watersheds (5 to 50 km2 in area) declined when imperviousness 

exceeded 10% (Schueler. et al., 2009). Furthermore, rapid urban development (without 

retrofitting existing storm infrastructures) puts pressure on existing storm infrastructures, 

causing untreated sewage discharges to surface waters from combined sewer overflow, 

adversely affecting water quality and threatening aquatic health.  

 

1.2 Climate change impacts on urban hydrology  

 

 Climate imposes uncertainties on urban runoff stressors; for example, increasing 

precipitation generates greater runoff volumes and subsequent wash-off of pollutants. 

When storms occur with greater intensity and duration, it is likely that the turbulence 

generated by the runoff will exceed critical shear stress and thus loosen and detach 

surface pollutants, availing them to transport (Vaze and Chiew, 2002). Climate change is 
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projected to bring more extreme rain events to certain regions, increasing the magnitude 

and frequency of floods (Frumhoff et al., 2006). As a result, the delivery rate of pollutant 

concentrations and loads to storm drains and surface waters may increase with the 

accentuated rainfall-runoff events. In other areas, climate change can result in less rainfall 

and increased risk of seasonal droughts (NRDC2). In cities, lack of infiltration and 

groundwater recharge due to impervious surfaces creates challenges in meeting public 

demands for water supply. Thus, there is urgent need for climate change adaptation 

strategies in stormwater management.  

 

1.3 Importance of green stormwater management 

 

Traditionally, urban storm runoff is collected and routed in closed engineered 

systems (i.e., storm pipes) to surface waters rapidly without treatment (PGC, 1999; Kaye 

et al., 2006). The conventional approach to dealing with storm runoff in urban areas is to 

take it off site as efficiently as possible via delivery conduits like catch basins to 

minimize local flooding and quickly convey runoff to receiving waters (such as streams 

and lakes and bays), or to a centrally located management system (i.e., wastewater 

facility in case of combined sewer system) (PGC, 1999; Walsh et al., 2012). There is 

little or no treatment of stormwater volume or quality, as a result of bypassing processes 

like natural filtering, or recharge to groundwater (Cook, 2007). Where the municipal 

sewer system is combined, the infrastructure is prone to failures during large storm events 

when its hydraulic treatment capacity is exceeded due to large runoff volumes. This 

results in combined sewer overflows, which directly releases untreated sewage and 

                                                 
2 http://www.nrdc.org/health/climate/drought.asp 
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runoff, and associated nutrients and pathogens, into receiving waters  (Roy et al., 2008). 

Such ‘gray infrastructures’ (i.e., catch basins, storm sewer) do not provide volume control 

and as a result, chances of flooding and streambank erosion are greater downstream of 

the built environment. In some cases, municipal water discharge can lead to riparian 

drying due to reduced  groundwater recharge (Kaye et al., 2006). By contrast, GSI is a 

promising alternative for managing stormwater in urbanized areas and meeting Clean 

Water Act water quality goals (US EPA 2014).  

GSI strategies involve the reduction or transformation of paved surfaces through 

the integration of plants, soils, and microbes in combination with hydrology and 

engineering design elements for stormwater management (Cook, 2007). GSI utilizes 

natural processes in order to modify post-development hydrology to closely mimic 

predevelopment conditions; GSI aims to achieve water quality goals by disconnecting 

impervious areas and hydrologic flow paths, retaining runoff volume, reducing peak 

discharge, and treating stormwater on-site (Davis et al., 2009a; Sansalone et al., 2013). 

Although GSI is primarily implemented as promising alternatives to the conventional 

“gray” stormwater management approach, their benefits can extend well beyond 

stormwater control. GSI may also provide a variety of ancillary benefits to urban 

environments ranging from regulation of the water cycle (Pataki et al., 2011), 

groundwater recharge (Davis et al., 2009a), countering the urban heat island effect 

(Brown et al., 2012), improved air quality (Grantz et al., 2003),  aesthetics (Hurley and 

Forman, 2011), wildlife habitat and refugia (Liu et al., 2014), in addition to 

phytoremediation (Read et al., 2009) and carbon sequestration (Pataki et al., 2011). 

Therefore, GSI has the potential to effectively address different environmental issues 
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simultaneously. Integrating resilient and cost-effective GSI strategies in the way we 

manage urban stormwater can increase the capacity and longevity of storm sewer systems 

(Roy-Poirier et al., 2010), reduce pollutant loads to waterways, and foster environmental 

stewardship. 

 

1.4 Bioretention for urban stormwater management 

 

Bioretention systems (also commonly referred to as raingardens, bioswales or 

biofilters) are a type of GSI; bioretention cells are typically implemented on roadsides 

and within parking lots. Bioretention uses a combination of porous soils and vegetation 

media (Figure 1) to detain and infiltrate pollutant-laden runoff conveyed as sheetflow or 

via curb cuts of pipes from the impervious surfaces to the treatment unit (Cook, 2007). 

As the runoff percolates to ultimately restore groundwater and baseflow in streams, plant 

uptake and evapotranspiration of the water occurs, which substantially reduces 

stormwater volume and peak discharge (Davis et al., 2009a; Flynn and Traver, 2013). 

Within the bioretention media, as the runoff velocity is reduced, sediments and pollutants 

have longer periods of contact with the soil media and undergo physical (e.g. filtration), 

biochemical (e.g. denitrification) and physico-chemical reactions (e.g. removal of 

dissolved phosphorus and heavy metal through sorption) (Feng et al., 2012; Liu et al., 

2014; Lucas and Greenway, 2007b), which overall reduces pollutant load in the effluent.  
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Fig. 1. Typical layout of a bioretention basin (Source: Low Impact Development 

Manual for Michigan) 

 

Phytoremediation can contribute to uptake of pollutants like nutrients and heavy metals 

(Davis et al., 2003a). Runoff is also stored temporarily within soils and aboveground, in 

the ponding zone planted with vegetation, to be released slowly downstream. In intense 

storm events, this can alleviate pressure on existing storm infrastructure, and reduce peak 

discharge and downstream flooding. Additional benefits include shade, wind-breaks, 

noise absorption, wildlife habitat, aesthetic value (Cook, 2007) along with carbon 

sequestration through photosynthesis.  

 

1.5 Bioretention features 

 

Bioretention design must employ range of features that are targeted to perform 

specific functions to meet the water quality goals in the area. Design features vary in 

surface area, ponding depth, soil/filter media depth and composition, plant palette, time 

of concentration, and presence or absence of pre-treatment facility and drainage 
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configurations like perforated underdrain pipe and overflow design (Davis et al., 2009a).  

The filter media depth is typically 0.6 m up to 1.3 m deep to allow adequate time for 

filtration and pollutant removal. Bioretention is designed to maximize infiltration. The 

size of conducting pores affects the hydraulic conductivity of the media, and since larger 

pores conduct water more rapidly, sandy media is traditionally favored (Hsieh and Davis, 

2005). Native soil with high permeability is also used, particularly when the soil is 

predominantly sand or belongs to the hydrologic soils group “A” classification such as 

sandy loam, loamy sand (UNHSC Report 2012). Clays tend to swell after absorbing 

water and shrink upon drying (Weil et al., 2016), which can impede infiltration rates. If 

the underlying native soil is clay and poorly drained, a perforated underdrain structure is 

installed at the bottom of the bioretention cell to prevent water from standing in the unit 

for prolonged periods (Roy-Poirier et al., 2010). The underdrain helps convey the water 

to a storm drainage network.  

 Vegetation and microorganisms in the bioretention unit are considered important 

in controlling the fate of nutrients (Davis et al., 2006), and provide ecological treatment 

of stormwater. Vegetation also plays an integral role in their functioning and longevity. 

In fact, the effluent quality from vegetated bioretention filters has been shown to be 

significantly better relative to effluent from unvegetated bioretention systems, in both 

laboratory (Bratieres et al., 2008; Denman et al., 2006; Henderson et al., 2007; Lucas and 

Greenway, 2007b) and field-based studies (Breen, 1990; Rogers et al., 1991; Song et al., 

2001). Plants with shallow root systems provide less effective treatment relative to deep-

rooted plants (Lintern et al., 2011; Read et al., 2008). Bioretention plants represent a 

small carbon sink, while contributing directly to pollution remediation via 
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phytoremediation processes. Plant root growth and senescence counters compaction and 

clogging of the pore spaces in the media through creation of soil macropores (Hatt et al., 

2009; Read et al., 2009). The presence of macropores allows water to move to deeper soil 

layers, and overtime maintains the hydraulic conductivity and media filtering capacity 

(Quinton and Hess, 2002). Plants intercept precipitation and conduct evapotranspiration. 

Through root exudates and photosynthetic inputs to soil, plants continue to enhance soil 

physiochemical properties in order to sustain microbial populations (Read et al., 2009), 

which in turn facilitate nutrient transformations and subsequent removal from stormwater 

under ideal conditions (e.g. denitrification, which is pertinent for nitrate removal). 

Further, the aesthetic nature of plants has the potential to influence public acceptance of 

bioretention systems.  

 

1.6 Lake Champlain Research Context 

 

Lake Champlain is a freshwater lake located mainly within the borders of 

Vermont and New York, and partially located across the Canada-United States border. 

The Lake Champlain Basin (LCB) is a 21,326 km2 watershed with 56% of it falling in 

Vermont, 37% in New York, and 7% in Canada. Over 90% of the water that flows to the 

lake drains from the surrounding watersheds (LCBP 20163 ). Historically, many of the 

water quality concerns surrounding Lake Champlain have been related to high levels of 

P, causing summer and fall algal blooms since the 1970s. In a 2015 Lake Champlain 

Basin Program (LCBP) study, 41% of the nonpoint source load for P was estimated to 

originate from agricultural lands, 18% from urban or developed lands, 16% from 

                                                 
3 http://www.lcbp.org/about-the-basin/facts/ 
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forestlands, 20% from streambank erosion, 4% from WWTFs, and 1% from wetlands4. 

Due to high levels of P concentrations in many lake segments, Vermont established the 

first total maximum daily loads (TMDL) in 2002 (Guercio, 2010). TMDL calculates the 

maximum amount of a given pollutant that is legally allowed to enter a waterbody from 

all the point and non-point sources daily and still meet the required water quality 

standards for that pollutant. To meet the state’s TMDL standards, management strategies 

are being developed to clean up Lake Champlain by providing incentives to develop new 

and innovative stormwater BMPs to specifically reduce pollutant loads from urban 

landscapes. The lake serves as the primary source of drinking water for 35% of the 

basin’s population, and is important for economic activities such as agriculture, 

recreation and tourism, which can be affected by climate change that Vermont is 

experiencing (Pealer, 2012).  

Climate data from the past 40-year record (1963 to 2003) shows that precipitation 

in LCB has increased by 8% and 38% at low and high elevations, respectively (Beckage 

et al., 2008). Vermont is experiencing more extreme rain events, and that trend is 

anticipated to continue (Pealer, 2012). The region was impacted by extreme weather 

events including significant flooding in 2011 from heavy spring rainfall and Tropical 

Storm Irene that followed the very summer. These extreme storm events caused extensive 

damage to public infrastructure (i.e., wells submerged by floodwaters possibly exposing 

them to harmful chemicals or pathogens, release of 10 million gallons of untreated 

sewage from wastewater treatment facilities (WWTFs) and private property, and thus 

demands attention to the potential impacts of climate change (Pealer, 2012).  

                                                 
4 http://sol.lcbp.org/Phosphorus_where-does-p-come-from.html 
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1.6.1 Climate change prediction for Northeast U.S.  

From 1970 to 2011, every state in the U.S. experienced warming trends. Over this 

period, three of the ten fastest warming states were in the Northeast (Maine, 

Massachusetts, and Vermont; Climate Central 2012). Temperatures across the 

Northeastern U.S. are expected to rise further by 2.5 to 4°F in winter and 1 to 3°F in 

summer over the next few decades (Frumhoff et al., 2006). The warming has been 

correlated with observable hydrological changes such as increase in heavy rainfall events, 

earlier spring snowmelts resulting in earlier, higher spring river flows, and less 

precipitation falling as snow and more as rain (Frumhoff et al., 2006). For the contiguous 

United States, over the last several decades, there has been an increase in the occurrence 

of annual number of wet days (e.g., 5-10 days yr-1 in the eastern U.S., and 10-15 days yr-1 

in the west) and heavy precipitation days and in the mean daily and annual total 

precipitation, despite regional variability (Higgins et al., 2007; Karl and Knight, 1998). In 

the upcoming several decades, Vermont and other Northeastern states are projected to 

experience more frequent and intense rainfall events (Frumhoff et al., 2006; Pealer, 

2012). Average daily precipitation is projected to increase between 5 and 10% (10% 

being an increase of 4 inches yr-1) by midcentury, and between 7 and 14% by late century 

(Guilbert et al., 2014; Hayhoe et al., 2007). Extreme precipitation events (amount of 

precipitation that falls over five consecutive days) will also progressively increase over 

the century, i.e., 8% by mid-century, and 12-13% by late century (Frumhoff et al., 2006).  

1.7 Stormwater pollutants in urbanized watersheds and their impacts 
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Major pollutants in storm runoff include total suspended solids (TSS), nutrients 

such as P and N, heavy metals, pathogens, petroleum hydrocarbons, polycyclic aromatic 

hydrocarbons (PAHs), and pesticides  (Davis et al., 2003a; Gilbreath and McKee, 2015; 

Klein, 1979; Walsh et al., 2005).  These pollutants can alter the turbidity, temperature, 

pH, and salinity of surface waters (Corcoran et al., 2010) and decrease water quality for 

aquatic biota (Pratt et al., 1981). TSS, N, P, and heavy metal pollutants will be discussed 

in the subsequent sections.  

 

1.7.1 Total suspended solids 

Total suspended solids (TSS) are any solid organic or inorganic materials that are 

suspended in the water5 and will not pass through a 2-micron filter (NEMA 2014). While 

point source for TSS in urban areas can include WWTFs, nonpoint sources include 

erosion from bare lands and construction sites. Urban runoff is also a source/carrier of 

TSS, as heavy rainfall washes soil particles and debris from streets, commercial, and 

residential areas directly into streams, or storm drains that discharge directly to streams. 

Since infiltration is decreased due to large amount of imperviousness, and there are less 

natural areas for settling, runoff velocity is increased, which can increase the delivery of 

silt and clay particles, as well as larger sand-sized sediments and contribute to greater 

TSS amounts from land into surface waters. High water volumes and velocities resulting 

from urbanization can increase the speed of the water current downstream, resulting in 

streambank erosion and re-suspension of particulate matter from bottom sediments6. 

                                                 
5 https://www.ndhealth.gov/WQ/SW/Z6_WQ_Standards/WQ_TSS.htm 
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TSS impairs surface waters by increasing turbidity, which reduces sunlight 

penetration and subsequently slow down photosynthesis of benthic vegetation6. DO 

levels are decreased due to lower photosynthesis. Suspended solid particles can absorb 

heat from sunlight, which increases water temperature, which also affects DO levels, as 

warmer waters cannot hold as much oxygen as colder water. Further, suspended solids 

can clog fish gills, and their settling from the water column can smother eggs and larvae, 

and occupy void spaces between rocks. Prior to sedimentation, these microhabitats are 

used by various aquatic insects. Sedimentation limits the ability of the water to support a 

diverse aquatic life. Besides these direct effects, the sorption of dissolved substances 

(especially phosphate) and toxic heavy metals to TSS (Carritt and Goodgal, 1954) can 

lead to unintended consequences when, under turbulent flow caused by large storms 

contaminated sediments are resuspended to the water column and made bioavailable. 

Measures to curb TSS from urban watersheds should focus on reducing loading 

suspended solids to storm drains, streams, and rivers. Apart from regular street-sweeping, 

proper GSI incorporation in urban areas can go a long way in effectively reducing TSS 

concentrations in urban runoff. 

 

1.7.2 P sources, sinks, and cycling in urbanized watersheds 

1.7.2.1 Land 

 

Sources of P in urban catchments include wastewater and fertilizers (La Valle, 

1975). Lawns and streets were the primary source of P to urban streams in Madison, 

Wisconsin due to fertilizer application (Waschbusch et al., 1993). Soils under septic field 

                                                 
6 https://www.ndhealth.gov/WQ/SW/Z6_WQ_Standards/WQ_TSS.htm 



18 

 

systems, while retaining some P, can also leach variable amounts of P to groundwater, 

which can affect stream P concentrations (Gerritse et al., 1995; Hoare, 1984). 

Construction activities including clearing of previously agricultural land for development 

can expose soils, and under heavy rain events, deliver P-laden sediment to waters (Paul 

and Meyer, 2001). In northern temperate climates, most of the P loading occurs in 

winter–spring from a combination of snowmelt and spring runoff, which is driven by 

weather conditions. Total dissolved inorganic phosphorus (DIP) concentrations of river 

water can increase by double up to four-fold during and following increases in river 

discharge from heavy rainfall events or in the early stages of snowmelt (Wetzel, 2001). 

Streambank erosion of land adjacent to urban, suburban or agricultural areas, from 

intense rainfall-runoff events, is another big source of P loading to streams (DeWolfe et 

al., 2004),which can impact downstream lakes that receive input from such waters.  

P accumulates on land due to decadal application of fertilizer and manure 

excessive to crop requirements (Carpenter et al. 1998), which has been described as 

“legacy P” (Kleinman et al., 2011). Soils are typically considered a sink for P through 

chemical immobilization or sorption of orthophosphate (orthoP or phosphate) onto the 

finer clay and silt particles, and to iron (Fe) and aluminum (Al) hydroxides, and calcium 

carbonate (CaCO3) compounds (Richardson 1985) present in the soil. In acid soils, P 

precipitates with Fe and Al hydroxides, whereas in alkaline soils, P precipitates with Ca 

minerals. Additionally, higher metal content (Fe, Al, and Ca), and electrical conductivity 

(indicator of total soluble metal ion content of substrate) has also shown to increase P 

sorption (Roy, 2016; Wang et al., 2013). Sorption is the removal of a compound from 
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solution by concentrating it in (absorption) or on (adsorption) a solid phase such as soil 

particles or organic matter (Figure 2), through one of two processes: 

 (i) Ligand exchange – an anion (i.e., orthoP) replaces a surface hydroxyl ion that 

is bonded with a metal cation in a solid phase (part of the clay layer). In acidic waters this 

occurs with Fe, Al, Mn, and in basic waters with Ca, Mg. 

(ii) Ion exchange – ions are attracted to and loosely bound by negative and/or 

positively charged sites on permanent and variable charge soil surfaces (Rhue and Harris, 

1999).  

Phosphate sorption is influenced by pH, ionic strength, type of P compound, and 

other ion species competing with phosphate for adsorption (Hansen et al., 1999). 

Desorption reactions can also occur on clays, Al and Fe oxides to re-release 

orthophosphate ions from soil surfaces back in solution (Figure 2). Phosphorus can be 

removed from soil by plant uptake.   

 

Fig. 2. Phosphorus cycle in the soil (Source: www.spectrumanalytic.com) 
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 In soils prone to runoff during intense storms P can be transported to aquatic 

ecosystems as both dissolved and particulate (sediment-bound) P forms (Correll, 1998) 

through erosion and runoff, where it accumulates in sediments. Erosion moves 

particularly finer soil particles that are P-enriched (Kleinman et al., 2011). “Legacy P” is 

a problem in various lakes in the U.S. including Lake Champlain, Great Lakes, Lake 

Mendota, and Lake Erie, Lake Washington, Tabor Lake, among others. It is expected that 

even long after external P inputs to the lakes from urban, forest and agriculture runoff are 

ceased, the de-sorption and internal cycling of “legacy P” from mineral sediments in lake 

bottoms, can increase bioavailable or algal-available P, and delay the response of 

watersheds to land management efforts in mitigating eutrophication (Kleinman et al., 

2011; Larsen et al., 1979; Scheffer et al., 1993). As lakes are enriched, P accumulates in 

the sediments, and the rates of recycling from sediments to the overlying water (“internal 

loading”) increase. Whole-lake experiments show that cycling rates can build to 

significant levels in a matter of years (Schindler et al., 1971). On an annual basis, 

recycling from sediments to water of eutrophic lakes commonly exceeds external inputs 

of P (Nürnberg, 1984; Soranno et al., 1997). 

 

1.7.2.2 Internal cycling of P in waters and sediments 

Inorganic orthophosphate (orthoP; PO4
3- either as H3PO4, pH<2.16; H2PO4

-; 

pH<7.2, or HPO4
2-, pH<12.5, Stumm and Morgan, 1970), sometimes called soluble 

reactive phosphorus (SRP), ortho-P or dissolved inorganic P (Li and Brett, 2013), is 

considered the most mobile and bioavailable or algal-available form of P within 

sediments and the water column (Giles et al., 2015), though organisms may also utilize 
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dissolved organic P (DOP), when supply of ortho-P is limited for biomass growth (Lin et 

al., 2016).  Eutrophication can accelerate desorption of e ortho-P from sediments to the 

overlying bulk water primarily by depleting dissolved oxygen (DO) (Correll, 1998; Giles 

et al., 2015). Oxygen is not able to diffuse into the water column as rapidly as the 

microbial consumption of oxygen, leading to anaerobic condition.  This condition is more 

common in summers due to higher temperatures increasing microbial activity. Anoxic 

conditions in eutrophic waters (lakes and estuaries) leads to the reduction and dissolution 

of mineral-phosphate complexes (Giles et al., 2015; Lake et al., 2007; Norton et al., 

2008) that otherwise remove P from the solution/bioavailable phase to solid/particulate 

phase, and act as P sinks. For example, iron hydroxide (Fe(OH)3(solid)) has a strong 

binding capacity for inorganic phosphate in the water column and oxic sediments. Under 

anoxia and when certain pH conditions are met however, Fe(OH)3 dissolves and releases 

adsorbed PO4 (i.e., Fe3+ is reduced to Fe2+, a more soluble form of iron, and both Fe2+ and 

the adsorbed P are released into the solution) thereby rendering the P bioavailable, where 

it can also diffuse more freely (Correll, 1998; Lake et al., 2007). Also under anoxic 

conditions, lower concentrations of oxidized Fe minerals are present that can adsorb P. 

Though the affinity of P is much stronger for Fe oxides, it is also known to bind with Al 

oxides and almost irreversibly so that even under reducing conditions, P is much less 

likely to desorb from Al hydroxides (Lake et al., 2007). Besides oxygen levels and pH 

controlling P cycling mechanisms, photo-redox reactions due to sunlight in shallow lakes 

can also degrade mineral-organic complexes, producing free radicals that are highly 

reactive and which decompose organic matter, releasing organically bound P in the 

process (Essington, 2015). In addition, if conditions in the bay allow for aerobic activity 
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in the sediment-water interface, P will also be made bioavailable by microbial 

mineralization or (aerobic) decomposition of organic matter (Andersen and Jensen, 

1992).  

Beside chemical adsorption of P by Fe and Al hydroxides in minerals soils and 

sediments in conjunction with aerobic conditions, phosphate ions also adsorb onto CaCO3 

(i.e., by replacing the carbonate, leading to formation of calcium phosphate minerals 

called apatite (Kitano et al., 1978; Schlesinger, 2005). However, CaCO3 sorption is 

considered less important than iron-phosphate complexes in controlling the 

concentrations of phosphorus in sediments (Wetzel, 2001). P can be mobilized from its 

solid or “sorbed” phase in sediments (and soils) into the solution phase depending on 

certain pH changes in the environment. For example, when pH is lower or greater than 

6.5, Al or Fe-phosphate complexes become soluble, and have decreased P sorption 

capacity, while calcium phosphates become soluble at lower pH (Wetzel, 2001).  

Biological sinks of P include uptake by microorganisms, plants, algae and 

cyanobacteria (Wetzel, 2001), while their death releases P during decay. No significant 

gaseous component of P exists, and the atmospheric transport of P in soil dust is 

relatively small compared to other transfers (Schlesinger, 2005) such as erosion, river 

discharge, internal cycling in sediments and soils discussed above.  

Algal blooms in Lake Champlain, first documented in the 1970s, are associated 

with increasing P concentrations in the lake, and intensify during summer months when 

increasing temperatures increase algae productivity. The detrimental effects of 

eutrophication have stimulated efforts to control P input to lakes.  
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1.7.3 N sources and sinks in urbanized watersheds 

The various sources of N in urban systems include effluents from WWTFs, 

fertilizers applied to gardens, lawns and golf courses, human and pet wastes, landfill 

leachates, industrial processes, and atmospheric (wet and dry) transport and deposition of 

various N-containing compounds such as NOx (i.e., NO, NO2) in the automobile exhausts 

and other fossil fuel combustion sources (Bouwman et al., 1997; Carpenter et al., 1998). 

Due to the short residence time of NOx in the atmosphere, most of it falls over land by 

precipitation, where it enters biogeochemical cycles (Schlesinger, 2005). Natural sources 

like biological N fixation (conversion of N2 to NH4) in the root nodules of leguminous 

plants, and lightning, though minor compared to anthropogenic sources, also makes 

oxidized nitrogen (NOx) available (Schlesinger, 2005). Various other gaseous N oxides, 

although not generated directly from urban activities, come from natural soils, agriculture 

and forestry operations such as biomass burning, deforestation, cattle farming, manure 

application to soils (Bouwman et al., 2002), and forest fires (causing volatilization of 

NH3, NOx, and N2; Schlesinger, 2005). Land use changes through urbanization can alter 

biogeochemical cycles of N, transforming the ecosystem from being a sink to source or 

vice versa of pollutant. For example, altering catchment hydrology in humid urban areas 

such as Baltimore negatively impacted the ability of urban riparian zones to intercept and 

subsequently remove upland-derived NO3
- via denitrification process, owing to water 

table lowering (Groffman et al., 2002; Kaye et al., 2006). Simultaneously, where riparian 

areas have been eliminated, human activities are also creating alternative hotspots for 

denitrification or NO3
- sink such as in stormwater detention basins, roadside ditches, and 

drainage swales (Groffman and Crawford, 2003a; Zhu et al., 2004), and in lawns and 
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other places where there is adequate water, nitrate and soil organic matter conducive for 

the reaction to occur (Kaye et al., 2006). Urban landscaping through vegetation planting 

also represents a small nutrient sink as plants accumulate nutrients in biomass and soil 

organic matter.  

 

1.7.3.1 Atmospheric N forms 

N in precipitation is present as ammonium (NH4
+), nitrate (NO3

-), and dissolved 

organic N, and they all play major a role in the nutrient cycling of surface waters (Russell 

et al., 1998). NH4
+ exists in precipitation due to dissolution of atmospheric NH3 gas, 

whose major sources are from biomass burning, animal excreta, and synthetic fertilizer 

applications to soils (Bouwman et al., 1997; Prospero et al., 1996). Major N oxides from 

atmospheric transport and deposition standpoint include NO, NO2 (collectively referred 

to as NOx), and NO3
- (in the form of NO3

- aerosols and as gas phase HNO3) (Bauer et al., 

2007; Prospero et al., 1996). NO3
-
 mainly exists in rainwater because of dissolution of 

HNO3 (g), which is primarily derived from NOx. Major natural sources of NOx to the 

atmosphere include lightning and biological fixation, and major anthropogenic sources 

include fossil-fuel combustion by power plants and automobiles and biomass burning 

(Russell et al., 1998).  

The sources of dissolved organic nitrogen (DON) are less well known, but they 

are present in precipitation, though they are poorly characterized (Jickells et al., 1990; 

Knap et al., 1986; Rendell et al., 1993). Studies have shown that phytoplankton are 

capable of using DON as a nutrient source (Antia et al., 1991; Timperley et al., 1985), 
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highlighting the importance of quantifying both inorganic and organic forms of nitrogen 

when studying eutrophication (Russell et al., 1998). 

 

1.7.3.2 Terrestrial forms 

Soil organic matter, plants, and soil microbes in the upland ecosystems act as both 

sources and sinks of N, and the cycling of N between these entities can regulate N supply 

in the solution that is available for leaching into surface or ground waters. The main 

processes through which N is transformed and cycled between these entities are plant 

uptake during growth, N mineralization through decay, immobilization, nitrification and 

denitrification (Figure 3). Most of these processes are mediated by microorganisms. N 

mineralization is the conversion of organic N (i.e., N bound in dead plant biomass) to 

NH4
+ by bacteria and fungi during decomposition. Volatilization may be responsible for 

the loss of NH3 in soil-water systems. Volatilization in flooded soils occurs at pH above 

7.5 or 8. However, since the pH of stormwater is unlikely to be higher than 8 (Hatt et al., 

2004), volatilization is not expected to be a common nutrient removal processes in 

bioretention systems. Some of the NH4
+ can be removed by sorption processes (Phillips, 

2002), or taken up by plants for growth, while some is used by bacteria for growth or 

their own metabolism in the nitrification process, by converting NH4
+ to NO3

-, a highly 

mobile nutrient in the soil solution. Unlike NH4
+ ions, which are positively charged, NO3

- 

ions are negatively charged and highly prone to leaching by rainfall. While the positive 

charge of NH4 allows it to chemically sorb onto the negatively charged clay particles and 

soil organic matter and get held within the soil, NO3
- does not participate in sorption 

reactions significantly (Harrison, 2003). Unless NO3
-intercepts plant roots and gets taken 
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up, or further gets transformed through the denitrification process, it leaches into 

groundwater and downstream surface waters, causing nutrient enrichment. 

 Nitrification, carried out by nitrifying bacteria, requires the presence of oxygen 

(O2), and thus occurs in aerobic soils, flowing water, and surface layers of sediments 

(Harrison, 2003) at a redox potential above 350 mV (Patrick and Jugsujinda, 1992).  N2O 

and NO, which are potent greenhouse gases, are released as by-products during 

nitrification (Wrage et al., 2004) when O2 supplies are marginal (Weil et al., 2016). 

Nitrification is also likely to occur in waterlogged soils in the thin aerobic zone created 

around plant roots (Reddy et al., 1984). Nitrification appears to be a dominant process in 

many bioretention systems (Table 2). The presence of labile organic C can limit 

nitrification when the heterotrophic microbes consuming organic C can out-compete 

nitrifying organisms by immobilizing NH4 (Butturini et al., 2000; Zhang et al., 1995). 

Aerobic heterotrophs also consume O2 in the process of respiration, limiting its supply to 

the nitrifying organisms (Butturini et al., 2000).  
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Fig. 3. Nitrogen cycle in soils (Source: U.S. Department of the Interior, National Park 

Service) 

 

The N transformation that serves an important water quality benefit carried out by 

riparian ecosystems (Groffman and Crawford, 2003b) is denitrification, which is the 

anaerobic microbial conversion of NO3
- to N gases (NO3

- → NO2
- → NO →  N2O → N2). 

A soil is considered aerobic if it has a reduction-oxidation (redox) potential above 350 

mV, and in such environment O2 is used as the terminal electron acceptor. At redox 

potentials less than 350 mV, O2 supply is depleted, and the denitrifying bacteria begin to 

use alternate electron acceptors such as NO3
- (below 350 mV), manganese – Mn4+ (below 

300 mV) and iron – Fe3+ (below 150 mV) respectively (Patrick and Jugsujinda, 1992). 

The denitrifying bacteria, which are facultative anaerobes, using NO3
- or NO2 as an 

alternative electron acceptor and ultimately reducing it to inert N2 gas, if the reaction 

occurs all the way through (Bollmann and Conrad, 1998), removing N permanently from 

the system. If the end-product is not N2 gas, NO or N2O gases are produced, which are 
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reactive and detrimental to the atmosphere. In the absence of denitrification, most N 

would occur in the form of NO3
- in seawater, raising the acidity of oceans as a result 

(Schlesinger, 2005). Denitrification requires ample availability of organic matter (labile 

C) supply to provide energy source for bacteria, so denitrification rates can slow down if 

C supplies are limited. Kim et al., (2003) designed bioretention systems using newspaper 

as an artificial C source to promote denitrification and measured significant NO3
- removal 

(up to 99 %), while observed little removal (up to 10%) in the non-amended bioretention 

system. 

Denitrification is the only process that irreversibly removes N from ecosystems 

(Harrison, 2003), which can be replicated in stormwater ponds and detention basins to 

reverse nutrient enrichment in waters. Although most of the loss occurs as N2, the small 

fraction that is lost to the atmosphere as N2O during denitrification (Schlesinger, 2005; 

Wrage et al., 2004) may have important implications for potential greenhouse warming 

and ozone destruction in the stratosphere (Bollmann and Conrad, 1998). 

 

1.7.4 Eutrophication from nutrients 

N and P (mostly in the form of NO3
- and PO4) are the major limiting 

macronutrients in aquatic environments controlling photosynthesis (Galloway et al., 

1996; Howarth, 1998; Nixon et al., 1996). While P is the key element limiting algae 

growth in fresh waters, particularly for many lakes including Lake Champlain, N is 

limiting in marine systems (Carpenter et al., 1998; Correll, 1998; Schindler, 1977). At 

excess concentrations, these nutrients lead to increased growth of algae and plants, which 

starts the process of eutrophication.  The decaying algae and plant matter contribute to 

http://www.visionlearning.com/en/glossary/view/ecosystem/pop


29 

 

high levels of organic matter, and the subsequent decomposition by microbes depletes 

DO levels in the process creating hypoxia or anoxia, leading to fish kills (Russell et al., 

1998; Smith et al., 1998). Eutrophication can be accompanied by proliferation of toxic 

cyanobacterial blooms, also called blue-green algae, which causes poisoning and poses 

health risks to humans and animals alike. Myriad of other adverse effects include 

problems with odor, taste, and increased cost of water treatment, murky water column, 

and compromised aesthetics, altogether restricting the use for fisheries, recreational 

activities, industry and drinking water (Carpenter et al., 1998). In streams, excessive 

nutrient inputs can also stimulate the growth of undesirable rooted aquatic plants. 

According to US EPA, approximately 11% of the nation’s assessed stream miles are 

threatened or impaired due to excess nutrients (Erickson et al., 2013).  

 

1.7.5 Heavy Metals 

Heavy metals (Copper (Cu), lead (Pb), zinc (Zn), cadmium (Cd), aluminum (Al)) 

enter water bodies via storm runoff, wastewater discharge where metal concentrations 

can be higher near sewage treatment plant outfalls (Lacey et al., 2001), runoff from 

industrial sites with longstanding history of contamination, and atmospheric deposition 

(LCBP 2011). Heavy metals constituents are typically dynamically partitioned into 

dissolved fraction or particulate fraction. Particulate-bound heavy metals are bound to 

road dust, particulate organic matter, and the suspended sediment component of the 

runoff (Brown and Peake, 2006), and get mobilized to water bodies where they 

accumulate in the sediments. Changes in redox features in the environment can desorb 

sediment-bound heavy metals  into the water column (Pekey et al., 2004). Finer grain 
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sizes such as the negatively charged clays (< 2 micron) in soil and dust elements have 

higher metal adsorption capacity, due to their higher specific surface area to volume 

ration than coarser fractions (Brown and Peake, 2006; Mecray et al., 2001). Metals can 

also latch on to organic compounds (humic substances, low molecular weight organic 

ligands) bearing negative charges, and can subsequently get carried in the runoff as 

metal-organic complexes  (Essington, 2015). Particulate metals are generally associated 

with the non-filterable fraction of stormwater where flow rates can affect mobilization 

rates from the road surface and drainage system. Metal removal efficiency in bioretention 

systems could thus be correlated to the efficiency of removal of clay and silt fractions of 

the sediment and particulate organic carbon (Maniquiz-Redillas and Kim, 2014). 

Urbanized cities have higher concentrations of metals than rural areas (Kaye et 

al., 2006). Sources of heavy metals  include vehicles (tire wear, brake pads, motor oil and 

gasoline, leakage of oil and lubricants), asphalt road, batteries, metal plating, roadway 

maintenance operations, corrosion of galvanized materials (i.e., building roofs, pipes), 

(Brown and Peake, 2006; Maniquiz-Redillas and Kim, 2014). Heavy metals persistent in 

the environment, and their potential to bioaccumulate can render them toxic to organisms 

(Pekey et al., 2004). Metals tend to build up within the water treatment facilities as well 

(Davis et al., 2003a). While some of the trace metals (Pb, Cd, As) are toxic to organisms 

at low concentrations, others (Cu, Zn) are biologically essential micronutrients and 

become toxic only at higher concentrations (Amundsen et al., 1997; Pekey et al., 2004).  
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1.8 Soil microbial biomass (SMB) and nutrient transformations 

 

Green infrastructures including but not limited to bioretention systems are 

designed to amplify soil biological activity as they receive nutrient enriched influent 

waters. Soil microbial communities exert major influence on nutrient cycling (Bailey et 

al., 2002) such as decomposition and mineralization, immobilization, nitrification, and 

denitrification . As such they regulate the retention/release of nutrients from the 

bioretention filter media. Soils have large pool of soil microbial biomass (SMB) which is 

involved in extensive nutrient storage and transformation of C and nutrients (Weil et al., 

2016).  

Plants, essential parts of bioretention systems promote microbial growth through 

root exudates that contain C and nutrient. As a result, SMB density is two orders of 

magnitude higher in the rhizosphere relative to bulk soils (Atlas and Bartha 1998). 

Microbes immobilize nutrients  N from the soil solution for their own metabolism and 

growth (Schlesinger, 2005), and like plants, drive up nutrient sequestration which in turn 

reduces the  nutrients availabe  to leach below to groundwater.. Conversely, the 

ammonification potentials of soil and the decay of plant litter, which spur nutrient flush, 

are  closely associated with SMB (Wardle, 1992). 

The balance between microbial immobilization, mineralization, and 

transformation determines the nutrient fate in the soil. During decomposition of organic 

material, the respiration of soil microbes converts organic C to CO2, while some of the N 

and P contents are assimilated within microbial cells. Ruess and Seagle, (1994) found a 

direct correlation between SMB carbon and soil CO2 efflux in African grassland, most 

likely because of decomposition by microbes driving subsequent release of CO2. Another 
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study by Brookes et al., (1985) showed soil microbial biomass P was linearly related to 

soil microbial biomass C in 15 different soils (8 grassland, 6 arable, 1 deciduous 

woodland), likely due to microbial immobilization of P. Perhaps water quality benefit 

could arise from increasing SMB, but only if immobilization of influent stormwater N 

and P can exceed nutrient release from decomposition.  

SMB, which is an index of microbial activity (Schlesinger, 2005), influence the 

extent to which the above biochemical processes are carried out in a system. SMB varies 

seasonally as its activity is affected by varying soil temperatures coupled with soil 

moisture conditions. Other factors that influence SMB are the amount of organic matter 

and specifically the labile C and N pool, inputs from root exudation and sloughing, plant 

production (Ruess and Seagle, 1994; Van Veen et al., 1989), plant species, functional 

groups and diversity (Bardgett and Shine, 1999; Lange et al., 2015; Wardle, 1992; Zak et 

al., 2003).   

 

1.9 Bioretention performance: Precedent studies 

 

Among the number of ecological technologies, best management practices, and 

land use and conservation measures that have the potential of decreasing the flow of 

nonpoint pollution into surface waters, bioretention is one of them, if designed properly. 

Bioretention focuses on implementing specific physicochemical and biological processes 

that naturally occur in the environment as a mechanism to remove pollutants (Davis et al., 

2009b; Lucas and Greenway, 2007b).  A growing body of literature over the past decade 

has shown that bioretention systems are effective water quality treatment devices with 

good load removal capacities for total suspended solids, heavy metals, organics, oil and 
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grease, and bacteria in the effluent (Table 1). On the other hand, nutrient (particularly 

dissolved ones not readily treated through filtration or sorption) retention and detention is 

not a focus in bioretention design as much as hydrological volumes and TSS. While total 

phosphorus (TP) and total nitrogen (TN) removal is decent compared to other stormwater 

treatment practices, removal of dissolved nutrients (organic N, NO3
- or PO4

3-/SRP) are 

highly variable and sometimes poor (Davis et al., 2001, 2006; Dietz and Clausen, 2006a; 

Hatt et al., 2007; Hsieh and Davis, 2005; Hunt et al., 2006), unless specific design 

features are incorporated. These specific features could be increased fill media depth and 

composition or raised under-drain to prolong anaerobic conditions for denitrification 

(Davis et al., 2001, 2009b; Hong et al., 2006; Kim et al., 2003), and underlying less 

impervious media layer over a more pervious one (Cho et al., 2009; Hsieh et al., 2007). 

Nevertheless, the fact that bioretention design features and monitoring regimes also vary 

greatly among studies, could influence the variability in the resulting treatment 

efficiencies. 

Leaching of N from bioretention has been attributed to mineralization of soil 

organic matter (Dietz and Clausen, 2006a) or the mulch used in the filter media (i.e. 

produced from leaves and grass clippings used by Hsieh and Davis 2005), nitrification of 

captured N between storm events and its subsequent wash-off (Davis et al., 2006; Hatt et 

al., 2007; Hsieh et al., 2007), or the mineralization of organic N as it gets mobilized 

through the soil profile (Duncan, 1999). Additional research is needed on the role of 

plants and soil additives that may better manage nitrate and phosphate while maintain (or 

even improve) soil structure and infiltration rates over time.  
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Table 1. Load based (with the exception for fecal coliform) pollutant removal 

efficiencies (%) by in situ bioretention systems. 

Pollutant 
% Load 

Removal 

Removal 

Phenomenon 
Field Studies 

Design recommendations 

to enhance removal 

Fecal 

coliform 
*69 to 95 

Filtration, 

decay/die-off 

Passeport et al., 2009; 

Hunt et al., 2008 

Mature and dense 

vegetation 

Total 

suspended 

solids 

(TSS) 

 

60 to 97 

Sedimentation, 

Filtration/ 

infiltration 

Hatt et al., 2009; Hunt 

et al., 2008; Roseen et 

al., 2006 

Deep and extensive rooted 

plants 

Soil depth > 300 mm 

NUTRIENTS 

Nitrate+Nit

rite (NO2,3-

N) 

-44 to 67 Microbial 

mediated 

biotransformatio

n (nitrification, 

denitrification) 

Adsorption onto 

negatively 

charged soil 

particles 

Plant uptake 

Kim et al., 2003; Dietz 

and Clausen 2006; 

Davis et al., 2006; 

Dietz and Clausen, 

2005; Hatt et al., 2009; 

Hunt et al., 2006; Li 

and Davis, 2014; 

Roseen et al., 2006 

Amending media with C 

source (pea straw, 

woodchips) to promote 

denitrification 

Low N content in the 

organic material 

Plants with higher N uptake 

capacity, extensive root 

systems, greater maturity 

and density 

Plant harvest from time to 

time and before senescence 

Ammonia 

(NH3-N) 
64 to 96 

 

Total 

nitrogen 

(TN) 

-7 to 80 

Orthophosp

hate (PO4-

P) 

52 to 77 
Adsorption onto 

silt, clay 

minerals, Ca and 

to hydrous 

oxides of Fe and 

Al 

Plant uptake 

Passport et al., 2009; 

Davis et al., 2006; 

Dietz and Clausen 

2005; Hunt et al., 

2006; Hatt et al., 2009 

Low P-index soil 

Low organic matter content 

in filter media 

Low P content in the 

organic matter 

Incorporate silt & clay in 

soil media 

 

Total 

phosphorus 

(TP) 

-398 to 85 

HEAVY METALS 

Pb 31 to 95 

Adsorption to 

mulch, organic 

matter layer 

Davis et al., 2003; 

Hunt et al., 2006; 

Roseen et al., 2006; 

Hunt et al., 2008 

Filter media depth > 300 

mm 

Cu 43 to 98 

Zn 64 to 95 

Cd 91 

Fe -13000 

*Concentration (mg L-1) instead of load 
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Table 2. Summary of soil media and associated pollutant removal mechanisms by 

bioretention systems in selected studies. 

Study 
Bioretention Soil Media 

Composition 
Pollutant removal pathways described 

Dietz and Clausen, 

2006 

Shredded hardwood bark mulch, 

native soil, woody shrubs 

NH4
+ adsorption, NO3

- denitrification, N and P 

released by decomposition of soil flora and 

fauna, mulch retained N & P, plant uptake of 

P < 3 %. 

Davis et al., 2003 

Box: Sandy loam soil, creeping 

juniper 

Field: 50% sand, 20-30% leaf 

mulch, 20-30% topsoil, grasses, 

bushes, small trees 

Metal removal by sorption to mulch layer and 

influenced by flowrate and storm duration. 

Metal uptake by roots. Higher metal 

attenuation attributed to sites with finer media 

and mature plant growth in addition to mulch. 

Davis et al., 2006 

Box: Mulch layer, sandy loam 

(76% sand), creeping juniper 

Field: Mulch, sandy loam top 

soil, grasses, shrubs, small trees 

Limited adsorption or physiochemical reaction 

with NO3
- expected, organic N sorption to 

mulch, limited denitrification responsible for 

N losses, plant uptake could remove 90 % of 

captured N. 

Davis et al., 2001 

Shredded hardwood bark mulch, 

agriculture top soil (sandy loam) 

used for vegetable production, 

creeping juniper 

Metal sorption to mulch layer greater than 

sorption to soil, P sorption or precipitation 

with Ca, Fe, Al, NH4
+ sorption via ion 

exchange and electrostatic interaction, effluent 

NO3
-
 higher resulting from nitrification 

between dosing events. 

Hsieh and Davis, 

2005a 
Mulch, local soil, sand 

Mulch layer filtered most of TSS and reduced 

media clogging. TP and Pb removed by 

sorption to OM or precipitation. NO3
- 

denitrification. 

Hsieh and Davis, 

2005b 

Mulch from leaves and grass 

clippings, porous soil, sand, 

TP removal via physical filtration, sorption or 

precipitation, loss of N by denitrification, Pb 

removal through filtration of TSS as 56% of 

influent Pb was sorbed to TSS. 

Lucas and Greenway, 

2007 

Pea gravel, sand, loamy sand, 

gravel mulch; Swamp Foxtail 

Grass, Flax Lily, Banksia, 

Bottlebrush 

P Sorption, NO3
-
 denitrification, plant and 

microbial uptake. 

Bratieres et al., 2008 

3 media types: sandy loam, 

sandy loam with 10% 

vermiculite and 10% perlite, 

10% leaf-compost and 10% 

mulch, 5 types of grasses 

TSS removal through soil-based filtering 

Columns with Carex and Melaleuca showed 

NO3
- and TN removal due to dense root 

architecture and arbuscular mycorrhizal fungi 

respectively. NO3
- export and poor TN 

removal from other plant columns attributed to 

poor root density and OM mineralization rate 

> plant and microbial uptake, biological 

transformation of captured NH3 and organic N 

to NOx between runoff event, inadequate 

denitrification to complete the N removal 

process. 

Zinger et al., 2007 

Sandy loam, fine sand mixed 

with shredded woodchips from 

pea straw and red-gum, river 

sand, tall sedge, SZ 

NO3
-
 denitrification. Addition of organic C as 

an electron donor in the anaerobic zone was 

concluded beneficial to the rate of 

denitrification. 

Blecken et al., 2009 

Sandy loam, fine sand, coarse 

sand, cellulose-based C source 

consisting of 1/3 pea straw and 

2/3 Red River Gum wood chips, 

Tall sedge; SZ 

Addition of SZ and C decreased DO and redox 

potential. Formation of dissolved Cu-organic 

matter complexes, but also sorption of Cu by 

solid OM particulate added by woodchips. SZ 

enhanced metal sorption by diminishing 

oxidizing conditions. NO3
- denitrification. SZ 

increased pH, which increases metal retention. 

SZ: Submerged zone  
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1.10 Soil CO2 fluxes  

 

Although CO2 is only one aspect of the C cycling of terrestrial systems, it is 

essential to quantify as it is the most important GHG being produced in largest quantities. 

The residence time of CO2 is 3 to 4 years in the atmosphere7. Soil CO2 flux includes CO2 

released from soils due to respiration of soil heterotrophs (e.g., microbes and soil fauna 

which decompose organic substrates) and live roots and root-associated mycorrhizal 

fungi (Bond-Lamberty et al., 2011; Boone et al., 1998; Raich and Schlesinger, 1992). In 

fact, current estimates indicate that CO2 emissions from soils by microbial respiration (60 

Pg C yr-1) are more than 10 times greater than from fossil fuels sources of combustion 

(5.5 Pg C yr-1; Essington, 2015). Increased soil C sequestration could help offset the 

effects of anthropogenic emission of CO2, and improve soil physical and chemical 

properties by maintaining nutrient cycling processes and soil biological activity (Rustad 

et al., 2000), processes closely related to soil sustainability. Biotical and abiotic factors 

that influence soil CO2 fluxes are vegetation quantity and type, roots, microbial biomass, 

temperature, soil moisture and management activities. Soil saturation, a critical design 

consideration of GSIs, can impede diffusion of oxygen, which slows down the activity of 

microbes involved in decomposition and CO2 production, but increases the production of 

more potent but trace biogenic GHGs, namely N2O and CH4.  

Lastly, soil CO2 flux estimates can be used to fill gaps in the complete study of 

carbon cycling and budget of bioretention systems, in which other parameters required 

                                                 
7 

https://web.viu.ca/krogh/chem302/residence%20time%20of%20atmos%20gases%20Table%202.1%20Hob

bs.pdf 
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are carbon stocks in soil and plants, as well as dissolved organic carbon in the soil 

solution (and inflows and outflows) some of which are beyond the scope of this study.  

 

1.11 Trace soil N2O and CH4 exchange 

 

CH4 and N2O are emitted in smaller quantities, but substantially contribute to 

global warming (Smith et al., 2003). Both CH4 and N2O are radiatively active and potent 

greenhouse gases having greater warming potential than CO2 in the atmosphere. The 

warming potential of 1 kg of CH4 is 25 times greater than that of CO2, while that of N2O 

is 300 times greater in a 100-year life span (Christiansen et al., 2012; Smith et al., 2003). 

The atmospheric residence times of N2O and CH4 are 150 and 9 years respectively. 

Production of either gas is limited by oxygen and available C substrates (Christiansen et 

al., 2012), the latter of which can be provided by the soil media or by particulate organic 

matter (OM) or degradation products of hydrocarbons in the influent (McPhillips and 

Walter, 2015).  

 

1.11.1 Soil N2O exchange 

N2O, which is the third most important contributor to current radiative forcing, 

has increased by about 16% from its pre-industrial level of 270 ppb to 319 ppb in 2005 

(Denman et al., 2006). There is growing concern about the flux of N2O as its 

concentrations in the atmosphere are increasing almost linearly at an annual rate of 0.26% 

for the last several decades (Denman et al., 2006). Such small atmospheric increases can 

have long lasting effects as N2O has an atmospheric residence time of 100-175 years.  
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Soils are an important source of N2O which is formed due to two microbial 

processes: nitrification, the aerobic conversion of NH4
+ to NO2 and then to NO3

-, and 

denitrification, which involves reduction of NO3, to atmospheric N2 releasing N2O 

(Figure 1) as an intermediate product (Basiliko et al., 2009; Bollmann and Conrad, 1998). 

While denitrification produces N2O under anaerobic-saturated zone conditions, the 

intermediate wet, or saturated conditions within an unsaturated zone in which microsites 

vary between aerobic and anaerobic conditions, can promote cycling between 

nitrification and denitrification and subsequent N2O production (Burgin and Groffman, 

2012; Christiansen et al., 2012; Firestone and Davidson, 1989).  The complex interactions 

between production and consumption make field level N2O measurements extremely 

variable and difficult to interpret  (Burgin and Groffman, 2012). Nitrification rates are 

controlled by O2 and NH4
+ availability, and the primary controls of denitrification rates 

are O2, NO3
-, and organic C availability. Any factor that slows the overall rate of 

denitrification can cause N2O to accumulate as a major end-product (Firestone and 

Davidson, 1989). From water quality standpoint, removal of NO3
– from stormwater is a 

desired ecosystem service, and thus an ideal GSI design would maximize the water 

quality service of denitrification while minimizing production of CH4 and N2O.  

 

 

Fig. 4. A conceptual model of N gas production via nitrification and denitrification: (a) 

flux of N through process “pipes” and (b) holes in the pipes through which N-gases 

“leak” (Adapted from (Firestone and Davidson, 1989).  



39 

 

References 

 

Amundsen, P.-A., Staldvik, F.J., Lukin, A.A., Kashulin, N.A., Popova, O.A., 

Reshetnikov, Y.S., 1997. Heavy metal contamination in freshwater fish from the 

border region between Norway and Russia. Sci. Total Environ. 201, 211–224. 

Andersen, F.Ø., Jensen, H.S., 1992. Regeneration of inorganic phosphorus and nitrogen 

from decomposition of seston in a freshwater sediment. Hydrobiologia 228, 71–

81. 

Antia, N.J., Harrison, P.J., Oliveira, L., 1991. The role of dissolved organic nitrogen in 

phytoplankton nutrition, cell biology and ecology. Phycologia 30, 1–89. 

Aryal, R., Vigneswaran, S., Kandasamy, J., Naidu, R., 2010. Urban stormwater quality 

and treatment. Korean J. Chem. Eng. 27, 1343–1359. 

Ashraf, M.A., Maah, M.J., Yusoff, I., 2012. Bioaccumulation of heavy metals in fish 

species collected from former tin mining catchment. Int. J. Environ. Res. 6, 209–

218. 

Bailey, V.L., Peacock, A.D., Smith, J.L., Bolton, H., 2002. Relationships between soil 

microbial biomass determined by chloroform fumigation–extraction, substrate-

induced respiration, and phospholipid fatty acid analysis. Soil Biol. Biochem. 34, 

1385–1389. 

Bardgett, R.D., Shine, A., 1999. Linkages between plant litter diversity, soil microbial 

biomass and ecosystem function in temperate grasslands. Soil Biol. Biochem. 31, 

317–321. 

Basiliko, N., Khan, A., Prescott, C.E., Roy, R., Grayston, S.J., 2009. Soil greenhouse gas 

and nutrient dynamics in fertilized western Canadian plantation forests. Can. J. 

For. Res. 39, 1220–1235. 

Bauer, S.E., Koch, D., Unger, N., Metzger, S.M., Shindell, D.T., Streets, D.G., 2007. 

Nitrate aerosols today and in 2030: a global simulation including aerosols and 

tropospheric ozone. Atmospheric Chem. Phys. 7, 5043–5059. 

Beckage, B., Osborne, B., Gavin, D.G., Pucko, C., Siccama, T., Perkins, T., 2008. A 

rapid upward shift of a forest ecotone during 40 years of warming in the Green 

Mountains of Vermont. Proc. Natl. Acad. Sci. 105, 4197–4202. 

Bollmann, A., Conrad, R., 1998. Influence of O2 availability on NO and N2O release by 

nitrification and denitrification in soils. Glob. Change Biol. 4, 387–396. 

Bond-Lamberty, B., Bronson, D., Bladyka, E., Gower, S.T., 2011. A comparison of 

trenched plot techniques for partitioning soil respiration. Soil Biol. Biochem. 43, 

2108–2114. 

Boone, R.D., Nadelhoffer, K.J., Canary, J.D., Kaye, J.P., 1998. Roots exert a strong 

influence on the temperature sensitivityof soil respiration. Nature 396, 570–572. 

Bouwman, A.F., Boumans, L.J.M., Batjes, N.H., 2002. Estimation of global NH3 

volatilization loss from synthetic fertilizers and animal manure applied to arable 

lands and grasslands. Glob. Biogeochem. Cycles 16. 

Bouwman, A.F., Lee, D.S., Asman, W.A.H., Dentener, F.J., Van Der Hoek, K.W., 

Olivier, J.G.J., 1997. A global high-resolution emission inventory for ammonia. 

Glob. Biogeochem. Cycles 11, 561–587. 



40 

 

Bratieres, K., Fletcher, T.D., Deletic, A., Zinger, Y., 2008. Nutrient and sediment 

removal by stormwater biofilters: A large-scale design optimisation study. Water 

Res. 42, 3930–3940. 

Breen, P.F., 1990. A mass balance method for assessing the potential of artificial 

wetlands for wastewater treatment. Water Res. 24, 689–697. 

Brookes, P.C., Landman, A., Pruden, G., Jenkinson, D.S., 1985. Chloroform fumigation 

and the release of soil nitrogen: a rapid direct extraction method to measure 

microbial biomass nitrogen in soil. Soil Biol. Biochem. 17, 837–842. 

Brown, J.N., Peake, B.M., 2006. Sources of heavy metals and polycyclic aromatic 

hydrocarbons in urban stormwater runoff. Sci. Total Environ. 359, 145–155. 

Brown, S., Miltner, E., Cogger, C., 2012. Carbon Sequestration Potential in Urban Soils, 

in: Carbon Sequestration in Urban Ecosystems. Springer, Dordrecht, pp. 173–196. 

https://doi.org/10.1007/978-94-007-2366-5_9 

Burgin, A.J., Groffman, P.M., 2012. Soil O2 controls denitrification rates and N2O yield 

in a riparian wetland. J. Geophys. Res. Biogeosciences 117. 

Butturini, A., Battin, T.J., Sabater, F., 2000. Nitrification in stream sediment biofilms: the 

role of ammonium concentration and DOC quality. Water Res. 34, 629–639. 

Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N., Smith, 

V.H., 1998. Nonpoint Pollution of Surface Waters with Phosphorus and Nitrogen. 

Ecol. Appl. 8, 559–568. https://doi.org/10.1890/1051-

0761(1998)008[0559:NPOSWW]2.0.CO;2 

Carritt, D.E., Goodgal, S., 1954. Sorption reactions and some ecological implications. 

Deep Sea Res. 1953 1, 224–243. 

Cho, K.W., Song, K.G., Cho, J.W., Kim, T.G., Ahn, K.H., 2009. Removal of nitrogen by 

a layered soil infiltration system during intermittent storm events. Chemosphere 

76, 690–696. 

Christiansen, J.R., Vesterdal, L., Gundersen, P., 2012. Nitrous oxide and methane 

exchange in two small temperate forest catchments—effects of hydrological 

gradients and implications for global warming potentials of forest soils. 

Biogeochemistry 107, 437–454. 

Cook, E.A., 2007. Green site design: strategies for storm water management. J. Green 

Build. 2, 46–56. 

Corcoran, A.A., Reifel, K.M., Jones, B.H., Shipe, R.F., 2010. Spatiotemporal 

development of physical, chemical, and biological characteristics of stormwater 

plumes in Santa Monica Bay, California (USA). J. Sea Res. 63, 129–142. 

Correll, D.L., 1998. The role of phosphorus in the eutrophication of receiving waters: a 

review. J. Environ. Qual. 27, 261–266. 

County, P.G., 1999. Low-impact development design strategies: An integrated design 

approach. Dep. Environ. Resour. Programs Plan. Div. Prince George’s Cty. Md. 

Davis, A.P., 2007. Field performance of bioretention: Water quality. Environ. Eng. Sci. 

24, 1048–1064. 

Davis, A.P., Hunt, W.F., Traver, R.G., Clar, M., 2009a. Bioretention technology: 

Overview of current practice and future needs. J. Environ. Eng. 135, 109–117. 

Davis, A.P., Hunt, W.F., Traver, R.G., Clar, M., 2009b. Bioretention technology: 

Overview of current practice and future needs. J. Environ. Eng. 135, 109–117. 



41 

 

Davis, A.P., Shokouhian, M., Sharma, H., Minami, C., 2006. Water quality improvement 

through bioretention media: Nitrogen and phosphorus removal. Water Environ. 

Res. 78, 284–293. 

Davis, A.P., Shokouhian, M., Sharma, H., Minami, C., 2001. Laboratory study of 

biological retention for urban stormwater management. Water Environ. Res. 73, 

5–14. 

Davis, A.P., Shokouhian, M., Sharma, H., Minami, C., Winogradoff, D., 2003a. Water 

quality improvement through bioretention: Lead, copper, and zinc removal. Water 

Environ. Res. 75, 73–82. 

Davis, A.P., Shokouhian, M., Sharma, H., Minami, C., Winogradoff, D., 2003b. Water 

quality improvement through bioretention: Lead, copper, and zinc removal. Water 

Environ. Res. 75, 73–82. 

Denman, L., May, P.B., Breen, P.F., 2006. An investigation of the potential to use street 

trees and their root zone soils to remove nitrogen from urban stormwater. Aust. J. 

Water Resour. 10, 303–311. 

DeWolfe, M.N., Hession, W.C., Watzin, M.C., 2004. Sediment and phosphorus loads 

from streambank erosion in Vermont, USA, in: Critical Transitions in Water and 

Environmental Resources Management. pp. 1–10. 

Dietz, M.E., Clausen, J.C., 2006a. Saturation to improve pollutant retention in a rain 

garden. Environ. Sci. Technol. 40, 1335–1340. 

Dietz, M.E., Clausen, J.C., 2006b. Saturation to improve pollutant retention in a rain 

garden. Environ. Sci. Technol. 40, 1335–1340. 

Dietz, M.E., Clausen, J.C., 2005. A field evaluation of rain garden flow and pollutant 

treatment. Water. Air. Soil Pollut. 167, 123–138. 

Duncan, H., Cooperative Research Centre for Catchment Hydrology, 1999. Urban 

stormwater quality: a statistical overview. CRC for Catchment Hydrology, 

Clayton, Vic. 

Erickson, A.J., Weiss, P.T., Gulliver, J.S., 2013. Impacts and composition of urban 

stormwater, in: Optimizing Stormwater Treatment Practices. Springer, pp. 11–22. 

Essington, M.E., 2015. Soil and water chemistry: an integrative approach. CRC press. 

Feng, W., Hatt, B.E., McCarthy, D.T., Fletcher, T.D., Deletic, A., 2012. Biofilters for 

stormwater harvesting: understanding the treatment performance of key metals 

that pose a risk for water use. Environ. Sci. Technol. 46, 5100–5108. 

Firestone, M.K., Davidson, E.A., 1989. Microbiological basis of NO and N2O production 

and consumption in soil. Exch. Trace Gases Terr. Ecosyst. Atmosphere 47, 7–21. 

Flynn, K.M., Traver, R.G., 2013. Green infrastructure life cycle assessment: A bio-

infiltration case study. Ecol. Eng. 55, 9–22. 

Frumhoff, P.C., McCarthy, J.J., Melillo, J.M., Moser, S.C., Wuebbles, D.J., 2006. 

Climate change in the US Northeast: a report of the Northeast Climate Impacts 

Assessment. Camb. MA Union Concerned Sci. 

Galli, J., 1990. Thermal impacts associated with urbanization and stormwater 

management best management practices. Department of Environmental Programs, 

Metropolitan Washington Council of Governments. 

Galloway, J.N., Howarth, R.W., Michaels, A.F., Nixon, S.W., Prospero, J.M., Dentener, 

F.J., 1996. Nitrogen and phosphorus budgets of the North Atlantic Ocean and its 



42 

 

watershed, in: Nitrogen Cycling in the North Atlantic Ocean and Its Watersheds. 

Springer, pp. 3–25. 

Gerritse, R.G., Adeney, J.A., Dimmock, G.M., Oliver, Y.M., 1995. Retention of nitrate 

and phosphate in soils of the Darling plateau in Western-Australia-Implications 

for domestic septic-tank systems. Soil Res. 33, 353–367. 

Gilbreath, A.N., McKee, L.J., 2015. Concentrations and loads of PCBs, dioxins, PAHs, 

PBDEs, OC pesticides and pyrethroids during storm and low flow conditions in a 

small urban semi-arid watershed. Sci. Total Environ. 526, 251–261. 

Giles, C.D., Lee, L.G., Cade-Menun, B.J., Hill, J.E., Isles, P.D., Schroth, A.W., Druschel, 

G.K., 2015. Characterization of organic phosphorus form and bioavailability in 

lake sediments using P nuclear magnetic resonance and enzymatic hydrolysis. J. 

Environ. Qual. 44, 882–894. 

Gold, A.J., Groffman, P.M., Addy, K., Kellogg, D.Q., Stolt, M., Rosenblatt, A.E., 2001. 

Landscape Attributes as Controls on Groithd Water Nitrate Removal Capacity of 

Riparian Zones1. JAWRA J. Am. Water Resour. Assoc. 37, 1457–1464. 

https://doi.org/10.1111/j.1752-1688.2001.tb03652.x 

Grantz, D.A., Garner, J.H.B., Johnson, D.W., 2003. Ecological effects of particulate 

matter. Environ. Int. 29, 213–239. 

Groffman, P.M., Boulware, N.J., Zipperer, W.C., Pouyat, R.V., Band, L.E., Colosimo, 

M.F., 2002. Soil nitrogen cycle processes in urban riparian zones. Environ. Sci. 

Technol. 36, 4547–4552. 

Groffman, P.M., Crawford, M.K., 2003a. Denitrification potential in urban riparian 

zones. J. Environ. Qual. 32, 1144–1149. 

Groffman, P.M., Crawford, M.K., 2003b. Denitrification potential in urban riparian 

zones. J. Environ. Qual. 32, 1144–1149. 

Guercio, L.D., 2010. Struggle between Man and Nature-Agriculture, Nonpoint Source 

Pollution, and Clean Water: How to Implement the State of Vermont’s 

Phosphorous TMDL within the Lake Champlain Basin. Vt J Envtl L 12, 455. 

Guilbert, J., Beckage, B., Winter, J.M., Horton, R.M., Perkins, T., Bomblies, A., 2014a. 

Impacts of projected climate change over the Lake Champlain Basin in Vermont. 

J. Appl. Meteorol. Climatol. 53, 1861–1875. 

Guilbert, J., Beckage, B., Winter, J.M., Horton, R.M., Perkins, T., Bomblies, A., 2014b. 

Impacts of projected climate change over the Lake Champlain Basin in Vermont. 

J. Appl. Meteorol. Climatol. 53, 1861–1875. 

Hansen, H.C.B., Hansen, P.E., Magid, J., 1999. Empirical modelling of the kinetics of 

phosphate sorption to macropore materials in aggregated subsoils. Eur. J. Soil Sci. 

50, 317–327. 

Harrison, J.A., 2003. The Nitrogen Cycle. Visionlearning. 

Hatt, B.E., Fletcher, T.D., Deletic, A., 2009. Hydrologic and pollutant removal 

performance of stormwater biofiltration systems at the field scale. J. Hydrol. 365, 

310–321. 

Hatt, B.E., Fletcher, T.D., Deletic, A., 2007. The effects of drying and wetting on 

pollutant removal by stormwater filters, in: Novatech 2007: 6th International 

Conference on Sustainable Techniques and Strategies in Urban Water 

Management. pp. 25–28. 



43 

 

Hatt, B.E., Fletcher, T.D., Walsh, C.J., Taylor, S.L., 2004. The influence of urban density 

and drainage infrastructure on the concentrations and loads of pollutants in small 

streams. Environ. Manage. 34, 112–124. 

Hayhoe, K., Wake, C.P., Huntington, T.G., Luo, L., Schwartz, M.D., Sheffield, J., Wood, 

E., Anderson, B., Bradbury, J., DeGaetano, A., others, 2007. Past and future 

changes in climate and hydrological indicators in the US Northeast. Clim. Dyn. 

28, 381–407. 

Henderson, C., Greenway, M., Phillips, I., 2007. Removal of dissolved nitrogen, 

phosphorus and carbon from stormwater by biofiltration mesocosms. Water Sci. 

Technol. 55, 183–191. 

Higgins, R.W., Silva, V.B.S., Shi, W., Larson, J., 2007. Relationships between climate 

variability and fluctuations in daily precipitation over the United States. J. Clim. 

20, 3561–3579. 

Hinman, C., 2005. Low impact development: Technical guidance manual for Puget 

Sound. Puget Sound Action Team. 

Hoare, R.A., 1984. Nitrogen and phosphorus in Rotorua urban streams. N. Z. J. Mar. 

Freshw. Res. 18, 451–454. 

Hollis, G.E., 1975. The effect of urbanization on floods of different recurrence interval. 

Water Resour. Res. 11, 431–435. 

Hong, E., Seagren, E.A., Davis, A.P., 2006. Sustainable oil and grease removal from 

synthetic stormwater runoff using bench-scale bioretention studies. Water 

Environ. Res. 78, 141–155. 

Howarth, R.W., 1998. An assessment of human influences on fluxes of nitrogen from the 

terrestrial landscape to the estuaries and continental shelves of the North Atlantic 

Ocean. Nutr. Cycl. Agroecosystems 52, 213–223. 

Hsieh, C., Davis, A.P., 2005. Evaluation and optimization of bioretention media for 

treatment of urban storm water runoff. J. Environ. Eng. 131, 1521–1531. 

Hsieh, C., Davis, A.P., Needelman, B.A., 2007. Bioretention Column Studies of 

Phosphorus Removal from Urban Stormwater Runoff. Water Environ. Res. 79, 

177–184. 

Hunt, W.F., Jarrett, A.R., Smith, J.T., Sharkey, L.J., 2006. Evaluating bioretention 

hydrology and nutrient removal at three field sites in North Carolina. J. Irrig. 

Drain. Eng. 132, 600–608. 

Hunt, W.F., Smith, J.T., Jadlocki, S.J., Hathaway, J.M., Eubanks, P.R., 2008. Pollutant 

removal and peak flow mitigation by a bioretention cell in urban Charlotte, NC. J. 

Environ. Eng. 134, 403–408. 

Hurley, S.E., Forman, R.T., 2011. Stormwater ponds and biofilters for large urban sites: 

Modeled arrangements that achieve the phosphorus reduction target for Boston’s 

Charles River, USA. Ecol. Eng. 37, 850–863. 

Jickells, T., Knap, A.H., Sherriff-Dow, R., Galloway, J., 1990. No ecosystem shift. 

Nature 347, 347025c0. https://doi.org/10.1038/347025c0 

Jones, R.C., Clark, C.C., 1987. Impact of watershed urbanization on stream insect 

communities. JAWRA J. Am. Water Resour. Assoc. 23, 1047–1055. 

Karl, T.R., Knight, R.W., 1998. Secular trends of precipitation amount, frequency, and 

intensity in the United States. Bull. Am. Meteorol. Soc. 79, 231–241. 



44 

 

Kaye, J.P., Groffman, P.M., Grimm, N.B., Baker, L.A., Pouyat, R.V., 2006. A distinct 

urban biogeochemistry? Trends Ecol. Evol. 21, 192–199. 

Kim, H., Seagren, E.A., Davis, A.P., 2003. Engineered bioretention for removal of nitrate 

from stormwater runoff. Water Environ. Res. 75, 355–367. 

Kitano, Y., Okumura, M., Idogaki, M., 1978. Uptake of phosphate ions by calcium 

carbonate. Geochem. J. 12, 29–37. 

Klein, R.D., 1979. Urbanization and stream quality impairment1. Wiley Online Library. 

Kleinman, P.J., Sharpley, A.N., Buda, A.R., McDowell, R.W., Allen, A.L., 2011. Soil 

controls of phosphorus in runoff: Management barriers and opportunities. Can. J. 

Soil Sci. 91, 329–338. 

Knap, A., Jickells, T., Pszenny, A., Galloway, J., 1986. Significance of atmospheric-

derived fixed nitrogen on productivity of the Sargasso Sea. Nature 320, 158–160. 

La Valle, P.D., 1975. Domestic sources of stream phosphates in urban streams. Water 

Res. 9, 913–915. 

Lacey, E.M., King, J.W., Quinn, J.G., Mecray, E.L., Appleby, P.G., Hunt, A.S., 2001. 

Sediment quality in Burlington Harbor, Lake Champlain, USA. Water. Air. Soil 

Pollut. 126, 97–120. 

Lake, B.A., Coolidge, K.M., Norton, S.A., Amirbahman, A., 2007. Factors contributing 

to the internal loading of phosphorus from anoxic sediments in six Maine, USA, 

lakes. Sci. Total Environ. 373, 534–541. 

Lange, M., Eisenhauer, N., Sierra, C.A., Bessler, H., Engels, C., Griffiths, R.I., Mellado-

Vázquez, P.G., Malik, A.A., Roy, J., Scheu, S., 2015. Plant diversity increases 

soil microbial activity and soil carbon storage. Nat. Commun. 6, 6707. 

Larsen, D.P., Van Sickle, J., Malueg, K.W., Smith, P.D., 1979. The effect of wastewater 

phosphorus removal on Shagawa Lake, Minnesota: Phosphorus supplies, lake 

phosphorus and chlorophyll a. Water Res. 13, 1259–1272. 

Li, B., Brett, M.T., 2013. The influence of dissolved phosphorus molecular form on 

recalcitrance and bioavailability. Environ. Pollut. 182, 37–44. 

Li, L., Davis, A.P., 2014. Urban stormwater runoff nitrogen composition and fate in 

bioretention systems. Environ. Sci. Technol. 48, 3403–3410. 

Lin, P., Klump, J.V., Guo, L., 2016. Dynamics of dissolved and particulate phosphorus 

influenced by seasonal hypoxia in Green Bay, Lake Michigan. Sci. Total Environ. 

541, 1070–1082. 

Lintern, A., Daly, E., Duncan, H., Hatt, B.E., Fletcher, T.D., Deletic, A., 2011. Key 

design characteristics that influence the performance of stormwater biofilters, in: 

Proceedings of the 12th International Conference on Urban Drainage. pp. 11–16. 

Liu, J., Sample, D.J., Bell, C., Guan, Y., 2014. Review and research needs of bioretention 

used for the treatment of urban stormwater. Water 6, 1069–1099. 

Low Impact Development (LID) Center. 2007. LID Techniques. Retrieved on January 

27, 2015, from http://lid-stormwater.net/lid_techniques.htm 

Lucas, W., Greenway, M., 2007a. A comparative study of nutrient retention performance 

in vegetated and non-vegetated bioretention mesocosms. NOVATECH 2007. 

Lucas, W., Greenway, M., 2007b. A comparative study of nutrient retention performance 

in vegetated and non-vegetated bioretention mesocosms. NOVATECH 2007. 

http://lid-stormwater.net/lid_techniques.htm


45 

 

Maniquiz-Redillas, M., Kim, L.-H., 2014. Fractionation of heavy metals in runoff and 

discharge of a stormwater management system and its implications for treatment. 

J. Environ. Sci. 26, 1214–1222. 

McPhillips, L., Walter, M.T., 2015. Hydrologic conditions drive denitrification and 

greenhouse gas emissions in stormwater detention basins. Ecol. Eng. 85, 67–75. 

McPhillips Lauren, Goodale Christine, Walter M. Todd, 2018. Nutrient Leaching and 

Greenhouse Gas Emissions in Grassed Detention and Bioretention Stormwater 

Basins. J. Sustain. Water Built Environ. 4, 04017014. 

https://doi.org/10.1061/JSWBAY.0000837 

Mecray, E.L., King, J.W., Appleby, P.G., Hunt, A.S., 2001. Historical trace metal 

accumulation in the sediments of an urbanized region of the Lake Champlain 

watershed, Burlington, Vermont. Water. Air. Soil Pollut. 125, 201–230. 

National Research Council (NRC). 2008. Urban stormwater management in the United 

States. Retrieved on Retrieved on January 27, 2016, from 

http://www.epa.gov/npdes/pubs/nrc_stormwaterreport.pdf 

Nixon, S.W., Ammerman, J.W., Atkinson, L.P., Berounsky, V.M., Billen, G., Boicourt, 

W.C., Boynton, W.R., Church, T.M., Ditoro, D.M., Elmgren, R., 1996. The fate 

of nitrogen and phosphorus at the land-sea margin of the North Atlantic Ocean. 

Biogeochemistry 35, 141–180. 

Norton, S.A., Coolidge, K., Amirbahman, A., Bouchard, R., Kopáček, J., Reinhardt, R., 

2008. Speciation of Al, Fe, and P in recent sediment from three lakes in Maine, 

USA. Sci. Total Environ. 404, 276–283. 

Nürnberg, G.K., 1984. The prediction of internal phosphorus load in lakes with anoxic 

hypolimnia. Limnol. Oceanogr. 29, 111–124. 

Passeport, E., Hunt, W.F., Line, D.E., Smith, R.A., Brown, R.A., 2009. Field study of the 

ability of two grassed bioretention cells to reduce storm-water runoff pollution. J. 

Irrig. Drain. Eng. 135, 505–510. 

Pataki, D.E., Carreiro, M.M., Cherrier, J., Grulke, N.E., Jennings, V., Pincetl, S., Pouyat, 

R.V., Whitlow, T.H., Zipperer, W.C., 2011. Coupling biogeochemical cycles in 

urban environments: ecosystem services, green solutions, and misconceptions. 

Front. Ecol. Environ. 9, 27–36. 

Patrick, W.H., Jugsujinda, A., 1992. Sequential reduction and oxidation of inorganic 

nitrogen, manganese, and iron in flooded soil. Soil Sci. Soc. Am. J. 56, 1071–

1073. 

Paul, M.J., Meyer, J.L., 2001. Streams in the urban landscape. Annu. Rev. Ecol. Syst. 32, 

333–365. 

Pealer, S., 2012. Lessons from Irene: Building resiliency as we rebuild. Clim. Change 

Team Vt. Agency Nat. Resour. 

Pekey, H., Karakaş, D., Bakoglu, M., 2004. Source apportionment of trace metals in 

surface waters of a polluted stream using multivariate statistical analyses. Mar. 

Pollut. Bull. 49, 809–818. 

Phillips, I.R., 2002. Nutrient leaching losses from undisturbed soil cores following 

applications of piggery wastewater. Soil Res. 40, 515–532. 

Porcella, D.B., Sorensen, D.L., 1980. Characteristics of nonpoint source urban runoff and 

its effects on stream ecosystems. Corvallis Environmental Research Laboratory, 

Office of Research and Development, US Environmental Protection Agency. 

http://www.epa.gov/npdes/pubs/nrc_stormwaterreport.pdf


46 

 

Pratt, J.M., Coler, R.A., Godfrey, P.J., 1981. Ecological effects of urban stormwater 

runoff on benthic macroinvertebrates inhabiting the Green River, Massachusetts. 

Hydrobiologia 83, 29–42. 

Prospero, J.M., Barrett, K., Church, T., Dentener, F., Duce, R.A., Galloway, J.N., Levy, 

H., Moody, J., Quinn, P., 1996. Atmospheric deposition of nutrients to the North 

Atlantic Basin. Biogeochemistry 35, 27–73. 

Quinton, J.N., Hess, T.M., 2002. Below-ground relationships of soil texture, roots and 

hydraulic conductivity in two-phase mosaic vegetation in South-east Spain. J. 

Arid Environ. 52, 535–553. 

Ragan, R.M., Dietman, R.J., Moore, R.A., 1977. The impact of urbanization on stream 

quality. Int. Assoc. Hydrol. Sources Publ. 123, 324–333. 

Raich, J.W., Schlesinger, W.H., 1992. The global carbon dioxide flux in soil respiration 

and its relationship to vegetation and climate. Tellus B 44, 81–99. 

Read, J., Fletcher, T.D., Wevill, T., Deletic, A., 2009. Plant traits that enhance pollutant 

removal from stormwater in biofiltration systems. Int. J. Phytoremediation 12, 

34–53. 

Read, J., Wevill, T., Fletcher, T., Deletic, A., 2008. Variation among plant species in 

pollutant removal from stormwater in biofiltration systems. Water Res. 42, 893–

902. 

Reddy, K.R., Patrick, W.H., Broadbent, F.E., 1984. Nitrogen transformations and loss in 

flooded soils and sediments. Crit. Rev. Environ. Sci. Technol. 13, 273–309. 

Rendell, A.R., Ottley, C.J., Jickells, T.D., Harrison, R.M., 1993. The atmospheric input 

of nitrogen species to the North Sea. Tellus B Chem. Phys. Meteorol. 45, 53–63. 

Rhue, R.D., Harris, W., 1999. Sorption/Desorption Reactions in Soils and Sediments. 

Phosphorus Biogeochem. Sub-Trop. Ecosyst. 187. 

Rogers, K.H., Breen, P.F., Chick, A.J., 1991. Nitrogen removal in experimental wetland 

treatment systems: evidence for the role of aquatic plants. Res. J. Water Pollut. 

Control Fed. 934–941. 

Roseen, R., Ballestero, T., Houle, J., Avelleneda, P., Wildey, R., Briggs, J., 2006. Storm 

water low-impact development, conventional structural, and manufactured 

treatment strategies for parking lot runoff: Performance evaluations under varied 

mass loading conditions. Transp. Res. Rec. J. Transp. Res. Board 135–147. 

Roy, A.H., Wenger, S.J., Fletcher, T.D., Walsh, C.J., Ladson, A.R., Shuster, W.D., 

Thurston, H.W., Brown, R.R., 2008. Impediments and solutions to sustainable, 

watershed-scale urban stormwater management: lessons from Australia and the 

United States. Environ. Manage. 42, 344–359. 

Roy, E.D., 2016. Phosphorus recovery and recycling with ecological engineering: A 

review. Ecol. Eng. 

Roy-Poirier, A., Champagne, P., Filion, Y., 2010. Review of bioretention system research 

and design: past, present, and future. J. Environ. Eng. 136, 878–889. 

Ruess, R.W., Seagle, S.W., 1994. Landscape patterns in soil microbial processes in the 

Serengeti National Park, Tanzania. Ecology 75, 892–904. 

Russell, K.M., Galloway, J.N., Macko, S.A., Moody, J.L., Scudlark, J.R., 1998. Sources 

of nitrogen in wet deposition to the Chesapeake Bay region. Atmos. Environ. 32, 

2453–2465. 



47 

 

Rustad, L.E., Huntington, T.G., Boone, R.D., 2000. Controls on soil respiration: 

implications for climate change. Biogeochemistry 48, 1–6. 

Sansalone, J., Raje, S., Kertesz, R., Maccarone, K., Seltzer, K., Siminari, M., Simms, P., 

Wood, B., 2013. Retrofitting impervious urban infrastructure with green 

technology for rainfall-runoff restoration, indirect reuse and pollution load 

reduction. Environ. Pollut. 183, 204–212. 

Scheffer, M., Hosper, S.H., Meijer, M.L., Moss, B., Jeppesen, E., 1993. Alternative 

equilibria in shallow lakes. Trends Ecol. Evol. 8, 275–279. 

Schindler, D.W., 1977. Evolution of phosphorus limitation in lakes. Science 195, 260–

262. 

Schindler, D.W., Armstrong, F.A.J., Holmgren, S.K., Brunskill, G.J., 1971. 

Eutrophication of Lake 227, Experimental Lakes Area, northwestern Ontario, by 

addition of phosphate and nitrate. J. Fish. Board Can. 28, 1763–1782. 

Schlesinger, W.H., 2005. Biogeochemistry. Gulf Professional Publishing. 

Schueler Thomas R., Fraley-McNeal Lisa, Cappiella Karen, 2009. Is Impervious Cover 

Still Important? Review of Recent Research. J. Hydrol. Eng. 14, 309–315. 

https://doi.org/10.1061/(ASCE)1084-0699(2009)14:4(309) 

Shaver, E., Maxted, J., Curtis, G., Carter, D., 1995. Watershed protection using an 

integrated approach, in: Stormwater NPDES Related Monitoring Needs: ASCE, 

pp. 435–459. 

Smith, K.A., Ball, T., Conen, F., Dobbie, K.E., Massheder, J., Rey, A., 2003. Exchange 

of greenhouse gases between soil and atmosphere: interactions of soil physical 

factors and biological processes. Eur. J. Soil Sci. 54, 779–791. 

Smith, K.A., Thomson, P.E., Clayton, H., Mctaggart, I.P., Conen, F., 1998. Effects of 

temperature, water content and nitrogen fertilisation on emissions of nitrous oxide 

by soils. Atmos. Environ. 32, 3301–3309. https://doi.org/10.1016/S1352-

2310(97)00492-5 

Song, Y., Fitch, M., Burken, J., Nass, L., Chilukiri, S., Gale, N., Ross, C., 2001. Lead and 

zinc removal by laboratory-scale constructed wetlands. Water Environ. Res. 73, 

37–44. 

Soranno, P.A., Carpenter, S.R., Lathrop, R.C., 1997. Internal phosphorus loading in Lake 

Mendota: response to external loads and weather. Can. J. Fish. Aquat. Sci. 54, 

1883–1893. 

Stumm, W., Morgan, J.J., 1970. Aquatic chemistry; an introduction emphasizing 

chemical equilibria in natural waters. 

Timperley, M.H., Vigor-Brown, R.J., Kawashima, M., Ishigami, M., 1985. Organic 

nitrogen compounds in atmospheric precipitation: their chemistry and availability 

to phytoplankton. Can. J. Fish. Aquat. Sci. 42, 1171–1177. 

United Nations Population Division, World Urbanization Prospects: the 2007 revision 

(United Nations, New York, 2008). 

Van Veen, J.A., Merckx, R., Van de Geijn, S.C., 1989. Plant-and soil-related controls of 

the flow of carbon from roots through the soil microbial biomass, in: Ecology of 

Arable Land—Perspectives and Challenges. Springer, pp. 43–52. 

Vaze, J., Chiew, F.H., 2002. Experimental study of pollutant accumulation on an urban 

road surface. Urban Water 4, 379–389. 



48 

 

VT DEC. 2014. Watershed Management Division, Green Stormwater Infrastructure 

(GSI). Retrieved on January 27, 2016, from 

http://www.watershedmanagement.vt.gov/stormwater/htm/sw_gi_gsi.htm 

Walsh, C.J., Fletcher, T.D., Burns, M.J., 2012. Urban stormwater runoff: a new class of 

environmental flow problem. PLoS One 7, e45814. 

Walsh, C.J., Roy, A.H., Feminella, J.W., Cottingham, P.D., Groffman, P.M., Morgan II, 

R.P., 2005. The urban stream syndrome: current knowledge and the search for a 

cure. J. North Am. Benthol. Soc. 24, 706–723. 

Wang, L., Lyons, J., Kanehi, P., Bannerman, R., Emmons, E., 2000. Watershed 

urbanization and changes in fish communities in southeastern Wisconsin streams. 

Wiley Online Library. 

Wang, Z., Dong, J., Liu, L., Zhu, G., Liu, C., 2013. Screening of phosphate-removing 

substrates for use in constructed wetlands treating swine wastewater. Ecol. Eng. 

54, 57–65. 

Wardle, D.A., 1992. A comparative assessment of factors which influence microbial 

biomass carbon and nitrogen levels in soil. Biol. Rev. 67, 321–358. 

Waschbusch, R.J., Selbig, W.R., Bannerman, R.T., 1993. Sources of phosphorus in 

stormwater and street dirt from two urban residential basins in Madison, 

Wisconsin, 1994-95, in: National Conference on Tools for Urban Water Resource 

Management and Protection Proceedings, February 710, 2000, Chicago, IL. 

DIANE Publishing, p. 9. 

Weil, R.R., Brady, N.C., Weil, R.R., 2016. The nature and properties of soils. Pearson. 

Wetzel, R.G., 2001. Limnology: lake and river ecosystems. Gulf Professional Publishing. 

Wrage, N., Velthof, G.L., Laanbroek, H.J., Oenema, O., 2004. Nitrous oxide production 

in grassland soils: assessing the contribution of nitrifier denitrification. Soil Biol. 

Biochem. 36, 229–236. 

Zak, D.R., Holmes, W.E., White, D.C., Peacock, A.D., Tilman, D., 2003. Plant diversity, 

soil microbial communities, and ecosystem function: are there any links? Ecology 

84, 2042–2050. 

Zhang, T.C., Fu, Y.-C., Bishop, P.L., 1995. Competition for substrate and space in 

biofilms. Water Environ. Res. 67, 992–1003. 

Zhu, W.-X., Dillard, N.D., Grimm, N.B., 2004. Urban nitrogen biogeochemistry: status 

and processes in green retention basins. Biogeochemistry 71, 177–196. 

  

http://www.watershedmanagement.vt.gov/stormwater/htm/sw_gi_gsi.htm


49 

 

CHAPTER 2: EFFECTS OF DIFFERENT SOIL MEDIA, VEGETATION, AND 

HYDROLOGIC TREATMENTS ON NUTRIENT AND SEDIMENT REMOVAL 

IN ROADSIDE BIORETENTION SYSTEMS 

 

Paliza Shrestha, Stephanie E. Hurley, and Beverley C. Wemple 

 

Keywords: Bioretention, urban road runoff, sediment, nitrogen, phosphorus, stormwater 

management 

 

 

Abstract 

 

 

 

Water quality performance of eight roadside bioretention cells in their third and 

fourth years of implementation were evaluated in Burlington, Vermont. Bioretention cells 

received varying treatments: (1) vegetation with high-diversity (7 species) and low-

diversity plant mix (2 species); (2) proprietary SorbtiveMediaTM (SM) containing iron 

and aluminum oxide granules to enhance sorption capacity for phosphorus; and (3) 

enhanced rainfall and runoff (RR) to certain cells (including one with SM treatment) at 

three levels (15%, 20%, 60% more than their control counterparts), mimicking 

anticipated precipitation increases associated with climate change. A total of 121 storms 

across all cells were evaluated in 2015 and 2016 for total suspended solids (TSS), 

nitrate/nitrite-nitrogen (NOx), ortho-phosphorus (Ortho-P), total nitrogen (TN) and total 

phosphorus (TP). Heavy metals were also measured for a few storms, but in 2014 and 

2015 only. Simultaneous measurements of flow rates and volumes allowed for evaluation 

of the cells’ hydraulic performances and estimation of pollutant load removal efficiencies 

and EMC reductions. Significant average reductions in effluent stormwater volumes 

(75%; range: 48-96%) and peak flows (91%; range: 86-96%) was reported, with 31% of 

the storms events (all less than 25.4 mm (1 in.), and one 39.4 mm (1.55 in.) depth 

completely captured by bioretention cells. Influent TSS concentrations and EMCs was 

mostly significantly reduced, and TSS loads were well retained by all bioretention cells 

(94%; range: 89-99%) irrespective of treatments, storm characteristics or seasonality. In 

contrast, nutrient removal was treatment-dependent, where the SM treatments 

consistently removed P concentrations, loads and EMCs, and sometimes N as well. The 

vegetation and RR treatments mostly exported nutrients to the effluent for those three 

metrics with varying significance. We attribute observed nutrient exports to the presence 

of excess compost in the soil media. Rainfall depth and peak inflow rate had consistently 

negative effects on all nutrient removal efficiencies from the bioretention cells likely by 

increasing pollutant mobilization. Seasonality followed by soil media presence, and 

antecedent dry period were other predictors significantly influencing removal efficiencies 

for some nutrient types. Results from the analysis will be useful to make bioretention 

designers aware of the hydrologic and other design factors that will be the most critical to 
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the performance of the bioretention systems in response to interactive effects of climate 

change.  

 

 

2.1 Introduction 

 

Urban waters are widely impaired by excess nutrients and sediments in the input 

stormwater, despite substantial efforts spent in stormwater management and control in the 

surrounding watersheds (Hobbie et al., 2017).  Urban stormwater is a major contributor to 

nonpoint source pollution in surface waters nationwide. As nonpoint source pollution is 

much more difficult to regulate than point source pollution, stormwater is considered one 

of the most pressing water quality challenges of today (Wang et al., 2000; Hsieh and 

Davis, 2005; NRC 2008). Among many pollutants of concern, those commonly detected 

in urban storm runoff are nutrients (nitrogen; N and phosphorus; P), which are major 

culprits of eutrophication nationwide (Erickson et al., 2013), suspended solids, heavy 

metals, and organics (Porcella and Sorensen, 1980).  

As cities are expanding rapidly, the impervious footprint increases, and natural 

hydrological flow paths that would have absorbed, filtered and treated stormwater 

through soils are bypassed (Cook, 2007). During high flow events, urban storm 

infrastructures may fail, leading to harmful combined sewer-storm-water overflows that 

contaminate surface waters with nutrients and pathogens (Kaye et al., 2006) intended to 

be kept out of those very waters. Thus, newer strategies to address urban stormwater 

management are needed to protect water quality. The low impact development (LID) 

approach was therefore introduced in the 1990s in Prince George’s County, Maryland as 

an alternative to conventional stormwater management approach (LID Center 2007). 

LID, more broadly termed Green Stormwater Infrastructure (GSI), comprises landscape 

http://www.sciencedirect.com/science/article/pii/S0043135411008220#bib49
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design strategies that promote infiltration, filtration, soil storage, evapotranspiration, 

groundwater recharge and/or re-use of stormwater, while minimizing impervious cover 

and runoff (Davis, 2007; Roy et al., 2008) (PGC 1999, Hinman 2012). 

Bioretention, a prominent type of green infrastructure, is increasingly being used 

as a sustainable stormwater control measure in urbanized watersheds within the U.S. and 

abroad (Davis et al., 2009; Roy-Poirier et al., 2010; Liao et al., 2017). The technology is 

an aesthetically pleasing, sunken (approx. <1.3m deep) planted basin filled with porous 

media that intercepts, filters, stores, and treats pollutant-laden runoff conveyed as sheet 

flow from impervious surfaces (Cook, 2007). Bioretention design allows for stormwater 

runoff to be treated for water quality on-site, close to the source of origination (Hurley 

and Forman, 2011), via different physical (filtration, evaporation), chemical (sorption, 

ion exchange, precipitation), and biological (phytoremediation, microbial-mediated 

transformation, transpiration) mechanisms, facilitated by the filter media (Davis, 2007; 

Feng et al., 2012; Liu et al., 2014; Lucas and Greenway, 2007). Runoff is detained and 

stored temporarily in the bioretention media and aboveground in the ponding zone, and is 

released slowly to the surrounding soil via infiltration or to an existing storm sewer 

system. Integrating bioretention systems throughout urban spaces (most commonly in 

roadsides, parking lots, and streets) offer more opportunities to restore natural hydrologic 

functions. Bioretention’s storage of stormwater in the landscape can alleviate pressure on 

existing storm infrastructure by decreasing storm flow velocities and reducing peak 

discharge and downstream erosion and flooding. Furthermore, ancillary benefits from 

bioretention include wildlife and pollinator habitat, and enhanced urban biodiversity, and 

aesthetics (County, 1999). 
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A growing body of literature has shown that bioretention systems are effective 

water quality treatment devices with good removal capacities for total suspended solids 

(Hsieh and Davis, 2005; Bratieres et al., 2008; Hatt et al., 2009a), heavy metals (Davis et 

al., 2001, 2003; Hunt et al., 2006), fecal coliform (Hunt et al., 2008; Passeport et al., 

2009), hydrocarbons and oil and grease (Hong et al., 2006). However, nutrient removal 

performance (specifically for N and P) is more variable (Davis, 2007). Field studies have 

shown successful removal of ammonium (NH4
+) and Total Kjeldahl Nitrogen (TKN) 

from runoff (Davis et al., 2003; Birch et al., 2006; Dietz and Clausen, 2006; Hunt et al., 

2006; Hatt et al., 2009b; Passeport et al., 2009), but removal of nitrate+nitrite (NOx), total 

nitrogen (TN), total phosphorus (TP), and ortho-P have been shown in both lab and field 

studies to be highly variable and sometimes negative removals (or exports) have been 

reported (Davis et al., 2001; Hsieh and Davis, 2005; Birch et al., 2006; Davis et al., 2006; 

Dietz and Clausen, 2006; Hunt et al., 2006; Van Seters et al., 2006; Bratieres et al., 2008; 

Hatt et al., 2009b; Passeport et al., 2009). 

This research evaluates water quality performances of seven roadside bioretention 

cells receiving different vegetation, soil media, and hydrologic (enhanced rainfall + 

runoff (RR)) treatments in Burlington, Vermont in the northeastern USA. The 

experimental design and its treatment variables were motivated particularly by concerns 

regarding elevated levels of P in the Lake Champlain Basin attributed to watershed inputs 

and internal cycling of phosphorus (P) from lake sediment bottoms, which causes algal 

and toxic cyanobacterial blooms in the summer. The hydrologic treatment is informed by 

climate change projections associated with frequent and intense rainfall events for 

Vermont and other Northeastern states (Frumhoff et al., 2006; Pealer, 2012). Average 
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daily precipitation is projected to increase between 5 and 10% (10% being an increase of 

4 inches yr-1) by midcentury, (Hayhoe et al., 2007; Guilbert et al., 2014), and extreme 

precipitation events (amount of precipitation that falls over five consecutive days) are 

also likely to progressively increase over the century, i.e., 8% by mid-century, and 12-

13% by late century (Frumhoff et al., 2006).  

Bioretention performance needs to be robust and responsive to various physical 

site conditions/constraints, variability in storm sizes, volumes and pollutant levels, plant 

survival, and non-steady environmental conditions. Thus, field studies such as the 

following are valuable in that they are exposed to natural variations not easily replicated 

in the lab.  Bioretention monitoring results are critical to understand how small-scale 

bioretention retrofits implemented under constrained field conditions can provide 

stormwater controls and how their performance may vary based on different design 

attributes, hydrologic conditions, and other environmental factors.  

The specific objectives of the study were:  

1) to characterize the composition of N and P species in bioretention inflows and 

outflows in a roadside field study;  

2) to characterize (A) stormwater volume and (B) pollutant retention capacities of 

bioretention cells across various storm sizes; 

3) to evaluate and compare bioretention cells’ (A) hydraulic performances, (B) 

pollutant mass removal efficiencies (MRE), and (B) event mean concentrations 

(EMCs) among vegetation, soil media, and hydrologic treatments; and  

4) to investigate whether environmental factors (precipitation depth, antecedent dry 

period (ADP), seasonality), hydrological factors (inflow volumes, inflow mass, 
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peak flow, hydraulic loading ratio), and treatments (vegetation, soil media, 

hydrologic), are significant predictors of pollutant mass removal efficiencies. 

 

2.2 Methods 

 

2.2.1 Study site description 

The study site consists of eight bioretention cells (Fig.1) located on both sides of a 

medium-traffic campus roadway at University of Vermont (Burlington, USA). 

Monitoring of the bioretention cells was carried out from May to November in the years 

2015 and 2016. The cells were constructed in November 2012 (Cording et al., 2017). 

Vegetation was planted in May 2013 and was well established by the time this study 

commenced in Spring 2015. Table 1 describes the design parameters of the bioretention 

cells. Each cell collects stormwater runoff from road watersheds of varying sizes (30 to 

120 m2). Curb cuts along the road route the runoff to a shallow rock-lined swale, which 

then directs it to each bioretention cell’s “inflow” where water samples are collected.  

The cells are rectangular with identical size (1.22m wide by 3.05m long by 0.9m deep) 

and drainage configurations. From top to bottom, the bioretention soil media is layered 

with two layers each 30.5 cm deep: the upper layer is a 60:40 sand compost mix 

(compost derived from cow manure, food scraps, and wood shavings); below is a pure 

sand layer (Fig. 2a). Below the sand media is a 7.6 cm-layer of pea stone, and the bottom 

23 cm of the cell is occupied by 5-cm diameter stones or gravel. Two of the cells contain 

a soil additive treatment, where the bottom 7.6 cm of the pure sand layer is replaced by 

SortiveMediaTM (SM; Fig. 2b), described later in detail. The entire cell (sides and bottom) 

is lined using an impermeable ethylene propylene diene monomer (EPDM) liner to 
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isolate the cell and prevent water exchange with the underlying native soil and cross 

contamination of the water quality.  The liner also accounts for all the water volume and 

pollutant loads for mass balance calculations. The bioretention cells are drained using an 

underdrain pipe at one end of the cell, a 26-cm long, 15.24 cm-diameter perforated PVC 

pipe that is placed 2.5 cm from the bottom of the cell within the gravel layer. The 

underdrain is connected to a solid PVC pipe outside the soil media where the effluent is 

sampled for water quality analysis. The pipes are connected to the existing storm sewer 

system. Additional details about construction of the bioretention cells and details 

regarding the monitoring infrastructure can be found in Cording et al., (2017).  

Burlington (44°28′33″N 073°12′43″W) has a humid continental climate, with 

warm, humid summers and cold winters. The annual mean temperature is 7.7oC (45.9oF) 

and the average annual rainfall is 934 mm (US Climate Data 2017). The historical averages 

here are from year 1981-2010 and given by Burlington International Airport in South 

Burlington, administrated by the National Weather Service. 

 

2.2.2 Experimental design 

Our study examines a combination of vegetation, soil media, and hydrologic 

treatments assigned among eight bioretention cells. Unlike the latter two, the vegetation 

treatment does not have a true experimental control and comparisons are made between 

two pairs of cells, each containing a different plant palette. The vegetation treatment has 

two replicates per treatment: the low-diversity treatment (VL) contains 2 species, and the 

high-diversity treatment (VH) contains 7 species (Table 1). All plants are native 

perennials and selected for several reasons such as their tolerance of roadside conditions, 

https://tools.wmflabs.org/geohack/geohack.php?pagename=Burlington%2C_Vermont&params=44_28_33_N_073_12_43_W_type:city(42417)_region:US-VT
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road salts, desiccation and inundation. Plantings in the high-diversity treatment include 

native species with varying root depths, and varying phenology so that flowering occurs 

throughout growing season. In both types of cells, the plants senesce in mid-October to 

mid-November, and begin to re-establish in early May.  

The second treatment variable is soil media: two of the cells (cell 3 and 4) contain 

an engineered, P-sorbing amendment called SorbtiveMediaTM (Contech Engineered 

Solutions LLC, North Carolina). This product was donated by its developer to this 

research trial, and was not purchased with research funds, nor has the developer 

previously reviewed the results; there is no intention herein to advertise or promote its 

use. The material consists of fine granules of Fe and Al oxide, and is shown to have 

enhanced capacity for adsorption of dissolved P from influent water (Balch et al., 2013). 

In the two other cells (cell 3 and 4), the bottom 7.6 cm of the sand layer is replaced by the 

SorbtiveMediaTM (Fig. 2b), termed SM from here on.  

The third treatment is an enhanced runoff plus rainfall (RR) treatment to increase 

precipitation and runoff input to three bioretention cells by 15%, 20%, and 60% (cell 1, 5 

and 3 respectively). The additional runoff and rainfall treatment the cells are receiving is 

proportional to the paired cell’s watershed size differences (Table 2). All hydrologic 

treatments are assigned to cells with the high-diversity plant mix (VH). Three cells have 

larger road watershed areas than their ambient counterparts: cell 1’s road watershed is 

15% larger than that of cell 2 (paired control), and cell 5’s road watershed is 20% larger 

than that of cell 6 (paired control) (Table 2). The control, in this case, is high diversity 

plot with no addition of a rainpan or SM. Additionally, cell 3’s road watershed is 60% 

larger than that of cell 4 (control), both of which have the SM treatment. Additional 
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rainfall is delivered via a corrugated, plastic “rainpan” (Appendix A) whose surface area 

is designed to be 15%, 20% or 60% of the cell’s surface area of 3.72 m2, thereby 

extending the cell’s drainage area, and consequently the rainfall input by that much more. 

It is important to note that the construction and placement of the cells were constrained 

by site conditions including underground utilities and a variety of fill soils. Thus, the cells 

are designed to drain varying watershed sizes although the cell dimensions and surface 

areas are identical. 

 

2.2.3 Bioretention maintenance 

Vegetation maintenance occurred periodically throughout the growing season. 

Maintenance included removal of weeds every two to three weeks and clipping of all the 

aboveground stems to within a few inches of the soil line in early November before plant 

senescence, to reduce re-release of nutrients into the bioretention cell. Other maintenance 

activities included clearing sediment, garbage, and other coarse materials from the 

perforated gutters, curb cuts, and maintaining rainpan infrastructure to allow water 

movement into the bioretention soil surface, and setting up stakes and ropes outside the 

bioretention cells to reduce foot traffic passing through the research plots.  

2.2.4 Stormwater sampling 

Stormwater quality was monitored for 50 distinct storms (but total of 121 storms 

among all cells) in 2015 and 2016. Some water quality and soil analysis was also carried 

out in 2014. With eight autosamplers (Teledyne ISCO 6712/7400, Lincoln, NE), we 

could simultaneously monitor the inflow and outflow of four bioretention cells. 

Accordingly, we monitored in two phases, with each phase containing two statistically 
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paired cells (Table 2). However, equipment difficulties resulted in the VH vegetation 

pair, Cells 1 and 2, not being monitored simultaneously. Rainfall data from Burlington 

International Airport, 4 km away from the site, was used for collection of rainfall data.  

 

2.2.4.1 Influent and effluent sampling design 

 

A 90o v-notch weir, set in a cedar box, is installed in the inflow of each 

bioretention cell. The weir box at the inflow can contain up to 5.5 L, before overflowing 

into the bioretention cell at the invert elevation of the v-notch. Notably, runoff from the 

road watersheds is first channeled into a high-density polyethylene (HDPE) plastic and 

rock-lined swale before entering the inflow weir (Appendix B); the swale serves as a 

conveyance, but potentially functions as a “pre-treatment,” as sedimentation of large 

particles may occur there. 

The underdrain pipe in each cell outflow is outfitted with a Thel-Mar plug-in weir 

(Thel-Mar, LLC, Brevard, NC). While the Thel-Mar plug-in weir came pre-calibrated, 

the inflow weir was constructed and calibrated in the lab experimentally (Cording et al., 

2017).  The area where the water pooled behind the weirs was cleaned with hose water 

before every storm to establish comparable starting conditions, and to clean the weirs of 

any previous storm residues. Water was filled up to the v-notch, and the stage or “level” 

was referenced to be zero. Stage values for both inflow weir boxes and ouflow Thel-Mar 

weirs were related to flow rates using weir-specific rating curve equations (Appendix C).   

 

2.2.4.2 Water sample collection 
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Flow measurements were taken using calibrated V-notch weirs on a 1-minute 

interval using a submerged probe flow module (Teledyne ISCO 720 module, Lincoln, 

NE), also known as pressure transducer. The pressure transducer is sensitive to direct 

sunlight and temperatures outside of 0o to 71oC, prohibiting winter sampling. Flow rates 

exceeding 0.94 to 1.17 L min-1 in the inflow (depending on the cell’s weir dimension) 

and 0.046 L min-1 in the outflow triggered sample events.  

A mix of discrete and composite time-based sampling approach was used to 

collect water samples every 4 and 2 minutes at the inflow and outflow, respectively. 

Twenty-four 1-litre polypropylene bottles were installed in the samplers to collect 

composites of 3 samples per bottle, switching bottles every 12 minutes in the inflow and 

6 minutes in the outflow. Composite was done to lengthen the sampling duration, in 

effort to capture an entire storm event. Time-based samples are considered very accurate 

at small time intervals (Harmel et al., 2003). A fine time resolution monitoring was 

deemed the best to capture, with greater frequency, the temporal variabilities related with 

flow rate and pollutant concentration change to best represent true loads over the course 

of a storm hydrograph. Multiple sampling intervals were tested before determining these 

intervals, e.g., 15- minute intervals with 2 samples per bottle, and discrete samples at 30-

minute increments. Short time intervals were chosen because the cells drain small 

watershed areas, and we wanted to capture the initial time of concentrations (approx. 5 to 

9 minutes from smallest to largest watersheds (Cording et al., 2017). For each bottle, 1-

cm diameter suction tubing was used to draw 900-ml sample, in 300-ml increments, from 

the influent, and 450-ml sample, in 150-ml increments, from the effluent. All samples (up 
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to 24 bottles per inflow or outflow with 3 sampling intervals per bottle; Appendix B) 

were analyzed separately to obtain a complete pollutograph. 

 

2.2.4.3 Water quality analysis 

 

Water samples were transported to the Agriculture and Environmental Testing 

Laboratory within 24 hours after the precipitation event. Samples were analyzed for total 

suspended solids (TSS), nitrate/nitrite (NOx), orthophosphate (ortho-P), total nitrogen 

(TN), and total phosphorus (TP). Dissolved heavy metals (Copper (Cu), Zinc (Zn), Lead 

(Pb), Cadmium (Cd), Chromium (Cr), Nickel (Ni)) concentrations were also analyzed, 

some of which are not reported due to large number of concentrations below the detection 

limit, which has occurred in other studies (Dietz and Clausen, 2006; Hatt et al., 2009b).  

Samples were analyzed per the test methods specified in the Standard Methods for 

the Examination of Water and Wastewater (APHA, 2005). TSS measurements included 

shaking the bottle and vacuum-filtering an aliquot of the original samples through pre-

rinsed and dried glass fiber filters. The filters retaining residue samples were oven dried 

and dry weights taken. TSS mass was the difference between final and initial dry weights. 

Results were expressed in concentration by dividing the mass by the volume of aliquot 

drained. Dissolved nutrient concentrations were analyzed after filtration through a 0.45 

μm pore size nylon mesh filter by flow injection analysis on an automated colorimeter 

(Lachat Instruments QuickChem8000 AE, Hach Inc., Loveland, CO) using the Cd-

reduction method for NOx, and ammonium molybdate colorimetric method for ortho-P. 

TN and TP were analyzed by standard persulfate digest on unfiltered water samples. A 

value of one-half of the detection limit was used for any analyte below the detection limit 
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(Dietz and Clausen, 2006; Li and Davis, 2014). Heavy metal concentrations were 

determined using the inductively coupled plasma optimal emission spectrometry (ICP-

OES, Optima 3000DV, Perkin Elmer Corp, Norwalk, CT, USA) after filtration through a 

0.45 μm filter and acidification with concentrated hydrochloric (HCl) acid. For 

particulate metals in the runoff (measured in 2014), approximately 1000 ml of sample 

was filtered through Whatman 47-mm standard glass fiber filters to collect suspended 

sediments.  Nitric acid digestion procedure was carried out on the residue filters, and 

filtrate was analyzed for heavy metals.  

 

2.2.4.4 Pollutant loads and mass removal efficiency 

 

Pollutant cumulative mass at the inflow and outflow was calculated for each rainfall 

event by taking the integral of the product of concentrations and flow rates over the total 

time of the flow during an event (Davis et al., 2006).  

Total Pollutant Mass =  ∫ 𝐶(𝑡)𝑄(𝑡)𝑑𝑡
𝑡𝑟

0
     

 (Equation 1) 

where: 

C(t) = concentration  

Q(t) = runoff flow rate  

Limits of integration refer to time 0 (runoff initiation) and time tr (time at which runoff 

ceases). 

Pollutant mass removal efficiency (RE) was calculated based on the following 

formula: RE (%) = (mass in - mass out) × 100/mass in (Dietz and Clausen, 2006). If the 

value is positive, the system retains pollutant mass; if the value is negative, the system 

exports/leaches pollutant mass.  
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Event mean concentration (EMCs) was also calculated for individual storms by 

dividing total pollutant load washed off during storm event by the total runoff volume 

over that duration (Lee and Bang 2000). 

EMC =
Total Pollutant Mass

Total Runoff Volume
=   

∫ C(t)Q(t)dt
tr

0

∫ Q(t)dt
tr

0

     

 (Equation 2) 

 

2.2.5 Soil CN content, plant tissue nutrient content, and root biomass 

Soil C: N ratio was measured from all cells by grinding oven-dried soils at 60oC 

into a fine powder and combusting in the CN analyzer. Plant tissue samples were taken in 

July and August in 2015 and 2016 respectively to determine tissue nutrient content of 

total C, N and P. Plant tissues (only leaves in 2015, and all above-ground plant parts 

which included stems, leaves, pods, flowers in 2016) were collected from at least two 

different individuals of all species from VH and VL treatments only.  Samples were 

composited and dried in 60oC oven for 3 days. Samples were ground into fine powder, 

and analyzed in triplicates for total C and N by a combustion method in a CN elemental 

analyzer (Flash EA-1112, CE Elantech, Lakewood, NJ). Total P was determined on ICP-

OES following a nitric acid- microwave digestion. Additionally, plant health and 

survival/absence and percent cover in each cell was also recorded intermittently 

throughout the monitoring period. Root biomass was measured in November 2014 from 

fresh soil cores taken from up to 45 cm depth from three equally divided transects from 

the cells’ (VH and VL treatments only) center. Final root biomass was expressed per 

volume basis (i.e., root biomass density in mg cm-3 soil).  
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2.2.6 Statistical analysis 

No significant differences for water quality and soil parameters were found 

between the VH replicates, nor between the RR15 and RR20 bioretention cells. 

Therefore, data were averaged for the VH replicate cells, and for the VH RR15 and RR20 

cells. Each sampling event was considered a replicate for statistical purposes (Winston et 

al., 2013). Influent and effluent concentration and loads differences within each cell were 

statistically compared. The difference between paired “in” and “out” data from each 

event was tested for normality using the Shapiro-Wilk goodness-of-fit test. A Wilcoxon 

Signed Rank test for matched pairs, a non-parametric analogue to the paired t-test (Zar 

1999), was used, due to a non-normal distribution of the differences (Davis, 2007; 

Winston et al., 2013). Whenever the paired sample t-test is applicable, the Wilcoxon 

Signed Rank test for matched pairs is also applicable (Zar 1999). There were difficulties 

transforming the negative differences to fit a normal distribution, and Wilcoxon test is 

appropriate because it does not require the data to fit a certain distribution. Statistical 

analyses were performed using JMP Pro 12.0.0 (SAS Institute Inc., Cary, NC, 2015). All 

results are reported as mean with standard deviation or standard error. A criterion of 95% 

confidence (α=0.05) was used.  

An attempt was made to relate effluent peak flow rates and volumes to five 

predictor variables such as storm size, inflow peak flow rate, inflow volume, antecedent 

dry weather period (ADP), and month of the year using multiple linear regression 

analysis in R software version 3.1.1 (www.r-project.org).  

A multiple linear regression model (Hatt et al., 2009b) was used in R software 

version 3.1.1 (www.r-project.org) to evaluate the correlation of nine to ten predictor 

http://www.r-project.org/
http://www.r-project.org/


64 

 

variables with effluent peak flow rates and volumes, and percent volume and pollutant 

mass RE across the entire monitoring duration. The nine predictors included: 

environmental parameters such as precipitation depth, antecedent dry weather period 

(ADP), seasonality, hydrological factors such as inflow volumes, peak flows (which 

could affect pollutant mobilization rates), hydraulic loading ratio, and the different 

treatment variables (soil, vegetation, and RR). The tenth predictor, which was the 

pollutant loads infiltrating into the cell, was included in the model to predict pollutant 

load RE. All the above predictor variables were included in the regression model as 

independent or explanatory variables at the start, while effluent peak flow and volume, 

and percent volume and mass RE was input as a dependent variable. Seasons were 

divided into spring (May and June), summer (July and August) and fall (September to 

November) and input as categorical. The soil, vegetation, and RR treatments were input 

as binary categorical, while the rest of the variables were input as continuous. The 

variables that were found to be the least significant were eliminated from the model, and 

the model was re-run. Parameter estimates of the final chosen model are presented 

containing slope estimates, p values, and model R2. For regression models, α=0.1 was 

considered as marginally significant.   

 

2.3 Results 

 

2.3.1 Storms sizes and pollutant loadings 

Fifty individual storms were sampled from May to November in the years 2015 

and 2016 (23 and 27 storms respectively) that produced both inflow and outflow samples. 

Storm sizes in 2015 ranged from 0.3 mm to 85 mm (0.01 to 3.3 in.), with a median at 
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15.2 mm (0.6 in.) precipitation depth (Fig. 3). Storm sizes in 2016 ranged from 1.27 mm 

to 39 mm (0.05 to 1.5 in.), with 50% of the storms below 10 mm (0.4 in) (Fig 3). 2016 

was a dry year relative to 2015, characterized by storm events of lower magnitude along 

with longer antecedent dry periods between consecutive storm events. Overall, 

antecedent dry periods for the storms sampled ranged from minimum 0 to maximum of 

13 days.  

Runoff resulting from 90th percentile rainfall is equivalent to the first inch (25.4 

mm) of rainfall in a 24-hour storm event (VSMM 2016). One inch is the water quality 

design storm criteria in Vermont for stormwater best management practices (VSMM 

2016). Thus, storms above and below 25.4 mm (1 in.) were characterized as large and 

small storms respectively.  

Across all road watersheds and their respective bioretention cells, 96 out of 121 

storms (79%) that were monitored across all cells were small storms, and 25 storms 

(21%) were large storms. The largest 21% of the storm events (ranked by precipitation 

depth) accounted for 68% of the total TSS loadings, 45% TN, 37% NOx-N, 50% TP, and 

39% of PO4 loadings (Table 3), indicating that several of the pollutants, especially TSS 

and TP, were transported in just a fewer larger events.  

 

2.3.2 Nitrogen and phosphorus species composition in storm runoff and bioretention 

effluent 

Among over 800 samples collected at the bioretention research site, TN in storm 

runoff was largely composed of TKN (Organic N+NH3-N or TN−NOx-N, 63%), while 

NOx only comprised 37% of the TN. When looking at P species, 48% of the TP was 
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ortho-P, while the remaining 52% was particulate-P (part-P; TP−ortho-P). While there 

were no dramatic changes in the composition of N species in the effluent relative to the 

influent, P species composition changed dramatically from influent to effluent (Fig. 3). A 

much greater portion of the effluent total P was ortho-P relative to part-P (69% vs. 31% 

respectively).  

 

2.3.3 Volume and pollutant retention capacity of bioretention in various storm sizes  

Storm sizes resulting in 100% volume retention ranged from 1.3 mm (0.05 in.) up 

to 39.4 mm (1.55 in.). Among these storms, 37 events, out of 121 monitored, among all 

bioretention cells resulted in no outflows (100% volume and pollutant retention in this 

case), and all but an individual 39.4 mm (1.55-in.) storm were small storms.   

For all pollutants, mean percent retention (for all cells combined) was always 

higher for small storms relative to large storms, but storm size did not make a difference 

for percent TSS retention (Table 4). Mean TSS removal was always over 90%. When 

comparing median to mean values, the median retentions were always greater for all 

parameters (Table 4). Over 60% of dissolved and total nitrogen species were retained by 

bioretention cells in small storms, whereas large storms always showed negative removal 

for all nutrient species, especially with mean removal of dissolved P being greatly 

negative. When examining the medians, only the dissolved N and P were exported in 

large storms, while removal was observed for everything else (Table 4).  
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2.3.4 Hydraulic performance (peak flow and volume) of bioretention cells 

During 2015 and 2016, flow rates and runoff volumes were measured from each 

of the seven bioretention cells. On average, all cells reduced both peak flows and 

cumulative volumes, and no surface overflow was observed. The average peak flow rate 

reduction was 91% across all cells (range: 86-96%; See Appendix E for detailed 

averages). Of the nine predictor variables, peak outflow rates were most strongly 

correlated to peak inflow rates, explaining most of the explained variation alone 

(p<0.0001, R2=0.47, Fig. 5, compared to R2=0.56 for the whole model). Additionally, 

precipitation depth, ADP, and VH treatment also significantly and positively correlated 

with peak outflow rates (p<0.0001, p=0.012, p=0.024 respectively) out of the nine 

variables in the model.   

On average, 75% of the inflow volume was retained (range: 48-86%; Table 5) by 

the bioretention cells. Outflow volumes were strongly proportional with inflow volumes 

(R2=46%, p<0.0001, Fig. 6), peak inflow rates (R2=47%, p<0.0001), and precipitation 

depth (R2=20%, p<0.0001). The three predictor variables together explained 60% of the 

variation in the outflow volumes, and were positively significant. Similar to results 

indicated by Hatt et al., 2009b, our results suggest that outflow volumes expected from 

bioretention cells could be modelled using inflow volumes as one of the strongest 

predictor variables (Hatt et al., 2009b). Caution should be taken however to avoid 

extrapolating results to larger storms that may be over 4 inches, which were not observed 

in the study, as the linear relationship may not hold true for these storms. 

Volume retention was mostly positive, except for a few rare occasions. Four 

storms (two in June; VH and VH SM cells, and one in July and October each; VHRR and 
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VH cells) had greater outflow volumes relative to inflow volumes. The June and July 

storms had a total 3-day antecedent period rain of 2.76, 1.68, and 1.04 inches 

respectively, suggesting that media may have been somewhat saturated prior to storms, 

and flushing of retained water from previous storm may occur along with “new” water 

(Subramaniam et al., 2015) in which outflow exceeded inflow. Passeport et al. (2009) 

also measured greater outflows than inflows on certain occasions.  For the October 29 

storm, small volumes of inflow and outflow were observed (only 2.63 vs. 3.1 L 

respectively) with a 3-day antecedent rainfall of 0.62 inches. Season (excluding winter) 

did not have any significant effects on outflow volume or percent volume retention. Thus, 

the effects of hydrological factors on the outflow generated from these bioretention cells 

are more important than seasonality. 

Conversely, percent volume retention did not show any strong pattern with inflow 

volumes (Fig. 6). Precipitation was the only variable out of the nine predictors that 

showed significant and negative correlation with volume retention (p=0.041, R2=3.4%, 

compared to R2=11% for the full model). 

 

2.3.5 Influent and effluent pollutant concentrations 

The change in pollutant concentrations from influent to effluent from bioretention 

cells were highly variable and treatment dependent. Across all cells, mean influent 

concentrations for TSS, NOx, TN, ortho-P, and TP were in the following order: 28, 0.661, 

1.32, 0.139, and 0.256 mg L-1. Mean effluent concentrations for the five pollutants were 

8.9, 1.3, 2.7, 1.3, 1.4 mg L-1 respectively. TSS was the most effectively retained pollutant 

by all bioretention cells across all storms. All treatments lowered influent TSS 
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concentrations, but the reduction was only significant for VL, VH and VH RR treatments 

(Fig. 7).  

Different media configuration resulted in varying P removals. The two cells 

amended with the SM additive reduced ortho-P concentrations in the effluent (significant 

for VH SM cell only), in contrast to all other cells that did not receive the additive (Fig. 

7). While the SM cell also significantly reduced influent TP concentrations, lower (but 

not statistically significant) effluent TP concentrations were measured in the SM+RR60 

cell relative to influent. SM cell was the only cell that resulted in lower effluent NOx 

concentrations. Export of TN concentrations in the effluent was observed for all other 

cells (Fig. 7). 

Overall, the dissolved metal concentrations for Cu, Zn, Cr, Pb, and Co were low, 

and non-detectable at times, with influent mean values, pooled across all cells, of 13.7, 

148, 11.1, 9.1, and 16.5 µg L-1 respectively. For those same elements, effluent 

concentrations were 21.2, 144, 10.7, 8.9, and 17.8 µg L-1, respectively, showing no 

notable change in concentration within bioretention cells, except for a small export of 

Copper. Particulate metal concentrations for the above elements were much lower than 

their dissolved constituents: below 19 µg L-1 for influent, and below 3 µg L-1for effluent 

concentrations, indicating positive retention within the bioretention cells.  

 

2.3.6 Cumulative pollutant mass and EMC removal efficiency by treatment 

Cumulative (over the study duration) pollutant load retention from the 

bioretention cells varied with pollutant types and treatments (Table 5). Mass removal 

efficiencies were calculated on the cumulative loads (Table 5). Overall, TSS loads were 
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well retained across all cells (range: 89-99%). Interestingly, the two SM cells retained all 

four nutrient pollutants based on loads for NOx, TN, ortho-P and TP (over 20% removal 

for N species, and over 80% for P species; Table 5). All other cells showed negative 

removals for P species, while N species retention varied depending on the treatment 

(Table 5). Positive retention of TN was also observed from VL and VH cells. VL showed 

positive retention for NOx
 as well (Table 5).  

We examined the EMC data to determine statistical differences between the 

influent and effluent for the different treatments, by considering each sampling event 

across the whole monitoring duration as a replicate. Significant reduction in TSS EMCs 

was observed for all cells (Fig. 8). Ortho-P and TP EMCs were found to be significantly 

lowered by the two SM cells only, irrespective of the RR treatments. More ortho-P and 

TP were present in the outflow than the inflow for the non-SM cells (mean negative 

cumulative mass retention: -427%, -163%, respectively; Table 5), with varying 

significances for those cells (Fig. 8). The SM treatment also lowered NOx (significantly) 

and TN EMCs (Fig. 8). The non-SM cells show mixed results with respect to nitrogen 

(Fig. 8).  

 

2.3.7 Factors affecting mass removal efficiencies of the different pollutants 

Ten variables were input into a multiple linear regression model to better assess 

the various factors influencing pollutant removal by bioretention cells. For NOx and TN, 

the observed variation in load reduction was a function of the variation in precipitation 

depth (p<0.0003), inflow volume (p=0.002 and 0.01 respectively), peak inflow discharge 

(p<0.003), and seasonality (p=0.1 and 0.04 respectively), with a model R2 of 28% for 
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NOx and 24% for TN (Table 6). Out of the ten variables that were selected to explain the 

total variation in ortho-P removal, precipitation depth, seasonality and peak inflow 

discharge were highly significant (p=0.002, 0.007 and 0.02 respectively). Inflow volume 

(p=0.06) and soil media treatment were marginally significant (p=0.08). Together these 

variables explained 20% of the total variation. For TP, multiple predictor variables were 

highly or marginally significant, including precipitation depth (p=0.0006), seasonality 

(p<0.0001), peak inflow discharge (p=0.0004), ADP (p=0.004), inflow TP mass 

(p=0.001), and soil treatment (p=0.06), explaining 40% of the total variation (Table 6). 

None of the variables were influential predictors of TSS removal efficiency, except for 

soil media (p=0.01) and hydraulic ratio (p=0.05), but these predictors only explained as 

little as 7% of the variation in TSS removal, arguably making them poor model 

predictors.  

 

2.3.8 Soil and plant nutrient concentration, root biomass density 

Soil C and N content consistently decreased in all cells from year 2014 to 2016 

(Table 7). An increase in the CN ratio was observed in 2016 as N decreased more than C 

content. Plant tissue N concentrations were approximately 6-7 times higher than P 

concentrations (Fig. 9), which is typical (Tanner and Headley, 2011). Leaf N 

concentrations were greater than “all plant parts” N concentrations for all species, while 

for P, this varied with species. Hemerocallis and Symphyotrichum had the highest tissue 

N concentrations. Symphyotrichum also had the slightly highest P concentrations (Fig. 9). 

Root biomass density between VH and VL treatments were not significantly different, 
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but slightly greater density was measured in the VL treatment (0.664 vs. 0.556 mg cm-3 

soil).  

 

2.4 Discussion 

 

2.4.1 Stormwater N and P composition 

The overall composition of N and P species and their concentrations in influent 

stormwater measured at our bioretention site in Burlington, Vermont over 50 storm 

events were in the mid-range for NOx and TN, and high range for ortho-P and TP 

compared with other urban stormwater findings in the literature (Table 8). Overall, 

measured P concentrations were much lower (approx. five times) than N concentrations, 

which is typically the case in urban stormwater (Pitt et al., 2003; Dietz and Clausen, 

2006; Winston et al., 2013). TSS was comparatively lower in this research (Table 8). 

Median stormwater N and P composition (i.e. proportion of different “species” of 

each nutrient) in our work align with a few other studies. For example, Taylor et al. 

(2005) found very similar median numbers in Melbourne, Australia where 30% of the TN 

(1.8 mg L-1) in the storm runoff was NOx (0.54 mg L-1), compared to the reported 40% in 

our study (TN and NOx: 0.933 and 0.372 mg L-1 respectively) (Table 8). Taylor et al. 

(2006) reviewed the international stormflows from residential, commercial, industrial, 

parkland landscapes in various cities with separate stormwater systems (Duncan, 1999) 

and reported that only 24% of TN was attributed to NOx (this is based on means).  

To put our study into a more local context, our N and P species median data were 

compared to a study conducted by Pitt et al. (2003) which examined stormwater outfall 

samples from over 200 municipalities nationwide in the U.S. covering mixed land uses 

(residential, mixed residential, commercial, industrial, institutional, freeway) and 
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comparable results were found. 25% of TN (2.36 mg L-1) was composed of NOx (0.6 mg 

L-1; Table 8). NH4
+ proportion was smaller, at 19% (0.44 mg L-1) and 9% (0.17 mg L-1), 

while greater than 40% of TN was made up of dissolved and particulate organic N in the 

in the Pitt et al. (2003) and Taylor et al. (2006) studies respectively. From the evidence in 

the international literature for urban stormwater (Duncan, 1999), we can assume that 

ammonia may only constitute a small proportion of TN in our data, but we cannot 

separately quantify the proportions of organic N that are in dissolved (DON) or 

particulate (PON) forms, apart from concluding that they together may make up majority 

of the TN. PO4 made up 49% of TP compared to 44% in the Pitt et al. (2003) study, with 

little variation in the concentration values (Table 8). In fact, a number of studies have 

measured a greater proportion of soluble ortho-P making up TP in influent stormwater 

(range: 44-71%, Table 8).  

 

2.4.2 Importance of hydrology on volume and pollution retention capacity of 

bioretention cells  

Our data shows that bioretention systems exhibit a relatively higher treatment 

capacity for small storm events because of increased volume retention and subsequently 

reduced outflow volumes (Table 4). Complete capture of small storms was observed in 

the study, e.g., 31% over 121 storms monitored. (Davis, 2008) reported complete capture 

of 18% of 49 storms, all from smaller storm events, and overall delayed times to effluent 

peak flows. In this study, bioretention was also functional at retaining portion of large 

storm runoff volumes (70% mean volume retention; Table 4) from the roads. This shows 

that bioretention has the capacity to maintain predevelopment hydrologic regimes in 
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urban areas, and by keeping pollutant-laden runoff from entering the sewer, alleviate 

pressures on existing storm infrastructure. It is also likely that the existence of the 

shallow swale which resulted in initial abstraction of storm runoff and entrapment of 

pollutants, a portion of storm volume and pollutants do not make it to the cells’ inflows in 

small storms, if at all, until a bigger big storm flushes them through the cells. Treatment 

capacity for nutrients, especially dissolved ones, is challenged under changing hydrologic 

conditions, e.g., for storm sizes greater than 25 mm (1 in.) (Table 4). The challenges of 

dealing with dissolved nutrients under larger storm events (either longer duration or 

greater intensity) is that water and nutrients can bypass sorption capacity of the subsoil 

layers and their susceptibility of leaching from the soil media can greatly increase, 

particularly when the media is predominantly sand (Djodjic et al., 2004) mixed with 

compost like here. While particulate pollutants are primarily removed by physical 

filtration, dissolved pollutants are removed by biochemical (denitrification) or 

physiochemical (sorption) processes, which require certain soil conditions and retention 

times in the media.  

 

2.4.3 Cumulative Loads and EMC-based treatment effectiveness 

This study selected experimental treatments to evaluate certain design parameters: 

vegetation, media additives, and hydrologic regime. All treatment cells performed 

consistently well for TSS with an average (±SD) MRE of 94±5% (Table 5), and 

significant effluent EMC reduction (Fig. 8). TSS load removal reported in other field 

bioretention studies range from 60 to 97% (Roseen et al., 2006; Hunt et al., 2008; Hatt et 

al., 2009b). TSS is removed via physical filtration of the particulates and colloids during 
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percolation through the soil profile. The bioretention cells were consistently effective in 

removing TSS irrespective of the storm sizes, ADP, peak influent discharges, runoff 

volumes and influent loads amounts, and treatments.  Though the cells are functioning 

well for TSS at present, monitoring long-term removal efficiency is critical, as soil matrix 

characteristics are may change with time due to influx of sediments, and influence of 

vegetation, stormwater input, soil moisture changes, and climate.  

The soil media additive treatment was the most effective at improving effluent 

water quality regarding nutrients. P removal efficiencies were highly dependent on the 

soil treatment. Only the SM treatments, irrespective of whether there was added rainfall 

and runoff, removed ortho-P, TP cumulative loads (94%, 90%) and EMCs from the 

influent (Table 5 & Fig. 8 respectively), despite the relatively low P road runoff input to 

the cells (Fig. 7 & 8). The SM additive cells interestingly also removed both NOx and TN 

loads (39% and 48% respectively) and EMCs except for the slight export of average NOx 

and TN EMC observed from the SM+RR60 cells (Table 5 & Fig. 8). This cell with the 

slight export also received approximately 3 times more influent runoff (Table 5) and 

average (±SD) peak discharge (47±52 vs. 14±27 L/min) than its control SM cell, which 

most likely contributed to increased N leaching from the bioretention media. Although 

removal efficiencies for N by the SM treatment were lower relative to P, the added N 

removal benefit provided by the additive is promising, and not something that was 

anticipated. Adsorption of NH4
+ ions to iron and aluminum oxide and hydroxide ions 

(Westerhoff and James, 2003; Belchinskaya et al., 2013) in the additive layer could have 

reduced NOx formation via nitrification. It is also possible that concurrent 

nitrification/denitrification within the soil microsites (Parkin, 1987; Robertson and 
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Tiedje, 1987) and within same soil aggregates (Stevens et al., 1997) removed portion of 

the NOx. It is critical to continue testing the long-term field performance of the additive 

to understand what service lifetime it carries before reaching P saturation potential.  

The net retention of nutrients achieved by the bioretention systems was mostly 

through reduction in runoff volumes, rather than reduction in the actual concentrations of 

the input runoff, except for the SM treatments, which removed concentrations of either N 

or P, or both (Fig. 7). While we observed that the SM treatments consistently had positive 

effects on P removal based on all the metrics examined (loads, EMCs, and actual 

concentrations), the removal results for N species were inconsistent across the metrics, 

particularly for cells that did not receive the SorbtiveMediaTM. Multiple linear regression 

results also support this conclusion, as design treatment was not a significant predictor of 

N load removal, while the SM treatment was a marginally significantly positive function 

of P load removal (Table 6). Although the SM treatment was not a significant predictor 

for N removal, the fact that it generally had a consistently positive effect on N removal 

across all metrics may indicate that it is somewhat promising for N, as it is greatly 

promising for P. It can be concluded that neither the vegetation nor RR treatments on 

EMC-based N removal were significantly different, with the exception that VL 

significantly exported TN EMCs to the effluent (Fig. 8). However, examining the EMCs 

(Fig. 8) and loads (Fig. 7) data in combination, the effects of vegetation and RR 

treatments seem to be irrelevant or inconsequential compared to the soil media effects, 

which appears to be largely governing the nutrient balance from the cells. The VH and 

RR treatments were overlaid on a soil composition and configuration that was identical 

among cells. The large amounts of composts that the media contained could have 
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dampened the possible vegetation and RR effects. Additionally, for bioretention of the 

depth and configuration utilized in the study, it can be concluded that a 15% to 20% 

change in hydrologic regime may alter loading patterns (Table 5) and increase variability 

in the effluent (Fig. 8), albeit not significantly.  

We have now attributed nutrient export from the cells to the presence of excess 

compost in the soil media profile, which has also been known to occur in laboratory 

studies (Mullane et al., 2015; Hurley et al., 2017). Compost is a rich organic matter 

nutrient source, and its input to soil enhances C, N, and P mineralization (Tabatabai and 

Dick, 1979; Busby et al., 2007) due to the presence of active microbial biomass (Li et al., 

2004; Goberna et al., 2006), converting more stable pools of organic N and P to soluble 

inorganic forms (Vitousek and Matson, 1988; Escudero et al., 2012) that are easily 

transportable. Nutrient transformations from mineralization continues to occur between 

storm events in the soils layers, and the soluble nutrients that are generated as a result are 

mobilized downwards by the next high flow event. This is particularly true when the 

initial nutrient content of the media is high (Hunt et al., 2006; Clark and Pitt, 2009). In 

our study, net N mineralization rates (±SE) estimated from the upper soil layers averaged 

190±14 mg kg dry soil-1 per year-1, while net N nitrifications rates averaged 134±16 mg 

kg dry soil-1 per year-1 from the ambient cells (See Appendix F for detailed methods). 

Although the total soil N content has decreased over the years (Table 7), due to the “slow 

nutrient release” nature of composts, it is possible that nutrient mineralization by 

microbes (Connell et al., 1995) and leaching effects of NOx (and dissolved organic N) 

and ortho-P could be observed for at least another few years in the study, if not longer, 

highlighting the importance of long-term monitoring of bioretention soil media 
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performance. Typically soil microbes mineralize 1-3% of the N pool back in the soil each 

year (Connell et al., 1995). Although microbes also remove a portion of the N and P pool 

via microbial immobilization, assimilated nutrients are re-mineralized back to soil 

overtime via microbial decomposition of roots and organic matter, and microbial death 

and lysis (Ladd et al., 1981; Turner and Haygarth, 2001). Nitrate leaching has in fact 

been observed in several laboratory (Davis et al., 2001, 2006; Hatt et al., 2007; Blecken 

et al., 2010) and field studies (Hunt et al., 2006; Hatt et al., 2009b; Brown et al., 2013) of 

bioretention systems, highlighting challenges in dealing with a nutrient that is in a 

dynamic state of flux. Similarly, P export has also been observed in field studies either 

due to the disturbance of the soils at the initial phase of the study (Dietz and Clausen, 

2005), use of high P-index media (Hunt et al., 2006), or leaching of the mulch and 

organic soil in the media (Toronto and Region Conservation 2006). 

 

2.4.4 Removal efficiency predictors and implications for bioretention design 

Precipitation depths, inflow volumes, and peak inflow rates had significant 

negative impact on N and P retention by the cells, suggesting that increases to storm 

volumes and intensities associated with climate change could undermine bioretention 

functioning. This could be exacerbated by the phenomenon observed in this research that 

it was a few larger storm events, as opposed to those less than 1 inch, that tended to 

mobilize the most TSS and TP from the roadway and into the stormwater treatment 

system. In a study by Davis et al. (2006), where a series of tests were performed with 

different runoff inflow characteristics, a reduction in treatment efficiency of nutrients was 

observed when both the rainfall duration or the flow rate through the bioretention soil 
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was doubled. Lower rainfall depth and duration also favored effluent peak flow and 

volume reduction by bioretention in other studies (Li et al., 2009; Mangangka, 2013).  In 

fact, Vermont and other Northeastern states are projected to experience more frequent 

and intense rainfall events in the future (Frumhoff et al., 2006; Pealer, 2012). 

Bioretention design factors should be ameliorated to accommodate for the increased 

water quality volumes anticipated due to climate change.  Further, increased rainfall 

intensities can increase pollutant mobilization and delivery rates, and decrease pollutant 

retention times provided by a system, as result of increased peak flow rates (Fig. 5). Peak 

flow rates were significantly positively correlated to increased peak flow rates, 

precipitation depth, ADP, and surprisingly the VH treatment in the study. This can be 

explained by the fact that greater diversity may not matter as much as plant selection and 

their respective functional traits. For example, Panicum is known to have deep extensive 

root systems (McLaughlin et al., 1999). Plants used in the VH treatment have not been a 

subject of research, but a one-time measurement of root biomass in the VH versus VL 

plots showed greater root density from the VL plots containing the Panicum. Greater 

proliferation of root density may have subdued the peak flow rates in LD plots by 

slowing infiltration. This suggests that plant diversity may not matter as much as 

individual plant functional traits.   Designs features should therefore address the 

interaction of climate effects on hydraulic, hydrology and biogeochemical parameters 

within bioretention systems.   

ADP was not a good predictor for removal efficiencies of most pollutants, only 

appearing significantly negative for TP (Table 6). This could be because the effect of 

ADP on pollutant build up on the road surfaces at this site is confounded due to campus 



80 

 

management activities requiring occasional street-sweeping, removing some fraction of 

dust and particulates that would otherwise be captured in the influent during rain events, 

or that the maximum ADP observed over the course of this research was only 13 days. 

Several other studies have showed little or no correlation of removal efficiency with ADP 

(max of 15 days) (Lewis et al., 2008; Winston et al., 2010), or mixed correlation 

depending on the pollutant type (Mangangka et al., 2015). Greater atmospheric buildup 

and deposition of certain pollutants may occur when ADP is longer (Kayhanian et al., 

2003), but that would also lead to decreased soil moisture and thus increased soil storage 

capacity of runoff, improving pollutant retention (Mangangka et al., 2015) under certain 

storm sizes, but treatment may decrease for larger storms once media reaches saturation. 

The negative correlation between ADP and TP removal efficiency observed in our study 

is opposite to the trend reported by Mangangka et al. (2015). This reduction could be 

attributed to P being primarily present in particulate form (Miguntanna et al., 2013), and 

higher particulate loads associated with pollutant build-up on the surface (Vaze and 

Chiew, 2002). Though to support their observation, Mangangka et al. (2015) argue that 

with longer ADP the average particulate size is expected to increase, and they become 

more easily removable by bioretention system, this was not supported by our study. On 

the other hand, the role of soil media control on P removal is particularly an important 

one to consider owing to the effectiveness shown by this study as well (Table 5 and 6, 

Fig. 8). Seasonality was a significantly predictor in the model for all N and P removal 

efficiency, where a significant reduction in spring season (May-June) were observed 

relative to fall (September-early November) for bioretention performance of those 

nutrients, despite the largest storm depth of 85.09 mm occurring in September. The 



81 

 

results can be attributed to differences in plant growth that is closely tied to seasonality. 

Percent cover estimates from Spring to Fall roughly increased from average of 76% to 

91% across the cells. Because plants are cut back to only a few inches off the ground in 

November, the plants are shorter in spring and get increasingly taller as the season 

progresses. Almost all the plants except the Anemone and Baptisia, reach full maturity 

only around July.  

 

2.4.5 Plant assimilation of nutrients 

Across all the herbaceous plant species, nutrient composition patterns were 

similar where N concentrations were much greater in magnitude than P concentrations in 

both leaves and “all plant parts” examined, agreeing with other research in the past (Han 

et al., 2005; Tanner and Headley, 2011; Winston et al., 2013). Tissue nutrient 

concentration ranged from 1.14 to 2.91% dry weight for N, and from 0.22 to 0.39% for P 

(McJannet et al., 1995) among the species used in the study, indicating that a percent of 

pollutant removal mechanism can be contribution from plant uptake of nutrients of 

dissolved N (NH+
4, NO-

3) and P pool, which is variable by species (Fig. 9). However, for 

accurately estimating the total nutrient amounts removed by species, bioretention plant 

nutrient concentration acquisition capacity should be paired with aboveground and/or 

belowground plant biomass data for the species. Examining concentrations and biomass 

together will allow for the estimation of areal uptake of species, which is a more 

complete metric of nutrient removal than tissue nutrient concentrations alone.   

We also recorded plant growth, survival and composition changes within the cells 

over time in 2015 and 2016. Our observations will be useful for informing designers 
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about bioretention plant selection in a cold climate region. Disappearance of several 

species was observed over time despite plant maintenance through weed removal and 

careful attention towards mulching the stocks of the cold sensitive plants (e.g., Lobelia 

and Aquilegia) with thick layer of straw for protection. By 2016, cardinalis had 

disappeared from four out of five VH bioretention cells (and all cells by 2017). Aquilegia 

and Asclepias were outcompeted in three of the cells by 2016. It is possible that the 

aggressive growth of Anemone in spring (late May to early June), occupying from 20 to 

60% of the coverage among the cells, could have drowned out the later emerging species 

like Lobelia and Aquilegia. 2016 was also a remarkably dry year compared to 2015, so it 

provided us with the opportunity to observe and record plant health and survival against 

the natural mini-droughts conditions occurring that year. All plants but the Hemerocallis 

and Baptisia, appeared to have been affected by the drought. Panicum height was stunted 

compared to the year before, while Helenium and Symphyotrichum contained many dead 

leaves, but continued growing new ones following wet conditions, while Aquilegia and 

Asclepias were mostly wilted and dead by late August. Overall, Helenium, 

Symphyotrichum and Panicum appeared the most robust against the drought. Cardinalis, 

Asclepias and Aquilegia appeared to be the least robust species in general; however, they 

may be able to survive competition and prolong if spacing between plants are wide 

enough.  

 

2.4.6 Informing design through research results 

By understanding N and P composition in storm runoff, designers can optimize 

critical bioretention design elements required to effectively target the removal of major 
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pollutant constituents, and subsequently minimize their transport to water bodies 

downstream. 

 

2.4.6.1 Nitrogen 

 

Given the relatively high organic N proportion of TN (Fig. 3), promotion of 

aerobic conditions is primarily required in the soil media to drive mineralization in a two-

step process: ammonification, the conversion of organic N to NH+
4 (ammonium) ion 

(Wood, 1988; Gumbricht, 1993), and nitrification, where NH+
4 is oxidized, forming first 

nitrites (NO2), which are highly reactive and gets oxidized to NO-
3 immediately (Okano 

et al., 2004). NO-
3, a highly mobile anion, is ultimately removed via anaerobic 

denitrification process to achieve complete N removal from the system (Knowles, 1982; 

Firestone and Davidson, 1989; Bollmann and Conrad, 1998). These processes are 

microbial-mediated. For N, effective treatment systems must therefore first rely on 

physical process of aerobic filtering (Taylor et al., 2005; Passeport et al., 2009), followed 

by a continuously saturated anaerobic zone, with a reliable carbon source as electron 

donating energy substrates for microbes (Kim et al., 2003). Systems that rely solely on 

physical filtration with short detention/retention times may not perform adequately for N.  

Both lab and field studies have also showed successful N removal in other cases, 

by incorporating internal saturated zones (ISZ) in the design to promote denitrification, 

which is the major pathway of N removal. Studies involving N have utilized various 

carbon substrates ranging from newspaper (Volokita et al., 1996), wheat straw (Soares 

and Abeliovich, 1998), sawdust (Robertson and Cherry, 1995), woodchips and leaf mulch 

compost (Blowes et al., 1994) for denitrification potential. Kim et al. (2003) did a column 
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study utilizing all five organic substrates in sand and observed 100% removal from 

newspaper columns, 60% from leaf mulch, and greater than 95% removal from sawdust, 

wheat straw and woodchips columns. In another study, Dietz and Clausen (2006) found 

that the presence of an ISZ reduced TN concentrations significantly, but did not affect 

NOx concentrations, and significantly exported TP loads. Passeport et al. (2009) found 

ISZs did not lower NOx concentrations, but lowered various other N species (TN, TKN, 

NH3), and surprisingly TP and ortho-P EMCs and loads as well.  

Apart from hydrologic and soil modification to the treatment system, a pre-

treatment could greatly enhance performance. Observationally, the shallow rock-lined 

inflow swale in our system appeared to slow runoff flow, and to settle and entrap a 

portion of coarse sediments and particulates, offering promise of a pre-treatment that can 

increase cell longevity.  

 

2.4.6.2 Phosphorus 

 

In contrast to N removal from a system, saturation might have unwanted effects 

on P solubility, as P becomes increasingly soluble due to desorption under extended 

saturation (Ann et al., 1999; Hurley et al., 2017; Lintern et al., 2011). This is important to 

consider in ecosystems challenged predominantly by P pollution, or both P and N 

pollution. Whereas N removal is closely linked to microbial processes, both short and 

long-term P removal is heavily relied on soil chemical parameters. Unlike NOx, 

phosphates are removed from soil solution through sorption reactions with metal cations 

(mainly Al, Fe, Ca) and chemical precipitation in soils. Thus, design features targeting P 

retention should try to optimize those physiochemical soil properties that have the largest 
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role in P removal (Babatunde et al., 2010). This research evaluated the use of 

SorbtiveMediaTM, which contains Fe and Al, and found promising results (Table 5, Fig. 

7&8). The SorbtiveMediaTM is a fine reactive media, with a projected service life of 10-

30 years when used as a soil and sand amendment, depending on the site loading 

characteristics and amount utilized8. High Fe and Al content are characteristic of an 

effective filter substrate for P removal (Roy, 2016; Wang et al., 2013). Phosphates bind to 

organic matter or soil substrates surfaces containing Fe and Al oxides (present in high 

amounts in clays and silt) through ligand exchange reactions, and are taken out of the 

dissolved phase (the most bioavailable and transportable) into solid phase (insoluble 

compounds). Phosphates can also form precipitate with dissolved metal ions and get 

filtered out during percolation (Roy, 2016). However, Fe treatment for P should be 

considered carefully because of its sensitivity to redox potential as Fe solubilizes and 

desorbs P under reduced conditions. Al treatment may be recommended for immobilizing 

P under wet conditions as it is not affected by redox potential changes. Lime materials 

(CaCO3, Ca(OH)2), may be better than Al and Fe due to their effectiveness in 

immobilizing P under heavily reduced conditions (Ann et al., 1999), although they will 

release P under low pH and in acid soils in the presence of carbonates (Martens and 

Harriss, 1970; Stumm and Leckie, 1970), high Mg concentration (Martens and Harriss, 

1970), and organic acids (Inskeep and Silvertooth, 1988). 

As this study indicates that SorbtiveMediaTM as a bioretention soil amendment is 

promising, other naturally available sequestering materials (adsorbents), which accelerate 

sorption exchange reactions, as alternatives can also be examined, e.g., red mud, 

                                                 
8 http://www.imbriumsystems.com/stormwater-treatment-solutions/sorbtive-media 

http://www.sciencedirect.com/science/article/pii/S0925857499000270#BIB32
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dolomite, limestone, zeolite, bauxite, calcined waste eggshells, and oyster shells (Drizo et 

al., 1999; Köse and Kıvanç, 2011; Vohla et al., 2011; Wang et al., 2013). Locally 

produced industrial by-products such as gypsum and drinking water treatment residuals 

are also other alternatives (Leader et al., 2008).  

 

2.5 Conclusion  

 

Bioretention cells at this site were largely successful at mitigating volume and 

peak flow retention, and reducing TSS concentrations, loads and EMCs. Nutrient loads 

reduction, however, was more a function of runoff capture and storage, rather than of 

actual water quality improvements, except for the additive treatment cells, which reduced 

NOx, TN, ortho-P and TP concentrations, loads and EMCs with variable significance. 

Our results indicate that P removal can be greatly enhanced by soil media additives (e.g., 

substrates having higher Fe and Al metal content). The additive layer of SM applied to 

two of the eight bioretention cells studied successfully negated the inputs of N and P 

generated by both compost leaching and storm runoff. In non-additive cells, the 

transformations of input nutrients, and mineralization of compost P forms to ortho-P and 

compost N forms to ammonium/nitrate and DON could be the major reason for highly 

variable and poor removal efficiency of the cells. N (and P) removal could be enhanced 

in future designs by reducing nutrient content of compost (if it must be used), or using 

little to no compost in the soil media, and/or through deliberate engineering designs to 

promote microsite conditions of saturation within the soil layers to achieve N 

transformations via denitrification.  

Our multiple linear regression results indicated increased storm sizes and peak 

flow rates to be the top significant hydrologic predictors of negative nutrient removal 
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efficiencies (pollutant export) from the cells. Local climate predictions for New England 

include increased rainfall volumes and intensities in the long-term, suggesting that, for 

bioretention performances to improve, design initiatives should be driven by the different 

local climate challenges including extreme precipitation events and flood risks, as well as 

addition to water quality treatment.  Selection of water quality volumes (such as the “WQ 

volume” calculation used by the State of Vermont, Connecticut and Maryland in 

stormwater permitting) should also be carefully considered. Both N and P in bioretention 

systems are dynamic and exhibit variation in forms over the course of individual storm 

events, after and between inter events. Therefore, considering their dynamic speciation, 

transport, and fate, bioretention design that relies solely on volume reduction is not 

enough to achieve nutrient removal successes. Promising alternative materials and 

hydrologic design variables that enhance N and P capture mechanisms should continue to 

be explored and researched.  Appropriate plant species, for example ones that reach 

maturity faster alongside occupying greater soil coverage and accumulating larger 

aboveground and belowground biomass, while tolerate changing environmental 

conditions should be considered for bioretention in cold climate regions.   
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Table 1. Bioretention watershed and cell characteristics.  

 

Characteristics Description 

Watershed 

description 
Low to medium traffic paved asphalt road 

Watershed area 30 – 120 m2 

Bioretention cell area 3.72 m2 (40 ft2) 

Bioretention 

maximum ponding 

depth 

15.2 cm (6 in.) 

Soil media depth 61 cm (2 ft) 

Soil media 

characteristics 

60:40 sand: compost (upper 30.5cm; 1ft), pure sand 

(lower 30.5cm; 1ft)  

Pea stone depth 7.6 cm (3 in.) 

Gravel media depth 22.9 cm (9 in.) 

Underdrain system 15.2 cm (6 in.) diameter perforated PVC pipe 

*Soil media 

available-P 
27.08 ppm 

Soil media CEC (top 

layer) 
6.7 meq/100 g soil 

Soil media OM (top 

layer) 
1.99 % 

Soil pH 6.27-7.36 

Soil media total C 

and N  
1.6% C, 0.099% N (CN ratio of 15.7) 

Vegetation types Low diversity palette: Daylilies 'Stella d'Oro' 

(Hemerocallis spp.) and Switchgrass 'Shenandoah' 

(Panicum virgatum) 

 

High Diversity palette: Butterfly Milkweed 'Tuberosa' 

(Asclepias tuberosa), Windflower (Anemone 

canadensis), Columbine (Aquilegia canadensis), New 

England Aster 'Purple Dome' (Symphyotrichum novae-

angliae), Blue False Indigo 'Capsian' and 'Midnight 

Prairiebliss' (Baptisia australis), Sneezeweed 

'Red+Gold' (Helenium autumnale), and Cardinal 

Flower (Lobelia cardinalis) 

*Note: See Appendix D for detailed soil chemical parameters.  
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Table 2. Treatments in the experimental design for each of the eight bioretention cells. 

Cell Soil Vegetation 

Vegetation 

treatment 

watershed 

area 

difference 

(%) 

Rainfall 

Runoff 

treatment 

watershed 

area 

difference 

(%) 

Drainage 

Area, (m2) 

7 
 

VL 
11 

Ambient 
 

30 

2 
 

VH Ambient 
20 

33 

1 
 

VH  Ambient+RR20 40 

8 
 

VL 
13 

Ambient 
 

61 

6 
 

VH Ambient 
15 

54 

5 
 

VH  Ambient+RR15 63 

4 SM VH  Ambient 
60 

64 

3 SM VH  Ambient+RR60 120 

*Cells inside the rectangular are paired cells, for example cell 2 is paired with cell 7 for the purpose of 

comparing vegetation diversity and with cell 1 for the purpose of comparing rainfall rates.  

*Cells highlighted in gray were monitored simultaneously in 2015 (May 10 - July 1) and 2016 (July 15 -

November 4). Remaining cells were monitored simultaneously, but in reverse order in 2015 (July 15- 

October 31) and 2016 (May 15 – July 10) to cover all seasons. VL= low diversity plant mix, VH= high 

diversity plant mix, RR= enhanced rainfall + runoff, SM= SorbtiveMediaTM. 
 

 

 

Table 3. Cumulative volume and pollutant influent loadings, and percentage of total 

loadings accounted by small (≤ 1 in. depth; n= 96) and large storms (>1 in. depth; n=25) 

for the storm events sampled spanning May to October/November 2015 and 2016 in 

Burlington, Vermont.  

 Cumulative volume and load 

 Volume NOx TN Ortho-P TP  TSS  

 (L) --------------------(mg)------------------ (g) 

Small (79%) 35389 11593 27348 2715 5130 475 

Large (21%) 27454 6665 22521 1733 5198 997 

  Volume and load contribution (%) 

Small  44 63 55 61 50 32 

Large  56 37 45 39 50 68 
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Table 4. Mean (SE, in parenthesis) and median (IQ, in paranthesis) percent loads 

reduction for all cells combined for small (≤1 in. depth; n= 96) and large (>1 in. depth; 

n=25) storms for the different water quality parameters across all cells that was sampled 

spanning May to October/November 2015 and 2016 in Burlington, Vermont. 

Parameter Storm Size Mean (SE) Median (IQ) 

Volume 
Small 83 (3) 98 (21) 

Large 70 (5) 77 (34) 

NOx 
Small 77 (6) 100 (10) 

Large -272 (127) -58 (440) 

TN 
Small 67 (11) 99 (18) 

Large -24 (34) 40 (152) 

Ortho-P 
Small -34 (40) 99 (26) 

Large -1199 (635) -84 (719) 

TP 
Small -35 (19) 99 (22) 

Large -285 (133) 5 (365) 

TSS 
Small 93 (2.9) 100 (2) 

Large 93 (2.7) 97 (7) 
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Table 5. Reduction of overall cumulative volume and pollutants from inflow to outflow 

from the different bioretention cells, and calculated percentage volume and mass removal 

efficiency (% RE) for the storm events sampled spanning May to October/November 

2015 and 2016 in Burlington, Vermont. 

*Cell  n In Out 
% 

RE 

VL 

 

Volume 

(L) 

17 7955 1580 80 

VH 37 26613 4693 82 

VH RR 35 11668 2678 77 

VH SM 16 4295 2217 48 

VH SM RR60 16 12423 1791 86 

VL 

NOx 

(mg) 

14 1440 1414 2 

VH 31 4810 6213 -29 

VH RR 29 3338 3416 -46 

VH SM 12 4033 1802 55 

VH SM RR60 13 4677 3614 23 

VL 

Ortho-P 

(mg) 

14 628 3578 -470 

VH 31 784 5365 -584 

VH RR 29 1451 4736 -226 

VH SM 12 643 37 94 

VH SM RR60 13 1303 79 94 

VL 

TSS 

(g) 

13 164 14 92 

VH 31 266 3 99 

VH RR 28 358 38 89 

VH SM 12 65 6 91 

VH SM RR60 13 620 20 97 

VL 

TN 

(mg) 

12 5955 3256 45 

VH 28 15936 8823 45 

VH RR 25 7198 6159 -14 

VH SM 11 5910 3689 38 

VH SM RR60 13 14649 6305 57 

VL 

TP 

(mg) 

14 1141 4430 -288 

VH 30 3050 5106 -67 

VH RR 26 1902 4449 -134 

VH SM 12 1067 154 86 

VH SM RR60 13 3163 190 94 

 

*VL= vegetation low diversity, VH= vegetation high diversity, RR= enhanced rainfall+runoff, SM= 

SorbtiveMedia; n= number of storm events 
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Table 6. Significant predictors of regression models for pollutant mass removal 

efficiencies where (+) and (-) signs indicate the direction of the intercepts and slope 

estimates. 

 Equation N 
Model  

p-value 
Model R2 

NOx 

 

y = 203 − 11.7 × precipitation depth (mm) + 0.197 

× inflow volume (L) − 2.48 × peak inflow rate (L 

min-1) − 91.3 × season (Spring versus Fall) 

 

97 <0.0001 28% 

TN 

 

y = 116 − 3.3 × precipitation depth (mm) + 0.07 × 

inflow volume (L) – 1.15 × peak inflow rate (L 

min-1) 

− 44 × season (Spring versus Fall) 

 

87 0.0003 24% 

PO4 

 

y = 604 − 34.6 × precipitation depth (mm) + 0.596 

× inflow volume (L) – 9.95 × peak inflow rate (L 

min-1) + 

  297 × soil media present − 709 × season (Spring 

versus Fall) 

 

98 0.0017 20% 

TP 

 

y = 233 – 7.27 × precipitation depth (mm) – 2.6 × 

peak inflow rate (L min-1) + 0.824 × inflow TP 

mass (mg) + 70 × soil media present – 42 × ADP 

(days) − 202 × season (Spring versus Fall) 

 

93 <0.0001 40% 

 

 

Table 7. Soil total C and N content (g kg soil-1), and C/N ratios measured once per year 

in 2014 and 2016 from the bioretention soil media in Burlington, Vermont. 

 2014 2016 

*Cell Total C Total N 
C/N 

ratio 

Total 

C 

Total 

N 

C/N 

ratio 

 (g kg soil-1)  (g kg soil-1)  

VL 18.36 1.69 10.9 14.17 0.9 15.7 
VH  17.78 1.63 10.9 16.66 1.06 15.8 

VH RR 18.90 1.66 11.4 17.355 1.15 15.1 
VH SM 15.57 1.49 10.4 14.65 0.94 15.6 

VH SMRR60 17.34 1.64 10.6 13.76 0.82 16.8 
*VL= vegetation low diversity, VH= vegetation high diversity, RR= enhanced rainfall+runoff, SM= 

SorbtiveMedia 
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Table 8. Summary statistics (mean, median) of storm runoff concentrations for 

Burlington data (125 storm events) compared with other studies within the US and 

Australia. Concentrations reported are mean unless stated otherwise.   

   Stormwater input concentrations (mg L-1) 

Watershed Land 

use 
Reference Region NOx TN 

Ortho-

P 
TP TSS 

Roadway 

This 

research 

(mean, 

median) 

Burlington 
0.661, 

0.372 

1.32, 

0.933 

0.139, 

0.105 

0.256, 

0.214 

28, 

18 

Mixed land use 

Pitt et al. 

2003 

(median) 

Nationwide 0.6 2.36 0.12 0.27 63 

Interstate highway 

(pre-retrofit) 

Winston et 

al. 2013 

North 

Carolina 
0.2 1.05 0.12 0.17 30 

Parking lot, 

maintenance 

building, picnic 

area (pre-retrofit) 

Winston et 

al. 2013 

North 

Carolina 
0.12 1.01 0.13 0.26 216 

Municipal parking 

lot 

Hunt et al. 

2008 

North 

Carolina 
0.41 1.68 na 0.19 49.5 

Urban catchments 

with mixed land 

use 

Taylor et al. 

2006 

(mean, 

median) 

Melbourne, 

Australia 

0.74, 

0.54 

2.13, 

1.8 
na na na 

Roof 

Dietz and 

Clausen 

2006 

Connecticu

t 
0.9 1.6 na 0.009 na 

Shopping center 

(G1 cell) 

Hunt et al. 

2006 

North 

Carolina 
0.34 1.35 0.05 0.11 na 
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A 

B 

Fig. 1. Bioretention cell at the University of Vermont, Burlington, USA. The cell 

receives road runoff via curb cuts along the road. (A) Shallow rock-line inflow swale, 

underlain by high-density polyethylene (HPDE) plastic, conveys runoff into the cell’s 

weir. (B) Rainpan and attached PVC precipitation-distribution pipes. The rainpan is 

installed outside of the cell. Rainwater from the corrugated pan drains into gutters, 

vertical downspouts, and to pipes that run horizontally along the length of the cell and 

contains perforations at the bottom to deliver water evenly across the cell. Photo 

credit: Lindsay Cotnoir.  
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Fig. 2. (a) A typical cross section of bioretention soil media in UVM Bioretention Lab, 

(b) Cross section of bioretention soil amended with SorbtiveMediaTM.    

 

  

(a) (b

) 
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Fig. 3. Distribution of precipitation depth (mm) values in year 2015 (N= 23 storms) and 

2016 (N= 27 storms) for the storm events sampled from May to October/November in 

Burlington, Vermont. Straight lines indicate median and interquartile range, dot indicates 

mean. Area of the violin plot is proportional to count (number of storms).  
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Fig. 4. Nitrogen and phosphorus composition for storm inflows and outflows (for 

matched samples only) monitored across all storm events from May to 

October/November 2015 and 2016 (802 ≤n ≤ 843). Numbers beside each box show the 

percent mean, and error bars are ± 1 SE. The total bars represent total nitrogen (TKN + 

NOx) and total phosphorus (Part-P + Ortho-P).  
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Fig. 5. Relationship between peak inflow and peak outflow rate (L min-1) for the storm 

events sampled spanning May to October/November 2015 and 2016 in Burlington, 

Vermont. 
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Fig. 6. Relationship between outflow volume (black circles) and volume reduction (gray 

circles) with inflow volumes for the storm events sampled spanning May to 

October/November 2015 and 2016 in Burlington, Vermont. Solid line represents linear 

regression line between outflow volume and inflow volume. Dotted line represents linear 

regression line between volume retention and inflow volume.  
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Fig. 7. Influent and effluent pollutant concentration (mg L-1) during storm events 

sampled spanning May to October/November 2015 and 2016 in Burlington, Vermont. 

Significance on the difference between influent and effluent EMC concentrations ere 

determined by Wilcoxon Signed Rank matched pairs test for non-normal data. 

Underlined asterisk on the shaded gray bars indicate significance at p<0.05.  Black 

dots indicate outliers and red dots indicate mean. 
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Fig. 8. Influent and effluent pollutant event mean concentrations (EMC; mg L-1) during 

storm events sampled spanning May to October/November 2015 and 2016 in Burlington, 

Vermont. Significance on the difference between influent and effluent EMC 

concentrations were determined by Wilcoxon Signed Rank matched pairs test for non-

normal data. Underlined asterisk on the shaded gray bars indicate significance at p<0.05.  

Black dots indicate outliers and red dots indicate mean. 
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Fig. 9. Plant tissue total nitrogen (N) and total phosphorus (P) concentrations in samples 

pooled from all aboveground plant tissues such as leaves, stems, flowers and pods (left), 

and only leaves (right) of the different bioretention plant species in Burlington, Vermont.  
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Abstract 

 

 

 

The need for stormwater management is increasing as urban expansion continues at a 

rapid pace and climate change yields more frequent extreme precipitation events. 

Although green infrastructure such as bioretention is commonly implemented in urban 

areas for stormwater quality improvements, various ecosystem co-benefits, including 

ground water recharge, landscape beautification, and carbon (C) and nutrient 

sequestration must be evaluated to fully understand the impact of bioretention at the 

ecosystem scale. Most bioretention research focuses on water quality functions, but little 

is known about the potential for this practice to mitigate climate change. While 

bioretention infrastructure may increase C storage, it is also important to understand 

whether there is an impact of bioretention on greenhouse gas emissions, which could 

occur as a result of natural biogeochemical processes in the filter media. Gas fluxes are a 

pathway by which C and nitrogen (N) in the soil and vegetation systems may be lost to 

the atmosphere. We monitored eight roadside bioretention cells for CO2-C and N2O-N 

fluxes during the growing seasons over two years in Vermont, USA. Additionally, C and 

N stocks in the soil media layers and aboveground vegetation biomass were quantified to 

determine the overall C and N balance. Our bioretention cells contained three different 

treatments: plant species mix (high diversity versus low diversity), soil media (presence 

or absence of P-sorbent filter layer), and hydrologic (enhanced rainfall and runoff in 

some cells). CO2-C fluxes from all cells averaged 194 mg m-2 hr-1. Average N2O-N fluxes 

were 0.01 mg m-2 hr-1, varying between being a sink and source. There were no 

treatment-induced changes on gas fluxes, but instead CO2-C fluxes were highly 

significantly correlated with soil temperature (R2= 0.68, p <0.0001), while N2O-N fluxes 

were weakly correlated (R2= 0.017, p =0.04). This is one of three studies evaluating gas 

fluxes from bioretention. Compared with the existing two studies on bioretention (Grover 

et al., 2013 & McPhillips et al., 2018), average CO2-C fluxes fell in the mid-range, while 

average N2O-N fluxes were lower in this study. In a spectrum of least (urban/rural forest, 

native grassland) to highly intensively managed systems (landscaped sites, fertilized 

lawns/turf, mulch beds, constructed wetlands), average bioretention C and N fluxes from 

this study was at the lower end of the management spectrum mostly likely due to organic 

matter influence on decomposition processes. 
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3.1 Introduction  

 

Globally, many cities are concerned about coping with the deleterious effects of 

climate change, such as increasing frequency of extreme events (e.g., heavy rainfall and 

droughts) and associated threats from flooding, scarcity of water, and extreme heat events 

( IPCC, 2007; Zahran et al., 2008; VCA Full Report 2014). Along with increased 

consideration of climate change adaptation strategies, mitigation of greenhouse gases 

(GHGs), to slow the progress of climate change, is also critical. GHGs absorb long wave 

radiation emitted from the earth’s surface thereby contributing to warming. Cities are 

important contributors to GHG emissions, typically from energy production and 

transportation systems (i.e. fossil fuel combustion; Grimm et al., 2008) combined with 

relatively low potential for carbon (C) sequestration due to absence of plants and soils 

(Brown et al., 2012). However, many cities have increasingly been taking measures to 

reduce their emissions (Kaye et al., 2006; Kennedy et al., 2009) for both economic and 

environmental reasons (Pataki et al., 2011). The role of cities in altering biogeochemical 

cycling has received increased attention as well (Pataki et al., 2011). More people 

currently live in urban areas than in rural areas (UN 2010), and as urban expansion 

continues, if appropriate counter measures are not taken, the rate of biogeochemical 

alteration may continue to increase, possibly worsening some climate effects. 

Additionally, climate change, which is predicted to increase precipitation volumes and 

intensities, e.g., the Northeastern United States (IPCC, 2007; NECIA 2006) will 

challenge cities to effectively manage stormwater runoff without negatively impacting 

water bodies or greenhouse gas emissions.  
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One of the ways cities are increasingly making efforts to improve their 

stormwater management capacities is through the integration of innovative green 

strategies in urban landscapes, broadly defined as green stormwater infrastructure (GSI), 

including but not limited to bioretention.  Bioretention (also known in the literature as 

“biofilters” and “raingardens”) is a porous vegetated media filter, which reduces 

impervious cover and consequently mitigate the hydrologic “flashiness” of urban runoff 

and its associated pollution (Nocco et al., 2016; United States Environmental Protection 

Agency 2012). It is a form of GSI that relies upon soil media and vegetation to slow, 

retain, and filter stormwater runoff to mitigate hydrological and water quality effects of 

urbanization. Although bioretention is primarily implemented for ecological treatment of 

urban stormwater, their benefits can extend well beyond stormwater control. Bioretention 

can lead to C and nitrogen (N) sequestration in the soils and plants that make up the filter. 

However, this presumed positive effect may be unique to an installation type and must be 

empirically documented.   

Bioretention cells foster biogeochemical cycling processes, particularly C and N 

cycling, as they support active soil microbial communities (Liu et al., 2014) and may 

receive influxes of nutrient-enriched water (Bratieres et al., 2008; Hatt et al., 2009; 

Grover et al., 2013). The combination of nutrient influxes and variable soil moisture 

patterns can thus make bioretention systems hotspots for C and N transformation via 

biological processes such as root respiration and organic matter decomposition releasing 

CO2 (Ewel et al., 1987; Lytle and Cronan, 1998), and microbial-mediated nitrification 

and denitrification releasing N2O (Verstraete and Focht, 1977). While carbon dioxide 

(CO2) is the most important greenhouse gas, being produced in largest quantities, nitrous 
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oxide (N2O) is emitted in smaller quantities but has 300 times the global warming 

potential of CO2 (Smith et al., 2003), and plays an important role in the depletion of the 

stratospheric ozone layer (Johnston, 1971). As bioretention designs can greatly influence 

the extent of such biological processes, this has design implications and one must 

consider environmental tradeoffs accordingly. For example, from a water quality 

standpoint, removal of stormwater nitrate (NO3
–) is a design goal, particularly in 

watersheds draining to N-sensitive water bodies (e.g., Chesapeake Bay; Groffman et al., 

2002). Thus, an ideal GSI design would maximize the water quality service of 

denitrification while minimizing production of nitrous oxide (N2O).  

Thus far, only two studies exist that have examined GHG fluxes from bioretention 

in Melbourne, Australia (Grover et al., 2013), and New York, United States (McPhillips 

et al., 2018). However, no study exists to our knowledge that has quantified overall 

nutrient storage/stocks from a bioretention cell. As urban expansion continues, 

implementation of stormwater control structures such as bioretention will likely increase. 

It therefore becomes important to understand whether and how bioretention might 

contribute to urban climate change mitigation efforts, including C and N storage and 

GHG fluxes, to evaluate their benefits or trade-offs in meeting environmental goals. 

Additionally, a better evaluation and understanding of nutrient dynamics from 

bioretention cells will inform us on how to improve their design attributes to minimize 

detrimental and maximize beneficial functions.  

In this paper, we examine soil fluxes of CO2-C and N2O-N from eight sand-based 

bioretention systems that had been previously maintained for 2.5 years, and receive 

different vegetation, soil media, and hydrologic treatments. We evaluate whether gas 
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fluxes vary significantly among cells receiving the different treatments. Since gas fluxes 

are tightly coupled with soil temperature (Pang et al., 2013) and moisture (Maier and 

Kress, 2000), which vary seasonally, we explore relationships between the observed gas 

fluxes and those environmental parameters derived from the bioretention soil media 

across all treatments. We quantify the total amounts of C and N stored in bioretention 

cell. For this, we chose one of the eight cells to determine soil, microbial, and plant 

sequestration of nutrients (C and/or N) to fill gaps in our understanding of nutrient 

stocks/accumulation and partitioning of the stocks among soil and plant biomass 

components in a bioretention system. Lastly, we compare fluxes from this bioretention 

study to other stormwater treatment systems, and some of the least and highly intensively 

managed land use types to contextualize our findings in a broader scale.  

 

3.2 Methods 

 

3.2.1 Study site description and experimental design  

The study examines eight bioretention cells in an outdoor research laboratory 

situated adjacent to a medium-traffic road in the University of Vermont campus in 

Burlington, Vermont, USA (Shrestha et al. (in press)). Burlington is the largest and most 

populous city in Vermont (US Census Bureau, 2013), and has a humid continental 

climate, with mean summer and winter temperatures of and 20oC and -6oC, respectively, 

and a mean annual precipitation of 94 cm (National Climatic Data Center 2017). The 

bioretention cells were constructed in November 2012 and have identical sizes (1.22m 

wide, 3.05m long, 0.9m deep) and drainage configurations, but drain road watersheds of 

varying sizes, ranging from 30 to 120 m2 (See Shrestha et al. (in press) for experimental 
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design details). The bioretention soil media consists of two layers, each approximately 30 

cm deep: the upper layer is a 60:40 sand-compost mix, the lower layer is pure sand. A 7.6 

cm-layer of pea stone was placed below the sand layer and the bottom 23 cm of each cell 

is occupied by 5-cm diameter stones. The cells are drained using a 26-cm long perforated 

PVC underdrain pipe that is placed 2.5 cm from the bottom of the cell within the stone 

layer, and which conveys effluent to the campus storm sewer system. For the purposes of 

water quality monitoring, the entire cell (sides and bottoms) is lined using an 

impermeable rubber liner.  

The eight bioretention cells received combinations of three treatments, previously 

described in Shrestha et al. (in press): (1) vegetation with low-diversity (VL; 2 species) or 

high-diversity (VH; 7 species) plant mixes (See Appendix G for a detailed planting list); 

(2) presence or absence of a proprietary SorbtiveMediaTM (SM) layer containing iron and 

aluminum oxide granules to enhance sorption capacity for phosphorus; and (3) “ambient” 

or “enhanced rainfall and runoff” (RR) at three levels (15%, RR15; 20%, RR20; and 

60%, RR60) mimicking a range of anticipated precipitation increases associated with 

climate change. The additional rainfall and runoff that each of the three RR cells receives 

is proportional to the paired cell’s watershed size differences, such that each “enhanced” 

RR cell receives either 15%, 20%, or 60% more runoff and rainfall (via attached rain 

pan- see Shrestha et al. (in press) than its paired “ambient” cell (Table 1). 

 

3.2.2 Gas flux measurements 

In 2013, two PVC collars (18 cm height with 25 cm inner diameter) were installed 

permanently in each bioretention cell a soil depth of 5-10 cm (Hutchinson and 

Livingston, 2001). The collars were kept free of aboveground vegetation by clipping to 
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the soil surface to prevent aboveground plant respiration and photosynthesis (Tufekcioglu 

et al., 1998) and a bare soil surface was maintained by removing trash or leaf litter. CO2-

C and N2O-N fluxes were measured at roughly 2 to 3-week intervals from May to 

October 2015 and 2016. Two subsample locations were sampled repeatedly from each of 

eight cells in 2015, while one location per cell was sampled in 2016. At each sampling 

date, flux measurements on the eight cells occurred within 45 minutes to 4.5 hours in 

2015, and within 2 to 2.5 hours in 2016. All measurements were conducted in daylight 

between 9:30 am and 2:30 pm. In the wetter year 2015, only drier days were chosen for 

gas sampling due to logistical reasons and no post-storm sampling was conducted. In 

2016, however, efforts were made to sample immediately after storm events. However, 

this was a drier year and only 6 storms (ranging from 0.762 mm (0.03 in) to 42.41 mm 

(1.67 in) was sampled for fluxes on the day of or the next day following storms.  

Gases were analyzed using two different protocols during this study. From May 

15 to June 26, 2015 sampling, a vented static chamber method was used for gas exchange 

measurements (n= 32) between the soil surface and atmosphere (Hutchinson and 

Livingston, 2001). At the time of sampling, a PVC lid containing a gas sampling port 

equipped with a butyl rubber septum and a vent tube to allow equilibration of internal and 

external atmospheric pressures was used to enclose the chamber. An instantaneous 

measurement was taken immediately upon sealing of the chamber head (time-zero 

concentration) with a 20-ml polypropylene syringe fitted with one-way stop-cock valve. 

Headspace gas samples were withdrawn from the chamber at regular intervals over a 

period of 45 minutes (i.e., 0, 15, 30, 45 min), which allowed the sampling of all cells to 

occur within an hour. Air samples were immediately transferred to a pre-evacuated 10-ml 
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glass vial sealed with butyl rubber septum. Vials were over-pressurized by injecting 15 

ml of gas samples , which is considered to maintain the integrity of samples until analysis 

(McPhillips and Walter, 2015). Glass vials were transported to the laboratory and 

analyzed for CO2-C and N2O-N concentrations on a Shimadzu AOC-5000 gas 

chromatograph (GC) equipped with an electron capture detector (ECD) and flame 

ionization detector (FID). All samples were analyzed on the GC within 1 to 3 days.  

From July 2015, due to mechanical malfunction with the GC, all the subsequent 

gas exchange measurements (n=144) were conducted using 1412 Photoacoustic multi-gas 

monitor (PAS; INNOVA Air Tech Instruments, Denmark; calibrated by California 

Analytical Instruments, as in Iqbal et al., 2013). The same PVC lids were modified to be 

compatible with the PAS analyzer. When the PAS was in use, sampling intervals were 

shortened such that headspace gas samples were withdrawn every 2 minutes over a 

period of 12 minutes (i.e., 2, 4, 6, 8, 10, 12 min; Iqbal et al., 2012) in 2015, and at every 

one minute up to 10 minutes in 2016, and concentrations detected insitu by the PAS 

analyzer. No observable differences in fluxes (e.g., <0.04% difference) were noted 

between the 12 vs. 10-minute duration. Atmospheric air samples were pulled as a “blank” 

before starting the actual sampling to check if concentrations were far from the typically 

expected 400 to 430 ppm range. 

Soil surface gas fluxes were determined by calculating the linear regression slope 

of the gas concentrations over time after chamber closure (Hutchinson and Mosier, 1981; 

Rochette and Bertrand, 2008). Regression slopes with p values lower than 0.05 were 

assigned flux values of zero (assuming no measurable increase or decrease in 

concentrations; proc lm in R; R reference). All measured concentrations, originally in 
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ppm, were converted to mass units and corrected for 20oC and 1 atm (because PAS 

instrument calculates the concentration of each gas at 20oC) and field chamber volume 

and surface area, based on which final flux values were calculated (See Appendix H for 

additional detail on flux calculation).  

Iqbal et al., 2013 found PAS readings to be comparable to GC readings when 

calibrated properly. In this study, overall, 22% and 78% of samples were analyzed on GC 

and PAS respectively. Soil temperature and volumetric moisture content at a depth of 10 

cm was taken concurrently, once every sampling occasion in each of the sample locations 

in the chamber using a digital thermometer and a time-domain reflectometry moisture 

probe (FieldScout TDR300, Spectrum Technologies, Inc.). 

 

3.2.3 Soil and plant measurements 

Following GHG sampling, three random subsamples of the top 10 cm of soil 

outside of the chamber was collected from the ambient high and low diversity (VH and 

VL) plots for soil microbial biomass (SMB) C determination monthly from May to 

September 2014 and 2015. SMB measurements in 2015 coincided with the gas flux 

measurements. The chloroform fumigation-incubation extraction method (Jenkinson and 

Powlson, 1976; Vance et al., 1987) was used to determine SMB, following the extraction 

of soil samples with 0.5 M K2SO4  (Brookes et al., 1985). Analysis was done on field-

moist soil within several hours from collection. The filtrate from the extraction procedure 

was analyzed for total organic carbon (TOC) on a TOC analyzer (TOC-L Shimadzu TOC 

Analyzer, Shimadzu Corporation). The difference in TOC between the chloroform-

fumigated and non-fumigated soils divided by the kEC constant estimated as 0.45 is the 
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chloroform-labile C pool (EC), and is proportional to microbial biomass C (Vance et al., 

1987; Beck et al., 1997). Moisture-correction was done for each sample to correct for 

differences in soil water content and results are expressed in dry weight equivalents (See 

Appendix I for detailed methods). Microbial biomass C concentration was measured from 

the top 10 cm soil media, but given the upper 30 cm soil media profile had the same soil 

media composition, we assumed this concentration to stay constant over the top 30 cm. 

Total C and N content from the top 10 cm of the bioretention soil from all eight 

cells were measured in May 2014 and 2016. Three 0-10 cm soil cores, taken near the 

influent, center, and effluent locations, were composited for each cell. Soil bulk density 

was measured twice, and soil organic matter (OM) and pH were also measured six times 

from all cells during the sampling duration. Additionally, we wanted to estimate the total 

amount of standing C and N in bioretention soil media and plants from one of the chosen 

VL treatment at plot level. For this, soil C and N content was measured from one of the 

VL cells (cell 7) in November 2016 at depth increments of 0-30 cm and 30-40 cm. Soils 

were oven dried at 60oC for 2 days, sieved through a 2-mm screen, homogenized, and 

ground into fine powder (<0.5 mm). Samples were analyzed in triplicate for C and N 

content by combustion method in a CN elemental analyzer (Flash EA-1112, CE Elantech, 

Lakewood, NJ).  The mass of total soil C and N in the upper and lower 30- cm soil media 

layers were determined by multiplying the concentrations of soil total C and N by the 

total soil mass in their respective layers, estimated using soil bulk density measurements 

(1.19 and 1.59 g cm-3 in upper and lower 30 cm layer respectively; See Appendix K for 

additional details). Mass of carbon derived from microbial contribution was also 
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determined by multiplying microbial biomass C concentration with the total soil mass in 

the upper 30 cm layer.  

Aboveground plant tissues from the same VL cell were analyzed for C and N 

content in August and November 2016, where plant tissue samples were composited from 

three different individuals and analyzed in triplicate by combustion method. Since tissue 

C and N concentrations differed in summer versus fall, their average was used in the final 

calculations. Estimates for the aboveground plant biomass from the literature were used 

as proxy. Panicum biomass of 10 kg m-2 (or 10 Mg ha-1) estimated by Heaton et al. 

(2004), which examined 77 different observations from various peer reviewed literature 

in North America and Europe, was used to extrapolate carbon and nutrient capture at the 

bioretention plot level. Due to lack of biomass data for Hemerocallis, half of Panicum 

biomass (e.g., 5 kg m-2) was assumed, given that their height in the plots were 

approximately half of Panicum, and their spread over a given area was relatively equal., 

55% of the plot area (3.72 m2) was covered by Panicum, and 45% by Hemerocallis 

(2.046 vs. 1.674 m2 respectively). Panicum and Hemerocallis coverage, in a 3.72 m2 cell, 

was determined through visual estimates. Tissue concentrations were multiplied by the 

total aboveground plant biomass and scaled to plot coverage level. In general, percent 

coverage of bioretention plants in all cells was also determined using visual estimates 

every 3 to 4 weeks in 2015 and 2016.  

Additionally, dissolved organic C in the effluent water exiting from few of the 

cells (VH; cell 2, SM; cell 4, and VL; cell 7 treatments) was also measured in three 

different storm events on September 23, October 28, and November 3, 2016. Effluent 

samples were collected real-time over the course of the storms using autosamplers 
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(Teledyne ISCO 6712/7400, Lincoln, NE) in up to 24 bottles. If all 24 bottles were filled, 

every three consecutive bottles were composited into one sample, otherwise samples 

were analyzed discretely for dissolved organic C concentrations on a TOC analyzer 

(TOC-L Shimadzu TOC Analyzer, Shimadzu Corporation).  

 

3.2.4 Statistical analyses 

Gas fluxes from the VHRR15 and VHRR20 treatments were averaged, as no 

differences were observed between the two treatments, and will hereafter be called 

VHRR. The two treatments also had very similar plant cover throughout the monitoring 

period. Treatment effects on soil CO2-C and N2O-N flux, temperature, moisture and SMB 

carbon were examined using repeated measures (Proc mixed model) analysis in SAS 9.4 

software (SAS Institute Inc., Cary, NC, USA) using the cell as a random effect, and 

treatment and day as fixed effects. The relationships between gas fluxes and 

environmental variables of soil temperature and soil moisture were examined using linear 

regression analysis in JMP Pro 12 (SAS Institute Inc., Cary, NC, USA). When necessary, 

soil CO2-C efflux, temperature, moisture, and microbial C biomass data were log 

transformed to meet normality assumptions. Means are followed by standard errors where 

indicated.  

 

3.3 Results 

 

3.3.1 Gas flux analysis 

No significant treatment effects on either of the gas fluxes, soil temperature, or 

soil moisture were observed. During the sampling period, the mean growing season soil 
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CO2–C flux across all eight bioretention cells was 194±7 mg m-2 hr-1 (May-October), 

with a range 37 (May 9, 2016) to 374 mg m2 hr-1 (September 7, 2015). Mean growing 

season soil N2O-N fluxes were thousands of orders of magnitude smaller than CO2-C 

fluxes with a mean of 10±20 µg m-2 hr-1, and ranged from -1100 (September 18, 2016) to 

330 µg m2 hr-1 (August 10, 2015). N2O-N fluxes were below zero for many sampling 

events in all cells, indicating N2O uptake (Fig. 1). Overall, the soil CO2-C fluxes 

paralleled soil temperature changes with strong seasonal patterns, increasing in summer 

and decreasing in spring and fall (Fig. 1). Soil CO2-C fluxes appeared to be strongly 

driven by soil temperatures in a linear fashion (R2= 0.68, p <0.0001; Fig. 2). N2O-N 

fluxes also slightly positively correlated with soil temperature (R2= 0.017, p =0.04; Fig. 

2), but the resulting linear correlation was poor (Fig. 2). Soil moisture did not 

significantly affect CO2-C or N2O-N fluxes. Both soil temperature (R2= 0.81, p<0.0001) 

and moisture (R2= 0.49, p<0.0001) showed significant temporal variability (Fig. 1).   

 

3.3.2 Bioretention C and N pools 

The low diversity (VL) cell that was chosen for a more in-depth analysis of 

belowground C and N storage showed a dramatic decrease in both total soil C and N 

content with depth (Table 2). The top 30 cm of soil profile stored approximately five 

times the C and N stored in the lower 30-40 cm soil profile (C:10.27 vs. 1.82 g kg-1 dry 

soil; N: 0.73 vs. 0.14 g kg-1 dry soil respectively; Table 2). The SMB concentration in the 

VL cell made up approximately 9% of the average total soil concentration measured 

(Table 2). Average SMB carbon concentration measured the same in both the VL and VH 

treatments: 1.436 ± 0.15 versus 1.436 ± 0.14 g C kg-1 dry soil respectively. Repeated 
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measures analysis showed no significant differences in SMB carbon between the high 

and low diversity treatments, but significant temporal variation in SMB carbon were 

observed for each of the two years (Fig. 3). 

Plant concentration of C and N by far exceeded soil storage concentration in the 

VL cell per unit dry weight. Plant C and N concentrations were 28 and 5 times greater 

that than of the bioretention soil in the top 10 cm (Table 2 and 3). Between Hemerocallis 

and Panicum, Panicum appeared to have higher tissue C concentrations, while 

Hemerocallis had higher tissue N concentrations (Table 3). Tissue N concentrations were 

considerably higher in summer than fall for Panicum and Hemerocallis, while C 

concentrations seemed to have increased a little in the fall compared to summer (Table 

3).   

When extrapolating soil nutrient sequestration to the entire cell’s soil media 

volume (calculations detailed in Appendix K), C sequestered in the top 30 cm vs. the 

lower 30 cm soil media was estimated to be 13844 g and 3278 g respectively (Fig. 4). A 

portion of the soil C is sequestered in the microbial biomass fraction. Estimated C stored 

in the microbial biomass portion amounted to 1936 g, which was 14% of the total soil C 

in the upper 30-cm layer.  

 Plants are larger reservoirs of C and N per unit dry mass relative to soil (Table 2 

and 3). The amount of C sequestered by Panicum and Hemerocallis were 9279 and 3741 

g C yr-1 respectively (Fig. 4). The total amount of N sequestered by the two species was 

176 and 144 g N yr-1 respectively (Fig. 4). Excluding the winter months (November to 

April where no gas flux measurements were taken), gas fluxes represents 0.13% (17g C 
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day-1) of total soil C, and 9×10-5 % (0.9mg N day-1) of total soil N lost from the top 30-

cm of the bioretention soil media to the atmosphere per day (Fig. 4). 

 

3.4 Discussion 

 

Our objective was to provide baseline estimates of soil CO2-C and N2O-N fluxes 

from the bioretention soils, as the fluxes represent a potential nutrient loss pathway from 

the system. We examined whether these fluxes significantly varied with the different 

treatments associated with vegetation diversity, soil, and hydrologic (increased rainfall 

and runoff; RR) conditions, along with soil temperature and moisture.  Estimating GHG 

fluxes is important for assessing potential environmental trade-offs associated with the 

water quality service provided by bioretention systems, as well as to better understand the 

mechanisms driving bioretention’s role in biogeochemical cycling within the greater 

urban context. We also provide estimates of C and N in the soil media layers and plants, 

which are the different design elements critical to any bioretention, to quantify the overall 

C and N balance of the system. We compare fluxes to a variety of land-use types that will 

indicate relative C and N footprint of bioretention based on gas flux metrics.  

 

3.4.1 Treatment effects on gas fluxes 

Gas fluxes of CO2-C and N2O-N did not vary significantly with the different 

vegetation, soil, and hydrologic treatments. Gas fluxes increased significantly with 

temperature but not soil moisture. Average CO2 fluxes were slightly higher in the 

treatments receiving the enhanced rainfall and runoff (RR and SMRR60 treatments), but 

results were not significant. From the percent cover measurements, all RR treatment cells 
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had the maximum amount of plant coverage throughout the monitoring period in both 

years (up to 100% coverage in RRSM60, and up to 98% coverage in RR15 and RR20 

cells from June through August). The higher percent vegetation cover could be associated 

with greater root proliferation. Belowground C allocation (e.g, roots, root exudates) could 

therefore influence root respiration (Hoegberg et al., 2001), and increase microbial 

respiration (Paul 2014), both of which contribute to the soil CO2-C efflux. For N2O-N 

fluxes, the highest average flux observation was made in the VL treatment, and lowest 

(and negative) was in the SM treatment. Interestingly, VL had the highest soil NH4
+ 

concentrations, while SM had the lowest NH4
+ concentrations (0.575 ± 0.08 ppm vs. 

0.0137 ± 0.4 ppm respectively) among the five treatments (Detail averages shown in 

Appendix J), though the difference was not significant due to large variability in the data. 

Nevertheless, higher NH4
+ concentrations can lead to increase nitrification potential, and 

as more NH4
+ is available to undergo nitrification, this can increase nitrification 

contribution to N2O (Avrahami et al., 2002), which could corroborate the trend observed 

here.  

 

3.4.2 CO2 fluxes 

As expected for any soils containing organic matter, the bioretention soils here 

were always source (or efflux) of CO2 (Fig. 1). Soil CO2 efflux is the pathway by which 

stored soil C is returned to the atmosphere via autotrophic root respiration and 

heterotrophic microbial respiration. Besides this study, there are only two published 

studies examining CO2 fluxes from bioretention filters by Grover et al. (2013) and 

McPhillips et al. (2017). Grover et al. (2013) measured mean CO2-C fluxes of 102.2 mg 



126 

 

m-2 hr-1 from a sandy loam bioretention, and 98.3 mg m-2 hr-1 from another sandy loam 

(80%) bioretention amended with compost (10%) and hardwood mulch (10%) with an 

internal saturated zone (ISZ). McPhillips et al. (2017) measured higher fluxes of 367.9 

mg m-2 hr-1 from a bioretention amended with 40% compost (15 cm of compost mixed to 

an approximately 38 cm soil depth). Compared to Grover et al., this study observed much 

higher CO2-C fluxes with a mean of 194±7 mg m2 hr-1, which may be attributed to the 

high amounts of compost (40%) present in the top 30 cm of the soil media. Composts 

adds C, N and P, stimulating microbial biomass and activity (Tabatabai and Dick, 1979; 

Goberna et al., 2006), which likely increases the microbial contribution to soil CO2-C 

evolution. McPhillips et al., observed almost twice the amount of CO2-C fluxes than this 

study, which could have also resulted from compost amendments, as well as initial soil 

disturbances from tillage (Calderón et al., 2001), given that they conducted gas 

measurements approximately one month following cell establishment during which 

period the soil was tilled to 38 cm depth.  

The positive fluxes of CO2-C from bioretention soils to the atmosphere, however, 

can likely be offset by photosynthetic uptake and sequestration of C by biomass (Dietz 

and Clausen, 2006; Lucas and Greenway, 2007; Pataki et al., 2011) and soil (Schlesinger 

and Lichter, 2001). This is also highlighted later by our study (see ‘Carbon and nitrogen 

partitioned stocks in soils, microbial biomass, and plants’ below).  

 

3.4.3 N2O fluxes 

Bioretention was not a significant source of N2O. N2O-N fluxes varied between 

uptake and emission, like in a study by McPhillips and Walter (2015), which examined 
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N2O-N fluxes in dry and wet grassed detention basins. Across the wet and dry basins, 

their N2O-N fluxes ranged from -2.4 to 26.9 µg m-2 h-1
. Their maximum peak of 26.9 µg 

m-2 h-1 is orders of magnitude lower than the peak observed in this study of 330 µg m-2 h-

1 (Fig. 1). Surprisingly, although they observed greater N2O-N fluxes from dry detention 

basins relative to wet basins, due to wetter conditions promoting denitrification fully to 

N2, the fluxes were not significantly different between the two basins. This suggests N2O 

production associated with nitrification rather than denitrification in these stormwater 

basins. The same author measured average N2O-N fluxes of 367.9 µg m-2 h-1 from a 

bioretention (McPhillips et al., 2017), which was derived by modifying an existing 

grassed detention basin mentioned above. Meanwhile, Grover et al. (2013) observed 

mean N2O-N fluxes of 13.8 and 65.6 µg m-2 h-1 from two bioretention cells each. Our 

mean fluxes of N2O-N (10 µg m-2 h-1) are lower than mean fluxes of McPhillips et al. 

(2017) and Grover et al. (2013) study, despite having a greater proportion of compost in 

the soil than the Grover study. High fluxes from McPhillips et al. (2017) could result 

from tillage increasing microbial activity and therefore mineralization of compost N. 

Compost application increases microbial biomass and functional diversity (Nair and 

Ngouajio, 2012), and C and N nutrients are plentiful in the compost for the various 

microbes to mediate nitrification and denitrification reactions when conditions are ideal.  

Soil NO3
- concentrations in the bioretention units were much higher (13 times) 

than soil NH4
+ concentrations (Table 1; Also see Appendix J for full data) suggesting a 

strong possible occurrence of nitrification (Malhi and McGill 1982), forming NO3
- in the 

soil, which subsequently is also the substrate for denitrification. N2O efflux from the soil 

can be due to nitrification and denitrification (Stevens et al., 1997). These reactions can 
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occur simultaneously as aerobic and anaerobic microsites can develop within the same 

soil aggregate (Stevens et al., 1997), and their relative contribution to N2O efflux must be 

studied either isotopically through 15N-labelled compounds (Yoshinari et al., 1977), or in 

the laboratory using acetylene inhibition techniques (Sørensen, 1978). The case for 

nitrification induced N2O-N is stronger relative to denitrification in our study since the 

soil moisture during the sampling period was relatively low at an average of 6% 

(maximum of only 16%; Fig. 1), and it is likely that nitrification rates exceeded 

denitrification rates at the relatively low soil moisture range observed here. 

Denitrification requires waterlogged conditions, which were not observed during the 

sampling period, but periodic N2O flux stemming from denitrification likely occurred 

from saturated microsites within the soil media layers. In addition, occasional N2O 

production could be a result of incomplete denitrification due to the low soil moisture 

levels observed in the bioretention cells, where the N2O produced as an intermediate in 

the denitrification reaction could not be further reduced to inert N2 gas.  

 

3.4.4 Environmental effects on fluxes 

Fluxes of CO2-C were very predictable throughout the season, significantly 

increasing with warmer temperatures and decreasing with cooler temperatures (Fig. 1 and 

2), while N2O-N showed no seasonal pattern (Fig. 1). Temperatures are likely tied to 

corresponding plant and microbial activity, which strongly drive soil CO2 efflux rates 

(Raich and Schlesinger, 1992; Raich and Tufekciogul, 2000; Schlesinger and Andrews, 

2000). Strong relationships between soil CO2-C efflux and soil temperature are well 

documented in the literature (Liikanen et al., 2006). Soil temperature was weakly 
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correlated with soil N2O fluxes (p=0.04, R2=0.017; Fig. 2), due to large variability in 

fluxes at relatively higher temperatures, and near zero fluxes evident throughout the 

season (Fig. 2). Neither CO2-C or N2O-N was significantly influenced by soil moisture, 

as it may be that respiration was never water limited in the study as the range of values 

was limited (i.e., not very large). Soil moisture impacts on gas fluxes may only be 

important in extreme conditions or times, i.e., very dry (desert, drought) or wet 

(waterlogged soils, wetlands and bogs). (Søvik et al., 2006) measured CO2 efflux, with 

summer and winter averages of 187.5 and 50 mg m-2 h-1 respectively. Summer and winter 

N2O efflux averaged 3790 and 192 µg m-2 h-1 respectively in the same study. For both 

gases, temperature was positively correlated with gas fluxes. Various other environmental 

factors besides soil temperature and water content, and NH4
+ and NO3

- concentrations 

regulate gas fluxes such as the amount of organic matter, mineralizable carbon, microbial 

biomass (Bettez and Groffman, 2012; Decina et al., 2016; Smith et al., 1998), which are 

relevant to various stormwater control structures. Decina et al., (2016) observed 

significant and positive correlation of soil CO2 efflux with soil organic matter 

concentration, soil C: N ratio and the depth of the leaf litter layer. Bettez and Groffman 

(2012), who measured denitrification rates (1.2 mg N kg-1 hr-1) from stormwater control 

measures (wet ponds, dry detention ponds, dry extended detention, infiltration basin, 

filtering practices), observed that the rates strongly correlated with soil moisture, organic 

matter, microbial biomass, and soil CO2 efflux across sites.  
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3.4.5 Carbon and nitrogen partitioned stocks in soils, microbial biomass, and plants 

Rapidly growing urbanization characterized by expansion of impervious cover 

results in loss of soil C. Since urban development occurs at the expense of agricultural 

and forest lands, it is therefore necessary to consider the potential of developed lands to 

sequester C (Brown et al., 2012).  Green spaces like bioretention, by replacing 

impervious surfaces with porous soils and vegetation, offer opportunities to increase C 

(and N) sequestration in urban landscapes (Brown et al., 2012), while simultaneously 

mitigating stormwater problems (e.g., stormwater infiltration, peak flow attenuation, 

groundwater recharge) and restoring ecosystem functions within built environments (e.g., 

wildlife refuge, cooling of air, beautification of landscapes, benefits to human health; 

Tzoulas et al., 2007; Pataki et al., 2011; Brown et al., 2012). 

The VL treatment cell was chosen to study C and N partitioning in the different 

soil, microbial biomass, and plant stock components within a bioretention cell. No 

previous study of which we are aware has calculated C and N partitioning among the soil, 

microbes and plant stocks within a single bioretention cell. The two depth increments (0-

30 cm vs. 30-40 cm) that were analyzed to assess nutrient storage in the entire soil media 

profile showed much higher total C and N concentrations (10.27 and 0.73 g kg-1 dry soil 

respectively) in the surface soils than in the lower depths (1.82 and 0.14 g kg-1 dry soil 

respectively; Table 2). Thus, the total C and N stored in the upper soil media layer was 

approximately four times greater than the layer below (C: 13844 vs. 3278 g, N: 984 vs. 

252 g). This is not surprising given that 40% of the upper soil media consists of compost, 

with the remaining 60% being sand. Though the lower media (below 30 cm depth) 

consists entirely of sand, migration of nutrients and organic particulates from the upper 
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layers over time as well as belowground inputs from plants (roots) may have contributed 

to C and N observed there. In fact, the bottom profile may have greater ability to capture 

and sequester C and N throughout the lifetime of the cell, although a portion of those may 

be taken up by microbes and plants, be recycled back to the atmosphere in gaseous 

losses, or leached out in bioretention effluent as dissolved organic carbon. In fact, 

average dissolved organic carbon leaching of 6.1±1.6 mg L-1 was measured in the effluent 

from few of the cells (VL, VH and SM treatments) across three rain events. 

The total soil C held in the bioretention unit, including in plant biomass, was 

17222 g, while the annual loss (excluding winter months) of C to the atmosphere from 

soil respiration was approximately 17.32 g, which represented very small portion (0.13%) 

of the total soil C pool (Fig. 4). The total standing C in bioretention vegetation was 13020 

g, representing the second largest C pool in the unit. Generally, approximately 40% of a 

plant’s dry mass consists of C fixed by photosynthesis (Lambers et al., 1998). Some 

portion of the assimilated C in vegetation is lost to atmosphere in plant respiration, which 

is a component of the ecosystem C balance (Ryan 1991). The net ecosystem C flux will 

change as the balance between photosynthesis and respiration changes (Ryan 1991). 

These would need to be quantified to accurately determine ecosystem level C-

sequestration, which this study did not measure. Nevertheless, plants are net C sink, 

where photosynthetic uptake of atmospheric C greatly exceeds respiratory losses of C.  

As previously described, one of the two VL bioretention cell plant species is 

Panicum. Beyond bioretention this species has been well-studied due to its restoration, 

agricultural, and biomass applications. Sanderson et al., (1996) measured leaf 

photosynthesis and respiration rates of various Panicum cultivars in three different 
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regions in the Southeastern US. Average Panicum photosynthesis rates were fourteen 

times higher than respiration rates: 31 vs. 2.18 g C day-1 (Fig. 4). Therefore, the net C 

sequestration potential of bioretention systems renders promising due to the ability of 

soils and plants to act as great C sinks. However, it is important to consider the various 

factors influencing the C balance, as fluxes (both respiratory and/or photosynthetic) can 

vary with soil media composition, addition of compost/fertilizer, plant species, plant size 

and age, seasonality, soil temperature, and soil moisture (precipitation and evaporation 

balance) (Raich and Tufekciogul, 2000; Brown et al., 2012; Raich and Schlesinger, 1992; 

Davidson et al., 2002). 

Not only is the size of N pool in bioretention soils and plants smaller relative to 

the size of C pool, the magnitude of soil N fluxes is also much smaller compared to C 

fluxes (0.89 mg day-1 vs. 17 g day-1 (this excludes winter months from November to 

April); Fig. 4). This is a favorable outcome considering that N2O is a potent gas, with 300 

times greater global warming potential relative to CO2-C. N fluxes may seem negligent at 

the site scale in relation to C fluxes, but large-scale implementation of bioretention and 

other green infrastructure may bring about indirect changes in the urban landscapes 

which could potentially influence N fluxes and cycling at an ecosystem scale, and in 

areas downstream. On the other hand, where cities have expanded in their impervious 

surfaces instead, catchment hydrology has been altered due to routing stormwater into 

closed engineered pipes and sewers resulting in lowering of the water table and riparian 

drying (Groffman et al., 2002).  There, this has negatively impacted the ability of urban 

riparian zones to intercept stormwater and function as sinks for upland-derived NO3
- via 
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denitrification process (Kaye et al., 2006). This can cause shift in N forms, fluxes, and 

balance.  

 

3.4.6 Comparison of bioretention fluxes to other stormwater systems 

In some of the other managed stormwater structures such as constructed wetlands 

which are constantly waterlogged, the emissions of CO2 and N2O  are likely to be high 

(Søvik et al., 2006). Søvik et al. (2006) observed CO2-C fluxes in the range of -35 to 

3875 mg m-2 h-1 in constructed wetlands from several northern European countries, where 

even though the fluxes varied between sink and source, the maximum flux was orders of 

magnitude higher than found in our study (Fig. 5).  High fluxes in the constructed 

wetlands could be attributed to intermittent loading (Jia et al., 2011) and fluctuating water 

levels bringing intermittent oxygen into the system, increasing CO2 efflux via 

decomposition, and affecting both nitrification (increasing the rates) and denitrification 

(interrupting the last biochemical step conversion to N2) in a way that contributes to more 

N2O release (Dotro et al., 2011; Mander et al., 2014). Søvik et al., (2006) measured N2O-

N fluxes of up to 41600 µg m-2 h-1 from the same constructed wetlands. The average 

fluxes of CO2-C and N2O-N in this study are lower than average fluxes measured from 

fertilized urban lawns and turfs and mulched garden beds (Livesley et al., 2010; 

Townsend-Small and Czimczik, 2010), but greater than in native grasslands and wheat 

ecosystems (Kaye et al., 2004; Fig. 5). Average CO2-C fluxes observed in this study are 

lower than fluxes reported by Decina et al., (2012) from urban lawn and landscaped sites, 

but greater than average fluxes from urban (Decina et al., 2012) and rural forest (Giasson 

et al., 2013; Fig. 5). Our findings indicate the fact that bioretention C and N fluxes 
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generally fall between the least (urban/rural forest, native grassland) and highly 

intensively managed systems (landscaped sites, fertilized lawns, constructed wetlands). 

Among bioretention, fluxes may vary due to differences in design configuration, soil 

media composition, and spatial and temporal factors. These results underscore the need 

for more research that should focus on maximizing the nutrient capturing efficiencies of 

these systems.  

 

3.5 Conclusion 

 

This study assessed CO2-C and N2O-N fluxes from eight roadside bioretention 

cells in their third and fourth year of implementation in Vermont, USA. The cells 

received different vegetation, soil, and enhanced rainfall and runoff treatment designs. 

Results indicate no significant effects of the design variables on either type of GHG flux. 

Like all soils, the bioretention soil media was a source for CO2 fluxes, increasing in 

warmer months and decreasing in colder months. Soil C, and plant C in biomass is seen 

to largely offset respiratory CO2-C loss from bioretention soil, therefore suggesting that 

the bioretention is an overall net C sink, which may contribute to climate change 

mitigation. Bioretention was not a significant source of N2O fluxes, which altered 

between uptake and emission. This is a favorable outcome given the high global warming 

potential of the gas. Both C and N gas (and peak) fluxes can be arguably decreased by 

eliminating or reducing the amount of organic matter such as compost in filter media. If 

necessary, compost with a greater C: N ratio (>20; McPhillips et al. 2017) to promote N 

immobilization should be considered, the adoption of which may also benefit water 

quality where nutrients are concerned.  
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Plant tissue analysis suggests that the C and nutrient sequestration potential of 

bioretention can be further promoted by selecting plants that not only incorporate greater 

concentrations of nutrients, but also gain greater aboveground and belowground biomass 

over the growing season. Plants which shed less, producing lower levels of litter, may be 

preferred to minimize nutrient re-release (in gaseous or soluble form) via microbial 

decomposition, meanwhile suggesting possibilities for reducing the need for vegetation 

maintenance by landscapers. Future work should measure the magnitude of the gas fluxes 

in correlation to dramatic changes in wide range of biogeochemical parameters ranging 

from soil moisture (resulting from small to large storm events), soil organic carbon, soil 

microbial biomass, and soil nitrogen and parallel the understanding of the trade-offs that 

may exist between gas fluxes and water quality function of a bioretention.  
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Table 1. Soil properties from the top 10 cm of soil media in the bioretention cell 

averaged among the eight cells. Standard errors of the mean (n= number of sampling 

times) in parenthesis. 

Soil 

OM 

(%) 

Soil CN 
Soil 

pH 

Soil EC 

(µS cm-1) 

Soil 

media 

bulk 

density 

(g cm-3 

dry soil) 

Soil NH4 -N 

concentration 

(ppm) 

Soil NO3 -N 

concentration 

(ppm) 

1.95 

(0.09) 

13.39 

(0.65) 

7.04 

(0.02) 

30.18 

(0.23) 

1.19 

(0.03) 0.311 (0.10) 3.932 (0.69) 

n=7 n =2 n =7 n =7 n =2 n =3 n =3 

 

 

Table 2. Soil total carbon (C) and nitrogen (N) concentration (mg kg-1) from top 10 cm 

of soil media in May 2016, and two depth increments (0-30 cm and 30-40 cm) in 

November from low diversity (VL) bioretention cell in 2016. 

Sampled year Soil depth Total C Total N C/N 

  ---- g kg-1 dry soil ----  

May 2014 0-10 cm 18.36 1.69 10.9 

May 2016 0-10 cm 14.17 0.9 15.7 

November 2016 0-30 cm 10.27 0.73 14.1 

November 2016 30-40 cm 1.82 0.14 13.5 
 

 

Table 3. Plant tissue carbon (C), nitrogen (N), and phosphorus (P) concentrations (g kg-1) 

from low diversity (VL) bioretention cell in August (peak growing season) and 

November (after plant senescence) in 2016. 

Season Plant species C N CN 

  ---- g kg-1 dry plant----  

Summer 

(August) 

Panicum 446 11.4 39 

Hemerocallis 445 24.6 18 

Fall 

(November) 

Panicum 461 5.85 79 

Hemerocallis 449 9.76 46 

 

 

  



142 

 

 

Fig. 1. Approximately biweekly measurements of CO2-C flux (mg m-2 hr-1), N2O-N flux 

(µg m-2 hr-1), soil temperature (oC), and soil volumetric moisture content (%) from May 

to October 2015 and 2016 from all the cells receiving the five treatments, where VL= 

vegetation low diversity, VH= vegetation high diversity, RR= enhanced rainfall and 

runoff, SM= SorbtiveMediaTM. Blue lines are smoothed conditional means using LOESS 

(locally weighted scatterplot smoothing) method. Gray shadings are 95% confidence 

intervals. 
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Fig. 2. Relationships between CO2-C flux (mg m-2 hr-1) and N2O-N flux (µg m-2 hr-1) 

with soil temperature (oC) and soil volumetric moisture content (%) from May to October 

2015 and 2016 from all the cells receiving the five treatments, where VL= vegetation low 

diversity, VH= vegetation high diversity, RR= enhanced rainfall and runoff, SM= 

SorbtiveMediaTM. Blue lines represent the best fit line using linear regression. Gray 

shadings are 95% confidence intervals. 
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Fig. 3. Monthly mean (± 1 S.E.) measurements of soil microbial biomass carbon from 

May to September 2014 (top) and 2015 (bottom) from cells receiving the ambient 

vegetation low (VL) and high diversity (VH) treatments. No significant differences were 

observed between the two treatments. Different letters indicate significant differences 

between months as determined using Tukey-Kramer HSD at p<.05.  
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Fig. 4. Carbon (C) and/or nitrogen (N) fluxes and stocks (g, unless stated otherwise) in 

soil media layers, microbial biomass, and bioretention plants (Panicum and 

Hemerocallis) from a low vegetation diversity (VL) treatment cell. Numbers outside 

parenthesis are for C, and those inside parenthesis are for N.  
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System Reference 
Study 

location 

CO2-C flux 

(mg C m-2 h-1) 

N2O-N flux 

(µg N m-2 h-1) 

Image Reference 

1Native grasslands 

and wheat 

ecosystems 

Kaye et al. 

(2004) 

Colorado, 

USA 
na <4 

www.worldwildlife

.org 

2Urban Forest 
Decina et al. 

(2016) 

Massachusetts, 

USA 
113 na 

dirt.asla.org 

3Rural forest 
Giasson et al. 

(2013) 

Massachusetts, 

USA 
133 na Original 

4Bioretention This Study 
Vermont, 

USA 
194 10 Original 

5Urban lawn & 

landscaped 

Decina et al. 

(2016) 

Massachusetts, 

USA 
194 & 291 na Original 

6Fertilized and 

irrigated urban 

lawn & 

mulched garden 

beds 

Livesley et al. 

(2010) 

Melbourne, 

Australia 
~450 

17 to 28 & 

14 

www.medium.co

m 

7Fertilized urban 

turf 

Townsend-

Small and 

Czimczik 

(2010) 

Southern 

California, 

USA 

na 93 

mda.maryland.gov 

8Constructed 

Wetland 

Sovik et al. 

(2006) 

Northern 

Europe 

(Estonia, 

Finland, 

Norway, 

Poland) 

-35 to 3875 -88 to 41600 Vyzamal (2010) 

Fig. 5. This study’s bioretention gas fluxes in relation to fluxes from other natural and artificial systems.  
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Abstract 

 

 

 

We investigated the effects of organic amendments (thermophilic compost, 

vermicompost, and coconut coir) on the bioavailability of trace heavy metals of Zn, Cd, 

Pb, Co, and Ni from metal-spiked soils under laboratory conditions. To test Switchgrass 

(Panicum virgatum) as a potential crop for phytoremediation to remove metal from soil, 

we investigated whether the addition of organic amendments promoted Switchgrass 

growth, and consequently, uptake of metals. Compost is a valuable soil amendment that 

makes nutrients available for plant establishment and growth, which is beneficial for 

phytoremediation. However, excess application of compost can result in nutrient 

leaching, which has adverse effects on water quality. We tested the nutrient leaching 

potential of the different organic amendments to identify trade-offs between 

phytoremediation and water quality. Results showed that the amendments decreased the 

amount of bioavailable metals in the soils. Organic amendments increased soil pH, 

electrical conductivity (EC), and soil nutrient status. Switchgrass shoot and root biomass 

was significantly greater in the amended soils compared to the non-amended control. 

Amended treatments showed detectable levels of metal uptake in Switchgrass shoots, 

while the control treatment did not produce enough Switchgrass biomass to uptake 

metals. Switchgrass uptake of certain metals and leachate concentrations of some 

nutrients significantly differed between the amended treatments. Overall, by improving 

soil properties, reducing metal solubility, and attenuating bioavailable metals that can 

otherwise hamper plant survival, organic amendments can greatly enhance 

phytoremediation in metal-contaminated soils. 
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4.1 Introduction 

 

Phytoremediation is a set of ecological strategies that utilizes plants, in situ, to 

promote the  breakdown, immobilization and removal of pollutants from the environment 

(Murphy and Coats, 2011; Peer et al., 2005; Salt et al., 1998). Plants have a more direct 

effect on contaminant levels via phytoextraction, which concentrates contaminants (e.g., 

heavy metals) from the environment into plant tissues. Phytoremediation is a cost-

effective remediation solution for removing pollutants  (mainly heavy metals and 

organics) from contaminated soils and waters at site level with little disturbance to the 

landscape (Itanna and Coulman, 2003; Salt et al., 1998). It also reduces the cost of 

alternatively disposing hazardous wastes to a landfill or a storage facility located off-site 

(Salt et al., 1998).    

Efficient plants for phytoremediation are highly productive, good 

bioaccumulators, and tolerant to high levels of pollution. Switchgrass (Panicum 

virgatum) is known for its high biomass production (McLaughlin et al., 1999; Chen et al., 

2012) that allows it to remove excess nutrients from sites amended with dairy manure 

(Sanderson et al., 2001). In the presence of Switchgrass, the degradation of herbicide 

such as atrazine may be accelerated  (Murphy and Coats, 2011). Other researchers have 

proposed that Switchgrass might extract heavy metals from contaminated soils (Balsamo 

et al., 2015; Chen et al., 2012). Switchgrass has also been used in bioretention systems 

for urban storm runoff treatment (Shrestha et al., in press). In this paper, we focus on the 

ability of Switchgrass to extract toxic trace metals with and without yield-enhancing 

organic amendments. Since it is expensive to treat large amounts of metal polluted soils 
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with the conventional techniques of mechanical removal (Khan et al., 2000) or chemical 

immobilization (Basta and McGowen, 2004), the combined in situ approach of using 

recycled organic waste (compost) and plants is less expensive (or more affordable) (Salt 

et al., 1995) and may be a promising phytoremediation strategy.  

The efficiency of phytoremediation using Switchgrass or other plants on 

contaminated soil can be enhanced through additions of composts and other organic 

matter sources (e.g., coir) that are locally and cheaply available. The proposed 

mechanism is that metal uptake and assimilation increases with biomass. Composts differ 

both in the feedstock materials and the processes used to create them. There are two 

common, aerobic processes to produce composts. Thermophilic composts encourage 

thermophilic microorganisms to  decompose organic wastes (temperatures reaching 45 to 

70oC) followed by a mesophilic maturation process (Fornes et al., 2012) where organic 

matter becomes more stable and may resist further decomposition. Vermicomposting 

relies on earthworms and their gut flora to decompose the organic wastes but is 

frequently preceded by a thermophilic stage (temperatures between 25 to 40oC; Fornes et 

al., 2012; Hashemimajd et al., 2004) when organic certification is required. This process 

occurs at mesophilic temperatures and fosters a very different microbial community 

(Neher et al., 2015). In broad strokes, thermophilic composts are mature at C:N ratios 

between 15-20:1 (Tognetti et al., 2005), and have low available nitrogen content. In 

contrast, vermicompost is mature at CN ratios of 10-15:1 (Austin, 2015) and has high 

available nutrient contents. However, these benchmarks may differ depending on the 

feedstocks.  
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This paper reports on a lab study that explores the efficacy of Switchgrass at 

removing metals from soils amended with composts and coir fiber. Composts contribute 

to soil quality by improving aeration, moisture holding capacity, carbon supply, microbial 

activity, cation exchange capacity, and controlled release of macro and micronutrients 

(Ansari, 2008; Mudhoo et al., 2012; Pereira and Arruda, 2003a; Sarkar et al., 2005; Weil 

et al., 2016) in the soil. However, stimulation of plant growth on contaminated soils 

depends on the quality and type of compost. Thus, compost may increase plant 

contaminant uptake by stimulating plant productivity, while compost itself can also 

directly influence bioremediation (Chen et al., 2015; Clemente et al., 2006; Farrell and 

Jones, 2010a; Sarkar et al., 2005). The humic substances in compost remove dissolved 

metals from the soil solution (Mora et al., 2005; van Herwijnen et al., 2007; Shuman, 

1999) through complexation, sorption, and precipitation (Castaldi et al., 2005; Chen et 

al., 2015; Farrell and Jones, 2010a). The resulting solid complexes are less mobile and 

consequently pose less threat to the environment (Ogundiran and Osibanjo, 2009; 

Clemente et al., 2006; McGrath and Cegarra, 1992; Narwal and Singh, 1998; Ross, 1994; 

Shuman, 1999). However, this may also counteract the ability of a phytoextracting plant 

to remove the metals.  

Coconut coir fiber (or coir) has also been shown to be a promising bio-adsorbent 

for remediation of heavy metals. Coir is the fiber that is derived from the inner shell of 

the coconut, which may be added as a substrate to compost soils to enhance its 

performance. Previously considered a waste product and as a result dumped or 

incinerated, new uses are being developed over the last decade, including using the coir 
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as a soil amendment for degraded soils (Abad et al. 2002). Most results are however 

inferred from laboratory batch sorption experiments using aqueous solutions containing 

heavy metals (Abdulrasaq and Basiru, 2010; Chaudhuri et al., 2010) with concentrations 

similar to those of wastewaters (Baes et al., 1996). Coir is an organic waste product that 

may be added as a substrate to compost soils to enhance soil and plant performance. Coir 

is a source of organic matter, and though it contains few nutrients itself, it has high 

nutrient retention capacity (Somasiri and Vidhanaarachchi, 1997; Abad et al., 2002), and 

improves the overall quality of the soil, although it alone cannot be a sufficient growing 

media (Hernández-Apaolaza et al., 2005). Coir is resistant to environmental 

biodegradation (Somasiri and Vidhanaarachchi, 1997); as a result, the slow breakdown of 

coir can release a steady supply of carbon. The proposed mechanism in the case of this 

research is that coir has a high C:N ratio substrate (ratio of 75 to 186: Abad et al., 2002; 

Noguera et al., 2000), and therefore rendering greater microbial immobilization of metals 

and nutrients from the soil to enhance phytoremediation benefits.  

The main objective of our experiment was to investigate whether promoting 

growth of plants by organic matter additions increases the uptake of metals.  Organic 

additions included thermophilic compost (hereby called compost), vermicompost, and 

coir in various combinations. We specifically studied the effects of heavy metals on 

Switchgrass (Panicum virgatum) productivity, and metal uptake potential of Switchgrass 

in pots with and without soil amendments. Switchgrass was chosen because of its high 

biomass production capacity, and versatility. To our knowledge, no pot study has been 

conducted that studied phytoremediation of heavy metals by Switchgrass in the presence 
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of different organic soil amendments. In addition, we also examined soil without plants to 

assess the effect of organic amendments on metal mobility in the absence of vegetation, 

and evaluated nutrient leaching to examine possible trade-offs between phytoremediation 

and water quality. 

 

4.2 Methods 

 

4.2.1 Experimental design 

The following laboratory experiment is a complete block design with ten 

treatments replicated four times (Table 1; Fig. 1) resulting in 40 pot-scale, experimental 

units. The experiment explores blends of thermophilic compost (T), vermicompost (V), 

and coconut coir (C) mixed in different combinations (substrate chemical properties 

outlined in Table 2) with and without Switchgrass. The resulting treatments are soil (S), 

soil + thermophilic compost (ST), soil + thermophilic compost + coir (STC), soil + 

vermicompost (SV), and soil + vermicompost + coir (SVC) (Table 1). Thermophilic 

compost was collected from Green Mountain Compost Facility located in Williston, 

Vermont. Vermicompost was obtained from Worm Power, an organic composting facility 

located in Avon, New York. Coconut coir, here on called coir, was purchased from 

Gardeners Supply Company located in Burlington, Vermont.  

 

4.2.2 Soil collection and pot culture preparation 

Native soil was collected from a mixed hardwood forest located adjacent to 

University of Vermont Horticulture Research Center, Burlington, USA. The soil is a very 

well drained Windsor (mixed, mesic Typic Udipsamments) series (NRCS Web Soil 
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Survey). The fine earth fraction of the soils was obtained using a 2-mm stainless steel 

sieve.  Any roots and stones in the pass fraction were further removed by hand.  Sifted 

soils were left to air dry for over a week. The compost samples were also left to air dry in 

lab conditions for two weeks. The coir, which was purchased as a brick of dried coconut 

husk fiber, was soaked in de-ionized water to pull the fibers apart, and then left to air dry 

for over a month. Soil or amended soil was added to pots lined with coffee filters (Mellita 

brown coffee filters). Amended soil was created by mixing 1.5 kg dry soil with either 

0.12 kg of air-dried compost or vermicompost, and 0.06 kg of air-dried coir (8% and 4% 

of dry soil weight respectively) to make up the recipes in Table 1. In non-amended soil 

control pots, the soil equivalent of these weights was added so that the resulting weight in 

all pots was 1.68 kg. To each substrate type, Switchgrass plants were either added or 

were not added (Table 1). Each plant by substrate combination had 4 replicates for a total 

of 20 pots. 

 

4.2.3 Switchgrass seed preparation  

Switchgrass seeds were grown in small plugs that were pre-filled with the 

experimental soil obtained from the Horticulture Research Center. 15 Switchgrass seeds 

were sowed into each plug. 4 ml of solution NPK fertilizer (100, 80, 100 ppm 

respectively) was added to the soil at the start. NO3
--N was made from 1000 mg/L pure 

NO3
- stock solution. P and K were made from KH2PO4 powder by mixing 0.349 grams of 

the compound into 1 L de-ionized water.  The plugs were transported to the UVM 

Campus Greenhouse. They were irrigated every day, kept in 12-hour day/night cycle, and 
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temperature was maintained at 21oC. In the greenhouse, plants were not further fertilized 

until they germinated. Once germinated, plants were fertilized six times, every Monday 

and Friday for three weeks, using the facility’s standard NPK fertilizer at 17-4-17 at 150 

ppm nitrogen. 

 

4.2.4 Phytoremediation experiment 

The different soil mixes in the 40 pots were spiked with 32 mg of each of five 

heavy metals: Zinc (Zn), Cadmium (Cd), Lead (Pb), Cobalt (Co), and Nickel (Ni) based 

on soil dry weight. Zn, Cd, Pb, Co, and Ni solution was prepared in five separate 

solutions using de-ionized water and their respective metal salt compounds: Zinc 

Chloride (ZnCl2), Cadmium Chloride (CdCl2), Lead Chloride (PbCl2), Cobalt Chloride 

(CoCl2.6H2O), and Nickel Chloride (NiCl2.6H2O). The total mass of the metals in soil for 

each treatment after contamination is given in Table 3 (See Appendix L for data on the 

metal mass of the original substrates before and after combining them to make the recipes 

in Table 1).    

Four days after heavy metal application to the soil mixes, the plugs containing the 

largest Switchgrass seedlings (8 to 10 cm) were transplanted. Each pot received two 

plugs. The pots were brought to equal soil moisture content once before planting of the 

Switchgrass to account for the loss of moisture through evaporation. Each plug contained 

one or two Switchgrass plants at the time of transplanting (only a few seeds had 

germinated in that time out of the 15 seeds that were originally sowed). All pots, 

regardless of whether Switchgrass was present, were irrigated with 50 ml de-ionized 
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water twice a week for the first two weeks, and then every other day as the Switchgrass 

plants grew taller. Any leachate collected in the plastic container beneath the pots was 

poured back into their respective pots. The pots containing Switchgrass were kept under 

24-hr light in the laboratory with the help of growth lights for approximately 7 weeks, 

and at temperatures around 25oC (Fig. 1).  

 

4.2.5 Plant-available or bioavailable heavy metals 

At the end of the 54-day incubation period, soils from the ‘no plant’ pots were 

analyzed for metal bioavailability (i.e., plant available metals) using a nonaggressive 

extractant method. 10 g subsample of air-dried soils from the ‘no plant’ pots were taken, 

combined with 25 ml of 0.01 M CaCl2 solution, and the suspension was shaken for 24 

hours on a mechanical shaker at room temperature (McBride et al., 2009). Solution was 

filtered through Ahlstrom filter paper 642 (particle retention of 2 µm), and filtrate was 

analyzed in triplicates using the Inductively Coupled Plasma Optical Emission 

Spectrometry (ICP-OES/AES, Optima 3000DV, Perkin Elmer Corp, Norwalk, CT, 

USA).  

 

4.2.6 Plant analysis (tissue metal concentrations and loads) 

From the planted pots, Switchgrass plants were harvested, and separated into 

roots and shoots at the end of the 54-day lab incubation period. The plant samples were 

washed with de-ionized water, oven dried at 70oC for at least 5 days and weighed for dry 

biomass. The dried plant samples were stored in brown paper bags until further analysis. 

Plant samples were ground and digested (approximately 0.5 g) with 10 ml of 16N 
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concentrated nitric acid diluted to 50 ml with deionized water, and the extract was used to 

determine heavy metal concentrations. Total mass of metal uptake in each of the pots was 

estimated as the product of tissue metal concentrations and Switchgrass biomass. 

 

4.2.7 Soil analysis 

The entire soil content from all pots, including those planted to harvest, were 

transferred into large plastic containers and mixed thoroughly.  Water content was 

determined gravimetrically for each experimental unit as the difference between fresh 

and oven-dry mass (about 10 g were dried for 48 hours at 105oC). pH and EC were also 

determined using 10 g of fresh soil mixed in 20 ml distilled water using Fisher Scientific 

Accumet Portable APILO (pH/ORP meter) and Thermo Scientific Orion Star A222 

Conductivity meter respectively. The remaining soils in the plastic container were left to 

air dry for one week before being analyzed for total metals. Soils were ground using 

mortar and pestle. The ground soil was screened through 0.5 mm sieve, and dried at 60oC 

for several hours. Total heavy metal concentrations were analyzed using the ICP after 

following a microwave-assisted digestion of approximately 0.5 g soil in 16N 

concentrated nitric acid diluted to 50 ml with deionized water (USEPA 2007).  

 

4.2.8 Leachate nutrient analysis (NH4
+-N, NO3

--N, PO4
3--P) 

A short experiment to investigate the nutrient losses through leaching was carried 

out for the treatments without plants soon after the pots were established at the start of the 

incubation experiment. 700 ml of de-ionized water was slowly applied to the ‘no plant’ 
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pots containing the different soil mixes (Table 1). Water was applied evenly to cover the 

entire soil surface. The water addition (700 ml) produced enough leachate to allow 

nutrient analysis. Clear plastic containers were placed under each pot to collect the 

leachate water (Fig. 1). The leachate samples were filtered using a 0.45-µm nylon mesh 

filter (Fisher Scientific) and analyzed for available dissolved nutrients (NH4
+-N, NO3

--N, 

PO4
3--P) by flow injection analysis on an automated colorimeter (Lachat Instruments 

QuickChem8000 AE, Hach Inc., Loveland, CO) using the Cd-reduction method for NO3
-, 

the salicylate-nitroprusside method for NH4
+, and the ammonium molybdate colorimetric 

method for PO4
3- (APHA 1998). 

 

4.2.9 Statistical analysis 

The effects of soil organic amendments on heavy metal bioavailability, soil properties, 

Switchgrass biomass, and metal uptake were analyzed using the analysis of variance 

(ANOVA) in JMP Pro 13 (SAS Institute Inc., Cary, NC, USA). Tukey’s Honestly 

Significant Difference (HSD, α = 0.05) post hoc test was used to test for significant 

differences in the treatment means. When necessary, log transformations on the data were 

carried out to satisfy the assumption of normality and equal variance required by 

ANOVA.  

 

4.3 Results 

 

4.3.1 Bioavailable metals  

The fraction of bioavailable metal mass for all metal species (Zn, Cd, Pb, Co, and 

Ni) was significantly highest from the control soil treatment, compared to all the 
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organically amended treatments (Table 4). No significant differences were found in the 

leaching of bioavailable mass of metals among the amended soil treatments. In the 

control soil, the percentage of total metal mass that was bioavailable was in the range of 

0.33% up to 70%, while only 0.04% to 1.02% of total metals mass were bioavailable in 

the compost-amended soils (Table 3 and 4).  

 

4.3.2 Soil pH and EC 

 All organic amendments significantly increased soil pH (from slightly acidic at 

4.65 in the control to more neutral at 6.43) and EC (μS cm-1; from approx. 80 in control 

to upwards of 290 to 900) in both plant and no-plant treatments (Table 5). In the no-plant 

treatments, no significant difference in pH was observed among the organic treatments, 

while in the plant treatments, greater pH was observed in the compost treatments relative 

to the vermicompost treatments. EC was three times higher in vermicompost treatments 

compared to compost treatments, but this increase was only significant in plant 

treatments (Table 5).  

 

4.3.3 Switchgrass biomass  

All organic amendments improved Switchgrass productivity, both aboveground 

and belowground, over the study duration (Fig. 2). Switchgrass shoot and root biomass 

was significantly greater because of the organic amendments, while the type of organic 

amendments did not have significant effects on either root or shoot biomass. No 
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harvestable/quantifiable Switchgrass roots were present in the planted control treatment. 

Overall, the shoot biomass exceeded root biomass in all the planted treatments (Fig. 2).  

 

4.3.4 Total metal mass in Switchgrass and soils 

The mass of Switchgrass samples in the control (non-amended) soil treatment was 

too small to conduct tissue metal analysis for either shoots or roots. Thus, shoot metal 

masses were only determined in the four organic treatments. SV treatments had the 

greatest shoot metal mass for all metal species, significantly differing from ST for Cd and 

Co (Fig. 3). No significant differences in mass uptake were observed among the 

remaining treatments. Relative to the other trace metals (Cd, Pd, Co, and Ni), Zn uptake 

by Switchgrass was the highest (two to thirteen times higher in mass) in each of the 

treatments (Fig. 3). In all treatments, total soil metal mass at the end of the experiment 

was lower for all metals (Table 6) relative to their initial conditions (Table 3), except for 

Cd in the planted control treatment, which increased slightly. On average, mass of Zn, 

Cd, and Pb was lower in soils with Switchgrass than without, while the reverse was 

observed for Co and Ni.  

 

4.3.5 Nutrient (PO4
3-P, NO3

--N, and NH4
+-N) leachate concentrations 

Soils receiving the organic matter amendments leached significantly higher 

nutrients than the control soil with no amendments (Fig. 4). Between the two compost 

types with or without coir, nutrient leachate was the highest from soils amended with 

vermicompost (SV and SVC). While there were no significant differences among the 
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compost types for leaching of PO4
3--P, NO3

--N leachate concentrations were significantly 

higher from vermicompost-amended soil without coir (SV only), and NH4
+-N 

concentrations in the leachate was significantly higher from vermicompost-amended soils 

with and without coir (SVC and SV respectively; Fig. 4). NO3
--N in S, ST, STC, SV and 

SVC treatments were approximately 5, 122, 77, 38, and 21 times greater than NH4
+-N 

leachate concentrations in the respective treatments. Relative to NH4
+-N and NO3

--N on 

average, PO4-P concentrations were orders of magnitude lower (15 and 550 times lower 

respectively).  

 

4.4 Discussion 

 

4.4.1 Effect of amendments without plants 

Composts addition to heavy metal contaminated soil significantly reduced the 

bioavailable fraction of all metal constituents (Table 4). Soils naturally reduce solubility 

and mobility of heavy metals through sorption, precipitation and complexation reactions 

(Farrell and Jones, 2010; Kiikkilä et al., 2001). Organic amendments to soils can 

accelerate this natural attenuation process (Bolan and Duraisamy, 2003) due to high 

cation exchange capacity (Pereira and Arruda, 2003) through formation of stable 

complexes of metals with humic acids through chemical adsorption (Castaldi et al., 2005; 

Clemente et al., 2006; Kashem and Singh, 2001), and microbial immobilization (Haldar 

and Mandal, 1979). A study by O’Dell et al. (2007) showed that addition of yard waste-

derived compost rich in humic and fulvic acid favored the fixation of heavy metals in an 

acidic Cu-Zn minespoil, and reduced bioavailable concentrations of Cu and Zn. 
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Complexes of some metals like Pb are found to be more stable (i.e., less bioavailable) 

than other metal complexes such as Cd (Table 4; Tack et al., 1996), which was observed 

in the current study (Table 4). Soil pH also affects metal solubility. The control soil was 

more acidic with pH of 4.63 contrary to amended soils with pH of 6.42 to 6.79 (Table 5). 

Reduced pH can result in much higher metal solubility (Kashem and Singh, 2001), which 

could explain why metal bioavailability was significantly higher in control soils. Chuan 

et al., (1996) observed higher metal solubilities of Zn, Cd, and Pb under slightly acidic 

conditions (pH=5). In contrast, increased pH due to composts can induce gradual 

alkalinisation of the soil, favoring the formation of metal hydroxides and carbonate 

complexes (Chlopecka and Adriano, 1996; Farrell and Jones, 2010; Mench et al., 1994), 

which can decrease metal bioavailability. 

 

4.4.2 Effects of amendments with plants  

Composts also improve soil properties. All the organic amendments containing 

compost alone, and compost plus coir lowered soil acidity by increasing soil pH and EC 

(Table 5), as in other studies (Hernández-Apaolaza et al., 2005; Mora et al., 2005). The 

pH observed in the amended treatments with plants ranged from 6.08 to 6.40 (Table 5), 

which is in the optimal range for Switchgrass (USDA 2009). In contrast, soil pH in the 

control was outside the range considered suitable for Switchgrass, which may have 

negatively affected plant growth (Table 5, Fig. 2). Negligible shoots and no roots were 

harvested from the control treatment. On the other hand, significantly greater shoot 

biomass (11 times) was measured on average from the amended treatments relative to the 
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control treatment (0.661 ± 0.29 g versus 0.058 respectively; Fig. 2) indicating that 

organic amendments enhanced plant productivity.  

Through enhancing plant productivity on metal contaminated soil (Fig. 2), the 

ability of plants to absorb (‘phytoextraction’ or plant assisted uptake) and bioaccumulate 

pollutants from the soil (Gaur and Adholeya, 2004) can be made possible as a long-term 

phytoremediation strategy. While the attenuation of metal contaminants reduces metal 

solubility due to higher pH (Chlopecka and Adriano, 1996; Farrell and Jones, 2010b), 

providing direct remediation benefits, the improved survival and productivity of plants 

(Fig. 2), due to compost acting as slow-release fertilizers (Gutser et al., 2005), will 

increase the success of the phytoremediation strategy.  

Switchgrass present in the organically amended soils had measurable levels of 

heavy metals in their shoots (Fig. 3). Shoot concentrations of metals varied, but were 

present in the order Zn> Cd> Co> Ni> Pb.  Zn is a micronutrient essential for plant 

growth, so it is not surprising that they were present in the shoots in much higher 

concentrations compared to other metals.  Other less essential metals for plant growth 

which can also be removed from soils via phytoextraction are Co, Ni, Fe, Mn, Cu, and 

Mo (Tangahu et al., 2011).  Plants are also successful in absorbing metals that lack a 

known biological function, such as Cd, Pb, and Cr (Balsamo et al., 2015; Gaur and 

Adholeya, 2004; Shahandeh and Hossner, 2000). Plant roots release organic compounds 

(e.g., chelators) which, along with plant-induced pH changes, enhance the solubility of 

adsorbed metals in the soil, and in turn, facilitate their uptake by plants even at low 

concentrations and from nearly insoluble precipitates (Tangahu et al., 2011). If the 
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growth had continued longer than the duration of our experiment, additional growth may 

have extracted metals from a greater soil volume through a more extensive root systems 

(McLaughlin et al., 1999). In contrast to the amended soils, the control soil did not 

produce sufficient amounts of Switchgrass shoots or roots for analysis during the study 

period (Fig. 2). This likely means that metal uptake is negligible when compost was 

absent.  Additionally, in the planted control treatments, the metal toxicity may have 

occurred because composts were not available to attenuate bioavailability of metals that 

can harm roots (Chatterjee et al., 2013; Kiikkilä et al., 2001). 

The study shows that organic amendments boost plant survival and improve 

nutrient availability (Fig. 2 and 5) and soil properties (Table 5) on contaminated soils, 

while reducing metal bioavailability. In this experiment, plants assisted with pollutant 

uptake, but over the time period we examined, it was not a major effect. In this study, 

there were no significant differences in plant production among the organic amendments 

(Fig. 2), despite large variations in inorganic N in soil and leachate. There were large 

differences in N between the two compost types (Table 2, Fig 4). The lack of difference 

in plant biomass between the two compost treatments could be attributed to plants being 

very young over the study duration and –due to initial fertilizer applications in the pots—

N may not have been limiting. If the study duration had been extended, differences in 

plant biomass may have developed between the two compost treatments, due to large 

differences between their nutrient supplies (Table 2). Coir did not have significant effects 

on plant biomass as it contains few nutrients itself (Somasiri and Vidhanaarachchi, 1997; 

Abad et al., 2002), but coir can improve soil performance overtime by increasing nutrient 
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retention capacity (Somasiri and Vidhanaarachchi, 1997). It could be that the applied 

amount of coir was limited and therefore its effects were not statistically apparent. 

Increasing the amount of coir in the mix may result in detectable results, but this needs to 

be investigated.  

 

4.4.3 Total metal mass in plant and no-plant pots 

The decrease in the total metal mass from the pots at the end of the experiment 

(Table 6) can be attributed to uptake of metals by Switchgrass.  In pots without 

Swithchgrass, metals may have leached out from the soil during the watering process 

carried out for the nutrient leachate experiment. Some portion of metals may also have 

leached out of the soils during the weekly watering process in all the pots. Though we 

tried to pour the leachate back into the pots, it may be possible that we were unable to re-

capture all the metals in time, due to possible adsorption of metals to the plastic container 

(Ashton et al., 2010; Holmes et al., 2012). Cd was the only metal found in slightly higher 

mass at the end of the study in two of the pots (Table 6). The discrepancy was small, and 

could result from detection limit of the instrument, as Cd was present in very low 

concentrations in all the initial substrates (Table 2). As expected, total metal mass was 

generally lower, but not always in planted treatments. Lack of noticeable differences may 

be due to small amounts of metal uptake by Switchgrass overall (Fig. 3) compared to the 

large amount of metal that was added (Table 3). The watering process for leachate 

nutrient analysis was also only subjected to the no-plant pots, thus loss of metals during 

this process could have resulted in smaller between treatment differences than expected.  
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4.4.4 Phytoremediation trade-offs with water quality 

Use of compost for phytoremediation of post-industrial sites (contaminated with 

heavy metals) or in green stormwater infrastructure sites (e.g., bioretention) for 

stormwater treatment, may not always affect water quality positively. This is because 

nutrients can be leached from compost during and following wet events (e.g., rainfall, 

irrigation), which can pollute surface or groundwater. The resulting leachate nutrient 

concentrations from compost-amended soils were significantly greater than the control 

soil, even when compost made up as little as 8% of the total soil mix (Fig 5). The type of 

compost also controls the concentrations released in the leachate. We observed 

significantly higher NO3
--N concentrations from SV treatments relative to SVC, ST, and 

STC treatments. This is most likely due to lower CN ratio (Table 2), and higher 

extractable NO3
--N concentrations of vermicompost compared to compost (2230 vs. 505 

mg L-1 respectively; Table 2). Hurley et al. (2017) also observed significantly higher 

NO3
--N concentrations in the leachate originating from vermicompost compared to 

leachate from four different composts samples.  Frederickson et al. (2007) observed 

similar trend of significantly higher extractable NO3
—N concentrations (2660 mg kg−1) 

from vermicompost relative to compost (1531 mg kg−1). The addition of coir to the 

compost-amended soils did not significantly influence nutrient release in the leachate, 

except for NO3
--N which was significantly reduced in the SVC relative to SV (Fig 5). 

Coir, which provides an additional carbon source (Hernández-Apaolaza et al., 2005) in 

the SVC treatment, may have stimulated microbial biomass and activity leading to 

increased immobilization of NO3
- (Blumenthal et al., 2003).  
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While there were no differences in leachate PO4
3--P concentrations between the 

two compost types, NH4
+-N leachate concentrations were significantly greater from both 

the vermicompost treatments (Fig. 5). Extractable NH4
+-N concentrations measured were 

34 times greater in the original vermicompost sample relative to the compost (Table 2). 

Higher NH4
+-N concentrations also suggest the potential for high nitrification rates, 

which were indicative of the vermicompost treatments. Nitrates, the end products of 

nitrification reactions, are extremely mobile anions (Knowles, 1982), and hence leach out 

easily from the soil. This means, that depending on the compost type, an optimum 

proportion of compost and soil mix must be determined to ensure success for 

phytoremediation, while minimizing nutrient leaching potential. If compost with higher 

nutrient leaching potential is being applied to soils, appropriate best management 

practices should be implemented to minimize nutrient mobilization into sensitive water 

bodies.   

 

4.5 Conclusion 

 

Overall, the results of this work indicate that the effectiveness of 

phytoremediation can be increased by amending organic composts and vermicompost 

into heavy metal contaminated soil. Addition of organic amendments reduced metal 

solubility, and increased soil pH and EC, and soil nutrient status. Organic amendments 

significantly improved Switchgrass growth compared to the non-amended control. 

Amended treatments showed detectable levels of metal uptake in Switchgrass shoots, but 

extremely low growth in the non-amended planted controls suggests negligible metal 
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uptake (i.e., there was not enough biomass for analysis). If the study duration is extended, 

and Switchgrass continues to accumulate more biomass, this will likely increase the total 

metal uptake of Switchgrass shoots from the pots containing soil with organic 

amendments. As the roots exploit more soil volume and increase plant uptake, this could 

further prevent losses of bioavailable heavy metals, mineralized N (e.g. particularly NO3
- 

which is mobile), and P to the leachate. On the other hand, metal contaminated soils 

deprived of organic matter can increase metal bioavailability (Table 3 and 4), 

subsequently increasing toxicity to plants (Chatterjee et al., 2013; Kiikkilä et al., 2001). 

This hampers plant survival and performance (plants ability to uptake and sequester 

metals), thereby undermining phytoremediation as a strategy.  

Some confounding factors in the study that were not controlled for are the 

maturity/age and feedstocks used to create the two composts; however, this should not 

have interfered with the results observed. We believe that by having an additional 

treatment of soil and coir alone, it would be possible to detect the effects of coir. The 

effects of coir in this study were not statistically apparent in any of the treatments for any 

of the parameters (except for leachate NO3
- concentrations). Increasing the proportion of 

coir in the mix could also result in detectable effects, but this needs to be studied.  

Due to water quality implications of compost, the amount of compost deemed 

necessary for soil amendments to increase specific crop yield in phytoremediation should 

vary depending on the compost type. For example, based on this study, thermophilic 

compost may be substituted by smaller amounts of vermicompost based on their release 
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of inorganic N concentrations from a plant establishment perspective; however, what that 

will do in terms of impacting metal immobilization needs to be studied.  
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Table 1. Experimental treatments. 

Substrate type Composition Plant No Plant 

Soil Soil S S 

Soil + Thermophilic 

Compost 

92% Soil + 8% 

compost 
ST ST 

Soil + Thermophilic 

Compost+ Coir 

88% Soil + 8% 

compost + 4% coir 
STC STC 

Soil + Vermicompost 
92% Soil + 8% 

compost 
SV SV 

Soil + Vermicompost + 

Coir 

88% Soil + 8% 

compost + 4% coir 
SVC SVC 

S: Soil, P: Plant, T: Thermophilic Compost, V: Vermicompost, C: Coir 

 

Table 2. Chemical properties of the experimental soil, composts (thermophilic and 

vermicompost) and coir. 

 Total  

Zn 

Total 

Cd 

Total 

Pb 

Total 

Co 

Total 

Ni 
SOM 

CN 

 ratio 

Total 

N 

NH4
+-

N 

NO3
--

N 
 ppm (mg kg-1 dry soil) (%)  (%) ppm ppm 

Soil 68.1 <0.2 16.9 9.2 27 0.7 -    

Therm. 

Compost 
147 <0.2 32 4.8 13.8 37.5 13.61 

1.54 1.78 505 

Verm. 

Compost 
660 <0.2 9.2 1.2 7.8 33.1 10.3 

1.8 60.3 2230 

Coir 12.7 <0.2 1.2 0.2 2.6 - 
*75-

186 

   

* Values from Abad et al., 2002 and Noguera et al., 2000 

 

 

Table 3. Total mass (mg) of metals in soil per pot in each treatment after contamination 

of the soil. 

 

Total 

Zn 

Total 

Cd 

Total 

Pb 

Total 

Ni 

Total 

Co 

 ------------------------------------- mg/pot ---------------------- 

S 148.01 33.94 61.99 78.96 49.06 

ST 140.27 33.91 60.03 75.46 47.87 

STC 135.72 33.90 58.90 73.66 47.25 

SV 145.19 33.91 59.81 75.41 47.83 

SVC 140.65 33.90 58.68 73.60 47.21 

 S: Soil, ST: Soil+compost, STC: Soil+compost+coir, SV: Soil+vermicompost, SVC: 

Soil+vermicompost+coir 
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Table 4. Bioavailable metal mass (mg) in soil per pot from control soil (S) and soils 

amended with thermophilic (T) and vermicompost (V) with and without coir (C) from the 

pots containing no Switchgrass plants. Numbers inside parenthesis indicate ± 1 S.E. 

Varying letters in each column indicate significant differences among the soil with and 

without the different organic amendments for each metal species at p < 0.05. 
1Treatment n Zn Cd Pb Co Ni 

  ------------------------------------- mg/pot --------------------------- 

S 3 
20.104a  

(0.837) 

23.611a 

(0.875) 

0.204a  

(0.010) 

23.178a 

(0.909) 

25.225a  

(0.632) 

ST 4 
0.342b  

(0.058) 

0.282b  

(0.067) 

0.027b  

(0.016) 

0.304b  

(0.089) 

0.388b  

(0.089) 

STC 4 
0.231b  

(0.089) 

0.345b  

(0.021) 

0.030b  

(0.021) 

0.450b  

(0.063) 

0.456b  

(0.030) 

SV 4 
0.442b  

(0.115) 

0.294b  

(0.024) 

0.042b  

(0.022) 

0.355b  

(0.023) 

0.529b 

 (0.046) 

SVC 4 
0.704b  

(0.077) 

0.309b  

(0.048) 

0.028b  

(0.014) 

0.449b  

(0.073) 

0.568b  

(0.075) 

1S: Soil, ST: Soil+compost, STC: Soil+compost+coir, SV: Soil+vermicompost, SVC: 

Soil+vermicompost+coir 

 

 

Table 5. Soil pH and EC (μS cm-1) from control soil (S), and control soil amended with 

thermophilic (T) and vermicompost (V) with and without cocopeat (C) from pots without 

(-) and with (+) plants. Numbers inside parenthesis indicate ± 1 S.E. Varying letters in 

each column indicate significate differences between treatments. 

Plants 1Treatment n pH 

EC 

(μS cm-1) 

(-) 

S 3 4.63b (0.12) 84b (15) 

ST 4 6.79a (0.06) 364a (49) 

STC 4 6.53a (0.15) 324a (26) 

SV 4 6.44a (0.14) 917a (51) 

SVC 4 6.59a (0.04) 1219a (104) 

(+) 

S 3 4.67c (0.14) 81c (0.99) 

ST 4 6.40a (0.04) 255b (27) 

STC 4 6.34a (0.06) 234b (8.3) 

SV 4 6.08b (0.10) 812a (99) 

SVC 4 6.29b (0.03) 776a (71) 
1S: Soil, ST: Soil+compost, STC: Soil+compost+coir, SV: Soil+vermicompost, SVC: 

Soil+vermicompost+coir. 
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Table 6. Total heavy metal mass in control soil (S), and control soil amended with 

thermophilic (T) and vermicompost (V) with and without coir (C) from pots without (-) 

and with (+) plants at the end of the 54-day incubation period. Numbers inside 

parenthesis indicate ± 1 S.E. Varying letters in each column indicate significate 

differences between treatments. 

Plants 1Treatment n Zn Cd Pb Co Ni 

   mg  

(-) 

S 3 105.38b 

(9.65) 

33.09a 

(0.60) 

47.52a 

(3.63) 

38.54a 

(2.55) 

57.54a 

(3.53) 

ST 4 119.24ab 

(3.63) 

35.03ab 

(0.97) 

55.49a 

(1.52) 

33.67ab 

(0.79) 

46.51b 

(0.24) 

STC 4 110.63b 

(6.72) 

29.87b 

(1.26) 

48.32a 

(3.16) 

29.36b 

(1.16) 

42.77b 

(1.65) 

SV 3 143.44a 

(4.89) 

32.81ab 

(2.01) 

50.56a 

(4.24) 

32.13b 

(0.89) 

42.96b 

(1.90) 

SVC 4 136.88a 

(4.70) 

30.93b 

(2.45) 

46.63a 

(3.77) 

30.53b 

(0.98) 

43.10b 

(1.26) 

(+) 

S 3 
102.69a 

(3.02) 

34.68a 

(1.28) 

50.60a 

(1.85) 

40.12a 

(1.22) 

55.52ab 

(1.43) 

ST 4 
110.45a 

(4.11) 

31.25ab 

(1.73) 

51.76a 

(1.89) 

33.55 

(1.02) 

58.80a 

(8.42) 

STC 4 
109.91a 

(5.00) 

29.32b 

(3.71) 

48.86a 

(4.43) 

40.75a 

(8.26) 

47.57ab 

(2.72) 

SV 4 
120.28a 

(2.72) 

25.42b 

(0.29) 

44.57a 

(1.58) 

28.93a 

(0.84) 

42.29ab 

(0.76) 

SVC 4 
117.31a 

(4.45) 

24.18b 

(1.14) 

43.19a 

(0.86) 

26.09a 

(0.57) 

39.71b 

(1.35) 

1S: Soil, ST: Soil+compost, STC: Soil+compost+coir, SV: Soil+vermicompost, SVC: 

Soil+vermicompost+coir. 
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Fig. 1. (Top): Pots containing contaminated soils amended with the different organic 

treatments without Switchgrass placed over plastic containers used for leachate 

collection, (Middle): Planted pots containing Switchgrass growing in laboratory under 

24-hour light conditions, (Bottom): Plastic containers holding soil that was removed from 

the pots at the end of the experimental phase for analysis.  
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Fig. 2. Mean ± 1 S.E. Switchgrass shoot and root biomass (g) from control soil (S), and 

soil amended with thermophilic (T) and vermicompost (V) with and without cocopeat (C) 

from pots containing plants. Varying uppercase and lowercase letters indicate significant 

differences in shoot and root biomass respectively between the organically amended 

soils. S: Soil, ST: Soil+compost, STC: Soil+compost+coir, SV: Soil+vermicompost, 

SVC: Soil+vermicompost+coir. 
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Fig. 3. Mean ± 1 S.E. Switchgrass shoot metal mass (μg) in Switchgrass shoots from soil 

(S) amended with thermophilic (T) and vermicompost (V) with and without coir (C) from 

pots containing plants. Varying letters indicate significant differences in shoot metal mass 

of Switchgrass between the organically amended soils. ST: Soil+compost, STC: 

Soil+compost+coir, SV: Soil+vermicompost, SVC: Soil+vermicompost+coir. 
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Fig. 4. (a-c) Mean ± 1 S.E. PO4
3-, NO3

-, and NH4
+ concentrations analyzed in the leachate 

from control soil (S), and control soil amended with thermophilic (T) and vermicompost 

(V) with and without coir (C) from pots containing no plants. Different lowercase letters 

indicate significant differences in nutrient leachate concentrations among the soil and 

organically amended soil treatments.  S: Soil, ST: Soil+compost, STC: 

Soil+compost+coir, SV: Soil+vermicompost, SVC: Soil+vermicompost+coir. 
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DISSERTATION CONCLUSION 

 

Green infrastructure such as bioretention can be implemented in urban areas for 

stormwater quality improvements and volume reductions. Bioretention reduces the 

impact of built environments on downstream waterbodies by retaining, filtering, and 

treating stormwater onsite. The ability of bioretention to reduce stormwater pollutants in 

the effluent depends on the various design elements which must be evaluated carefully. 

The soil filter media composition is especially critical to bioretention performance. 

Bioretention filter media is typically amended with compost for plant establishment and 

growth, as in this study. Compost contains nutrients in far greater quantities than typical 

urban storm runoff.  Nutrient export observed in the study’s bioretention cells (those 

without the SorbtiveMediaTM amendments) was due to the excess compost in the filter 

media. Despite beneficial qualities of compost, from improving soil biological properties 

to heavy metal retention, it should be used judiciously in N and P-impaired watersheds. 

Moreover, not all composts are created equal, and if necessary, compost with a greater C: 

N ratio to promote N immobilization, and lower P content should be considered, the 

adoption of which may also benefit water quality where nutrients are concerned, while 

simultaneously reduce greenhouse gas fluxes of CO2-C and N2O-N.  

Bioretention plants have multitude of co-benefits including rainfall interception, 

erosion control, evapotranspiration, fostering microbial communities, and improving soil 

aeration and porosity in the filter media, all of which increase bioretention longevity. 

However, plants only take up a small portion of dissolved N and P contrary to the amount 

of nutrients that can be stored, retained or removed by the soil. Short and long-term ortho-
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P removal must rely on soil chemical parameters in the filter media. Phosphates are 

removed from soil solution through sorption reactions with metal cations (mainly Al, Fe, and 

Ca) in soils. This research evaluated the use of SorbtiveMediaTM containing Fe and Al, and 

showed promising results for dissolved and total P removal. Alternatively, proprietary media 

such as the SorbtiveMediaTM can be replaced by locally and cheaply available native soil 

blends that are high in these cations. Additionally, Al-based drinking water treatment 

residuals, which are waste materials that are typically disposed to landfills, have potential 

use as bioretention soil amendments for P removal, but this needs to be studied.  For 

dissolved N, effective treatment systems must rely on physical process of aerobic filtering in 

upper layers first, followed by a continuously saturated anaerobic zone with a reliable carbon 

source to promote microbial denitrification. Additional research should focus on increasing 

denitrification efficiency without releasing N2O-N gas- a by-product of denitrification- to the 

atmosphere in order to achieve overall environmental benefits.  

Currently, landscape architects and engineers are at the forefront of bioretention 

design implementation and at recognizing the “ecosystem services” provided by 

bioretention. Although engineering design and sizing of bioretention is critical for 

installation, collaboration across multiple disciplines to integrate complementary design 

ideas from soil science, hydrology, and horticulture is required. Bioretention is a complex 

treatment system which relies heavily on soil and water chemistry processes and plant-

soil interaction for pollutant transformation and removal. Going forward, 

transdisciplinary research collaboration can help maximize bioretention design functions 

and should be the norm.  
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APPENDICES 

 

Appendix A 

 

 

 

Fig. 1. Bioretention cell with rainpan and PVC precipitation-distribution pipes. The 

rainpan is installed outside of the cell. Rainwater from the corrugated pan drains into 

gutters, vertical downspouts, and to pipes that run horizontally along the length of the cell 

and contains perforations at the bottom to deliver water evenly across the cell. 
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Appendix B 

 

Fig. 2. (Top left, Top Right, Bottom): Road runoff being conveyed via curb cut and rock-

line swale into the v-notch weir where influent water is sampled, effluent water sampling 

location from an underdrain pipe 4ft deep belowground, stormwater samples collected in 

up to 24 bottles in the autosampler. 
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Appendix C 

 

Table 1. Weir equations for each cell’s inflow and outflow. 

 Cell Treatment Weir equation 

Inflow weir 

1 VH RR20 Q = 7.3858 * H^2.7088 

2 VH Q = 3.5975 * H^2.4424 

3 VH SMRR60 Q = 4.3192 * H^2.5137 

4 VH SM Q = 4.8798 * H^2.5761 

5 VH RR15 Q = 3.8256 * H^2.4750 

6 VH Q = 4.8967 * H^2.5735 

7 VL Q = 4.1210 * H^2.4923 

8 VL Q = 5.3260 * H^2.6022 

Outflow weir 1-8  Q = 3.4166 * H^2.5515 

Q: Flow rate (cfs) H: head (ft) above the 90o v-notch 
*VL= vegetation low diversity, VH= vegetation high diversity, RR= enhanced rainfall+runoff, 

SM= SorbtiveMediaTM 

 

Appendix D 

 

Table 2. Mean soil chemical parameters including pH, organic matter percentage (OM 

%) using the loss-on-ignition method, available P (mg kg soil-1), and exchangeable cation 

exchange capacity (ECEC; meg/100 g soil) averaged across all eight bioretention cells in 

Burlington, Vermont. Means are followed by ± 1 S.E.   

 

 

 

 

 

 

 

 

  

Date pH 
OM  

(% LOI) 

Available P 

(mg kg soil-1) 

ECEC 

(meg/100 g soil) 

6/8/2015 6.92 ± 0.25 1.80 ± 0.56 12.24 ± 5.79 4.47 ± 1.04 

8/24/2015 6.99 ± 0.13 2.25 ± 1.04 26.50 ± 4.03 7.25 ± 1.71 

10/28/2015 7.14 ± 0.06 2.20 ± 0.49 23.12 ± 2.78 7.23 ± 0.92 

5/17/2016 6.97 ± 0.24 1.45 ± 0.38 27.03 ± 6.30 5.51 ± 0.78 

7/28/2016 7.09 ± 0.11 1.80 ± 0.30 32.83 ± 10.65 6.88 ± 1.13 

9/8/2016 7.04 ± 0.12 1.97 ± 0.65 33.35 ± 6.59 7.14 ± 1.62 

11/8/2016 7.20 ± 0.12 2.18 ± 0.55 39.94 ± 9.85 8.25 ± 1.28 
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Appendix E 

 

Table 3. Mean influent and effluent peak flowrates (L min-1), and peak attenuation (%) in 

the bioretention cells treated with different soil, vegetation, and RR treatments from 

storm events sampled spanning May to October/November 2015 and 2016 in Burlington, 

Vermont. Significance determined by matched pair t-test on log-transformed data. 

P<0.001**, P< 0.05*. 

Cell N 
Peak Q 

In ± SD 

Peak Q 

Out ± SD 

Sig.  

diff. 

% Peak 

Reduction 

Average % 

Reduction 

± SD 

% 

Reduction 

Min-Max 

VH 37 30 ± 70 1.9 ± 3.9 ** 94 88 ± 28 -63 -100 

VH RR 35 21 ± 23 2.7 ± 5.5 ** 87 85 ± 33 -92 -100 

VH SM 16 14 ± 27 1.9 ± 3.7 * 86 83 ± 23 37-100 

VH SMRR60 16 47 ± 52 3.4 ± 5.4 ** 93 93 ± 9 68-100 

VL 17 24 ± 35 1.0 ± 1.0 ** 96 88 ± 19 33-100 

*VL= vegetation low diversity, VH= vegetation high diversity, RR= enhanced rainfall+runoff,  

SM= SorbtiveMediaTM 

 

 

Appendix F 

 

Nitrogen mineralization rates methods: 

 

N mineralization and nitrification rates were measured two to three times a year from 

2014 to 2016 (total of 8 sampling dates spanning spring, summer and fall) as an indicator 

of soil media microbial activity from ambient vegetation cells. KCl extraction was carried 

out on fresh soils for ammonium (NH4
+) and nitrate (NO3

-). At the time of soil collection, 

in-field incubation was carried out, where three 100-g subsamples of fresh soil were put 

into polyethylene bags and installed in three separate locations in each cell at 7 cm depth 

for 21 days, after which the soil was sampled for final NH4
+ and NO3

- using a flow 

injection autoanalyzer. Net N mineralization (potential organic N transformation rates) 

rates were calculated by subtracting initial field NH4
+

 and NO3
-
 concentrations from final 

NH4
+

 and NO3
-
 concentrations. Net nitrification rate was calculated by final NO3

- 

concentrations minus initial field NO3
- concentrations (Ross et al., 2009). Moisture-

correction was done for each sample to correct for differences in soil water content and 

express results in dry weight equivalents. N mineralization/nitrification rate were 

expressed in mg N per kg dry soil. 
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Appendix G 

 

Table 4. List of bioretention plant species. 

 Latin Name Common Name 

Low diversity 

(VL) cell 

Hemerocallis spp. Daylilies 'Stella d'Oro' (4*) 

Panicum virgatum Switchgrass 'Shenandoah' (5) 

High diversity 

(VH) cell 

Aesclepius incarnata Butterfly, Milkweed 'Tuberosa' (1*) 

Anemone canadensis Windflower (2) 

Aquilegia canadensis Columbine (2) 

Symphyotrichum novae-angliae New England Aster 'Purple Dome' (2) 

Baptisia australis 

Blue False Indigo 'Capsian' and 

'Midnight Prairiebliss' (3) 

Helenium autumnale Sneezeweed 'Red+Gold' (4) 

Lobeliea cardinalis Cardinal Flower (1) 

*Numbers inside parenthesis indicate number of individuals planted per cell. 
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Appendix H 

 

PAS gas flux calculation equation (used by Kaye, McCulley, Castellano, Adviento-Borbe 

Labs). 

 

The method uses numbers (density, temperature, air pressure) based on 20°C and 1 atm 

and not the actual air temperature and pressure because the PAS instrument calculates the 

concentration of each gas at 20°C. Fluxes of CO2 and N2O are computed by fitting a 

linear regression of gas concentration against time after chamber closure.   

 

According to the PAS manual (14.11.2) to convert ppm (volume) to mg/m3: 

 

𝐶𝑜𝑛𝑐𝑒𝑛𝑡𝑟𝑎𝑡𝑖𝑜𝑛 (
𝑚𝑔

𝑚3
) = 𝑝𝑝𝑚 ∗ 𝑚𝑜𝑙𝑒𝑐𝑢𝑙𝑎𝑟 𝑤𝑡 (

𝑔

𝑚𝑜𝑙
) ∗

1 𝑚𝑜𝑙

24.04 𝑚3
 

 

where 1 mol per 24.04 m3 is the density of gas at 20°C and 0.101 MPa (ρ). Convert ppm 

to mg/m3 using the above equation, then calculate the flux as below to get CO2-C or N2O-

N in mg/(m2*sec): 

𝐹 =  
∆𝐶

∆𝑡
∗

𝑉

𝐴
∗ 𝛼 

 

𝐹 =  
𝑚𝑔

𝑚3𝑠𝑒𝑐
∗

𝑚3

𝑚2
∗ 𝛼 

 

where F is the gas production rate (mg m−2 sec−1), ΔC/Δt denotes the increase/decrease of 

gas concentration in the chamber (mg m-3 sec−1), V is the chamber volume (in m3), A is 

the chamber soil surface area (in m2), and α is a conversion coefficient (28/44 for N2O-N; 

12/44 for CO2-C).  

 

Example calculation:   slope*44*(1/24.04) *0.17779*(12/44) *60*60 

molecular weight of gas = 44 (CO2 or N2O) 

1/24.04 = PAS conversion (see above) 

chamber m3/m2 = 0.17779 

12/44 = conversion to CO2-C  

*60*60 converts from seconds to hour 
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Appendix I 

 

Chloroform-fumigation extraction method: 

 

Following GHG sampling, three random subsamples of soil was collected from 

the ambient high and low diversity vegetation plots (V1 and V2) for soil microbial 

biomass (SMB) carbon (C) determination monthly from May to November in 2015. 

Monthly SMB was also measured in year 2014. Chloroform fumigation-incubation 

method (Vance et al. 1987, Jenkinson and Powlson 1976) was used to determine SMB. 

Analysis was done on field-moist soil within several hours from collection. Chloroform 

fumigation is done to kill and lyse microbial cell membranes in the soil sample. Soils (11-

12 grams) for fumigation were placed into 50 ml beakers and put in a vacuum desiccator. 

20 ml of chloroform and some boiling chips were added to a beaker and placed in the 

center of the desiccator.  The dessicator was sealed and evacuated using a vacuum pump 

for 2-3 minutes causing the chloroform to boil, exposing the samples to chloroform vapor 

(Alessi et al. 2011). This was followed by release of the vacuum to vent the desiccator. 

This step was repeated five times, not venting the last time. The desiccator was left under 

vacuum and stored in a dark box for 5 days before the vacuum was released again. Non-

fumigated samples (10-11 grams) were weighted into 50 ml beakers but not fumigated. 

Chloroform fumigated and non-fumigated (control) soils were extracted with 50 ml of 0.5 

M K2SO4. After shaking using a mechanical shaker and settling, the samples were 

passed through a pre-wetted (with 0.5 M K2SO4) Whatman 1 filter paper. The filtrate 

was frozen until ready to be determined for total organic carbon (TOC) on the TOC 

analyzer (TOC-L Shimadzu TOC Analyzer, Shimadzu Corporation). Control blanks 

containing only 0.5 M K2SO4 were included with every batch of samples. Blanks were 

subtracted from the data to correct for any background C present in the reagent. The 

difference in TOC between the chloroform-fumigated and non-fumigated soils is the 

chloroform-labile C pool (EC), and is proportional to microbial biomass C (Vance et al. 

1987, Allison 2008). Moisture-correction was done for each sample to correct for 

differences in soil water content and to express final results in dry weight equivalents.  
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Appendix J 

V L V H V H R R V H S M V H S M R R 6 0

0

2

4

6

8

C
o

n
c

e
n

tr
a

ti
o

n
 (

m
g

 k
g

-1
d

r
y

 s
o

il
)

N H 4

+

N O 3

-

 
Fig. 3. Soil NH4

+ and NO3
-
 concentrations averaged across three sampling dates (June 9, 

July 28, and November 2, 2016). VL= vegetation low diversity, VH= vegetation high 

diversity, RR= enhanced rainfall+runoff, SM= SorbtiveMediaTM.  
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Appendix K 

 

Estimation of carbon and nitrogen stocks in soil media layers, microbial biomass and 

plants. 

 

Soil 

Total volume of upper 30 cm soil media and lower 30 cm soil media = 1132674 cm3 

Total weight of upper 30 cm soil media = 1347.882 kg, given the bulk density 1.19 g cm-

3 (bulk density here is average bulk density and empirically derived from soil 

measurements taken on two separate occasions) 

Total weight of lower 30 cm soil media = 1800.951 kg, given the bulk density 1.59 g cm-

3 (bulk density here is taken from USDA NRCS laboratory data9) 

 

Plants 

Total cell area = 3.72 m2 

Panicum (switchgrass) coverage of cell area:  55% of 3.72 = 2.046 m2 

Hemerocallis (daylily) coverage of cell area: 45% of 3.72 = 1.674 m2  

Total biomass of Panicum per year = 10 kg m-2 (extrapolated from Heaton et al., 2004) 

Total biomass of Hemerocallis per year = 5 kg m-2 (assumed to be half of Panicum as 

their height is measured to be half as well) 

Total biomass of Panicum at plot coverage level = 20.46 kg (2.046 m-2 x 10 kg m-2) 

Total biomass of Hemerocallis at plot coverage level = 8.37 kg (1.674 m-2 x 5 kg m-2) 

Average Panicum C & N concentration: 453.5 and 8.625 g kg-1 dry plant 

Average Hemerocallis C & N concentration: 447 and 17.18 g kg-1 dry plant 

 

Loss from gas fluxes 

 

CO2 flux: 

Average flux is 194±7 mg m2 hr-1 

Average loss of C from CO2 flux at plot level of 3.72 m2 per day = 17.32 g 

 

N2O flux: 

Average flux is 0.01±0.02 mg m2 hr-1 

Average loss of N from N2O flux at plot level per day = 0.893 mg 

 

 

  

                                                 
9 https://www.nrcs.usda.gov/wps/portal/nrcs/detail/soils/survey/office/ssr10/tr/?cid=nrcs144p2_074844 
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Appendix L 

 

Table 5. Total mass of metal in each substrate used in the experiment and calculated total 

mass of metals in the different treatments before contamination.  

    

Total mass (mg) of metal in each experimental 

substrate 

Substrate 

Weight 

(kg) 
Zn Cd Pb Ni Co 

Soil 1.6 114.408 0.336 28.392 45.36 15.456 

Therm. 

Compost 0.12 17.64 0.024 3.84 1.656 0.576 

Verm. 

Compost 0.12 79.2 0.024 1.104 0.936 0.144 

Coir 0.06 0.762 0.012 0.072 0.156 0.012 

              

  

Total mass (mg) of metal per treatment pot before 

contamination 

  Treatment Zn Cd Pb Ni Co 

  S 114.41 0.34 28.39 45.36 15.46 

  ST 106.67 0.31 26.43 41.86 14.27 

  STC 102.12 0.30 25.30 40.06 13.65 

  SV 111.59 0.31 26.21 41.81 14.23 

  SVC 107.05 0.30 25.08 40.00 13.61 
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