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Abstract: Protein kinase A (PKA)  is a cyclic-AMP (cAMP) dependent kinase and is 

known to regulate many processes, specifically proliferation and migration. PKA activity 

also plays an important role in the metastasis of ovarian cancer. PKA has been shown to 

localize to the leading edge of migrating ovarian cancer cells and is required for invasive 

potential (McKenzie, Campbell et al. 2011). Src family kinases (SFKs) are non-receptor 

tyrosine kinases that become activated after the stimulation of a variety of plasma 

membrane receptors. SFKs are proto-oncogenes, that play key roles in signal transduction 

pathways involved in cell division, motility, adhesion, and survival in both normal and 

cancer cells. In cancers, SFKs are particularly important in regulating the processes that 

promote invasion and metastasis. During chronic stress signaling, PKA activates Src 

through direct phosphorylation (Armaiz-Pena, Allen et al. 2013). The Deming Lab has 

also shown that active Src family kinases can regulate PKA activity through 

phosphorylation of the catalytic subunit of PKA at Tyrosine 69. The Deming lab has also 

made a mutant that cannot be phosphorylated. In the mutant the Tyrosine (Y) has been 

changed to a Phenylalanine (F) at site 69 (Y69F. Given that phosphorylation at Y69 

enhances PKA activity and that PKA and SFKs have been linked in ovarian cancer 

migration and invasion, I hypothesize that hypothesize that activation of SFK’s induces 

PKA-C phosphorylation and regulation of downstream PKA signaling. The goal of my 

research was to investigate this interaction in wild type PKA catalytic subunit (PKA-C) 

and Y69F-PKA-C using cell culture and other molecular techniques. The second aim of 

my project was to design a system utilizing siRNA knockdown technology and rescuing 

with a C-terminally fluorescently tagged exogenous PKA-C so that later experiments can 

be aimed at charactering the Y69F-PKA-C. 



 To address the first aim, I investigated the 1) effect of Src inhibition on global 

PKA activity in response to epidermal growth factor (EGF) stimulation and 2) the 

formation lamellipodia response to EGF stimulation when wild type PKA-C is 

overexpressed or when the Y69 mutant is expressed. The results presented here suggest 

that 1) Src phosphorylates PKA in response to EGF signaling leading to increased 

activitiy and 2) the phosphorylation of Y69 seems to play an important role in the ability 

of cells to form lamellipodia. The siRNA system proposed shows optimal knockdown of 

endogenous PKA-C after 72 hours of exposure. Due to the affinity of the siRNA for both 

endogenous and exogenous PKA-C, silent point mutations were designed and tested to 

convey resistance to siRNA degradation. These mutations show promising resistance to 

siRNA degradation and will be used for later experiments to characterize Y69F-PKA-C. 

I. Background 

A. Cell Signaling 

 Cell signaling is the complex molecular process by which cells convey messages 

through integrated protein networks. Extracellular and intracellular proteins mediate the 

propagation of the signal (Seger, et al. 1995). Growth factors are polypeptides that 

stimulate cellular processes by binding to a specific cellular membrane receptor (Goustin, 

et al. 1986). These molecules are used for short-range cellular signaling as opposed to 

long range endocrine signaling, and can be found in many different tissues (Goustin, et 

al. 1986).  Growth factors will bind to their receptor and propagate a signal, usually 

through a kinase phosphorylation cascade. These receptors tend to be receptor tyrosine 

kinases (RTKs). When the growth factor binds there is a conformational change in the 

receptor that results in dimerization and subsequently the autophosphorylation of the 



cytoplasmic domain of the receptor (Schlessinger 2000). Cell signaling leads to a variety 

of outcomes, such as cell cycle progression, metabolism, survival, proliferation, 

differentiation and motility (Schlessinger 2000; Hubbard, et al. 2007). These outcomes 

are mediated by the downstream kinases that propagate the signal. 

B. PKA 
 PKA, a cyclic-AMP (cAMP) dependent protein kinase, is known to regulate many 

cellular processes, including proliferation and migration. It is usually activated by a G 

protein coupled receptor (GPCR) but has been shown to be activated downstream of 

growth factor RTKs (Caldwell, et al. 2012). PKA is a holoenzyme consisting of two 

regulatory domains (R) and two catalytic domains (C) (Taylor, et al. 2012). In 

mammalian cells, both the catalytic and regulatory subunits exist in isoforms (Cα, Cβ and 

Cγ in human; RIα, RIIα, RIβ and RII β), however it is known that the catalytic subunits 

are functionally redundant whereas the regulatory subunit isoforms are not functionally 

redundant. The R subunits have an inhibitor site which binds the active site of the C 

subunit when they exist as a holoenzyme. RII has a serine residue that R1 does not have 

in the inhibitor site, allowing for a free C subunit to phosphorylate this site, The RI 

isoforms has either an alanine or glycine, mimicking a PKA substrate and ultimately 

inhibiting PKA activity (Taylor, et al. 2012).When cAMP levels rise, cAMP can bind to 

the R subunit. This binding results in a conformational change that releases the catalytic 

domains (Taylor, et al. 2012). Once the catalytic domain has been released it is free to 

phosphorylate numerous intracellular downstream targets (Guarino 2010).  

Cytoskeletal organization and cellular migration require tightly regulated PKA 

activity (Howe 2004). PKA activity can either activate or inhibit cytoskeletal regulators. 

Interestingly, when PKA is hyperactive or inhibited cellular invasion and migration can 



be hindered suggesting that PKA activity is spatially and temporally controlled (Howe 

2004). An important aspect of PKA mediated cytoskeletal regulation is PKA’s 

localization. A-kinase anchoring proteins (AKAPs) are responsible for subcellular 

localization of PKA (Diviani, et al. 2001). AKAPS are a family of proteins that bind to 

the regulatory subunit of PKA and anchor PKA to a specific subcellular location 

(Jackson, et al. 2002). They consist of two important motifs, the conserved PKA-binding 

motif and a unique targeting motif. The PKA-binding motif forms an amphipatic helix 

that interacts with hydrophobic residues at the end of the N-terminus of the R subunit. 

The unique targeting motif directs the protein complex (PKA-AKAP) to a specific 

intracellular location (Diviani, et al. 2001). Many AKAPs have been shown to localize to 

the actin cytoskeleton (Howe 2004). Howe et al. demonstrated the importance of the 

AKAP-PKA interaction in regards to directed cell migration. They found that when either 

PKA or AKAP-mediated location ok PKA was inhibited it resulted in the inhibition of 

directed cell migration in several different types of mammalian cells (Howe, et al. 2005).  

PKA anchoring was also shown to be required for the ability of neuronal cells to 

respond appropriately to axon guidance cues (Deming, et al. 2015). Netrin-1 is a member 

of the netrin family of axon guidance cues. Netrin-1 signals through the receptor deleted 

in colorectal cancer (DCC) and can result in cellular functions other than axonal 

guidance, such as epithelial cell migration. Netrin-1 signaling through its receptor, 

deleted in colorectal cancer (DCC), was shown to result in PKA activation, 

phosphorylation of cytoskeletal regulatory proteins and growth cone guidance (Deming, 

et al. 2015). This signaling was mediated by a PKA-AKAP interaction, namely Ezrin, 

radixin, and moesin (ERM), which are a family of plasma membrane actin cytoskeleton 



cross-linking proteins.  Interestingly, there are many known PKA- regulated proteins 

implicated the DCC/netrin signaling pathway, such as Src (Deming, et al. 2015). 

 

C. Src Family Kinases (SFKs) 

SFKs are non-receptor tyrosine kinases that become activated after the stimulation 

of plasma membrane receptors, including growth factor receptor tyrosine kinases. Src is 

extremely important in signal transduction pathways that can result in cell division, 

cellular motility, adhesion and survival (Sen, et al. 2011). Mis-regulation of Src can result 

in uncontrolled cell growth, and is associated with cancer. SFKs have a conserved 

organization of their domains. This consists of an N-terminus followed by SH3 (Src 

homology 3), SH2 (Src homology 2), a linker, kinase domain, and a C- terminus 

(Parsons, et al. 2004). The SH2 domain is especially important in signaling because it is 

able to recognize and bind phosphorylated tyrosine (Boggon, et al. 2004). The SH2’s 

availability for binding phosphorylated tyrosine plays an important role in Src regulation. 

When inactive, the SH2 domain of Src is bound to a phosphorylated tyrosine within the 

C-terminus. In this conformation, the kinase domain is unable to be phosphorylated. 

When the C-terminus is dephosphoryalted, Src confirmation changes to an open domain. 

This releases the kinase domain allowing Src to be active (Guarino 2010). Tightly 

controlled regulation of Src is necessary to maintain the balance between proliferation, 

migration and cell survival.   

D. PKA and SFKs in ovarian cancer 
PKA has been found to be dysregulated in epithelial ovarian cancer (EOC) lines, 

many of which are extremely aggressive when they metastasize (Bai, et al. 2006).  

McKenzie et al. found that PKA is activated at the leading edge of migrating SKOV3 



EOC cells. They also found that when PKA activity is inhibited, cell migration is 

blocked. Furthermore, PKA activity was dependent and mediated by the anchoring of 

type-II regulatory PKA subunits (RII). RII is a subunit associated with the holoenzyme 

(McKenzie, Campbell et al. 2011). When these subunits were inhibited, migration was 

also inhibited (McKenzie, et al. 2011). McKenzie et al. also showed that the activity of 

PKA is up-regulated at the leading edge of SKOV-3 cells during invasion. Their data 

suggests that PKA activity and anchoring are required for invasion and implicate PKA 

during EOC metastasis.  

Many recent studies have shown that chronic stress promotes tumor growth, 

angiogenesis, and metastasis. One study showed that stress hormones, such as 

norepinephrine, lead to in an increase in the expression of interleukin 6 (IL-6) mRNA and 

protein levels in ovarian cancer (Nilsson, et al. 2007).  Nilsson et al. showed that 

norepinephrine stimulation activates Src tyrosine kinase, which was necessary for the 

over-expression of IL-6. These results indicate that stress hormones activate critical 

signaling pathways in ovarian cancer (Nilsson, et al. 2007). PKA is another protein that is 

activated through norepinephrine signaling. β-adrenergic signaling is involved in the 

regulation of many cellular processes, specifically initiation and progression of cancer. 

The binding of norepinephrine to the receptor promotes metastasis and dissemination of 

cancer cells when activated by β-adrenergic receptors-mediated activation of PKA 

signaling pathways (Cole et al. 2012).  

PKA is known to activate Src under certain conditions. Importantly, 

phosphorylation of serine 17 on Src correlated with the aggressiveness and invasiveness 

of human ovarian cancers (Stork, et al. 2002). An important study demonstrated that 



chronic stress signaling through activation of the beta adrenergic receptor enhanced 

tumor cell migration, invasion and growth by activating PKA, which then activated Src 

through a phosphorylation event on serine 17 (Armaiz-Pena, et al. 2013). This work 

suggests that Src is a key regulator in the PKA-mediated signaling network activated by 

beta-adrenergic signaling. This mechanism appears to enhance tumor cell migration, 

invasion and growth (Armaiz-Pena, et al. 2013).  The phosphorylation of Y69 site of the 

PKA–Cβ subunit has been shown in a variety of human cancers (Phosphosite), 

specifically ovarian cancer. However, the kinase/s that mediate this phosphorylation and 

the exact cellular effects are unknown. The Deming laboratory has discovered that SFKs 

(Src and Fyn) can phosphorylate PKA-Cα on tyrosine 69 (Y69). Although this 

phosphorylation event appears to enhance PKA kinase activity the impact of Y69 

phosphorylation on ovarian cancer cell migration remains to be determined.   

E. Significance 

PKA and SFKs have often been implicated in oncogenesis. (Cho-Chung, et al. 

1995). PKA has also been implicated in stress signaling leading to enhanced tumor 

growth and angiogenesis (Thaker, et al. 2006). Stress signals, such as noreadrenaline, 

bind β-adrenergic receptors leading to increased cAMP levels and therefore increasing 

PKA activity (Schöneberg, et al. 1999). It is well known that PKA’s holoenzyme 

isoforms (type 1 and type 2) exist in a strict balance within a cell. Primary human tumors 

often exhibit a deviation from this balance and in vitro experiments have shown that 

restoring this balance can reverse oncogenesis.  

Both PKA and Src have been shown to have altered activity in ovarian cancer 

(Wiener, et al. 2003; Al-Alem, et al. 2013). Src tends to be overexpressed in late-stage 



ovarian tumors and plays an important role in the immortalization of these cells (Wiener, 

et al. 2003). Furthermore, reduction in Src expression resulted in a decrease in anchorage-

independence, vascularization and tumor development in the SKOV-3 late-stage model 

(Wiener, et al. 2003). Src has also been shown to in increase in expression in metastatic 

ovarian cancer (Wiener, et al. 2003). PKA’s signaling pathway is often altered in a 

variety of cancers (Al-Alem, et al. 2013) and has been shown to play an important role in 

SKOV3 in vitro invasion (McKenzie, et al. 2011). Increased cAMP levels in response to 

stress signaling has also implicated PKA in increased angiogenesis and malignant 

proliferation (Thaker, et al. 2006). Furthermore, Armaiz-Pena et al. show a novel 

mechanism in which stress signals lead to PKA-mediated phosphorylation of Src serine 

17 leading to Src autophosphorylating itself on tyrosine 419. These data suggest that this 

phosphorylation event may be a key molecular switch in downstream signaling and 

disease progression (Armaiz-Pena, et al. 2013). Given the relationship between SFKs and 

PKA it is possible that these two not only interact in cancerous models, specifically 

ovarian cancer, but also possibly intersect in the signaling that ultimately leads to 

metastasis. 

The overall goal of this research was to investigate the interaction between 

SFKs and PKA. Given that phosphorylation of PKA by SFK’s enhances PKA activity 

(unpublished, Deming) and that PKA activity and localization are required for ovarian 

cancer cell migration and invasion, I hypothesize that activation of SFK’s induces PKA-

C phosphorylation and regulation of downstream PKA signaling. I investigated my 

hypothesis by looking at the impact of SFK inhibition on EGF-induced PKA activity and 

tyrosine phosphorylation of the catalytic subunit.  Cells expressing WT or non-



phosphorylatable mutant PKA catalytic mutant were assessed for their ability to form 

lamellapodia or filopodia in response to EGF to determine the functionality of Y69 

phosphorylation. My second aim was establish a model tissue culture system that utilizes 

siRNA to knockdown endogenous PKA and rescue with exogenous wild-type (WT) and 

mutant Y69F. By establishing this system, we will be able to better characterize the role 

of SFK phosphorylation of Y69 as well as other PKA non-phosphorylatable mutants. 

Methods 

Cell Culture: SKOV3 immortalized human ovarian cancer cells obtained from ATCC 

were cultured in RPMI-1640 containing 10% fetal bovine serum and 2 mM L-glutamine. 

Cells were passaged once they reach ~80% confluency and were fed with new media in 

between sub-culturing. 

 

Aim I: The impact of SFK inhibition on EGF-induced PKA activity and tyrosine 

phosphorylation of the catalytic subunit 

Measurement of PKA activity via Western blot: 

Cell culture experiments were performed to monitor PKA activity and tyrosine 

phosphorylation after epidermal growth factor (EGF; 100 ng/mL) stimulation in the 

presence or absence of selective SFK inhibition using Src-1. Src-1 was used to inhibit 

SFKs because it is specific to SFKs with few off-target effects. SKOV3 cells were grown 

to subconfluence (~90%) and then serum starved overnight. The next morning, cells were 

pretreated with a control (DMSO) or 2mM Src-1 (Sigma) for 30 minutes followed by 

incubation with EGF for the times indicated. Cells were harvested in lysis buffer and then 

total protein was determined using the bicinchoninic acid assay (BCA, Pierce).  



Equivalent amounts of cell extract was subjected to SDS-PAGE analysis. Protein samples 

were transferred to a nitrocellulose membrane and blocked in 1% bovine serum albumin 

(BSA) in phosphate buffered saline (PBS). The membrane was incubated with an 

antibody that recognizes phosphorylated PKA substrate (phospho-PKA substrate 

antibody, Cell Signaling Technologies, 1:1000) in order to indicate PKA activity. PKA 

and tubulin (Cell Signaling Technology; 1: 1000) levels were also blotted for as controls. 

PKA activity was normalized to tubulin levels using ImageJ densitometry analysis. 

 

 

Mutagenesis of tyrosine 69 to phenylalanine 

For the alpha catalytic subunit (PKA-Cα), mutant primers were designed using SnapGene 

software but following primer recommendations in the QuickChange II Site-Directed 

Mutagenesis protocol (Agilent Technologies). GFP-PKACβ plasmids (Origene) were 

sent to BioBasic to introduce silent mutations in the siRNA target region and to mutate 

tyrosine 69 to a phenylalanine. 

Immunofluorescence and Filopodia, Pseudopodia assessment 

50,000 cells/well were seeded into a 6-well plate containing a coverslip. 24 hours after 

plating, 3 µg mammalian expression plasmids encoding YFP, WT-PKA-Cα-YFP or 

Y69F PKA-Cα-YFP were transfected into the cells using polyethylenimine (PEI) at a 

ratio of 1:5 (µg DNA: µL PEI). Cells were allowed to grow for 24 hours and then serum 

starved overnight prior to growth factor stimulation. Stimulation was performed the 

following day, after 48 hours of plasmid expression.  Cells were stimulated EGF (100 

ng/mL) for 15 minutes, fixed with 4% paraformaldehyde (diluted in phosphate-buffered 



saline; PBS) for 10 minutes at room temperature. Fixative was removed and disposed of 

following appropriate waste removal protocol. Cells were rinsed with 1X PBS and then 

permeablized with 0.5% Triton X-100 (diluted in PBS) for 5 minutes at room 

temperature. Coverslips were washed twice with 1X PBS for 3 minutes each. Coverslips 

were then blocked in PBS containing 1% bovine serum albumin (BSA) for 15 minutes 

rocking at room temperature. Coverslips were drained and then placed on 30µL drop 

containing a 1:50 dilution of phalloidin (Alexa-fluor phalloidin-568, Molecular Probes) 

in PBS containing 1% BSA. Coverslips were incubated for 20 minutes at room 

temperature and then washed in 1X PBS 3 times for 3 minutes each and then rinsed with 

dH2O. Coverslips were drained and then mounted onto slides using 25µL of VectaShield 

Hard Mountant  (contains DAPI in excess) as per manufacturer’s instructions and viewed 

under the fluorescent microscope. Cytoskeletal response to growth factor was assessed 

and imaged microscopically by observing the formation of filapodia and/or pseudopodia. 

A total of 100 transfected cells was counted and the marked +/- for any projection 

formation. Formation of these structures was quantified using Image J software. Since the 

PKA-C alleles were also YFP tagged, localization was also visually confirmed through 

fluorescent microscopy and quantified. 

 

Aim II: Establishment of a model tissue culture system utilizing  siRNA knockdown of 

endogenous PKA and rescue with plasmid PKA 

Plasmids & siRNA 

Two different plasmids were used over the course of establishing this system. The first 

was a pCDNA 3.1 vector containing either yellow fluorescent protein (YFP) only or 



mouse PKA-Cα C-terminally tagged with YFP. There is a single endogenous nucleotide 

difference in the siRNA target region between the exogenous mouse plasmid DNA and 

the endogenous human sequence. This plasmid was subjected to mutagenesis using 

QuickChange II Site-Directed Mutagenesis (see below). In later experiments, a pCMV6-

AC-GFP vector containing PKA-Cβ C-terminally tagged with turbo green fluorescent 

protein (tGFP) and its corresponding tGFP antibody (Origene). tGFP is an improved 

variant of enhanced GFP (eGFP), however other GFP antibodies do not recognize this 

tag. An empty vector containing only eGFP was used as a control in these experiments. 

Table 1 consists of all the siRNA sequences used and the targeted region of the 

endogenous PKA (Figure 1A and B). This table also shows the mutagenesis primers 

designed using Snapgene software following primer recommendations in the 

QuickChange II Site-Directed Mutagenesis protocol (Agilent Technologies) and ordered 

through Integrated DNA Technologies (IDT). Primers were also designed to introduce 

the Y69F mutation into both plasmid YFP-PKA-Cα and tGFP- PKA-Cβ (figure 2A and 

B). 

PKA-Cα and PKA-Cβ knockdown with siRNA 

The siRNAs used are targeted to the human PKA-Cα and PKA-Cβ subunits or a 

scrambled version of the αβ siRNA sequence. Due to the functional redundancy of the α 

and β isoforms, both were knocked down to ensure that the absence of the β subunit is 

not being compensated for by the α subunit, or vice versa. To ensure that any phenotype 

observed was specific to knocking down α and β catalytic subunits of PKA, a control 

scrambled siRNA was used. 100,000 cells/mL were plated per well into a 6-well plate. 

siRNA (100nM) was transfected using Lipofectamine 24 hours after plating. Cells were 



harvested 24, 48 and 72 hours post transfection and whole cell extracts were subjected to 

SDS-PAGE and Western blot analysis using an antibody directed against the PKA-Ca 

subunit (Santa Cruz Technology) in order to monitor the efficiency of knockdown.   

 

PKA-Cα and PKA-Cβ siRNA knockdown and rescue experiments: 

In order to introduce a silent mutation to render the PKA-Cα allele resistant to siRNA 

targeting, primers were designed using SnapGene as described above. Mutagenesis was 

performed following the QuickChange II Site-Directed Mutagenesis protocol (Agilent 

Technologies) using 50 ng of pCDNA3.1 encoding the YFP-PKA-Cα fusion gene (see 

Table 1; Figure 1A).  Snapgene was used to design silent point mutations within the 

siRNA target region (Figure 1B). These mutations were processed through SpliceCenter 

to ensure that they would be resistant prior to synthesis. Mutant sequences were sent to 

Biobasic for synthesis.  After receiving the mutants, sequence alignment using BLAST 

was performed to ensure that the correct mutations were introduced (NM_011100.4). 

SKOV3 cells were prepared for siRNA knockdown as described above. 18-24 hours after 

siRNA transfection, 1.5 µg mammalian expression plasmids encoding GFP, siRNA-

resistant GFP-WT or GFP-Y69F PKA-Cb were transfected using PEI and then the 

efficiency of siRNA knockdown and exogenous plasmid uptake was monitored via 

Western blotting as described previously. The membrane was incubated with a primary 

antibody that recognizes PKA-Cb (Santa Cruz Technology, 1:1,000) followed by a 

secondary horse radish peroxidase (hrp)-conjugated anti-rabbit antibody (1:10,000). After 

antibody exposure and washing of the membrane, ECL reagents were used to develop the 

blot. Endogenous PKA-Cβ migrates at ~40 kD, whereas the exogenous tGFP-tagged 



PKA-Cβ proteins run at ~60 kD (due to the GFP tag). A tGFP antibody (1:2000; 

Origene) targeted to the tGFP tag was used to monitor PKA-Cβ expression due to tGFP 

not being recognized by eGFP antibodies. Tubulin was used as a loading control.  

III. Results 

Measurement of PKA activity during growth factor treatment 

 PKA and Src are known to be activated downstream of growth factor signaling.  

Given our unpublished findings that Src can phosphorylate PKA-C on Y69, and that this 

appears to enhance PKA kinase activity, we investigated whether growth factor-induced 

PKA activity was dependent upon Src family kinases. To address this, SKOV3 cells were 

grown to subconfluence, serum starved and then pretreated with the SFK inhibitor Src-1 

or a solvent control. Cells were then stimulated with EGF for 30 minutes and the ability 

of PKA to phosphorylate its substrates was monitored by western blot using an antibody 

that recognizes phosphorylated PKA substrates. Cells that were not pre-treated with Src-1 

showed the expected increase in phosphorylated PKA substrate, thereby indicating an 

increase in PKA activity, when stimulated with EGF (Figure 3A). Statistical analysis 

revealed this difference to be significant (p = 0.0119; Figure 3B).  Cells that were pre-

treated with Src-1 did not show a significant increase in phosphorylated PKA substrate (p 

= 0.3434; Figure 3A and B). In fact, Src-1 pre-treated cells that were stimulated with 

EGF showed significantly less PKA activity then the control cells pre-treated with 

DMSO (p = 0.0109; Figure 3B). 

Filapodia/pseudopodia formation and quantification 

Pseudopodia predominately form at the leading edge of the cell and are a good 

indicator of cellular migration (Van Haastert and Devreotes 2004). Given that PKA 



localizes to the leading edge of pseudopodia (McKenzie, Campbell et al. 2011) , both 

SFKs and PKA play roles in cellular migration  (Howe 2004, Sen and Johnson 2011), and 

that we have shown that Src phosphorylates PKA on Y69, I sought to characterize the 

cellular phenotype of this phosphorylation event in cells overexpressing wild type (WT) 

PKA-Cα or expressing YFP-Y69F-PKA-Cα . Cells were seeded such that would be ~60% 

confluent the morning of transfection. Cells that were transfected with YFP only served 

as a control to establish a baseline of endogenous PKA levels. Cells expressing WT-YFP-

PKA-Cα localized to the actin-rich membrane ruffles and lamellipodia-like structures, 

formed in migrating cells (Figure 4A), as indicated by the white arrows. In cells 

transfected with YFP-Y69F-PKA-Cα plasmid DNA, the exogenous PKA did not localize 

to the actin rich filapodia/pseudopodia (Figure 4A), instead it appears to localization the 

nucleus. All transfections that were treated with DMSO showed minimal lamellipodia-

like structure formation. Those that were transfected with WT-YFP-PKA-C did show a 

significant increase in filapodia/pseudopodia formation in the DMSO treatment compared 

to the YFP only transfection cells (**p < 0.01), which was probably due to an excess of 

PKA (Figure 4B). Though the Y69F mutant cells were able to form some filapodia or 

pseudopodia structures when stimulated with EGF, it was not significantly different 

compared to the YFP transfected cells that were stimulated with EGF (p = 0.1192), and 

therefore can be attributed to endogenous PKA activity (Figure 4B). This suggests that 

Y69 is important in proper PKA localization and PKA-mediated migration. Furthermore, 

EGF stimulated cells that were transfected with YFP-Y69F-PKA-C showed a significant 

decrease in filopodia/pseudopodia formation compared to EGF stimulated YFP-PKA-C 

transfected cells (****p < 0.0001; Figure 4B).  

PKA-Cα and PKA-Cβ knockdown with siRNA 



 Though the above experiments provided exciting data, it cannot be used to fully 

characterize the phenotype of Src phosphorylation at Y69 due to the endogenous levels of 

PKA. In order to circumvent this problem, a system that utilizes the siRNA knockdown 

technique and restoration with exogenous PKA will be a useful tool to better characterize 

this mutant. Cells were seeded such that they would be ~60% confluent when they were 

transfected with siRNA. Table one shows the sequences that siRNA targets within both 

subunits of PKAC. Table one also depicts an endogenous difference between human and 

mouse PKA-Cα. The α and β siRNA sequences are targeted to the mRNA of human 

PKA-Cα and PKA-Cβ and should silence PKA-C protein expression. The scramble 

should not target the PKA-C (α and β) mRNA sequences. Western blotting revealed that 

PKA-Cα was knocked down during the 48-hour and 72 hour time treatments with siRNA 

but not during the 24-hour time treatment (Figure 5A). Actin was used as a loading 

control and indicates that there are not equal amounts of protein in each but it is clear that 

endogenous PKA was knocked down. Densitometry was performed to account for the 

uneven levels of actin (Figure 5A). When normalized to the corresponding actin levels, 

there does not seem to be a great difference between the 48 and 72-hour time treatments. 

For later experimental time tables, the 72-hour exposure to siRNA was chosen and 

showed nearly complete and consistant knockdown of endogenous PKA-C (Figure 6A). 

Knockdown of endogenous PKA and restorationg with plasmid PKA: 

 The second key aspect of this system is to be able to restore PKA expression with 

an exogenous plasmid version that is easily detectable and that contains the Y69F 

mutation. This allows for the study of the Y69F phenotype when there is only Y69F 

present in the cell. Based on the knock down results, cells were exposed to the siRNA for 



72 hours. Plasmid DNA encoding for mouse PKA-Cα−YFP was added 24 hours after the 

siRNA was added. Cells were harvested 48 hours after the plasmid DNA transfection. 

Western blots showed that the endogenous PKA was successfully knocked down in cells 

all treatments (Figure 5B). The exogenous PKA migrates ~60kD. However, Western blot 

analysis revealed that there was no restoration with exogenous PKA either (Figure 5B). 

The light exposure shows YFP-PKA only in cells that did not receive any siRNA. The 

dark exposure shows faint YFP-PKA only in cells that received the scramble siRNA. The 

experiment was repeated and yielded the same results (Figure 5B). In the dark exposures, 

there is non-specific banding present. The non-specific banding does not overlap with the 

suspected PKA bands and can be disregarded. The data presented here suggests that the 

siRNA is still able to knockdown the exogenous mouse PKA-Cα−YFP. 

Due to the siRNA’s affinity for the PKA-Cα−YFP, a silent point mutation was 

introduced into the siRNA target region (Figure 1A). As stated previously in the methods, 

there is already a single difference between human and mouse PKA-Cα in this region 

(Table 1). Mutagenesis resulted in successful introduction of the T ! C point mutation, 

which was verified through BLAST alignment (Figure 6A). The sequence was also 

aligned to human PKA-Cα to ensure that the initial A ! G between human and mouse 

sequences was still present (Figure 6B). This mutant was then used in the above 

described siRNA system. Fluorescent microscopy revealed that cells were expressing the 

plasmid (Figure 7A). However, when Western blot analysis was performed to confirm 

endogenous PKA knockdown and exogenous mouse PKA-Cα-YFP expression, there was 

no band at the expected molecular weight under a light exposure. Dark exposure showed 

a faint band at ~60 kD (Figure 7B). This suggested that either the cells expressing the 



PKA-Cα-YFP expression were not successfully transfected with siRNA or that there was 

still partial degradation of the PKA-Cα-YFP. 

As previously stated, PKA-Cα and PKA-Cβ have redundant functions. However, 

Phosphosite reports that Y69 is preferentially phosphorylated on PKA-Cβ. Due to these 

reports, primers were designed with additional silent mutations in the hopes of them 

being resistant to the siRNA within mouse PKA-Cβ. The human and mouse PKAC-β are 

identical in the siRNA target region  (Table 1). Therefore, four silent point mutations 

were introduced into this region by BioBasic (Figure 1B).. Sequence alignment 

confirmed the presence of all four silent mutations in wild type PKA-Cβ (Figure 8A). 

Alignment of Y69F- PKA-Cβ also confirmed the presence of these four mutations as well 

as the mutation of Y69 (figure 8B). The wild type (WT) PKA-Cβ allele was tested in the 

siRNA system. The PKAC-β containing the silent point mutations shows promising 

resistance to siRNA knockdown (Figure 9). However, antibodies targeted towards 

PKAC-β do not detect the plasmid protein. An antibody against the tGFP tag confirms 

the expression of the plasmid in the system. The data here suggests that these four silent 

mutations have made the mouse PKAC-β resistant to siRNA, however they are still being 

tested in vitro to ensure that they are truly siRNA resistant 

 

IV. Discussion 

PKA and SFKs both play important roles in cancer development. Both of these 

kinase families share similar functions in promoting proliferation, migration and survival 

(Sen and Johnson 2011, Caldwell, Howe et al. 2012). PKA has been shown to be 

phosphorylated in the presence of growth factors, such as EGF. Recent work has shown 



that when cells were stimulated with platelet derived growth factor (PDGF) PKA was 

tyrosine phosphorylated, specifically when fibroblasts were undergoing chemotaxis 

(Caldwell, Howe et al. 2012). The Deming lab has shown that Fyn and Src, not only 

phosphorylate PKA on Y69 but this also correlates with an increase in PKA activity 

(unpublished data). Knowing that both of these proteins are often dysregulated in cancer 

cells (Bai, Feng et al. 2006, Sen and Johnson 2011) and that tyrosine phosphorylated 

PKA may play a role in growth factor mediated migration, studying the interaction 

between SFKs and PKA could reveal new information about how these molecules 

promote the cancer process.  

The ovarian cancer cell line SKOV3 are an immortalized human epithelial cell 

line established from an invasive ovarian tumor that retained their ability to migrate in 

vitro (McKenzie, Campbell et al. 2011) and served as a good cell culture model for 

studying the interaction between SFKs and PKA. The data here suggests that there is an 

interaction between SFKs and PKA in response to EGF signaling. As seen in Figure 3A, 

when Src-1 is used to inhibit SFKs, we see a significant decrease in phosphorylated PKA 

substrate in response to EGF stimulation. While this may indicate PKA activity, it is no 

the best method to measure PKA activity. The antibody used, phospho-PKA substrate, 

recognizes PKA’s consensus sequence (RxxS/T) when it has been phosphorylated. Other 

kinases, such as protein kinase C, have similar consensus sequences that may be 

recognized by this antibody (Kemp and Pearson 1990). To truly measure PKA’s activity, 

an in vitro kinase assay can be performed under the above described conditions to see if 

Src inhibition impairs PKA activity in response to growth factor signaling. 

To better understand between SFK phosphorylation of PKA in response to EGF 



stimulation and the role Y69 might play, cells were transfected with either WT-PKA or 

mutant Y69F-PKA. The data collected suggests that phosphorylation of Y69 on PKA-C 

is required to correctly localize the catalytic subunit of PKA during cell migration events. 

Figure 1A, shows that when YFP-PKA-C cells were stimulated with EGF lamelellipodia-

like structure formation not only increased but showed YFP-PKA-C localization to these 

structures. In cells transfected with YFP-Y69F-PKA-C alleles, the formation of these 

structures was impaired and was found to be statistically significant (**p < 0.01). 

Statistical analysis also indicated that EGF stimulation of YFP-Y69F-C cells was not 

statistically different from DMSO treated YFP-Y69F-C cells (p = 0.1790). This suggests 

that cells expressing Y69F are impaired in the formation of pseudopods and/or filapodia. 

This is further supported by comparing EGF stimulated YFP only cells to both Y69F 

treatments. The EGF treated YFP only cells served to establish a baseline of endogenous 

PKA activity. Neither DMSO nor EGF treated Y69F cells was significantly different 

from EGF treated YFP cells (p = 0.0587 and 0.1192 respectively).  Since the Y69F- 

PKA-Cα is in excess in these cells, it is likely that Src binds the mutants instead of the 

endogenous wild-type simply because there is more present in the cell. However, since 

these mutants cannot be phosphorylated at Y69 in response to EGF signaling, Src is 

unable to release PKA. This results in impaired pseudopodia formation. There is still 

endogenous PKA that is being phosphorylated, which contributes to some partial 

formation of these structures. 

However, because these cells still had endogenous active PKA, it is difficult to 

fully characterize the effect of the Y69F mutant on the formation of these structures. 

Ongoing experiments are aimed at characterizing migration when only the Y69F PKA-C 



mutant is present in the cell. Currently, siRNA-resistant mutants PKA-C (Figure 5) are 

being tested against our siRNA to validate their resistance. Once this system is fully 

established, we can clarify the effects of the Y69F mutant on SKOV3 migration and 

invasion. Furthermore, pseudopod formation is a good way to indicate if a cell can 

rearrange the cytoskeleton to form migratory structures but more quantitative migration 

experiments, such as wound-healing assays, donut assays, pseudopod assays and even 

invasion assays, need to and will be performed once these siRNA-resistant mutants are 

confirmed. These assays will be used to determine the migratory and invasive potential of 

SKOV3 cells expressing WT or Y69F PKA-C alleles to determine the impact of this 

SFK-mediated phosphorylation event. . 

The	  second	  aim	  of	  my	  project	  was	  to	  establish	  a	  cell	  culture	  system	  in	  which	  

there	  are	  no	  confounding	  complications	  due	  to	  endogenous	  levels	  of	  PKA.	  Figure 4A 

shows that siRNA was successful in knocking down endogenous PKA. The data in figure 

5A verifies that PKA was successfully knocked down after 48 and 72 hours of exposure 

to the siRNA. Densitometry showed that there was not a large difference in endogenous 

PKA expression between the 48 and 72 hour time treatments (Figure 5B). Later 

experiments using the knockdown and attempted rescue with plasmid PKA showed that 

the endogenous PKA was nearly gone at 72 hours of exposure to siRNA (Figure 5B; 

Figure 7; Figure 9). 

Figure 5B shows that the endogenous PKA-Cα was successfully knocked down in 

all treatments. However, figure 5B also suggests that the single nucleotide difference 

between human and  mouse PKA-Cα in the siRNA target region (Table 1) is not enough 

to prevent degradation. In the  PKA-Cα-YFP  transfected cells there is no expression of 



PKA-Cα-YFP in the cells transfected with αβ siRNA. Longer exposure showed that the 

scramble siRNA treated cells express PKA-Cα-YFP. This suggests that the cells were 

successfully transfected with the plasmid, however they were unable to express PKA-Cα 

due to the exogenous PKA-Cα being silenced (Figure 5B). There is no expression of  

PKA-Cα-YFP, and the Tubulin levels are equal among the treatments. Therefore, it can 

be concluded that the  PKA-Cα-YFP is not being expressed in cells that also received the 

αβ siRNA. 

With the exogenous PKA-Cα-YFP being knocked down, it was necessary to 

design new mutant primers with additional mutations. Mutation primers were designed 

using SnapGene software and followed primer recommendations in the QuickChange II 

Site-Directed Mutagenesis protocol and introduced using QuickChange II Site-Directed 

Mutagenesis kit (Agilent Technologies). Table 1 and Figure 1A depict the mutation that 

was introduced into PKA-Cα. Unfortunately, this mutation was not enough to convey 

resistance to siRNA degradation (Figure 7B). Though there is partial expression (Figure 

7A and B) of exogenous PKA-Cα, it is either not in high enough levels, being partially 

degraded or being expressed in cells that were not successfully transfected with siRNA. 

Mutation primers were designed using SnapGene software and followed primer 

recommendations in the QuickChange II Site-Directed Mutagenesis protocol (Agilent 

Technologies). After receiving the mutants from Biobasic and verifying the presence of 

these mutations (Figure 8A and B), the same experiments will be repeated using these 

plasmids to validate their resistance. These plasmids appear to be resistant to siRNA 

knockdown (Figure 9) and show promise for future applications, such as wound healing, 

pseudopod assays and the Src inhibition experiments presented here. However, a possible 



limitation for future applications is ensuring that cells being examined in a wound healing 

assay or a pseudopod assay were successfully transfected with both the siRNA and the 

plasmid PKA. There are two potential methods that come to mind to address this issue. 

The first is using siRNA that is labeled allowing for transfection efficiency to be 

assessed. Another method would be establishing a conditional CRISPR-Cas9 cell system 

in which in the presence of an antibiotic cells no longer express PKA. This would ensure 

that all cells have no endogenous PKA and would also eliminate the need for siRNA. 

The data collected contributes to the public body of knowledge in two ways. The 

first is that the data discussed here suggests a new SFK and PKA phosphorylation event 

as well as a possible phenotype. The second is the established model system to study this 

phosphorylation event. By understanding the interactions between SFKs and PKA, we 

may be better able to understand, diagnose and treat cancers at the molecular level.  
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Table 1: The table presents the siRNA sequences that were used for the knockdown treatment. There is an endogenous 
difference between human PKA-Cα and mouse PKA-Cα indicated in bold. This difference should convey resistance to 
siRNA knockdown. However, additional mutants were designed in case the siRNA can still target the plasmid mouse 
PKA-C. Mutations were initially designed in PKA-Cα only, but mutations were also designed for PKA-Cβ for later 
experiments. For the siRNA resistant strands, the differences are also showed in blue. 

 Targeted Sequence 
siRNA Human Mouse Amino Acid Sequence 

PKA-Cα  AAG TGG TTT 
GCG ACA ACT 
GAC 

AAG TGG TTT 
GCG ACG ACT 
GAC 

LYS-TRP-PHE-ALA-
THR-THR-ASP 

Proposed siRNA 
resistant 
mutations in 
PKA-Cα 

 -- AAG TGG TTC 
GCC ACG ACT 
GAC 

LYS-TRP-PHE-ALA-
THR-THR-ASP 

PKA-Cβ  GAG TTT CTA 
GCC AAA GCC 

GAG TTT CTA 
GCC AAA GCC  

GLU-PHE-LEU-ALA-
LYS-ALA 

Proposed siRNA 
resistant 
Mutations in 
PKA-Cβ 

-- GAG TTC CTG 
GCT AAG GCC 

 

GLU-PHE-LEU-ALA-
LYS-ALA 

Control AAC CGT CGA 
TTT CAC CCG 
GGC 

--  

 



Figure 1: Proposed silent point mutations introduced to convey siRNA resistance 
A. 

 
 
 
B. 

 
 

Figure 1: Silent mutations introduce to produce siRNA resistant plasmid PKA. Snapgene was used to design silent 
point mutations in the siRNA target region as indicated. A) A single silent point mutation was introduced into the 
siRNA target region in mouse PKA-Cα (T ! C). With this mutation, there are two nucleotide differences between 
mouse and human PKA-Cα in this region. Mutagenesis of this site in PKA-Cα was performed using QuickChange II 
Site-Directed Mutagenesis kit per company protocol. B) Four silent point mutations were introduced into the siRNA 
target region in mouse PKA-Cβ. Due to this region being identical between human and mouse PKA-Cβ prior to 
mutagenesis, there is only a total of four silent mutations in the siRNA target region. Mutagenesis these sites in PKA-
Cβ was done by Biobasic using the primers designed via Snapgene. 

 



Figure 2: Mutations introduced to create Y69F mutatant. 
A. 

 
 
B. 

 
 

Figure 2: Tyrosine 69 in both PKAC subunits and the primers used to mutate tyrosine 69 to phenyalanine 
(Y69F). Primers were designed using SnapGene following recommendations in the QuickChange II Site-Directed 
Mutagenesis protocol as stated in the methods. A) Mutagenesis of Y69F in PKA-Cα was performed using 
QuickChange II Site-Directed Mutagenesis kit per company protocol. B) Mutagenesis of Y69F in PKA-Cβ was done 
by Biobasic using the primers designed via Snapgene. 



 
Figure 3: Src inhibition results in decreased phosphorylated PKA substrate during EGF 
stimulation. 

 
Figure 3: SKOV3 cells were seeded and grown for 48 hours. After 48 hours cells were serum starved for 24 hours. 
Cells were then pre-treated with either DMSO or 2uM Src-1 (10mM) for 30 minutes. Cells were then stimulated with 
ddH2O or EGF (100 ng/mL) for 30 minutes. A. Whole cell extracts were subjected to Western blot analysis of 
phosphorylated PKA substrate to indicate PKA activity. Tubulin was used as a loading control. B. Western blot data 
was quantified using densitometry via ImageJ. There was a significant difference between DMSO control unstimualted 
and EGF stimulated (p = 0.0119). Phosphorylated PKA substrate was not significantly different when cells were pre-
treated with Src-1 (p = 0.3434). Src-1 pretreated EGF stimulated cells showed significantly less phosphorylated PKA 
substrate than the DMSO EGF stimulated control cells. (p = 0.0109). 



	  
Figure 4: Y69 phosphorylation plays a role in proper PKA localization during 
lamellipodia formation. 
 

 



 
 

 
 
Figure 4: A. SKOV3 cells were seeded in a 6-well plate at a density of 50,000 cells/well. After 24 hours of growth, 
cells were transfected with 3 ug plasmid DNA encoding for either yellow fluorescent protein (YFP), YFP-PKA-Cα, or 
YFP-Y69F-PKA-Cα using polyethylenimine (PEI). 24 hours later cells were serum starved overnight. When cells had 
been expressing plasmid DNA for 48 hours, they were either stimulated with DMSO or epidermal growth factor (EGF, 
100ng/mL) for 15 minutes. Cells were then fixed and stained with phalloidin to visualize filapodia and pseudopodia 
formation and PKA localization and Dapi to denote nuclei. White arrows indicate filapodia/pseudopodia formation in 
YFP+ cells. B. 100 YFP+ cells were counted for each treatment as well as how many transfected cells formed filapodia 
and pseudopodia formation. Students T-test was used to analyze the data. YFP and YFP-PKA-Cα transfected cells 
showed a significant increase in filapodia/pseudopodia formation when stimulated with EGF (**p < 0.01). YFP-Y69F-
PKA-Cα transfected did not show a significant change in filapodia/pseudopodia formation when stimulated with EGF 
(p = 0.1790). Cells that were transfected with YFP-PKA-C and stimulated with DMSO showed a significant increase in 
fillopadia/pseudopodia formation compared to cells transfected with YFP and stimulated with DMSO (**p < 0.01). 

 
 



 
Figure 5: Optimization of siRNA knockdown and transfection plasmid PKA containing a 
single silent point mutation was not enough to convey siRNA resistance. 
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Figure 3: A: siRNA knockdown optimization. Cells were plated such that there 75,000 cells per well. Each well 
received no siRNA, scramble siRNA or αβ siRNA. Cells were then allowed to grow for either 24, 48 or 72 hours. Cells 
were harvested and then a Western blot was performed. 10ug of each sample was loaded into the gel. Actin was used as 
a loading control. Densitrometry was performed, normalizing PKA levels to respective actin levels per treatment. B: 
Cells were plated at 75,000 and 100,000 cells per well. The 100,000 cells per well reached 60% confluency after 24 
hours of growth and were treated with siRNA. Cells received no siRNA, scramble siRNA or αβ siRNA. Cells were 
then transfected with YFP plasmid or YFP-PKACα plasmid 24 hours after siRNA transfection. A group of cells was 
not transfected with plasmid DNA as a control. The media was changed the following day, allowing for 48 hours of 
exposure to the siRNA. Cells were harvested 48 hours after the plasmid transfection to allow for enough time to 
express the plasmid. Light and dark exposures are indicated. Tubulin was used as a loading control. 
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Figure 6: Sequence alignment to verify the introduction of siRNA silent point mutations 
into PKA-Cα. 
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Figure 4: Sequencing of mouse PKA-Cα to ensure the proposed siRNA resistant silent mutation was present 
after mutagenesis.  Sequencing was done by the Vermont Cancer Center and aligned using BLAST. Lines labeled 
“Query” are the sample sequences inputted into the database. The “Sbjct” represents the sequence hit within the 
database that our sample aligned with. A) Alignment of mouse PKA-Cα to mouse PKA-Cα showed that the T ! C 
mutation was introduced (indicated by the blue circle). Highlighted in orange is the siRNA target region in mouse 
PKA-Cα. B) The mouse PKA-Cα sequence was also aligned to human PKA-Cα. This alignment shows the T ! C 
mutation (blue circle) as well as the endogenous nucleotide difference between human and mouse PKA-Cα at this 
region (A ! G; Purple circle). Highlighted in orange is the siRNA target region in human PKA-Cα. 

 
 
 
 



Figure 7: Restoration with two silent point mutations did not convey siRNA resistance. 
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Figure 5: siRNA knockdown and rescue with PKA-Cα-YFP plasmid containing one additional mutation (T!C). 
Cells were plated such that there 100,000 cells per well. Each well received no siRNA, scramble siRNA or αβ siRNA. 
Cells were harvested and then a Western blot was performed. Cells were then transfected with YFP plasmid or YFP-
PKACα plasmid 24 hours after siRNA transfection. A group of cells was not transfected with plasmid DNA as a 
control. The media was changed the following day, allowing for 48 hours of exposure to the siRNA. Cells were 
harvested 48 hours after the plasmid transfection to allow for enough time to express the plasmid. A) Fluorescent 
microscopy was used to verify transfection efficiency prior to Western blotting. B) 10ug of each sample was loaded 
into the gel. Tubulin was used as a loading control.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Figure 8: Sequence alignment to verify the introduction of siRNA silent point mutations 
into PKA-Cβ. 
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Figure 6: Sequence alignment verifying the introduction of the siRNA mutations and the Y69F mutation by 
Biobasic using BLAST. BioBasic sequences were aligned using BLAST. Lines labeled “Query” are the sample 
sequences inputted into the database. The “Sbjct” represents the sequence hit within the database that our sample 
aligned with.  A) The alignment of WT-PKA-Cβ shows that the four silent mutations were successfully introduced (red 
circles). The siRNA target region is indicated by the blue box B) The alignment of Y69F-PKA-Cβ also shows the four 
silent mutations (red circles) as well as the Y69 mutation resulting in tyrosine becoming phenylalanine (green circle). 
The siRNA target region is indicated by the blue box. 

	  



 
Figure 9: Four silent mutations introduced into PKA-Cβ conveyed resistance to siRNA. 

 
Figure 7: siRNA knockdown and rescue with PKA-Cβ-tGFP plasmid containing one additional mutation as 
indicated in Table 1. Cells were plated such that there 100,000 cells per well. Each well received no siRNA, scramble 
siRNA or αβ siRNA. Cells were harvested and then a Western blot was performed. Cells were then transfected with 
eGFP plasmid or tGFP-PKACβ plasmid 24 hours after siRNA transfection. A group of cells was not transfected with 
plasmid DNA as a control. The media was changed the following day, allowing for 48 hours of exposure to the siRNA. 
Cells were harvested 48 hours after the plasmid transfection to allow for enough time to express the plasmid. 25 ug of 
each sample was loaded into the gel. Tubulin was used as a loading control.  
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