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Abstract 

Chemotherapy is a common cancer treatment, yet it has many severe side effects 

including altered taste. Patients report that salt taste is most affected by chemotherapy. The salt 

taste transduction system has yet to be fully elucidated. Type I taste cells are thought to be 

responsible in part for salt taste. The goal of this study was to determine how cyclophosphamide 

(CYP), a common chemotherapeutic agent, affects salt taste in mice. This involved two 

experiments. The first experiment examined how an induced conditioned taste aversion (CTA) to 

NaCl (salt) would change following CYP treatment. The second used a brief access test to 

observe how NaCl preference changed before and after either a single dose or multiple dose CYP 

treatment. We hypothesized that CYP would affect Type I taste cells leading to changes in salt 

preference, that CYP would reduce salt aversion, and that multiple doses would affect multiple 

salt taste cell types leading to more significant changes in salt preference. Our results 

demonstrated that after treatment, CYP mice had higher NaCl lick rates than control mice. This 

occurred in two phases, initially around day 8 and again around day 18. CTA mice maintained an 

aversion to NaCl following treatment, indicating a pathway protected from CYP disturbance. A 

single CYP injection and multiple CYP injections had the same effects on mice, indicating that 

this methodology is not useful in disturbing multiple salt taste cell populations. These data 

support that there are at least two salt taste transduction pathways in mice. 
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Chapter I: General Overview 

Introduction 

Chemotherapy is one of the most widely used cancer treatments. However, it can have 

many severe side effects that impact patients’ quality of life. One significant chemotherapy-

related side effect is altered taste. In a study of 518 patients undergoing chemotherapy, taste 

changes were self-reported by 67% of the patients, with 56% of patients experiencing oral 

problems and 22% experiencing appetite loss. Of the 67% of patients who reported taste 

changes, 41% reported that salt taste was affected, while sweet, bitter, and sour were less 

affected (36%, 24%, and 21% respectively) (Bernhardson, Tishelman, & Rutqvist, 2008). Salt, 

specifically NaCl, is one of the most widely used flavoring agents in many cultures. The addition 

of salt is not only used as a flavor enhancer itself, but can also be used to modify other tastes, 

such as masking bitter flavor and enhancing the perceived sweetness of a meal (Breslin & 

Beauchamp, 1997). Salt also increases the intensity of umami taste and of weak citric acid but 

decreases the intensity of lactic acid and strong citric acid (Kawasaki, Sekizaki, Hirota, Sekine-

Hayakawa, & Nonaka, 2016). Some degree of the weight loss that affects 22% of chemotherapy 

patients is likely attributable to appetite loss, which can further be attributed to taste changes 

(Kiss, Isenring, Gough, & Krishnasamy, 2014). Additionally, quality of life is greatly reduced if 

patients no longer enjoy eating since it serves not only a nutritional but also a social role in daily 

life (Bromley, 2000). Taste changes are the second most bothersome effect of chemotherapy 

reported in patients, with hair loss being first (Lindley et al., 1999). The first step in mitigating 

these taste changes is to further understand the mechanism in which chemotherapy affects salt 

taste receptor cells, which was the goal of the present study.  
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Background on taste 

The mammalian taste system is a complex set of receptors and pathways that has yet to 

be fully understood. Most mammals are able to sense five basic tastes: salty, sweet, bitter, sour, 

and umami. Between 2000 and 5000 onion-shaped epithelial chemosensory organs known as 

taste buds are located in the human oral cavity. These taste buds are distributed on the tongue, 

palate, epiglottis, pharynx, and larynx. The taste buds on the tongue are located in three distinct 

regions which are characterized by three different papillae, including fungiform, circumvallate, 

and foliate. Fungiform papillae are located on the anterior of the tongue, circumvallate papilla 

are located on the posterior of the tongue, and foliate are on the lateral sides of the tongue. 

Fungiform papillae are innervated by the chorda tympani nerve and circumvallate papillae are 

innervated by the glossopharyngeal nerve. Foliate papillae are innervated by branches from both 

the glossopharyngeal and the chorda tympani nerves. Taste buds located in the palate are 

innervated by the greater superficial petrosal nerve, which is a branch of the facial nerve (Roper, 

2013). 

 The three types of taste sensory cells are Type I, Type II, and Type III cells. 

(Yarmolinsky, Zuker, & Ryba, 2009). A fourth type of taste cell, Type IV cells, are 

undifferentiated cells which will mature to become either Type I, II, or III cells. Type I cells are 

defined by their electron-dense cytoplasm and elongate, pleomorphic nuclei and have glial-like 

function. These cells are characterized by lamellar processes that wrap the other taste cells. They 

also act as insulators by producing ecto-ATPase, which degrades the chemical signals of the 

other taste cells. Type II cells are defined by their expression of G protein-coupled receptors. 

While these cells do not possess typical synapses, it is now known that they secrete ATP which 

acts as a neurotransmitter to sensory afferent fibers. Type III cells, also known as presynaptic 
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cells, possess synapses and act as an intermediate between Type I and Type II cells. These cells 

secrete serotonin, norepinephrine, and GABA (Roper, 2013). Taste cells all have different 

lifespans, with Type II cells having a half-life of eight days and Type III cells having a half-life 

of 22 days. Type I cells, the cells of greatest interest in the present study, show two separate 

populations which have very different longevities. Three-fourths of the Type I cells have a half-

life of eight days, while the remainder of the Type I cells live for 24 days. It is predicted that the 

cells with a 24-day lifespan are likely immature, undifferentiated taste cells, while the cells with 

an eight-day lifespan are mature Type I cells (Perea-Martinez, Nagai, & Chaudhari, 2013). 

 Each cell type has a specific detection and transduction stimuli, some of which are not 

understood. Type II cells detect sweet, bitter, and umami stimuli and Type III cells detect bitter 

stimuli. The receptor for salt stimuli, which is a focus of the present study, has yet to be fully 

elucidated (Vandenbeuch, Clapp, & Kinnamon, 2008). It is thought that Type I cells express 

amiloride-sensitive pathways which are responsible for detection of salty stimuli. These work 

through the epithelial Na+ channel or ENaC. These ENaC are required for sodium ion transport 

across epithelial cells. Sodium salts are detected by direct permeation through apical ion 

channels, which depolarize the taste cell (Chaudhari & Roper, 2010). A different, amiloride-

insensitive pathway is responsible for distinguishing salts aside from NaCl with different cations 

and anions (Simon, de Araujo, Gutierrez, & Nicolelis, 2006). The amiloride-insensitive pathway 

is also thought to play a role in salt reception, and the nonselective cation channel TRPV1 has 

been implicated in this pathway. A study involving TRPV1 knockout mice indicated that while 

TRPV1 may be responsible for some aversion to NaCl, it is not the primary pathway involved in 

amiloride-insensitive NaCl taste (Ruiz, Gutknecht, Delay, & Kinnamon, 2006).  
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 The chorda tympani nerve, which innervates fungiform papilla, appears to contain at least 

two NaCl responsive fibers, N-Type and E-Type fibers. N-type fibers appear to be responsible 

for the amiloride sensitive transduction pathway as they are responsive to only NaCl and were 

inhibited by amiloride. E-Type fibers are responsive to various salts such as NaCl, KCl, and HCl 

and were not inhibited by amiloride. About 44% of taste cells in mice tested in one study were 

amiloride-sensitive, while 56% of cells were amiloride-insensitive (Yoshida et al., 2009).  

 Serotonin released from taste buds that acts on 5-HT3 receptors on nerve fibers has been 

proposed as the major taste neurotransmitter. However, a study in 2005 by Finger et al. refuted 

this hypothesis by testing the taste functionality of 5-HT3 knockout mice. 5-HT3 knockout mice 

did not show reduced taste signaling. Instead, ATP has been implicated as the key 

neurotransmitter involved in transducing taste signals (Finger et al., 2005). Salt taste still proves 

an anomaly, however, due to the lack of traditional synapses on Type I taste cells. This could be 

explained by cell-to-cell communication that occurs not only between the taste cells in each taste 

bud, but also is thought to occur between the different taste buds in the mouth. Since Type II 

taste cells lack traditional synapses, ATP is also thought to be involved in the cell-to-cell 

communication between Type II and Type III taste cells. (Huang et al., 2007). 

Background on cyclophosphamide 

While chemotherapy is often administered as part of a cocktail of drugs, 

cyclophosphamide (CYP) was one of the first developed chemotherapeutic agents and is still 

commonly prescribed. Its use includes treatment of leukemia, lymphoma, ovarian, and several 

other cancers (Mukherjee & Delay, 2011). CYP is a prodrug that acts as a DNA-alkylating agent 

once inside cells. It forms intra- or interstrand cross linkages in the DNA, which lead to 

irreparable DNA damage and ultimately apoptosis of the cell (Povirk & Shuker, 1994). Cells 
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with a high turnover rate are most susceptible to CYP attack, such as hair follicles and cells 

lining the intestine (Mukherjee & Delay, 2011). In clinical settings, chemotherapy is usually 

prescribed as a regimen administered on a weekly or monthly basis (DeVita & Chu, 2008). This 

is done to achieve a sustained concentration of the drug in the body, which can lead to more 

effective treatment (Bouchard-Fortier et al., 2016). 

Similar studies  on cyclophosphamide and taste 

A past study of the gustatory system following CYP injection showed that umami taste 

acuity and sensitivity was affected in two phases. The first phase, which occurred 2-4 days post-

injection is likely due to cytotoxicity of the CYP on the fungiform taste buds. The second phase, 

which occurred 9-12 days post-injection is likely due to alteration of the cell replacement system 

(Mukherjee & Delay, 2011). Taste cells are typically replaced continually, and disturbance to the 

replacement cycle can lead to long-term taste deficiencies. This study shows that the complaints 

of altered taste by patients following chemotherapy are not entirely psychological, despite 

chemotherapy being known to cause long-term cognitive deficits (Ahles & Saykin, 2002). 

Mukherjee and Delay found that fungiform papillae are most affected after CYP injection, and 

do not begin recovering until day 12 (Mukherjee & Delay, 2011). Fungiform papillae are located 

in highest density on the anterior of the tongue and are innervated by the chorda tympani, which 

is associated with salt taste (Miller & Preslar, 1975). This gave us a further idea of the time-

frame in which salt taste is likely affected post CYP administration. 

 Patients who receive head and neck radiation, another common cancer treatment, also 

report altered taste. This is not surprising given that both chemotherapy and radiation affect 

rapidly dividing cells in the body, including taste cells. One proposed cause of this taste 

dysfunction is that irradiation can damage nerve fibers that innervate taste buds. A second cause 



  Michael Gomella 

7 

 

may be loss of salivary glands in the mouth, which could lead to lessened taste acuity. A study 

by Nguyen, Reyland, and Barlow in 2012 refuted both of these claims, stating that nerve fibers 

did not appear to be affected by radiation and that xerostomia is not likely to cause such severe 

taste alteration (Nguyen, Reyland, & Barlow, 2012). Consistent with the Mukherjee and Delay 

study, Nguyen et al. proposed that radiation affects progenitor cells responsible for supplying 

new cells to taste buds. Nguyen et al. also noted that cell loss is not immediately apparent due to 

the existing population of functional taste cells that are not affected by the radiation. However, 

after the aging population of functional taste cells are lost, they are not immediately replaced due 

to the damage on the progenitor cells caused by the radiation (Nguyen et al., 2012). This same 

mechanism likely also applies to chemotherapy due to the similar side effects of each treatment.  

Review of investigational methods used 

 Brief access testing (BAT) is a paradigm used in this study which allows high-

throughput testing of mice with altered gustatory function. This technique involves exposing 

mice to various concentrations of taste stimuli for brief periods of time and recording the 

numbers of times the mice lick each solution to study the preference for each stimuli 

(Glendinning, Gresack, & Spector, 2002). Conditioned taste aversion (CTA), a classical 

conditioning technique, is also used in this study. It involves pairing a conditioned stimulus (CS) 

with an unconditioned stimulus (US). The CS is typically a taste, while the US is usually lithium 

chloride (LiCl), which induces an upset stomach in mice. This causes the mice to avoid the CS in 

the future due to the expectation that CS and US are paired (Lin, Arthurs, & Reilly, 2014). 
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Study goals  

 The goal of the present study is to further understand the effects of CYP treatment on the 

perception of salty taste in mice. The first half of the study used a CTA model to pair NaCl taste 

with a LiCl injection to induce an aversion to NaCl. After a CYP injection, the aversion was 

evaluated for changes. The second half of the study used a simple BAT model to compare the 

different effects of a single CYP dose versus multiple CYP doses over several days to better 

replicate a clinical CYP administration. Generally, our hypothesis was that CYP treatment would 

affect Type I taste cells, leading to changes in salt preference. We further hypothesized that CYP 

treatment would reduce salt aversion. Lastly, we hypothesized that multiple doses over time 

would affect multiple salt taste cell populations leading to more significant changes in salt 

preference. 
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Chapter II: CTA Study  

Introduction 

 Conditioned taste aversion (CTA) methodology involves pairing a novel taste, known as 

the conditioned stimulus (CS), with a treatment, known as the unconditioned stimulus (US), 

which induces illness. Animals will then avoid the CS due to the assumption that the CS and the 

US are paired (Lin et al., 2014). CTA methodology can be useful in a range of studies, including 

evaluating the change in an aversion after a treatment. While conducting CTA work, it is 

important  to consider that a period of extinction occurs when an animal is exposed to only the 

CS and not the US, which causes the animal to lose the aversion (Hadamitzky, Bösche, Engler, 

Schedlowski, & Engler, 2015).  

 By inducing a CTA to NaCl in mice, then treating them with CYP, changes in the salt 

aversion afterwards can be used to infer the underlying cellular effects of CYP. The two different 

populations of Type I taste cells, one group with a lifespan of about 8 days and another with a 

life span of about 24 days, give us a time frame needed to fully evaluate how Type I taste cell 

populations change over time following CYP treatment (Perea-Martinez, Nagai, & Chaudhari, 

2013). Mukherjee and Delay found that CYP treatment lowers umami taste acuity and sensitivity 

(Mukherjee & Delay, 2011). This led us to hypothesize that CYP treatment will reduce salt 

aversion. 
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Methods 

 Two pilot studies were conducted to evaluate testing conditions for mice including ideal 

NaCl concentrations and length of testing sessions. Based on these studies, NaCl became 

naturally aversive between 175-300 mM, giving us a NaCl concentration range.  The following 

methods were based on those two studies and other relevant studies in the field. 

Subjects 

 Thirty-two male C57BL/6J mice obtained from Jackson Laboratory (Bar Harbor, ME, 

USA) were used in this study. Mice were housed in groups of four with their littermates, unless a 

mouse became sick, in which case it was moved to a separate solitary cage for treatment and 

observation. Mice were monitored by The University of Vermont veterinary technicians for the 

entirety of the study. The room was kept at 25° C and 60% humidity. Food pellets were provided 

ad libitum. All mice were ordered at six to eight weeks of age and allowed to acclimate to the 

room for at least one week. Mice were kept on a water deprivation schedule of 23 hours per day 

throughout the study which started one week before the beginning of the study. Mice were also 

handled during this initial water deprivation period to socialize them before experimentation. 

Any mouse that became too ill at any point in the experiment was immediately removed from the 

study and received veterinary attention. All mice were euthanized at the end of the study. All 

procedures were approved by The University of Vermont IACUC, protocol 10-038.  

Apparatus 

 Licks were monitored by computer-operated Davis Rig lickometers (DiLog Instruments, 

Tallahassee, FL, USA). Each Davis Rig consisted of a chamber (30cm x 15 cm x 23 cm) and a 

sliding block which could hold up to 16 glass tubes with lick spouts containing taste stimuli. 
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Tubes were filled with fresh NaCl solutions of varying concentrations and washed daily. The 

block containing the tubes ran based on a program on the computer. Each of the four Davis Rigs 

was separated from the other by a wooden box and a curtain, and pink noise was produced from 

a speaker in each box. Each tube was approximately 2mm behind a shutter. After a six second 

inter presentation interval period, the shutter opened and the mouse was given a chance to lick 

the solution for 7.5 seconds. Each time the mouse made contact with the metal lick spout, the 

computer recorded a lick. If the mouse did not lick a given solution, the shutter remained open 

until the mouse began to lick or the 20-minute time limit ran out.  

Davis Rig Habituation (5-7 days) 

 Mice were habituated to the Davis Rigs with water-only trials. Sessions started at 12pm 

daily and lasted 20 minutes. Water tubes were presented in the manner described above and 

would end after 20 minutes. Three water tubes were presented in a randomized order to allow the 

mice to habituate to the movement of the block.  Habituation continued until mice were 

consistently licking, which on average took five days.  

Conditioning (5-7 days) 

 Half of the mice were conditioned to avoid NaCl. Mice were presented with 25, 50, 100, 

175, and 300 mM NaCl solutions along with two water tubes in a randomized order. Two 

random water trials from each mouse on each day were averaged giving us a “0 mM NaCl” 

water rinse value. Latin-Square procedures were used to generate random tube sequences. Each 

trial began with four presentations of water, which acted as a rinse for the mice. Immediately 

following the twenty minute sessions, the conditioned mice were injected intraperitoneally with 

225 mM LiCl (1mL/kg) dissolved in bacteriostatic water to induce an upset stomach, leading to 
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an aversion to NaCl. The remaining mice acted as a control and were injected with saline 

(1ml/kg) which does not induce an aversion. This process was repeated daily at 12pm until LiCl 

mice showed a clear aversion to NaCl. An aversion was identified as a NaCl lick rate for each 

mouse of <40% when compared to the water licks for that mouse.  

Cyclophosphamide Injection 

 Mice were taken off water deprivation for 24 hours to rehydrate them in preparation for 

CYP injection. At 12pm the following day, half of the LiCl mice and half of the control mice 

were injected intraperitoneally with 100 mg/kg CYP, and the remaining mice received a saline 

injection. 24 hours later, the mouse cages were changed to prevent them from becoming ill due 

to the toxic CYP byproducts secreted in urine after injection. At this time, the mice were also 

returned to a 23-hour water deprivation schedule so that testing could begin the following day. 

NaCl Testing (20-25 Days) 

 Next, mice were presented with the same 25, 50, 100, 175, and 300 mM NaCl solutions 

as described above in the conditioning step. About an hour after each session, the mice were 

given water bottles for approximately five minutes to rehydrate after the high salt intake during 

the session.  

 

Statistical Methods 

 Lick rates were normalized by dividing the mean lick count for each concentration of 

NaCl by the mean lick count for the water trials. This step was taken to ensure that variable 

motivational states between mice was accounted for in our analysis. Some graphs show 
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normalized lick rates on a 100-point scale, which is the previously described normalized lick rate 

multiplied by 100. Any mouse who did not get through at least one presentation of each NaCl 

concentration on any given day would have its data excluded for that day. The sample size of 

each group was eight from day 2-21. From day 22-25, the sample size for all groups was four. 

This is due to a decision to run the second group of mice longer to ensure all CYP effects were 

observed in the study time frame.   

Ensuring proper condition before testing 

 CTA was considered successful when LiCl injected mice show significantly fewer licks 

than control mice. A 2 (US) x 5 (Five concentrations of NaCl) mixed factorial analysis was used 

to analyzed the lick rates for each group of mice. These were computed using IBM SPSS 

Statistics 23 software.  

Changes in salt preference following injection 

 Our analysis used a mixed factorial design, with two treatment condition states (Saline 

and LiCl) by two drug states (CYP and Control) as subject variables. Within the subject 

variables, there were five concentrations (25, 50, 100, 175, and 300 mM NaCl) and 25 days. 

Because of the large number of days, data were partitioned for specificity and ease of analysis. 

Averages of lick rates for each concentration on each day for each mouse were used in the 

following analyses. 
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Results 

Pre-CYP group differences 

 Pre-CYP injection group differences between both groups of LiCl mice were not 

significant for any concentration of NaCl. Pre-CYP injection group differences between both 

groups of non-conditioned mice were not significant for any concentration of NaCl (p>0.05).  

Did the CYP have an effect on NaCl licks? 

 A condition state (LiCl or Saline) by drug state (CYP or Saline) by day analysis revealed 

significantly higher licks for mice who received CYP compared to control mice at 50, 100, 175, 

and 300 mM NaCl as seen in Table 1 (p <0.005). The effect of the drug for 25 mM NaCl was not 

significant. Graphs of each concentration over days are shown in Figures 1-6. The drug state by 

day interaction was not statistically significant for any concentration.  

 

 

Drug State NaCl 

Concentration 

(mM) 

Mean 

Normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded 

if <0.05) 

Control 25 0.800 0.027 (1,149) = 

2.80 

0.371 

CYP 0.834 0.026 

Control 50 0.684 0.025 (1,151) = 

0.81 
0.017 

CYP 0.768 0.024 

Control 100 0.614 0.025 (1,143) = 

7.68 
0.006 

CYP 0.708 0.024 

Control 175 0.532 0.025 (1,133) = 

27.15 
<0.001 

CYP 0.712 0.024 

Control 300 0.499 0.031 (1,108) = 

18.80 
<0.001 

CYP 0.686 0.030 

 Table 1: Condition state by drug state by day analysis comparing the control group and the CYP 

group. CYP mice show significantly higher lick rates for 50, 100, 175, and 300 mM NaCl.  
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Figure 1: Normalized lick rates over days for 25 mM NaCl. The upper graph shows mice that were not conditioned 

to avoid NaCl, while the lower graphs shows mice that were conditioned to avoid NaCl. No significant drug effects 

are seen in the Saline/Saline vs. Saline/CYP conditions (p>0.05), seen in the upper graph, or the LiCl/CYP vs. 

LiCl/Saline conditions (p>0.05), seen in the lower graph. 
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Figure 2: Normalized lick rates over days for 50 mM NaCl. The upper graph shows mice that were not conditioned 

to avoid NaCl, while the lower graphs shows mice that were conditioned to avoid NaCl. CYP mice licked 

significantly more than control mice Saline/Saline vs. Saline/CYP conditions (p = 0.002), seen in the upper graph. 

There were no significant drug effects between the LiCl/CYP vs. LiCl/Saline conditions (p >0.05), seen in the lower 

graph.  
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Figure 3: Normalized lick rates over days for 100 mM NaCl. The upper graph shows mice that were not conditioned 

to avoid NaCl, while the lower graphs shows mice that were conditioned to avoid NaCl. CYP mice licked 

significantly more than control mice Saline/Saline vs. Saline/CYP conditions (p = 0.003), seen in the upper graph. 

There were no significant drug effects between the LiCl/CYP vs. LiCl/Saline conditions (p>0.05), seen in the lower 

graph.  
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Figure 4: Normalized lick rates over days for 175 mM NaCl. The upper graph shows mice that were not conditioned 

to avoid NaCl, while the lower graphs shows mice who that were conditioned to avoid NaCl. CYP mice licked 

significantly more in the Saline/Saline vs. Saline/CYP conditions, (p = 0.001), seen in the upper graph, and the 

LiCl/CYP vs. LiCl/Saline conditions (p <0.001), seen in the lower graph.  
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Figure 5: Normalized lick rates over days for 175 mM NaCl. The upper graph shows mice that were not conditioned 

to avoid NaCl, while the lower graphs shows mice that were conditioned to avoid NaCl. CYP mice licked 

significantly more in the Saline/Saline vs. Saline/CYP conditions, (p = 0.001), seen in the upper graph, and the 

LiCl/CYP vs. LiCl/Saline conditions (p =0.011), seen in the lower graph.  
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Non-conditioned vs. Conditioned Mice 

To confirm proper conditioning, the NaCl lick rates of LiCl mice were compared to the 

NaCl lick rates of non-conditioned mice. LiCl mice showed significantly fewer licks for 100 mM 

NaCl, F(1, 143) = 18.19, p <0.001, 175 mM NaCl, F(1, 133) = 60.54, p <0.001, and 300 mM, 

F(1, 108) = 71.60, p <0.001, when compared to non-conditioned mice.  

A drug state by day analysis revealed that non-conditioned mice who received CYP had 

significantly higher lick rates across more NaCl concentrations than LiCl mice when compared 

to control mice. Non-conditioned, CYP mice showed significantly higher lick rates for 25, 50, 

100, 175, and 300 mM NaCl compared to control mice, seen in Table 2. LiCl, CYP mice showed 

significantly higher licks for 175 and 300 mM NaCl compared to control mice, seen in Table 3. 

 

 

 

 

Condition 

State 

Drug State NaCl 

Concentration 

(mM) 

Mean 

Normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded if 

<0.05) 

Saline Control 25 0.770 0.041 (1,67) = 

2.74 

0.103 

CYP 0.862 0.038 

Saline Control 50 0.682 0.033 (1,80) = 

10.20 
0.002 

CYP 0.824 0.030 

Saline Control 100 0.666 0.032 (1,75) = 

9.36 
0.003 

CYP 0.801 0.030 

Saline Control 175 0.653 0.045 (1,59) = 

11.56 
0.001 

CYP 0.860 0.041 

Saline Control 300 0.669 0.047 (1,58) = 

11.38 
0.001 

CYP 0.883 0.043 

 Table 2: Drug state by day analysis comparing the control group and the CYP group in the non-conditioned state. 

CYP mice showed significantly higher lick rates for 50, 100, 175 and 300 mM NaCl.  
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Specific days of interest 

A condition state by drug state by concentration analysis done on each individual day 

revealed certain days when drug effects were significant to test if there was a CYP effect pattern 

or cycle. CYP mice shower significantly higher lick rates compared to control mice on days 5, 6, 

7, 9, 11, 13, seen in Table 4 and Figure 7. No significant drug effects were seen on days 14-18, 

then CYP mice again showed significantly higher lick rates on day 19 seen in Figure 8. Drug 

effects then remained insignificant for the remainder of the study (Day 20-25).  

  

 

 

 

 

Condition 

State 

Drug State NaCl 

Concentration 

(mM) 

Mean 

Normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded if 

<0.05) 

LiCl Control 25 0.830 0.036 (1,82) = 

0.230 

0.633 

CYP 0.806 0.036 

LiCl Control 50 0.688 0.037 (1,72) = 

0.170 

0.681 

CYP 0.710 0.037 

LiCl Control 100 0.563 0.036 (1,69) = 

0.979 

0.326 

CYP 0.614 0.036 

LiCl Control 175 0.411 0.026 (1,18) = 

17.50 
<0.001 

CYP 0.565 0.026 

LiCl Control 300 0.328 0.042 (1,48) = 

7.09 
0.011 

CYP 0.487 0.042 

 
Table 3: Drug state by day analysis comparing the control group and the CYP group in the LiCl conditioned state. CYP 

mice showed significantly higher lick rates for 175 and 300 mM NaCl.  
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Drug State Day Mean 

normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded if 

<0.05) 

Control 5 0.590 0.064 (1,37) = 

5.81 
0.021 

CYP 0.879 0.062 

Control 6 0.583 0.049 (1,33) = 

8.20 
0.007 

CYP 0.779 0.048 

Control 7 0.539 0.057 (1,33) = 

5.37 
0.027 

CYP 0.719 0.053 

Control 9 0.698 0.035 (1,44) = 

5.43 
0.024 

CYP 0.815 0.036 

Control 11 0.597 0.042 (1,43) = 

5.85 
0.020 

CYP 0.740 0.042 

Control 13 0.538 0.046 (1,114) = 

10.30 
0.021 

CYP 0.691 0.044 

Control 19 0.612 0.049 (1,42) = 

5.90 
0.019 

CYP 0.778 0.048 

 Table 4: Condition state by drug state by concentration analysis comparing control mice and CYP mice. CYP 

mice showed significantly higher lick rates on days 5, 6, 7, 9, 11, 13, and 19. No significant drug effect was 

seen on the other days.  
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Figure 6: Normalized lick rates for days 4-13. Non-conditioned mice have dotted lines, while LiCl, conditioned mice 

have solid lines. Drug state control mice (saline) have bolded lines. CYP mice had significantly higher lick rates on 

days 5, 6, 7, 9, 11, and 13 (p<0.05). Days 4, 8, 10, and 12 were included for comparison. 
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Figure 7: Normalized lick rates for days 18-20. Non-conditioned mice have dotted lines, while LiCl, conditioned 

mice have solid lines. Drug state control mice (saline) have bolded lines. CYP mice had significantly higher lick 

rates on day 19 (p =0.019). Days 18 and 20 were included for comparison. 

 

 A drug state by day analysis of conditioned LiCl mice revealed that LiCl mice had no 

significant drug effects on any day. In contrast, non-conditioned, CYP injected mice showed 

significantly higher lick rates compared to control mice on days 5, 6, 7, 9, 13, and 14, seen in 

Table 5 and in Figure 6. Significant drug effects were not seen again until day 19, when non-

conditioned CYP mice had significantly higher lick rates compared to controls, seen in Figure 7. 
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 In summary, CYP mice showed significantly higher lick rates compared to control mice 

at 50, 100, 175, and 300 mM NaCl. Non-conditioned mice showed significantly higher lick rates 

compared to control mice at more NaCl concentrations than LiCl mice. CYP mice showed 

significantly higher lick rates compared to control mice on days 5, 6, 7, 8, 11, and 19. 

 

Discussion 

 In this study, we attempted to use CTA methodology to evaluate the effect of CYP on salt 

taste in mice. We hypothesized that CYP treatment would affect Type I taste cells, leading to 

changes in salt preference. We also hypothesized that CYP treatment would reduce salt aversion.  

CYP injected LiCl mice, who were conditioned to avoid NaCl, generally showed higher 

lick rates for both 175 mM and 300 mM compared to the control group throughout the study. 

Higher licks rates indicate reduced aversion, which supports our reduced aversion hypothesis. 

Condition 

State 

Drug State Day Mean 

Normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded 

if <0.05) 

Saline Control 5 0.689 0.109 (1,18) = 

9.23 
0.007 

CYP 1.143 0.102 

Saline Control 6 0.679 0.070 (1,15) = 

0.910 
0.009 

CYP 0.976 0.070 

Saline Control 7 0.682 0.059 (1,20) = 

4.52 
0.046 

CYP 0.848 0.051 

Saline Control 9 0.750 0.074 (1,15) = 

5.60 
0.032 

CYP 0.991 0.070 

Saline Control 13 0.541 0.065 (1,21) = 

11.45 
0.003 

CYP 0.844 0.061 

Saline Control 14 0.660 0.057 (1,21) = 

6.56 
0.018 

CYP 0.861 0.054 

Saline Control 19 0.581 0.079 (1,20) = 

6.13 
0.022 

CYP 0.850 0.074 

 Table 5: Drug state by day analysis comparing non-conditioned mice and control mice. CYP mice showed 

significantly higher lick rates on days 5, 6, 7, 9, 13, 14, and 19.  
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However, mice that were not conditioned to avoid NaCl and that were treated with CYP showed 

significantly higher NaCl lick rates at more concentrations than the LiCl mice when compared to 

the control group. These non-conditioned CYP mice showed significantly higher lick rates at 50, 

100, 175, and 30 mM NaCl. This discrepancy could be explained by the presence of TRPV1 

which has been proposed to be involved with aversion to NaCl (Ruiz et al., 2006). CYP may be 

affecting Type I taste cells, but if a secondary salt taste cell type is unaffected by CYP, an 

aversion would still remain after treatment. TRPV1 cells, which may be involved with NaCl 

aversion, may not be sensitive to CYP treatment.  Even though TRPV1 are not the predominate 

secondary salt reception cell, the second population of salt receptor cells could have a vastly 

different life span than Type I taste cells (Ruiz et al., 2006). A second possibility for why LiCl 

mice showed drug effects at fewer concentrations could involve this difference in life span. We 

know that CYP mainly affects dividing cells (Mukherjee & Delay, 2011). By the time the 

amiloride-insensitive cells need to be replaced by CYP damaged progenitor cells, the aversion to 

NaCl could be extinct. This secondary disturbance could explain the day 19 significant drug 

effect seen in LiCl mice in Figure 5.   

Still, non-conditioned mice who received CYP injections showed significantly higher lick 

rates for most of the concentrations of NaCl. Both preliminary pilot studies and our saline only 

control groups indicate that NaCl becomes naturally aversive between 175 and 300 mM. Our 

data suggest that drug effects start around day 5 post-CYP treatment and continue to around day 

13, then occur again around day 19. This two-phase disturbance could coincide with the different 

life spans of Type I taste cells, three-fourths of which have a half-life of eight days, while the 

other live for 24 days (Perea-Martinez et al., 2013).  
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Chapter III: Multiple vs. One Dose of CYP 

Introduction  

 Results from our CTA study indicate that LiCl, CYP mice did not show as many 

concentrations of significance compared to non-conditioned mice. For this reason, the CTA 

aspect of our next study was removed and replaced with a simple BAT paradigm, where mice are 

exposed to taste solutions for a short period of time without LiCl injections. Due to the interest in 

a secondary salt receptor cell population, we developed a methodology aimed at disturbing 

multiple salt receptor cell types (Yoshida et al., 2009). 

 Preliminary molecular studies in our lab indicate that multiple CYP injections over days 

could disturb multiple salt receptor cell populations. This would more closely replicate 

chemotherapy regimens that are used in a clinical setting (DeVita & Chu, 2008). Thus, a study 

involving both multiple and single injection mice may help to elucidate not only the overall 

effect that CYP has on salt taste, but also uncover the CYP sensitivity of other salt sensitive cell 

types as well. We hypothesized that multiple CYP doses over time would affect multiple salt 

receptor cell types leading to more significant changes in salt preference.  

 

Methods 

Subjects 

 Thirty-one male C57BL/6J mice obtained from Jackson Laboratory (Bar Harbor, ME, 

USA) were used in this study. Mice were housed in groups of four with their littermates, unless a 

mouse became sick in which case it was moved to a separate solitary cage for treatment and 

observation. Mice were monitored by The University of Vermont veterinary technicians for the 

entirety of the study. The room was kept at 25° C and 60% humidity. Food pellets were provided 
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ad libitum. All mice were ordered at six to eight weeks of age and allowed to acclimate to the 

room for at least one week. Mice were kept on a water deprivation of 23 hours throughout the 

study which started one week before the beginning of the study. Mice were also handled during 

this initial water deprivation period to socialize them before experimentation. Any mouse that 

became too ill at any point in the experiment was immediately removed from the study and 

received veterinary attention. All mice were euthanized at the end of the study. All procedures 

were approved by The University of Vermont IACUC, protocol 10-038.  

Apparatus 

 Licks were monitored by computer-operated Davis Rig lickometers (DiLog Instruments, 

Tallahassee, FL, USA). Each Davis Rig consisted of a chamber (30cm x 15 cm x 23 cm) and a 

sliding block which could hold up to 16 glass tubes with lick spouts containing taste stimuli. 

Tubes were filled with fresh NaCl solutions of varying concentrations and washed daily. The 

block containing the tubes ran based on a program on the computer. Each Davis Rig was 

separated from the other by a wooden box and a curtain, and pink noise was produced from a 

speaker in each box. Each tube was approximately 2mm behind a shutter. After a 6 second inter 

presentation interval period, the shutter opened and the mouse was given a chance to lick the 

solution for 7.5 seconds. Each time the mouse made contact with the metal lick spout, the 

computer recorded a lick. If the mouse did not lick a given solution, the shutter remained open 

until the mouse began to lick or the 20-minute time limit ran out.  

Davis Rig Habituation (5-7 days) 

 Mice were habituated to the Davis Rigs with water-only trials. Sessions started at 12pm 

daily and lasted 20 minutes. Water tubes were presented in the manner described above and 
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would end after 20 minutes. Three water tubes were presented in a randomized order to allow the 

mice to habituate to the movement of the block.  Habituation continued until mice were 

consistently licking, which on average took five days.  

Initial NaCl Presentation (~5 Days) 

 Mice were presented with 50, 100, 175, and 300 mM NaCl solutions along with two 

water tubes in a randomized order. Sucrose (100 mM), which is typically licked at a higher rate 

than water by mice, was also included in the sequence to test for neophobia (the fear of new 

things). Latin-Square procedures were used to generate random tube sequences. Each trial began 

with four presentations of water which acted as a rinse for the mice. This process was repeated 

daily at 12pm until mice showed a consistent NaCl licking pattern. This typically took about 5 

days.  

Cyclophosphamide Injection 

 Mice were taken off water deprivation for 24 hours to rehydrate them in preparation for 

CYP injection. One third of the mice were assigned multiple injections, another third were 

assigned a single injection, and the remaining mice acted as control mice who received saline 

injections. At 12pm the following day, the multiple injection mice received a 20 mg/kg dose of 

CYP intraperitoneally and the remaining mice received the same volume of saline. This 

continued for five days, and on the fifth day, the multiple injection mice received a 20 mg/kg 

dose as before, the single injection mice received one 100 mg/kg intraperitoneal CYP injection, 

and the control mice received a saline injection of the same volume as the other mice. 24 hours 

later, the mouse cages were changed to prevent them from becoming ill due to the toxic CYP 
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byproducts secreted in urine after injection. At this time, the mice were also returned to the 23-

hour water deprivation schedule so that testing could begin the following day. 

NaCl Testing (31 Days) 

 Next, mice were presented with the same 50, 100, 175, and 300 mM NaCl and 100 mM 

sucrose solutions as described above in the initial NaCl presentation step. An hour after each 

session, the mice were given water bottles for approximately five minutes to rehydrate due to the 

high salt intake during the session. 

 

Statistical Methods 

 Lick rates were normalized by dividing the mean lick count for each concentration of 

NaCl by the mean lick count for the water trials. This step was taken to ensure that variable 

motivational states between mice was accounted for in our analysis. Some graphs show 

normalized lick rates on a 100-point scale, which is the previously described normalized lick rate 

multiplied by 100. Any mouse who did not get through at least one presentation of each NaCl 

concentration on any given day would have its data excluded for that day. The number of mice in 

each group is 10 from days 2-15. The remaining mice are still being run, so the number of mice 

from day 16-31 is only five.  

Changes in salt preference following injection 

 Our analysis used a mixed factorial design, with two injection states (Single or multiple) 

by two drug states (CYP and Control) as subject variables. Within the subject variables, there 

were four concentrations (50, 100, 175, and 300 mM NaCl) and 31 days. Because of the large 
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number of days, data were partitioned for specificity and ease of analysis. Averages of lick rates 

for each concentration on each day for each mouse were used in the following analyses. These 

analyses were done using IBM SPSS Statistics 23 software.  

 

Results 

Pre-CYP group differences 

 Before CYP injection, group differences between the three conditions were not 

significant for any concentration of NaCl (p>0.05). 

Neophobia (Fear of new things) 

 All mice had mean lick rates for 100 mM sucrose that exceeded mean water lick rates. 

The average for all mice was a normalized lick rate of 142% compared to water.  

Drug effects 

 In a drug condition (CYP or Control) by day analysis, CYP injected mice had higher 

normalized lick rates compared to control mice for 175 mM NaCl, seen in Table 6. The drug 

state by day interaction was also significant for 175 mM NaCl, F(29, 321) = 1.51, p = 0.048, but 

not for any other concentration.  
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Multiple Doses vs. Single Dose 

 A dosage by day analysis revealed that there was no significant difference in lick rates for 

mice who received a single CYP injection compared to mice who received multiple CYP 

injections at any concentration, seen in Table 7. 

 

 Single CYP injection mice showed significantly higher lick rates compared to control 

mice at 175 mM, shown in Table 8 and Figure 8. Multiple CYP injection mice showed 

significantly higher lick rates compared to control mice at 175 mM, seen in Table 9 and Figure 8.   

Drug State NaCl 

Concentration 

(mM) 

Mean 

Normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded if 

<0.05) 

Control 50 0.680 0.027 (1,169) = 

0.21 

0.649 

CYP 0.695 0.016 

Control 100 0.649 0.026 (1,165) = 

0.174 

0.677 

CYP 0.661 0.016 

Control 175 0.577 0.025 (1,162) = 

6.75 
0.010 

CYP 0.651 0.015 

Control 300 0.735 0.031 (1,140) = 

0.13 

0.724 

CYP 0.722 0.018 

 
Table 6: Drug state by day analysis comparing the control mice and CYP injected mice. CYP 

mice showed significantly higher lick rates for 175 mM NaCl.  

  

  

Dosage NaCl 

Concentration 

(mM) 

Mean 

Normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded 

if <0.05) 

Single 50 0.697 0.022 (1,123) = 

0.02 

0.897 

Multiple 0.693 0.020 

Single 100 0.661 0.024 (1,107) = 

0.00 

0.952 

Multiple 0.663 0.021 

Single 175 0.648 0.022 (1,111) = 

0.08 

0.774 

Multiple 0.656 0.020 

Single 300 0.695 0.026 (1,96) = 

2.08 

0.153 

Multiple 0.746 0.024 

 
Table 7: Dosage by day analysis comparing the single CYP injection group and the multiple CYP 

injection group. The group differences were not significant at any concentration.   
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Figure 8: Normalized lick rates over days for 175 mM NaCl. The upper graph shows single CYP dose mice 

compared to control mice, while the lower graph shows multiple CYP dose mice compared to control mice. Both 

single injection mice and multiple injection mice showed significantly higher lick rates overall when compared to 

control mice at 175 mM NaCl (p<0.05).  
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Specific Days of Interest 

 A drug state by concentration analysis performed on each individual day revealed days of 

interest. Mice injected with CYP showed significantly higher lick rates compared to control mice 

on days 3, 5, 8, and 18, seen in Table 10. Control mice showed significantly higher lick rates 

compared to CYP mice on day 22, also seen in Table 10.  

Dosage NaCl 

Concentration 

(mM) 

Mean 

Normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded if 

<0.05) 

Control 50 0.680 0.028 (1,98) = 

0.19 

0.665 

Single 0.696 0.025 

Control 100 0.648 0.027 (1,96) = 

0.95 

0.759 

Single 0.660 0.024 

Control 175 0.577 0.024 (1,95) = 

4.80 
0.031 

Single 0.647 0.022 

Control 300 0.734 0.029 (1,82) = 

1.03 

0.313 

Single 0.695 0.026 

 Table 8: Dosage by day analysis comparing the control group and single CYP injection group. 

Single injection mice showed significantly higher lick rates for 175 mM NaCl.  

  

Dosage NaCl 

Concentration 

(mM) 

Mean 

Normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded if 

<0.05) 

Control 50 0.681 0.029 (1,105) = 

0.11 

0.745 

Multiple 0.693 0.024 

Control 100 0.649 0.027 (1,108) = 

0.00 

0.688 

Multiple 0.663 0.022 

Control 175 0.577 0.025 (1,111) = 

6.10 
0.015 

Multiple 0.656 0.020 

Control 300 0.734 0.032 (1,93) = 

0.08 

0.783 

Multiple 0.746 0.026 

 
Table 9: Dosage by day analysis comparing the control group and multiple CYP injection group. 

Multiple injection mice showed significantly higher lick rates for 175 mM NaCl.  
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 Single CYP injection mice showed significantly higher NaCl lick rates when compared to 

control mice on days 2, 8, and 18, as seen in Table 11 and Figures 9-11. Control mice showed 

significantly higher lick rates on day 22. Multiple injection mice showed significantly higher 

NaCl lick rates when compared to control mice on days 8, 9, and 18, as seen in Table 12 and 

Figures 10 and 11. Control mice showed significantly higher lick rates on day 22.  

  

 

Drug State Day Mean 

Normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded if 

<0.05) 

Control 3 0.866 0.056 (1,49) = 

7.51 
0.009 

CYP 1.046 0.034 

Control 5 0.769 0.048 (1,48) = 

4.98 
0.030 

CYP 0.895 0.030 

Control 8 0.812 0.065 (1,60) = 

7.61 
0.008 

CYP 1.026 0.042 

Control 18 0.479 0.060 (1,22) = 

11.17 
0.003 

CYP 0.715 0.036 

Control 22 1.136 0.063 (1,28) = 

8.01 
0.009 

CYP 0.926 0.038 

 Table 10: Drug state by concentration analysis comparing the control group and the CYP groups. CYP 

mice showed significantly higher lick rates on days 3, 5, 8, and 18. Control mice showed significantly 

higher lick rates on day 22.  

  

Dosage Day Mean 

Normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded if 

<0.05) 

Control 2 0.768 0.054 (1,29) = 

6.18 
0.019 

Single 0.948 0.048 

Control 8 0.747 0.086 (1,20) = 

5.57 
0.029 

Single 1.045 0.092 

Control 18 0.300 0.068 (1,8) = 

10.22 
0.012 

Single 0.594 0.061 

Control 22 1.118 0.058 (1,17) = 

11.41 
0.003 

Single 0.857 0.052 

 
Table 11: Drug state by concentration analysis comparing the control group and single CYP 

injection group. Single injection mice showed significantly higher lick rates on days 2, 8, and 

18. Control mice showed significantly higher lick rates on day 22.  
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Figure 9: Normalized lick rates for days 2 and 3. Single injection mice had significantly higher lick rates compared 

to control mice on day 2 (p =0.019). Day 3 was included for comparison. 

Dosage Day Mean 

Normalized 

licks 

SEM F-ratio 

(dfn, dfd) 

p (Bolded if 

<0.05) 

Control 8 0.747 0.064 (1,31) = 

6.57 
0.015 

Multiple 0.957 0.052 

Control 9 0.506 0.061 (1,23) = 

4.73 
0.040 

Single 0.679 0.050 

Multiple 18 0.300 0.058 (1,14) = 

16.74 
0.001 

Single 0.606 0.047 

Control 22 1.118 0.062 (1,17) = 

11.41 
0.003 

Multiple 0.846 0.050 

 
Table 12: Drug state by concentration analysis comparing the control group and multiple CYP 

injection group. Multiple injection mice showed significantly higher lick rates on days 8, 9, and 

18. Control mice showed significantly higher lick rates on day 22.  
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Figure 10: Normalized lick rates for days 7, 8, 9 and 10. Single injection and multiple injection mice had 

significantly higher lick rates compared to control mice on day 8, and multiple injection mice had significantly 

higher lick rates compared to control mice on day 9. Days 7 and 10 were included for comparison. 
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Figure 11: Normalized lick rates for days 18, 19, 20, 21, and 22. Single injection and multiple injection mice had 

significantly higher lick rates compared to control mice on day 18. Control mice had significantly higher lick rates 

on compared to multiple and single injection mice on day 22. Days 19-21 were included for comparison. 

 

 

 In summary, CYP mice showed significantly higher lick rates compared to control mice 

at 175 mM NaCl and on days 8, 9, and 18. There were no significant differences between single 

CYP dose and multiple CYP dose mice for any concentration.   
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Discussion 

 In this study, we attempted to determine the different effects on salt taste of a single dose 

of CYP compared to multiple doses of CYP spread out over five days. Our hypothesis was that 

CYP treatment would affect Type I taste cells, leading to changes in salt preference. We further 

hypothesized that multiple doses over time would affect multiple salt receptor cell types leading 

to more significant changes in salt preference. While we found significant CYP effects on the 

lick rates of NaCl, we did not see any significant difference in lick rates between single injection 

mice and multiple injection mice.  

 Since both the single and multiple injection groups of mice received an overall dosage of 

100 mg/kg CYP, the lack of difference between groups could indicate that dose volume has more 

influence than the timing of the dose. That being said, the CYP mice showed a significantly 

higher lick rate compared to control mice at 175 mM NaCl. This significance, however, may not 

necessarily be a result of CYP. The control mean lick rate at 175 mM NaCl is lower than it is at 

other concentrations, including 300 mM, which was unexpected due to the natural NaCl aversion 

at 300 mM. Figure 8 illustrates this low lick rate for control mice not seen at other 

concentrations. This could be attributed to the small overall sample size for the control group, 

especially for days 15-31. Re-running these analyses after the present group of mice is completed 

may be beneficial and help to clarify these results.  

 All mice licked the 100 mM sucrose at rates that exceeded water, indicating that fear of 

new tastes (neophobia) did not influence our results. We saw significantly higher licks in both 

CYP groups compared to control mice on days 8 and 18. This range is fairly consistent with the 

proposed life span of the two different populations of Type I taste cells discussed by Perea-

Martinez et al. (2013) which are eight days for one sub-population and 24 days for the second 



  Michael Gomella 

40 

 

sub-population (Perea-Martinez et al., 2013). The observed second disturbance is off from the 

proposed value in their paper, but our study still supports that there are two sub populations with 

differing life spans.  

We expected to see significant group differences at 300 mM based on our CTA study, but 

this was absent for all comparisons made. This could be attributed to individual NaCl preference 

in the mice tested. The general avoidance curve we expected to see in control mice was absent 

for most days, and control mice seemed to prefer 300 mM NaCl.  
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Chapter IV: General Discussion 

 This paper describes our experience with two techniques to examine the effects of CYP 

on salt taste in mice. The first study used a conditioned taste aversion (CTA) study to test if 

aversion to NaCl changed after CYP treatment. The second used a simple brief access test (BAT) 

to compare the different effects of a single CYP injection and multiple CYP injections over five 

days. Generally, our hypothesis was that CYP treatment would affect Type I taste cells, leading 

to changes in salt preference. We further hypothesized that CYP treatment would reduce salt 

aversion. Lastly, we hypothesized that multiple CYP doses over time would affect multiple salt 

receptor cell types leading to more significant changes in salt preference. 

Common Effects of CYP  

 In both studies, CYP treated mice showed significantly higher lick rates than control mice 

for at least one NaCl concentration. The drug effect was significant at more concentrations in the 

CTA study, while 175 mM NaCl was the only concentration where significant drug effects were 

seen in the second study. As stated in Chapter III, a larger sample size could be beneficial in both 

studies to mitigate the differences in individual mouse licking patterns. Still, the differences seen 

in the CTA study are enough to conclude that CYP does affect the NaCl taste receptor pathway. 

Since there were significantly higher licks for CYP mice than control mice in both studies, it can 

be assumed that CYP affects multiple salt receptor cell types. The individual level at which each 

is affected, however, is impossible to determine given our results. The goal of the second study 

was to affect the multiple pathways with multiple CYP injections over days. Since there were no 

differences between the single injection group and the multiple injection group, we were likely 

unsuccessful in affecting other salt receptor cell types with multiple injections. These results also 
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demonstrate that multiple injection CYP regimens do not necessarily have more severe taste 

related side effects than single dose CYP treatment, although the side effects may last the length 

of the treatment regimen. 

Mice conditioned to avoid NaCl did not show significant drug effects at as many 

concentrations as non-conditioned mice. This could indicate that a CYP insensitive pathway 

remains unaffected, or affected in a different time frame. A study by Ruiz et al. indicated that 

while the TRPV1 receptor is not the main secondary salt taste receptor, it could be involved in 

some NaCl aversion (Ruiz et al., 2006). Studies have indicated that TRPV1 channels play an 

important role in DNA repair following radiation damage to DNA. For this reason, it would be 

beneficial for TRPV1 channels to be protected from damage caused by exterior agents such as 

CYP or radiation (Masumoto, Tsukimoto, & Kojima, 2013). These protected NaCl taste cells 

may be responsible for the continued aversion to low concentration NaCl following CYP 

treatment.  

Timing of CYP Effects 

 In both the CTA and BAT studies, CYP mice showed significantly higher lick rates 

during the same time periods post-CYP injection. This range spanned from days 5-9 and days 

18-19. A study by Perea-Martinez et al. (2013) proposed that Type I taste cells have two sub-

populations, one with a life span of eight days and another with a life span of 24 days. The cells 

that have a life span of eight days are proposed to be mature cells, while the cells with a life span 

of 24 days are thought to be immature cells that mature and differentiae to become Type I cells 

(Perea-Martinez et al., 2013). Our study supports the finding of an initial eight-day life span of 

mature Type I cells given that this was the time period that the first NaCl taste disturbance 

occurred in our CYP mice. The secondary disturbance noted, which occurred around day 18, 
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could be the second population described as “immature Type I cells.” However, since our day 18 

disturbances were several days off from the proposed second disturbance, this could indicate that 

a different taste cell type is being affected. Another cell type could have a different life span than 

Type I taste cells, and this second cell type could be responsible for the second, day 18 

disturbance.  

Another explanation could involve the replacement cycle for the cells.  Nguyen et al. 

proposed that patients treated with head and neck radiation see a delayed disturbance after 

treatment due to the disturbance of the cell replacement cycle (Nguyen et al., 2012). After mature 

cells die, progenitor cells replace them. However, if the CYP is affecting progenitor cells, the 

dead cells are not replaced, leading to an alteration in taste later in time.   

 A study by Mukherjee and Delay in 2011 showed that umami taste was affected by CYP 

in two phases. They saw a disturbance at days 2-4 and days 9-12, which is slightly different than 

the biphasic disturbance that we saw when studying NaCl taste. This is likely due to the different 

receptors involved in salt taste and umami taste. The two phases seen in both the present study 

and their study suggest that biphasic taste disturbances are typical for CYP treated mice. 

Mukherjee and Delay also noted that fungiform papillae were most affected by CYP treatment 

and did not begin to recover until day 12. While we did not see the disturbance on days 2-4 that 

they observed, we did have residual CYP affects that persisted during the first disturbance to day 

13. This could be indicative of the fungiform recovery period discussed by Mukherjee and Delay 

(Mukherjee & Delay, 2011). 

 This secondary disturbance can also be explained by an entirely different mechanism. 

The body is able to compensate for lost cell types by upregulating other pathways and speeding 

up differentiation of other cell types, as hypothesized by Ruiz et al. in their study of TRPV1 
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knockout mice (Ruiz et al., 2006). By disrupting Type I taste cells with CYP, it is possible that 

the 24-day life span of the secondary population of taste cells was sped up and these cells 

differentiated quicker to compensate for the cells lost during CYP treatment. This could explain 

the day 18-19 disturbance that we saw and explain why it did not occur on day 24 as predicted.  

CTA vs. BAT study 

 As discussed above, the CTA study mice showed significant drug effects on more days 

and at more concentrations of NaCl than the BAT study mice. This difference could be attributed 

to differences between mouse litters involved in each study. The control animals for the BAT 

study did not have consistent data with the controls from the CTA study, which was unexpected 

due to the similar experimental conditions. An aberrant control group could have confounded our 

results for the second study. This problem will likely be mitigated once more mice complete the 

study, and a second control group is factored into the analyses. 

Taste Study Criticisms 

 A criticism of taste studies is ensuring that animals use only the taste cue to identify the 

solution and its concentration. Since mice are obligatory smellers, many of their sensory cues 

come from the scents they perceive (Spector, 2003). While no control for scent was used in this 

study, the BAT paradigm is designed to minimize olfactory effects on taste since mice are 

presented very briefly with each stimuli (Glendinning et al., 2002). Additionally, chemotherapy 

treatment significantly impairs olfactory function (Steinbach et al., 2008). These factors should 

control for olfaction which might otherwise conflict with taste cues.  

 A BAT was used in this study instead of a two-bottle preference test for several reasons. 

Two-bottle preference tests can induce post-ingestive effects which could confound results 
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(Spector, 2003). We attempted to control for post-ingestive effects by providing mice with water 

an hour after each session to limit gastric malaise induced by overconsumption of salt. BAT 

studies also allow for the presentation of multiple NaCl concentrations at one time, whereas two-

bottle preference tests limit each test to two solutions.  

Rodents vs. Humans 

 The difference in salt taste receptor cells in rodents and humans is not well studied. This 

is likely due to the general lack of knowledge about the cell types responsible for salt taste. In 

terms of umami taste, humans are 70% analogous to rodents for the T1R gene, responsible for 

umami taste detection (Hoon et al., 1999). For salt, amiloride in humans does not appear to alter 

the saltiness of NaCl, but it does reduce the “sour” taste associated with it. This indicates that 

there are species differences in the salt taste receptors (Breslin & Spector, 2008). Further 

research comparing rodent and human salt receptors should elucidate these differences, which 

will provide further insight into mammalian salt taste.  

CYP as a CTA Inducer 

 While our first study in Chapter II used lithium chloride to induce a CTA in mice, CYP is 

also an agent used to induce CTA in mice (Lin et al., 2014). We controlled for this potential 

confounding factor by giving the mice 24 hours of water before and after all CYP injections so 

that the CYP did not induce an aversion to NaCl. Additionally, the testing period (where NaCl 

was presented daily without CYP injection afterwards) would act as an extinction period, which 

would limit the effects of the potential CTA to NaCl induced by CYP. If a CTA to NaCl was 

induced by CYP, we would have expected to see lower lick rates for NaCl in CYP mice, which is 
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the opposite of what we observed. Therefore, CYP-induced CTA did not seem to confound our 

experiment.  

Implications for Chemotherapy Patients 

 The reduced salt sensitivity we observed in mice matches what is reported by 

chemotherapy patients. Additionally, the existence of a secondary salt taste cell type which is 

protected from CYP has important implications. If molecular studies can pinpoint the specific 

cell type involved and uncover the mechanism involved in CYP resistance, this same mechanism 

could potentially be utilized to protect other cell types from the toxic effects of CYP.  

Future Directions 

 A key to further uncovering the effects of CYP on salt taste is repeating the experiment 

with more mice under the same previous conditions. A higher number of subjects will improve 

our confidence about conclusions from these studies. Similar tests could also be performed 

involving NaCl solutions mixed with amiloride, which would eliminate effects of the amiloride-

sensitive pathway and focus wholly on the yet to be agreed upon amiloride-insensitive pathway. 

Additionally, discrimination work from Dr. Eugene Delay’s lab involving salt taste with CYP 

treated mice would be useful in supporting preference data from this study. Molecular studies 

would also be useful to uncover the other cell types that are involved in salt taste.  

Conclusion 

 Mice show a biphasic disturbance in NaCl taste following cyclophosphamide treatment. 

Phase 1 of this disturbance occurs around day 8, while phase 2 occurs around day 18. Mice 

conditioned to avoid NaCl maintain an aversion to low concentrations of NaCl following CYP 

treatment, pointing to a category of NaCl receptors which are protected from the effects of CYP. 
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Multiple CYP injections have the same effect as a single CYP injection as long as the overall 

dose is the same, indicating that this is not a useful method to disturb multiple salt receptor cell 

types. Our results support the hypothesis that multiple taste receptor populations are involved in 

salt taste.  
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