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Abstract

The viability of solar power is currently limited by the expense and processing limita-
tions of existing inorganic technology. Organic semiconductors offer the possibility of
scalable, economically appealing solar cell technologies. Quinacridone is a promising
material which has recently been shown to have electronic properties comparable to
the fully π-conjugated, but structurally similar pentacene, while remaining chemically
stable in air. In order to better understand the potential of quinacridone as a candi-
date material for viable, next generation solar cells we have fabricated a number of
thin-film samples and device structures and characterized them by a suite of optical
and electronic tests.

Absorbance and temperature-dependent photoluminescence studies were used as a
probe to investigate the electronic states of vapor deposited quinacridone thin films,
finding exciton binding energies consistent with excitonic states delocalized across
several molecules. Impedance spectroscopy measurements were used to measure the
temperature-dependent photoconductivity of Gold : Quinacridone : Gold MSM struc-
tures, finding that quinacridone is almost an order of magnitude more conductive
under laser illumination. Diode structures of ITO:PEDOT:Quinacridone:Al were fab-
ricated to measure the IV characteristics under light and dark conditions, as well as
the transient photocurrent and photovoltage. These studies confirmed that the light
current generation of the diodes was not limited by charge transfer state lifetimes,
as charge extraction occurs on a much faster time scale. However, we found that
the low mobility of our quinacridone thin films, caused by their low crystalline order,
decreased the probability of exciton dissociation, limiting the production of usable
power.
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Chapter 1

Introduction

1.1 Organic Semiconductors

Organic Semiconductors have been investigated as an alternative to more well-established

inorganic semiconductors such as Silicon (Si) and Gallium Arsenide (GaAs). There

are many applications of semiconductor technology, including photovoltaics (PV),

light emitting diodes (LEDs), and field effect transistors (FET) for which organics

could potentially compete with their inorganic predecessors. Even today organic

LEDs (OLEDs) can be seen replacing older LED technologies in consumer TVs,

demonstrating the rapid development and commercial viability of organic technol-

ogy.

Advancement in photovoltaic technology offer the possibility of scalable, economi-

cally appealing solar cell technologies. The viability of solar power is currently limited

by the expense and processing limitations of existing inorganic technology. Organic

alternatives are hoped to cut to the cost of producing PV and increase production

volume. Much of the foundational work in organic semiconductors has been done

1



with aromatic, small molecules like tetracene and pentacene [1], which have good

electronic properties, such has high mobility, due to the delocalizing effects of full

π-conjugation, but are chemically unstable in the presence of light and oxygen. Re-

search into hydrogen-bonded semiconductors hopes to select molecules which retain

the electronic properties for devices, while remaining chemically stable in air, a crit-

ical requirement for wide-scale adoption. Quinacridone is a promising material and

recently researchers [2] have claimed it has among the best mobility and stability,

when deposition techniques optimized.

The goal of this work is to better understand the potential of quinacridone as a

candidate material for viable, next generation solar cells by fabricating a number of

thin-film samples and device structures for characterization by a suite of optical and

electronic tests.

1.2 Quinacridone: Air-Stable Hydrogen-

Bonded, Organic Semiconductor

Quinacridone was chosen as a material of interest because of the strong similarity in

molecular structure to pentacene. Looking at Figure 1.1, we see that while pentacene

is fully π-conjugated, this conjugation is broken in quinacridone molecules by the

carbonyl and amine groups, which has a localizing effect on π-electrons within the

molecule. However, the addition of these groups causes intermolecular hydrogen

bonding, which in turn changes the crystal packing structure from herringboned to

planar, as shown in Figure 1.1. In the planar geometry, delocalization can occur

along π stacking axis, increasing the rate of charge transfer between molecules. In

2



Figure 1.1: Molecular Structure and Crystal Packing of Quinacridone vs Pentacene

addition, the strength of hydrogen-bonds increase the crystalline order compared to

weaker van der Waals intermolecular interactions of pentacene, which should lead to

higher carrier mobility. This intermolecular delocalization could potentially lower the

Coulombic binding energy of the excited electronic state: the exciton binding energy.
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Chapter 2

Optical Characterization

Optical characterization allows us to probe the energy structure of semiconducting

materials. For solar applications, we desire materials that absorb over a broad range

of wavelengths, and materials with highly emissive photoluminescence. Broad ab-

sorbance offers the potential of harnessing more of the sun’s energy, while highly

emissive photoluminescence suggests that the fastest pathway for excited state re-

laxation is through radiative transitions, and thus less of the energy of the absorbed

photons will be lost due to non-radiative processes. [? ]

2.1 Sample Preparation and Measurement

Procedure

To make samples, commercially available quinacridone was purified using our three-

zone, vacuum sublimation furnace. Thin sapphire substrates were washed sequentially

in ultrasonic baths of de-ionized water, and isopropanol. Approximately 100 nm
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of quinacridone was vapor deposited on the sapphire substrate. The thickness of a

sample evaporated in parallel was measured using a stylus profilometer. After viewing

the resulting films under a linearly polarized microscope, we concluded the films were

polycrystalline with sub-micron grain sizes.

For absorbance measurements samples were mounted on an optics table, where a

monochromator is used to select a wavelength of light from a Xenon lamp, which is

sent through an optical chopper, passes through the sample, where some of the light

is absorbed, and the transmitted light is detected by a photodiode. The current signal

from the photodiode is amplified by a lock-in amplifier, and matched to its respective

wavelength by a Labview VI. The signal is corrected for the emission spectrum of the

lamp, and the sensitivity spectrum of the photodiode.

For temperature dependent photoluminescence measurements, the samples were

mounted in an optical cyrostat and excited using a 532 nm laser. The cyrostat

temperature was varied incrementally from 4.3 K to 295 K. The emitted light passed

through a beam splitter and optical filters to reduce the intensity of the laser light

before entering the spectrometer. A labview VI was used to control the grating in the

spectrometer to select the desired wavelength window to be recorded. The slit size

was kept constant throughout the measurement, and the exposure time was varied

from 1 second for low temperature measurements, to 2 seconds for higher temperature

measurements. This factor was controlled for in post processing.
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Figure 2.1: Quinacridone Absorbance as a Function of Wavelength

2.2 Absorbance

Absorbance measures the fraction of incident photons absorbed by a material as a

function of wavelength. In the resulting plot, we see two peaks, at 525 nm and 561

nm. The absorbance spectrum was used to choose the 532 nm laser for the photo-

luminescence study, where absorbance is high. Additionally, there must be available

electronic states for photons of this energy to be absorbed. For solar applications

broad absorption peaks are desired with significant overlap with the solar spectrum.
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Figure 2.2: Quinacridone normalized Photoluminescence and Absorbance

2.3 Photoluminescence

Photoluminescence measurements count the number and wavelength of photons emit-

ted when a sample is excited by an illumination source, in this case a focused 532

nm laser beam. As we vary the temperature, the line shape of the photoluminescence

changes, reflecting the altered energy landscape of available states as the thermal

energy is changed. Comparing the normalized room temperature PL and Absorbance

in Figure 2.2 we see that the PL 0-0 peak has a much sharper onset from the high

energy side, than the absorbance peak. This is likely caused by reabsorption of high

energy photons which are emitted inside the bulk of the quinacridone film.
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At low temperatures, the luminescence spectrum is dominated by a peak at 617

nm, suggesting an energy gap of 2.002 eV between the lowest available vibrational

state of the excited electronic state and the relaxed state [3], because non-radiative

relaxations (thermalization) occur on a much faster time-scale than radiative ones.

This peak has been fitted with a slightly asymmetric guassian to model the steep

onset at higher energies. A second, smaller peak is present at 638 nm, while a third,

broader peak is present at 692 nm.

We see that as we raise the temperature, the 0-1 peak increases in intensity relative

to the 0-0 peak, becoming a distinct shoulder at 35 K and 45 K, and becoming

prominent at 70 K and 90 K.

Compared to a similar room temperature quinacridone thin film photolumines-

cence study reported by Glowacki et.al.[6], our study confirms a peak around 617

nm, but does not reproduce the broad mass extending to 800 nm, that they claimed

was due to emission from dissociative states. This may result from different film

deposition conditions.

The peaks were also fitted as a linear combination of Guassian features as shown

in Figure 2.5, where the example of the 15 K measurement is shown.

8



Figure 2.3: Quinacridone Temperature Dependent Photoluminescence
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Figure 2.4: Quinacridone 15 K Fitting

2.4 Arrhenius Fitting and Binding En-

ergy

To extract the binding energy from our temperature dependent data, we use the

Arrhenius equation which relates the intensity of PL peaks to temperature:

I(T ) = I0

1 + C exp ( Eb

kbT
)

where, I(T) is the intensity of a feature at a given temperature I0 is the intensity

of the peak at the lowest temperature (4.3 K in our case), and Eb is the exciton

binding energy. The intensity of a feature was found fitting the PL curve with 3

Gaussian peaks for each temperature, and integrating over the 0-0 peak, to find the

total intensity resulting from that transition. Rearranging the Arrhenius equation,

10



we find that

ln(I(T )/I0) = − Eb

kbT
+ c

When ln(I(T )/I0) was plotted against inverse temperature and fitted with this equa-

tion, the exciton binding energy was found to be Eb = 22 meV.

Figure 2.5: Arrhenius Plot of the 0-0 peak

A binding energy on this scale is very low compared to most organic semiconduc-

tors, suggesting they are highly delocalized, meaning the exciton radius extends over

several lattice sites.

11



Chapter 3

Impedance Spectroscopy

of Quinacridone

Metal-semiconductor-metal (MSM) devices with quinacridone as the semiconductor

and gold electrodes were characterized by impedance spectroscopy. We found that

our devices were well represented by the equivalent circuit model of a resistor and

capacitor in parallel. We extracted values for the resistance R and capacitance C

of our devices, and for the conductivity (σ) and resistivity (ρ) of quinacridone. The

devices showed strong photoconductivity, with the ratio between the light and dark

state
σL

σD

= 8.9

at room temperature, with a dark conductivity of σ = 1.9110−6[S/( cm)].

12



3.1 Sample Preparation

In this chapter the MSM devices structures were fabricated on glass substrates, which

were washed sequentially in ultrasonic baths of de-ionized water, acetone, and iso-

propanol, before cleaning with oxygen plasma. For room temperature measurements,

one inch square microscope slides were used, and for low temperature measurement

15 mm square cover slides were used as the substrate. On top of the clean substrate,

a 50 nm layer of sublimation gradient purified quinacridone was vapor deposited. The

samples were then transferred to a metal evaporator, where a 40 nm layer of gold was

evaporated with a source-drain geometry mask. The finished samples mounted in a

cryogenic probe station, are shown in Figure 3.1.

3.2 Impedance Spectroscopy

Impedance (Z) is a complex quantity used to characterize the resistance of a device

or material to the flow of an AC current. Represented as a vector in the complex

plane,

Z = R + iX

where R is the resistance, and X is reactance. Reactance can be of two kinds,

inductive (+) or capacitive (-), but for the devices we are studying, only capacitive

reactance (Xc) is observed.

Xc = − 1
2πfC

During an impedance spectroscopy measurement, the frequency of the AC signal

13



Figure 3.1: Sample Mounted on Probe Station Illuminated with Green Laser for Impedance
Spectroscopy Measurement

14



is varied over eight orders of magnitude, from 106 to 10−2Hz and measurements

of the impedance are taken using a frequency analyzer. In this paper, impedance

measurements are shown as Nyquist plots, where the real part of the impedance Z ′′

is plotted against the imaginary Z ′. From this plot we can extract the resistance

of the device, which is simply the magnitude of Z ′ in the low frequency limit, and

the capacitance, which is inversely proportional to the max Z ′′. A Nyquist plot of

an ideal resistor and capacitor in series is a semicircle starting from the origin, and

terminating on the real axis, at the resistance of the resistor.

3.3 Photoconductivity

Conductivity (σ) is an important material property of an electronic material. Defined

as the inverse of the resistivity (ρ)

σ = 1/ρ = J/E

where ρ = R
A

L
= R(0.00027)[Ω]. In the case of our devices, the resistance, (R), is

a function of time since exposure to light. We observe an unexplained, persistent

photoconductivity that decays over hours after illumination. The resistance is taken

from a semicircular fit of the Nyquist plot, while the device cross-sectional area (A)

is

A = 1000µm× 0.070µm = 70µm2

and the length (L) is 26µm, so the ratio A
L

= 0.00027cm−1.

To measure the effect of light on the MSM device, we exposed the device to a

15



Table 3.1: Room Temperature Quinacridone Photoconductivity: A Probe Station was used
to take measurements, and a green laser was used as an illumination source

R [Ohm] C [F] ρ [Ohm cm] σ [S/cm]
Light 7.10E+08 9.09E-12 1.91 E+05 5.23 E-06
Dark 1.94E+09 8.50E-12 5.23 E+05 1.91 E-06

bright green laser light source for an hour, before taking a measurement with the

light on, which is labeled t = 1.0, for the time elapsed in seconds, since the start of

the measurement. When this measurement concluded, the light was switched off, and

measurements were taken in log-spaced time over 8.3 hours. The resulting Nyquist

plot is shown in Figure 3.2. When the light is on, the resistance is almost a factor of

10 times lower than under dark conditions, but it takes many hours for the resistance

to relax to an unexcited state.

The decay of the photoconductivity is well modeled by a biexponential function,

as shown in Figure 3.3. A fast decay, with a decay lifetime τ = 11.7 minutes, is

followed by a slower decay with a decay lifetime τ = 2.6hours.

16



Figure 3.2: Nyquist Plot of Re(Z) vs Im(Z): t=0 denotes the beginning of the measure-
ment, and after one frequency sweep the green LED light source was switched off. The last
measurement was taken after more than 16 hours in the dark.

3.4 Temperature Dependence

We examined the temperature dependent photoconductivity in a cyrogenic probe sta-

tion. The preliminary results are reflected below. As the temperature is lowered, the

Nyquist plot in Figure 3.4 shows the resistance of the devices increases substantially,

while the capacitance only slightly increases for both light and dark conditions.

Looking at the change in conductivity with temperature, we use the fact that

σ = qnµ

17



Figure 3.3: Biexponential Decay of Photoconductivity

where q is the electron charge, n is the number of carriers, and µ is the mobility, to

fit the conductivity with the thermal generation of carriers[4] [5].

n2

n∗
= κ exp −Ea

kT

where Ea is the activation energy. The resulting fit shown in Figure 3.5 shows pre-

dicted temperature dependence of conductivity, with our measured data. One of the

dark data points at 250K was excluded from the fit because it was not allowed to

relax fully to the dark state. Unfortunately, the turbo pump on the cryostat probe

station was broken after this preliminary data was collected, but even so we see that

18



Figure 3.4: Nyquist Plot of Im(Z) vs Re(Z) for low temperatures. Additionally fits for the
DC resistance and capacitance have been performed.

the fitted value of the Ea = 1.4 meV from our dark conductivity data, which tracks

the mobility, and Ea = 6.4 ± 0.2 meV for the light conductivity, which tracks the

photo-generated carrier concentration. Subtracting the light activation energy from

the dark and doubling gives an estimate of the exciton binding energy[5], which is

found to be Eb = 10± .4 meV from our measurements. This is on the order of exciton

binding energies reported by Glowacki et. al. [6] (12±5meV ), and the value obtained

from our temperature-dependent PL study (22 meV). While this is comforting, more

data points are required to be confident in the results.

19



By dividing the light conductivity fit by the dark conductivity fit, we obtain an

approximation of the temperature dependence of the on/off ratio, as shown in Figure

3.6. We see that for high temperatures, the ratio between light and dark conductivity

is high, but that as fewer charges are thermally excited at low temperatures, we expect

a decrease in the proportion of free charge carriers generated from photo-excitation.

Figure 3.5: Temperature Dependence of Photoconductivity

Most of the measurements taken were too noisy to extract a meaningful resistance,

which could be a result of inconsistent times for relaxation to the dark state after

illumination, imperfect contact between the probes and the top metal electrode, the

lack of a true dark environment for dark measurements, or the destruction of the

sample as the probe tips were moved without the use of a camera in the cryostat.

Ideally, additional low temperature studies would be undertaken, where the light

and dark measurement would be measured after at least two half lives of the fast decay

at each temperature point. Also a full 10 hour decay at 100 K would be interesting

to see if slow rate of decay is temperature dependent.

20



Figure 3.6: Ratio of light and dark conductivity fits

21



Chapter 4

Diodes

4.1 Sample Preparation

In order to fabricate diode samples, pre-patterned Indium Tin Oxide (ITO) substrates

were washed sequentially in ultrasonic baths of de-ionized water, acetone, and iso-

propanol, before cleaning with oxygen plasma. Next, the samples were spin coated

with Poly(3,4-ethylenedioxythiophene) (PEDOT) with two layers spinning at 4000

rpm for 45 seconds. The edges were wiped clean to expose the ITO contact pads. A

80 ± 10nm layer of sublimation gradient purified quinacridone was vapor deposited

over the PEDOT layer. Finally at 150 nm layer of aluminum was vapor deposited as

the top contact. A completed sample mounted on a Solar Simulator is shown in Fig-

ure 4.1. Cells were tested within one hour of being exposed to air, as the performance

was degraded as the aluminum top contacts were oxidized.

22



4.2 Current - Voltage [IV] Curves

To evaluate the quality of quinacridone as semiconductor for diode devices, the current

driven through the system was measured as a function of voltage under light and

dark conditions to examine their photoresponse. To measure the devices, they were

mounted on the sample holder pictures in Figure 4.1, which was connected to a

Keithley 2401 source meter which measured the current at a series of voltages from

-1 V to 2 V.

Figure 4.1: Quinacridone Diode Mounted on Solar Simulator

The resulting IV curves are reflected below in Figure 4.2.

23



Figure 4.2: Quinacridone Diode IV Response: Light and Dark
Inset shows Isc ≈ 37 [µA] and VOC ≈ 0.9 [V]

We can clearly see the difference between the IV curves under light and dark

conditions. The dark curve has a characteristic diode curve, where no current flows

in reverse bias, when the applied voltage is negative, and an exponential increase

in current as the applied voltage increases in forward bias. The light curve is offset

by the photocurrent generated, but it is much lower than expected from previous

reports, which found JSC = 1mA/cm2 under light conditions using an identical device

structure[6]. We observed JSC = 20µA/cm2, 50 times smaller than the previously

reported value.

A fit of the diode based on the equivalent circuit model where the total current

generated (Itot) is a sum of three component currents, light generated current (IL),

diode current (ID), and shunt current (Ish), where the latter two have a negative sign

24



since they represent current lost to recombination in the diode or to shunt resistances.

Thus the modeling equation for the total current is given by

I = IL − ID − Ish

I = IL − I0

 exp
(
V + IRs

nVT

−
)

1
− V + IRs

Rsh

where V and I are the applied voltages and observed currents, VT is the thermal

voltage, n is the ideality factor of the diode, Rs is the series resistance, and Rsh is

the shunt resistance [7]. The fitted values are shown in Table 4.1. We see the series

resistance is about 280 Ohms, higher than ideal for a well functioning solar cell, likely

because our fabrication and testing of the device in ambient air allows AlOx to form

on the diode’s Al top electrodes.

Table 4.1: Fitted Equivalent Circuit Parameters for Diode Under Dark Conditions

IL I0 n Rs Rsh

(−5.8± 4) e-08 (-3.3 ±0.9) e-11 (5.018 ± 0.1) e+00 (1.84 ± 0.07) e+03 (7.6 ± 300) e+08

4.3 Transient Photovoltage

In addition to the series resistance, some other factors may be inhibiting the extraction

of photocurrent from the diode under light conditions. Charge transfer states could

be recombining before they can be extracted from the diode as free charge carriers. To

understand how long excited CT states survive before recombination, we performed

a transient photovoltage measurement, which examines how the voltage decays under

short circuit conditions when the incident intensity of light is varied.
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To take this measurement a Tektronics MDO3024 oscilloscope was used to measure

the diode voltage as a function of time, as well as the current powering a square wave

modulated LED light source operating at 30 Hz. The amplitude of the square wave

was restricted to less than 10% of the overall current powering the LED. The intensity

of the resulting decay, shown in Figure 4.3, is well modeled as a single exponential,

∆V (t) ∝ exp(t/− τ)

since the amplitude is within the small perturbation regime of the total offset [8],

with a carrier lifetime of τ = 630± 5 µs.

Figure 4.3: Quinacridone Photovoltage
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4.4 Photocurrent

To better understand the dynamic behavior of charge carriers within the quinacridone

diode, a transient photocurrent measurement was conducted, using the same oscil-

loscope and LED light source as above, but with an amplifier to magnify the weak

light generated current. A square wave with a 600mV offset and 100 mV ampli-

tude was used to drive the LED operating at 100 Hz. The resulting data, shown

in Figure 4.4 was fitted with an exponential and then a biexponential fit, when the

former was found to be inadequate, indicating that there are two different timescales.

This is most likely caused by a mismatch between electron and hole mobility within

the device, but could also be the result of charge carriers being generated predom-

inately adjacent to the ITO electrode, the side through which light enters and is

absorbed. From this biexponential fit, we found that the fast process had a con-

stant of τf = 0.0000038s = 3.8 ± 0.2µs and the slow process had a time constant of

τs = 0.0000321s = 32± 4µs.

Another possible explanation for the need for a biexponential with the slow process

corresponding to trapping, and the fast process corresponding to the steady state

mobility [9].

Comparing the two extraction time constants of τf = 3.8±0.2µs and τs = 32±4µs

to the CT state lifetime τ = 630 ± 5µs, we see that the timescale on which charge

extraction would occur under operating conditions is at least an order of magnitude

smaller than the CT state lifetime. Thus CT state lifetime is not limiting the current

generation of these devices for solar energy applications, as the time is takes charges to

move through the diode is much smaller than the time it takes to recombine. Rather

27



Figure 4.4: Quinacridone Photocurrent
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the free charge carrier generation, which is controlled by the probability of exciton

dissociation, likely reduces the current to below usable levels.

4.5 Onsager Braun Theory

The light curve is not well fit by the simplistic ideal diode model because not all of the

charge transfer states generated by the incident photons dissociate into free charges.

Rather the probability of dissociation is dependent on applied field as described by

Braun [10], who adapted Onsager’s [11] [12] work on bound ion dissociation in solu-

tion, to the dissociation of charge transfer states into free carriers in semiconductors:

P (E) = kd(E)
kd + kf

where kd(E) is the electric field dependent rate of dissociation, and kf is the constant

rate of exciton relaxation to the ground state. For organic systems where the charge

transfer excition (CT) state is sufficiently localized, we can approximate the state as

classical ion pairs, leading to a electric field dependent rate of dissociation:

kd(E) = ve−∆E/kbTJ1[2
√
−2b]/

√
−2b = ve−∆E/kbT

(
1 + b+ b2/3 + b3/18 . . .

)

where J1 is a first order Bessel function, in order to satisfy the cylindrical bound-

ary conditions placed on the divergence-less ion flux in Onsager’s analysis [12], b =

e3E/(8π〈ε〉ε0k2T 2, ∆E is the exciton binding energy, and

v = 3〈µ〉e
4π〈ε〉ε0a3
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Figure 4.5: Quinacridone Diode IV Response: Light and Dark
Inset shows Isc ≈ 37 [µA] and VOC ≈ 0.9 [V]

for a classical ion pair, where µ is the mobility, 〈ε〉 is the dielectric constant. The

values used are list in Table 4.2 were taken from published values from Glowacki et al

[6], while the dissociation and relaxation rates (kd(0), kf ), were calculated from these

values.

Table 4.2: Onsager Braun Parameters

〈µ〉 [cm2/s] ∆E [meV] kBT [meV] ε [F/m] kf [1/s] kd(0) [1/s]
0.001 12 25.7 4.2 108 2.76 ×106

While fitting for the maximum light current IL in Figure 4.5, we obtain a very

good fit for the quinacridone diode under light conditions, where the fit is valid over

the range where the internal field of the diode is negative, from −1 to 1 V externally

applied voltage. The fitted light current JL = 1.3 is on the same order as the reported
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value of JSC for PEDOT - quinacridone diodes reported by Glowacki et al. [6].

If the mobility of carriers in the quinacridone could be increased, by controlling

the rate of deposition and the temperature of the substrate in order to increase the

crystalline order of the quinacridone semiconducting layer, we would see a signifi-

cantly higher probability of exciton dissociation (P (E)), even at zero applied field.

Additionally, controlling the fabrication environment to eliminate the formation of

AlOx would create a higher "built-in" electric field, further increasing P(E), and thus

increasing JSC to or above the levels previously reported.
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Chapter 5

Conclusions and Future Work

A number of thin-film samples and device structures were characterized by a suite

of optical and electronic tests. Optical tests on vapor-deposited quinacridone thin

films confirmed that quinacridone absorbs over a relatively broad range of visible

wavelengths, and absorbed light produces an exciton of binding energy 22 ± 1.2

meV, which suggests delocalization over several lattice sites. In order to investigate

the exciton dynamics further, it would be interesting to measure the exciton diffusion

length by running a thickness-dependent photoluminescence quenching experiment,

where the internal field is held at zero at each thickness to inhibit exciton dissociation

into free carriers. Then as the thickness of the quinacridone layer increases, we should

see an increase in photoluminescence, as the distance from the acceptor layer to the

bulk of exciton photo-generation exceeds the exciton diffusion length.

Electronic tests showed that quinacridone had a conductivity of σ = 1.9 × 10−6[

S/cm], and found a thermal activation energy for the photo-generation of charge

carriers. However, we hope to run further temperature-dependent impedance spec-

troscopy tests once our turbo-pump is fixed to give a more convincing temperature
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dependent dataset.

Finally, by testing an ITO:PEDOT:Quinacridone:Al diode device, we were able

to show that device performance is not limited by free carrier lifetimes, which were

found to have lifetimes of τ = 630±5µs, far longer than the extraction time constants

of τf = 3.8 ± 0.2µs and τs = 32 ± 4µs. Rather the lack of exciton dissociation,

which is inhibited by the low mobility of our polycrystalline thin-films, limits the

current generation, and our weighting of the light current by the probability of exciton

dissociation is a satisfactory model to explain the deviation from the expected ideal

diode IV characteristic lineshape.
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