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ABSTRACT 
 

Despite the high mortality rate of ovarian cancer, there are few selective 
biomarkers that detect its progression and none have become successful targets for 
therapy. A complex microenvironment that promotes angiogenesis, reduces immune 
responses and alters the integrity of the surrounding matrix is involved through the 
biology of ovarian cancer. Previous studies done by our lab and collaborators indicated 
that extracellular threonyl-tRNA synthetase (TARS) is a pro-angiogenic mediator of the 
ovarian tumor microenvironment, which is secreted in response to inflammatory signals, 
and actively promotes angiogenesis. In order to better understand the mechanisms 
underlying the angiogenic effects of TARS in ovarian cancer, it is essential to identify 
whether it directly affects ovarian tumor growth and invasion. Preliminary evidence 
indicated that TARS is secreted from ovarian cancer cells in response to TNF-α and 
TARS exhibits extracellular angiogenic activity. In previous studies, TARS was shown to 
significantly increase migration of HUVECs in a transwell assay to an extent that was 
similar to VEGF. 

The purpose of this project was to establish a role for TARS in tumor 
progression and its potential as a diagnostic marker using an animal model of ovarian 
cancer. The hypothesis tested is that TARS plays a key role in the angiogenic and 
invasive potential of ovarian cancer, and TARS inhibition will reduce the angiogenic 
effect of tumor cells which is reflected by measurement of intratumor microvessel density 
(MVD). The study tested the effect of BC194-mediated TARS inhibition on the 
development of ovarian tumors in ID8 mouse model. We found a positive correlation 
between TARS expression and ovarian cancer progression, and TARS inhibition with 
BC194 reduce the progression of ovarian cancer. These data suggest that TARS has an 
important role in the tumor microenvironment and that TARS inhibition should be further 
investigated as a therapy for ovarian and other angiogenic cancers. 
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CHAPTER 1: INTRODUCTION 

 

1.1 Angiogenesis 

1.1.1 Angiogenic process and regulators of angiogenesis    

               A number of sequential events are involved in the formation of a new blood 

vessel.  For the ovary neovascularization, the cellular events are virtually identical no 

matter where the stimulus comes from. It could be either from periodic 

neovascularization of the normal ovarian follicle or from ovarian tumor cells (Brown, 

Blanchette et al. 2000). At a given time, endothelial cells exist in a near quiescent state 

with only 0.01% cells undergoing division prior to neovascularization. When a new 

vascular sprout forms, the turnover rate of endothelial cells increases up to 50-fold. In 

order to promote angiogenesis by unmasking pro-angiogenic molecules, remodeling of 

the extracellular matrix is required which is facilitated by secretion of matrix degrading 

enzymes (Baba, Mandai et al. 2004). 

     After the extracellular matrix is digested, motility-stimulating extracellular 

matrix fragments and growth factors are released to stimulate endothelial cells and create 

a framework for new vessels. Endothelial cell sprouts then proliferate and organize into 

tubular structures, form tight junctions and connect to the pre-existing vascular network. 

Angio-stimulatory molecules are secreted by non-endothelial cells and activated by 

surrounding stroma, which induce and maintain the angiogenic events. Physiological 

angiogenesis is basically a self-limited process and is regulated by endogenous angio-
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inhibitory molecules. This balance of angiogenesis is disturbed during cancer 

progression. 

 

   Tumor cells are able to secrete molecular modulators which initiate the 

angiogenic process. The newly formed blood vessels provide oxygen and nutrients for 

further tumor growth to overcome the diffusion-limited maximal size of approximately 2 

mm3 of a tumor mass. This ‘angiogenic switch’, the acquisition of the angio-stimulatory 

phenotype results from a local imbalance between angio-stimulatory and angio-inhibitory 

molecules. Malignant cells and/or the stroma may increase the production of angio-

stimulatory molecules (Glass, Quackenbush et al. 2015). Neovascularization increases 

blood flow, provides access for immune cells—which can also secrete angio-stimulatory 

molecules, and provides a means of egress for tumor cells, which finally become 

metastasis. 

         The balance of angio-stimulatory and angio-inhibitory molecules are kept by 

genetic regulation. A number of genes have been identified that regulate downstream 

molecules and pathways critical in angiogenesis, among which, P53 is a prominent one. 

P53 is a critical tumor-suppressor gene, been shown to participate in the control of gene 

transcription, DNA synthesis and repair, cell necrosis, tumor invasion and metastasis. 

 P53 is mutated in a majority of advanced stage ovarian cancers and is a potent 

prognosticator of poor clinical outcome (Glass, Quackenbush et al. 2015). Loss of wild-

type p53 promotes angiogenesis by upregulating vascular endothelial growth factor 

(VEGF), which is a potent mitogen for endothelial cells. P53 mediates upregulation of 
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hypoxia inducible factor-1 (HIF-1α), which induces the VEGF increase. HIF-1 is an 

oxygen-regulated transcriptional factor, composed of two subunits HIF-1α and HIF-1β. 

HIF-1 is able to bind the 5’ flanking regions of VEGF and activates VEGF transcription. 

Overall, loss of P53 enhances hypoxia-induced HIF-1α levels, induces HIF-1 dependent 

VEGF expression in tumor cells and promotes neovascularization of tumor xenografts 

(Glass, Quackenbush et al. 2015).   

       Angiogenesis is closely regulated by extracellular matrix (ECM) proteins 

through the integrin family of receptors. Integrins are divalent cation-dependent 

heterodimeric membrane glycoproteins comprised of non-covalently associated α and β 

subunits that promote cell attachment and migration on the surrounding extracellular 

matrix. 

           In vitro and in vivo data have implicated a number of endothelial cell integrins in 

the regulation of cell growth, survival and migration during angiogenesis. These integrins 

include the heterodimers α1β1, α2β1, α4β1, α5β1, α6β1, α6β4, α9β1, αvβ3 and αvβ5. 

Despite the conflicting theories and evidences of several integrins in angiogenesis, 

including αv integrins and α2β1 integrin, some major roles for key integrins have been 

revealed.  The integrin αvβ3, a receptor for RGD-containing proteins such as vitronectin, 

fibronectin, fibrinogen and osteopontin (which are components of the ECM), was the first 

of the alpha v integrins to be characterized and shown to regulate angiogenesis (Brooks, 

Clark et al. 1994). This integrin is widely expressed on blood vessels in human tumor 

biopsies but not on vessels in normal human tissues. Its expression on endothelial cells is 

stimulated by angiogenic growth factors such as bFGF, TNFα, and IL-8 and it is 
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upregulated on endothelium in tumors, wounds and sites of inflammation (Brooks, Clark 

et al. 1994). Integrin αvβ3 antagonists induce endothelial cell apoptosis, increase the 

activity of the tumor suppressor p53 and increase levels of the cell cycle inhibitor p21 

WAF1/CIP1 and decrease levels of the anti-apoptotic protein BAX. It was also shown 

that integrin αvβ3 promotes angiogenesis and endothelial cell survival and angiogenesis 

is cancelled by integrin suppression. Ligation of endothelial αvβ3 integrin has also been 

shown to activate MAP kinase, focal adhesion kinase (FAK) and Src, among other 

kinases, resulting in cell proliferation, differentiation and migration (Eliceiri, Klemke et 

al. 1998). 

        Fibronectin is key extracellular matrix protein that is deposited by endothelial 

cell during normal and tumor angiogenesis. Short fibronectin peptide loops containing the 

sequence RGD interact with integrin such as α5β1, αvβ5 and αvβ3 (Plow, Haas et al. 

2000)  Fibronectin is essential for developmental angiogenesis as deletion of all 

fibronectin isoform is early embryonic lethal, with yolk sac and other mesodermal tissue 

defects. The most recent fibronectin-binding integrin to be found to play a role in 

angiogenesis is integrin α9β1. It is a receptor for a number of ECM proteins and cell 

surface receptors including tenascin-C, thrombospondin, osteopontin, IIICS fibronectin, 

VCAM and other ligands (Marcinkiewicz, Taooka et al. 2000). Fibronectin and several of 

its receptors clearly play central roles in promoting angiogenesis during development and 

during tumor growth.  
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1.1.2 Angiogenesis and ovarian cancer  

 The complexity of genetic and/or environmental initiating events and lack of 

clarity regarding the cells or tissues of origin is a major hindrance to better understand 

how the ovarian cancer (OvCa) initiation and progression. A series of events are involved 

in metastasis, such as direct extension or exfoliation of cells into the peritoneal cavity, 

survival of matrix-detached cells in ascites, and subsequent adhesion to the mesothelium 

lining covering abdominal organs to establish secondary lesion containing host stromal 

and inflammatory components (Baba, Mandai et al. 2004). It’s a remarkable challenge to 

develop experimental models to understand this unique mechanism of metastasis. Many 

approaches and knowledge used to study other solid tumors (lung, colon, and breast, for 

example) are not transferable to OvCa research given the fact that OvCa have distinct 

metastasis pattern and unique tumor microenvironment. 

              A correlation between clinical outcome and neovascularization of tumors, 

particularly in different OvCa subtypes, has been defined. Increased angiogenesis is a 

negative indicator of progression-free survival, overall survival, and predicts higher 

likelihood of metastasis in OvCa (He, Wang et al. 2015). Many factors such as tumor 

microvessel density and angiogenic cytokine expression as well as serum and urine levels 

of angio-stimulatory molecules have been used to study the role of angiogenesis as a 

prognosticator. Microvessel density is determined by counting the number of vessels 

which are stained immunohistochemically. Darai et al analyzed microvessel staining with 

CD31 (an endothelial marker, also known as PECAM) in 20 benign, 20 low malignant 

potential and 20 malignant ovarian tumors. Results found that microvessel counts in 
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ovarian cancers are higher than that of low malignant potential or benign tumors (Darai, 

Bringuier et al. 1998). A correlation between increased number of CD31-stained vessels 

and advanced stage and tumor grade was also observed. Orre et al found that microvessel 

counts are higher in mucinous than serous ovarian tumor subtypes, suggesting tumor 

vascularity may be associated with histological type (Orre, Lotfi-Miri et al. 1998). 

Hollingsworth et al. evaluated microvesssel density as a function of outcome in advanced 

stage ovarian carcinomas and found that increased microvessel density is associated with 

poor overall survival and shortened disease-free survival (Hollingsworth, Kohn et al. 

1995).  Angiogenesis has also been found to be a predictor of worse prognosis but not 

an independent variable in multivariate analysis. Abulafia et al used factor VIII staining 

to evaluate microvessel counts in primary and matched metastatic ovarian tumor samples. 

Microvessel counts in omental metastases, but not in primary ovarian tumors, correlated 

with pre-operative CA125 levels and patient survival (Abulafia, Triest et al. 1997).  An 

association between angiogenesis and poor prognosis early stage ovarian cancers was 

also observed by Paley et al. in a study where they assessed VEGF expression through in 

situ hybridization of 68 stage I and II cancers (Paley, Goff et al. 2000). 

 

 1.1.3 Targeted therapy against angiogenesis in ovarian cancer (OvCa) 

            Angiogenesis not only plays a fundamental role in normal ovarian physiology but 

is also critically important in the pathogenesis of OvCa. Angiogenesis also promotes 

tumor growth and progression through ascites formation and metastatic spread. VEGF, 

fibroblast growth factor (FGF), and their respective receptors are among the well-
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recognized promoters of angiogenesis. In addition, platelet-derived growth factor 

(PDGF), epidermal growth factor (EGF), angiopoietins, and hepatocyte growth factor are 

also known to involve in tumor angiogenesis (Paley 2002). OvCa cells express VEGF 

and VEGF receptor (VEGFR), and an association between VEGF expression and the 

development of malignant ascites and tumor progression has already established (Paley 

2002).  

              Tumor growth is significantly decreased when tumor vascularization is reduced, 

and without adequate vascularization, tumor cells undergo necrosis or apoptosis. Most 

notably among those factors, VEGF has emerged as a dominant pathway although 

mechanisms underlying angiogenesis in tumors are multi-factorial and still quite unclear. 

 Among the various treatments for patients with platinum-resistant OvCa, anti-

angiogenesis strategies are attractive. Bevacizumab (a monoclonal antibody to VEGF-α) 

was developed by Genentech, San Francisco, CA, USA and marketed as Avastin. In 

preclinical studies, bevacizumab used as maintenance therapy was shown to prolong 

survival by inhibiting or delaying disease recurrence in a murine OvCa model (Paley 

2002). Bevacizumab is now the most prominent anti-angiogenic therapy approved by the 

Food and Drug Administration (FDA) for patients with platinum-resistant recurrent 

ovarian cancer as well as other angiogenic cancers including colon, renal and lung 

cancers. Combination of bevacizumab and cytotoxic chemotherapy has resulted in 

statistically improved cancer-free survival and overall response rate. Bevacizumab is also 

used as frontline therapy for ovarian cancer in many countries outside the United States. 
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1.1.4 Bevacizumab toxicity and adverse events  

               Although anti-VEGF therapy such as bevacizumab has been effective in OvCa, 

some severe complications such as gastrointestinal perforation, surgery and wound-

healing complications, and hemorrhage have been reported. Bevacizumab was 

discontinued in 8.4%-21% of patients across all tumor types because of adverse reactions 

(Paley 2002). A better understanding of the mechanisms of bevacizumab adverse effects 

and resistance still need further investigations. The exact mechanism of resistance for 

anti-angiogenesis therapies is still not clear, but several pro-angiogenic pathways within 

the tumor, such as Angiopoietin 1, Delta-like ligand 4/Notch, and microRNAa), immune 

response, induction of hypoxia may be involved (Paley 2002).  

 

1.2 Threonyl-tRNA synthetase 

1.2.1 Introduction to threonyl-tRNA synthetase 

               Threonyl-tRNA synthetase (TARS) is a class II ARS which catalyzes the 

attachment of threonine to its corresponding tRNA for use in translation. TARS has a 

molecular weight of 83kDa (human, monomer; 76 kDa E.coli). However, like other class 

II ARSs, the protein is typically found as a homodimer. There are four core domains 

conserved from prokaryotes to eukaryotes in the structure of TARS. Although TARS has 

been implied in angiogenesis and tumor cell growth, its role in extracellular signaling had 

not been studied previously before the Lounsbury and Francklyn labs’ work (Williams, 

Mirando et al. 2013). 
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 1.2.2 Non-canonical functions of threonyl-tRNA synthetase 

The canonical function of aminoacyl-tRNA synthetases (ARSs) is to attach amino 

acids to their cognate tRNAs a part of the protein synthesis machinery. Distinct non-

canonical functions of many ARSs in eukaryotes have been found, such as inflammatory 

response regulation, transcriptional regulation, gene silencing, etc. These secondary 

functions may explain the links between ARSs and diverse human diseases.  For 

example, correlations have been found between mutations in ARS and several nervous 

system-related disorders such as Charcot-Marie-Tooth disease, leukoencephalopathy, 

infantile encephalopathy, and a Type III Usher-like syndrome (Jordanova, Irobi et al. 

2006). The distinct mechanisms that connect ARS activity with the pathogenesis of these 

diseases and the other non-canonical activities are still not clear, indicating that ARSs are 

dynamic signaling molecules functioning beyond established roles. Some extracellular 

signaling functions of several class I ARSs have been shown in previous studies, which 

are stimulated by inflammatory response, and they display different roles in angiogenesis. 

Tyrosyl-rRNA synthetase (YARS) and tryptophanyl-tRNA synthetase (WARS) are 

secreted in response to the cytokines TNF-α and interferon, respectively. While a 

secreted cleavage fragment of YARS is found to be angiogenic, a splice variant of 

WARS is secreted and inhibits angiogenesis (Wakasugi and Schimmel 1999).   

 Threnonyl-tRNA synthetase (TARS) has not been previously associated with 

extracellular signaling, although there are findings implying that it may be involved in 

angiogenesis and tumor cell growth. The macrolide antibiotic borrelidin, a potent non-

competitive inhibitor of TARS, inhibits endothelial cell tube formation and reduces 
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metastasis in a mouse model of melanoma (Habibi, Ogloff et al. 2012). Among several 

derivatives of the original drug borrelidin, BC194 is less cytotoxic but retains the anti-

angiogenic properties of borrelidin, making it a good candidate to study the mechanism 

of TARS regulating angiogenesis (Moss, Carletti et al. 2006). 

           In a previous study done by the Lounsbury lab, TARS was found to be actively 

secreted and to exert angiogenic activity, including stimulation of endothelial cell 

migration. Based on the data from the study, a model of the mechanism of how TARS 

functions in angiogenesis was presented (Fig. 1) (Williams, Mirando et al. 2013). 

Although the form of TARS that is secreted and its putative receptors still remain 

unclear, that study implied TARS has a novel extracellular function, confirming TARS as 

the anti-angiogenic target of the borrelidin derivative BC194, and indicating secreted 

TARS probably has a role in angiogenesis and inflammation in cancer and autoimmune 

 
 
Figure. 1 Proposed model for TARS angiogenic activity. 
Modified from Williams et al. (11). 
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disease (Williams, Mirando et al. 2013). 

1.2.3 TARS and ovarian cancer 

Ovarian cancer is a highly angiogenic malignancy, and correlation between 

ovarian cancer progression and expression of angiogenic signaling molecules has already 

been established in many studies, two notables among these molecules are hypoxia-

inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF). In a previous 

study done by Lounsbury lab, a relationship between TARS and human ovarian cancer 

was explored. It was found that levels of TARS in patient tumor and inflammatory cells 

correlate with angiogenesis and stage of disease (Wong, Wellman et al. 2003).  

              In a study done by the Lounsbury lab, TARS expression in human ovarian 

cancer specimens was measured. Experiments were design to detect only overexpressed 

TARS. A significant positive correlation between increasing disease stage and TARS 

staining intensity was revealed. Overexpressed TARS also co-localized with VEGF and 

was in proximity to areas of neovascularization indicated by the endothelial marker 

PECAM (CD31) (Wellman, Eckenstein et al. 2014). These data suggest there is a novel 

relationship between TARS expression and ovarian cancer, and indicates an association 

between TARS and its angiogenic roles in the ovarian cancer microenvironment. In the 

same study, it was also found that TARS was overexpressed in infiltrating leukocytes 

within ovarian tumors, TARS was secreted from ovarian cancer cells in response to cell 

stress, serum levels of TARS correlated with tumor levels of TARS, overexpression of 

TARS correlated with increased survival in late-stage disease. All of these evidences 
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supported a connection between TARS and both angiogenesis and stage of ovarian 

cancer. 

 

 

1.3 Ovarian cancer 

 

1.3.1 Epidemiology and risk factors 

                Ovarian cancer is the sixth most common cancer in women (Vaughan, Coward 

et al. 2011). Among many subtypes, epithelial ovarian cancer is the most common, which 

results from malignant transformation of the ovarian surface epithelium. The disease is 

frequently presented in advanced stage and has a poor prognosis with present therapies. 

Incidence of epithelial ovarian cancer ranks high in Europe, the USA, and Israel, and 

relatively low in Japan and developing countries. The median age of patients is 60 years, 

and the average lifetime risk for women in developed countries is about one in 70. Family 

history of ovarian or breast cancer is found the most important risk factor, although a 

genetic predisposition (most notably breast cancer genes BRCA1/BRCA2 mutations) is 

present in only 10-15% of patients. For a woman with a BRCA1 mutation, the risk of 

epithelial ovarian cancer is 39-46%, and with a BRCA2 mutation, 12-20% (Christie and 

Oehler 2006). Lack of childbirth, early menarche, late menopause, and increasing age are 

also risk factors, whereas oral contraceptive use, pregnancy, tubal ligation, lactation 

could lower the risk. 
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1.3.2 Pathology of ovarian cancer 

          Epithelial ovarian cancers could either be serous (most common), mucinous, or 

endometrioid and less commonly clear cell, transitional, etc. Histologically, epithelial 

ovarian cancers are classified as grade 1, 2, 3 (Kaku, Watanabe et al. 2012). Embryonic 

origin of epithelial ovarian cancers come from the ovarian surface epithelium and the 

peritoneal and fallopian tube epithelia, although some ovarian cancers might originate 

from the distal tubes. Mucinous and endometrioid carcinomas usually have favorable 

prognoses, serous carcinomas less so, and undifferentiated carcinoma is the most 

aggressive subtype. Tumor grade is always a consistent prognosticator (Kaku, Watanabe 

et al. 2012). 

 

1.3.3 Causes and pathogenesis 

 The majority (approximately 90%) of ovarian tumors arise from the ovarian 

surface epithelium, which completely covers the surface of the ovary and is continuous 

with the abdominal mesothelium.  Gonadotropin receptors are expressed in epithelial 

cells, which interact with the ovarian stroma in the secretion of growth factors, cytokines, 

and steroids. The surface epithelial layer is disrupted after ovulation, and epithelial cells 

frequently grow into the stroma to form clefts or inclusion cysts. It was demonstrated in 

many studies that ovarian cancer originates from these clefts and inclusion cysts due to 

the interaction with the stromal environment full of hormones and growth factors. A 

number of subtypes of epithelial ovarian cancer have been identified histologically, with 
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approximately 80% of the classified as papillary serous epithelial (Kaku, Watanabe et al. 

2012). 

 For the different subtypes of epithelial ovarian cancer, despite the possession of 

unique molecular mutation and transcriptional abnormality, their morphology usually 

resembles the specialized epithelia of the reproductive tract that originate from the 

Mullerian ducts. Research suggests that epithelial ovarian cancer might all arise from one 

precursor cell of surface epithelium where homeotic genes (HOX genes) regulate 

embryonic pathways of differentiation. HOX genes are not usually expressed in ovarian 

surface epithelium.  However, introduction of expression of HOXA9, HOXA10, and 

HOXA11 to ovarian surface epithelium in tumorigenic mice is able to lead these cells to 

differentiate along different mullerian lineages, giving rise to tumors with characteristics 

of serous, endometrioid, and mucinous ovarian tumors, respectively (Kelly, Michael et al. 

2011). It was also found that HOXA7 controls the extent of differentiation and grade of 

ovarian tumors (Christie and Oehler 2006). Since HOX gene expression is regulated by 

sex steroids throughout the menstrual cycle, over-exposure of ovarian surface epithelium 

cells to these hormones in adult women might lead to abnormal HOX activation, leading 

to proliferation and genomic instability. 

 Genomic mutations have a critical role in the pathogenesis of many forms of 

epithelial ovarian cancer. It has been reported that high-prevalence somatic (non-

germline) mutations (>5%) only exist in a small number of genes in epithelial ovarian 

cancer(Christie and Oehler 2006). These mutations affect the pathogenesis in a similar 
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manner like HOX. These genes includeTP53, CTNNB1, and PTEN (all inactivated), and 

KRAS, Pik3CA, and AKT1 (all activated). 

 

1.3.4 Staging of ovarian cancer    

 In summary, there are four stages of the disease correspond to (I) ovarian, (II) 

pelvic, (III) peritoneal or coelomic, and (IV) metastasizing disease. Staging of epithelial 

ovarian cancers is shown in Table 1 (Mutch and Prat 2014).  From the primary tumor, 

propagation can occur throughout the abdominopelvic peritoneal compartment and to 

retroperitoneal pelvic, periaortic, suprarenal, mesenteric, and mesocolic lymph nodes. 

The most common extra-abdominal site of disease is the pleural space. Less frequently, 

distant metastases occur in the parenchyma of the liver, lungs, and other organs (Mutch 

and Prat 2014).  

 

Table 1: Ovarian cancer staging by International Federation of gynecology and 

obstetrics criteria 

Stage I: tumor restricted to ovary 

IA : limited to one ovary; capsules intact, no tumor on ovarian surface; no malignant cells 

in ascites or peritoneal washings 

IB:  limited to both ovaries; capsules intact, no tumor on ovarian surface; no malignant 

cells in ascites or peritoneal washings 

IC: tumor limited to one or both ovaries with capsule rupture or tumor on ovarian surface; 

malignant cells in ascites or peritoneal washings 

Stage II: tumor involves one or both ovaries with pelvic extensions 

IIA: extension or implants on uterus or tubes, or both ;no malignant cells in ascites or 
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peritoneal washings 

IIB: extension to other pelvic tissues; no malignant cells in ascites or peritoneal washings 

IIC: pelvic extension with malignant cells in ascites or peritoneal wshings 

Stage III: tumor involves one or both ovaries with peritoneal metastasis outside the 

pelvis or retroperitoneal or inguinal node metastasis 

IIIA: microscopic peritoneal metastasis beyond pelvis 

IIIB: macroscopic peritoneal metastasis beyond pelvis 2 cm or less in greatest dimension 

IIIC: peritoneal metastasis beyond pelvis more than 2 cm in greatest dimension or regional 

lymph node metastasis, or both. 

Stage IV: distant metastasis(excludes peritoneal metastasis) to liver parenchyma or 

other visceral organs or a malignant pleural effusion 

 

 

1.3. Markers for ovarian cancer 

        Identification of tumor markers and development of assays to measure them is 

an important goal in oncology. It is also important in differential diagnosis in order to 

establish appropriate management. It is difficult to distinguish diffuse peritoneal 

malignant mesothelioma from ovarian cancer, but differential diagnosis can be achieved 

by immune profile of the tumors with a systematic approach of both positive and negative 

mesothelioma markers (Hassan, Remaley et al. 2006). 

    Immunohistochemistry is used to achieve the definite diagnosis. Podoplanin, 

calretini, CK5/6, WT1, thrombomodulin, mesothelin, and D2-40 antibodies are used as 

positive markers of mesothelioma that are commonly expressed in mesotheliomas, but 

not in carcinomas, while Ber-EP4, MOC-31, TAG72, CA19-9, CD15(Leu-M1), 

monoclonal CEA and BG-antibodies are negative markers for mesothelioma that are 
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commonly expressed in adenocarcinomas(Taskin, Gumus et al. 2012). Mesothelin is 

highly sensitive for malignant mesothelioma, but its specificity is relatively low because 

some other tumors including ovarian cancer also exhibit mesothelin positivity. 

Nevertheless diffuse and strong membranous mesothelin expression serves as a strong 

indicator of particularly epitheliod mesothelioma rather than an ovarian carcinoma 

(Ordonez 2007).  

 Another distinguishing marker for ovarian cancer is estrogen receptor (ER) 

positivity. ER expression in malignant mesothelioma is a very rare phenomenon, and its 

positivity most probably indicates a serous carcinoma rather than a mesothelioma. 

Malignant mesotheliomas can be referred to gynecologic oncology clinics with primary 

ovarian masses or peritoneal carcinomatosis. This rate was calculated as 0.1% in one 

study (Taskin, Gumus et al. 2012). Clinical distinction of malignant mesothelioma from 

ovarian cancer or peritoneal adenocarcinoma is considered very difficult, but can be 

achieved by immune profile of the tumors. 

 

1.4. Modeling of ovarian cancer 

1.4.1 Cell lines and xenografts 

 Auersperg et al. first isolated human ovarian surface epithelial (OSE) cells in 

1984, which allowed the development of initial ovarian cancer models to evaluate the 

efficacy of the chemotherapy (Liu, Yang et al. 2004). These models typically involved 

the injection of human OvCa cells subcutaneously, intraperitoneally or orthotopically into 

immune deficient mice. A variety of responses of different levels occur, such as ascites 
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formation, primary tumor spread and tumor progression. All of these are helpful for the 

researcher to better understand the underlying mechanism of the disease. However, the 

limitations of this approach are evident with some drawbacks such as lack of the initial 

tumor-ovary interaction and the absence of an intact immune system in the host mice, 

while immune system has been implicated as a very important mediator of cancer 

progression and metastasis by many studies. 

 Although a number of ovarian cancer cell lines and primary tissues are currently 

available to mimic the molecular diversity, cellular heterogeneity, and histology seen in 

patient tumors, no uniform collection exists. Several human ovarian cancer cell lines can 

be used for xenograft studies in mice. Examples of the human cell lines which are 

suitable for development as murine xenografts are OVCAR-3 and SKOV3 (Peterson, 

Reed et al. 1992).  OVCAR-3 has been successfully grown in mice and develops as an 

intraperitoneal xenograft that retains many characteristics corresponding to its human 

tumor counterpart, similar to a serous ovarian cancer. The ovarian cancer cell line 

SKOV3 was collected from a patient in relapse after cisplatin and chlorambucil treatment 

and represents well differentiated serous adenocarcinoma cell lines, which is able to form 

xenograft tumors with a very similar histology to a human serous cancer. Several sublines 

of SKOV3 cells were made by passaging the cells in nude mice. In nude mice, the 

SKOV3 cells grow as disseminated disease, numerous (100-200) small nodules could be 

found on the surface of the peritoneum bowel mesentery, and diaphragm. Mouse 

omentum could also be transformed into a large tumor, mimicking human advanced stage 

serous-papillary OvCa. 
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 The development of mouse OvCa cell lines for use in syngeneic mouse models 

has the advantage of use in immunocompetent mouse models. For these models, mouse 

ovarian epithelial cells are collected from the mouse bursa and are passaged in culture 

until phenotypic changes occur. For example, cell contact inhibition could be lost, 

leading to changes in cell morphology. Neoplastic progression in the cell culture dish 

often includes the loss of tumor-suppressor proteins E-cadherin and connexin-43 (Roby, 

Taylor et al. 2000). 

 Ascites and metastatic tumors form 90 days after transformed OvCa cells are 

injected intraperitoneally into C57BL/6 mice, while solid tumor forms confining to the 

injection area if cells are injected subcutaneously. The significant disadvantage of the 

intraperitoneal model is that early events in metastasis cannot be fully appreciated, 

because the initial steps of tumor formation rely on the artificial dispersion of single cell 

suspensions of cancer cells in the peritoneal cavity, rather than progression of metastasis 

from an intact primary tumor tissue (Roby, Taylor et al. 2000). 

             The method of orthotopic ovarian xenografts is developed to better mimic the 

process of dissemination from the primary ovarian tumor relative to the intraperitoneal 

xenografts discussed above, and may be better for studying metastasis. However, 

significant anatomic differences exist between rodents and humans. The ovary of the 

rodents has a closed bursa enclosing it, while the ovary of the humans is exposed to the 

peritoneal cavity. 

             Several methods have been developed for orthotopic mouse models: injection 

under the ovarian bursa, intraperitoneal injection of minced human tumors, implantation 
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of human or murine tumor fragments adjacent to the ovary. Critical steps involved in 

ovarian cancer metastasis are invasion though the ovarian bursa, followed by peritoneal 

cavity spread and colonization and invasion of organs in the peritoneal cavity. When late 

passage cells from the mouse ovarian epithelial cancer cell line MOSEC were injected 

into athymic and syngeneic mice, tumor implants grew throughout the abdominal cavity, 

and produced hemorrhagic ascitic fluid. A highly malignant neoplasm resulted with both 

carcinomatuous and sarcomatous components. The ability and pattern that MOSEC form 

extensive tumors within the peritoneal cavity is very similar to stage III and IV ovarian 

cancer found in women (Roby, Taylor et al. 2000). Since in the syngeneic mice model, 

the immune systems are intact in mice, the ability of MOSEC to form extensive tumors 

within peritoneal cavity despite the immune response they dealt with, makes this model 

uniquely valuable for investigations of molecular and immune interactions in ovarian 

cancer development. 

    

  1.4.2 ID8 mouse model 

              In this project, the role of TARS in ovarian cancer were studied in a mouse 

model of ovarian cancer first described by Roby et al. (Roby, Taylor et al. 2000). This 

model was developed by propagating normal mouse ovarian surface epithelial cells in 

culture for multiple passages until they developed a transformed phenotype. 

Intraperitoneal or subcutaneous transplantation of the cells into standard C57BL/6 mice 

resulted in tumors and peritoneal ascites. As opposed to a xenograft model using human 

tumor lines in immunocompromised mice, the syngeneic nature of the ovarian model 
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allows the tumor-stromal interactions characteristic of genuine cancers to be more 

accurately reproduced. 

 1.4.3    ID8 cell gene status 

 The TP53 tumor suppressor gene has long been established as a critical regulator 

of cell proliferation and as a frequent target for mutation in cancer (Greenblatt, Bennett et 

al. 1994). The TCGA project identified TP53 mutations in 96% of ovarian cancers 

(Cancer Genome Atlas Research 2011). Whole-exome sequencing has been performed to 

assess the genomic landscape of the ID8 cell model to identify the functional mutations in 

genes characteristic of HGSC including Trp53 (the mouse p53 gene), however, no Trp53 

mutations were detected (Walton, Blagih et al. 2016).  Some mutations typically seen in 

clear cell (Pik3ca), low-grade serous (Braf), endometrioid (Ctnnb1), and mucinous 

(Kras) carcinomas were also notably not observed (Walton, Blagih et al. 2016).  

 Given the centrality of TP53 mutations in HGSC, p53 function was also 

assessed in ID8 cells, and a significant increase of p53 function was observed (Walton, 

Blagih et al. 2016). Following treatment with cisplatin and MDM2 inhibitor Nutlin-3, a 

marked increase in CDKN1A (p21) transcription was also detected, indicating that p53 

remains transcriptionally active. For intraperitoneal ID8 tumors, Sanger sequencing 

didn’t find Trp53 mutation in any tumor, including common hotspot mutations sites, and 

a wild –type pattern of p53 expression was confirmed with immunohistochemistry 

(Walton, Blagih et al. 2016). IHC examination of typical HGSC markers indicated that 

tumors were strongly and diffusely positive for WT1, but negative for PAX8. For Brca2, 

no functional abnormalities was identified in whole-exome sequencing. It was considered 
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that parental ID8 cells were able to form Rad51 foci in response to DNA DSB damage 

Together, these data suggest that parent ID8 is poorly representative of human HGSC 

(Walton, Blagih et al. 2016). 

        Roberts et al. compared the alterations of the actin cytoskeleton as well as 

expression of cellular adhesion proteins versus the number of passages to study the 

progression of ovarian carcinogenesis, showing that transformation from a premalignant 

to a highly malignant phenotype with downregulation of E-cadherin and connexin-43 

(Roberts, Mottillo et al. 2005). 

      In a study done by Greenaway et al.(Greenaway, Moorehead et al. 2008), ID8 

cells were injected into the ovarian bursal cavity of C57bL6 mice. The ID8 formed direct 

contact with the ovarian stroma, resulting in primary tumor formation, secondary 

peritoneal tumors, and extensive ascites fluid. The histological and gross pathological 

features resembled serous carcinoma. Increased expression of proliferative and survival 

markers, including phosphorylated Akt, proliferating cell nuclear antigen, and Bcl-2, 

were increased. VEGF levels were also increased in the serum and ascetic fluid. 

        Based on these findings, it seems that ID8, a widely used murine model of 

ovarian carcinoma, is a poor representative of HGSC, with a conspicuous absence of 

mutations in genes associated with human disease, and evidence of functional p53 

activity. It remains, however, a useful model due to its origin and ability to consistently 

form tumors that closely parallel the patterns seen in HGSC. 

          Genetically engineered mouse models of HGSC have been difficult to generate. 

Recently, two HGSC models were described: the Drapkin lab utilized the Pax8 promoter 
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to drive Cre-mediated recombination of Trp53 and Pten with Brca 1 or Brca2 in mouse 

fallopian tube secretory epithelium (Perets, Wyant et al. 2013). By morphology and IHC, 

the tumors resembled human HGSC, but no ascites was observed, and all Pten-/- mice 

developed endometrial lesions. In addition, no transplantable cell lines have been 

described from these mice. A second fallopian tube model has been described, with SV40 

large T antigen under the control of the OVGP-1 promoter. Again, STIC-like lesions with 

p53 signatures were described, as well as invasive tumors within the ovary. However, no 

peritoneal dissemination or ascites was seen, and, again, no lines that can be readily 

transplanted into nontransgenic mice have been described (Sherman-Baust, Kuhn et al. 

2014). Both of these models are undoubtedly of great importance. However, it was 

believed that a transplantable model, based on a single genetic background (C57BL/6), 

which recapitulates disseminated peritoneal disease with ascites and in which multiple 

genotypes can potentially be rapidly investigated in parallel, is an important adjunct to 

transgenic models. 

 

1.5 Quantification of Angiogenesis 

1.5.1 Microvessel density (MVD) 

      Many angiogenesis assays have been developed to assess the new blood vessel 

growth, including chick chorioallantoic membrane (CAM) assay, the corneal 

micropocket assay, dorsal skin fold chamber, and matrigel assay. Notably, tumor 

angiogenesis can be directly studied in solid tumor tissue specimens. The focus of this 

project was to determine the role of TARS activity in the vascularization of tumors in 
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developing ovarian tumors.  For this purpose, we used the most widely used method of 

quantifying new blood vessel growth:  the determination of intratumoral microvessel 

density (MVD) (Wild, Ramakrishnan et al. 2000).  

 The degree of angiogenesis of a tumor, as assessed by MVD, is a powerful 

candidate for prognosis and a predictive tool. The College of American Pathologists has 

investigated the prognostic and predictive factors in breast cancer and has ranked 

quantification of tumor angiogenesis by counting microvessels in immunostained tissue 

sections as category III evidence (Vermeulen, Gasparini et al. 2002). In a multivariate 

analysis, MVD was found to be the most accurate prognostic indicator in breast 

carcinoma for disease-free survival (He, Wang et al. 2015); better than size, grade, or 

estrogen receptor status. 

 

1.5.2 MVD Test Methods 

  Intra-tumor microvessels can be identified by immunostaining of endothelial 

cells. There are two kinds of human endothelial cell specific antibodies: the pan-

endothelial cells markers and antibodies that bind selectively to activated or proliferating 

endothelium. The pan-endothelial cell markers stain small and large vessels with equal 

intensity, and in both frozen and paraffin embedded samples with equal reactivity (Hasan, 

Byers et al. 2002). 

              The most commonly used antibodies include those against factor VIII related 

antigen, CD31/PECAM-1, and CD34. Factor VIII related antigen forms part of the von 

Willebrand factor (vWF) complex and plays a role in the coagulation process (Charpin, 
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Garcia et al. 1997). The platelet-endothelial cell adhesion molecule CD31/PECAM-1, is a 

transmembrane glycoprotein involved in cell adhesion, and CD34 is a surface 

glycoprotein of unknown function (Charpin, Garcia et al. 1997). 

                   Previous investigations on MVD in prostate cancer have demonstrated 

remarkable differences between vWF-MVD and CD34-MVD as well as CD31-MVD and 

CD34-MVD(Offersen, Borre et al. 2002). A quite heterogeneous staining pattern of 

endothelial cells for the three markers was observed in prostate cancer tissue: a 

significantly increased MVD was only reflected when the two endothelial markers, CD31 

and CD34, were used whereas vWF showed a significantly decreased number of 

microvessels in prostate cancer compared to benign BPH tissue. In prostate cancer 

specimens, benign tissue is displaced by invasive tissue, resulting in a decreased number 

of pre-existing mature microvesssels, which are visualized by vWF. Therefore, vWF is 

suitable marker for endothelial cells in benign tissue, but would seem to be an inferior 

marker for assessing newly developed microvessels in prostate cancer(Offersen, Borre et 

al. 2002).  

            The investigation on astrocytoma and oligodendroglioma are in accordance with 

our findings in prostate cancer: CD34 showed the highest sensitivity for vascular 

endothelial cells compared to CD31 and vWF.  Accordingly, the specificity of CD34 for 

endothelial cells is higher in malignant tumors than in more differentiated tumor entities. 

    The relative abilities of these antibodies to highlight the vasculature has aslo been 

examined in EOC. Detection of blood vesssels in tissue sections has recently been 

modified so that it is now possible to discriminate between newly formed immature 
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vessels and those that are more established and mature. Antibodies to α smooth muscle 

actin (α-SMA) appear to stain mature vessels because they attract a “coat” of 

periendothelial support cells—that is, pericytes and smooth muscle (α-SMA positive) 

cells. Antiangiogenic therapeutic procedures, such as the blockade of tumor cell VEGF 

production, result not only in a drop in the vessel count, but also a change in the ratio of 

immature/mature vessels because of the relative vulnerability of the immature vessels to 

this, and most other, forms of antiangiogenic treatment(Bamberger and Perrett 2002). 

        The problem of antigen specificity is highlighted by the detection of CD34 antigen 

on lymphatic vessels, perivascular stromal cells as well as other stromal elements while 

this is compounded by the absence of FVIII-RA on part of the capillary endothelium in 

tumor tissue. The disadvantages associated with staining for CD31 antigen include co-

staining of inflammatory cells, but these can be distinguished from endothelial cells on 

the basis of morphological differences, and frequent antigen loss due to fixatives that 

contain acetic acid. Microwave antigen retrieval effectively abolishes this problem but in 

prospective studies a careful selection of the most suitable tissue fixation procedure 

should still be performed. 

 Despite the fact that MVD is identified as an independent prognostic factor in 

solid tumors, several studies have questioned the finding. Besides the particular tumor 

biological factors that may obscure the relationship, other issues such as staining 

methodology have also been implicated. Lack of standardized immunohistochemical 

techniques because of the wide range of antibodies, antigen retrieval methods, 

designation of high and low vessel count groups (cut-off points), patient groups, vessel 
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quantification interpretation could all contribute to the discrepancy. The correct 

identification of the vascular hot spot within the tumor and observer experience are two 

of the most important factors. In one study that compared the effects of different 

methodologies on evaluation of tumor vascularity, specimens of breast, lung and oral 

carcinoma and normal breast tissue were investigated. A variety of factors such as 

pretreatment of sections (enzymatic digestion, heating), endothelial markers (von 

Willebrand factor or CD31 antibodies), method of quantification (highest microvascular 

density, average microvascular density and microvascular volume) and inter-observer 

variations were all found to alter the estimated vascularity (28). Notably, the pretreatment 

of sections before staining was found to be the variable that most significantly altered the 

calculated vascularity of tumors.       

 An international consensus on the methodology and criteria for evaluation of 

MVD was put forward to overcome some of the problems of discrepancy (Vermeulen, 

Gasparini et al. 2002). In this consensus, a standard method for MVD assessment was 

proposed to improve reproducibility and inter-observer compatibility with regard to the 

selection of representative tissue samples, tissue processing and immunostaining, 

selection of areas for microvessel calculation and vessel counting method within these 

areas. Given the subjective nature of vascular hot spot selection and individual 

microvessels identification, a training program for the inexperienced pathologist is also 

recommended. 

            

1.5.5 Microvessel density and metastasis         
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  Several studies have examined the connection between MVD and tumor 

progression and metastasis (30). A correlation between MVD, intravascular tumor cells 

and the pulmonary metastasis was reported in an animal tumor model more than 20 years 

ago, but was not confirmed concerning its clinical implications. It was shown in one 

research study that patients with a high vascular density had more frequent tumor cell 

shedding than patients with a low MVD. In another investigation concerning cutaneous 

melanoma, it was found that angiogenesis intensity in a human tumor is a good predictor 

for the probability of metastasis (Massi, Franchi et al. 2002). 

 The significance of tumor vascularity in clear cell renal cell carcinoma has been 

controversial, partly because the manual quantification of MVD within a small area of 

tumor was limited. In the study, MVD and vascular endothelial growth factor were 

assessed in both areas of tumor and normal kidney medulla within scanned images using 

imaging software. CD34 staining vessels were counted and intensity of VEGF staining 

measured. To improve the accuracies of manual quantification, a computerized image 

analysis was employed, which allowed assessment of large areas of tumor and 

surrounding normal tissue. The latter was used as an internal reference for normalization. 

Original values from tumor areas and adjusted values as tumor/normal ratios were 

obtained. It was reported there was no association between unadjusted MVD and clinical 

outcome. However, higher adjusted MVD was associated with shorter disease-free 

survival. The validity of manual counting has been questioned since its introduction, and 

computerized image analysis still needs improvement to satisfy the potential bias in 

calculating tumor MVD.  
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1.6. Summary and hypothesis 

Ovarian cancer is a vicious malignancy with extraordinarily high mortality rate. 

There are few selective biomarkers that detect its progression and none have become 

successful targets for therapy. A complex microenvironment that promotes angiogenesis 

of the disease is deeply involved in the ovarian cancer progression and metastasis. 

TARS is a member of the ARS enzyme family with the canonical function to 

catalyze ATP-dependent formation of specific amnio-acyl tRNAs. A variety of non-

canonical functions of several ARSs were found, such as inflammatory regulation, cell 

migration modulation and angiogenesis.   

 Angiogenesis has been established a critical component of the tumor 

microenvironment, and anti-angiogenic therapies using the VEGF inhibitor bevacizumab 

for ovarian cancer have shown effectiveness. Although these therapies have shown a 

variety of extent of efficacies in patients with ovarian cancer, the treatment complications 

and lack of success in some patients lead to the exploration of new ovarian-specific 

angiogenic targets. 

In previous studies, several aspects of the non-canonical functions of TARS have 

been reported. TARS has been associated with autoimmune disorders including 

polymyositis and dermatomyositis through its identification as the target for the myositis 

autoantibody PL-7 (Howard, Dong et al. 2002). TARS was also detected in a genome-

wide RNAi screen for genes associated with protection from hypoxia. The studies done 

by the Lounsbury lab demonstrated that TARS was secreted from ovarian cancer cells in 
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response to TNF-α, exhibited extracellular angiogenic activity, and was able to induce 

endothelial cell migration. The studies also indicated that TARS was overexpressed in 

ovarian cancer, TARS was found to be expressed in colocalization with VEGF and its 

expression was positively correlated with ovarian cancer stage. In addition, analysis of 

TARS levels in patient serum samples showed a positive correlation with TARS tumor 

levels. 

All of these evidence and observations suggest several important questions to be 

resolved: is TARS protein expression characteristic of tumor development, and if so, at 

what stage of cancer development? Is such expression coincident with expression of 

angiogenic markers and/or vascularization? With our patient data as precedent, we 

examined these questions in the ID8 mouse model of ovarian cancer that has been well 

characterized and has the flexibility of altering TARS expression to determine its specific 

role in the growth and vascularization of tumors. 
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CHAPTER 2: METHODS 

2.1 Cell culture and reagents 

 The ID8-C3 cell line we used to generate ovarian tumors was originally 

generated by self-transformation of normal mouse ovarian epithelial cells and were 

generously supplied by Brent Berwin (Dartmouth College) (Roby, Taylor et al. 2000). 

ID8-C3 cell were cultured and propagated by serial passage in RPMI media 

supplemented with 10% fetal bovine serum and 0.1% gentamycin sulfate. After being 

injected into the mice intraperitoneally, these cells form tumors which mimic stage IV 

human ovarian cancer (Erickson, Conner et al. 2013). BC194 was obtained from Biotica 

(now Isomerase Therapeutics Ltd, Cambridge, UK). 

 

 2.2 Mouse modeling by injecting ID8-C3 ovarian cancer cells 

              C57BL/6 mice were used for ovarian cancer modeling and assessment of tumor 

formation. All the experiments performed in animals were in compliance with IACUC 

protocols (IACUC #13-044).  Mice were housed 3 per cage in the standard mice 

plexiglass cages and maintained on a 12 h light: 12 h dark cycle (lights on at 7.00 a.m) in 

a temperature-controlled room (22±2°C) with food and water ad libitum at all times.  

 The injection protocol followed the previous research (Roby, Taylor et al. 2000). 

For injections, ID8-C3 cell were grown in culture, collected by trypsinization and 

centrifugation, and then resuspended in PBS.  3×106 cells were injected intraperitoneally 

into normal six-week-old female C57BL/6 mice (Mirando, Abdi et al. 2016). 

Intraperitoneal tumor formation was monitored by the accumulation of ascites fluid 
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(Roby, Taylor et al. 2000). For specific experiments, three weeks after the cell injection, 

mice were administered vehicle (DMSO) or the TARS inhibitor BC194 (2 mg/kg 

intraperitoneally 3 times per week for 3 weeks). After injections, the mice were evaluated 

3 times every week for the development of ascites by detecting abdominal swelling. The 

mice were euthanized 6-8 weeks after the initial injection. At the time of death, ascites 

fluid was collected from the peritoneal cavity using 10 cc syringe fitted with a 22 g 

needle. Blood was also collected in heparin solution, and was serum obtained by 

centrifugation. The abdominal cavity was opened with a single midline incision, tumors 

in the abdominal cavity were photographed and tumor locations and sizes were noted for 

staging. As described in (Roby, Taylor et al. 2000), amount of tumor on tissues and 

organs was scored on a 0, +, ++, +++ scale: see Table 2. Tumors and surrounding tissues 

were collected from multiple sites, fixed in 4% paraformaldehyde and embedded in 

paraffin for future analysis by immunofluorescence and to quantify MVD.    

 

 

Table 2:  Description of Tumor scoring  

Tumor Score Description of tumors  

0 No tumor evident by gross examination 

+ Tumors grossly evident on one organ or tissue 

++ Moderate tumor formation on more than one organ or tissue 

+++ Extensive tumor formation on several organs or tissues 
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2.3 Immunofluorescence analysis           

 Serial sections (5μm) from paraffin-embedded specimens were cut and 

transferred to positive ion-charged slides. The slides were then deparaffinized and 

rehydrated by use of xylene, 100% ethanol, 95% ethanol, 70% ethanol, 50% ethanol, 

followed by a thorough wash with deionized water. Slides were treated with antigen 

retrieval buffer Dako S1699 for 20 minutes at 95-98°C. After at least 20 minutes cooling, 

slides were blocked with 3% BSA/0.2% TX-100/PBS for one hour at room temperature, 

followed by incubation with primary antibodies as described in Table 3. Slides were 

Table 3: Primary antibodies used for Immunofluorescence 

Primary antibody  Product # species dilution 

anti-ThrRS GTX116359 Rabbit 1:400 

anti-SMactin Sigma A2547 Mouse 1:200 

anti-CD3 Biocare CP215A Rabbit 1:100 

anti-PECAM-1 SC-1506 Goat 1:100 

 

Table 4: Secondary antibodies used for Immunofluorescence 

Secondary antibody dilution 

Alexa 488 donkey anti-ms IgG 1:500 

Alexa 594 donkey anti-rab IgG 1:500 

Alexa 488 donkey anti-goat IgG 1:500 
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incubated in a humidified box at 4 °C for 16–24 h and then washed several times in a 

Coplin jar with PBS. All antibodies were titrated to optimize signal to noise ratio.  

Secondary antibodies used were Invitrogen’s Alexa Fluor 488 donkey anti-goat IgG and 

Alexa 594 donkey anti-rabbit IgG in 3% BSA/0.1% TX-100/PBS (see Table 4). Each 

section was counterstained by using a premixed solution of 4, 6-diamidino-2-

phenylindole (DAPI) (10μg/ml). After staining with secondary antibodies, the slides were 

washed with PBS and mounted with coverslips using AquaPolyMount. Images were 

collected using a fluorescence microscope using either a 10× or 20× objective. Analysis 

of Intratumor microvascular area (IMA) was conducted with MetaMorphTM (Molecular 

Devices) software as described below. 

 

2.4   Immunohistochemistry 

 Formalin-fixed paraffin-embedded sections (thickness 5 μm) underwent 

deparaffinization and antigen retrieval as in the immunofluorescence protocol. 

Endogenous peroxidases were then blocked by submerging the slides in 2.5% hydrogen 

peroxide/methanol buffer for 15 minutes. Nonspecific background was minimized using 

0.3% bovine serum albumin in 0.1 mol/L Tris-buffered saline for 1 hour. Primary 

antibodies used were as described in Table 5 and sections with primary antibodies were 

incubated 16-24 h at 4°C in humidity box. Secondary antibodies described in Table 6 

were applied for 30 minutes at room temperature. 



35 
 

 The sections were then processed with an avidin-biotin-peroxidase complex 

(ImmPRESS; Vector Laboratories, Burlingame, CA), revealed in the presence of 3,3’-

diaminobenzidine tetra hydrochloride (DAB; Sigma, St louis, MO). 

 

 

 

 

 

Table 5: Primary antibodies used for Immunohistochemistry 

Primary antibody Product Species dilution 

Anti-ThrRS GTX116359  Rabbit 1:200 

Anti-CD31 Biocare CP215A  Rabbit 1:100 

Anti-F4/80 SC-25830 Mouse 1:100 

Anti-SMactin Sigma 1A4 Mouse 1:500 

Anti-PECAM-1 SC-1506  Goat 1:100 

 

Table 6: Secondary antibodies used for Immunohistochemistry 

Secondary antibody spec 

Anti-rabbit IgG  DAKO Polymer-HRP goat 

Anti-goat IgG Jackson-HRP donkey  
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2.5 Intratumor quantification of MVD 

    MetaMorph offline software was used for computerized quantification of 

immunostained vascular structures (Chantrain, DeClerck et al. 2003).  PECAM-1-postive 

pixels were selectively detected and uniformly displayed with green pixel overlay using 

the threshold function. With the command <Threshold Image> from the <Measure> 

menu, regions with heavily PECAM-1 staining were added, regions of counter-staining 

and background without PECAM-1 were deleted respectively and successively. These 

two steps were repeated until all the PECAM-1-positive pixels were selectively threshold. 

The threshold area corresponding to the PECAM-1 represented the intratumor 

microvascular area (IMA) and was measured with the <Region Measurement> function. 

For the whole section images, the PECAM-1(IMA) was selectively measured on the 

tumor tissue delineated by using the <Trace Region> command of MetaMorph. 

Neighboring connective tissue and necrotic areas were excluded from the selection. 

Similar procedures were done to TARS staining area (tumor area), the MVD was 

expressed as a ratio of PECAM-1-positive thresholded pixels to TARS positive staining 

area. 

 

2.6 Statistical Analysis 

               All experiments were repeated at least 3 times with specific n-values reported 

within the Figure Legends. Data are presented as mean ± SEM, and P < 0.05 was 

considered significant. Pairwise comparisons were assessed using the Student’s t-test. 
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                                                    CHAPTER 3: RESULTS  

3.1 Mouse Model of Ovarian Cancer 

 To assess the relationship between TARS activity and ovarian cancer 

angiogenesis, a mouse model of ovarian cancer was established, a regimen of TARS 

inhibitor vs. vehicle was administered, and the microvessel density (MVD) of resulting 

ovarian tumors was detected by immunostaining and quantified by MetaMorph offline 

software. Comparisons were made to test the hypothesis that TARS activity promotes 

progression and angiogenesis of ovarian cancer.  

 Normal female C57BL/6 mice were used for assessment of the tumor formation. 

ID8-C3 cells were injected intraperitoneally (3×106 cells in 0.2 ml PBS). Animals were 

evaluated weekly for tumor growth and/or ascites accumulation. Intraperitoneal tumor 

formation was monitored by the accumulation of ascites fluid. Animals were euthanized 

approximately 10-24 days after the development of visible ascites, detected by abdominal 

swelling (Fig. 2). Immediately after euthanization, ascites fluid was collected from the 

peritoneal cavity. The peritoneal and thoracic cavities were opened. Solid tumors of 

varying size developed in the abdomen of mice by 5-6 weeks post-injection. The overall 

tumor take-rate was 100%. Tumor location and sizes were noted and amount of tumor on 

11 tissues and organs was scored on a 0, +, ++, +++ scale: 0, no tumor evident by gross 

examination; +, tumors grossly evident on one organ or tissue, ++, moderate tumor 

formation on more than one organ or tissue; +++, extensive tumor formation on several 

organs or tissues (Table 2 and Fig. 3).  
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A B C

 
 
Figure 2. Development of ascites in syngeneic, orthotopic ID8-3 tumor model. C57BL/6 mice 

were injected with 3×106 ID8-3 ovarian cancer cells. Shown is the development of visible 

swelling due to the accumulation of ascites fluid 5 weeks after injection.  
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Fig1.
 

A. Mouse Anatomy B. Abdominal Wall tumors

C. Stomach tumors D. Mesenteric tumors

 
 
Figure 3. Generation of epithelial ovarian cancer in a syngeneic, orthotopic 

model.  (A) Drawing of mouse anatomy ; (B,C,D) Gross anatomical pathology of 

representative mice, 5 weeks after ID8-3 intraperitoneal injection (B) Abdominal 

wall tumors, (C) Stomach tumors, and (D) Mesenteric tumors. These animals 

scored +++ on the tumor scale (Table 2). 
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3.1.1 ID8-C3 tumors express TARS and are angiogenic 

 Previous data from the Lounsbury lab demonstrated an increase in TARS 

staining in human ovarian cancer patient samples that correlated with progression of 

disease (Wellman, Eckenstein et al. 2014). To determine if the ID8-C3 model of ovarian 

cancer also overexpressed TARS, paraffin-embedded tumor samples were sectioned and 

stained to detect TARS using immunohistochemistry. As shown in Fig. 4, the ID8-C3 

tumors exhibited heavy staining for TARS, suggesting that these tumors also overexpress 

TARS, thus serving as a good model for studying the role of TARS and tumor 

angiogenesis. 

 

 Ovarian tumors in humans are known to induce angiogenesis, and anti-

angiogenic therapy is offered to patients that have been resistant to standard therapies 

A. No Primary B. TARS

 
 
Figure 4.  ID8-C3 ovarian tumors express high levels of TARS. Tumors were 

dissected from mice and then fixed, embedded, and sectioned. Sections were 

incubated with either normal mouse IgG (No Primary) or anti-TARS antibody and 

visualized by immunohistochemistry as described in the Methods. 
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(see Chapter 1). To show the angiogenic nature of the ID8-C3 ovarian cancer model, the 

angiogenic marker, α-smooth muscle actin (α-SMA), was detected in tumors by 

immunohistochemistry. The tumors exhibited angiogenesis (Fig. 5), however it was 

difficult to quantify the microvessel density using this technique, thus assessment of 

angiogenesis and quantification in later experiments was performed using 

immunofluorescence. 

3.1.2 Summary of Ovarian Cancer Progression in the ID-8 Model 

 Mice receiving ID8-C3 cell injection into the abdomen displayed abdominal 

distension at approximately 4-5 weeks post-injection (Fig. 2). This abdominal distension 

was a result of the hemorrhagic ascites formation that was accompanied by peritoneal 

carcinomatosis.  Tumor lesions were located throughout the peritoneum and were 

α-SMA

  
Figure 5. ID8-C3 tumors are angiogenic. Tumors attached to the abdominal wall 

were fixed and stained by immunohistochemistry to detect the blood vessel marker, α-

smooth muscle actin (α-SMA). The inset shows a magnified section of the maturing 

blood vessel within the tumor tissue with attached abdominal muscle tissue.  
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observed on all visceral and peritoneal surfaces (Fig. 3). Gross and histological 

examination of the thoracic cavity did not show any metastasis to the lungs or liver, 

however one animal had a visible tumor on the kidney. Tumors displayed both a high 

level of TARS expression and were angiogenic (Figs. 4,5), suggesting that this model is 

appropriate for studying the effects of TARS inhibition on tumor progression and 

angiogenesis. 

3.2 TARS inhibition with BC194 inhibits tumor progression 

 To determine a role for TARS in the progression of the ID8-C3 ovarian cancer 

model, mice were injected with ID8-C3 cells as in the baseline modeling, and after 3 

weeks of tumor establishment, animals were weighed and injected with either vehicle or 

the TARS inhibitor BC194, three times per week for 3 weeks. There are 6 mice each for 

control and treatment group. The animal weights did not significantly differ between 

groups, however there was a significant reduction in the tumor progression score for the 

animals treated with BC194 (Fig. 6).  

  To compare the status of attaching and invading peritoneal organ sites, we 

examined tumor metastases on omentum, diaphragm, PW, liver, kidney, intestine and 

adipose tissue under a dissecting microscope (Fig. 7). We found that the omentum was 

the favored tissue for invasion of ID8 cells. The attachment and/or invasion of tumor 

cells to omentum were not significantly different between control and treatment mice, 

suggesting that BC194 did not affect cell adhesion and/or invasion ability at an early 

stage. 
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Figure 6.  ID8-C3 Tumor Score is reduced by BC194 treatment. (A) The growth 

rate (slope) of animal weights is not different between the two groups. The curves 

were compared by linear regression analysis and there were 3 mice per group. (B) 

Tumor location and sizes were noted and amount of tumor on 11 tissues and organs 

was scored on a 0, +, ++, +++ scale: 0, no tumor evident by gross examination; +, 

tumors grossly evident on one organ or tissue; ++, moderate tumor formation on more 

than one organ or tissue; +++, extensive tumor formation on several organs or tissues. 

Significant difference of tumor progression score was observed between control and 

BC194 treatment groups. Data was analyzed with student’s t-test, and n=6, p=0.017. 
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Figure 7. Inhibition of TARS with BC194 reduces the tumor burden of ID8-C3 

ovarian cancer. Shown are representative images of mice after 6 weeks of tumor cell 

growth with injections of vehicle or BC194 beginning at 3 weeks. (A, B) represent 

abdominal cavity; (C, D) illustrate omental invasion. 
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3.3 Inhibition of TARS with BC194 inhibits angiogenesis  

      Immunofluorescent staining for the endothelial marker CD31 revealed 

distributed microvessels in the ID8 tumors with different degrees of vascular branching 

and irregularities. We examined whether the microvessel density could be quantified with 

the whole section scanning method. Using MetaMorph, we calculated the MVD on 

images of an entire ovarian tumor section generated by slide scanning and on a montage 

of serial microscopic field pictures. MetaMorph offline software was used for 

computerized quantification of immunostained vascular structures. PECAM-1 and TARS 

positive pixels were selectively detected and MVD was expressed as a ratio of PECAM-

positive thresholded pixels to TARS. 

 In tumor sections with immunofluorescent staining, blood vessels and immune 

cells were observed. Fig 8A shows the endothelial vessel cells stained by CD31 (green), 

Fig 8B shows the combination of the blood vessel (green) and CD3+ T-cells (red), Fig 

8C is a merged image of the tumor blood vessel (green) and nuclei (blue). The staining of 

endothelial cells was intensive, specific and easy to visualize for CD31. Tumors were 

frequently heterogeneous in their microvessel density, but the areas of highest 

neovascularization were found by scanning the tumor sections at low power (i.e., 

10×objective lens and 10×ocular lens). 

 With the Metamorph system, we are able to generate the CD31 microvessel area 

(MVA) in tumor section images. Shown in Fig 9 A is the tumor mask created by TARS 

immunofluorescence and Fig 9B is the Metamorph image of CD31 staining. With the 

tumor mask and CD31 staining images, we are able to measure the microvessel density 
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(CD31 area/area of entire tissue spot). The MVD values were compared between BC194 

treatment group and control group. The MVD (represented by tumor mask area) ranged 

from 0.181 to 0.469 in control, and from 0.008 to 0.128 in the BC194 treated. The 

treatment of BC194 reduced the MVD from an average of 0.331 to 0.106 and this 

difference was significant (p<0.005) (Table 7). These data together suggest that the effect 

of BC194 on the inhibition of tumor angiogenesis is related to the attenuation of ovarian 

tumor progression in this model of ovarian cancer. 
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Figure 8. Representative staining of the blood vessel and immune cell markers in 

tumor sections.  Immunofluorescent staining of mouse ovarian cancer tissues. The 

images shown are ×40 magnification immunofluorescence images of tissue tumor 

staining. (A) Endothelial vessel cells obtained from the CD31 staining (green) (B), 

Combined image of the tumor blood vessel (green) and CD3+ T-cells (red) (C) 

Combined image of the tumor blood vessel (green) and nuclei (blue). 
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Figure 9. Representative tumor section showing the mask to generate the CD31 

microvessel area (MVA) in Metamorph. A, TARS immunofluorescence from which 

the Metamorph algorithms create a tumor mask. B, The Metamorph image of CD31 

staining generated by the mask. Microvessel density was defined as CD31 

compartment area normalized to the tissue spot area (CD31 area/area of entire tissue). 
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Table 7. Relationship between BC194 treatment and microvessel density (MVD) 

determined by an anti-CD31 monoclonal antibody (CD31-TMA) in mouse ovarian 

tumors (n=7 for each group; p<0.005 by Student’s t-test). 

 

 CD31-MVD 
Vehicle 

CD31-MVD 
BC194 p 

 

0.181893 
0.469343 
0.340097 
0.345264 
0.318466 
0.366997 
0.348977 

 

 
0.107650 
0.102280 
0.105509 
0.128095 
0.086419 
0.111219 
0.148652 

 
 

 

Average (n=7) 0.331 0.106 0.0026 
SEM 0.0914 0.0133  
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CHAPTER 4: DISCUSSION AND FUTURE DIRECTIONS 

              Angiogenesis is critical for tumor growth. It was shown by many research 

groups that tumor neovascularity is associated with poor patient survival in a series of 

cancers. An increased MVD is positively correlated with early progression in a number of 

tumors. Such an association is likely due to increased supply of oxygen and nutrients by 

increased neovascularization in tumors. A high MVD is also more frequently observed in 

more actively proliferating tumors. Higher tumor vascularization also leads to an 

increased possibility for malignant cell infiltration and metastatic dissemination. 

       Several methods have been developed to measure the degree of angiogenesis, 

including determination of MVA, MVD. To date, MVD has been most extensively used 

to evaluate prognosis for various tumor types, but the results is inconsistent. The 

prognostic role of MVD is still unclear in ovarian cancer, one of the most vascular solid 

tumors. It was reported that increased MVD was associate with increasing nuclear grade, 

proliferative activity and frequency of metastasis, and higher microvessel count was 

observed in patients with metastasis than those disease free patients. In contrast, patients 

with a high MVD tumors were found to have a high 5-year survival rate.  The existent of 

large-diameter may help to explain these conflicting findings, because large-diameter 

vascular channel lowers MVD and offsets the significance of MVD in evaluating the 

aggressiveness of the tumors. 

               Various models have been developed to study ovarian epithelial surface cells. 

In rodent models, human cancer cell have been used as xenografts in immunodeficient 

mice. One notable problem of these models is that there is no tumor and stromal cells 
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interactions because the immune system of the models are absent. It is especially 

concerned in ovarian cancer model because ovarian cancer is a disease where immune 

response is deeply involved in the carcinogenesis, progression and metastasis. 

           In this study we investigated the role of TARS in angiogenesis of ovarian tumors 

using a mouse model of ovarian cancer first described by Roby et al. The ID8 model was 

developed by propagating normal mouse ovarian epithelial cells until they developed a 

transformed phenotype. Transplantation of the cells by IP injection into standard 

C57BL/6 mice results in tumors and peritoneal ascites. As opposed to a xenograft model 

using human tumor lines in immunocompromised mice, the syngeneic nature of the 

ovarian models allows the tumor-stromal interaction characteristic of genuine cancers to 

be more accurately reproduced.  

 Previous data from the Lounsbury lab demonstrated an increase in TARS 

staining in human ovarian cancer patient samples that correlated with progression of 

disease (Wellman, Eckenstein et al. 2014). In order to assess the relationship between 

TARS activity and ovarian cancer angiogenesis and progression, we used the ID8 model 

and the borrelidin analog BC194 to specifically inhibit TARS.  In this study, we observed 

that ID8 tumors exhibit heavy staining for TARS, suggesting the overexpression of 

TARS in tumors, thus serving as a good model for studying the role of TARS and tumor 

angiogenesis. Despite the widely used microvessel number counting from 

immunohistochemical staining (Hasan, Byers et al. 2002) , we observed that it was 

difficult to quantify the microvessel density of the ID8 tumors using this technique, so we 
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chose to use the immunofluorescence method to assess and quantify the microvessel 

density in experiments.  

 To determine whether inhibiting excess TARS function could reduce tumor 

progression, we treated mice with BC194, a TARS inhibitor. It was observed that in 

animals treated with BC194, the tumor progression score was significantly reduced 

suggesting that blocking TARS reduces ovarian tumor progression. Notably, the BC194 

treatment did not result in any observed pathology or change in animal behavior. To 

assess whether the drop in tumor progression was related to TARS function in 

angiogenesis, we measured microvascular density in the tumors using CD31 

immunofluorescence and computer image analysis. The data revealed that BC194 

significantly reduces the MVD. All the above findings suggest that TARS may have a 

role in the angiogenesis in mouse ovarian cancer, and we propose that the reduced 

angiogenesis prevents the progression of ovarian cancer.  

 Although we successfully established the mouse model for the assessment of 

role of TARS, and developed the Metamorph system method to evaluate the microvessel 

density rather than manually counting the number of blood vessel, there are still some 

limitations in this study. First, more subject numbers are needed in order to achieve more 

rigorous data. Secondly, the staining methods for TARS and microvessels also need 

improvements. Third, the use of TARS as a possible diagnostic measure was not 

evaluated. These weaknesses can all be addressed in the future experiments. 

 Assessment of microvessel density is mostly done by manual counting of 

vascular profiles in tissue sections in which blood vessels are stained using antibodies 
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directed against endothelial cells (Weidner 1995). The most widely used protocol was 

described by Weidner et al., in which vessels are counted in the so-called ‘angiogenic hot 

spot’ (Weidner 1995).  The hot spot is defined as the area of a tumor with the highest 

degree of vascularization. The hot spot is performed at low magnification and 

microvessel density measurements are performed at higher magnification. The outcome 

of the measurements is expressed either as the number of microvessels in hot spot or as 

the mean microvessel density assessed over a small number of highly vascularized areas 

of the tumor (van der Laak, Westphal et al. 1998). The selection of the hot spot is most 

critical in this protocol, because it has been shown to be subject to observer variation. 

The inter-observer variation limits the use of the hot spot procedure to construct reliable 

criteria for the prognostics of the metastasis of tumor. The objective selection criteria for 

both the hot spot and the microvessels are critically needed in order to achieve a reliable 

and reproducible hot-spot method. 

   Quantification of stained vessels can be achieved by measuring highest 

microvascular density (h-MVD), the average microvessel density (a-MVD) or the 

microvascular volume (MVV).  Under low magnification (100× magnification), the area 

of highest microvascular density (the vascular hot spot) is located by scanning the 

section.  In practice, three different areas are counted in order to localize the highest 

density. Three different fields are counted in each of these areas at 200× magnification, 

and the highest value taken as the h-MVD, expressed as vessels per mm2.  The 

measurement method for a-MVD is same as for h-MVD, and the mean of the vascular 
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counts obtained in at least 10-15 random fields is calculated for each tissue section. 

Results for a-MVD are expressed as mean ± standard deviation (vessels per mm2).  

 The MVV is estimated by point counting using an eyepiece grid, which contains 

100 points. Vessels that coincide with the points are counted in 15 fields selected 

randomly across each section (a total of 1500 points) and yields results expressed as 

percentage volume.  Manual counting of microvessels is very subjective and may lead to 

huge interobserver variability, which may explain conflicting results (Vermeulen, 

Gasparini et al. 2002).  A research was done to assess the efficacy and consistence 

between manually counting the number of microvessels in a subjectively selected hot 

spot and the interactive and automated image processing methods in the same complete 

tumor sections. 

              The Chalkley method is similar to that used to determine the MVV. 

First, the areas that appear to have the maximum number of discrete microvessels is 

identified at low magnification. An eyepiece grid containing 25 randomly positioned dots 

is rotated at higher magnifications to make the maximum numbers of points are on or 

within the vessels of the vascular hot spot. Instead of counting the individual 

microvessels, the overlying dots are counted. In cohort of patients with breast carcinoma, 

a significant correlation was found between MVD assessment by the Weidner method 

and Chalkley point counting. A significant reduction in OS was observed between 

patients stratified by Chalkley count in both univariate and multivariate analysis. The 

Chalkley score was also found the most significant independent predictor of outcome in 
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another study in patients with node-positive breast carcinoma (Vermeulen, Gasparini et 

al. 2002). 

  The first problem arising with these quantification methods is the selection of a 

representative tumor block.  In one research, MVD in in-situ growth regions is found 

approximately half of that seen in invasive regions in colorectal adenocarcinoma, 

suggesting that multiple blocks should be assessed. The de Jong et al group found that 

when more than one tissue block was analyzed compared to only counts within sections 

of one block were examined, a higher average coefficient of variation was achieved, 

indicating that a comprehensive inspection of available tumor material is needed to 

identify the relevant hot spots. 

 Another factor that influences the identification of the vascular hot spot is the 

training and experience of the investigator. In a research done by Barbareschi et al, MVD 

in 91 node negative invasive breast carcinomas measured by two pathologist of different 

experience was compared, only the counts of the experienced pathologist were 

significantly associated with relapse-free survival (Bevilacqua, Barbareschi et al. 1995).  

Similar results were noted in another series of node negative breast cancer patients.  Once 

the vascular hot spot is identified, vessel counting appears to be less variable than the 

process of hot spot selection. 

  There is an automated counting technique (CIAS) that improves reproducibility 

and reduces inter-observer variability and has been proposed as a more objective method 

of assessing MVD (Charpin, Garcia et al. 1997).  In a series of 91 node-negative invasive 

ductal carcinomas of the breast, both the number of CD31 positive microvessels 
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measured by an experienced observer and the microvessel area (MVA) determined by 

CIAS were independently associated with recurrence-free survival (Charpin, Garcia et al. 

1997).   The main advantage of CIAS is the additional morphometric parameters that can 

be detected the number of vessels with a certain dimension range, the vessel luminal area, 

vessel luminal perimeter and the number of immunostained areas per microscopic field. 

MVD can be measured more objectively without the intervention of an investigator. The 

apparent disadvantage of CIAS is the time consuming nature of the method and its higher 

cost. These systems are not fully automated yet and require a high degree of operator 

interaction. The vascular hot spot is still identified manually before automated counting 

as the heterogeneity of microvessel morphology and immunostaining intensity 

particularly hampers a fully automated analysis of tumor MVD. 

 Taking these studies into consideration, our angiogenesis quantification method 

had strengths with respect to its computer analysis rather than counting vessels by eye, 

however using more samples and developing a CIAS-like method for unbiased selection 

of area for quantification would improve the reliability of results. Future directions would 

also include a study of overexpressed TARS in the implanted ID8 cells where we would 

expect the resulting tumors have enhanced angiogenesis. A current analysis is being done 

in the Lounsbury lab of subcutaneous ID-8 tumors which will be a better model to 

quantify primary tumor size.   

 Another important parameter that remains to be studied is the use of TARS 

levels as a diagnostic in ovarian cancer. We found that TARS is overexpressed in the ID8 

tumors, and we collected serum and ascites fluid from the animals used in this study. An 
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important future study would be to measure TARS levels in these samples to correlate the 

progression of disease with levels of TARS. We predict that TARS in serum and 

especially ascites fluid will be elevated as the ovarian tumors progress. Together these 

studies suggest an important role for TARS in the angiogenesis and progression of 

ovarian cancer, and TARS should be pursued as a possible future therapeutic target in 

human ovarian cancer. 
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