Methamphetamine effects on adolescent brain development in both sexes

Jessica Alvarez,¹ Sara Westbrook,² and Joshua Gulley^{2,3}

College of Lake County Grayslake, IL¹; Department of Psychology², Neuroscience Program³, University of Illinois at Urbana-Champaign

Introduction

- Females in both humans and rat models often exhibit faster rates of addiction than males¹
- Vulnerability to drug addiction in adolescents (ADOLs) may lead to higher relapse rates² and faster rates of addiction³
- The brain is developing in adolescence, including the prefrontal cortex (PFC) and the nucleus accumbens (NAc), which are regions involved in self-control and reward systems, respectively⁴
- Our lab previously found that adult rats of both sexes exposed to amphetamine during ADOL had reduced expression of dopamine D_1 receptors (D_1R) in the medial PFC but no change in the NAc⁵

Purpose

• Determine how age and sex influence methamphetamine's (METH) effects on the brain and behavior

Hypothesis

- Females will take more methamphetamine than males
- No significant difference in NAc D_1R expression, but reduced PFC D₁R levels in both males and females

Methods

Fixed Ratio

Reinforcer Delivery (2-4 sec)

20-sectimeout

PARKLAND COLLEGE I L L I N O I S

- Rats' activity is measured by an operant cage where a computer records nosepoke responses
- Habituation period-rats in cage for 1 day to allow them to become familiarized with surroundings with no reinforcer given

Subjects: Male and female Sprague Dawley rats				
Table 1: Rat's self-administered 0.1 mg/kg METH attached through a metal tether in a nose-poke operant chamber				
	Reinforcer	Short access (ShA) 2hrs/day	Long access (LgA) 6hrs/day	Tissue collection
ADOL male	METH	P40-47	P48-61	P82
Adult male	METH	P90-97	P98-111	P132
ADOL female	METH	P40-47	P48-61	P82
Adult female	METH	P90-97	P98-111	P132

Behavioral Analysis

*p < .05 vs. first LgA session for females $^{\#\#}p$ < .01 vs. first LgA session for males $^{@}p < .05$ vs. first LgA session for adolescent-onset p < .05 vs. first LgA session for adult-onset p < .001 vs. each ShA session ***p < .001 vs. each LgA session

Results:

- Adolescents display increased METH intake compared to adult counterparts
- Females show increased METH intake compared to males
- Adolescent females escalated their METH intake the quickest compared to all other groups

ssior xpr

PRECS Phenotypic Plasticity Research Experience for Community College Students

Adult-onset male METH rats may be different from the other groups (i.e. brain is less resistant to drug-induced plasticity)

Discussion

 Changes in the amount of expression of D₁R in the :

PFC suggests there are more sex related changes than age

> NAc suggests there are more age related changes than sex

Question: Are ADOLs compared to adults more sensitive to drug-induced changes in neural function and behavior? Males to

 Based on our current results, it appears that both age and sex influence D₁R expression following METH, but their effects may depend on brain region.

Future Work

Study was limited to only expression of protein receptors rather than testing for function of the receptors Future work will include testing for function by use of electrophysiology with similar methods

References

1. Lynch, W.J., 2006 2. Poudel & Gaudam, 2017 3. Chen et al., 2009 4. Casey et al., 2008 5. Kang et al., 2016 6. Image source: Fluofarma

Acknowledgments

Financial support was provided by the National Science Foundation under grant #NSF REU 1559908/1559929, as part of the Phenotypic Plasticity Research Experience for Community College Students, through the University of Illinois at Urbana-Champaign Institute for Genomic Biology and Parkland College. http://precs.igb.illinois.edu/

Special thanks to Dr. Shuo Kang, Dr. Nathan Schroeder, Dr. C. Britt Carlson, and technical and support staff at the Institute for Genomic Biology.

