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Abstract

The article presents a new normalisation method of diagnostic vari-

ables - normalisation with respect to the pattern. The normalisation

preserves some important descriptive characteristics of variables: skew-

ness, kurtosis and the Pearson correlation coe�cients. It is particularly

useful in dynamical analysis, when we work with the whole population

of objects not a sample, for example in regional studies. After proposed

transformation variables are comparable not only between themselves

but also across time. Then we can use them, for example, to construct

composite variables.

keywords: normalisation, standardisation, composite variable, syn-

thetic measure

1 Introduction

In regional studies we often need to compare regions (objects) with respect
to analyzed complex (or composite) phenomenon. Complex phenomenon is a
qualitative phenomenon, that is characterized by some quantitative features,
called diagnostic variables. Each object is then identi�ed with a point of
the multidimensional real space. One of the tools of regional research are
composite variable (or synthetic measure). Composite variable is created to
re�ect multidimensional points (objets) in the one-dimensional space.

Many advanced methods of constructing synthetic variables have been
developed, however the simplest methods are often used in practice. There
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are a lot of such examples (see [2]), one of them is very popular Human Devel-
opment Index (HDI), which ranks countries into four tiers of socio-economic
development. Until 2010 HDI was a uniformly weighted sum of three indica-
tors describing: life expectancy, education, and income per capita.

One of the step of the construction of synthetic measure is bringing diag-
nostic variables to comparability, called normalisation or standardisation.
Normalisation deprives variables their units and uni�es their ranges. There
are a lot of normalisation formulas (see [4], [5], [8]). Choosing a proper
method is important because normalisation in�uences on results of object
ordering.

The usual stochastic approach can be used to determine parameters
needed to normalisation. Then we treat values of variable (observations)
as a randomly selected sample of the population. This approach should not
be used in regional research, where we work with the whole population of
objects. In this case we should use a descriptive (deterministic) approach.

Normalisation formulas are most often given for static analysis, this is
for a �xed point in time. A normalisation problem appears when we want
to compare situations of regions at several time points. Then the variables
should also be comparable across time. To achieve this e�ect in the stochas-
tic approach one can use all values of variable (both for objects and for time)
to determine parameters needed for normalisation. However, this solution is
controversial in descriptive approach (see [9]), in addition, it requires incesant
conversion of results when later observations occur. In this case we should
rather use current observations, so after usual normalisation variables are
not comparable across time. Then we can not compare the values of syn-
thetic measures, we can only compare rankings. To solve this problem in the
mentioned Human Development Index, the parameters of feature scaling are
�xed on levels, that are not related to variable distribution. The levels are
justi�ed by substantive reasons. For example, the age of 85 was established
as the maximum life expectancy at birth.

The article proposes a new method of feature normalisation - normali-
sation with respect to the pattern (or pattern normalisation for short). This
name was inspired by the Hellwig's paper (see [3], [1]). The method is con-
sistent with the static approach, but it can be used to compare objects at
di�erent time points. The method meets the requirements of normalisation
that are suggested in literature (see [4], [6]). It preserves skewness and kur-
tosis. Moreover, the absolute values of the Pearson correlation coe�cients
are not changed after normalisation.

In the �rs step of the pattern normalisation the nature of variable is de-
termined in the context of analyzed complex phenomenon. We distinguish
stimulants and destimulants. Stimulant is a diagnostic variable that has a
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positive impact on the analyzed complex phenomenon, while destimulant
negative. In regional research determining the nature of variables is natu-
ral. Most often, before normalisation, we turn destimulants into stimulants
using their inverse values. Unfortunately, the variables after conversion lose
their interpretation and their distributions are changed. In the presented
method, we do not converse destimulant before normalisation. Destimulants
and stimulants are normalized in di�erent ways.

Determining the nature of variable allows us to choose the most bene�cial
observation among all values of the variable, maximum for stimulant and
minimum for destimulant. We call this value a pattern. Next we convert all
values with respect to this pattern. After transformation we get comparable
variables. All of them are destimulants with clear interpretation. Pattern
normalisation can be used in common constructiion of composite variables
instead of other methods of normalisation. A possible application is shown
in [7].

2 De�nition of pattern normalisation

Suppose that a complex phenomenon observed for n ∈ N regions is ana-
lyzed. Assume that we cannot measure this phenomenon, whereas we know
a collection of measurable diagnostic variables that characterize it.

Assume that diagnostic variables meet both substantive and statistical
requirements, for more details see for example [9]. Let us consider one such
variable x = (x1, x2, . . . , xn) ∈ Rn, which is a stimulant (then we write x ∈ S,
S denotes the set of stimulants) or a destimulant (x ∈ D analogously).

In the �rst step we choose a pattern - the most bene�cial of all values of
the variable x. The pattern is unique for all objects and is described by the
formula:

x+ =

max
i
xi if x ∈ S,

min
i
xi if x ∈ D.

(1)

After specifying the pattern x+ we can consider a new variable u+ instead
of the variable x given by:

u+i =
|xi − x+|∑n
j=1 |xj − x+|

=


x+ − xi∑n

j=1(x
+ − xj)

if x ∈ S,

xi − x+∑n
j=1(xj − x+)

if x ∈ D.
(2)
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The formula (2) determines a certain transformation of initial variable
x = (x1, x2, . . . , xn) into a new variable u+ = (u+1 , u

+
2 , . . . , u

+
n ). We call it a

normalisation with respect to the pattern. After this transformation the new
variable describes the same aspect of complex phenomenon as described by
x. So u+ is a diagnostic variable of this phenomenon.

The pattern normalisation (2) is not just a technical procedure. New
variable has a clear interpretation, u+i speci�es the share of distance between
the i-th object and the pattern in the total distance of all objects from the
pattern. The situation of the i-th object is better when the value of u+i is
lower.

The values of variable u+ characterize the positions of objects in the whole
system. This is the same as for other forms of normalisation, but the system
is speci�ed in a di�erent way. In the case of the pattern normalisation the
system is represented by the sum of distances between objects and pattern,
while in common normalisations descriptive characteristics of the distribution
of x are used for this purpose.

3 Properties of variable after normalisation

The quantitative description of an immeasurable (qualitative) phenome-
non is obtained using synthetic measures. Bringing diagnostic variables to
comparability is the �rst step in the construction of such measure. The
pattern normalisation can be used for this purpose.

Assume that diagnostic variables are transformed with respect to their
patterns. Then the new set of variables has advantages, which are expected
for creating synthetic variables. These properties and some proofs are pre-
sented below.

A. Basic properties

A1. All variables after pattern normalisation are unitless, non-negative and
limited to interval [0, 1]. Because of that, the new set of diagnostic
variables contains comparable elements.

A2. Irrespective of the initial nature, variable after the pattern normali-
sation becomes destimulant. It means that the situation of the i-th
object is better when the value u+i is lower. In this sense the pattern
normalisation uni�es the nature of diagnostic variables.

A3. Transforming of variables does not a�ect the ordering of objects.

B. Extreme values after pattern normalisation
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B1. The variable u+ can take zero value only for the pattern object. Since
the pattern is chosen among values of the variable x, zero value is taken.

u+i = 0⇔ xi = x+.

Proof.

u+i = 0⇔ |xi − x+|∑n
j=1 |xj − x+|

= 0⇔ |xi − x+| = 0⇔ xi = x+

B2. The value u+i equals 1 when all objects are patterns except the i-th
object. This situation is rather unrealistic.

u+i = 1⇔
∧
j 6=i

xj = x+.

Proof.

u+i = 1⇔ |xi − x+|∑n
j=1 |xj − x+|

= 1⇔ |xi − x+| =
n∑

j=1

|xj − x+| ⇔
∧
j 6=i

xj = x+

B3. The maximum value of u+ depends on the nature of variable x and it
is expressed by:

max
i
u+i =


maxi xi −mini xi∑n
j=1(maxi xi − xj)

if x ∈ S,

maxi xi −mini xi∑n
j=1(xj −mini xi)

if x ∈ D.

Proof.

If x ∈ S, then:

max
i
u+i =

maxi(x
+ − xi)∑n

j=1(x
+ − xj)

=
x+ −mini xi∑n
j=1(x

+ − xj)
=

maxi xi −mini xi∑n
j=1(maxi xi − xj)

.

If x ∈ D, then:

max
i
u+i =

maxi(xi − x+)∑n
j=1(xj − x+)

=
maxi xi − x+∑n
j=1(xj − x+)

=
maxi xi −mini xi∑n
j=1(xj −mini xi)

.

5



C. Descriptive characteristics of normalised variables

C1. The mean value of u+ depends only on the number of objects and is
inversely proportional to this number. It is expressed by:

u+
def
=

1

n

n∑
i=1

u+i =
1

n
.

Proof.

u+ =
1

n

n∑
i=1

|xi − x+|∑n
j=1 |xj − x+|

=
1

n

∑n
i=1 |xi − x+|∑n
j=1 |xj − x+|

=
1

n

C2. The variance of u+ is described by:

S2(u+)
def
=

1

n

n∑
i=1

(u+i − u+)2 =
S2(x)

n2(x+ − x)2
.

Proof.

S2(u+) =
1

n

n∑
i=1

(
|x+ − xi|∑n
j=1 |x+ − xj|

− 1

n

)2

If x ∈ S, then:

S2(u+) =
1

n

n∑
i=1

(
x+ − xi∑n

j=1(x
+ − xj)

− 1

n

)2

=
1

n3

n∑
i=1

(
x+ − xi

x+ − 1
n

∑n
j=1 xj

− 1

)2

=
1

n3

n∑
i=1

(
x+ − xi
x+ − x

− 1

)2

=
1

n3

n∑
i=1

(
x− xi
x+ − x

)2

=
1
n

∑n
i=1(x− xi)2

n2(x+ − x)2

=
S2(x)

n2(x+ − x)2

The proof is similar when x ∈ D.

C3. The standard deviation of u+ depends on the nature of variable x and
it is expressed by:

S(u+)
def
=
√
S2(u+) =


S(x)

n(x+ − x)
if x ∈ S,

S(x)

n(x− x+)
if x ∈ D.
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C4. The coe�cient of variation of u+ is given by:

CV (u+)
def
=

S(u+)

u+
=


S(x)

x+ − x
if x ∈ S,

S(x)

x− x+
if x ∈ D.

C5. The 3-rd central moment of u+ is given by:

µ3(u
+)

def
=

1

n

n∑
i=1

(u+i − u+)3 =
µ3(x)

n3(x+ − x)3
.

Proof.

µ3(u
+) =

1

n

n∑
i=1

(
|x+ − xi|∑n
j=1 |x+ − xj|

− 1

n

)3

If x ∈ S, then:

µ3(u
+) =

1

n

n∑
i=1

(
x+ − xi∑n

j=1(x
+ − xj)

− 1

n

)3

=
1

n4

n∑
i=1

(
x+ − xi

x+ − 1
n

∑n
j=1 xj

− 1

)3

=
1

n4

n∑
i=1

(
x+ − xi
x+ − x

− 1

)3

=
1

n4

n∑
i=1

(
xi − x
x− x+

)3

=
µ3(x)

n3(x− x+)3

The proof is similar when x ∈ D.

C6. The absolute value of the coe�cient of skewness does not change after
the pattern normalisation:

A(u+)
def
=

µ3(u
+)

S3(u+)
=

{
−A(x) if x ∈ S,
A(x) if x ∈ D.

C7. The 4-th central moment of u+ is given by:

µ4(u
+)

def
=

1

n

n∑
i=1

(
u+i − u+

)4
=

µ4(x)

n4(x+ − x)4
.
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Proof.

µ4(u
+) =

1

n

n∑
i=1

(
x+ − xi∑n

j=1(x
+ − xj)

− 1

n

)4

If x ∈ S, then:

µ4(u
+) =

1

n

n∑
i=1

(
x+ − xi∑n

j=1(x
+ − xj)

− 1

n

)4

=
1

n5

n∑
i=1

(
x+ − xi

x+ − 1
n

∑n
j=1 xj

− 1

)4

=
1

n5

n∑
i=1

(
xi − x
x− x+

)4

=
1

n5

n∑
i=1

(
x− xi
x+ − x

− 1

)4

=
µ4(x)

n3(x− x+)4

The proof is similar when x ∈ D.

C8. The kurtosis of u+ does not change after the pattern normalisation:

K(u+)
def
=

µ4(u
+)

S4(u+)
= K(x).

D. Linear relation between variables after normalisation

Assume that two diagnostics variables x1, x2 are transformed with respect
to their patterns. Denote by u+1 and u+2 variables after normalisation.

D1. The covariance between u+1 and u+2 equals:

cov(u21, u
+
2 )

def
=

1

n

n∑
i=1

(
u+i1 − u+1

)(
u+i2 − u+2

)

=


cov(x1, x2)

n2(x+1 − x1)(x+2 − x2)
if x1, x2 ∈ S or x1, x2 ∈ D,

−cov(x1, x2)
n2(x+1 − x1)(x+2 − x2)

otherwise.

Proof.

cov(u21, u
+
2 ) =

1

n

n∑
i=1

(
|xi1 − x+1 |∑n
j=1 |xj1 − x

+
1 |
− 1

n

)(
|xi2 − x+2 |∑n
j=1 |xj2 − x

+
2 |
− 1

n

)
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Assume that x1 and x2 are stimulants. The proof in other cases is similar.

cov(u21, u
+
2 ) =

1

n

n∑
i=1

(
x+1 − xi1∑n

j=1(xj1 − x
+
1 )
− 1

n

)(
x+2 − xi2∑n

j=1(xj2 − x
+
2 )
− 1

n

)

=
1

n3

n∑
i=1

(
x+1 − xi1

x+1 − 1
n

∑n
j=1 xj1

− 1

)(
x+2 − xi2

x+2 − 1
n

∑n
j=1 xj2

− 1

)

=
1

n3

n∑
i=1

(
x+1 − xi1
x+1 − x1

− 1

)(
x+2 − xi2
x+2 − x2

− 1

)
=

1

n3

n∑
i=1

(
x1 − xi1
x+1 − x1

· x2 − xi2
x+2 − x2

)
=

1
n

∑n
i=1(xi1 − x1)(xi2 − x2)

n2(x+1 − x1)(x+2 − x2)

=
cov(x1, x2)

n2(x+1 − x1)(x+2 − x2)

D2. The absolute value of the Pearson correlation coe�cient of diagnostic
variables is preserved after the normalisation:

corr(u+1 , u
+
2 )

def
=

cov(u21, u
+
2 )

S(u+1 )S(u
+
2 )

=

{
corr(x1, x2) if x1, x2 ∈ S or x1, x2 ∈ D,
−corr(x1, x2) otherwise.

E. Dynamic approach

Assume that the diagnostic variable x is observed in two periods of time
(then we write x1 and x2 respectively). For each period we choose a pattern
and transform x1 and x2 into u1+ and u2+ according to the formula (2).

E1. The values of variables u1+ and u2+ are comparable.

Substantiation.
The system is characterized by the sum of distances between objects and

the pattern. It changes over time. For given object, if the value of the trans-
formed variable increases over time, this means that the share of distance
from this object to the pattern in the sum of all distances increases, so the
situation of this object becomes worse (in comparison with the situations of
other objects).
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4 Summary

The normalisation of diagnostic variables described by formula (2) plays
a double role in the construction of synthetic measure. First, it uni�es the
nature of variables (A2). Secondly, it brings variables to comparability (A1).
So, after pattern normalisation diagnostic variables become comparable des-
timulants. The normalisation with respect to the pattern preserves two im-
portant characteristics of the distribution of diagnostic variables - skewness
(C6) and kurtosis (C8). Moreover, this conversion does not disrupt linear
relation between variables - the absolute value of the Pearson correlation
coe�cient is not changed (D2). This advantages are expected for normalisa-
tions used for bringing variables to comparability.

Unlike other methods the pattern normalisation is not just a technical
procedure, it has clear interpretation. However, the major advantage of the
pattern normalisation over other normalisation methods appears in dynamic
approach. Although the current data are the sole data used to convert vari-
ables, the transformed variables are comparable in time (E1).

The normalisation with respect to the pattern seems to be a useful tool in
multidimensional comparative analysis. It can be applied whenever variables
need to be comparable, for example in the synthetic analysis of complex
phenomenon.

The proposed construction can have various modi�cations, for example
we can change the measure of distance or the method of choosing pattern.
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