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Abstract—Generation of a time-optimal feedrate profile for
CNC machines has received significant attention in recent
years. Most methods focus on achieving maximum allowable
feedrate with constrained axial acceleration and jerk without
considering manufacturing precision. Manufacturing precision
is often defined as contour error which is the distance between
desired and actual toolpaths. This paper presents a method
of determining the maximum feedrate for NURBS toolpaths
while constraining velocity, acceleration, jerk and contour error.
Contour error is predicted during optimization by using an
artificial neural-network. Optimization is performed by Particle
Swarm Optimization with Augmented Lagrangian constraint
handling technique. Results of a time-optimal feedrate profile
generated for an example toolpath are presented to illustrate the
capabilities of the proposed method.

I. INTRODUCTION

Computerized Numerical Control works by periodically
generating position setpoints for the axis servo drives in order
to interpolate the desired toolpath. Position setpoints in each
timestep are derived from the feedrate profile and toolpath.
Feedrate profile is the function of velocity tangent to the
toolpath with respect to time or toolpath parameter. In order
to navigate the toolpath as fast as posible the value of feedrate
in each time step should be as high as possible. This value is
limited by physical limits of velocity, acceleration and jerk
imposed by the axis drives. Limits of each axis influence
the feedrate limit differently depending on the shape of the
toolpath. Computation of the time-optimal feedrate profile
allows the machine to work with maximum efficiency and has
therefore been an important subject of investigation by many
researchers. Because many factors influence the shape of the
time-optimal feedrate profile this is a difficult optimization
problem.

Most early feedrate scheduling methods consider only fee-
drate and acceleration constraints. Bobrow et al. [1] and Shin
and McKay [2] proposed a bang-bang trajectory generation by
switching the acceleration between maximum and minimum
limits at specific path points. Dong and Stori [3] use a bidirec-
tional scan algorithm to optimize the feedrate in the s-s phase
plane. Later works also consider jerk and jounce constraints.
Lai et al. [4] and Fan et al. [5] first determine maximum
feasible feedrate at critical points of the toolpath and then

use jerk or jounce limited acceleration/deceleration profiles
to connect the feedrate profile between these points. Further
works also considered acceleration and jerk constraints in each
axis not just the feedrate profile. Altinas and Erkorkmaz [6]
and Sencer and Altinas [7] use a polynomial feedrate profile
and then optimize it’s shape using constrained optimization.

Most researchers do not take into account the effect of
feedrate on the accuracy of toolpath following. This is usually
measured by contour error which is defined as the shortest
distance between the desired and actual toolpaths. This paper
introduces a novel optimization algorithm for toolpaths defined
by Non-Uniform Rational B-Spline (NURBS) curves. The
innovative aspect of the presented algorithm is the direct
incorporation of contour error constraint into the feedrate
optimization process in addition to axial velocity, acceleration
and jerk. The feedrate profile is defined as a one dimensional
B-Spline. It’s control points are iteratively modified during
optimization in order to achieve maximum feedrate within
the given constraints. A dynamic model of the feed drive in
the form of a NARX neural network is used to predict the
contour error during optimization. Optimization is performed
by Particle Swarm Optimization with constraints handled by
the Augmented Lagrangian Method. An example 2-D NURBS
toolpath is used to experimentally verify the effectiveness of
the proposed method for different values of the contour error
constraint.

II. FEEDRATE PROFILE OPTIMIZATION FOR NURBS
TOOLPATHS

NURBS are polynomial splines that allow complicated
toolpaths to be represented with relatively few data points
compared to series of line segments usually used in CNC
machining. Furthermore NURBS toolpaths can have high con-
tinuity which enables smooth traversal without sharp changes
to feedrate. In order to interpolate a NURBS toolpath a
relationship between increment in arc-length and the increment
in curve parameter has to be found. This relationship is non-
linear and strongly dependant on the curve shape. Therefore a
Taylor approximation is usually used in each interpolation step



to determine the curve parameter increment based on current
feedrate. A third order formula is used in this work [8]:

ui+1 = ui + u̇iT +
üi
2
T 2 +

...
ui
6
T 3 (1)

where T is the interpolation period. Derivatives of the NURBS
toolpath parameter u with respect to time (u̇, ü,

...
u) are com-

puted using following equations:
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V

σ
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A
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σ2
ü− σ′′V

σ2
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(2)

where: σ, σ′, σ′′ are the parametric velocity and its derivatives
with respect to the curve parameter and V,A, J are feedrate,
acceleration and jerk.

The feedrate profile is defined as a second order one
dimensional B-Spline curve. The x dimension is the toolpath
parameter which is also the parameter of the feedrate profile
curve. The y dimension is the feedrate value. Feedrate opti-
mization is the process of adapting the b-spline curves shape
so that its value is as high as possible in every point and all
constraints are satisfied. Shape of the b-spline can be changed
by modyfining its control points. Values of the control points
are the optimization variables used by the optimization algo-
rithm. Because control points influence the curve only locally
one fragment of the feedrate profile can be optimized while
the others are not influenced. This locality property can clearly
be seen in fig. 1. Optimizing the whole feedrate profile at once

Fig. 1. B-Spline feedrate profile

would lead to a optimization problem with huge number of
variables and constraints. Instead a moving window approach
is used and only a fragment of the profile with constant
number of control points and constraints is optimized in one
optimization run. The window is then shifted and a next set of
points are optimized until the end of the toolpath is reached.
Constraints are evaluated at evenly spaced parameter locations
instead of being checked at every interpolation step. Because
of this the number of constraints is constant while optimizing

each window. Ten constraint evaluation points are placed
between each control point. Choosing the curve parameter
as the x variable instead of time also facilitates optimization
because the feedrate profile endpoint remains constant instead
of being changed with every change of feedrate.

In order to achieve minimum machining time the value
of every feedrate profile control point in each optimization
window should be as high as possible. This problem can be
formulated in the form of a objective function to be minimized:

Fobj =
1

N

N∑
i=1

(
1− vi

Vmax

)2

(3)

where vi are the feedrate control point values, Vmax is the
maximum feedrate and N is the number of control points
in each window. This optimization function is subject to
constraints of velocity, acceleration and jerk in each axis as
well as contour error. The objective function and constraints
are normalized with respect to their maximum values so
that their different orders of magnitude do not influence the
optimization process.

cv(ui) =
v(ui)

Vmax
− 1, ca(ui) =

a(ui)

Amax
− 1

cj(ui) =
j(ui)

Jmax
− 1, cce(ui) =

εc(ui)

Ecmax

− 1

(4)

Values of axial velocity, acceleration and jerk are computed
analytically from the feedrate profile and NURBS toolpath
for each constraint evaluation point. Computation of contour
error requires a predictive model of the machines feed drives
This algorithm uses off-line trained NARX neural networks
to predict following errors of each axis in response to axial
velocity commands. Predicted following errors are used to
compute the contour error based on the toolpath geometry
(fig. 2). Contour error computation for NURBS toolpath is
performed using the formula presented in [9].
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Fig. 2. Block schematic of the neural contour error predictor

The optimization process iteratively modifies the shape of
the feedrate profile until all constraints are satisfied and no
more improvement in feedrate can be achieved. This optimiza-
tion process is shown on fig. 3.
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Fig. 3. Block schematic of the feedrate optimization algorithm

III. CONSTRAINED PSO OPTIMIZATION

Feedrate optimization with contour error constraints is a
difficult non-linear problem prone to premature stoppage in
local minima. In order to avoid local minima the well proven
Particle Swarm Optimization algorithm was used [10]. PSO is
a non-derivative multi-agent optimization method that works
by moving virtual particles through the solution space. PSO
uses the following equations to modify position and velocity
vectors of each particle:

xnewi,j = xi,j + vnewi,j

vnewi,j = ω · vi,j + φ1 · rand U
(0,1) · (pi,j − xi,j)+

φ2 · rand U
(0,1) · (gi − xi,j)

(5)

ω, φ1, φ2 are algorithm parameters respectively; rand U
(0,1)

are pseudo-random numbers between 0 and 1 with uniform
distribution; gi is the best position found so far (global best or
gbest); pi,j is the best position found so far by each particle
(personal best or pbest); xi,j and vi,j are the postion and
velocity of each particle.

In this work the Guaranteed Convergence PSO (GC-PSO)
variant was used [11] which is resistant to premature con-
vergence to a non-minimum point (swarm stagnation). GC-
PSO uses a different equation to update velocity of the gbest
particle. This equation randomly modifies the velocity of the
particle that found the last gbest position:

vnewi,gbest = ω · vi,gbest +R ·
(
1− 2 · rand U

(0,1)

)
(6)

The modified equation forces the gbest particle to do a random
search in a sphere with radius R around the gbest position.
This guarantees that the final gbest position is in fact a
minimum of the objective function [12].

One important advantage of PSO is that it does not require
a good feasible initial guess as the initial particle positions
are generated randomly. It is also derivative free and includes

randomness and is therefore resilient against premature con-
vergence to a local minimum. The algorithm is also easy to
implement and has low computational requirements despite be-
ing very effective at minimizing non-linear objective functions.
Most variants of PSO are good at finding the neighbourhood of
the minimum of the objective function but usually take many
iterations to refine the solution due to random nature of the
algorithm. Therefore a secondary local optimization algorithm
BOBYQA developed by M. Powell [13] was used to refine the
solution found by GC-PSO.

Most PSO variants including GC-PSO are only box con-
strained algorithms. In order to benefit from the advantages
of PSO and simultaneously handle non-linear constraints GC-
PSO was combined with the Augmented Lagrangian Method
[14]. This method works by adding a penalty to the objective
function for each violated constraint ci(x) and modifying the
penalty factors λ and ρ after each successful optimization. The
augmented objective function (Augmented Lagrangian) has the
following form [15]:

L(x) = Fobj(x) +
ρ

2

M∑
i=1

(
max

{
0, ci(x) +

λi
ρ

})2

(7)

Unconstrained minimization of the Augmented Lagrangian
with proper penalty factors is equivalent to minimizing the ob-
jective function without violating the constraints. The penalty
factors are set automatically during optimization. This however
requires repeated minimization of the augmented objective
function after each update of the penalty factors using the
previously obtained solution as an initial guess. During testing
it was found that solutions obtained during successive runs are
close to each other in the optimization space. It was therefore
decided to only use GC-PSO in the first run to reliably find a
good initial solution and only use BOBYQA local optimization
during successive runs.



TABLE I
PSO PARAMETERS USED FOR FEEDRATE OPTIMIZATION

swarm size 25
ω 0.7298

φ1, φ2 1.4962
initial R 1.0

The algorithm was implemented and tested to find the
best parameters for the feedrate optimization process. During
trials it was found that default parameters proposed by Clerc
[16] provide the best reliability, speed of convergence and
solution quality (see table I). For the Augmented Lagrangian
Method and BOBYQA algorithm default parameters proposed
by their authors were used. The flow diagram of the feedrate
optimization algorithm was shown on figure 4.
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Fig. 4. Flow diagram of the feedrate optimization algorithm

IV. RESULTS

To test the proposed feedrate optimization method an open
CNC control system was used. It consists of a PC based
CNC controller with Linux RTAI real-time operating system
and LinuxCNC control software. The PC based controller
directly communicates with the axial servo drives of a 2-
axis CNC router via Ethernet Powerlink fieldbus whose stack
has been implemented in Linux RTAI and integrated into
LinuxCNC [17]. The optimization algorithm was implemented
as a user space program that optimized the given NURBS
toolpath off-line. A software real-time module was added
to the LinuxCNC software that interpreted and interpolated
NURBS toolpaths with the pre-optimized B-Spline feedrate
profiles. The laboratory setup used to test the algorithm is
shown on figure 5.

Fig. 5. Biaxial CNC router used for testing

Neural networks modelling the machine’s feed drives were
taught off-line and implemented into the algorithm to predict
the contour error. A test NURBS toolpath (fig. 6) was input
into the program and an off-line feedrate optimization process
was performed using the Augmented Lagrangian GC-PSO
optimization algorithm. Velocity, Acceleration and Jerk axial
constraints where set to 300 mm/s, 2500 mm/s2 and 50000
mm/s3 respectively. In order to limit the contour error to
0.05mm the maximum contour error constraint was set to
0.45mm in order to compensate for modelling errors. Feedrate
control points were evenly placed 7.5mm from each other.
The optimization window was 40 points wide with 10 points
overlap between segments. The optimized feedrate profile is
shown on fig. 7. It can be seen that the optimization algorithm
minimized the feedrate in fragments of the toolpath that have
the highest curvature and maximized it in fragments where the
curvature is small.

Velocity, acceleration and jerk profiles in x and y axes are
shown on figures 8, 9 and 10 respectively. The presented
results clearly show that the feedrate optimization algorithm
successfully limits the axial velocity, acceleration and jerk to
the desired values imposed by capabilities of the machine’s
feed drives.

Contour error predicted by the neural network contour error
predictor in response to the optimized feedrate profile was
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Fig. 9. Axial acceleration of the optimized feedrate profile
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Fig. 10. Axial jerk of the optimized feedrate profile

shown on figure 11a. It can be seen that the contour error is
limited to the desired tolerance at every point of the trajectory.
This proves that the algorithm is effective providing the model
of the machine’s feed drive is accurate. A perfect prediction
model cannot be created for a physical feed drive due to many
factors that contribute to its following error. The machines feed
drives also have limited repeatability due to imperfections in
their construction and random disturbances. This discrepancy
between the contour error predicted by the neural network
predictor and the actual contour error measured on the CNC
machine used for testing was experimentally verified to be less
than 0.005mm. In order to guarantee that the contour error
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Fig. 11. Predicted (a) and actual (b) contour error of the optimized feedrate
profile

is less than 0.05mm the contour error constraint had to be
lowered to 0.045mm. The actual contour error shown in figure
11b is violating the contour error constraint slightly due to
model inaccuracy but is less than 0.05mm which is the desired
contour error tolerance.

V. CONCLUSION

This paper presents a CNC feedrate optimization algorithm
for NURBS toolpaths. The proposed method handles velocity,
acceleration and jerk constraints imposed by the machines
feed drives. It also introduces contour error constraints to
directly handle machine dynamics in the feedrate optimization
process. In order to predict contouring performance during
off-line optimization a neural network contour error predic-
tor was used. Optimization was performed by Guaranteed
Convergence Particle Swarm Optimization algorithm which is
robust to premature convergence to local minima inherent in
any difficult non-linear optimization problem. BOBYQA local
optimization procedure was used as a secondary algorithm
to refine solutions found by GC-PSO. To handle non-linear

constraints the Augmented Lagrangian Method was combined
with GC-PSO. Tests performed using a biaxial CNC router
show that the proposed method generates a time-optimal fee-
drate profile that successfully limits axial velocity, acceleration
and jerk to the desired maximum values imposed by the feed
drives’ limits. The method also limits contour error providing
modelling inaccuracies are taken into account. Further work
will concentrate on improving the contour error predictor and
parallelization of the algorithm to enable on-line operation.
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