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Abstract—This article presents a method for predicting contour
error using artificial neural networks. Contour error is defined
as the minimum distance between actual position and reference
toolpath and is commonly used to measure machining precision of
Computerized Numerically Controlled (CNC) machine tools. Off-
line trained Nonlinear Autoregressive networks with exogenous
inputs (NARX) are used to predict following error in each axis.
These values and information about toolpath geometry obtained
from the interpolator are then used to compute the contour
error. The method used for effective off-line training of the
dynamic recurrent NARX neural networks is presented. Tests
are performed that verify the contour error prediction accuracy
using a biaxial CNC machine in a real-time CNC control system.
The presented neural network based contour error predictor
was used in a predictive feedrate optimization algorithm with
constrained contour error.

I. INTRODUCTION

Computerized Numerical Control (CNC) machines are
widely used in manufacturing. In recent years much work has
been done to improve motion control algorithms used in CNC
machine control systems in order to decrease machining errors
and machining time. To implement advanced motion control
algorithms in CNC machine control systems accurate models
of the machine’s feed drive dynamics are often required.
Models are usually used in the design phase in order to
test the algorithms’ performance. Some algorithms such as
predictive control utilize the machine model directly in order to
compute optimal values of the reference signal that minimize
machining errors. Predictive models can also be used to
generate time-optimal feedrate profiles without violating max-
imum machining error tolerance. Machining errors are often
defined as contour errors which are the minimum distances
between the reference toolpath and actual tool positions (fig.
1). Contour error is computed using following errors in each
axis and local toolpath geometry. Obtaining accurate contour
error predictions therefore requires accurate predictions of
following errors in each axis. This can be performed by using
a dynamical model of each axis.

Machine axis feed drive can be simply modelled as a first
order model with inertia and viscous friction coefficient as
it’s parameters [1]. This basic model can be extended in
order to model elastic coupling between axis elements [2],
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Fig. 1: Definition of contour error (εc) compared to axial
following errors (εx, εy) computed between reference position
(Ri) and actual position (Pi).

nonlinear friction [3], [4], backlash [5], thermal deformation
[6]. Including all these phenomena leads to accurate but very
complex models which are hard to identify due to large
number of parameters.

An alternative approach is to use a black-box input-output
model. It is assumed that there is no knowledge about the inner
workings of the system and its dynamics are modelled using
only input and output data [7]. Such models can be identified
using data collected during normal machine operation. Linear
models are usually used such as ARX [8] or ARMAX [9].
Such models are easy to identify but cannot model nonlinear-
ities in the feed drive.

Nonlinear relations are often modelled using artificial neural
networks because of their universal approximation capabilities
[10], [11]. Traditional feedforward neural network cannot
model dynamical systems. Dynamic neural networks have to
be used instead. One type that is commonly used to predict
the outputs of nonlinear dynamical systems is the Nonlinear
Autoregressive network with exogenous inputs (NARX) [12]–
[15].

In this work NARX neural networks are used to model
the dynamics of each axis’ feed drive and predict each axis
following error in response to axis velocity commands. Each
NARX network is trained off-line using MATLAB software
and then implemented in a real-time operating system (Linux
RTAI) to test its predictive performance in an actual CNC
control system. All networks are then combined to predict



contour error for a Non-Uniform Rational B-Spline (NURBS)
toolpath in a biaxial system. Experimental results are then
presented that show the performance of the neural network
contour error predictor.

II. NARX NEURAL NETWORK FEED DRIVE MODEL

NARX neural networks are similar to traditional multi-
layered perceptron feedforward networks (MLP). Both have
layers of fully connected neurons with sigmoid activation
functions in the hidden layers and linear activation function
in the output layer. The main difference is the feedback path
between network outputs and inputs and delay blocks in the
input layer. This structure is very similar to the linear ARX
model. A schematic of a NARX network used to predict axis
following error is presented in figure 2. The network predicts
the axis’ following error using axial reference velocity as
input.
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Fig. 2: Schematic of a NARX neural network with one hidden
layer used to predict axis following error. v(t) is the current
axis velocity command and e(t) is the predicted following
error. Coloured arrows represent weights.

The predicted following error output of a single hidden layer
NARX neural network can be computed using the following
formula:

e(t) =

H∑
i=1

ωo
i tanh (hi(t)) + bo

hi(t) =

DV∑
j

ωv
ijv(t− j) +

DE∑
k=1

ωe
ike(t− k) + bi

(1)

where: v(t − j) - input axial velocities, e(t − k) - feedback
following errors, ωo

i - output neuron weights, ωv
ij , ω

e
ij - hidden

neuron weights, H - number of hidden neurons, DV - number
of velocity input delays, DE - number of error feedback
delays.

Artificial neural networks are usually trained by using two
sets of data. One is the modelled system’s input and the
other is its output. The goal of the training is to iteratively
adjust the networks weights and biases so that the network’s

output matches the systems actual output. A properly trained
network has the ability of generalization which means that
it can accurately predict the system’s performance for any
input data not just the training set. To test neural network
generalization a validation input/output set is used that was
not used for training.

NARX neural networks can be trained in two different
ways in the series-parallel training architecture and parallel
architecture [16]. In the series-parallel architecture (fig. 3a)
the dynamic recurrent NARX network is trained as if it
was a traditional static network [17]. The feedback path is
disabled and each time delay is treated as an independent
input. Feedback inputs are fed with the actual system’s output
data instead of data obtained from the network’s output. When
training is finished the trained network is reconfigured to work
as a NARX network. Because the network used actual data for
training and not predicted data which are used during operation
the prediction error is larger with the feedback loop closed.
Long term multi-step-ahead prediction which is often required
for predictive control can exhibit large prediction errors.

In the parallel training architecture (fig. 3b) dynamic train-
ing algorithms have to be used such as back-propagation
through time which are much more computationally demand-
ing than ordinary algorithms for static networks. Training
in the parallel architecture is also much more susceptible
to premature convergence to a local minimum of the error
function and training results are highly dependant on initial
weights [18].
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Fig. 3: Series-parallel training (a) and parallel training (b).

In this work a SISO NARX neural network was used to
independently model each axis’ feed drive and predict it’s
following error. Commanded axis velocity was used as the
input value and axis following error was used as network’s
target output value. In order to generate the training data set
was created from a randomly generated NURBS toolpath with
optimized feedrate profile that ensured axial velocity profiles
with maximum velocity (300 mm/s), acceleration (2000
mm/s2) and jerk (50000mm/s3). The NURBS toolpath is
shown on figure 4 and axial reference velocity profiles are
shown on figure 5.

This trajectory was executed on a biaxial CNC machine
controlled by a PC based CNC controller developed by the
authors [19]. The NURBS trajectory generator and interpolator
were implemented in Linux RTAI real-time operating system
along with data logging software. The experimental setup used
is shown on figure 6.



Fig. 4: Randomly generated NURBS toolpath used to generate
training and validation trajectories
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Fig. 5: Axial velocity profiles used as NARX network inputs
for training and validation.

The reference trajectory was interpolated with 1ms sampling
time. Following errors in each axis were saved to files and ex-
ported to MATLAB. The interpolation process was repeated 10
times and 10 output data sets with over 170000 samples were
obtained. Following error in each set was slightly different due
to machine repeatability errors so data sets were averaged. The

Fig. 6: Experimental setup with a biaxial CNC router used for
testing

averaged data set was smoothed using MATLAB’s ”csaps”
function with a smoothing factor of 5e−2 in order to remove
measurement noise. Input velocity and output following error
data sets were normalized so that their values were contained
between -1 and 1. Preprocessed data sets for both axes were
divided in half. First half was used for training the NARX
neural networks and the other was used for validation.

Training was performed using MATLAB’s ”trainbr” algo-
rithm which is the Levenberg-Marquardt training method with
Bayesian Regularization [20], [21]. This algorithm minimizes
an objective function that consists of a sum of squares of
prediction errors and sum of squares of networks weights:

εBR = β

Nd∑
i=1

(di − ŷi)2 + α

Nw∑
j=1

w2
j (2)

where: Nd - number of training data samples, di - target
data samples, ŷi - network output data samples, Nw - number
of network weights, wj - network weights, α,β - weighting
factors automatically adjusted by the training algorithm.
The aim of second part of the objective function is to prevent
weights from increasing to large values which has a negative
effect on generalization. Training with regularization usually
takes longer than with standard LM algorithm but it’s usually
more robust to premature convergence to a local minimum and
overtraining.

Training was performed in two stages. In the first stage
a series-parallel configuration was used with randomly initial-
ized weights. The network was trained until minimum gradient
of 1e−8 was reached or the training did not show significant
progress for a longer period of time. The network’s feedback
loop was then closed and training was continued in the parallel
configuration without reinitializing the weights. Thanks to
this method training resulted in a well trained network in
every attempt. When attempting to train the network in the
parallel configuration without pre-training many training runs
resulted in networks that were unstable after several thousand
time steps or had large prediction errors. Networks trained
using only the series-parallel configuration usually had worse
performance that those trained using the two stage method.

Different network architectures were tested by repeated
training and verification using the validation set. During tests
it was found that lowest following error prediction error for



each axis was obtained using a NARX neural network with
a single hidden layer with 12 sigmoid neurons and 4 input
and feedback delays. Graphical representation of the chosen
NARX neural network architecture is shown on figure 7.

Fig. 7: Graphical representation of the chosen NARX follow-
ing error predictor generated by MATLAB

NARX neural network training results were verified by
comparing the predicted following error with actual following
error for the validation set. Figures 8 and 9 show the validation
set predicted (green) and actual following (blue) error for
X and Y axes respectively. Prediction error which is the
difference between predicted and actual following error values
is shown on figures 10 and 11. There is a very close match
between the two data sets. Main source of mismatch is due
to ballscrew runout which is periodic in nature and is hard
to model with any least squares training method. It is worth
noting that the validation set prediction error does not increase
with the number of samples predicted despite performing the
prediction only in closed loop and predicting over 80000
samples. The NARX neural networks model the feed drive
dynamics very well and are excellent long term predictors of
axial following errors.
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Fig. 8: Predicted (green) and actual (blue) following error in
the X axis.
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Fig. 9: Predicted (green) and actual (blue) following error in
the Y axis.
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Fig. 10: Following error prediction error in the X axis.

III. CONTOUR ERROR PREDICTION USING NARX FEED
DRIVE MODEL

NARX neural networks trained using the method described
above are excellent predictors of following error of each
machine axis. Using knowledge about the toolpath geometry
and predicted axial following errors contour error can be
predicted. The block schematic of the contour error predictor
is shown in figure 12.

When estimating contour error choosing the proper estima-
tion method is as important as obtaining accurate following
error predictions. For toolpaths defined as linear segments
or circles computing contour error is simple and exact. In
recent years toolpaths are commonly defined as Non-Uniform
Rational B-Splines (NURBS) or other polynomial curves. This
allows for representing complex shapes with relatively few
data points. When using such toolpaths the contour error
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Fig. 11: Following error prediction error in the Y axis.
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Fig. 12: Block schematic of the neural contour error predictor

cannot be computed exactly using any closed form formula
[22]. Several contour error estimation techniques for free-
form toolpaths have been proposed. A simple solution is to
approximate the toolpath locally with a line [23] or circle [24].
Such approximation is usually only valid for toolpaths with
low curvature and low feedrates. Other more advanced tech-
niques were proposed [25]–[27] but are usually more complex
and require additional data input. In one interesting algorithm
proposed in [28] the contour error vector is approximated by a
Taylor series which yields the following closed form formula:

~εc =

[
−~c− 1

2

κ (ĉ · n̂)
(
t̂ · ~εt

)
t̂

1− κ (ĉ · n̂)

]
· ~εt (3)

ĉ = − ~εt · t̂√
||~εt||2 − ~εt · t̂

t̂+
1√

||~εt||2 − ~εt · t̂
~εt (4)

where: κ - toolpath curvature at the reference point, t̂, n̂ -
tangent and normal unit vectors at the reference point, ~εt -
following error vector. Curvature, tangent and normal vectors
can be computed using the following formulas:

κ =
||C′(u)×C′′(u)||
||C′(u)||3

(5)

t̂ =
C′(u)

||C′(u)||

b̂ =
C′(u)×C′′(u)

||C′(u)×C′′(u)||

n̂ =
b̂(u)×C′(u)

||b̂(u)×C′(u)||

(6)

where: C′(u),C′′(u) - are first and second derivatives of the
NURBS toolpath position vector with respect to the toolpath
parameter u obtained from the NURBS interpolator.

This method offers superior estimation accuracy compared
to most other methods. Computation of the closed form
formula requires only data obtained during interpolation of
the NURBS curve and requires only a single iteration. Because
of those reasons the method was chosen as the contour error
estimation algorithm in the contour error predictor.

The contour error predictor was implemented in the real-
time CNC control system and tested with the random NURBS
toolpath previously used for training and validation. Predicted
contour error was compared with actual contour error esti-
mated using an iterative approximation method [29]. Actual
and predicted contour error is presented in figure 13. The
difference between predicted and actual values (prediction
error) is presented in figure 14.
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Fig. 13: Predicted (blue) and actual (green) contour error for
the validation set

The contour error predictor predicts the actual contour error
very well. Mismatch is mostly due to ball-screw runout which
could not be modelled by the axial NARX neural networks.

IV. CONCLUSION

In this work a neural-network based contour error predictor
for NURBS toolpaths was presented. Contour error was esti-
mated from predicted following errors in each of the machine’s
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Fig. 14: Contour error prediction error for the validation set

axes. Axial following error was predicted using NARX neural
networks. A two-stage NARX training method was presented
that allowed to obtain useful nonlinear models of the machines
feed drive. Tests were performed using a biaxial CNC ma-
chine. Presented results prove that the proposed solution can
successfully predict following errors and contour error for long
prediction horizons of over 80000 samples. This is crucial in
many advanced motion control algorithms such as predictive
control. The contour error estimation algorithm was used by
the authors to develop a novel predictive feedrate optimization
technique with contour error constraints presented in other
works. Further work will be carried out to improve the neural
network predictor in order to decrease the prediction error.
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