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ABSTRACT

A detailed analysis of the spatial and temporal changes in mean seasonal and annual daily m3xjguand minimum

(Tmin) air temperatures and diurnal temperature range (DTR) in the Arctic over the period 1951-1990 is presented. This
analysis is preceded by a description of the spatial distributions of the mean seasonal and annual 40-year extreme temperatures
(i.e. Tmax and Tpin)-

The rate of decrease of the mean Arclig, is about twice as weak as the rate M.« in the period 1951-1990. As a
result, a decrease in DTR is observed. Not all areas of the Arctic, however, show such tendency, e.g. large parts of the
Canadian Arctic do not. The increases in DTR here are more common in summer than in winter.

The decrease in DTR is related partly to increases in cloud cover, especially in the warm half-year when solar radiation is
present in the Arctic. On the contrary, in the cool half-year (mainly during polar night) the day-to-day changes of temperature,
governed at this time by very variable atmospheric circulation, have a greater impact than the cloudiness.

The increase in variability of,.x and T, has not occurred in the most recent decades.

No evidence of any greenhouse warming in the Arctic over the period 1951-1990 is seen. Most.of ued T, trends
are not statistically significant®) 1997 by the Royal Meteorological Societyt. J. Climatol.17: 615-634, 1997

(No. of Figs: 12. No. of Tables: 5. No. of Refs: 48)

KEY WORDS: Arctic; spatial and temporal changes; time series analysis; temperatures maximum and minimum; diurnal temperature range.

INTRODUCTION

Recently it has been noticed that the phenomenon of global warming is strongly connected with an observed
decrease of the mean monthly diurnal temperature range (DTR) defined as the difference between the mean
monthly maximum (nay and minimum T.,in) temperatures. Such behaviour of the DTR is caused by the
asymmetric trends of monthly medi, . and T,,in. Karl et al. (1991, 1993) showed that over 50 per cent of the
Northern Hemisphere and 37 per cent of the global landmass, the increbsg isfthree times greater than that

of Tmax It means also that global warming is caused mainly by the increa$g;pfin the last few years, many
papers have been devoted to this subject, e.g. Frich (1992), Kukla and Karl (1993), &al Auer (1994),

Brazdil et al. (1994, 1995), Nied@iedz and Ustrnul (1994), Jones (1995a), Katlal. (1994, 1995), Przybylak
(1995), including several papers presented at the ‘Minimax’ Workshop, held 27-30 September 1993, in Maryland
and published recently iAtmospheric Researdte.g. Dessens and 'Bher, 1995; Horton, 1995; Jones, 1995b;

Kaas and Frich, 1995; Parker, 1995). These papers cite evidence that some regions of the world reveal no
significant trends in DTR (e.g. Austria (Bm and Auer, 1994); Czech Republic (Bcil et al., 1994); Nordic
countries (Kaas and Frich, 1995); some parts of the Arctic, mainly Canadian Arctic (Przybylak, 1995) and
Antarctica (Jones, 1995a)) and some even show a significant increase in DTR (Polarav{igdnd Ustrnul,

1994); North Sea region, including the British Isles (Horton, 1995)). One can see that not all areas of the globe
show negative trends of the DTR.
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Since late in the nineteenth century it has been known that the polar regions play a very important role in
shaping the global climate. Both observations and modelling studies have shown also that these regions are most
sensitive to climatic changes. As a consequence, warming and cooling epochs should be seen here most clearly
(e.g. Polar Group, 1980:dar and Kellogg, 1983). Climatic models with enhanced greenhouse forcing simulate
the greatest warming in the polar regions, which should be especially high near the surface and in the winter half
of the year (Houghtoet al., 1990, 1992). However, the recent warming common in most parts of the world is not
present in the Arctic, as defined itlas Arktiki (1985) (see e.g. Hanssen-Bawral, 1990; Nordli, 1990;
Chapman and Walsh, 1993; Kadtl al., 1993a,b; Przybylak and Usowicz, 1994; Katlal., 1995; Weber, 1995;
Przybylak, 1996). Similar situations are also evident over Iceland (Einarsson, 1991) and over Antarctica, but only
since the early 1970s (Jones, 1995a), i.e. since the last phase of global warming started. This divergence between
global and polar air temperature patterns is one of the most intriguing issues for a climatologist to solve. Some
propositions explaining this phenomenon are given in Przybylak (1996) concerning the climate of the Arctic. In
this study I focus on the behaviour of the extreme temperatures and DTR in the Arctic over the period 1951—
1990.

There are two main aims of the present paper. The first is to describe the mean state and the spatial and
temporal variations of th&,,,.x and T, in the Arctic in recent decades and the second is to check whether there
is (or is not) evidence for a decreasing trend in the DTR.

The analysis presented covers the greater part of the Arctic. There are no long-term data for the inner part of
Greenland and the Arctic Ocean. Because the temporal and spatial variability of air temperature over the Arctic
Ocean is one of the smallest in the Arctic region, the author decided to present for this area the likely results of
the variables analysed (based on data from neighbouring stations). For Greenland, such analysis would not be
feasible owing to the great topographical differences occurring there.

DATA AND METHODS

Mean monthlyT,ax and T,hin from 26 Arctic and two sub-Arctic stations (Figure 1) were available for analysis
during the period 1951-1990 (except Greenland, which had data up to 1980; for the decade 1981-1990 these data
exist but their quality is poor and therefore they are at present being homogenized by P. Frich from the Danish
Meteorological Institute). All the data come from national Meteorological Institutes (Danish Meteorological
Institute, Norwegian Meteorological Institute and Canadian Climate Centre) or other institutions (Arctic and
Antarctic Research Institute at St Petersburg and National Climatic Data Center at Asheville).

The use of spatial statistical methods (e.g. as proposed by Mitchell, 1961; Alexandersson, 1986; Vincent, 1990;
Gullettet al., 1991) to detect inhomogeneities in the Arctic air temperature series is most often impossible owing
to the great distances between meteorological stations (which, among other factors, are responsible for the weak
correlation ofT 2 and T, between neighbouring stations) and the lack of so-called reference stations (see e.g.
Vincent, 1990; Gullettet al., 1991). Also these methods do not allow the detection of severe errors when all
stations in a study region change instruments, formulae or observation time within a few years (Frich, 1993). The
quality control of theT,,ax and T, is much more difficult in comparison with mean temperature from ordinary
thermometers because they are more sensitive to both local conditions and ‘artificial’ changes at or near the
observation site. It is also very well known thBt;, is more sensitive thail, . in this respect and therefore its
series may contain more inhomogeneities. It is worth noting that a major source of inhomogeneity connected with
urbanization is not present in most Arctic regions.

For this study the quality control of the extreme air temperature series analysed was performed using mainly
the procedures outlined by Horton (1995), which are described herein in detail. Additionally, another very simple
but good method, proposed by Frich (1993) and successfully applied by Przybylak (1996), was used. This method
relies on the comparison of monthly me@g., and Ty, with appropriate true monthly mean temperatures. It
uses the following very well known formula:

Tmax + Tmin

~T
2
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Figure 1. Location of meteorological stations used. The thick line is the border of the ArctiddéeArktiki(1985). 1, Angmagssalik (height
above sea-levelH=35 m); 2, Kap Tobin =41 m); 3, DanmarkshavrH(= 11 m); 4, Jan MayenH =10 m); 5, Hopen il =6 m); 6,
Malye Karmakuly H=46 m); 7, Polar GMO E. T. KrenkelyaH(=20 m); 8, Mys KamennyH =7 m); 9, Ostrov Vize 1 =18 m); 10,
Ostrov Dikson H=20 m); 11, GMO E. K. FedorovaH=13 m); 12, Ostrov KotelnyH =10 m); 13, CokurdahH =48 m); 14, Ostrov
ChetyrekhstolbovoyH =6 m); 15, Mys Szmidtal =7 m); 16, Barrow =4 m); 17, CoppermineH{ =24 m); 18, Resolute A{ =67 m);
19, Eureka 1 =10 m); 20; Coral Harbour AH =64 m); 21, Igaluit A H=34 m); 22, Clyde A =25 m); 23, Alert H=63 m); 24,
Upernavik H =63 m); 25, JakobshaviH(=47 m); 26, GodthabH =20 m); 27, Forth Smith Al =203 m); 28; KhatangaH =24 m)

whereT is the true monthly mean temperature computed from the fixed hours (usually 4, 8 or 24 measurements a
day).

Having these three temperature series it is possible to easily find and correct erroneous values. This method
was also used to fill up a few existing gaps in the series analysed when two temperature characteristics were
known (ThaxandT or Ty,in andT). For the Arctic this method is better than that commonly used—a comparison
with the data from neighbouring stations. Unfortunately, the application of this method is possible only for the
areas where the mean temperatures are not calculatdg,asHTmnin)/2. Therefore, in the Arctic we can apply it
to all areas except the Canadian Arctic and Alaska.

The climatic background of th&,,ax and T, in the Arctic is presented using 40-year (1951-1990) mean
seasonal and annual values. For each decade the anomalies relative to the average for 1951-1990 were also
computed. The linear trends of annual and seas®pak and T,,;, were calculated for each Arctic station.
Additionally, the significance of these trends using Studargst was estimated. Also the share of trends in the
general variance of analysed temperatures has been computed. All analysed characteristics of the extreme air
temperatures in the Arctic are presented in maps. The isolines have been drawn using simple mathematical
interpolation.

Some investigators are convinced that for humankind the rising frequency of extreme phenomena is more
important than small changes of mean values, both connected with the greenhouse effect (see e.g. Katz and
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Brown, 1992). In order to check the behaviourTgfa, and Tonin in this respect the standard deviations in running
decades of the period 1951-1990 have been computed.

RESULTS AND DISCUSSION
Spatial and season patterns of meagxTand Tyin

The general spatial pattern of the long-term mean air temperature in the Arctic is not completely known and is
based on rather old data (see e.g. Prik, 1959; Vowinckel and Orvig, 1970; CIA, 1978; Atlas Arktiki, 1985;
Herman, 1986). Moreover, in these publications usually only maps with January and July mean temperatures are
presented. Therefore, based on 1951-1990 means, | have made maps also for each season (DJF, MAM, JJA, and
SON) and year (Przybylak, 1996). Reviewing the Arctic climatic literature | have not found any publication that
presents the spatial pattern of extreme temperatures for the whole Arctic. It is certainly worthwhile to fill this gap.
Rough sketches of the spatial patterns of the nfga and T, (based mainly upon the period 1951-1990) are
presented in Figures 2 and 3. It is seen that the thermal parameters analysed have very similar spatial patterns.
The annual mean,;, values usually are about(®-7.0°C lower thanT, o« (Table | and Figure 2). The coldest
part of the Arctic (excluding Greenland) is the north-eastern part of the Canadian Arctic. For example, at the
Eureka station the 40-year annual mean$gf, andT,,;, were equal to-16-4 and—23.0°C, respectively (Table
). The warmest parts of the Arctic are the southern areas adjoining the Atlantic Ocean, where meait apnual
values are even positive. The spatial distributions of mean wihgg and T, in the Arctic are similar to the
annual values, but the horizontal temperature gradients are much greater (Figure 3, upper panels). Also greater is
the mean difference betwedh,,x and T,nin, Which over most of the Arctic is near to®.

In summer (Figure 3, lower panels) the spatial patterns of Bgth and T, are different than in winter. The
coldest part at this time is the central Arctic, especially on the Atlantic Ocean side. The 40-year mean values of
Tmin Vary between-2° and 0C and T,y between 0 and 2C. Low temperatures over the Arctic Ocean are
mainly maintained by the presence of melting snow and ice, which absorbs the majority of warmth arriving here.
In summer the warmest temperatures are noted in the southern parts of the continental Arctic (i.e. mainly in the
Russian and Canadian Arctic), where 40-year meaig,gfand T, exceed 10and £4C, respectively (Figure 3,
lower panels).

The variability of the yearly meam,.x and T,in iS greatest in the region between Spitsbergen, Franz Josef
Land and Novaya Zemlya (standard deviatiehi§é greater than-B°C) and smallest for the greater part of central
and eastern Russian Arctic, the north of Canadian Arctic, southern Greenland and probably the Arctic Ocean
(6 < 1.0°C) (Table I). The variability is usually two to three times greater in winter than in summer. The main
reason of the high variability of,,ox and T, in winter, when the incoming solar radiation is lowest, is the very
strong and variable atmospheric circulation bringing thermally differentiated air masses (see Przybylak, 1992). In
summer a more important factor than atmospheric circulation is the insolation. Therefore, the greatest variability
of both thermal parameters analysed occurs in the southern continental parts of theaAscti@{C for T,,.xand

> 1.0°C for T,in) (Table 1). In this season the greater variabilityTafax than T, in the Arctic is clearly seen.

According to Przybylak (1996), in the Arctic in the period studied, the warmest decade was 1951-1960, and
the coldest was the following decade. As we know for the whole globe the warmest decade was 1981-1990
(Jones, 1994). Since the mid-1970s, when a rapid change in atmospheric circulation occurred, a discrepancy is
observed in the courses of global and Arctic temperatures (Przybylak, 1996). It is for this reason that | have
decided to focus on the behaviourBf ., and T, in the last decade. Spatial distributions of annual and seasonal
mean 10-year anomalies ©f,.x and T, in respect of the average for 1951-1990 are presented in Figures 4 and
5. As is clearly seen, over the greater part of the Arctic, positive annual anomalies of extreme temperatures
prevailed. They were lower than normal mainly over the eastern part of the Canadian Arctic and Baffin Sea. An
additional area of negative anomalies in the casg.pf occurred also over the greater part of the Atlantic region
of the Arctic (Figure 4, upper panel). On the contrary, lower than nofipglin this decade was observed also
over some small parts of the Russian Arctic and over an area spreading from the North Pole to Greenland and
Franz Joseph Land (Figure 4, lower panel). Figure 5 is the same as Figure 4 but corresponds to winter and
summer. In winter the spatial distributions of thg., and T, anomalies are quite similar to those for the year,
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Figure 2. Spatial distribution of mean annd@l.x and T, in the Arctic (C), 1951-1990. Note that the isotherms around the southern part of
Greenland are not drawn owing to lack of data. Dots, meteorological stations, dashed lines, probable course of the isotherms
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Figure 3. Same as Figure 2, but for winter (DJF) and summer (J4); left panels;Tin, right panels

especially in the case OF,ax (see Figures 4 and 5, upper panels). The extreme temperatures below normal
occurred in the parts of the Arctic adjoining the Atlantic Ocean. In summer the spatial patterns of the anomalies
of TmaxandTin are different in comparison with the annual ones (Figures 4 and 5). Both thermal characteristics
show negative anomalies, mainly in the Russian Arctic. A below noifpak value was present also around
Greenland. In this season the greater increask,jnpthan T« iS very clearly seen (Figure 5, lower panel).

Observed trends

Tmaxand Tnin. An analysis of the trends of mean anntighy, andTin (Figure 6) over the periods 1951-1990,
1961-1990, and 1971-1990 (not shown) revealed that the initially negative trends occurring in the greater part of
the Arctic (1951-1990) were later replaced by positive ones (1961-1990, 1971-1990). In the period 1951-1990
the increasing trends Gf,ax and Ty, were noted only over the southern part of the Russian Arctic (Figure 6).
Both the thermal parameters show the greatest warming over Alaska and its vicinity (more-2h@np8ér
decade). On the other hand, the greatest cooling was observed over the Atlantic region of the Arctic (especially in
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Table I. Mean seasonal (DJF and JJA) and anfigal, Tmin and DTR (m, infC) and their standard deviations, {n °C) in the
Arctic over the period 1951-1990

Tmax Tmin DTR
Station DJF JJA Annual DJF JJA Annual DJF JJA Annual

m o m a m a m g m o m o m o M o M o

Angmagssalik -37 17 100 08 25 08 -107 18 25 06 —-45 09 70 10 75 07 69 06
Kap Tobirf -121 21 49 06 —-44 10 -203 28 -05 06 —112 12 83 19 54 07 68 10
Danmarkshavh -185 19 51 07 -87 09 -271 18 -03 06 —-157 08 86 14 54 07 70 09
Jan Mayen —-26 16 59 07 11 09 -78 22 22 07 -32 11 52 08 37 04 43 04
Hopen -92 31 31 08 -35 17 -159 38 01 08 -83 20 67 11 31 03 48 05

Malye Karmakuly -104 27 81 14 -23 13 -174 30 31 10 -80 13 70 08 49 06 57 03
Polar GMOE.T. -210 29 13 05 -109 13 -283 26 —-15 04 -163 13 74 08 28 02 54 03

Krenkelya

Mys Kamenny -199 31 99 15 -57 13 -282 28 44 12 -127 13 83 10 55 06 70 04
Ostrov Vize -21.8 31 09 04 -115 14 -291 29 -17 04 -169 14 73 09 26 03 54 04
Ostrov Dikson -215 29 57 14 -88 13 -288 28 11 11 -148 12 73 07 46 06 60 03
GMO E. K. -248 26 23 08 -124 11 -315 23 -14 05 -179 11 67 07 37 05 55 04
Fedorova

Ostrov Kotelny -262 16 36 13 —-122 10 -328 15 -06 09 -179 09 66 05 42 06 57 04
Cokurdah -299 15 126 15 -101 09 -370 14 37 11 -178 09 71 05 90 07 77 03
Ostrov -251 17 42 11 -109 08 -31.3 15 -04 08 -162 08 62 07 46 06 54 03
Chetyrekhstolbovoy

Mys Szmidta -214 21 65 13 -84 10 -287 17 07 07 -149 09 73 09 58 07 65 03
Barrow —-226 24 55 14 -96 12 -293 21 01 09 -156 11 67 09 54 06 60 04
Coppermine —-245 22 114 16 -76 11 -323 19 35 12 -153 10 79 08 79 09 78 05
Resolute A —-278 20 45 12 -134 10 -350 17 -05 1.0 -197 09 72 06 49 05 63 03
Eureka -329 19 62 11 -164 11 -400 16 09 08 —-230 10 70 07 53 06 66 04
Coral Harbour A —-240 26 101 14 -74 12 -323 24 21 10 -157 12 84 07 80 07 83 03
Igaluit A -205 35 95 11 -56 13 -289 33 25 07 -132 14 84 07 70 05 76 03
Clyde A -228 28 63 12 -87 11 -305 27 -04 08 -161 11 76 10 67 07 74 06
Alert -279 14 38 10 -147 09 -356 11 -14 06 —-215 07 77 08 52 07 67 04
Upernavik —-136 28 69 13 —-43 10 -193 24 19 10 -96 09 58 09 49 07 52 05
Jakobshavh -88 29 103 10 -04 11 -166 31 33 07 -777 12 78 09 70 05 73 05
Godthal -37 21 93 11 20 09 -94 20 32 07 -34 07 57 07 61 06 54 04

@Data for 1951-1980.
PData for 1955-1990.
°Data for 1958-1990.

the case off 5y, Greenland, Baffin Sea and the eastern part of the Canadian Arctic. As can be seen from Figure
6, Tmax Shows more pronounced cooling th&g;,. In the annual values, negative trendslgf,, occurred in 80

per cent of the stations versus only 52 per cent in the ca$g,qfThe cooling for both parameters was greater in

the second part of the year. These results indicate different behavioliy,Qfand T, in the Arctic in
comparison with most other regions of the globe (Katral., 1991, 1993), which have mainly positive trends. As
shown in Przybylak (1996) and partly in Figure 7, such a situation is explained by the fact that in the Arctic the
warming that occurred in the period 1920-1960 was much greater than in other parts of Northern Hemisphere.
Moreover, the magnitude of this warming was not exceeded here in the 1980s as it was for the Northern
Hemisphere and the globe as a whole.

The trends of mean summ@&t,ax and Tmin are more similar to the annual ones than the trends of winter
(Figures 6 and 8). In summer in the period for 1951-1990, negative trends of the extreme temperatures prevailed,
while in winter positive trends prevailed. The difference in magnitudes of trends is much greater in winter,
ranging from—0-6 to 06°C per decade. It is worth noting that spatial distributions and magnitudes of trends are
very similar for both thermal parameters analysed (see Figures 6 and 8).
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Figure 4. Spatial distributions of the annual anomalie3gf, and T,,,, for the decade 1981-1990, with the 1951-1990 mean for the Arctic

(°C). Negative anomalies are hatched. Note also that the isopleths around the southern part of Greenland are not drawn owing to lack of data

for the period 1981-1990, but the probable sign of the anomalies in this area (positive or negative) was estimated taking into account all the

information available from neighbouring stations as well as the behaviour of the mean air temperatures (Przybylak, 1996). Dots,
meteorological stations; dashed lines, probable course of the isopleths

The pattern of distribution of trends in the Arctic changed for the period 1961-1990. During this time a
considerable domination of positive trendsTaf.x and Tynin is seen, but cooling still occurs over the eastern part
of Canadian Arctic, Baffin Sea and probably over most of Greenland (in the casgpfFigure 6. The greatest
change in trend (between periods 1951-1990 and 1961-1990) occurred over the Atlantic region of the Arctic
(from —0-2°C per decade to about-2-04°C per decade). The positive trends in the period analysed are
attributable to the fact that the Arctic in the 1960s was as its coldest, at least since 1920. From the mid-1970s,
Tmax @nd Tryin for most of the Arctic show a lack of trends or small trends (Figure 7).

The majority of trends, for all periods analysed, are not statistically significant. The calculations have also
shown that very rarely the linear trends explain more than 10 per cent of the general varidngg afd T

Based on the aforementioned results one can conclude that the anthropogenic warming projected by GCM
outputs is not seen in the Arctic in the last decades. According to Przybylak (1996), this could be due to: (i) a
delay in reaction of the Arctic climate system, which has considerable inertia due to large water masses and sea
and land ice; (ii) the influence of natural factors (mainly of the change in atmospheric circulation that occurred in
the mid-1970s—since this time there is a clear rising frequency of zonal circulation (see aughgaski, 1993;
Hurrell, 1995; Przybylak, 1996)), which, although leading to cooling of the Arctic, considerably reduces or
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Figure 5. Same as Figure 4, but for winter (DJF) and summer (J4); left panels;Tin, right panels

completely removes the warming caused by greenhouse gases; (iii) the influence of anthropogenic sulphate
aerosols, which, as investigations by Sargeral. (1995) have shown, is very strong, especially in the high
latitudes—in large parts of the Arctic, reduction of air temperature connected with this aerosol is greater than
warming caused by the enhanced greenhouse effect gf &M@ (iv) combination of these three factors.

Diurnal temperature rangeThe differential rate of changes 0f,.x and T,.in in the Arctic can be seen in
Figures 6—8. In most of the Arctic, increasing (or less decreasing) trerjg,pére more pronounced than those
of Tmax Such asymmetric trends of the extreme air temperatures lead to a decrease in the DTR (Table I1). For the
period 1951-1990 this decrease has occurred with a frequency of 76 per cent for winter, spring and summer, 64
per cent for autumn, and 72 per cent for the year (Table Ill). Spatial distributions of the mean annual and seasonal
DTR trends in the period 1951-1990 are presented in Figures 9 and 10. It is seen that positive trends of both
annual and seasonal DTR in the Arctic occurred during this time mainly in the Canadian Arctic. They are more
common in summer than in winter, but in the latter season the increase of the DTR was also noted over a small
fragment of the western part of Russian Arctic (Figure 10). Only every second or third station (from all stations
with a decreasing trend in the DTR) shows a statistically significant decrease in the DTR (Tables Il and IlI).
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Figure 6. Spatial distribution of the mean anntighy (left panels) and i, (right panels) trends’C per decade) in the Arctic over the period

1951-1990 (upper maps) and 1961-1990 (lower maps). Negative trends are hatched. Note also that the isopleths around the southern part of

Greenland are not drawn owing to lack of data, but the probable general trends in this area (positive or negative) were estimated taking into

account all the information available from neighbouring stations as well as the behaviour of the mean air temperatures (Przybylak, 1996).
Dots, meteorological stations; dashed lines, probable course of the isopleths

In the period 1961-1990, asymmetric trends of the extreme air temperatures are more strongly marked than in
the previously analysed period (Table Il1). During this time only three stations, Barrow, Coppermine, and Igaluit
A, show an increase in mean annual DTR. From Table Il and Figure 9 one can also see that the decreases in the
DTR in other parts of the Canadian Arctic are smaller than in the rest of the Arctic.

In the period 1971-1990 the decrease in the mean annual DTR trends occurred in only 58 per cent of stations
(Tables Il and 1, and Figure 9). An increase in DTR, beside the Canadian Arctic, was also noted over a large part
of the Norwegian Arctic. The decrease in the DTR was slightly more common in the cool half-year than in the
warm half-year (Tables Il and Ill). In summer a greater part of the Arctic even shows an increase in DTR. Also,
the number of statistically significant negative trends in the DTR has dropped dramatically, especially in winter
and spring (Table 1ll). Summarizing the above results, one can note that in most of the Arctic a decrease in the
DTR is observed, similar to other parts of the world (Katrlal., 1991, 1993). However, only about 30 to 55 per
cent of them (depending on the season) are statistically significant. This conclusion is confirmed also by the
comparison of Figure 3 in Kast al. (1993) and Figure 7, which includes the fluctuations of the mean annual
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Figure 7. Time series of the air temperature anomalies of the annual mean maxiiggn rhinimum (T,i,), and diurnal temperature range
(DTR) in the Arctic (based on data from 26 stations). Smooth curve is a weighted 5-year running mean

anomalies of the DTR for the Arctic. Except for the first few years, a very good correspondence is apparent in
these curves. It is worth noting also that the magnitude of changes in the DTR was similar, and from the early
1960s to 1980s a drop equal to aboud°C occurred. Such a reduction in the DTR in the Arctic is, however,
greater than simulated by climatic models. The experiments carried out by Hetngki1995) suggest that the
changes in the DTR in the Arctic, relevant to the global warming-8f®©, should oscillate from-0-1 to —0-3°C

(for the case when aerosols and clouds are uniformly distributed over land) orfbin(central Arctic) to

—0-3°C (near-continental parts of the Arctic) for the real distributions of the tropospheric sulphate aerosols. The
guestion of what are the reasons of this discrepancy between observed data and model projections, remains open.
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What are the causes of the damping in the DTR in the last decades? The answer is rather difficult. According to
Karl et al. (1991, 1993), the most probable factor is increase of cloudiness, which explains, together with the
changes of clouds mean ceiling height, the greatest portion of the variance in DTR. Frich (1992) also presents
similar view. This was recently reliably confirmed by Hanstral. (1995), who used a global climate model to
investigate the impact of a wide range of radiative forcing and feedback mechanisms in the daily cycle of surface
air temperature. They found that ‘Only an increase of continental cloud cover, possibly a consequence of
anthropogenic aerosols, can damp the diurnal cycle by an amount comparable to observations’. Other climatic
factors (e.g. snow cover, mean wind speed) are much less important. The influence of local effects, such as
urbanization, irrigation, and desertification, is also weak, and in the case of the Arctic is practically absent.

The second group of factors seriously influencing DTR (from one-third to one-half of the observed damping of
the diurnal cycle) is, according to Hanseh al. (1995), the increase of greenhouse gases and tropospheric
aerosols.

Taking into account these findings | have decided to investigate the relations between cloudirkgs, and
Tmin in the Arctic. The behaviour of cloudiness in the region studied was analysed using data from 19 stations.
The increasing trends in cloudiness over the period 1961-1990 have been found over the European and Russian
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Table Ill. Mean seasonal (DJF, MAM, JJA, and SON) and annual
frequency of occurrence (in per cent) of decreasing trends in the DTR
for selected Arctic stations

Period DJF MAM JJA SON Annual

1951-1990

a 76 76 76 64 72

b 26 37 42 44 56
1961-1990

a 88 81 73 88 88

b 26 33 32 35 61
1971-1990

a 54 50 46 58 58

b 7 8 33 27 20

(a) All cases with decreasing trend.
(b) Only statistically significant decreasing trends (frequency is computed
relative to all cases with decreasing trend).

N e e / A
\ a“ﬁa’%f/ iy

30° 80° 0° 30° 60°

Figure 9. Spatial distribution of the mean annual DTR trends in the Art@icper decade). Negative trends are hatched. Note also that the

isopleths around the southern part of Greenland are not drawn owing to lack of data. The probable general trends in this area (positive or

negative) were estimated based upon the DTR trends in the nearest stations. Dots, meteorological stations; dashed lines, probable course of the
isopleths
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30|

G__4Q0_p_12p0km|
60°

0° : 60"

Figure 10. Spatial distribution of the mean winter (DJF) and summer (JJA) DTR trends in the AfCtjge( decade) over the period
1951-1990. Key as in Figure 9

Arctic as well as over Baffin Sea and its vicinity (Table IV and Figure 11), that is, in the regions that are
characterized by the greatest decrease in the DTR. It is important to notice that these regions of the Arctic lie
nearest the main sources of emissions of anthropogenic aerosols. So, it is possible that the increase of cloudiness
here is connected with the rise of aerosol concentration. In the rest of the Arctic, where a decrease of cloudiness
occurred in the last decades, the changes of DTR are very small and oscillate around its long-term mean. These
conclusions are also confirmed by the computed mean DTR. For the part of the Arctic where increases of
cloudiness are observed the trend of annual DTR is equal®d6°C per decade, whereas in areas with a
decrease in cloudiness it is0O3°C per decade. This suggests that one of the most important factors influencing
the decrease in DTR in the Arctic is the increase of cloudiness. However, it must be noted that the relationship
between cloudiness and extreme air temperatures in the Arctic is not so clear and simple as at lower latitudes. A
statistically significant negative correlation exists mainly in summer and only in some Arctic regions in spring
and autumn (Table V). In winter that correlation is even positive over most of the region studied, because at this
time the cloudiness depends strongly upon atmospheric circulation. A vigorous cyclonic activity (especially in
the Atlantic region of the Arctic) causes the inflow of warm and humid air masses from middle latitudes to the
Arctic. As determined by Przybylak (1992), for the Hornsund station (Spitsbergen), the mean extreme
temperatures are greater (the differences are especially marked in the cool half-year) on cloudy than on clear days
(except summer months, especially in the casg@f). Przybylak (1992) found also that mean DTR in Hornsund
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Figure 11. Courses of the 5-year running means of cloudiness (solid line) and their linear trends over the period 1961-1990 (dashed line) in

selected Arctic stations

Table V. Correlations between observed seasonal (DJF, MAM, JJA, and SON) and annual mean DTR and mean cloudiness at

each of the 10 stations representing different climatic regions of the Arctic

Station Period DJF MAM JIA SON Annual
Danmarkshavn 1955-1980 03 019 015 -0-04 033
Jan Mayen 1956-1990 -0-32 -0-20 —0-34* —0.06 -0.26
Hopen 1956-1990 -0-30 -0.07 -016 —0.62*** —0.-50**
Ostrov Vize 1951-1990 -06 -017 —0-49** -0-18 013
Ostrov Dikson 1951-1990 -9 —0.08 —0.55%** -0-16 -012
Ostrov Kotelny 1951-1990 -05 004 —0-55%** —0-08 -0-13
Mys Szmidta 1951-1990 -0-13 —0.50%** —0-38** —0.71%** 0.02
Resolute A 1953-1990 07 -0-10 —0.59%** -0.20 -0.21
Coral Harbour A 1953-1990 -80 —0.56*** —0-66*** —0-47** —0-40*
Clyde A 1953-1990 Q37* -0-23 -014 -0.17 002

* *x *xx Coefficients of correlation statistically significant at the levels of0%, 001, and @001, respectively.
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Figure 12. Standard deviations of mean winter (D—J-F) , summer (J-J-A) and dppuédr running decades in selected Arctic stations

is greatest during clear days in spring, autumn and, especially, in summer. The opposite is true for winter. Thus in
winter factors other than an increase in cloudiness must affect the decrease in the DTR. It is well known from
many studies (e.g. Baranowski, 1968; Przybylak, 1992) that the DTR in the Arctic in winter, early spring and late
autumn (when the solar radiation is low or not present) is shaped mainly by non-periodic day-to-day changes of
air temperature. In turn, these fluctuations of temperature are controlled largely by the thermal advection
associated with synoptic-scale cyclones and anticyclones. The results presented in Figure 8btialK@993)

confirm this conclusion, showing that the partial correlation coefficient between day-to-day changes of
temperature and DTR grows when solar radiation (and thus temperature) decreases. As also can be seen from this
figure, in such solar conditions this variable is equally important, as is the added influence of an increase in cloud
cover and decrease in its ceiling height. These results are based on data taken from mid-latitudes. Of course, for
the Arctic, where during winter the incoming solar radiation is significantly lower than in the mid-latitudes or
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even not present (polar night), the day-to-day changes of temperature must play a considerably greater role in
decreasing the DTR.

Fluctuations of variability of winter, summer and anndal.x and T, have been analysed using standard
deviations on running decades. Because the changes of variability of both the thermal parameters are very
similar, | present here in graphic form only the results Taf.x (Figure 12). In the whole Arctic—excluding
regions around the stations Ostrov Vize and Clyde A—the increasgdpandT,,;, variability in the last 10-20
years is not seen. In contrast, many areas even show a decreage.in Ostrov Dikson, Mys Szmidta, Coral
Harbour A, Resolute A) or no distinct changes (Jan Mayen, Ostrov Kotelny). The highest values of dispersion of
winter and annual extreme temperatures in recent years occur only at Clyde A (1980-1989). In most of the
remaining areas of the Arctic the maximum of variability occurred either in the 1950s or 1970s. The regions of
the Arctic that are strongly influenced by cyclonic circulation (Jan Mayen, Ostrov Vize) have annual values more
similar to winter values than to summer The opposite is true for the most continental areas.

CONCLUSIONS

Trends inTyax @and Trin in the Arctic show insignificant changes in recent decades. The signs of their trends
depend upon placement of the starting point, from which the trends are computed (see Przybylak and Usowicz,
1994). Although the changes in the temperature extremes are small, a significant decrease in the DTR over a large
part of the Arctic is seen. The results of this analysis show that in the Arctic one of the most important factors
influencing the decrease in DTR is an increase in cloudiness. The effect of this factor is especially strong in the
warm half-year. In the cool half-year the dominant variable damping the DTR are day-to-day changes of
temperature governed mainly by atmospheric circulation. It follows that the relationship between cloudiness and
extreme air temperatures in the Arctic is not so clear and simple as at lower latitudes. An increase in variability of
both parameters analysed has not occurred in the most recent years. These findings confanalKsl1993a)
statement that in the Arctic there is an absence of evidence for greenhouse warming in the period 1951-1990.
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