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Abstract. In this work we provide a spectral comparison of functional
networks in fMRI data of brain activity and artificial energy-based neural
model. The spectra (set of eigenvalues of the graph adjacency matrix)
of both networks turn out to obey similar decay rate and characteristic
power-law scaling in their middle parts. This extends the set of statistics,
which are already confirmed to be similar for both neural models and
medical data, by the graph spectrum.
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1 Motivation

Recent focus on graph-theoretical description of large-scale real networks caused
an avalanche of reports concerning real brain structures and artificial neural net-
works in this context. Among frequently analysed statistics, degree distribution,
transport efficiency, clustering, fault tolerance [3] seem to be most frequently
regarded. This seems hardly surprising as they are fairly simple to compute and
provide clear conceptual meaning.

In this work we go slightly beyond this classical set of features and focus on
the set of eigenvalues of the analysed network (graph spectrum). Such analy-
ses are far less common in theoretical researches concerning ANN1 and next to
absent in experimental neuroscience, though they can still provide a wide qualita-
tive description of the graph, for instance bi-partioning [6]. We provide numerical
results concerning spectra of functional graphs from open-accessed fMRI data
from BIRN2 as well as simplified activation-flow of recurrent network. We note a
striking similarity between the decay of eigenvalues in functional networks from
both sources.

The outline of the paper: in Sec. 2 we describe the methodology and re-
sults obtained from fMRI functional graphs. In Sec. 3 we briefly reiterate an

1 Abbreviations used throughout the paper: ANN — Artificial Neural Network, fMRI
— functional Magneric Resonance Imagining, AF — Activation Flow (model), ER
— Erdős-Rényi (graph), WS — Watts-Strogatz (graph), AB — Albert-Barabasi
(graph)

2 http://www.birncommunity.org/resources/data/

http://www.birncommunity.org/resources/data/
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results are compared and discussed in Sec. 4. Sec. 5 concludes the paper and
points out potential future research.

2 Spectra of fMRI Functional Brain Graphs

For the study of functional brain graphs, we used fMRI data provided by Biomed-
ical Informatics Research Network (BIRN): we downloaded the data from the
open-accessed Function BIRN Data Repository (for more information see the
website http://www.birncommunity.org/resources/data/). The data contain
a raw stream of output of the medical devices, which measured blood-oxygen
level in the cells of brain during execution of simple tasks. The fMRI data studied
in this paper come from the two-folded run of sensorimotor task, performed by
a right handed, non-smoking, healthy women. In Fig. 1 we present the images,
which are fragments of obtained scans.
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Fig. 1. Representative fMRI scans from the first sensorimotor task at the time t = 4
out of 85 timesteps.

The raw data are presented as a set of voxels. Each voxel v, for a given
time t ∈ {1, . . . , nt}, is described by three coordinates x ∈ {1, . . . , nx}, y ∈
{1, . . . , ny}, z ∈ {1, . . . , nz}. By vtxyz we denote a value of a voxel v with coor-
dinates x, y, z, at a time t. In our analysis we use two datasets. Each dataset
consists of 85 three-dimensional data, that represent human brain activity; each
volume for a given timestep t = 1, . . . , 85. For a further analysis we use repre-
sentative fragments of the size 34 × 40 × 20 of volumes imaging human brain,
for t = 1, . . . , 85, each frame taken every 3 seconds, so the whole measurement
lasted 4:15 minutes.

Based on the fMRI data D = {vtxyz | x = 1, . . . , nx; y = 1, . . . , ny; z =
1, . . . , nz; t = 1, . . . , nt} ⊂ Znx×Zny ×Znz ×Znt , we define a functional activity
multigraph G = (V,E) as follows. For each voxel v, with its coordinates (x, y, z),
the average activity matrix A = [ai] ∈Mn×1(R), where n = nx ·ny ·nz, is defined
as

A(i := z · nx · ny + y · nx + x) = ai =
1
nt

nt∑
t=0

vtxyz .

http://www.birncommunity.org/resources/data/
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Adj = [adij ] ∈Mn×n(R≥0), n = nx · ny · nz as

Adj(i, j) = adij =
{
|ρ(i, j)| ·

√
A(i) ·A(j) if |ρ(i, j)| ≥ Θ

0 otherwise
, (1)

where i and j are the voxel indicates, ρ stands for Pearson correlation coefficient
of the activity of the voxels, and Θ is a threshold parameter picked between 0.1
and 1. Fig. 2 depicts fragments of the correlation matrices before thresholding.
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(b) Second sensorimotor task

Fig. 2. The fragments of the correlation matrices for the sensorimotor tasks.

We can now proceed to the definition of the functional activity multigraph
G = (V,E). The number of the vertices is equal to the number of voxels in D,
and each vertex is labelled with coordinates of the corresponding voxel. Between
vertices labelled as a and b, there is an edge with a weight equal to Adj(a, b), iff
Adj(a, b) > 0. Note, that for some thresholds Θ, the obtained graph may not be
connected. In that case, as a resulting graph G we assign its maximal connected
component, so |V | ≤ n; see the first two columns of the Table 1 for examples.

The vertex degree distributions of the functional graphs, obtained from de-
scribed data for thresholds Θ = 0.7 and Θ = 0.9 are given in Fig. 3. We note that
they obey a power law formula, which is in agreement with results of Eguiluz et
al., see [7], although the threshold values are slightly higher in our case.

We are interested in computing the spectrum spec(Adj), that is the set of all
eigenvalues of the adjacency matrix:

spec (Adj) = {λ ∈ C : ∃x ∈ Cn, such that Adj · x = λ · x} . (2)

Note that, since the matrix Adj is symmetric, all the eigenvalues are real, i. e.
spec (Adj) ⊂ R, see [6]. The resulting positive eigenvalues were sorted decreas-
ingly and showed in the loglog plots, see Fig. 4. The plots of the spectra for
the thresholds Θ = 0.3, 0.4, 0.5, 0.6 are almost overlapping with the results for
threshold Θ = 0.7, therefore they are omitted.

The statistics for positive eigenvalues of the resulting graphs are summarized
in the Table 1. Interestingly, for larger threshold values the plots exhibit small
fluctuation toward developing a power law dependency in the middle part, and
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Fig. 3. Vertex degree distribution of the functional brain network during the sensori-
motor tasks for the two thresholds Θ = 0.7, and Θ = 0.9.
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Fig. 4. Spectra of the functional brain networks during the sensorimotor tasks for
various thresholds Θ.
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tTable 1. Statistics of the positive values of the spectra of the two fMRI datasets

(the first and second sensorimotor task, respectively), for varying threshold. Columns
from the leftmost denote: threshold, size of the network, minimum eigenvalue, average,
median, maximum eigenvalue, variance.

Θ Size min mean median max variance

0.9 3544 0.882 1029.1 533.5 62.87 · 103 4.74 · 106

0.8 10545 0.150 1739.5 717.8 327.43 · 103 32.30 · 106

0.7 16435 0.199 2375.4 949.4 682.98 · 103 85.87 · 106

0.6 21084 0.029 2879.5 1210.9 1052.26 · 103 160.05 · 106

0.5 24541 0.051 3248.5 1489.4 1413.60 · 103 250.33 · 106

0.4 26919 0.085 3426.2 1705.5 1758.03 · 103 351.79 · 106

0.3 27200 0.000 3580.5 1952.9 2082.54. · 103 490.56 · 106

0.2 27200 0.034 3176.1 1577.9 2372.76 · 103 599.33 · 106

0.9 6770 0.111 2118.8 779.4 329.58 · 103 48.37 · 106

0.8 13268 0.081 3420.0 1255.7 1268.18 · 103 272.40 · 106

0.7 18284 0.099 3751.7 1466.1 2107.08 · 103 509.93 · 106

0.6 22184 0.105 3739.1 1512.3 2746.26 · 103 698.150 · 106

0.5 24967 0.080 3614.3 1522.9 3221.10 · 103 853.56 · 106

0.4 26888 0.011 3343.6 1416.2 3563.98 · 103 976.57 · 106

0.3 27200 0.025 3098.1 1337.1 3799.74 · 103 1.138 · 109

0.2 27200 0.003 2552.4 907.1 3950.20 · 103 1.240 · 109

than truncate exponentially. The segment of this behaviour is quite small but
noticeable, especially for Θ = 0.7.

The exact threshold value Θ needs to be adjusted ’manually’. Threshold val-
ues selected too strictly may cause removal of vital edges, too generously may
preserve unused resources and, in the end, yield a structural, rather than func-
tional graph. In both of the cases the resulting functional network tend to lose
its critical properties. Similar loss of criticality outside fixed control parameter
was observed in [9], but also fMRI-based researches focus solely on the values,
that yield critical state, see for an instance [7].

3 Spectra of Activation-flow-based Model

The prohibitive complexity of the brain dynamics drew us to design a simplified
model, which is able to mimic at least some of its characteristic features in the
graph-theoretical terms. The activation-flow model, discussed in [13], already
turned out to develop a scale-free degree dependency (ibidem.) as well as some
features, which are typical for the small-world graphs, see [12].

In a nutshell, the model consists of a number of abstract neurons v ∈ V
described by their spatial locations and accumulated activity σv ∈ N≥0. The
neurons are connected with symmetric synapses with the probability propor-
tional to |v1, v2|−α, where v1, v2 are neurons to be connected, |−,−| is Euclidean
distance, and α is a decay exponent. We denote the set of synapses by E . Each
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tconnection has its gaussian-drawn weight wuv ∈ R, which indicates its excita-

tory (wuv > 0) or inhibitory (wuv < 0) nature. The activity is allowed to be
moved between the neurons within following constraints: it cannot be negative
(∀v∈V σv ≥ 0) and its total sum is constant

∑
v∈V σv = Const. The constant

total activity mimics the critical state of the network, so that it neither vanishes
nor explodes, see [4]. As a result we can describe the state of the network by its
activity configuration σ̄ = [σv]v∈V . We define an energy function E : Z|V| → R
on this configuration space as follows

E(σ̄) =
∑

{v1,v2}∈E

wv1v2 |σv1 − σv2 |. (3)

If the energy is to be minimized, we can see that two neurons connected with
positive weight (excitatory) synapse shall tend to share similar levels of activity,
while those connected with inhibitory one (wv1v2 < 0) will prefer high differences
in accumulated σ-s (high activity in v1 silences v2).

The activity is allowed to flow around the network through synapses accord-
ing to a stochastic, energy-driven dynamics. At each timestep of the evolution, a
single unit of activity is transferred between a pair of neurons, which can be read
as a change form configuration σ̄ to σ̄′. If such transfer reduces the energy, than
it is unconditionally accepted. Otherwise (when E(σ̄′)−E(σ̄) > 0) it is accepted
with probability exponentially decaying with the growth of the energy. The evo-
lution is run until the network reaches a stable state of the activity configuration,
or for a predefined number of time steps. It is not difficult to see relations to
the Boltzmann machines dynamics [1], except for adjustments to account for
multi-state (rather than binary) neurons. The time-scale of the simulation can
be roughly estimated as 109 iterations/(104neurons ·103 1

s (spiking frequency)) '
102s. The estimation is rather crude, but puts the model somewhere nearby the
time of fMRI scans, see Sec 2.

Let duv denote the total number of accepted transfers of activity from u to v,
which occurred during the dynamics. Define a spike-flow or functional activity-
flow graph of the system as a subgraph of (V,G) with multiple edges induced by
these synapses of E , which had a vital number of transferred units of activity,
that is G1 := (V, E1), where E1 = {e = {u, v} ∈ E : duv + dvu ≥ θ}, with
θ standing for a threshold parameter. Note that, the thresholding parameter
θ (lower-case), while has a similar meaning of removal unused resources as in
section 2, denoted by capital Θ, but not necessarily the same value and they
should not be confused. The edge multiplicities in the functional graphs are
equal to the the total activity with flew through the synapse, in other words for
e = {uv} we have

M(e) :=
{
duv + dvu if e ∈ E1
0 otherwise.

(4)

Recall that the theoretical analyses of spectra for alike model with determin-
istic winner-take-all dynamics and in full graphs were studied by Schreiber [15],

who predicted what i-th principal eigenvalue of the graph should behave as
c

i2
.
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to some extend confirmed this power law-scaling though with an exponential
cut-off of the eigenvalue tail. Interestingly, spectra of recurrent networks with
fully connected graph (unlike geometrically-dependent, as in this work) also con-
firmed similar scaling, but among small number of principal eigenvalues only, see
[11].
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Fig. 5. Log-log plot of the spectrum of the functional graph in activation-flow model,
i-th eigenvalue vs i. Eigenvalues are sorted decreasingly. The highlighted middle part of
the plot indicates a power scaling (eigi ∝ i−2). The network consists of approx. 2 · 104

neurons.

Table 2. Simple statistics of the spectrum of the AF model for varying sample sizes.
Columns from the leftmost denote: size of the network (number of neurons), minimum
positive eigenvalue, mean, median, maximum eigenvalue, variance.

Size min mean median max variance
3048 .133 815.3 256.4 11694.2 1.7 · 106

3754 .074 960.5 267.3 18015.7 2.8 · 106

4557 .006 953.2 264.8 13209.6 2.8 · 106

12530 .040 1962.2 301.6 54041.2 1.9 · 107

21460 .026 2298.1 287.7 74826.1 3.3 · 107

The plot of i-th eigenvalue vs. i is depicted in Fig 5. In addition Tab. 2
summarizes the basic statistics of the spectra for various data, though we note,
that such statistics can be highly misleading when compared directly. Indeed,
entries in adjacency matrix depend of threshold θ and number of transfers de, and
one might expect that the latter is proportional to the total number of activity
in the network (the more total activity is, the more transfers can occur). It is
not difficult to see, that if the total sum of σ-s is increased c times than we
have: (Ac) · x = (Ax) · c = (λx) · c = (λc) · x. So when the initial activity
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tis multiplied by constant c, than the eigenvalues are also multiplied by c. As

a result we conclude that the simple numerical statistics, however interesting,
might be deceiving and one should look at the whole shape of the spectrum. In
particular, since the power-law-formula distribution Xp, does not have a finite
second moment for p ≥ −3 and even first moment for p ≥ −2, both mean and
variance can be highly misleading statistics.

4 Discussion

Before proceeding to direct comparison we first briefly provide the spectral prop-
erties of the best-known graph models, adapted in large scale networks.

First we would like to recall Erdős-Rényi graph model [8], which for a given
set of vertices and the probability p ∈ (0..1) randomly and independently in-
cludes each of possible

(
n
2

)
edges into the final graph with probability p: P({u, v} ∈

E) = p.
Next random graph to be discussed is a Watts-Strogatz model [16]. Starting

from n vertices organized into a ring, each connected with k nearest neighbours,
every edge is randomly rewired with probability p ∈ [0..1]. Clearly for p = 0
the resulting graph is an unaltered initial periodic lattice, while for p = 1 one
obtains random ER-graph.

Last of the graph models, to be discussed, was designed by Albert and
Barabasi [2]. The construction procedure begins with small clique and itera-
tively adds new vertices (vi in i-th step) into the graph, each connected to m

existing nodes picked selectively: P({vi, u} ∈ E) = deg(u)P
w∈V deg(w) . The growth is

terminated upon reaching desired network size.
Spectra of above reference models are presented in Fig. 6. One should note

here, that all the reference models are unweighted single-edge graphs, while
the discussed activation-flow model is clearly a multigraph. However, there is a
shortage of random graph models, which would account for edge multiplicity.
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Fig. 6. Reference spectra of ER, WS and AB random graphs.

Nonetheless, the shapes of the spectra clearly distinct from obtained func-
tional graph in activation flow model as well as fMRI-obtained network. It seems
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els, as the obey binomial degree distribution sequences, while the AF model and
fMRI turned out to obey a power low decay [13]. The shapes are also different
for Albert-Barabasi model, despite the fact that this one is known to reproduce
graphs with power law-degree sequences [2]. Interestingly, the fMRI results seem
to be able to partially replicate some fluctuations in shape of the Watts-Strogatz
spectrum. WS graphs for the probability parameter 10−3 < p < 10−1 are known
to be small-world graphs (see [16]), but their degree distribution is approximately
binomial. We conclude that the obtained spectra are unlike any of the described
random graph models, though perhaps random multigraph models would turn
out more accurate in predicting.

Instead, as discussed in Section 2, for the threshold value Θ = 0.7 the ob-
tained fMRI functional graphs exhibit a developed power law decay of eigenval-
ues again in their middle part and than a clear exponential truncation of the
eigenvalues. Interestingly, this feature is strikingly similar to one returned by
functional graphs of the activation flow model. Somehow unsettling, the seg-
ment of validity of such scaling is significantly smaller for fMRI graphs, for the
model from Sec. 3 this value was numerically estimated at the 60%, see [14].

Additionally, recall that both functional networks obey a power-law degree
distribution, and they share roughly similar way of extraction of the functional
network. The statistics, as shortlisted in Tables 1 and 2 follow generally the same
tendency, although vary between exact values by even an order of magnitude.
However we note that, the power-law distributions may not have finite second
or even first moments (see Fig. 7), so one must be careful when inferring just by
these values.
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Fig. 7. Empirical distribution of the positive eigenvalues of the model discussed in
Sec. 3. Bean lengths are approximately 75 units wide and the plot consists of 1000
beans. Each bean is marked with rhombus, rather than a bar due to log-plot issues.
Approximated slope, was fit with least-squares.
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To conclude, we compared fMRI imagings with artificial model of neural activity
in the terms of shape of the eigenvalues of the functional network. We clearly
ruled out random graphs of type Erdős and Rényi, Watts-Strogatz or preferential
attachment as equivalent model. Instead, the complex dynamics and resource
thresholding turn out to be able to reproduce similar results. We still miss an
answer whether the power-law scaling should be truncated at some point as the
results seem to suggest, or it is just an artefact stemming from small sample
size.

In this paper we extend the functional brain network analysis with the spec-
tral properties. Moreover, we compare the spectral properties of functional brain
network obtained from freely accessed fMRI data, with artificial models, includ-
ing activation-flow model, developed in [13]. In the further work it would be
interesting to compare the fMRI graph and the functional activity-flow graph
in the terms of graph spectral distance (see [10]). Moreover, one can describe
the differences between these graphs, using spectral reconstruction techniques,
see [5]. This approach can enhance the structure of the functional activity-flow
graph to better simulate the behaviour of human brain.
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