

Abstract—In Computerized Numerical Control (CNC) systems

the communication bus between the controller and axis servo
drives must offer high bandwidth, noise immunity and time
determinism. More and more CNC systems use real-time
Ethernet protocols such as Ethernet Powerlink (EPL). Many
modern controllers are closed costly hardware-based solutions.
In this article the implementation of EPL communication bus in
a PC-based CNC system is presented. The CNC system includes a
PC computer, software CNC controller running under Linux
Real Time Application Interface (RTAI) Real-Time Operating
System (RTOS) and servo-drives communicating via EPL. The
EPL stack was implemented as a real-time kernel module. Due to
software-only implementation this system is a cost-effective
solution for a broad range of applications in machine control. All
software is based on GNU General Public License (GPL) or
Berkeley Software Distribution (BSD) licenses. Necessary
modifications to the EPL stack, Linux configuration, computer
BIOS and motherboard configuration were presented.
Experimental results of EPL communication cycle jitter on 3
different PC’s were presented. The results confirm good
performance of the presented system.

Index Terms—Computerized Numerical Control, Enhanced
Machine Controller, Ethernet Powerlink, RTAI Linux.

I. INTRODUCTION
ost CNC control systems can be subdivided into two
main groups. One group contains standalone

controllers, others utilize personal computers (PC’s).
Standalone controllers use dedicated embedded solutions such
as microcontrollers [1], Field Programmable Gate Arrays
(FPGA’s) [2],[3],[4] and Digital Signal Processors (DSP’s)
[5], and others [6].

Manuscript received May 29, 2012. Accepted for publication , June 14,
2012. Copyright © 2012 IEEE. Personal use of this material is permitted.
However, permission to use this material for any other purposes must be
obtained from the IEEE by sending a request to pubs-permissions@ieee.org

This research was supported by the Nicolaus Copernicus University
Faculty of Physics with grants for young researchers 400-F and 407-F.

K. E., M.P., K. K. and A.W. are with the Faculty of Physics, Astronomy
and Informatics; Nicolaus Copernicus University, Torun, Poland
(erwin@fizyka.umk.pl, zwirek@fizyka.umk.pl, kkarwowski@fizyka.umk.pl,
awawrzak@fizyka.umk.pl).

L. M. G. is with the Institute of Control and Industrial Electronics, Warsaw
University of Technology, Warsaw, Poland (l.grzesiak@isep.pw.edu.pl).

The CNC controllers implemented on the general-purpose
PC usually utilize some form of dedicated hardware to achieve
time determinism required for real-time control of the
machine’s drives. Such hardware includes peripherals such as
ISA, PCI and PCI-E expansion cards, external FPGA [7] and
DSP [5],[8] modules, timer cards [9], digital communication
controllers [10]. In the aforementioned solutions the PC only
handles the Human Machine Interface (HMI) part of the CNC
control system and the dedicated hardware implements time
critical motion control tasks.

Although CNC controllers implemented partially or
completely as embedded systems can achieve high levels of
determinism they are expensive, inflexible, closed solutions.
Another way to implement a CNC control system is to use a
PC with a RTOS connected to the machine’s servo drives via
fieldbus. The RTOS adds time determinism required for
coordinated real-time control of the machine’s servo drives
without the need for dedicated hardware. RTOS’es often
utilized for implementing a PC-based CNC control system
include: µC/OS-II [11], Windows CE.NET [9], RTLinux [10],
RTAI-Linux [12], and others [13],[5],[7].

There are many communication bus architectures used in
Open CNC systems. If the system does not need a high
bandwidth buses such as: CAN[8],[14] and others [3] are used.
When high bandwidth is required, an Ethernet fieldbus should
be used. Standard Ethernet does not offer determinism
required for real-time motion control but there are many
industrial Ethernet modifications available. Some are custom
non-standardized modifications developed by various research
groups such as: RTnet[12], and others [4],[15],[16],[17].

Major manufacturers of industrial control equipment have
also released their own Ethernet-based fieldbus standards.
Real-time Ethernet standards such as: ProfiNET [18],[19],
Sercos III [20], EtherCAT [5],[21] or Ethernet Powerlink [21]
are becoming more and more popular due to availability of
supported products. Many servo drive manufacturers offer
complete CNC control systems that utilize industrial Ethernet
fieldbuses. These solutions are usually external embedded
devices which utilize the PC as a HMI and implement a
complete real-time numerical control kernel. Such a
proprietary closed control system is costly and greatly limits
adaptability to a particular application. It also makes it

Application of Ethernet Powerlink for
communication in a Linux RTAI open CNC

control system
Krystian Erwiński, Marcin Paprocki, Lech M. Grzesiak, Senior Member, IEEE, Kazimierz Karwowski,

and Andrzej Wawrzak

M

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository of Nicolaus Copernicus University

https://core.ac.uk/display/214933058?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

2

Fig. 1. Schematic of Ethernet Powerlink based CNC control system.

impossible to expand the numerical control kernel with new
features required for certain applications.

In this article the architecture of a PC-based open CNC
multi-axis machine control system with Ethernet Powerlink
(EPL) is presented. The authors decided to adopt the PC-
RTOS CNC controller structure due to its low cost (purely
software solution without any expansion cards or external
controllers), flexibility (ease of adding new functionality by
expanding the PC-implemented numerical control kernel and
HMI) and ease of implementation. The main goal behind
developing this CNC control system was to achieve the best
possible time determinism available to a purely software
solution while at the same time maintain low cost and
flexibility. Keeping these goals in mind the authors decided to
adopt Linux RTAI [22] as the CNC controller RTOS. This
RTOS is free, open-source and has a large software and user
base while at the same time offering real-time performance
comparable to commercial RTOS’es. Furthermore a complete
feature-rich free open-source software CNC controller EMC2
[23] was already available for RTAI.

One serious problem with this solution was lack of a widely
supported standardized industrial Ethernet stack which could
cooperate with commercially available servo drives. This is
important from a practical perspective because using an
industrial standard Ethernet fieldbus increases flexibility and
reduces costs. Otherwise expensive custom-built servo drives
would have to be used.

The authors decided to extend the functionality of the
RTAI/EMC2 real-time CNC control system with an Ethernet
Powerlink servo drive communication module. Ethernet
Powerlink was chosen as the fieldbus because it is a
completely open widely adopted standard that offers excellent
time determinism. Many of the biggest servo drive
manufacturers offer products with an Ethernet Powerlink
interface (e.g. B&R ACOPOS, Baldor MicroFlex e100, Parker
Aries EPL).

The main contribution of this article is the implementation
the Ethernet Powerlink stack in Linux RTAI real-time
operating system and extending it with the Can in Automation
(CiA) 402 device profile for servo drives [24] . The developed

Powerlink based communications module was adapted to
cooperate with the EMC2 CNC control software thereby
forming a complete open low-cost PC-based CNC control
system that is able to cooperate with a variety of commercially
available servo drives.

In Chapter II the proposed Multi-Axis CNC Control System
is described in detail. The cost-effective PC-based CNC
Controller overview is presented. The Ethernet Powerlink
communication standard applied to multi – axis machine
control is described. In Chapter III the implementation details
of EPL stack in the proposed CNC system are presented. In
Chapter IV the performance of the presented CNC system is
analyzed. The authors measured EPL cycle jitter for 3
different computer platforms. Similar tests were described in
[25],[26]. In Chapter V conclusions are given.

II. STRUCTURE OF THE MULTI-AXIS CNC CONTROL SYSTEM
The proposed system is presented in Fig.1. It consists of a

PC based CNC controller communicating over Ethernet
Powerlink fieldbus, Ethernet Powerlink compatible
commercial servo drives, Ethernet Powerlink Input/Output
(I/O) module and auxiliary machine equipment. The system
can be extended to communicate over a standard Ethernet
TCP/IP protocol.

The authors have used Ethernet Powerlink as the
communication protocol between the PC based controller and
the servo drives. This protocol uses standard Ethernet PCI
network interface card. A line network topology was used
because of small number of nodes typically used in a CNC
control system. The PC is the first node on the EPL network.
Drives are daisy chained to one another by a two port Ethernet
hub embedded in each drive. The system can communicate
also by a standard Ethernet TCP/IP protocol via a separate
network interface. This communication can be used with a
wide range of devices which do not need real-time
performance like Programmable Logic Controllers (PLC).
Furthermore, this can be used for internet access. Necessary
software modifications of the EPL stack in the PC based CNC
controller are performed to provide a real-time performance.

3

Fig. 2. Block schematic of the EMC2 CNC control application.

Fig. 3. EPL communication module.

Additionally, the authors have developed an Ethernet
Powerlink compatible, I/O module. This device contains
digital and analog inputs and outputs for controlling auxiliary
machine tool devices like a spindle inverter, tool changer,
limit and homing switches and so on.

A. PC based CNC controller
One of the problems in CNC machine tool control is

sending position commands synchronously to servo drives.
Ideally, all servo drives should receive and execute their
respective position commands at exactly the same time. Also
the periods between consecutive position commands should
always be constant. In the presented system time interval
length between new position commands sent to servo drives is
assumed to be 1 millisecond. Furthermore execution of lower
priority tasks (e.g. HMI task) must not affect the performance
of high priority tasks. A real-time operating system is
necessary to meet these constraints. Linux RTAI – a free
open-source RTOS was used because it offers jitter and
latency in the order of microseconds. This is comparable to
commercial RTOS’es such as VxWorks or QNX. The block
schematic of the EMC2 application is presented in Fig. 2. It
consists of two kinds of modules – user space and RTAI
kernel space [22]. User space modules are normal Linux
programs that do not have a real-time performance.

EMCGUI is the top-level module providing the HMI for the
application. This includes a full 3d viewer of the machined
trajectory, software oscilloscope and special function controls
(feed rate override, spindle control etc.). The user can also
extend the Graphical User Interface (GUI) with his own
controls if necessary. EMCTASK contains the “G-CODE”
language interpreter [27]. It also controls additional functions
of the CNC controller, loads configuration files. The
EMCTASK module communicates with the user space I/O
module IOCONTROL that controls the devices for instance
limit and homing switches. The user space modules

communicate with RTAI kernel space modules through a
shared memory buffer.

RTAI kernel space modules operate in real-time because the
RTAI nanokernel architecture [22] does not allow them to be
preempted by Linux tasks and other real-time processes with a
lower priority. It also intercepts and schedules all interrupts
according to task priority.

MOTMOD is the main motion control real-time module. It
contains trajectory generation and interpolation algorithms
that compute commanded position values. Those values are
determined from the trajectory contained in the shared
memory buffer. MOTMOD also includes simple look-ahead
functionality that allows the blending of sharp corners on the
tool path. This is important for smooth machine operation,
especially in high speed machining.

The EPL protocol stack was implemented by the authors in
the form of a RTAI real-time module.

EMC2 uses its own API called the Hardware Abstraction
Layer (HAL) for interfacing RTAI functionality. The HAL
facilitates thread initialization and management, Inter-Process
Communication (IPC), integration and management of
different real-time modules into a single control system.

Inter-process communication between HAL modules is
achieved via HAL pins. Pins are module variables exported to
a common shared memory area. These variables are visible to
all modules loaded into the HAL and can be used to easily
connect different modules. Loaded modules and pin
connections between them are defined in a config file.

B. EPL communication module
The EPL communication module is presented in Fig. 3. The

module consists of low level hardware drivers, actual EPL
protocol stack (including the Object Dictionary, EPL data link
layer and network management state machine), supervisory
state machine conformant with the CiA 402 device profile and
an interface to the EMC2 HAL.

Standard Ethernet uses the CSMA/CD [28] multi access
protocol for managing the network. Packet collisions can

4

Fig. 4. Ethernet Powerlink communication cycle.

Fig. 5. Ethernet Powerlink basic frame format.[30].

occur in the case of multiple nodes transmitting at the same
time. This protocol is inherently non-deterministic and cannot
be used to directly control servo drives in CNC applications.

Ethernet Powerlink is an isochronous real-time
communication protocol that meets high performance
requirements in automation and motion control applications. It
does not change the basic principles of the Fast Ethernet
standard [28] but extends it with real-time capabilities.

Compared to the OSI model [29] of a standard Ethernet
stack, only the physical layer (OSI layer 1) was left
unchanged. The data link layer (OSI layer 2) was extended to
include the real-time mechanism. A network layer (OSI layer
3) is not used. The rest of the layers have been replaced by
Ethernet Powerlink ones. The standard physical and data link
layer enable the use of standard Ethernet PC interfaces. The
management of the EPL stack is performed by the Network
Management (NMT) state machine.

The EPL network consists of one master Managing Node
(MN) and up to 240 slave Controlled Nodes (CN) [21]. The
EPL network may be of the line, star or tree topology type.
The MN manages communication and configuration of the
Ethernet Powerlink network.

Communication over an EPL network is performed in
cycles. A single cycle consists of an isochronous phase and an
asynchronous phase. The isochronous phase is divided into
time slots – one per each CN. Only one node can transmit
during each time slot. This means that collisions are avoided
entirely and a high level of determinism is achieved. This bus
scheduling mechanism is called Time Division Multiple
Access (TDMA). During the asynchronous phase, the MN
grants a time slot to a single CN or to itself.

The schematic of an Ethernet Powerlink communication
cycle is presented in Fig.4[21]. The cycle starts with a “Start
of Cyclic” (SoC) frame broadcast by the MN. This frame
synchronizes all CNs with the MN. MN, then sends a “Poll
Request” (PRq) frame to a single node. CN responds with a
“Poll response” (PRs) frame containing data. This is repeated
for every node on the EPL network. After all CN’s have been
serviced, the MN issues a broadcast PRs frame signalizing the
end of the isochronous phase. In the asynchronous phase, MN

sends a “Start of Asynchronous” (SoA) frame to all nodes.
Data contained within this frame inform which node should
respond to the MN request. Next, the chosen node sends an
“Asynchronous Send” frame (ASnd) with proper data. The
managing node waits in an idle phase until the cycle time has
elapsed before sending another SoC to start a new cycle.

Ethernet Powerlink messages are encapsulated standard
Ethernet frames. These messages contain 4 fields: message
type (SoC, PRq, PRs, SoA, ASnd), destination node address,
source node address, payload. The Powerlink basic frame
format is presented in figure 5 [30].

The Ethernet Powerlink Application layer is based upon the
CANOpen standard [30]. Its main element is the Object
Dictionary (OBD). The OBD serves as an intermediary
between the EPL stack and the CNC application (MN) or
device firmware (CN). The object dictionary is a data structure
containing all parameters relevant to the communication stack
(e.g. cycle time, jitter tolerances, number of nodes, node
configuration) as well as process variables sent between the
MN and CN’s. Every variable called an object has its own
hexadecimal numerical identifier (index). The structure of the
EPL OBD is presented in table 1.

TABLE I
THE STRUCTURE OF THE ETHERNET POWERLINK OBJECT DICTIONARY

Index Object
0000h Not used
0001h…001Fh Static Data Types
0020h…003Fh Complex Data Types
0040h…005Fh Manufacturer Specific Complex Data Types
0060h…007Fh Device Profile Specific Static Data Types
0080h…009Fh Device Profile Specific Complex Data Types
00A0h…03FFh Reserved for future use
0400h-041Fh POWERLINK Specific Static Data Types
0420h–04FFh POWERLINK Specific Complex Data Types
0500h…0FFFh Reserved for future use
1000h…1FFFh Communication Profile Area
2000h…5FFFh Manufacturer Specific Profile Area
6000h…9FFFh Standardized Device Profile Area
A000h…BFFFh Standardized Interface Profile Area
C000h…FFFFh Reserved for future use

OBD objects can be mapped to the Process Data Object

(PDO) and Service Data Object (SDO) structures. Objects sent
and received during every isochronous phase are mapped to
the PDO. Those sent and received during the asynchronous
phase are mapped to the SDO. Additionally, a SDO Sequence
Layer is used to schedule sending SDO mapped objects when
an asynchronous slot becomes available. Alternatively, SDO
communication can be performed using a standard TCP/IP
protocol instead of the Ethernet Powerlink protocol. Every
node has its own OBD and writing values to the PDO/SDO
mapped objects will update them in the corresponding objects
on other devices on the network after transmitting them in the
payload section of PRq or PRs frames.

Besides objects defined in the basic EPL standard the user
can define their own objects in the appropriate OBD section.
There are also sections of the OBD which are defined by
separate standards for each type of controlled node. These
standards known as device profiles define a set of objects

5

Fig. 7. Data exchange between EMC2 and EPL module via HAL pins

Fig. 6. Schematic of Baldor MicroFlex e100 drive control loop with EPL CIA402 object dictionary. Hexadecimal numbers above 6000 in control loop

elements correspond to CiA402 objects. Numbers below 6000h are manufacturer specific objects.

containing process and configuration variables typical to each
type of CN. The device profile for electrical drives is defined
in the CiA402 standard. Every EPL compatible servo drive is
required to support the same set of OBD objects with pre-
defined addresses. These objects correspond to drive
parameters such as position demand, actual position, speed or
current measurement, digital I/O’s, PID controller gains, drive
operating mode (current, velocity or position) and so on. In the
presented EPL communication module the OBD structure
defined in CiA402 is fully supported. An example
implementation of CiA402 OBD in the servo drive CN is
shown in figure 6.

In addition to pre-defined objects the CiA402 standard also
defines a state machine that controls operation of each servo
drive. Current state of this state machine is indicated by the
“Status Word” object and state change is triggered by the MN
by modifying the “Control Word” object. Exchange of these
two objects is required when controlling EPL servo drives.
Appropriate state transitions triggered by the MN are required
for proper drive initialization, operation and fault handling.
This state machine is also implemented in the presented
communication module.

Data exchange between the EPL module and the rest of
EMC2 modules is performed via HAL pins. Each CiA402
object is mapped to a HAL pin. These pins are visible to the
EMC2 MOTMOD motion control module and are written or
read by it. A schematic presentation of this data exchange
method is shown in figure 7.

The details of implementing EPL stack in the EMC2/RTAI
real-time environment are presented in Chapter III.

III. PROPOSED SOLUTION OF ETHERNET POWERLINK
IMPLEMENTATION IN EMC2 ENVIRONMENT

The Ethernet Powerlink stack is implemented as a Linux
RTAI real-time module based upon the OpenPOWERLINK
v1.6 source code [31]. Modification of the stack was necessary
to incorporate real-time capabilities offered by Linux RTAI
and support the CANOpen CiA402 standard.
The stack application layer was extended to include a CIA402
device profile for communication with servo drives. Object

Dictionary entries containing process variables are sent in PRq
and PRs EPL frames. OBD entries transmitted between the
CNC controller and servo drives in the isochronous phase are
presented in table 2.

TABLE II
PROCESS DATA TRANSMITTED BETWEEN THE CONTROLLER MN AND CN

SERVO DRIVES IN THE ISOCHRONOUS PHASE OF THE POWERLINK CYCLE
PRq EPL frame payload PRs EPL frame payload

Position Demand Value (6062h) Actual Position Value (6064h)
Digital Outputs (60FEh) Following Error Value (60F4h)

Modes of Operation (6060h) Digital Inputs (60FDh)
Control Word (6040h) Status Word (6041h)

In the asynchronous phase, configuration frames performing

functions such as setting PID controller gains or identification
of new drives is performed via ASnd frames sent by the MN.
This configuration usually takes place at drive initialization
time but configuration data can be updated later if necessary.

In order to adapt the OpenPOWERLINK v1.6 stack to the
Linux RTAI real-time environment and ensure stable
communication the authors had to introduce modifications to
the EPL stack code as well as to Linux and PC BIOS
configuration.
Following modifications were made to the stack:
• Shared memory buffers were replaced by direct function

calls to improve performance.
• Linux kernel functions were replaced by their RTAI

counterparts (memory allocation, spinlocks, atomic
operations).

6

Fig. 9. The experimental station schematic.

Fig. 8. Real-time threads used in the proposed control system.

• The network interface driver was modified to use RTAI
interrupts. RTAI interrupt registration function is used
instead of the Linux one so that the Ethernet driver interrupt
is handled immediately.

• RTAI timers were utilized instead of Linux ones. Two HAL
threads are utilized. One thread with a 1ms period triggers
the start of an EPL cycle. This thread is shared with the
trajectory planning and path interpolation module. Another
thread (50μs period) is used for monitoring node response
times in order to detect timeouts. Both threads utilize the
Advanced Programmable Interrupt Controller (APIC) timer
operating in periodic mode. The schematic representation of
real-time threads used in the CNC control system is
presented in figure 8.

Following changes were made in Linux configuration:
• Unnecessary devices and device drivers (e.g. sound card)

were disabled.
• To ensure high performance, the network interface card was

assigned an interrupt with as high priority as possible. This
interrupt is not shared with other interrupts. If this is not
possible for some computer configurations hardware
associated with these shared interrupts should not be used.

• The real-time code (trajectory planner and EPL stack) was
configured to run on a separate core isolated from the Linux
scheduler via the ISOLCPUS boot parameter. Furthermore,
the network card interrupt was assigned only to the real-
time core via the IRQ affinity kernel system call. All other
interrupts were assigned to the other cores to avoid
interference with real-time operation. In order for the
changes to be permanent interrupt balancing, which
switches interrupts to different cores depending on each
core’s load, was disabled
Several BIOS settings were modified such as: disabling

integrated sound card, power saving features, processor
frequency scaling, thermal monitoring, dynamic fan speed
regulation, legacy USB support and S.M.A.R.T. for hard
drives. These functions use dedicated non-maskable interrupts
that cannot be disabled by the operating system. When such
interrupts are active during real-time operation they can cause
unacceptable jitter and latency. Direct Memory Access
(DMA) for hard drives was also disabled. This greatly
decreases load placed on the system bus and therefore
decreases jitter. Finally System Management Interrupts were
disabled. These interrupts are used by modern mainboards for
performing various tasks such as thermal throttling, system

health checks, reporting hardware errors, power management
etc. Disabling them required setting appropriate bits in chipset
configuration registers.

IV. EXPERIMENTAL SETUP AND TEST RESULTS FOR
DIFFERENT PC PLATFORMS

The EPL based CNC controller was implemented and tested
on three different PCs. The experimental station is presented
in figure 9. The hardware specifications of computers used in
the experiment are presented in table 3. A separate computer
(configuration identical to test computer 2) was connected to
the network to capture and analyze frames with an RTAI
based packet analyzer developed by the authors.

TABLE III
HARDWARE SPECIFICATIONS OF THE TEST COMPUTERS

Components 1st computer 2nd computer 3rd computer

CPU Core 2 Duo
E7500 2.93GHz

Core 2 Quad
Q8200 2.33GHz

Core i5
760 2.80GHz

Main Board
(RAM)

IEI IMBA-
9454ISA (2GB)

ASUS P5E
Deluxe (4GB)

ASUS P7H55
(4GB)

GPU Matrox
G550 PCIe

ATI Radeon
HD 4600

ATI Radeon
HD 5670

Linux kernel 2.6.32-122-rtai 2.6.32-122-rtai 2.6.32-122-rtai
RTAI 3.8.1 3.8.1 3.8.1

PC APIC
Timer

APIC Timer
16.667138MHz

APIC Timer
20.871775MHz

APIC Timer
8.362397MHz

The packet analyzer is a PC with RTAI running the EPL

real-time low level driver. The driver was configured only to
receive frames and measure time between receiving them.
Measurement is done within the Ethernet card’s interrupt
handler. Time measurement was performed using the
processor’s Time Stamp Counter (TSC). The TSC is a 64bit
counter running at the processor frequency (2.33GHz)
therefore it is very accurate. There is one TSC per core. The
reading of the TSC is performed by RDTSC assembly
instruction which is very fast and introduces negligible
overhead. The real-time code of the packet analyzer was
locked to one processor core with a corresponding TSC. The
packet analyzer also computes on-line the mean value and
standard deviation of the measured time periods.

Line topology is typically used in CNC systems. The
number of nodes is small (usually less than 10) and they are
located close to each other. Most devices have integrated two-
port hubs dedicated to Ethernet Powerlink communication.
Delays introduced by the drives are usually much smaller than

7

a)

b)

c)

Fig. 10. SOC-SOC period histogram for hardware platforms:
a) 1st computer, b) 2nd computer, c) 3rd computer.

TABLE III
SOC-SOC JITTER STATISTICS FOR 20 000 000 SAMPLES

Dataset 1st computer 2nd computer 3rd computer
mean val.[μs] 999.4565 999.2829 997.2869
max. range. [μs] 11.7918 9.9695 11.5113
std. dev. [μs] 0.9721 0.3433 0.4540

the overall communication cycle duration. Furthermore short
connections between drives mean smaller EMI influence.
Therefore line topology is used in the experimental station.

The experiment was focused on measuring EPL cycle jitter.
Cycle jitter is the difference between EPL cycle periods
marked by the Start of Cycle frames. SOC frames are
synchronization frames that trigger the passing of a
commanded position value to the servo loop. Therefore it is
important for the period between consecutive SOC frames to
be as stable as possible. SOC jitter is the most important
parameter for this control system as it influences machining
accuracy.

Two Baldor Microflex e100 MFE230A003 servo drives
were used in the experiment along with two BSM63N-250AF
PMSM motors. Computational load introduced by EMC2 is a
major factor influencing jitter during normal operation of the
proposed CNC control system. Therefore communication tests
were performed while running a large g-code machining
program in EMC2. Time periods between 20,000,000
consecutive SOC frames were measured for each PC
controller by the EPL network analyzer. Communication cycle
period was set as 1ms. Experimental results are presented in
table 3, and in figure 10.

Maximum communication cycle jitter for all tested
computer platforms does not exceed 12μs and its standard
deviation is below 1μs. All mean values of the SOC period are
slightly different than the demanded value of 1ms. This is
caused by limited resolution of the hardware APIC timers,
which trigger the beginning of the EPL cycle. A higher APIC
operating frequency enables better timer resolution and less
jitter. These small differences in cycle time do not affect the
proper operation of the CNC controller as the trajectory
planner uses real cycle value read from the hardware timer for
its computations instead of the ideal one.

Maximum jitter and standard deviation are different for
each computer. This is caused by different chipset
architectures and their operating frequencies. Computer 2
which has the lowest jitter uses a high-end X48 chipset while
computer 1 (worst jitter) utilizes an older 945G chipset which
operates at lower speeds and generates more latency.
Computer 3 utilizes a modern but lower-end H55 chipset
therefore it exhibits higher jitter than the older but faster X48
chipset. In general, more modern and high-end chipsets
operate at higher speeds and introduce less latency and jitter in
real time operation.

At maximum machine federate of 30m/min (rotary motor
maximum speed 3000rpm, ballscrew pitch 10mm/rev)
displacement caused by 12μs jitter would be equal to 6μm. At
normal working federate (5m/min) jitter induced displacement
would equal to 1μm. For machines with required error
tolerances of 0.01 – 0.05mm machining error introduced by
communication jitter is insignificant. Applications of such
machines include wood machining, plastics machining,
machining of some metals, laser cutting, manipulators etc.

V. CONCLUSION
In this article the open PC-based CNC control system with

Ethernet Powerlink communication protocol is presented. The
main goal of this work was to create a low-cost, flexible,
purely software CNC control system that can utilize various
commercially available servo drives. Low cost is achieved by
utilizing a general purpose PC with free open-source RTOS
(Linux RTAI) and CNC control software (EMC2) without any
dedicated hardware (e.g. FPGA or DSP expansion board).
This configuration is highly flexible due to software-only
implementation of the CNC controller and large computational

8

resources of the PC. New functionality can be easily added by
writing new software modules.

Ethernet Powerlink protocol stack was implemented in the
Linux RTAI real-time operating system. The stack was
expanded with the CiA402 servo-drive communication profile
and was integrated with the EMC2 CNC control software.
Utilization of Ethernet Powerlink enables usage of different
off-the-shelf servo drives produced by many manufacturers
(e.g. Parker, Baldor) which adds to the system flexibility.

The results presented in this article prove that the presented
system meets the requirements for a hard real-time CNC
control system. Jitter measurements were performed while
running a machining program in EMC2 to ensure stable
operation under computational load. Maximum jitter of the
Ethernet Powerlink communication cycle period is less than
12μs and its standard deviation is below 1μs for 3 different
computer platforms. This result is highly satisfactory for many
CNC motion control applications such as wood and plastics
machining, machining of some metals, laser cutting,
manipulation machines etc. In those applications machining
error introduced by jitter of this magnitude is negligible (1μm)
compared to required error tolerances (0.01 – 0.05mm).

Modifications to the EPL stack, Linux configuration
(isolation of real-time tasks and real-time interrupts on
separate processor cores) as well as BIOS and mainboard
configuration (e.g. disabling unnecessary hardware, power
saving options, System Management Interrupts) were required
to ensure stable and precise operation

Future work will focus on enhancing the real-time
performance by isolation of the Powerlink stack on a
dedicated core separate from the CNC control application. An
attempt to solve problems with interrupt sharing will be made
by using message signaled interrupts (MSI) supported by
modern PCI-E devices.

REFERENCES
[1] A. Malinowski, and Hao Yu, “Comparison of Embedded System Design

for Industrial Applications,” IEEE Trans. Ind. Informat., Vol. 7, No. 2,
May 2011, pp. 244-254.

[2] E. Monmasson, L. Idkhajine, M. N. Cirstea, I. Bahri, A. Tisan, and M.
Wissem Naouar,, “FPGAs in Industrial Control Applications,” IEEE
Trans. Ind. Informat., Vol. 7, No. 2, May 2011, pp. 224-243.

[3] Gu G.Y., Zhu L.M., Xiong Z.H., Ding H., “Design of a Distributed
Multiaxis Motion Control System Using the IEEE-1394 Bus,” IEEE
Trans. Ind. Electron., Vol. 57, No. 12, Dec. 2010, pp. 4209-4218.

[4] J. Jasperneite, J. Imtiaz, M. Schumacher, and K. Weber, “A Proposal for
a Generic Real-Time Ethernet System,” IEEE Trans. Ind. Informat., Vol.
5, No. 2, May 2009, pp. 75-85.

[5] K. Kim, M. Sung, H. Jin, “Design and Implementation of a Delay-
Guaranteed Motor Drive for Precision Motion Control,” IEEE Trans.
Ind. Informat., Vol. 8, No. 2, May 2012, pp. 351-356.

[6] H. Carlsson, B. Svensson, F. Danielsson, B. Lennartson “Methods for
Reliable Simulation-Based PLC Code Verification,” IEEE Trans. Ind.
Informat., Vol. 8, No. 2, May 2012, pp. 267-278.

[7] T. Harmon, M. Schoeberl, R. Kirner, R. Klefstad, K. H. K. Kim, M. R.
Lowry, “Fast, Interactive Worst-Case Execution Time Analysis With
Back-Annotation,” IEEE Trans. Ind. Informat., Vol. 8, No. 2, May 2012,
pp. 366-377.

[8] Chen Shuxin, and An Bin, “Time Performance Research on Field Bus
Based CNC System,” 2nd International Conference on Mechanical and
Electronics Engineering (ICMEE), Vol. 2, Beijing, China, 1-3 Aug.
2010, pp. 56-59.

[9] Hu Chaobin, Li Wanli, and Xu Wuquan, “Study on the CNC system
interpolation based on windows CE.NET and its real-time,”

International Conference on Computer, Mechatronics, Control and
Electronic Engineering (CMCE), Vol. 2, Tongji Univ., Shanghai, China,
24-26 Aug. 2010, pp. 110-112.

[10] D. Yashiro, and K. Ohnishi, “Performance Analysis of Bilateral Control
System With Communication Bandwidth Constraint,” ,” IEEE Trans.
Ind. Electron., Vol. 58, No. 2, Feb. 2011, pp. 436-443.

[11] M. M. H. P. van den Heuvel, R. J. Bril, J. J. Lukkien, “Transparent
Synchronization Protocols for Compositional Real-Time Systems,”
IEEE Trans. Ind. Informat., Vol. 8, No. 2, May 2012, pp. 322-336.

[12] Tianrong Gao, Dong Yu, Dongfeng Vue, and Yi Hu, “Design and
Implementation of Communication Platform in CNC System,”
Mechatronics and Embedded Systems and Applications (MESA), 2010
IEEE/ASME International Conference, Qingdao, ShanDong, 15-17 July
2010, pp. 355–360.

[13] A. Onat, T. Naskali, E. Parlakay, and O. Mutluer, “Control Over
Imperfect Networks: Model-Based Predictive Networked Control
Systems,” IEEE Trans. Ind. Electron., Vol. 58, No. 3, March 2011, pp.
905-913.

[14] P. Martí, A. Camacho, M. Velasco, and M. El Mongi Ben Gaid,
“Runtime Allocation of Optional Control Jobs to a Set of CAN-Based
Networked Control Systems,” IEEE Trans. Ind. Informat., Vol. 6, No. 4,
November 2010, pp. 503-520.

[15] Á. Cuenca, J. Salt, A. Sala, and R. Pizá, “A Delay-Dependent Dual-Rate
PID Controller Over an Ethernet Network,” IEEE Trans. Ind. Informat.,
Vol. 7, No. 1, February 2011, pp. 18-29.

[16] G. Cena, L. Seno, A. Valenzano, and C. Zunino, “On the Performance of
IEEE 802.11e Wireless Infrastructures for Soft-Real-Time Industrial
Applications,” IEEE Trans. Ind. Informat., Vol. 6, No. 3, August 2010,
pp. 425-437.

[17] A. Mifdaoui, F. Frances, and C. Fraboul, “Performance Analysis of a
Master/Slave Switched Ethernet for Military Embedded Applications,”
IEEE Trans. Ind. Informat., Vol. 6, No. 4, November 2010, pp. 534-547.

[18] P. Ferrari, A. Flammini, S. Rinaldi, and E. Sisinni, “On the Seamless
Interconnection of IEEE1588-Based Devices Using a PROFINET IO
Infrastructure,” IEEE Trans. Ind. Informat., Vol. 6, No. 3, August 2010,
pp. 381-392.

[19] Z. Hanzálek, P. Burget, and P. Šůcha, “Profinet IO IRT Message
Scheduling With Temporal Constraints,” IEEE Trans. Ind. Informat.,
Vol. 6, No. 3, August 2010, pp. 369-380.

[20] Real-time Ethernet SERCOS III, IEC Std. 62410, 2005.
[21] Industrial communication networks – Profiles – Part 2: Additional

fieldbus profiles for real-time networks based on ISO/IEC 8802-3, IEC
Std. 61784-2, 2007.

[22] L. Dozio, and P. Mantegazza, “Linux Real Time Application Interface
(RTAI) in low cost high performance motion control”, Motion Control
2003, a conference of ANIPLA, Associazione Nazionale Italiana per
l'Automazione (National Italian Association for Automation), Milano,
Italy, 27-28 Mar. 2003.

[23] EMC2 User Manual V2.4, The EMC Team, 2011.
[24] Adjustable speed electrical power drive systems – Part 7-201: Generic

interface and use of profiles for power drive systems – Profile type 1
specification, IEC Std. 61800-7-201, 2007.

[25] M. Cereia, I. C. Bertolotti, and S. Scanzio, “Performance of a Real-Time
EtherCAT Master Under Linux,” IEEE Trans. Ind. Informat., Vol. 7,
No. 4, November 2011, pp. 679- 687.

[26] G. Cena, I. C. Bertolotti, S. Scanzio, A. Valenzano, and C. Zunino,
“Evaluation of EtherCAT Distributed Clock Performance,” IEEE Trans.
Ind. Informat., Vol. 8, No. 1, February 2012, pp. 20-29.

[27] Numerical control of machines - Program format and definition of
address words - Part 1 : Data format for positioning, line motion and
contouring control systems, ISO Std. 6983-1, 1982.

[28] IEEE Standard for Information technology— Telecommunications and
information exchange between systems— Local and metropolitan area
networks— Specific requirements Part 3: Carrier Sense Multiple Access
with Collision Detection (CSMA/CD) Access Method and Physical
Layer Specifications, IEEE Std. 802.3-2008, 2008.

[29] Information technology - Open Systems Interconnection - Basic
Reference Model: The Basic Model, IEC Std. 7498-1, 1996.

[30] Adjustable speed electrical power drive systems – Part 7-301: Generic
interface and use of profiles for power drive systems – Mapping of
profile type 1 to network technologies, IEC Std. 61800-7-301, 2007.

[31] Introduction into openPOWERLINK Software Manual, SYS TEC
electronic GmbH, 2008.

	I. INTRODUCTION
	II. Structure of the Multi-Axis CNC Control System
	A. PC based CNC controller
	B. EPL communication module

	III. Proposed solution of Ethernet Powerlink Implementation In EMC2 Environment
	IV. Experimental Setup and Test Results for Different PC Platforms
	V. Conclusion
	References

