
  
Abstract—In Computerized Numerical Control (CNC) systems 

the communication bus between the controller and axis servo 
drives must offer high bandwidth, noise immunity and time 
determinism. More and more CNC systems use real-time 
Ethernet protocols such as Ethernet Powerlink (EPL). Many 
modern controllers are closed costly hardware-based solutions. 
In this article the implementation of EPL communication bus in 
a PC-based CNC system is presented. The CNC system includes a 
PC computer, software CNC controller running under Linux 
Real Time Application Interface (RTAI) Real-Time Operating 
System (RTOS) and servo-drives communicating via EPL. The 
EPL stack was implemented as a real-time kernel module. Due to 
software-only implementation this system is a cost-effective 
solution for a broad range of applications in machine control. All 
software is based on GNU General Public License (GPL) or 
Berkeley Software Distribution (BSD) licenses. Necessary 
modifications to the EPL stack, Linux configuration, computer 
BIOS and motherboard configuration were presented. 
Experimental results of EPL communication cycle jitter on 3 
different PC’s were presented. The results confirm good 
performance of the presented system. 
 

Index Terms—Computerized Numerical Control, Enhanced 
Machine Controller, Ethernet Powerlink, RTAI Linux. 
 

I. INTRODUCTION 
ost CNC control systems can be subdivided into two 
main groups. One group contains standalone 

controllers, others utilize personal computers (PC’s). 
Standalone controllers use dedicated embedded solutions such 
as microcontrollers [1], Field Programmable Gate Arrays 
(FPGA’s) [2],[3],[4] and Digital Signal Processors (DSP’s) 
[5], and others [6]. 
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The CNC controllers implemented on the general-purpose 
PC usually utilize some form of dedicated hardware to achieve 
time determinism required for real-time control of the 
machine’s drives. Such hardware includes peripherals such as 
ISA, PCI and PCI-E expansion cards, external FPGA [7] and 
DSP [5],[8] modules, timer cards [9], digital communication 
controllers [10]. In the aforementioned solutions the PC only 
handles the Human Machine Interface (HMI) part of the CNC 
control system and the dedicated hardware implements time 
critical motion control tasks. 

Although CNC controllers implemented partially or 
completely as embedded systems can achieve high levels of 
determinism they are expensive, inflexible, closed solutions. 
Another way to implement a CNC control system is to use a 
PC with a RTOS connected to the machine’s servo drives via 
fieldbus. The RTOS adds time determinism required for 
coordinated real-time control of the machine’s servo drives 
without the need for dedicated hardware. RTOS’es often 
utilized for implementing a PC-based CNC control system 
include: µC/OS-II [11], Windows CE.NET [9], RTLinux [10], 
RTAI-Linux [12], and others [13],[5],[7]. 

There are many communication bus architectures used in 
Open CNC systems. If the system does not need a high 
bandwidth buses such as: CAN[8],[14] and others [3] are used. 
When high bandwidth is required, an Ethernet fieldbus should 
be used. Standard Ethernet does not offer determinism 
required for real-time motion control but there are many 
industrial Ethernet modifications available. Some are custom 
non-standardized modifications developed by various research 
groups such as: RTnet[12], and others [4],[15],[16],[17]. 

Major manufacturers of industrial control equipment have 
also released their own Ethernet-based fieldbus standards. 
Real-time Ethernet standards such as: ProfiNET [18],[19], 
Sercos III [20], EtherCAT [5],[21] or Ethernet Powerlink [21] 
are becoming more and more popular due to availability of 
supported products. Many servo drive manufacturers offer 
complete CNC control systems that utilize industrial Ethernet 
fieldbuses. These solutions are usually external embedded 
devices which utilize the PC as a HMI and implement a 
complete real-time numerical control kernel. Such a 
proprietary closed control system is costly and greatly limits 
adaptability to a particular application. It also makes it 
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Fig. 1.  Schematic of Ethernet Powerlink based CNC control system. 

impossible to expand the numerical control kernel with new 
features required for certain applications. 

In this article the architecture of a PC-based open CNC 
multi-axis machine control system with Ethernet Powerlink 
(EPL) is presented. The authors decided to adopt the PC-
RTOS CNC controller structure due to its low cost (purely 
software solution without any expansion cards or external 
controllers), flexibility (ease of adding new functionality by 
expanding the PC-implemented numerical control kernel and 
HMI) and ease of implementation. The main goal behind 
developing this CNC control system was to achieve the best 
possible time determinism available to a purely software 
solution while at the same time maintain low cost and 
flexibility. Keeping these goals in mind the authors decided to 
adopt Linux RTAI [22] as the CNC controller RTOS. This 
RTOS is free, open-source and has a large software and user 
base while at the same time offering real-time performance 
comparable to commercial RTOS’es. Furthermore a complete 
feature-rich free open-source software CNC controller EMC2 
[23] was already available for RTAI. 

One serious problem with this solution was lack of a widely 
supported standardized industrial Ethernet stack which could 
cooperate with commercially available servo drives. This is 
important from a practical perspective because using an 
industrial standard Ethernet fieldbus increases flexibility and 
reduces costs. Otherwise expensive custom-built servo drives 
would have to be used. 

The authors decided to extend the functionality of the 
RTAI/EMC2 real-time CNC control system with an Ethernet 
Powerlink servo drive communication module. Ethernet 
Powerlink was chosen as the fieldbus because it is a 
completely open widely adopted standard that offers excellent 
time determinism. Many of the biggest servo drive 
manufacturers offer products with an Ethernet Powerlink 
interface (e.g. B&R ACOPOS, Baldor MicroFlex e100, Parker 
Aries EPL). 

The main contribution of this article is the implementation 
the Ethernet Powerlink stack in Linux RTAI real-time 
operating system and extending it with the Can in Automation 
(CiA) 402 device profile for servo drives [24] . The developed 

Powerlink based communications module was adapted to 
cooperate with the EMC2 CNC control software thereby 
forming a complete open low-cost PC-based CNC control 
system that is able to cooperate with a variety of commercially 
available servo drives. 

In Chapter II the proposed Multi-Axis CNC Control System 
is described in detail. The cost-effective PC-based CNC 
Controller overview is presented. The Ethernet Powerlink 
communication standard applied to multi – axis machine 
control is described. In Chapter III the implementation details 
of EPL stack in the proposed CNC system are presented. In 
Chapter IV the performance of the presented CNC system is 
analyzed. The authors measured EPL cycle jitter for 3 
different computer platforms. Similar tests were described in 
[25],[26]. In Chapter V conclusions are given. 

II. STRUCTURE OF THE MULTI-AXIS CNC CONTROL SYSTEM 
The proposed system is presented in Fig.1. It consists of a 

PC based CNC controller communicating over Ethernet 
Powerlink fieldbus, Ethernet Powerlink compatible 
commercial servo drives, Ethernet Powerlink Input/Output 
(I/O) module and auxiliary machine equipment. The system 
can be extended to communicate over a standard Ethernet 
TCP/IP protocol. 

The authors have used Ethernet Powerlink as the 
communication protocol between the PC based controller and 
the servo drives. This protocol uses standard Ethernet PCI 
network interface card. A line network topology was used 
because of small number of nodes typically used in a CNC 
control system. The PC is the first node on the EPL network. 
Drives are daisy chained to one another by a two port Ethernet 
hub embedded in each drive. The system can communicate 
also by a standard Ethernet TCP/IP protocol via a separate 
network interface. This communication can be used with a 
wide range of devices which do not need real-time 
performance like Programmable Logic Controllers (PLC). 
Furthermore, this can be used for internet access. Necessary 
software modifications of the EPL stack in the PC based CNC 
controller are performed to provide a real-time performance. 
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Fig. 2.  Block schematic of the EMC2 CNC control application. 

 
Fig. 3.  EPL communication module. 

Additionally, the authors have developed an Ethernet 
Powerlink compatible, I/O module. This device contains 
digital and analog inputs and outputs for controlling auxiliary 
machine tool devices like a spindle inverter, tool changer, 
limit and homing switches and so on. 

A. PC based CNC controller 
One of the problems in CNC machine tool control is 

sending position commands synchronously to servo drives. 
Ideally, all servo drives should receive and execute their 
respective position commands at exactly the same time. Also 
the periods between consecutive position commands should 
always be constant. In the presented system time interval 
length between new position commands sent to servo drives is 
assumed to be 1 millisecond. Furthermore execution of lower 
priority tasks (e.g. HMI task) must not affect the performance 
of high priority tasks. A real-time operating system is 
necessary to meet these constraints. Linux RTAI – a free 
open-source RTOS was used because it offers jitter and 
latency in the order of microseconds. This is comparable to 
commercial RTOS’es such as VxWorks or QNX. The block 
schematic of the EMC2 application is presented in Fig. 2. It 
consists of two kinds of modules – user space and RTAI 
kernel space [22]. User space modules are normal Linux 
programs that do not have a real-time performance. 

EMCGUI is the top-level module providing the HMI for the 
application. This includes a full 3d viewer of the machined 
trajectory, software oscilloscope and special function controls 
(feed rate override, spindle control etc.). The user can also 
extend the Graphical User Interface (GUI) with his own 
controls if necessary. EMCTASK contains the “G-CODE” 
language interpreter [27]. It also controls additional functions 
of the CNC controller, loads configuration files. The 
EMCTASK module communicates with the user space I/O 
module IOCONTROL that controls the devices for instance 
limit and homing switches. The user space modules 

communicate with RTAI kernel space modules through a 
shared memory buffer. 

RTAI kernel space modules operate in real-time because the 
RTAI nanokernel architecture [22] does not allow them to be 
preempted by Linux tasks and other real-time processes with a 
lower priority. It also intercepts and schedules all interrupts 
according to task priority. 

MOTMOD is the main motion control real-time module. It 
contains trajectory generation and interpolation algorithms 
that compute commanded position values. Those values are 
determined from the trajectory contained in the shared 
memory buffer. MOTMOD also includes simple look-ahead 
functionality that allows the blending of sharp corners on the 
tool path. This is important for smooth machine operation, 
especially in high speed machining. 

The EPL protocol stack was implemented by the authors in 
the form of a RTAI real-time module. 

EMC2 uses its own API called the Hardware Abstraction 
Layer (HAL) for interfacing RTAI functionality. The HAL 
facilitates thread initialization and management, Inter-Process 
Communication (IPC), integration and management of 
different real-time modules into a single control system. 

Inter-process communication between HAL modules is 
achieved via HAL pins. Pins are module variables exported to 
a common shared memory area. These variables are visible to 
all modules loaded into the HAL and can be used to easily 
connect different modules. Loaded modules and pin 
connections between them are defined in a config file. 

B. EPL communication module 
The EPL communication module is presented in Fig. 3. The 

module consists of low level hardware drivers, actual EPL 
protocol stack (including the Object Dictionary, EPL data link 
layer and network management state machine), supervisory 
state machine conformant with the CiA 402 device profile and 
an interface to the EMC2 HAL. 

Standard Ethernet uses the CSMA/CD [28] multi access 
protocol for managing the network. Packet collisions can 
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Fig. 4.  Ethernet Powerlink communication cycle. 

 
Fig. 5.  Ethernet Powerlink basic frame format.[30]. 

occur in the case of multiple nodes transmitting at the same 
time. This protocol is inherently non-deterministic and cannot 
be used to directly control servo drives in CNC applications. 

Ethernet Powerlink is an isochronous real-time 
communication protocol that meets high performance 
requirements in automation and motion control applications. It 
does not change the basic principles of the Fast Ethernet 
standard [28] but extends it with real-time capabilities. 

Compared to the OSI model [29] of a standard Ethernet 
stack, only the physical layer (OSI layer 1) was left 
unchanged. The data link layer (OSI layer 2) was extended to 
include the real-time mechanism. A network layer (OSI layer 
3) is not used. The rest of the layers have been replaced by 
Ethernet Powerlink ones. The standard physical and data link 
layer enable the use of standard Ethernet PC interfaces. The 
management of the EPL stack is performed by the Network 
Management (NMT) state machine. 

The EPL network consists of one master Managing Node 
(MN) and up to 240 slave Controlled Nodes (CN) [21]. The 
EPL network may be of the line, star or tree topology type. 
The MN manages communication and configuration of the 
Ethernet Powerlink network. 

Communication over an EPL network is performed in 
cycles. A single cycle consists of an isochronous phase and an 
asynchronous phase. The isochronous phase is divided into 
time slots – one per each CN. Only one node can transmit 
during each time slot. This means that collisions are avoided 
entirely and a high level of determinism is achieved. This bus 
scheduling mechanism is called Time Division Multiple 
Access (TDMA). During the asynchronous phase, the MN 
grants a time slot to a single CN or to itself.  

The schematic of an Ethernet Powerlink communication 
cycle is presented in Fig.4[21]. The cycle starts with a “Start 
of Cyclic” (SoC) frame broadcast by the MN. This frame 
synchronizes all CNs with the MN. MN, then sends a “Poll 
Request” (PRq) frame to a single node. CN responds with a 
“Poll response” (PRs) frame containing data. This is repeated 
for every node on the EPL network. After all CN’s have been 
serviced, the MN issues a broadcast PRs frame signalizing the 
end of the isochronous phase. In the asynchronous phase, MN 

sends a “Start of Asynchronous” (SoA) frame to all nodes. 
Data contained within this frame inform which node should 
respond to the MN request. Next, the chosen node sends an 
“Asynchronous Send” frame (ASnd) with proper data. The 
managing node waits in an idle phase until the cycle time has 
elapsed before sending another SoC to start a new cycle. 

Ethernet Powerlink messages are encapsulated standard 
Ethernet frames. These messages contain 4 fields: message 
type (SoC, PRq, PRs, SoA, ASnd), destination node address, 
source node address, payload. The Powerlink basic frame 
format is presented in figure 5 [30]. 

The Ethernet Powerlink Application layer is based upon the 
CANOpen standard [30]. Its main element is the Object 
Dictionary (OBD). The OBD serves as an intermediary 
between the EPL stack and the CNC application (MN) or 
device firmware (CN). The object dictionary is a data structure 
containing all parameters relevant to the communication stack 
(e.g. cycle time, jitter tolerances, number of nodes, node 
configuration) as well as process variables sent between the 
MN and CN’s. Every variable called an object has its own 
hexadecimal numerical identifier (index). The structure of the 
EPL OBD is presented in table 1. 
 

TABLE I 
THE STRUCTURE OF THE ETHERNET POWERLINK OBJECT DICTIONARY 

Index Object 
0000h Not used 
0001h…001Fh Static Data Types 
0020h…003Fh Complex Data Types 
0040h…005Fh Manufacturer Specific Complex Data Types 
0060h…007Fh Device Profile Specific Static Data Types 
0080h…009Fh Device Profile Specific Complex Data Types 
00A0h…03FFh Reserved for future use 
0400h-041Fh POWERLINK Specific Static Data Types 
0420h–04FFh POWERLINK Specific Complex Data Types 
0500h…0FFFh Reserved for future use 
1000h…1FFFh Communication Profile Area 
2000h…5FFFh Manufacturer Specific Profile Area 
6000h…9FFFh Standardized Device Profile Area 
A000h…BFFFh Standardized Interface Profile Area 
C000h…FFFFh Reserved for future use 

 
OBD objects can be mapped to the Process Data Object 

(PDO) and Service Data Object (SDO) structures. Objects sent 
and received during every isochronous phase are mapped to 
the PDO. Those sent and received during the asynchronous 
phase are mapped to the SDO. Additionally, a SDO Sequence 
Layer is used to schedule sending SDO mapped objects when 
an asynchronous slot becomes available. Alternatively, SDO 
communication can be performed using a standard TCP/IP 
protocol instead of the Ethernet Powerlink protocol. Every 
node has its own OBD and writing values to the PDO/SDO 
mapped objects will update them in the corresponding objects 
on other devices on the network after transmitting them in the 
payload section of PRq or PRs frames. 

Besides objects defined in the basic EPL standard the user 
can define their own objects in the appropriate OBD section. 
There are also sections of the OBD which are defined by 
separate standards for each type of controlled node. These 
standards known as device profiles define a set of objects 
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Fig. 7.  Data exchange between EMC2 and EPL module via HAL pins 

 
Fig. 6.  Schematic of Baldor MicroFlex e100 drive control loop with EPL CIA402 object dictionary. Hexadecimal numbers above 6000 in control loop 

elements correspond to CiA402 objects. Numbers below 6000h are manufacturer specific objects. 

containing process and configuration variables typical to each 
type of CN. The device profile for electrical drives is defined 
in the CiA402 standard. Every EPL compatible servo drive is 
required to support the same set of OBD objects with pre-
defined addresses. These objects correspond to drive 
parameters such as position demand, actual position, speed or 
current measurement, digital I/O’s, PID controller gains, drive 
operating mode (current, velocity or position) and so on. In the 
presented EPL communication module the OBD structure 
defined in CiA402 is fully supported. An example 
implementation of CiA402 OBD in the servo drive CN is 
shown in figure 6. 

In addition to pre-defined objects the CiA402 standard also 
defines a state machine that controls operation of each servo 
drive. Current state of this state machine is indicated by the 
“Status Word” object and state change is triggered by the MN 
by modifying the “Control Word” object. Exchange of these 
two objects is required when controlling EPL servo drives. 
Appropriate state transitions triggered by the MN are required 
for proper drive initialization, operation and fault handling. 
This state machine is also implemented in the presented 
communication module. 

Data exchange between the EPL module and the rest of 
EMC2 modules is performed via HAL pins. Each CiA402 
object is mapped to a HAL pin. These pins are visible to the 
EMC2 MOTMOD motion control module and are written or 
read by it. A schematic presentation of this data exchange 
method is shown in figure 7. 

The details of implementing EPL stack in the EMC2/RTAI 
real-time environment are presented in Chapter III.  

III. PROPOSED SOLUTION OF ETHERNET POWERLINK 
IMPLEMENTATION IN EMC2 ENVIRONMENT 

The Ethernet Powerlink stack is implemented as a Linux 
RTAI real-time module based upon the OpenPOWERLINK 
v1.6 source code [31]. Modification of the stack was necessary 
to incorporate real-time capabilities offered by Linux RTAI 
and support the CANOpen CiA402 standard. 
The stack application layer was extended to include a CIA402 
device profile for communication with servo drives. Object 

Dictionary entries containing process variables are sent in PRq 
and PRs EPL frames. OBD entries transmitted between the 
CNC controller and servo drives in the isochronous phase are 
presented in table 2.  
 

TABLE II 
PROCESS DATA TRANSMITTED BETWEEN THE CONTROLLER MN AND CN 

SERVO DRIVES IN THE ISOCHRONOUS PHASE OF THE POWERLINK CYCLE 
PRq EPL frame payload  PRs EPL frame payload 

Position Demand Value (6062h) Actual Position Value (6064h) 
Digital Outputs (60FEh) Following Error Value (60F4h) 

Modes of Operation (6060h) Digital Inputs (60FDh) 
Control Word (6040h) Status Word (6041h) 

 
In the asynchronous phase, configuration frames performing 

functions such as setting PID controller gains or identification 
of new drives is performed via ASnd frames sent by the MN. 
This configuration usually takes place at drive initialization 
time but configuration data can be updated later if necessary. 

In order to adapt the OpenPOWERLINK v1.6 stack to the 
Linux RTAI real-time environment and ensure stable 
communication the authors had to introduce modifications to 
the EPL stack code as well as to Linux and PC BIOS 
configuration. 
Following modifications were made to the stack: 
• Shared memory buffers were replaced by direct function 

calls to improve performance. 
• Linux kernel functions were replaced by their RTAI 

counterparts (memory allocation, spinlocks, atomic 
operations). 
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Fig. 9.  The experimental station schematic. 

 
Fig. 8.  Real-time threads used in the proposed control system. 

• The network interface driver was modified to use RTAI 
interrupts. RTAI interrupt registration function is used 
instead of the Linux one so that the Ethernet driver interrupt 
is handled immediately. 

• RTAI timers were utilized instead of Linux ones. Two HAL 
threads are utilized. One thread with a 1ms period triggers 
the start of an EPL cycle. This thread is shared with the 
trajectory planning and path interpolation module. Another 
thread (50μs period) is used for monitoring node response 
times in order to detect timeouts. Both threads utilize the 
Advanced Programmable Interrupt Controller (APIC) timer 
operating in periodic mode. The schematic representation of 
real-time threads used in the CNC control system is 
presented in figure 8. 

Following changes were made in Linux configuration: 
• Unnecessary devices and device drivers (e.g. sound card) 

were disabled. 
• To ensure high performance, the network interface card was 

assigned an interrupt with as high priority as possible. This 
interrupt is not shared with other interrupts. If this is not 
possible for some computer configurations hardware 
associated with these shared interrupts should not be used. 

• The real-time code (trajectory planner and EPL stack) was 
configured to run on a separate core isolated from the Linux 
scheduler via the ISOLCPUS boot parameter. Furthermore, 
the network card interrupt was assigned only to the real-
time core via the IRQ affinity kernel system call. All other 
interrupts were assigned to the other cores to avoid 
interference with real-time operation. In order for the 
changes to be permanent interrupt balancing, which 
switches interrupts to different cores depending on each 
core’s load, was disabled 
Several BIOS settings were modified such as: disabling 

integrated sound card, power saving features, processor 
frequency scaling, thermal monitoring, dynamic fan speed 
regulation, legacy USB support and S.M.A.R.T. for hard 
drives. These functions use dedicated non-maskable interrupts 
that cannot be disabled by the operating system. When such 
interrupts are active during real-time operation they can cause 
unacceptable jitter and latency. Direct Memory Access 
(DMA) for hard drives was also disabled. This greatly 
decreases load placed on the system bus and therefore 
decreases jitter. Finally System Management Interrupts were 
disabled. These interrupts are used by modern mainboards for 
performing various tasks such as thermal throttling, system 

health checks, reporting hardware errors, power management 
etc. Disabling them required setting appropriate bits in chipset 
configuration registers.  

IV. EXPERIMENTAL SETUP AND TEST RESULTS FOR 
DIFFERENT PC PLATFORMS 

The EPL based CNC controller was implemented and tested 
on three different PCs. The experimental station is presented 
in figure 9. The hardware specifications of computers used in 
the experiment are presented in table 3. A separate computer 
(configuration identical to test computer 2) was connected to 
the network to capture and analyze frames with an RTAI 
based packet analyzer developed by the authors.  
 

TABLE III 
HARDWARE SPECIFICATIONS OF THE TEST COMPUTERS 

Components 1st computer 2nd computer 3rd computer 

CPU Core 2 Duo  
E7500 2.93GHz 

Core 2 Quad  
Q8200 2.33GHz 

Core i5 
760 2.80GHz 

Main Board 
(RAM) 

IEI IMBA-
9454ISA (2GB) 

ASUS P5E 
Deluxe (4GB) 

ASUS P7H55 
(4GB) 

GPU Matrox 
G550 PCIe 

ATI Radeon 
HD 4600 

ATI Radeon  
HD 5670 

Linux kernel 2.6.32-122-rtai 2.6.32-122-rtai 2.6.32-122-rtai 
RTAI 3.8.1 3.8.1 3.8.1 

PC APIC 
Timer 

APIC Timer 
16.667138MHz 

APIC Timer 
20.871775MHz 

APIC Timer 
8.362397MHz 

 
The packet analyzer is a PC with RTAI running the EPL 

real-time low level driver. The driver was configured only to 
receive frames and measure time between receiving them. 
Measurement is done within the Ethernet card’s interrupt 
handler. Time measurement was performed using the 
processor’s Time Stamp Counter (TSC). The TSC is a 64bit 
counter running at the processor frequency (2.33GHz) 
therefore it is very accurate. There is one TSC per core. The 
reading of the TSC is performed by RDTSC assembly 
instruction which is very fast and introduces negligible 
overhead. The real-time code of the packet analyzer was 
locked to one processor core with a corresponding TSC. The 
packet analyzer also computes on-line the mean value and 
standard deviation of the measured time periods. 

Line topology is typically used in CNC systems. The 
number of nodes is small (usually less than 10) and they are 
located close to each other. Most devices have integrated two-
port hubs dedicated to Ethernet Powerlink communication. 
Delays introduced by the drives are usually much smaller than 
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b) 

 
c) 

 
Fig. 10.  SOC-SOC period histogram for hardware platforms: 
a) 1st computer, b) 2nd computer, c) 3rd computer. 

TABLE III 
SOC-SOC JITTER STATISTICS FOR 20 000 000 SAMPLES 

Dataset 1st computer 2nd computer 3rd computer 
mean val.[μs] 999.4565 999.2829 997.2869 
max. range. [μs] 11.7918 9.9695 11.5113 
std. dev. [μs] 0.9721 0.3433 0.4540 

 

 

the overall communication cycle duration. Furthermore short 
connections between drives mean smaller EMI influence. 
Therefore line topology is used in the experimental station. 

The experiment was focused on measuring EPL cycle jitter. 
Cycle jitter is the difference between EPL cycle periods 
marked by the Start of Cycle frames. SOC frames are 
synchronization frames that trigger the passing of a 
commanded position value to the servo loop. Therefore it is 
important for the period between consecutive SOC frames to 
be as stable as possible. SOC jitter is the most important 
parameter for this control system as it influences machining 
accuracy. 

Two Baldor Microflex e100 MFE230A003 servo drives 
were used in the experiment along with two BSM63N-250AF 
PMSM motors. Computational load introduced by EMC2 is a 
major factor influencing jitter during normal operation of the 
proposed CNC control system. Therefore communication tests 
were performed while running a large g-code machining 
program in EMC2. Time periods between 20,000,000 
consecutive SOC frames were measured for each PC 
controller by the EPL network analyzer. Communication cycle 
period was set as 1ms. Experimental results are presented in 
table 3, and in figure 10.  

Maximum communication cycle jitter for all tested 
computer platforms does not exceed 12μs and its standard 
deviation is below 1μs. All mean values of the SOC period are 
slightly different than the demanded value of 1ms. This is 
caused by limited resolution of the hardware APIC timers, 
which trigger the beginning of the EPL cycle. A higher APIC 
operating frequency enables better timer resolution and less 
jitter. These small differences in cycle time do not affect the 
proper operation of the CNC controller as the trajectory 
planner uses real cycle value read from the hardware timer for 
its computations instead of the ideal one. 

Maximum jitter and standard deviation are different for 
each computer. This is caused by different chipset 
architectures and their operating frequencies. Computer 2 
which has the lowest jitter uses a high-end X48 chipset while 
computer 1 (worst jitter) utilizes an older 945G chipset which 
operates at lower speeds and generates more latency. 
Computer 3 utilizes a modern but lower-end H55 chipset 
therefore it exhibits higher jitter than the older but faster X48 
chipset. In general, more modern and high-end chipsets 
operate at higher speeds and introduce less latency and jitter in 
real time operation. 

At maximum machine federate of 30m/min (rotary motor 
maximum speed 3000rpm, ballscrew pitch 10mm/rev) 
displacement caused by 12μs jitter would be equal to 6μm. At 
normal working federate (5m/min) jitter induced displacement 
would equal to 1μm. For machines with required error 
tolerances of 0.01 – 0.05mm machining error introduced by 
communication jitter is insignificant. Applications of such 
machines include wood machining, plastics machining, 
machining of some metals, laser cutting, manipulators etc. 

V. CONCLUSION 
In this article the open PC-based CNC control system with 

Ethernet Powerlink communication protocol is presented. The 
main goal of this work was to create a low-cost, flexible, 
purely software CNC control system that can utilize various 
commercially available servo drives. Low cost is achieved by 
utilizing a general purpose PC with free open-source RTOS 
(Linux RTAI) and CNC control software (EMC2) without any 
dedicated hardware (e.g. FPGA or DSP expansion board). 
This configuration is highly flexible due to software-only 
implementation of the CNC controller and large computational 
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resources of the PC. New functionality can be easily added by 
writing new software modules. 

Ethernet Powerlink protocol stack was implemented in the 
Linux RTAI real-time operating system. The stack was 
expanded with the CiA402 servo-drive communication profile 
and was integrated with the EMC2 CNC control software. 
Utilization of Ethernet Powerlink enables usage of different 
off-the-shelf servo drives produced by many manufacturers 
(e.g. Parker, Baldor) which adds to the system flexibility. 

The results presented in this article prove that the presented 
system meets the requirements for a hard real-time CNC 
control system. Jitter measurements were performed while 
running a machining program in EMC2 to ensure stable 
operation under computational load. Maximum jitter of the 
Ethernet Powerlink communication cycle period is less than 
12μs and its standard deviation is below 1μs for 3 different 
computer platforms. This result is highly satisfactory for many 
CNC motion control applications such as wood and plastics 
machining, machining of some metals, laser cutting, 
manipulation machines etc. In those applications machining 
error introduced by jitter of this magnitude is negligible (1μm) 
compared to required error tolerances (0.01 – 0.05mm). 

Modifications to the EPL stack, Linux configuration 
(isolation of real-time tasks and real-time interrupts on 
separate processor cores) as well as BIOS and mainboard 
configuration (e.g. disabling unnecessary hardware, power 
saving options, System Management Interrupts) were required 
to ensure stable and precise operation 

Future work will focus on enhancing the real-time 
performance by isolation of the Powerlink stack on a 
dedicated core separate from the CNC control application. An 
attempt to solve problems with interrupt sharing will be made 
by using message signaled interrupts (MSI) supported by 
modern PCI-E devices. 
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